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General 
 

Being the most frequently diagnosed type of cancer in women in 2020, breast cancer has 

remained a hot topic for researchers all over the world. All this research has led to great 

improvements in overall survival, disease-free survival and overall prognosis for patients 

suffering from breast cancer. 

A key factor in breast cancer management is early and accurate diagnosis to allow patient-

specific targeted therapy based on tumor characteristics. A relatively new diagnostic tool in 

the diagnosis of breast cancer is breast-specific gamma imaging(BSGI), also referred to as 

molecular breast imaging(MBI). BSGI is a nuclear medicine imaging technique that is based 

on the uptake of the radiotracer 99mTechnetium-sestamibi.  

One indication for BSGI is problem solving: the evaluation of indeterminate breast 

abnormalities or symptoms. In this thesis, we aim to explore the possibilities of automation 

of breast cancer detection and classification using BSGI images.  

In the first part of this thesis, a conducted literature review is described, which focuses on 

(semi-)quantitative features of BSGI images, and their possible relationships with clinical 

factors, such as malignancy, molecular subtypes and invasiveness. 

The second part of this thesis describes the development and evaluation of different  

artificial intelligence (AI) algorithms in the detection and classification of breast lesions. For 

the detection of (malignant) lesions, three convolutional neural networks were designed, 

while the classification of lesions was performed using publicly available machine learning 

algorithms. 

The final part is the clinical validation of the convolutional neural networks described above. 

This evaluation includes the possible time-savings of using AI compared to traditional 

interpretation of BSGI, the agreement between physicians and the AI-algorithm, as well as a 

possible correlation between the AI output and the BI-RADS scores assigned to images by 

nuclear medicine physicians.  
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Abstract 

A key factor in breast cancer management and increasing survival is early and accurate diagnosis. An 

emerging diagnostic tool is Breast-specific Gamma Imaging(BSGI), also referred to as Molecular 

Breast Imaging(MBI). Rather than an anatomical imaging modality, it provides functional information 

represented by uptake of 99mtc-sestamibi. This review provides an overview of recent studies on 

(semi-)quantitative analysis of BSGI/MBI images that sought to investigate the clinical parameters 

associated with image parameters. A total of 10 studies were reviewed. Most significant results were 

found in the correlation between the tumor-to-background ratios (TBR) found on images, when 

compared to malignancy rates. Higher TBR were associated with a higher change of malignancy, as 

well as a higher Ki-67 protein status and higher rates of estrogen receptor(ER) negativity and 

Progesterone receptor(PR) negativity. In addition, a higher TBR was found to be positively correlated 

with a higher histological grade of tumors. Other significant positive correlations include the 

coefficient of variation(COV), which was associated with a higher degree of invasiveness. One study 

found that irregular shape and a linear/ductal uptake pattern were a predictive factors for 

malignancy. The results found in the reviewed studies show there is clinical information embedded 

within MBI/BSGI images, which correlates with (semi-)quantitatively calculated image parameters. 

Possibly, in the future, Artificial Intelligence(AI), which has not yet been implemented in MBI/BSGI, 

can be used to aid in detecting these image parameters and provide automatic clinical information. 
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Introduction 
In 2018, a total of 2,088,849 new cases of breast cancer worldwide were diagnosed, resulting in 

626,679 deaths, making it the second most frequent type of cancer in both sexes following lung 

cancer. In females, breast cancer represents an estimated 24% to 30% of newly diagnosed cancers, 

and accounts for 15% of all cancer related deaths in women1,2. Important uncontrollable and 

controllable risk factors for developing breast cancer include age, family history, menarche history, 

obesity, smoking, alcohol consumption, breast density, contraceptive pill usage and, in less than 10% 

of cases, inherited genetic mutations3,4,5. Breast cancer incidence is strongly associated with a high 

Human Development Index(HDI) tier. The highest breast cancer incidence is seen in Belgium, 

followed by the Netherlands, whereas the lowest incidence is found in South Central Asia and Africa. 

In these latter areas, however, incidence is increasing , attributable to changes in lifestyle. In North-

America and Europe, mortality has seen a decline over the past years, which can be partially 

explained by accurate diagnosis and improved treatment6,1.  

Breast cancer diagnosis 

A key factor in breast cancer management and increasing survival is early and accurate diagnosis. 

Mammography screening programs showed to reduce mortality by breast cancer with around 40% in 

women in the age of 40 to 70 years old and an overall reduction in mortality of 19%7,8,9. 

Unfortunately, mammographic screening is associated with high rates of false-positive findings, 

leading to unnecessary radiation dose, overtreatment and anxiety. False-positive findings are more 

common in patients of younger age ( < 40 years old). Also, dense breasts pose a challenge for 

mammography screening7. Reported sensitivity from mammography alone ranges from 63% to 

98%10,11,12, and even lower sensitivity was reported in patients with dense breasts13.  

 

After positive findings on mammographic screening, or after symptomatic presentation, additional 

diagnostic modalities, such as targeted mammography, which is a more extensive mammographic 

procedure following a mammographic screening, ultrasound(US), Magnetic Resonance Imaging 

(MRI), Positron Emission Tomography (PET) and biopsies can be used to rule out false-positives and 

provide further classification of the tumor5,14. When looking at the added value of US and MRI in the 

diagnostic work-up of breast cancer, Berg et al. found that the use of just US in detecting malignant 

lesions had a higher sensitivity than using mammography on its own (83% vs. 68%, respectively) and 

that MRI alone showed an even higher sensitivity of 94%. US alone and MR alone, however, had 

significantly lower specificities in the detection of malignancies of 34% and 26%, respectively, versus 

75% in mammography alone15.  

The role of PET/CT(Computed Tomography) in the primary diagnosis of breast cancer is fairly limited, 

but can be useful in the detection of distant metastasis and lymph node infiltration16. Mainly due to 

the low spatial resolution of PET, a sensitivity as low as 48% has been reported, with false-positive 

findings resulting from inflammations, fibroadenomas and gynecomastia. Reported specificity ranges 

from 73% up to 100%17. Recently, novel imaging modalities for the diagnosis of breast cancer have 

been introduced. Breast-specific gamma imaging(BSGI), also referred to Molecular breast imaging 

(MBI), depending on the type and number of detectors used, is a nuclear medicine imaging 

technique, derived from scintimammography, utilizing small-field-of view dedicated gamma cameras 

for detection of intravenously administered radiotracers18,19. BSGI is a functional imaging modality, 

most often based on the uptake of 99mTc-sestamibi, a radiotracer that is able to show cellular 
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proliferative activity by mitochondrial uptake and angiogenesis, generally observed in tumors20,21.  

 

BSGI acquisition protocols slightly vary across institutions and manufacturers, but generally consist of 

99mTc-sestamibi administration in the antecubital vein, followed by image acquisition mediolateral-

oblique (MLO) and cranialcaudal(CC) perspectives. Initially, administered doses varied from 770-1100 

MBq, but more recently published studies have reported equivalent diagnostic accuracy with doses 

up to 2,5 times lower than original protocols. This was achieved mainly due to improved collimator 

design22,23,24.  

Images are acquired bilaterally in craniocaudal(CC) and Mediolateral Oblique(MLO) views, with slight 

breast compression between either a detector and compression paddle, or two detectors, resulting 

in a complete BSGI set of 4 images25. Acquisition times for each scan vary between 8-10 minutes26,27.  

A 2017 meta-analysis by Zhang et al. compared diagnostic performance of BSGI and MRI in breast 

cancer. Whereas sensitivity of BSGI versus MRI showed comparable results (0.84; 95% CI, 0.79-0.88), 

and 0.89; 95% CI, 0.84-0.92, respectively), specificity was significantly higher in BSGI (0.82; 95% CI, 

0.74-0.88 and 0.39; 95% CI, 0.30-0.49, respectively). This analysis showed areas under the summary 

receiver operating characteristics (SROC) curves of 0.93 and 0.72 for BSGI and MRI, respectively28. 

