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A Constrained POMDP
Formulation and Algorithmic
Solution for Radar Resource
Management in Multi-Target
Tracking

MAX IAN SCHÖPE
HANS DRIESSEN
ALEXANDER G. YAROVOY

The radar resourcemanagement problem in amultitarget tracking

scenario is considered. The problem is solved using a dynamic budget

balancing algorithm. It models the different sensor tasks as partially

observable Markov decision processes and solves them by applying

a combination of Lagrangian relaxation and policy rollout. The algo-

rithm has a generic architecture and can be applied to different radar

or sensor systems and cost functions.This is shown through simulations

of two-dimensional tracking scenarios. Moreover, it is demonstrated

how the algorithm allocates the sensor time budgets dynamically to a

changing environment in a nonmyopic fashion. Its performance is com-

pared with different resource allocation techniques and its computa-

tional load is investigated with respect to several input parameters.

I. INTRODUCTION

Recent advances in multifunction radar (MFR) sys-
tems led to an increase of their degrees of freedom. As
a result, modern MFR systems are capable of adjusting
many parameters during runtime. An automatic adap-
tation of the radar system to changing situations, like
weather conditions, interference, or target maneuvers,
is often mentioned in the context of MFR and is usu-
ally called radar resource management (RRM). It is fre-
quently considered within the broader context of so-
called cognitive radar (see, e.g. [7], [10], [15], [19], [26]).
Possible applications of these management approaches
include automotive scenarios such as autonomous driv-
ing or traffic monitoring, (maritime) surveillance, and air
traffic control. This paper aims at developing a generic
framework and approximately optimal algorithmic so-
lutions for solving RRM problems. Although the focus
is on MFR, the approach is not limited to such sensor
systems and has a wider applicability.

A. Radar Resource Management

Much of the research on RRM (see e.g. the overview
byHero andCochran in [21] or byMoo andDing in [34])
focuses on a single task, e.g. keeping a constant track
quality even under target maneuvers.This usuallymeans
managing the time budget spent on a certain task.How-
ever, MFR systems are usually operating at their sensor
time and/or energy budget limit. In such cases, increas-
ing the budget for one task means simultaneously de-
creasing the budget of the others, inevitably deteriorat-
ing their performance. In this paper, part of the RRM
problem is therefore seen as a budget or resource bal-
ancing act over the individual tasks.

Heuristic solutions have been presented in the past
(see, for instance, the overview in [24]), some relying on
assigning task priorities and priority-based scheduling.
Applying heuristics too early in the design leads to com-
plicated solutions, e.g. nested if-then-else rules. It is not
easy to understand what problem is solved within those
approaches and whether or not and in what sense the so-
lution is optimal.This usually does not lead to a reusable
generic algorithm. In addition, a priority-based sched-
uler usually does not balance the budget over all tasks
but simply schedules the jobs in order of priority (as, e.g.
applied in [33] and [39]).When the timeline is fully occu-
pied, it often leaves a set of tasks with the lowest priori-
ties that together do not fit anymore. These approaches
do not consider decreasing the time budgets of individ-
ual tasks. Furthermore, the determination of the levels
of priorities and the rules for assigning them is often not
easy and prone to heuristics.

In this paper, the problem is treated as an optimal
stochastic control problem. This relies on an explicit for-
mulation of:
� the inference problem that the radar has to solve in
terms of dynamic and measurement models,
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� the control actions that are available to the sensor,
which reflect the degrees of freedomof theMFRmen-
tioned earlier,

� a cost function that reflects the system performance
that the user would like to optimize.

To the best of our knowledge, an overall solution to
the RRMproblem using this approach has not been pre-
sented so far. It has been suggested that a truly optimal
solution could possibly lead to a significant improvement
of the performance of adaptive sensors [20], but that
still needs to be illustrated. However, even if the perfor-
mance would not improve much over heuristic solutions
that are carefully tuned to each application, a reusable
generic framework will reduce the design effort of RRM
solutions.As a consequence, such a frameworkwould re-
duce the development cost and time and aid in under-
standing the system behavior.

B. Markov Decision Processes in Resource Management

Markov decision processes (MDPs) and partially ob-
servable MDPs (POMDPs) are attractive frameworks
for modeling and solving RRM problems. They use a
number of states to formulate a dynamic control prob-
lem in which the optimal actions can be found through
optimizing a cost or reward function. A very good
overview of how these schemes can be used for RRM
has been published by Charlish et al. in [12].

Those frameworks have been applied to single tasks,
for instance, by Charlish and Hoffmann in [13] or by
Krishnamurthy in [29]. Both methods optimize the time
between consecutive measurement operations. Charlish
and Hoffmann are considering a radar tracking exam-
ple, where the track quality needs to be optimized while
Krishnamurthy presents a more general sensor scenario
where the measurement performance is optimized re-
garding false-alarm rate and the quality of the estimate.
The former approach applied policy rollout, while the
latter used a stochastic dynamic programming algorithm.
Twoother approaches showhow radar actions can be de-
termined by applying reinforcement learning (RL) [38]
and deep RL [42] to solve an underlying MDP. In their
papers, both Selvi et al. and Thornton et al. are opti-
mizing the sensing strategies for a single target while a
communication signal is using the same frequency band.
Both publications show that the optimal policy can im-
prove the performance despite the presence of the inter-
ferer. We believe that RL is an interesting approach to
RRMbut that it is often not feasible because of the huge
state space that comes with many problem formulations.
In such a case, the training of the algorithm would need
an enormous amount of data and a lot of computation
time.

Constrained (PO)MDPs have been proposed to
solve multitask control problems, where the con-
straint(s) among others can represent the limit on the
available resources or budgets for all the tasks. Possi-

ble applications are radar networks or single radars with
multiple tasks. The computational complexity of these
problems is potentially large. It has been suggested to de-
couple the main optimization problem into smaller and
easier-to-solve subproblems by the use of Lagrangian re-
laxation (LR). One LR approach for sensor networks
with an energy constraint on the inter-sensor communi-
cation has been published byWilliams et al. in [45].Some
notable LR approaches for multitask radar scenarios
are, e.g. [46] by Wintenby and Krishnamurthy and [44]
by White and Williams. Wintenby and Krishnamurthy
apply a Markov chain consisting of performance states
for each tracking task and solve it with a combination of
LR and approximate dynamic programming.White and
Williams assume a discretized state space and a fully ob-
servable MDP, which they solve by the use of dynamic
programming. In addition to that, Castañón applies LR
in combination with a constrained POMDP for multiob-
ject classification in [11]. The chosen POMDP solution
method in that approach is the so-called Witness algo-
rithm. Similar to LR, one could also consider the quality
of service resource allocationmethod (Q-RAM) in com-
bination with POMDPs. Although Q-RAM requires an
action-space discretizationwhile LRallows the subprob-
lems to be solved analytically, these methods are con-
ceptually very similar. Some interesting approaches us-
ing Q-RAM have been shown by Irci et al. in [22] and
Charlish et al. in [16] and [14].