Other advantages of using BSGI as an additional diagnostic modality when compared to MRI include 

acquisition time , interpretation time and costs. Also, BSGI does not require a dedicated room, as 

BSGI devices are comparable in size to that of an ultrasound device. It does, however, require 

necessary radiation shielding, which is not the case in MRI . Finally, BSGI is less influenced by breast 

density, such as in mammography29. Disadvantages of BSGI include the whole-body dose distribution 

of 5 mSv after administration of 600 MBq of 99mTc sestamibi, which is approximately 10 times the 

dose received from mammography alone26,30. 

In 2012, Conners et al. proposed a lexicon specifically for interpretation of BSGI images, aimed to 

improve observer agreement and provide standardized assessment of BSGI images31,32. Similarly to 

the Breast Imaging and Reporting Data System (BI-RADS), this lexicon is a guide for visual 

interpretation by a nuclear medicine phycisiant33. Scoring is based on various aspects of BSGI images, 

such as background uptake, mass- and non-mass uptake, distribution, uptake pattern, symmetry, 

lesion location and qualitative assessment of lesion-to-background ratio, which is categorized as 

photopenic (less than subcutaneous fat), minimal-mild uptake(equal or slightly greater uptake), 

moderate uptake(visually greater uptake than mild, but less than twice as intense as subcutaneous 

fat) and marked uptake(visually at least twice as intense as subcutaneous fat)31,32. Several studies 

have attempted to describe correlations between (semi-quantitative) MBI/BSGI image features and 

molecular subtypes of breast cancer, histopathological features, clinical outcomes such as patient 

management, invasiveness of cancer and prognosis. This review article will assess these studies and 

provide a comprehensive overview. Articles were found using Pubmed and Google Scholar search. 

 

Breast cancer Classification  
As breast cancer encompasses a heterogenous group of tumors, definitive classification is often 

based on histological features, such as tumor size, staging, histologic grade, differentiation, lymph 

node status, and hormonal status34,35.  

Histologically, breast cancer can be divided into subgroups such as the stage 0, non-invasive Ductal 

Carcinoma in Situ (DCIS), or already invasive cancers such as Invasive Ductal Carcinoma (IDC) or 

Invasive Lobular Cancer (ILC)36. IDC is the most common type of invasive breast cancers, accounting 
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for 50 - 80% of breast cancers, followed by ILC accounting for 5 - 15% of newly reported cases2,37. 

Molecular markers also play an important role in classification of breast cancers, as they overcome 

certain limitations emerging with imaging techniques. Several molecular, or biological markers have 

been identified to play a role in breast cancer pathogenesis, breast cancer prognosis, and choice of 

treatment38. These markers include Estrogen Receptor(ER), Progesterone Receptor(PR), Human 

Epidermal Growth Factor Receptor 2 (HER2) and parameters such as antigen Ki-6739,40. ER, PR, HER2 

and Ki-67 status can be evaluated through immunohistochemical(IHC) staining on either surgically 

resected specimens or core needle biopsies(CNB). ER and PR receptor status can be either positive or 

negative. A specimen is generally considered ER/PR positive if >1% of nuclei is stained positively in 10 

high-power fields41. Approximately 70% of invasive breast cancers show an overexpression(i.e. 

positive) ER status42. HER2 overexpression exists in an estimated 18 -20% of invasive breast cancers, 

and is either determined through IHC or fluorescent in situ hybridization(FISH)43,44.  

The protein Ki-67, coded by the MKI-67 gene, is overexpressed in highly proliferative tumors, while 

down-regulated in G0 cell cycles. It is associated with rapid tumor-growth and thus aggressive 

cancers. High Ki-67 expression (>14%) is an indicator for poor prognosis, upstaging to invasive cancer 

and patient outcome45,46,47. Based on the expression of these markers, a tumor can be categorized in 

4 subtypes; 1) ER positive and/or PR positive, HER2 negative and Ki-67 14%(Luminal A); 2) ER positive 

and/or PR positive, HER2 negative and Ki-67 > 14%(Luminal B); 3) ER positive and/or PR positive, 

HER2 positive, regardless of Ki-67 expression and 4) Triple negative breast cancers, also referred to as 

basal-like subtype48,49. When leaving Ki-67 expression out of the equation, breast cancers can be 

categorized in 3 subtypes, based on ER/PR positiv ity /negativity and HER2 positivity/negativity.  

Molecular subtyping of breast cancers plays an important role in patient management, prognosis and 

treatment decision making. ER/PR and HER2 expression are somewhat negatively correlated (i.e. 

ER/PR positive tumors mostly show a negative HER2 expression), making personalized therapy 

decision making more viable. ER/PR positive tumors are susceptible to systemic endocrine 

therapy(Tamoxifen), whereas HER2 positive tumors can be more efficiently treated with HER2 

targeting therapy such as Trastuzumab(Herceptin). Triple-negative subtypes are less susceptible to 

endocrine therapies and/or Herceptin, and are best treated with systemic chemotherapy50,51.  

Tumor-to-background ratio  
One of the most widely investigated features of BSGI is the semi-quantitative analysis of the tumor-

to background ratio(TBR): The standardized uptake values of 99mTc sestamibi in lesions in 

comparison to healthy background uptake. In a study by Park et al. it was hypothesized that semi-

quantitative calculation of the TBR would be helpful in discriminating benign from malignant breast 

lesions. In their study, investigating 118 lesions, it was concluded that, with a TBR cutoff value of 1.5, 

they were able to discriminate benign from malignant lesions with a specificity of 92%, whereas 

visual analysis alone had a specificity of 82% ( p = 0.008). Mammography and ultrasound had 

specificity values of 82% (p =0.008) and 62% (p < 0.001) respectively. The number of false-positive 

findings in these 118 lesions was reduced by six after adding semi-quantitative calculation of TBR to 

the visual analysis, when compared to visual analysis alone. Park et al. did not report average TBR 

values for malignant and benign lesions separately52. 

Similarly, in a paper published by Tan et al. in 2014, the added value of semi-quantitative analysis of 

the TBR for discriminating between benign and malignant was evaluated in 92 lesions. In this study, 

early (10-15 min) and delayed (90-120 min) images were separately evaluated. Malignant lesions in 

early images showed a significantly higher TBR than benign lesions (3.18 ± 1.57 vs. 1.53 ± 0.59, p < 

0.05). In delayed images, similar results were found (2.91 ± 1.91 vs. 1.46 ± 0.54, p <0.05). With visual 

analysis only, recorded sensitivity was 77.8% and specificity was 81.6%. Using only TBR as a 
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classification method, analysis of the early images (optimal cutoff: 2.06) resulted in a sensitivity of 

81.5% and a specificity of 92.1%. In delayed image TBR analysis (optimal cutoff: 1.77) a sensitivity and 

specificity of 97.5% and 98.5%, respectively, were reported. When combining visual analysis and 

semi-quantitative analysis, the authors reported a sensitivity of 85.2% and a specificity of 92.2% in 

early images, and a sensitivity and specificity of 83.3% and 98.5% respectively in delayed BSGI 

images53. 

Also aiming to assess whether lesions could be classified as either malignant or benign based on TBR, 

Choi et al. found that malignant lesions were associated with a higher TBR value. In 372 breast 

lesions, they found an TBR of 2.2 ± 1.0 and 1.6 ± 0.5 (p < 0.001) for malignant and benign lesions, 

respectively. Overall, with a cut-off TBR of 2.1, a sensitivity of 50% was found, a sensitivity of 85% 

and an accuracy of 75%. For lesions larger than 1cm, this increased to 70%, 88% and 84% 

respectively. ROC curve analysis for all lesions gave an area under the curve of 0.728 (p < 0.001, 95% 

CI, 0.625-0.831) and 0.853 (p=0.047, 95% CI, 0.761-0.945) for lesions with a diameter larger than 

1cm54.  

Meissnitzer et al. conducted a similar study, where the relative uptake factor, analogous to the TBR, 

was semi-quantitively calculated and compared to biopsy confirmed malignant and benign lesions. In 

accordance to the previously described studies investigating correlations between TBR and 

malignancy rates, Meissnitzer et al. found a significantly elevated relative uptake factor in malignant 

lesions. Malignant lesions showed a ratio of 4.27 ± 0.64, whereas benign lesions only showed a 

relative uptake factor of 2.37 ± 0.1855 . 