Another interesting approach for applying POMDPs
for RRM has been introduced by Krishnamurthy and
Djonin in [30], where they divide the RRM algorithm
into “sensor micromanagement” and “sensor macro-
management.” The former is formulated as a POMDP
and determines after which time the resource allocation
has to be updated. There is always one task that gets
a high resource allocation, while the others receive a
lower one. The macromanagement, on the other hand,
decides which target will get the highest priority and
therefore the highest resource allocation. This process is
based on the realized cost of the micromanagement and
some heuristic rules. Our research, on the other hand,
aims at combining micro- and macromanagement. The
resource distribution is defined directly through the cost
function and without any heuristic functions. In addition
to that, the budgets of the tasks can gradually change
over time contrarily to the approach of Krishnamurthy
and Djonin, where only two different actions exist.

C. The Cost Function

When applying such anRRMapproach, the final per-
formance of the sensor systemwill be determined by the
cost function.This is preferred over a heuristic approach;
however, it introduces the explicit formulation of such a
cost function in the application of the framework. Some-
times it has been suggested that generic measures of per-
formance, such as the information gain, or the Renyi di-
vergence applied to the posterior density of the full state
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could be applied (see, e.g. [28], [43]). It is our strong con-
viction that one single cost function will not meet the
desires of different users in different applications with
different sensors, targets, and environments.

The development of specific cost functions is impor-
tant and will be a development task in itself that will re-
quire close cooperation with potential users. However,
since the primary focus in this paper is on the develop-
ment of a generic framework forRRM,the development
of such user-specific cost functions is out of the scope.

D. Our Approach

In this paper, the RRM problem is considered as
a multitask time budget constrained control problem,
where the individual tasks are different tracking tasks.
Our chosen problem formulation directly leads to the
assumption of a constrained POMDP.

Previously, we have already shown the optimal bal-
ancing of sensor budgets in a linear time-invariant (LTI)
setting by using the optimal steady-state budget balanc-
ing (OSB) algorithm [36]. It applies LR to distribute the
resources over the different tasks.We have subsequently
considered generic dynamical problems by utilizing the
POMDP framework and introduced the approximately
optimal dynamic budget balancing (AODB) algorithm
[37] with a cost function based on the predicted error-
covariance of the Kalman filter (KF). We have shown
that the results of the AODB algorithm are approxi-
mately optimal with respect to the steady-state error-
covariance of a KF. The RRM problem was solved non-
myopically by using an online Monte Carlo technique
called policy rollout, which stochastically predicts the
future.

E. Novelty

In this paper, we compare the performance of the
AODB algorithm to several other resource allocation
techniques. Furthermore, we investigate its computa-
tional load. Compared to our previous papers, we apply
theAODB algorithm to amore complete dynamic radar
tracking scenario to emphasize its practical value in vari-
able problem settings. In order to do so,we show how the
AODB algorithm can be applied to dynamic radar sce-
narios assuming different measurement types and sys-
tem parameters.

F. Structure of the Paper

The remainder of this paper is structured as follows.
Section II defines the problemas a constrained optimiza-
tion problem in a POMDP framework, while Section III
explains the general application of LR and policy roll-
out to that problem. Section IV introduces the assumed
radar scenario. In Section V, we compare the results of
the OSB and the AODB algorithm in a simplified LTI
scenario, similar to our work in [37]. In Section VI, we

assume a dynamic radar-related scenario, with more re-
alistic parameters than in our previous work. It is solved
by applying the AODB algorithm and optimizing both
dwell time and revisit interval. Subsequently, an analy-
sis of the algorithm’s performance and its computational
load is conducted in Sections VII and VIII, respectively.
Finally, Section IX contains the conclusions.

II. RRM PROBLEM DEFINITION

A. Motion Model

At every moment in time t, each target considered
within this model can be characterized by a state based
on its position and velocity in the x and y directions
within a two-dimensional Cartesian coordinate system.
For target n, this state is defined as

snt = [xnt ynt ẋnt ẏnt ]
T

, (1)

where xnt , y
n
t and ẋnt , ẏ

n
t are the position and velocity of

target n in x and y, respectively. The future target state
at time t + �t can be calculated following a function

snt+�t = f�t (snt ,w
n
t ) , (2)

where snt+�t is the next following state at time t + �t and
wn
t ∈ R

4 is the maneuverability noise for target n at time
t. The state evolution equation (2) directly defines the
evolution probability density function,which is given as

p
(
snt+�t |snt

)
. (3)

B. Measurement Model

We assume a sensor that is taking noisy observations
of the state snt with sensor action ant ∈ R

m, where m is
the amount of adjustable action parameters.Ameasure-
ment znt of target n at time t can be characterized by using
the measurement function h as

znt = h (snt , v
n
t ,a

n
t ) , (4)

where vnt ∈ R
q is the measurement noise for target n and

q is the amount of measurement parameters. The mea-
surement equation (4) directly defines the measurement
probability density function, which can be written as

p (znt |snt ,ant ) . (5)

C. Tracking Algorithm

For the tracking scenarios considered in this paper,
a tracking algorithm should be chosen that aims at com-
puting the posterior density. For linear systems, a KF can
be adopted as an exact solution. For nonlinear systems,
possible algorithms are an extended KF (EKF) or a par-
ticle filter, for example.
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D. Budget Optimization Problem

As mentioned in Section I, the radar sensor is as-
sumed to have a limited maximum budget �max of any
kind. For action ant that is executed for each task n, a cer-
tain amount of budget (e.g. time or energy allocations) is
required. In an overload situation, the current tasks re-
quire more total budget than is available.Thus, the avail-
able budget has to be distributed over the tasks in a way
that minimizes a cost (e.g. related to the uncertainty of
the current situation).

At time t, the optimization problem for N different
tasks can be written as

minimize
at

N∑
n=1

c(ant , s
n
t )

subject to
N∑
n=1

�n
t (a

n
t ) ≤ �max,

(6)

where �n
t ∈ [0, 1] is the budget for task n at time t, c(·) is

the used cost function, and�max ∈ [0, 1] is the maximum
available budget (0: no budget assigned, 1: all budget as-
signed). The definition of an operationally relevant cost
function is important to efficiently benefit from these
techniques, but is not the focus of this paper. An exam-
ple of an operationally relevant cost function has been
discussed by Katsilieris et al. [25].

III. PROPOSED SOLUTION FOR RRM PROBLEM

A. Distribution of Sensor Budgets Using LR

This paper is partly based on our previous research
[36], where we used LR to include the constraints into
the cost function. By doing so, the original optimiza-
tion problem is decoupled into smaller ones, one for
each task.This leads to the Lagrangian dual (LD),which
needs to be optimized.The LDproblem (LDP) is formu-
lated as

ZD=max
λt

(
min
at

(
N∑
n=1

(c(ant , s
n
t ) + λt · �n

t )

)
− λt · �max

)
,

(7)
where λt ∈ R is the Lagrange multiplier for the budget
constraint. Due to the sum in the LDP, the minimization
problem can be solved for each target n in parallel before
updating the Lagrangian multiplier in an iterative pro-
cess. The exact procedure is shown in [36] and is summa-
rized in the following, where an internal index l is used
for the iterations within the LR process.:

1) l = 0: set an initial Lagrange multiplier (λ = λ0).
2) For each task n, minimize the LD with respect to the

actions and save resulting anl and �n
l .

3) Choose a subgradient for the Lagrange multiplier as
μλ
l = ∑N

n=1 �n
l − �max.

4) Check if μλ
l ≈ 0 with the desired precision. If it is,

stop the process. The current λl , anl , and �n
l are the

final LR solution for λt at time t.
5) Set λl+1 = max{0, λl + γlμ

λ
l }, where γl is the LR step

size at time l. This stage is responsible for iteratively
maximizing the LD with respect to λ.

6) Go to step 2 and set l = l + 1.

Lagrange multipliers and LR have been extensively
covered in literature andmore information can be found,
e.g. in [2], [5], [6], [9], and [31].

B. Definition of a POMDP

A POMDP describes an MDP for which the state
cannot be observed directly. Instead, an observation is
taken, which generates a probability distribution over
the possible states. This is called the belief state. Based
on the belief state and the knowledge of the underlying
MDP, a POMDP allows us to solve optimization prob-
lems nonmyopically, meaning that it takes the expected
future into account. In the following, the time is assumed
to be discretized in intervals kwith lengthT ,which is the
time between two consecutive observations.

Generally, a POMDP is defined by the following pa-
rameters (see, e.g. [35], [17]):

State space S: It consists of all possible states that can
be reached within the process, see (1).At time step k, the
state is defined as sk. Based on the underlying states and
the received observations, the belief state defines a prob-
ability distribution over all possible states. It is defined as
bk.

Action space A: It consists of all possible actions
within the process.Each action has a certain cost defined
by the cost function. The action at time step k is denoted
by ak.

Observation space Z: It consists of all possible ob-
servations that can be received within the process. An
observation at time step k is defined as zk.

Transition probability �(sk, sk+1,ak): It is the proba-
bility function p(sk+1|sk,ak) that defines the probability
of transitioning from state sk to state sk+1 given action
ak. Note: In this paper, the transition probability does
not depend on the action.

Probability of observation O(zk, sk+1,ak): It is the
probability function p(zk|sk+1,ak) that defines the prob-
ability of receiving a certain observation zk when execut-
ing action ak with the resulting state being sk+1.

Cost function c(sk,ak): It is the immediate cost of ex-
ecuting action ak in state sk. Note: In this paper, the cost
function does not directly depend on the state.

Discount factor γ: It is a discount factor that dis-
counts future time steps with respect to the present.
Note: In this paper, the discount factor is always set to
γ = 1.

POMDPs can be solved for finite or infinite horizons.
In order to reduce the necessary computational power, a
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limited horizonH is assumed in this paper.The value of
H represents the number of considered measurement
time steps into the future. Every time a new budget al-
location is calculated, the horizon H will be reapplied
from the currentmoment in time.This approach is there-
fore also called a receding horizon.

In [13], Charlish and Hoffmann have written a very
clear summary of the general solution of a POMDP,
which is used as a base for the following equations. We
would like to find the actions that minimize the total cost
(valueVH over horizonH ).Starting at time step k0, this
can be expressed as

VH = E

⎡⎣k0+H∑
k=k0

c(sk,ak)

⎤⎦ . (8)

Using CB(bk,ak) = ∑
s∈S bk(s)c(s,ak) being the ex-

pected cost given belief state bk,VH can be written as
a so-called value function of the belief state bk0 at time
step k0:

VH (bk0 ) = E

⎡⎣k0+H∑
k=k0

CB(bk,ak)|bk0

⎤⎦ . (9)

For belief state b0 and taking action a0, the optimal value
function is defined according to Bellman’s equation [1]
as

V∗
H (b0) = min

a0∈A
(
CB(b0,a0) + γ · E [

V∗
H −1(b1)|b0,a0

])
.

(10)
For very long or infinite horizons, the discount factor can
be set to γ < 1. Using this equation, the optimal policy
can be expressed as

π∗
0 (b0) = argmin

a0∈A

(
CB(b0,a0) + γ · E [

V∗
H −1(b1)|b0,a0

])
.

(11)
For each bk and ak, the optimal so-called Q-value is then
defined as

QH −k(bk,ak) = CB(bk,ak)+γ ·E [
V∗

H −k−1(bk+1)|bk,ak
]
.

(12)
Another way to find the optimal policy is to find the ac-
tion ak that minimizes the optimal Q-value:

π∗
k (bk) = argmin

ak∈A
(QH −k(bk,ak)). (13)

It is therefore necessary to calculate the Q-value for all
possible actions, which is generally infeasible.

C. Solution Methods for POMDPs

For solving a POMDP, there are both online and of-
fline approaches. The choice of the type of these meth-
ods usually depends on the size of the state space. The
so-called state-space explosion limits the usefulness of
exact offline techniques.

Most offline methods are based on the so-called
value iteration (VI), which iteratively calculates the

Task 1 Policy Rollout 1

Subgradient
method

Task 2 Policy Rollout 2

Task N Policy Rollout N

Ini�al λ
λ

Lagrangian relaxa�on

. . . .

. . . .

. . . . . .

Output of converged algorithm:
Approximately op�mal budgets     

Fig. 1. High-level block scheme of the proposed algorithm.

cost/reward values of all possible states. There are ex-
act approaches to VI (e.g. One-Pass algorithm [40]), as
well as approximate point-based algorithms (e.g. PBVI
or Perseus [41]). The former techniques often lead to
very complicated optimization problems,while the latter
ones requiremany grid points within the state space (and
therefore a lot of memory and computational effort) in
order to converge toward the exact solution. The advan-
tage of offline solutions is that the POMDP is solved only
once,and the solution is always valid afterward.Unfortu-
nately, those methods are already infeasible for a small-
dimensional state space.