Studies that investigated the difference in TBR between malignant and benign lesions are listed 

below in table 1.  

Table 1 TBR values for malignant and benign lesions 

TBR 
Study Malignant Benign P-value 
Park et al. 51 Na Na Na 
Tan et al. 52 3.18 ± 1.57 1.53 ± 0.59 <0.05 
Choi et al.53 2.2 ± 1.0 1.6 ± 0.5 <0.001 
Meissnitzer et al.55 4.27 ± 0.64 2.37 ± 0.18 <0.05 

 

Other than investigating the correlation between TBR and malignancy, its correlation with 

invasiveness has also been studied. In 2015, Yoon et al. published a retrospective study investigating 

confirmed ductal carcinomas. They found that IDC was associated with a high TBR of 2.5 ± 0.8. 

Pathologically confirmed pure ductal carcinomas in situ (DCIS-P) and DCIS with micro-invasion (DCIS-

Mi) had significantly lower TBR values of 1.8 ± 0.4 and 2.1 ± 0.4, respectively (p=0.001)56. In 

accordance with these results, Yoo et al. evaluated the significance of TBR values for determination 

of upstaging to invasive cancer from DCIS. They found that upstaged invasive cancers had a 

significantly higher TBR of 2.70 (2.16–3.45) compared to 2.28 (1.86–2.98) in DCIS (p=0.002)57. 

In a study published by Tan et al., these results were further confirmed. In their study, published in 

2016, a TBR of 2.25 ± 0.14 was found in non-invasive breast cancers, whereas a TBR of 3.15 ± 0.14 

was found in invasive cancers (p=0.005)58. 

Finally, the correlation of TBR with molecular subtypes and clinicopathological markers has been 

investigated. Yoon et al. aimed to evaluate semi-quantitative BSGI analysis as a prognostic tool for 

predicting recurrence based on its relationship with histopathological markers in breast cancer. A 
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significant correlation was found in ER status, where ER-negative tumors showed a TBR of 3.9 ± 1.5 

and ER-positive tumors showed a significantly lower (p=0.03) TBR of 3.4 ± 1.4. HER2-positivity was 

associated with a significantly (p=0.001) higher TBR (4.2 ± 1.8) when compared to HER2-negative 

cancers( 3.4 ± 1.3). Ki-67 positive cancers (with a threshold of 10%) were significantly (p=0.001) 

correlated with a higher TBR and showed a value of 3.8 ± 1.6. Ki-67 negative cancers showed a TBR of 

3.1 ± 1.1. A significant relationship was also found in Nuclear and histological grades. For nuclear 

grade, a higher TBR was found in higher nuclear grades( G1: 2.6 ± 1.1, G2 3.5 ± 1.5, G3: 3.8 +1.4, 

p=0.04). Similar values were recorded for histological grade, with a TBR of 2.9 ± 1.3 for G1, 3.7 ± 1.4 

for G2 and 3.8 ± 1.5 for G3(p=0.01). Yoon et al. reported no significant difference in TBR between PR-

positive and PR-negative tumors and between triple-negative and non-triple negative subtypes of 

breast cancer59. 

Lee et al. found a significant correlation of TBR with PR-status, where PR-positive lesions had a 

reported TBR of 3.3 ± 1.3 versus a TBR of 4.4 ± 2.2 in those with a PR-negative status60 . Ki-67 status, 

with a threshold of 14%, was also correlated with TBR values. Negative and low (<14%) expression of 

Ki-67 was found in lesions with a TBR of 3.2 ± 1.4, whereas positive ki-67 expression was associated 

with a higher TBR of 4.4 ± 1.9 ( p=0.007). Another significant difference was found in luminal A 

cancers versus non-luminal A cancers (p=0.007), where non-luminal A cancers had a significantly 

higher TBR of 4.2 ± 1.9 versus a TBR of 3.0 +1.2 in luminal A cancers. Another significant correlation 

was found in histological grade, with a TBR of 2.9 ± 1.2 for G1, 3.8 ± 1.8 for G2 and 3.9 ± 1.3 for G3 

(p= 0.029). No significant correlations of HER2 status, ER status, nuclear grade and TBR were found 

by Lee et al.60. The same authors published a second article in 2018 on a different patient cohort, in 

which they confirmed their results, with significant correlations between TBR and ER status, PR 

status, Ki-67 status(14% threshold)histological grade and subtypes61. A significant correlation of ER-

status and PR-status was also reported by Yoo et al. in 2017. They found that ER- positive lesions had 

a significantly lower TBR than ER-negative lesions (3.49 ± 1.41 versus 4.41 ± 2.25, p = 0.0049), which 

was also seen in PR-positive status versus PR-negative status ( 3.45 ± 1.41 versus 4.56 ± 2.17, p = 

0.0006). Similar to the conclusions of lee et al.60,61, Yoo et al. found significant correlations between 

histological grade and TBR (G1: 2.99 ± 1.0, G2: 3.60 ± 1.49, G3: 4.20 ± 2.00 (p = 0.004). No significant 

differences in TBR values were reported for HER2-status, Ki-67 expression (14% threshold) nuclear 

grade, or triplenegative versus non-triple- negative subtypes62. 

 

Table 2 TBR values for ER and PR status 

 ER PR 

 + - P-value + - P-value 
YOON ET 
AL.59 

3.4 ± 1.4 3.9 ± 1.5 0.03 3.8 ± 1.5 3.4 ± 1.4 0.06 

LEE ET AL.60 3.4 ± 1.5 4.3 ± 2.1 0.068 3.3 ± 1.3 4.4 ± 2.2 0.036 
LEE ET AL.61 3.2 ± 1.9 4.0 ± 1.9 0.029 3.0 ± 1.7 4.2 ± 1.9 0.004 
YOO ET 
AL.62 

3.49 ± 1.41 4.41 ± 2.25 0.0049 3.45 ± 1.41 4.56 ± 2.17 0.0006 

TAN ET 
AL.58 

3.02 ± 0.17 2.93 ± 0.14 0.740 2.90 ± 0.16 3.12 ± 0.19 0.370 
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Table 3 TBR values for HER2 and Ki-67 status 

 HER2 KI-67 

 + - P-value + - P-value 
YOON ET 
AL.59 

4.2 ± 1.8 3.4 ± 1.3 0.001 3.8 ± 1.6 3.1 ± 1.1 0.001 

LEE ET AL.60 4.2 ± 2.3 3.6 ± 1.5 0.229 4.4 ± 1.9 3.2 ± 1.4 0.007 
LEE ET AL.61 4.1 ± 2.1 3.4 ± 1.8 0.145 4.3 ± 2.2 2.9 ± 1.4 0.001 
YOO ET 
AL.62 

4.13 ± 2.05 3.55 ± 1.51 0.0679 Na Na Na 

TAN ET 
AL.58 

2.76 ± 0.19 2.94 ± 0.14 >0.05 3.00 ± 0.12 2.95 ± 0.28 0.85 

 

Tan et al., contradicting previsously mentioned studies, did not find any significant difference in TBR 

among ER-status, PR-status, HER2-status, Ki-67 expression(8% threshold), nuclear - and histological 

grade or molecular subtypes58. An overview of biological markers and associations with TBR values 

are summarized in table 2 and table 3. Nuclear- and histological grade correlations are shown in table 

4. 