In contrast to that, online algorithms only solve a
small part of the POMDP that is relevant at the current
moment.This makes them less accurate, but much easier
and faster to compute.Some of the online approaches in-
volve approximate tree methods (see, e.g. the overview
in [35]) or Monte Carlo sampling (e.g. policy rollout).

Since an exact and complete solution of the POMDP
is usually infeasible in real scenarios, this paper focuses
on the implementation of policy rollout as an approxi-
mate solution. The general structure of our proposed al-
gorithm is illustrated in Fig. 1. The outputs of the algo-
rithm are the converged budgets for each task.

D. Policy Rollout for POMDPs

The policy rollout technique takesMonte Carlo sam-
ples of the expected future, which means that it stochas-
tically explores the possible future actions and the ac-
cording costs. Within a rollout, observations and belief
states are generated from a given initial belief state and
a given candidate action. There is a rollout evaluation
per action a in the action space A. The candidate action
is taken in the first step of the rollout, while a so-called
base policy πbase is used for every following step, until
the horizon H is reached. In each rollout, the total cost
is summed up. This procedure is repeated M times and
then the summed cost of allM rollouts is averaged. This
is the expected cost of the evaluated action. The action
that produced the lowest expected cost is chosen for the
next time step. It has been shown that policy rollout leads
to a policy that is at least as good as the base policy with
a very high probability, if enough samples are provided
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TABLE I
System Parameters of the Assumed Radar Systems with Respect to

the Reference Measurement

System Measurement σ 2
r,0 (m

2) σ 2
θ,0 (rad

2) σ 2
d,0 ((m/s)2)

A r/θ 625 4e−4 –
B r/θ /d 2500 2e−4 25

[3]. The choice of the base policy and the amount of
samples to be taken are therefore crucial to the perfor-
mance of the algorithm.The number of samples is equiv-
alent to the number of rollouts M per action that are
used to average the cost, or, in other words, one sam-
ple is the evaluation of one possible future. Finding a
good base policy for a radar scenario is no trivial task.
As an example, one could think about using information
from previously experienced situations that were simi-
lar to the current one. If the executed actions from the
last run have been saved, they can be reused again to
improve the policy further. This could be considered in
the context of RL, for instance. Unfortunately, it is not
very likely to experience the exact same situation mul-
tiple times if a very big state space is assumed, so the
usefulness in such a case is questionable (see also our
remark about RL in Section I-B). Another very simple
choice of the base policy could be an equal resource al-
location to all the tasks. Policy rollout has been covered
extensively, e.g. by Bertsekas in [2]–[4].

The policy rollout can be expressed mathematically
as shown in (14) and (15). The Q-value is defined as

Qπbase (bk,ak) = CB(bk,ak) + E [Vπbase (bk+1)|bk,ak] ,
(14)

where E[·] is the expectation. The best policy can then
be found by applying

πk(bk) = argmin
ak∈A

(Qπbase (bk,ak)). (15)

Policy rollout does not necessarily lead to the optimal
policy. It rather aims at improving the chosen base policy
πbase.

IV. ASSUMED RADAR SCENARIO

For the rest of this paper, we assume a two-
dimensional radar tracking example that will be solved
using the AODB algorithm. Measurements are taken
in range, angle, and possibly radial velocity. The algo-
rithm is jointly optimizing the revisit intervalT (the time
between two consecutive measurements) and the dwell
time τ (the time that the sensor spends focusing on a
target). The algorithm calculates the budgets of all tasks
and makes sure that they fit into the time frame, but
does not create an explicit schedule. Therefore, the as-
sumed measurements are taken independently of each
other and can be overlapping in time. In order to put all
tasks into a single timeline,an explicit scheduler needs to

TABLE II
Parameters of Reference Measurement

SNR (SNR0) RCS (ς0) Dwell time (τ0) Range (r0)

1 10 m2 1 s 50 km

be implemented at a lower level.At which moments this
budget calculation is performed depends on the prefer-
ences of the user. In the following, the assumptions of the
assumed radar scenario are explained in more details.

A. Assumed Radar Systems

In the simulations, two different sets of system pa-
rameters are assumed as given in Table I. The table
shows the measurement noise variances for range (σ 2

r,0),
azimuth (σ 2

θ,0) angle, and radial velocity (σ 2
d,0) with re-

spect to the measurement of a reference target. The pa-
rameters of the reference measurement are shown in
Table II and are valid for all simulations that are pre-
sented in this paper.Radar systemAmeasures range and
azimuth only, while system B is able to measure radial
velocity as well. The values of the variances in Table I
are chosen rather arbitrarily. We do not intend to com-
pare the different radar systems, but rather use them to
show how the AODB algorithm can universally be ap-
plied to different systems.

B. Velocity Model

The velocity model is assumed to be constant. Be-
tween two resource allocation updates, the actions are
assumed to stay unchanged. The action vector an ∈ R

2

consists of the dwell time and the revisit interval.The lat-
ter defines the time between the measurements of target
n. In contrast to our previous publications, in this paper,
the revisit intervalTn and the dwell time τn are optimized
jointly. The revisit intervals with length Tn depend on
the targets and are therefore denoted by kn. Consider-
ing this, (2) can explicitly be written as

snkn+1 = Fnsnkn + wn
kn , (16)

with Fn ∈ R
4×4 defined as

Fn =

⎡⎢⎢⎣
1 0 Tn 0
0 1 0 Tn
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (17)

and the maneuverability noise wn with covariance

Qn =

⎡⎢⎢⎣
T 4
n /4 0 T 3

n /2 0
0 T 4

n /4 0 T 3
n /2

T 3
n /2 0 T 2

n 0
0 T 3

n /2 0 T 2
n

⎤⎥⎥⎦ σ 2
w,n, (18)

where σ 2
w,n is the maneuverability noise variance of tar-

get n.
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Because of the nonlinear relationship between mea-
surements and states, an EKF is applied. The corre-
sponding observation matrix Hn

kn is defined as the Jaco-
bian of the measurement transformation function h:

Hn
kn = ∂h

∂s

∣∣∣∣
snkn

. (19)

It has dimensions Hn
kn ∈ R

2×4 for system A and Hn
kn ∈

R
3×4 for system B.