 

Table 4 TBR values for different nuclear- and histological grades 

 NUCLEAR GRADE HISTOLOGICAL GRADE 

 G1 G2 G3 P-value G1 G2 G3 P-value 
YOON 
ET AL.59 

2.6 ± 1.1 3.5 ± 1.5 3.8 +1.4 0.04 2.9 ± 1.3 3.7 ± 1.4 3.8 ± 1.5 0.01 

LEE ET 
AL.60 

2.3 ± 1.0 3.5 ± 1.5 3.9 ± 1.3 0.104 2.9 ± 1.2 3.8 ± 1.8 3.9 ± 1.3 0.029 

LEE ET 
AL.61 

Na Na Na Na 3.0 ± 0.9 3.7 ± 2.1 Na 0.035 

YOO ET 
AL.62 

2.69 ± 
0.71 

3.55 ± 
1.46 

4.00 ± 
1.93 

0.076 2.99 ± 
1.00 

3.60 ± 
1.49 

4.20 ± 
2.00 

0.004 

TAN ET 
AL.58 

Na Na Na Na Na 3.07 ± 
0.15 

3.12 ± 
0.17 

0.810 

 

Coefficient of variation 
 The coefficient of variation (COV) can be used to quantify the degree of tumor heterogeneity. Yoo et 

al., who aimed to determine wheter certain BSGI image features were associated with upstaging in 

situ carcinomas to invasive carcinomas, calculated the COV in 168 patients. Lesions that were 

upstaged to invasive carcinomas (n =58) had a significantly (p < 0.0001) higher COV when compared 

to in situ carcinomas (n =117). Reported median COV for invasive (upstaged) carcinomas was 35.9%, 

versus 23.5% in non-invasive cancers62 . 

Similarly, Yoon et al., calculated the COV for tumors that have been either confirmed to be DCIS P, 

DCIS-MI, and IDC. They found that tumors with an invasive aspect (DCIS-MI and IDC) had a 

significantly higher (p = 0.016) COV of 14.3 ± 5.5% and 19.5 ± 7.4%, respectively, when compared to 

pure in situ cancers, which had a COV of 12.6 ± 4.2%56 . 
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Tumor shape and distribution 

Other important factors in interpretation of BSGI lesions such as shape and distribution can also be 

used for discrimination between benign and malignant lesions. Choi. et al, albeit visually and not with 

semi-quantification, aimed to investigate which BSGI features in women with recently diagnosed 

breast cancer are associated with malignancy. They found that when comparing malignancy rates in 

oval shaped lesions to malignancies in irregular shapes, the latter was a significantly higher predictive 

factor for malignancy (p= 0.004). Linear/ductal distribution was also highly predictive for malignancy 

when compared to focal distribution (100% vs. 20.8% respectively, p=0.001), regional distribution 

(100% vs. 9.5% respectively, p < 0.001) and segmental distribution ( 100% vs. 2.9% respectively, p < 

0.001). No significant different malignancy rates were found in focal vs. regional vs. segmental 

distribution patterns in non-mass uptake54 . 

Discussion 

Most studies that are described in this review indicate that BSGI and MBI image features can be, to 

some degree, used to discriminate between clinical factors. A total of 10 studies investigated the 

possible correlations between semi-quantitative tumor-to-background ratios found in BSGI images 

with clinical aspects. All four studies that sought to determine the possible correlation between 

uptake in lesions and malignancy rates, found that malignant tumors show a significantly higher 

uptake than benign lesions52.53.54.55. The absolute TBR values that were calculated differed across 

studies (table 1), because of different calculation methods and acquisition protocols used in each 

study.  

Additionally, three studies concluded that the TBR was significantly correlated with invasiveness of 

breast lesions56,57,58. Of five studies aiming to find the correlation between TBR and 

biological/histopathological markers in the tumor (ER-status, PR-status, HER2-status, Ki67-

expression, Histological grade, Nuclear Grade, subtypes), TBR correlated significantly with ER-status 

in 3 studies, PR-status in 3 studies and HER2-status in 1 study. Three out of four studies investigating 

the correlation between TBR and ki-67-expression found that a higher TBR is associated with a higher 

expression of the protein. Nuclear and Histological tumor grades correlated significantly with TBR in 

two out of three and four out of five studies, respectively.  

Interestingly, Tan et al.57 , who found no correlations between TBR and clinical parameters, except 

for invasiveness, used a different approach than other studies when calculating the TBR. Whereas 

other studies calculated the background uptake by using the average uptake of three specified 

regions of interest (ROI) in normal breast tissue compared to the maximum uptake within the lesion, 

Tan et. al used placed the same lesion ROI on a nonlesion area equally distanced from the nipple in 

the same breast54,56,57,59,60,61,62. This alternative approach to TBR calculation might explain the slightly 

different TBR values calculated by Tan et al. which in turn might have led to non-significant results. 

Meissnitzer55 also used a different calculation method, mainly distinguishing itself by smaller regions 

of interest(20mm2), but, in contrast to Tan et al.57, found significant differences in malignant and 

benign lesions.  

Semi-quantitative calculations of tumor heterogeneity (COV) in both studies showed that the degree 

of invasiveness can be extrapolated from BSGI images56,57. 

In General, the studies mentioned in this review indicate that BSGI/MBI image features significantly 

correlate with clinical parameters. Although most studies cited in this review only investigated the 

impact of one feature such as TBR, COV or shape, a combination of those could provide even more 

information about tumor characteristics. A combination of quantitively calculated features would be 
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analogous to the lexicon provided by Conners et al., but with more standardized interpretation, 

rather than visual analysis dependent on the interpreter31,32. 

It has to be noted, however, that most studies included in this overview are conducted in Asian 

medical centers on Asian women. As disparities in breast cancer incidence and biological aspects 

such as breast density exist among different races/ethnicities, it is not clear whether the results 

found in these studies are directly applicable on women of other ethnicities. A limitation is that 

different acquisition methods have been used across the studies described in this article. Different 

protocols, with different acquisition times and administered doses may lead to different uptake 

values within breast tissue, and therefore lead to non-comparable calculations across studies. 

Nonetheless, acquisition protocols within each study itself did not vary for its own patient cohort. 

The difference in protocols across studies may explain the, for instance, different values found for 

the TBR or COV. This can be seen, for instance, in table 1, where Meissnitzer et al. found that 

malignant lesions had an average TBR of 2.2, whereas this value in other studies would be classified 

as benign. This indicates the need for standardized acquisition protocols, not only within a medical 

center or study design, but across medical centers. One way to possibly overcome the issue of 

interobserver variability in BSGI as a result of visual analysis is the use of Artificial Intelligence(AI). AI 

methods, such as machine learning or deep learning, have been used in other imaging modalities for 

the detection and classification of breast lesions. These AI algorithms detect or interpret pre-

determined image features without the interference of humans and autonomously learn which 

features are to what extend associated with benign and malignant lesions. In mammography, AI 

algorithms such as deep-learning and machine learning have been shown to be able to detect 

malignancies with an accuracy similar to that of radiologists63,64. Similarly, machine learn ing 

algorithms have been shown to be able to distinguish benign from malignant lesions with a promising 

accuracy in MRI65 and in US66 . To the best of our knowledge, the only study on the implementation 

of deep-learning in BSGI/MBI images is a study by Carter et al., concluding that deep-learning is a 

feasible method of classifying parenchymal uptake, a known risk factor for breast cancer67,68. 

Conclusion 

In conclusion, (semi-)quantitative and visual interpretation of BSGI images could provide valuable 

information of the lesions clinical nature. Depending on calculation method of different image 

features, it seems possible to discriminate malignant from benign lesions, tumor invasiveness, and 

molecular subtyping of lesions found in BSGI images. Standardized automatic interpretation of BSGI 

images using artificial intelligence has not yet been investigated, but could be a valuable tool in 

breast cancer diagnosis. 
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Abstract 

Introduction 
Breast cancer is the most frequently diagnosed type of cancer in women in 2020. Treatment and 

prognosis of breast cancer is highly dependent on early and accurate diagnosis. In recent years, many 

studies have evaluated the use of artificial intelligence for the detection of breast cancer in 

mammographic images. Another imaging modality, breast-specific gamma imaging (BSGI), or 

molecular breast imaging, has not yet been subject to AI algorithms to detect breast cancer. In this 

paper, we aim to develop and evaluate convolutional neural networks (CNNs) that can detect 

malignancies in breast-specific gamma imaging, and evaluate the efficacy of different machine 

learning classifiers to classify breast tumors based on estrogen receptor (ER) status, progesterone 

receptor (PR) status and human epidermal growth factor receptor 2 (HER2-neu) status. 

Methods 
Three CNNs were created and trained and tested on a total of 3,503 BSGI images. The models varied 

in complexity in terms of convolutional layers and filter sizes. A semi quantitative lesion 

segmentation was created based on adaptive thresholding and shape and location analysis. 