C. Signal-To-Noise Ratio (SNR) Model

In the following examples, we assume sensor mea-
surements in range (r), azimuth (θ), and radial velocity
(d). Since the transformation between polar and Carte-
sian coordinates is nonlinear, themeasurement equation
in (4) for target n at time step kn can be defined as

znkn = h(snkn ) + vnkn , (20)

where h(snkn ) ∈ R
3 is the measurement transformation

function at snkn , which for system B is defined as

h(snkn )=⎡⎣√
(xnkn)

2+(ynkn)
2 , atan2

(
ynkn , x

n
kn

)
,
xnknẋ

n
kn

+ynkn ẏnkn√
(xnkn )

2+(ynkn )
2

⎤⎦T

(21)

and vnkn ∈ R
3 is the measurement noise for target n. The

range,azimuth,and radial velocity components of vnkn are
independent:

vnkn = [vr,nkn vθ,n
kn

vd,n
kn

]T , (22)

with variances σ 2
r,n, σ

2
θ,n, and σ 2

d,n. In this paper, the SNR
is calculated by using (23), which is based on equations
by Koch in [27]:

SNRkn (ςn, τn, r
n
kn ) = SNR0

(
ςn

ς0

)(
τn

τ0

)( rnkn
r0

)−4

e−2�α,

(23)
where�α is the relative beam positioning error,ςn is the
constant radar cross section (RCS) of the target n, rnkn is
the distance of target n at time step kn, and ς0, τ0, and
r0 are the corresponding values for a reference target. In
(23), the dwell time is used equivalently to the transmit-
ted energy mentioned by Koch. Similar to the approach
in [27], the relative beam positioning error is calculated
using

�α =
(
θkn − θ̂kn

)2
2

, (24)

where θkn is the real target angle, θ̂kn is the predicted tar-
get angle in azimuth at time kn, and  is the one-sided
beam width in azimuth.

Using (23), the variance of the range, azimuth, and
radial velocitymeasurement noise for target n can be de-

fined as (see, e.g. [32])

σ 2
•,n = σ 2

•,0
SNRkn (ςn, τn, r

n
kn
)
, (25)

where • ∈ (r, θ,d) and σ 2
•,0 is the measurement noise

variance for a reference target 0, as defined in Table I.
Due to the independentmeasurements, themeasure-

ment covariance when using system B can be defined as

Rn
kn =

⎡⎣σ 2
r,n 0 0
0 σ 2

θ,n 0
0 0 σ 2

d,n

⎤⎦ . (26)

D. Optimization Problem

It is assumed that there are N tracked targets in the
environment. The RRM problem can thus be expressed
as

minimize
T,τ

N∑
n=1

c(Tn, τn, snkn )

subject to
N∑
n=1

τn

Tn
≤ �max,

(27)

where �max ∈ [0, 1] is the total available budget. The
term budget refers to a ratio of dwell time τ to revisit
interval T .

Furthermore, every detection is always correctly as-
signed to the corresponding target.

E. Cost Function

The assumed cost function is constructed from the
predicted error-covariance matrix at time step kn + 1.
The current predicted error-covariancematrixPn

kn|kn−1 ∈
R

4×4 at time step kn can be defined for target n as

Pn
kn|kn−1(Tn, τn) = FnPn

kn−1|kn−1(Tn, τn)F
T
n +Qn, (28)

where Fn is the transition matrix with interval length
Tn as defined in (17), Pkn−1|kn−1 ∈ R

4×4 is the last fil-
tered error-covariance matrix, and Qn is the maneuver-
ability covariance with interval length Tn as defined in
(18). Based on this, another estimation and prediction
cycle is applied to the error-covariance. The result is the
error-covariance Pkn+1|kn ∈ R

4×4 for time kn + 1:

Pkn+1|kn (Tn, τn) = FnPkn|kn (Tn, τn)F
T
n +Qn. (29)

The cost function that is used in the following sections is
based on this expression.

V. LTI EXAMPLE

In this section, a simplified linear time-invariant sce-
nario is assumed in order to investigate if the AODB al-
gorithm converges to the same results as given by the
OSB algorithm,which is the optimal solution in this case.
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TABLE III
General Simulation Parameters of LTI Scenario

Parameter Value Parameter Value

Precision of LR (δLR): 0.001 Maximum budget
(�max):

1

Action discretization
(�T ,�τ ):

0.0025 s Budget update (tB): 5 s

Number of rollouts (M): 10 Beam positioning error
(�α):

0

Rollout horizon (H ): 10 steps Probability of detection
(PD):

1

A. General Simulation Parameters

We consider radar systemA,as mentioned in Table I.
For this simple example, no beam positioning error is
taken into account, e.g. due to a very wide beam by us-
ing anMFRwith a phased array antenna applying digital
beamforming (DBF) on receive. The probability of de-
tection is assumed to be 1. The implemented base policy
is simply to apply the evaluated action in every step of
the policy rollout. Therefore, πbase = a. A constant LR
step size is applied in all simulations. Within the policy
rollout, the expected future cost is simulated over the
defined horizon for each possible action. The action that
produces the lowest expected cost will be chosen for the
measurements during the next time steps. No additional
random movement (process noise) is considered within
the policy rollout. For the simulations in this section, the
sum of the predicted error-covariance for the position
in the x and y directions is applied as a cost function.
Because we want to avoid choosing parameters that are
impractical in a real application, an extra term is added
that penalizes small values of T . Using (29), this can be
expressed as

c(Tn, τn) = trace
(
EPkn+1|kn (Tn, τn)E

T ) + 1000
(Tn)2

, (30)

where

E =
[
1 0 0 0
0 1 0 0

]
(31)

is the selection matrix that selects the upper left two-by-
two submatrix from the error-covariance matrix.

Table III shows general simulation parameters. The
initial Lagrange multiplier value is set to 1. The budgets
are recalculated every tB = 5 s. The base policy is ex-
ecuting the evaluated action in every step of the policy
rollout horizon (πbase = a).Within the policy rollout, the
expected future is simulated and evaluated for each pos-
sible action. The radar is always positioned at the origin
of the Cartesian coordinate system.

B. Comparison of OSB and AODB

In order to prove the validity of the proposedAODB
algorithm, a comparison is conducted with the OSB al-

TABLE IV
Initial Target Parameters for LTI Scenario

Target n xn0 (km) yn0 (km) ẋn0 (m/s) ẏn0 (m/s) σ 2
w (m/s2)2 ςn (m2)

1 50 0 0 0 25 10
2 50 0 0 0 25 20
3 50 0 0 0 25 30
4 50 0 0 0 25 40
5 50 0 0 0 25 50
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Fig. 2. Budget per task over time after initialization of the AODB
algorithm. Solid lines: results from AODB.Dashed lines: optimal

steady-state results from OSB. Lines from top to bottom: targets 1–5.

gorithm, as proposed in [36]. The OSB algorithm calcu-
lates the optimal steady-state error-covariance given a
revisit interval T and a dwell time τ by using equations
by Kalata in [23] and by Gray and Murray in [18]. It is
used as explained in [36] with the general simulation pa-
rameters from Table III.