Radiomics features were extracted, and univariate feature selection was applied to disregard 

redundant features. Different machine learning classifiers, which are widely used in literature for 

binary classification problems, were evaluated.  

Results 
In detecting malignancies in a dataset containing clean breasts and breast with malignant lesions, the 

best performing network reached an area under the receiving operating characteristic (AUROC) of 

0.93, while an AUROC of 0.88 was achieved when using the same networks in the classification of 

malignant versus benign lesions. The best performing machine learning classifiers were the linear 

discriminating analysis (LDA) classifier for ER and PR status, reaching accuracies of 75% in both 

receptors. In Her2-neu prediction using machine learning, the best accuracy of 69% was achieved by 

the RF classifier. 

Discussion & conclusions 
Based on the results presented in this paper, CNNs can accurately detect malignancies in BSGI 

images, and discriminate malignancies from benign lesions to a certain extent. The combination of 

radiomics and machine learning, however, is in its current implementation not accurate enough to 

predict the ER, PR and Her2-neu status in BSGI images. Future research, however, could focus on 

using a combination of imaging modalities, such as BSGI, MRI and mammography to improve the 

predictive accuracy of machine learning.  
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1 Introduction 

1.1 Breast cancer 
In 2020, female breast cancer has become the worlds most diagnosed cancer type in women, with 

nearly 2.3 million newly diagnosed cases, surpassing lung cancer. In the same year, female breast 

cancer also led to nearly 700,000 deaths worldwide1. The highest rates of incidence of breast cancer 

is found in developed countries, such as Belgium, the Netherlands and Luxembourg. While still low in 

developing countries, breast cancer incidence in regions such as South Central Asia and Africa is on 

the rise due to changes in lifestyle, such as alcohol use, smoking and contraceptive pill usage.  

Different types and subtypes of breast cancer exist, the latter being defined by 

immunohistochemistry (IHC) expression of estrogen receptor (ER), progesterone receptor (PR), 

human epidermal growth factor receptor 2 (Her2-neu, also referred to as HER2) and the protein ki-

67. The most frequent subtype is hormone receptor positive and Her2-neu negative(ER/PR + / Her2-

neu -). This subtype also has the best overall survival and disease-free survival due to the availability 

of endocrine therapies such as tamoxifen targeting ER and PR. Triple positive tumors (ER/PR +, Her2-

neu +) can be treated with either tamoxifen or anti-Her2-neu therapy, such as trastuzumab 

(Herceptin). Inversely, triple negative (ER/PR - / Her2-neu -) tumors have the worst prognosis, as 

there is no targeted therapy available. For triple negative tumors, the only feasible systemic therapy 

currently available is chemotherapy2.  

As breast cancer prognosis is also highly dependent on early and accurate diagnosis, several 

countries have set up screening mammography programs, focused on finding early signs of non-

symptomatic breast cancer. These programs have resulted in an overall reduction in mortality of 

around 19%3,4,5. 

After findings in initial mammographic screening, or after symptomatic presentation, other imaging 

modalities can be used, such as targeted mammography, ultrasound (US), magnetic resonance 

imaging (MRI) and finally, positron emission tomography (PET) to evaluate possible findings with 

screening mammography6,7. Based on these additional diagnostic tools, suspicious findings can be 

further evaluated using fine needle aspiration(FNA) or biopsies. 

Mammographic images are scored using BI-RADS (breast imaging-reporting and data System), a 

standardized protocol to evaluate mammographic images, developed by the American College of 

Radiology (ACR). BI-RADS score range from 0 to 6, where 0 represents incomplete or inevaluable 

images and 6 represents a biopsy proven malignancy8. Table 1 shows the interpretation of each 

category. 

Table 1 BI-RADS classification protocol for mammographic images 

ASSESSMENT CATEGORY DESCRIPTION 

0 Need additional imaging 

1 Negative 

2 Benign 
3 Probably benign 
4 Suspicious 
5 Highly suggestive of malignancy 
6 Proven malignancy 
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Another imaging modality which has been introduced in the last years, is breast specific gamma 

imaging (BSGI), also referred to as molecular breast imaging (MBI). Typical indications for BSGI 

include: 1) excluding multifocality of breast lesions; 2) evaluation of tumor extent and size; 3) 

evaluation of discrepancies between clinical and radiological findings; 4) evaluation of 

mammographic BI-RADS 3 lesions and 5) evaluation of bloody nipple discharge with normal or 

inconclusive radiological findings.  

BSGI is a scintigraphic functional imaging technique of the breast based on the uptake of the 

radioactive tracer 99mTechnetium-sestamibi (99mTc-sestamibi). 99mTc-sestamibi is a radiotracer that is 

able to show increased cellular proliferative activity by increased mitochondrial activity and 

angiogenesis, generally observed in tumors9,10.  

Although BSGI acquisition protocols may vary between institutions and device manufacturers, 

imaging is generally performed after administration of the radiotracer in the antecubital vein, and  

acquiring images from the same angles as in mammography acquisition. Administered activity 

initially varied between 770 and 1,100 MBq, but recent studies have shown a possible dose reduction 

up to 2.5 times, mainly as a result of improvements in collimator design11,12,13.  Image acquisition is 

performed in two perspectives: mediolateral-oblique (MLO) and craniocaudal (CC), and acquisition 

times of each projection vary between 8 and 10 min.   

BSGI has several advantages when compared to other additional diagnostic imaging modalities such 

as MRI. With a comparable sensitivity in BSGI and MRI in the detection of breast cancer (0.84 ; 95% 

CI: 0.79 – 0.88 and 0.89; CI: 0.84 – 0.92, respectively), BSGI showed a significantly higher specificity of 

0.82 (95% CI: 0.74 – 0.88) than MRI (0.39; CI: 0.30 – 0.49)14 . Also, because BSGI is a functional 

imaging modality, rather than anatomical, BSGI images are less influenced by breast density, which 

on anatomical imaging can influence interpretability of images15. Finally, BSGI acquisition is faster, 

interpretation times are shorter, and costs are lower. The disadvantage of BSGI is the whole-body 

dose distribution of  around 5 mSv, following a dose administration of 600 MBq 99mTc, approximately 

a ten-fold increase when compared to mammography alone16,17. 

 

1.2 Artificial Intelligence 

1.2.1 Lesion detection 
For many years, studies have been published about computer-aided detection (CAD), where CAD is 

used as an assistance to radiologists in diagnosis and medical image interpretation. In 2010, around 

74% of mammograms in the United States were interpreted with the use of CAD18. Although 

welcomed with much enthusiasm at first, later studies had shown that the benefits of CAD in medical 

imaging in some cases led to reducing the radiologist’s accuracy, longer interpretation times, and  

lead to higher recall and biopsy rates19,20,21. 

More recently, developments in artificial intelligence have resulted in highly accurate algorithms, 

which have been tested on different medical aspects, such as skin lesion analysis22, retinal image 

analysis23, brain MRI segmentation24, or staging of lung cancer25. These algorithms are types of deep 

learning networks, a subtype of machine learning. Machine learning algorithms are complex 

mathematical models that use big sets of data to learn patterns in that data, which can then be used 

to make predictions on new, unseen data. Deep learning specifically is an algorithm based on neural 

networks, in which several layers of nodes are interconnected, simulating interconnected neurons in 

the visual cortex of animals26. One type of neural networks is the convolutional neural network  

(CNN), which is very well suited for image analysis and image classification. In CNNs, an image is 
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convolved in convolutional layers, which reduce an image into less complex features, such as edges, 

shapes and combinations of shapes. These features are then propagated through the neural layers, 

resulting in a classification for the original input image. 

The first aim of this paper is to create a set of different CNNs, which might be able to quickly and 

automatically detect abnormalities in BSGI images, as well as discriminate malignant from benign 

lesions. 

1.2.2 Lesion Classification 

1.2.2.1 Radiomics 

In 1973, Haralick et al. first proposed the use of textural features of images with the goal of 

classification27. Since then, interest has been growing in the medical field for application of image 

feature analysis in phenotyping tumors. In turn, this led to the introduction of radiomics, the concept 

of extracting of a large number of quantitative features from any 2D or set of 2D images, and finding 

the relationship between this quantitative information and qualitative clinical data, to find the 

underlying pathophysiology of a tissue. 

Radiomics extraction returns a set of numbers representing a quantitative description of a 

predefined region of interest (ROI). In oncology, this usually includes tumor primary features such as 

shape, size and intensity, as well as secondary features such as texture analysis28. These features 

have been widely investigated over the last years for their use to characterize tumors noninvasively, 

based on medical imaging. Most often, anatomical imaging modalities such as CT and MRI are used 

as a basis for radiomics29.  

Although not yet implemented on BSGI images, several studies have attempted to describe the 

relationship between quantification of tumors visible on BSGI and tumor classification in terms of 

invasiveness, tumor subtyping, and prognosis. In 2017, Lee et al. correlated the tumor-to-background 

ratio (TBR), defined as the ratio between the mean uptake in a lesion and the mean uptake value of 

three circular regions in breast tissue outside the lesion, , and found significant correlations in PR-

status of lesions30. Similarly, Yoon et al. found that a high TBR was significantly correlated with ER/PR 

negativity, as well as HER2-neu negativity31.  

Although different strategies were used in the studies described above in calculating the TBR, these 

studies indicate that image features derived from BSGI images might correlate with clinical 

prognostic factors such as receptor status. Even though scintigraphic images have not widely been 

used in radiomics analysis, based on these studies BSGI images could be a suitable subject to 

radiomics analysis.  

No studies have yet been published on the application of radiomics in BSGI images to predict ER, PR 

and Her2-neu status of tumors identified on BSGI images.  

1.2.2.2 Machine learning 

Similarly to the more specific deep learning, the broader concept of machine learning (ML) has 

gained traction in the recent years. ML encompasses a wide variety of algorithms able to classify new 

sets of datapoints into a certain category, based on previously learned patterns in training data. With 

large numbers of features derived during radiomics extraction, and selecting the features with the 

highest variance, or discriminating power, machine learning is well suited to train, analyse and 

predict on datasets containing radiomics features.  

The combination of radiomics and ML has been subject to an increasing number of studies over the 

past years, especially in the field of oncology. In 2018, for instance, Lu et al. showed that the 
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combination of radiomics derived from MRI and ML achieved a 81.8% accuracy in predicting 

molecular subtypes of gliomas32. Also, a study by Hyun et al. described the use of radiomics derived 

from PET images and ML in predicting histological subtyping of lung cancer and achieved an accuracy 

of 76.9%. 33 Other studies have reported on the combination of radiomics and ML in subtype 

classification of pancreatic tumors34, renal tumors35, meningiomas36, thymic epithelial tumors and 

other cancer types37. 

Successful non-invasive tumor classification with a combination of radiomics and ML could pave the 

way for a reduction of painful, time-consuming biopsies, as well as a reduction in the time from 

diagnosis to targeted treatment.  

The secondary aim of this paper is to (semi-)automatically segment lesions in BSGI images, perform 

radiomics extraction on these regions of interest (ROI), and apply different ML algorithms, which are 

used in other research aiming to combine radiomics and ML, to predict ER, PR, and Her2-neu 

positivity or negativity in breast tumors.  

 

2 Methods 

2.1 Data 
2.1.1 Data acquisition 
Data were acquired retrospectively over the period of January 1st 2014 to January 1st 2021 from the 

Alrijne Hospital Leiderdorp, The Netherlands. A total of 1,423 patients underwent BSGI  for problem-

solving in that time frame.  

Problem solving is defined as the evaluation of indeterminate breast abnormalities or symptoms. 

Typical indications are summarized in table 2. This includes the evaluation of discrepancies between 

clinical and radiological findings, the evaluation of mammographic BI-RADS 3 (probably benign) 

lesions where patient reassurance is required, or evaluation of (bloody) nipple discharge with normal 

or inconclusive radiological findings38.  

Table 2 Typical indications for problem-solving with BSGI 

 TYPICAL PROBLEM-SOLVING INDICATIONS 

1 Evaluation of discrepancies between clinical and radiological findings 
2 Evaluation of mammographic BI-RADS 3 (probably benign) lesions where patient 

reassurance is required 
3 Evaluation of (bloody) nipple discharge with normal or inconclusive radiological 

findings 
 

Based on reporting by trained nuclear medicine physicians, as is clinical practice, scans were 

classified using NG-BI-RADS39 scores designed for molecular breast imaging. BSGI scans with a BI-

RADS score of >3 were considered to be suspicious for malignancy, and thus were subject to further 

investigation in the form of biopsies or resection of suspicious tissue. BSGI scans with a BSGI BI-RADS 

score of 3 or lower were marked as non-suspicious, and therefore these patients were not required 

to undergo any direct further investigation. It has to be noted, however, that this does not mean that 

nothing is visible in any of these images, as nuclear medicine physicians generally also include clinical 

factors, such as symptoms, and other medical imaging modalities in their decision making.  
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For confirmed malignancies (CM), hormonal receptor status was also collected, and consecutively 

subcategorized into either a positive or negative ER-status, PR-status and HER2-neu status. 

For included patients, both the cradio-caudal (CC) and mediolateral-oblique (MLO) projections of the 

relevant breast, with a suspected malignancy or abnormality, were extracted and included, in order 

to create a diverse dataset which responds to different projections. In the inclusion period (2014-

2021), two different BSGI devices were used (Dilon 6800, Dilon Diagnostics & Discovery NM 750b, GE 

Medical Systems). The single-detector Dilon 6800  results in fewer images than the dual detector 

Discovery NM 750b, as the dual-detector device creates two separate images for each projections, 

which can then be combined to create an averaged image of the breast. CC and MLO projections of 

the relevant breast made by the single detector Dilon 6800 were included, and the averaged CC and 

MLO projections of the dual-detector were included. 

DICOM images were extracted and labelled accordingly (Suspicious: pathologically confirmed 

Malignant, Suspicious: pathologically confirmed benign and non-suspicious) . An overview of the data 

is given in the figure below: 

 

Figure 1: Overview of suspicious: Malignant, suspicious: 
 Benign and non-suspicious data. PA = Pathologically assessed  

Out of all 3503 images, 2366 images were acquired using the Dilon 6800, while 1137 were acquired 

using the Discovery NM 750b. Image parameters and acquisition settings can be seen in table 3.  

Table 3 Image and acquisition parameters of Both BSGI devices 

 DEVICE 

 Dilon 6800 Discovery NM 750b 
AMOUNT 2366 1137 
PIXEL ARRAY SIZE 80 x 80  96 x 96 
PIXEL SPACING 3,2 mm 2,46 mm 
TOTAL COUNTS 131568 ± 51483 71280 ± 32334 
RADIONUCLIDE 99mTc 99mTc 
DOSE 740 MBq 250 -350 MBq 
COLLIMATOR LEGP LEHR 
FRAMES 1 8 
ACQUISITION TIME PER 
FRAME 

480s 60s 

ACQUISITION TIME PER 
PROJECTION 

480s 480s 

Patients

n = 1,432

images

n = 3,503

BSGI suspicous

n = 1,684

PA confirmed 
malignant

n = 1,539

PA confirmed 
benign

n = 145

BSGI  non-
suspicious

n = 1,819
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2.1.2 Data Preparation 
Pixel arrays with a 96 x 96 size were downsized to 80 x 80 using bilinear interpolation, to match all 

sizes of images to be used for training and testing.  

The pathologically confirmed malignancies and non-suspicious labelled images were used for initial 

training and evaluation of the model, and the pathologically confirmed benign lesions were set aside 

for later evaluation of the models performance in discrimination malignant from benign lesions. 

These benign images could have been placed within the category of non-suspicious lesions, but the 

size of the dataset with benign images (n = 145) is too small for the entire dataset to impact the 

training process. 