For the comparison, system A and five target track-
ing tasks are considered with the parameters shown in
Table IV. The revisit interval T and the dwell time τ

are discretized in steps of 0.0025 s. It is assumed that
the budget values are recalculated every 5 s. In between,
measurements of the targets are taken with the previ-
ously calculated revisit intervals Tn and dwell times τn.
The tracks are assumed to be initialized at the beginning
of the simulation.

Since the steady-state solution of the OSB algorithm
is only valid for a single dimension, we assume that the
targets are all positioned at the same position and the
system knows the exact azimuth angle. All targets are
static and only the RCS is considered to be different.

The simulation results are shown Fig. 2. It can be seen
that the budget allocations �n = τn/Tn converge to re-
sults that are very close to the values that have been de-
termined with the OSB algorithm.

Theoretically, the AODB algorithm should work
with any number of tasks. In order to demonstrate that,
the above simulation has been repeated with 10 tasks.
Equivalent to targets 1–5, the RCS values of targets 6–10

38 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 16, NO. 1 JUNE 2021



0 10 20 30 40 50
Time [s]

0.06

0.08

0.1

0.12

0.14

0.16

0.18

B
ud

ge
t

Fig. 3. Budget per task over time after initialization of the AODB
algorithm. Same simulation as for Fig. 2, but with ten tracking tasks.

Lines from top to bottom: targets 1–10.

TABLE V
General Simulation Parameters of Dynamic Scenario

Parameter Value Parameter Value

Precision of LR (δLR): 0.001 Maximum budget
(�max):

1

Action discretization
(�T ,�τ ):

0.0025 s Budget update (tB): 5 s

Number of rollouts (M): 5 Beam positioning error
(�α):

0

Rollout horizon (H ): 15 steps Probability of detection
(PD):

1

are increasing in steps of 10 m2. Fig. 3 shows the approx-
imately optimal budget distribution.

VI. DYNAMIC RADAR EXAMPLE

In this section, the performance of the AODB algo-
rithm is investigated in a more realistic radar-related ex-
ample with different system parameters.

A. General Simulation Parameters

The cost function as introduced in (30) is applied.
Table V shows general simulation parameters for these
simulations. The initial Lagrange multiplier value is set
to 1. The budgets are recalculated every tB = 5 s and
measurements are taken in betweenwith the current cal-
culated resource allocations.The base policy is executing
the evaluated action in every step of the policy rollout
horizon (πbase = a). Within the policy rollout, the ex-
pected future is simulated and evaluated for each possi-
ble action.The radar is always positioned at the origin of
the Cartesian coordinate system.

B. Dynamic Radar Scenario for PD = 1

A dynamic scenario with five moving targets is con-
sidered in this simulation. The initial target parameters

TABLE VI
Initial Target Parameters for Dynamic Scenario

Target n xn0 (km) yn0 (km) ẋn0 (m/s) ẏn0 (m/s) σ 2
w (m/s2)2 ςn (m2)

1 12 10 9 −15 25 20
2 12 15 −30 15 25 20
3 7 11 45 30 64 10
4 19 2 −35 0 64 10
5 10 11 −20 −25 64 10
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Fig. 4. Trajectories of targets in a dynamic scenario.

are given in Table VI and are valid at the moment when
the corresponding track is started. Their trajectories are
shown in Fig.4.The simulation is conductedwith systems
A and B separately.As in the LTI simulations of Section
V, no beam positioning error is taken into account, e.g.
due to a very wide beam by using anMFRwith a phased
array antenna applying DBF on receive. The probability
of detection is assumed to be 1. A horizon of H = 15
is assumed. Targets 1–4 are tracked from the beginning,
while target 5 joins as a new track after 25 s. After 60 s,
the total budget is reduced to�max = 0.9.The reason for
this could be that an operator manually assigned 10% of
the budget to another task, for instance. At 90 s, the ma-
neuverability variance of target 1 increases by a factor of
36 to a value of 900 (m/s2)2, which is known to the sys-
tem in advance, for instance, through some knowledge
of the environment. The simulation results for system A
can be found in Figs. 5 and 6, where the former shows
the resource distribution over the tasks over time and
the latter shows the amount of LR iterations that was
needed for convergence. The corresponding simulation
results for system B are shown in Figs. 7 and 8.

The algorithm manages to calculate the budget for
both systems, while adjusting to unknown and known
changes. Before the known variance change at 90 s, the
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Fig. 5. Dynamic scenario simulation using radar system A.

algorithm already gradually increases the budget for
target 1. The algorithm delivers very similar but still dif-
ferent solutions for the two systems. It can be seen that
the amount of LR iterations needed until convergence
stays low, unless bigger changes in the situation take
place. For the chosen parameters, the maximum is 66 it-
erations for a single resource allocation calculation as-
suming system B. Using system A leads to similar peak
values.

Apart from the impact of the three mentioned sud-
den changes that are applied to the system, it is also ob-
vious that there seems to be a certain dependence of the
budgets on the range. While the budget assigned to tar-
gets 1 and 2 stays roughly constant in between different
events, target 3 gets an increasing amount of resources
assigned, while the resources of targets 4 and 5 are de-
creasing. The reason for this is that targets 1 and 2 are
moving roughly perpendicular to the radar, while target
3 is moving away from it and targets 4 and 5 are moving
toward it. In Section VI-D, this effect is investigated with
an extra simulation.

C. Dynamic Radar Scenario for PD < 1

In a real situation, a low SNR can lead to missed de-
tections. In addition to that, the used radar systemmight
not have the capability to transmit with a wide beam and
apply DBF on receive. Therefore, another simulation is
presented in this subsection that takes into account a
probability of detection based on the calculated SNR
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Fig. 6. Number of LR iterations for a dynamic scenario simulation
using radar system A.
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Fig. 7. Dynamic scenario simulation using radar system B.

and the beam positioning error. The scenario is identical
with the one shown in Section VI-B, and apart from the
probability of detection and the beam positioning error,
all values in Table V are applied. The SNR is calculated
using (23) and taking into account a beam width of 2◦.
In addition to that, a measurement in the simulation as
well as in the policy rollout is only generated with the
probability of detection [27]

PD,kn = P
1

1+SNRkn
FA , (32)

where PFA = 10−4 is the constant probability of false
alarm. It is assumed that the false alarms have no influ-
ence on the tracks.The result of this simulation assuming
system A can be found in Figs. 9 and 10.

It can be seen that the resulting budget allocations
are less smooth than in the simulations assumingPD = 1.
Still, the AODB algorithm leads to comparable results
despite the fact that some of the probabilities of detec-
tion are quite low.

D. Analysis of the Impact of the Chosen Cost Function

To show the impact of the range on the resource dis-
tribution by the AODB algorithm, another simulation
has been conducted with three targets. Target 1 has the
initial parameters x0 = 6 km, y0 = 6 km, ẋ0 = 50 m/s,
and ẏ0 = 50 m/s. Targets 2 and 3 are static at positions
x = 12.4 km, y = 9 km and x = 8.4 km, y = 9.2 km,
respectively. The simulation result is presented in Fig.
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Fig. 8. Number of LR iterations for a dynamic scenario simulation
using radar system B.
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Fig. 9. Dynamic scenario simulation using radar system A with
PD < 1.

11 and shows that the budget assigned to target 1 is
increasing with growing target distance from the radar,
while the budget assigned to the other targets is decreas-
ing. This behavior is expected but does not represent
what is typically desired or expected for a radar appli-
cation.

VII. ANALYSIS OF PERFORMANCE

In the following subsections, we will take a closer
look at the general performance of theAODBalgorithm
with respect to other resource allocation methods.

The assumed scenario is the same as in Section VI, so
the radar and target parameters are identical to Tables I,
V,andVI.For the following simulations,we consider one
implementation of theAODBalgorithm and three other
strategies using radar system A. The cost evaluation is
done for two cases, firstly for PD = 1 and secondly for
PD < 1, based on the SNR including a beam positioning
error as presented in Section VI-C.

It is generally difficult to judge the performance of
RRM algorithms in theory, because it depends on the
specific situation and the specific mission where they are
applied in. Depending on the user of the radar system,
there might be different views on the different parame-
ters. It is possible to show that an approach optimizes
the resource distribution according to the chosen cost
function, but if the cost function is not well designed,
the tracking,detection,or classification performance can
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Fig. 10. Average probability of detection per budget update interval
for the dynamic scenario with PD < 1.
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Fig. 11. Budget allocation for two static and one moving target.

still be unsatisfying. Therefore, we only focus on the ex-
pected cost in this section.

The techniques that are compared to each other are
as follows:

� Random policy: For a given revisit interval T = 1.2 s,
randomly divide the available resources among all
tasks.

� Equal policy: For a given revisit interval T = 1.2 s,
the available budget is always distributed equally to
all tasks.

� Unequal policy: For a given revisit interval T =
1.2 s, target 1 gets more resources assigned than the
other targets. The remaining resources are distributed
equally over targets 2–5.

� AODB15: Nonmyopic AODB algorithm, assigning
resources using policy rollout (H = 15,M = 5).

Figs. 12 and 13 show how the expected cost de-
velops over time for the different techniques that are
mentioned above. For the heuristic methods, the future
expected cost during a horizon of H =15 has been
evaluated stochastically assuming the chosen action,
equivalently to the policy rollout. One can see how
the AODB clearly minimizes the cost compared to the
other techniques for both PD = 1 and PD < 1.
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Fig. 12. Comparison of the expected cost for different resource
distribution methods assuming radar system A and PD = 1. Note that

the cost is plotted in a logarithmic scale.
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Fig. 13. Comparison of the expected cost for different resource
distribution methods assuming radar system A and PD < 1. Note that

the cost is plotted in a logarithmic scale.

TABLE VII
General Simulation Parameters for Computational Load Analysis

Parameter Value Parameter Value

Precision of LR (δLR): 0.01 Maximum budget
(�max):

1

Action discretization
(�T ,�τ ):

0.0035 s Number of simulations: 10

Number of rollouts (M): 2 Beam positioning error
(�α):

0

Rollout horizon (H ): 2 steps Probability of detection
(PD):

1

VIII. ANALYSIS OF COMPUTATIONAL LOAD

In this section, the computational load of the AODB
algorithm is investigated. It should be noted that the cur-
rent version of the algorithm has not been derived with
high efficiency in mind. The following results should be
seen as indications, since the process can still be opti-
mized.

The computational load of the algorithm has been
investigated with respect to the following parameters:

� amount of tracking tasks,
� step size of LR,
� desired precision of results,
� initial value of the Lagrange multiplier,
� rollout length.

In the following, simulation results are shown based
on a single budget calculation. This means that we look
at the way the LR converges to its final result based on
the above parameters.To generate the figures, the results
of ten simulations have been averaged. The general sim-
ulation parameters are shown in Table VII. Those pa-
rameters are valid for all following simulations, except
for the currently evaluated parameter. For that one, a
sweep over different values is applied, which is specified
in the corresponding subsection. We assume a fixed ac-
tion space that is the same for each calculation in the
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Fig. 14. Convergence for different numbers of tracking tasks.
Number of LR iterations (blue with crosses) and total time (solid

red) needed for convergence, as well as time per LR iteration (dashed
red).

parameter sweep. The chosen system for these simula-
tions produces measurements in range and angle (sys-
temA) and the target parameters are the same as in Sec-
tion VI (see Table VI). The initial Lagrange multiplier
value is set to 1. In addition to that, the cost function as
introduced in (30) is used for all following simulations.
In the following figures, we show normalized times and
normalized LR iterations numbers.This means that each
data graph is normalized w.r.t. its maximum value. This
is done in order to emphasize that the capability of the
hardware and the choice of the general input parameters
are not relevant for the discussion of the results.

A. Influence of Number of Tasks on AODB

The following simulation shows the influence of an
increasing number of tasks on the computational load
and execution time of the AODB algorithm. Using the
above-mentioned parameters, 24 different simulations
have been conducted for 2–25 tracking tasks. The ini-
tial Lagrange multiplier value is 1 and the chosen con-
stant LR step size is 8000. Therefore, it is assumed that
there is no prior knowledge about the optimal Lagrange
multiplier. The results of this simulation can be seen in
Fig. 14. It can be seen that the amount of iterations, the
total time until the LR converges, and the time needed
for each LR iteration are increasing approximately lin-
early for a rising number of tracked targets, until the in-
crease slows down for larger amounts of targets of 15 and
more.

B. Influence of LR Step Size on AODB

In this subsection, a simulation shows the influence
of an increasing LR step size on the computational load
and execution time of the AODB algorithm. We con-
sider 5 tracking tasks and 50 step sizes between 250 and
20 000, while the initial Lagrange multiplier value is 1.
The results of this simulation can be found in Fig. 15. It
can be seen that the amount of LR iterations needed and
the time until convergence are decreasing exponentially.
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Fig. 15. Convergence for different LR step sizes. Number of LR
iterations (blue with crosses) and total time (red) needed for

convergence, as well as average time per LR iteration (dashed red).

The average time per LR iteration stays approximately
constant.