This image dataset (n = 3,503, malignant and non-suspicious) was randomly split in a ratio of 14 : 86, 

resulting in a training set of 3,007 images, and a test set of 496 images. The original split ratio of 15 : 

85 was changed due to a number of corrupt files in the training set. The ratio between a training and 

test sets was chosen as this ratio should generally be in the range of 10-20% to achieve the highest 

accuracy40. The training set was further randomly separated into a normal training set and a 

validation set with a ratio of 80: 20. After each epoch of the training process, a new split in training 

and validation sets was performed. This overview can be seen in figure 2. 

 

Figure 2 Overview of Training, validation and test dataset size 

 

2.1.3 Data Augmentation 
As neural networks generally have an increased performance with more training data, data 

augmentation was implemented to increase the size of the training and validation sets by a factor 2. 

Data augmentation works on the principle of artificially generating new data from original data.  Each 

image in the original training set was flipped horizontally to create a new image (figure 3). Because 

algorithms trained on augmented data will also be tested on non-augmented data, images were not 

flipped vertically to create a set of four images in the augmented training set. This would mean that 

MLO projections would be augmented into unrealistic images with an upside-down breast, which 

would not be present in actual BSGI images.  
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Figure 3 Testing a model using augmented images 

 

 

Data augmentation resulted in a training and validation set of 4,812 and 1,202 images, respectively.  

Testing of the network trained on augmented data was performed on the original test set (n=496) as 

well on an augmented version of the test set (n = 992), where the outcomes of  both the original and 

the augmented image were averaged to give a final prediction.  

2.2 Lesion Detection 

2.2.1 CNN Architecture 
The principle behind CNNs is the breakdown of an image into less complex features, which are then 

used to train a model through fully connected layers. The features are extracted using convolutions, 

and are then run through max-pooling layers in order to reduce the feature map size (for 

computational purposes) and decrease variance. Pooling is a process in which the size of a given 

array is reduced by taking the maximum, average or minimum value of a certain region of that array, 

and creating a new array with those values. For instance, an 4 by 4 array pooled by a 2 by 2 max-

pooling layer would result in a new 2 by 2 array containing the maximum values of the four 

quadrants of the original array. The networks described in this paper use maximum-pooling instead 

of Average Pooling (AP) or Minimum-Pooling (MP), as max pooling is generally better suited for 

situations in which higher pixel intensities (e.g. lesions) are sought after, and there is a relatively 

small-amount of pixel data available, which would be blurred out by average pooling.  

 

Model Model Model Model 

98.77% 96.45% 

97.61% 

Step 1) Each Image 

within the test set is 

augmented 

Step 2) Both the original 

image and the 

augmented image are 

used as inputs for the 

model 

Step 3) The two outcomes 

are averaged to give a 

final prediction for the 

image 
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Figure 4 Network architecture of Network 2 

 

Three CNNs were developed using Pytorch(v.1.8.1). The networks were all based on the principle of 

convolutional layers, rectified linear units (ReLU), each followed by a Max Pooling layer. The final 

feature maps are then concatenated into flattened vectors which are the input values to the two 

fully connected layers. The three networks, however, varied in the number of convolutional layers 

(and max-pooling layers), the amount of features, and filter sizes.  The Network architecture  of 

Network 2 can be seen in figure  4, and settings can be seen in table 4.  

The amount of possible designs for CNNs is theoretically infinite, and designing a network is mostly a 

trial and error process. As there is no rule of thumb for the amount of convolutional layers and other 

network parameters in solving a classification problem, the choices of these networks designs were 

based on general image complexity, which is relatively low in BSGI images. Therefore, designs of the 

CNNs described in this paper are somewhat arbitrary, but increasingly complex with three 

convolutional layers for the first network, five convolutional layers for the second network, and 

seven convolutional layers for the final network. Networks in similar size, though, have been 

previously been described in the use of deep learning applications in nuclear medicine imaging 

techniques, such as thyroid scintigraphy41. Following the convolutional layers, each of the three 

networks is concluded by two fully connected layers that provide the actual classification by updating 

the weights, or connections between nodes, after each epoch.  

An epoch is defined as a combination of one forward and backward pass of the entire training set 

through the algorithm.  

Because the output values from the last fully connected layer can be negative or positive, they 

cannot be interpreted as probabilities. The soft-max activation function uses outputs from the last 

fully connected layer to provide a probability distribution for a given input image, thus normalizing 

the outputs to values between 0 and 1. As these two probabilities, the probability of a malignancy or 

no malignancy, sum up to 1, in this paper only the probability of a malignancy will be communicated.  
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Table 4 Network configuration parameters of Network 1, Network 2 and Network 3 

 NETWORK 1 NETWORK 2 NETWORK 3 

BLOCK 1 Conv.* 1 → 32 (3,3)  
Max – Pool** (2,2) 

Conv. 1 → 32 (3,3)  
Max - Pool (2,2) 

Conv. 1 → 16 (3,3)  
Max - Pool (2,2) 

BLOCK 2 Conv. 32 → 64 (3,3)  
Max - Pool (2,2) 

Conv. 32 → 32 (3,3)  
Max - Pool (2,2) 

Conv. 16 → 32 (3,3)  
Max - Pool (2,2) 

BLOCK 3 Conv. 64 → 128 (3,3)  
Max - Pool (2,2) 

Conv. 32→  64 (3,3)  
Max - Pool (2,2) 

Conv. 32 → 64 (3,3)  
Max - Pool (2,2) 

BLOCK 4  Conv. 64 → 128 (2,2)  
Max - Pool (2,2) 

Conv. 64 → 64 (3,3)  
Max - Pool (2,2) 

BLOCK 5  Conv. 128 → 512 (3,3)  
Max - Pool (2,2) 

Conv. 64 → 128 (3,3)  
Max - Pool (2,2) 

BLOCK 6   Conv. 128 → 256 (3,3)  
Max - Pool (2,2) 

BLOCK 7   Conv. 256 → 512 (3,3)  
Max - Pool (2,2) 

 
FC*** 1 

In: 128 
Out: 512 

In: 512 
Out: 1024 

In: 512 
Out: 1024 

FC 2 In: 512 
Out: 2 

In: 1024 
Out: 2 

In: 1024 
Out: 2 

*CONVOLUTION 
** MAXIMUM POOLING LAYER 
*** FULLY CONNECTED LAYER 

 

2.2.2 Training 
Training was performed in a two stages. The first stage was to determine the optimal number of 

epochs required to minimize loss, while preventing the model from overfitting to the training set.  

Loss is a measure of mismatch between predicted labels which your model outputs and the actual 

labels. In the networks described in this paper, the mean squared error (MSE)  loss-function was 

used. In this function, 𝑦 represents the predicted output and ỹ represents the true label. 

 

𝑀𝑆𝐸 =
1

𝑛
 ∑(𝑦𝑖 − ỹ𝑖)2

𝑛

𝑖=1

 

 

After each epoch, the training- and validation losses should converge and decrease, as the weights of 

the fully connected layers are updated based on images and their labels that have gone through the 

network.  

In overfitting, the training- and validation losses no longer converge because of an increasing 

validation loss.  Overfitting is a sign of an overcomplexity in a network, with weights adjusted 

specifically to each training image, and negatively influences the performance on external data sets. 

Finding the point of overfitting is generally done by running the training data through the network 

for an extended amount of epochs, and visually finding the point where the losses start to diverge 

(Appendix 2). 

Optimization of the model was performed using the Adam Optimizer, a widely-used stochastic 

gradient optimizer. This optimizer uses a learning rate to reduce the loss measured by the MSE loss-

function. This means that when, after an epoch a certain mismatch is found between the predicted 

label of an image and the actual label (i.e. malignant or benign), the optimizer will update the 

weights in the network to reduce the loss in the next epoch. The learning rate determines the extent 

to which weights in the fully connected layers are updated after each epoch. A high learning rate 

adjusts the weights more when a mismatch is found when compared to a lower learning rate. By 
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updating the weights in the network after each epoch, the network reaches an equilibrium where 

updating the weights have an increasingly smaller effect on accuracy. By adjusting the learning rate 

downwards further in the training process, smaller adjustments in the weights are possible, which 

would not have been achievable with the initial learning rate.  

To increase model performance, the learning rate was updated after every 5 epochs. These learning 

rates can be seen in table 5. 