C. Influence of LR Precision on AODB

The following simulation shows the influence of dif-
ferent LR result precisions on the computational load
and execution time of the AODB algorithm. We con-
sider 5 tracking tasks and 50 precision values between
0.001 and 0.2. The results of this simulation can be
found in Fig. 16. The initial Lagrange multiplier value
is 1 and the chosen constant step size is 8000. It can be
seen that the amount of LR iterations and the total LR
convergence time are decreasing roughly exponentially.
The average time per LR iteration stays approximately
constant.

D. Influence of Initial Lagrange Multiplier Value on
AODB

This simulation shows the influence of different ini-
tial Lagrange multiplier values on the computational
load and execution time of the AODB algorithm. We
consider 5 tracking tasks and 50 initial Lagrangian mul-
tiplier values between 1 and 100 000. The chosen con-
stant step size is 8000. The results of this simulation can
be found in Fig. 17. It can be seen that the amount of
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Fig. 16. Convergence for different LR result precisions. Number of
LR iterations (blue with crosses) and total time (red) needed for

convergence, as well as average time per LR iteration (dashed red).
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Fig. 17. Convergence for different initial Lagrange multiplier values.
Number of LR iterations (blue with crosses) and total time (red)
needed for convergence, as well as average time per LR iteration

(dashed red).

LR iterations and the LR convergence time have a clear
minimum at about 24 000. This is the best starting value,
because it allows for the fastest convergence. The aver-
age time per LR iteration stays approximately constant.

E. Influence of Rollout Horizon Lengths on AODB

The following simulation shows the influence of dif-
ferent policy rollout horizon lengths on the computa-
tional load and execution time of the AODB algorithm.
We consider five tracking tasks and the rollout length to
vary from 1 to 25.The initial Lagrangemultiplier value is
1 and the chosen constant step size is 8000.The results of
this simulation can be found in Fig. 18. It can be seen that
the amount of LR iterations increases fast in the begin-
ning, before slowly decreasing again for horizon lengths
of 6 and longer. The total time needed increases ap-
proximately linearly, as well as the time needed per LR
iteration.

F. Conclusions on Computational Load

Based on the simulation result of the previous sub-
sections, some conclusions can be made regarding the
choice of the input parameters.They will be summarized
in the following paragraphs.
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Fig. 18. Convergence for different rollout horizon lengths. Number
of LR iterations (blue with crosses) and total time (red) needed for
convergence, as well as average time per LR iteration (dashed red).
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Number of targets and initial Lagrange multiplier
value: Both the necessary number of LR iterations and
the total LR convergence time increase with an increas-
ing number of tracking tasks. Unfortunately, it is gener-
ally not possible to influence the amount of tasks at will.
However, the effect of increasing convergence time can
be reduced by choosing the appropriate initial Lagrange
multiplier value. We found that there is a distinct mini-
mum in the number of LR iterations before convergence
(see Fig. 17). The minimum convergence time, which is
equivalent to a single LR iteration, is attained when that
Lagrangemultiplier value is chosen as the initial value. It
is interesting to see that initial Lagrange multiplier val-
ues that are bigger than the optimal value lead to longer
computations compared to values smaller than the opti-
mum. If some prior knowledge about the Lagrange mul-
tiplier value is available (e.g. from the previous budget
calculation), this can tremendously decrease the conver-
gence time, if the situation has not changed too much
since. Boyd et al. have labeled this approach a “Warm
Start” [8].

LR step size and precision of LR result: Increasing
LR step size and decreasing precision both lead to a de-
creasing number of LR iterations and time until conver-
gence, while the time needed for one LR iteration stays
more or less constant. Generally, it is useful to choose
a rather big LR step size, but if it is chosen too big
with respect to the precision and the action-space dis-
cretization, the algorithm might not converge but oscil-
late around the minimum. If the desired results lie in a
local minimum instead of the global one, the algorithm
might miss that minimum entirely, in case the step size is
chosen too big. Therefore, choosing a constant step size
is probably not the best solution and adaptive step sizes
could increase the performance. There is more freedom
to choose the precision,but one should keep inmind that
a lower precision will lead to a less accurate result,which
can lead to not precisely meeting the maximum budget
constraint.

Policy rollout horizon length: Although this paper
does not investigate the advantages of choosing differ-
ent horizon lengths for the policy rollout, it was cho-
sen to examine its impact on the computational load
for the sake of completeness. In the future, the impact
of the horizon needs to be studied in more detail. In-
creasing the horizon length leads to an almost linear
increase of the time per LR iteration. Very short hori-
zons seem to lead to very low numbers of LR iterations
until convergence. For horizon lengths longer than 2,
the number of LR iterations increases very quickly, al-
though for horizons longer than 6, it slightly decreases
again. The total LR convergence time increases with
growing rollout length (see Fig. 18). It is therefore rea-
sonable to choose the shortest horizon necessary. It
needs to be kept in mind that this is a trade-off with
an impact on the track performance, so a longer hori-
zon can potentially improve the mission performance
further.

IX. CONCLUSIONS

In this paper, we have developed a framework and
proposed approximately optimal algorithmic solutions
for solving RRM problems and shown applicability of
the algorithm to a dynamicmultitarget tracking scenario.
The proposed framework models the different sensor
tasks as constrained POMDPs and solves them by ap-
plying a combination of Lagrangian relaxation and pol-
icy rollout. In contrast to previous work where LTI sce-
narios were considered, this paper focuses on dynamic
situations with different parameters.We believe that the
proposed solution is a step toward a truly generic frame-
work.

In a simple radar tracking scenario, the dwell time
and the revisit interval were optimized using a cost func-
tion based on the predicted position error-covariance
that was computed using the EKF.

It was shown that the AODB algorithm budget allo-
cations are close to the optimal steady-state solution in
an LTI setting. Furthermore, the simulation results show
that the AODB algorithm can be applied to different
systems, and it was pointed out how it adjusted itself to
known as well as unknown situational changes in a dy-
namic scenario.

The presented cost function leads to a larger budget
being given to tracking tasks with higher uncertainty.At
first glance, this may seem to be fully appropriate; how-
ever, in radar this means that more budget will be as-
signed to targets at longer range. Thus, a simple error-
covariance-based cost function will not always suit prac-
tical radar applications.

An analysis of the performance of the algorithm has
also been conducted by comparing the optimized cost to
other resource distribution methods. It was found that
the AODB always led to the lowest cost values com-
pared to the other considered techniques. Finally, the
computational load of the algorithm was investigated.
Based on those results, suggestions about a good choice
of input parameters have been presented.

In future work, we will investigate the usage of the
AODB algorithm in a combined tracking and classifica-
tion scenario. Furthermore, we will investigate the im-
pact of choosing different horizon lengths and its impact
on the cost and the track accuracies. Finally,we will have
a closer look at the convergence of the algorithm and
how its efficiency can be improved.
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