 

Table 5 Learning rates 

EPOCH LEARNING 
RATE 

0 - 5 0.001 

6-10 0.0008 

11-15 0.0006 

16-20 0.0005 

21-25 0.0004 

> 25 0.0003 

 

After having determined the required number of epochs needed to optimally train the model 

without overfitting, the model was trained with the settings described in former paragraphs, with a 

batch size of 100 images, and the optimal number of epochs.  

2.2.3 Model Evaluation 
Model testing and evaluation was performed on a per-image basis with all three designed models. 

The test set (n = 496) as well as the augmented test set (n = 992)  were run through the trained 

models and outcomes were recorded. Outcome measures include the area under the receiver 

operating characteristic (AUROC), accuracy, sensitivity and specificity.  

Additionally, a voting-based strategy was implemented to see how a combination of the three 

models would perform. In this model, the average of the three other networks would provide the 

predicted label for each image in the test set. This could eliminate specific cases in which one 

network would perform poorly and provide a wrong predicted label, whereas the other two network 

would perform properly and average out the poor prediction of the first network. This model will be 

referred to as the Averaged Model.  

Finally, the dataset of 145 pathologically confirmed benign lesions with an addition of 145 random 

images from the pathologically confirmed malignancies test set and their respective augmented 

datasets were run through the algorithms to evaluate the model’s performance on discriminating 

benign from malignant lesions. To reduce the effect of the randomized selection of the 145 

malignant images, each network was tested three times and the results were averaged to give a 

representative performance.  
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2.2.4 Occlusion mapping  
Because CNNs are often viewed as ‘black boxes’ which are unable to show why a certain prediction 

have been given, interpretability of results can often be difficult, especially in unsupervised 

algorithms. 

Occlusion mapping was used to check the triggering conditions for each of the predicted labels. In 

occlusion mapping, a small part of the image is occluded iteratively, until all parts of the image have 

been blocked once. For the heatmaps generated in this algorithm, each set of 2 by 2 pixels, with a 

stride of 1, in an image was occluded by replacing them with pixels with an intensity of 70% of the 

average of all non-zero pixels in the whole image. This percentage is based on creating a gray pixel 

value similar to the background of the breast, excluding the region outside the breast (zero pixel 

values). Taking a higher percentage, such as 100% of the mean, replaces the occluded pixels with a 

too high intensity, as the lesion is also responsible for this mean pixel value.  

By predicting the image label with each occlusion, it is possible to see when the occlusion of a region 

leads to changes in the predicted label. From this information, an occlusion heatmap can be 

generated to assess whether the network makes predictions based on the expected regions (i.e. a 

prediction of a malignancy should show higher intensities on the heatmap at the lesion location). 

 

2.3 Machine Learning: predicting the receptor status using radiomics 
To extract radiomics from a lesion, a segmentation of the lesion has to be made. The radiomics 

extracted from this segmentation can then be used as inputs to train machine learning models. 

2.3.1 Lesion Segmentation 
For the segmentation process, only images with a 96 x 96-pixel array size were used (Discovery NM 

750b). The 80 x 80 images were not used in this case, because each pixel is expected to have less 

information in it, and because these types of images are no longer acquired for problem-solving 

purposes.  

Lesion segmentation was performed in a three-step process: 1) Adaptive thresholding to find 

possible lesion regions; 2) Identifying the lesion in the predetermined regions based on sphericity 

and location and 3) Marching squares lesion-edge delineation.  

Before starting the segmentation process,  all images were blurred with a Gaussian Filter with σ=3 

(pixels) to remove potential noise in the image which could affect thresholding. A sigma of 3 was 

found to reduce the noise sufficiently enough, while keeping the lesions shape intact and similar in 

size and intensity. A lower sigma would not reduce noise sufficiently, while a too high sigma would 

blur the lesion too much, and could therefore lead to an increased lesion size.  

First, the breast was separated from the background by applying region growing. This ensured that 

breast size (i.e. higher mean intensities in the overall image) would not affect the final segmentation.  

Also, this causes any possible artefacts with high intensities present with the FOV and outside the 

breast to be disregarded and not be seen as a potential lesion by the segmentation algorithm.  

In order to find possible lesion locations within a BSGI scan, adaptive thresholding was used based on 

the intensity distribution of the breast region in the image. The threshold for regions of interest were 

set at 90% of the maximum intensity of the breast region. This 90% would ensure that only the 

highest intensities, and thus the suspected lesion, would be marked as a ROI. With this thresholding 

technique, sometimes the thoracic wall would be marked as a region of interest.  



34 
 

To counter situations in which the thoracic wall would be marked as a ROI, all possible lesion 

locations were analyzed and ranked by their sphericity using the following function: 

𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =
2πR

P
=  

2√πA

P
 

 

R = radius of circle with same area as thresholded region 

P = perimeter of thresholded region 

 

If one of the regions had a clearly higher level of sphericity, this location was regarded to be the 

lesion location. In the case of two possible locations having the same level of sphericity (within a ± 

20% margin), the lesion with the smallest Euclidean distance to the center of the whole image would 

be regarded as the lesion.  

By cropping the image to a 56 x 56 array, which was found to be large enough to include the entirety 

of each lesion, with the lesion location in its center, a marching squares Python algorithm was used 

to delineate the lesion from the surrounding healthy tissue. The iso-level of the marching squares 

algorithm was mainly based on the intensities of the cropped image, with the iso-level being set at 

120% of the mean intensity. This value of 120% was found by trial and error, and ensured proper 

delineation in 117 of 145 cases.  If unsatisfied about the delineation, the iso-level was manually 

changed to improve the outcome.  

The iso-contours resulting from the marching squares algorithm were used to generate a an area 

over the lesion. This resulted in a final segmentation of the lesion.  

The result of each segmentation step can be seen in figure 5. 

2.3.2 Feature extraction 
After final ROI selecting, radiomics were extracted using PyRadiomics(v.3.0.1), which consists of 108 

radiomic features. The radiomics included in this extractor include first order features, 2D shape 

features, 3D shape features, gray level co-occurrence matrix (GLCM) features, Gray Level Size Zone 

Matrix (GLCM) features, Gray Level Run Length Matrix (GLRLM) features, Neighboring Gray Tone 

Difference Matrix (NGTDM) features and Gray Level Dependence Matrix (GLDM) features. In 

addition, the Coefficient of variation (COV), and the following Tumor-to-Background (TBR) ratios 

were calculated: TBRmean, TBRmax and TBRhigh. 

 

𝑇𝐵𝑅𝑚𝑒𝑎𝑛 =
Mean Lesion Intensity

Mean Background Intensity
 

 

𝑇𝐵𝑅𝑚𝑎𝑥 =
Maximum Lesion Intensity

Mean Background Intensity
 

 

𝑇𝐵𝑅ℎ𝑖𝑔ℎ =
Top 30%  Lesion Intensities

Mean Background Intensity
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2.3.3 Feature reduction 
After manually removing non-unique variables, in which the same feature gives the same value for 

each lesion, and 3D-image features, 48 radiomic features for each segmentation were labelled with 

their respective hormonal receptor status (ER +/-, PR +/- and HER2-neu +/-).  

In order to reduce data dimensionality, and select the most statistically significant features, 

univariate feature selection was used to select the 15 and 25 features with the least variance from 

the 48 radiomic features.  

 

Figure 5 A) Original image with focal uptake. B) Image after morphological operations with background removed. C) 
Possible lesion locations based on thresholding of image b. D) Lesion segmentation. E) Final segmentation. 

 

2.3.4 Machine Learning 
Machine learning implementation was performed using the Scikit-learn package (v. 0.24.2) in 

Python(v. 3.7). Training and test sets were split with a ratio of 70:30 resulting in sets of n = 102 and n 

= 43, respectively. Internal validation dataset size depends on the number of k-folds, where a higher 

number of k-folds results in a smaller size of the internal validation set size.  

Each model was trained and evaluated with different stratified k-folds : 3, 5, 10 and 15. These k-folds 

were chosen to evaluate a wide range of different splits within the training set, and are common 

values for evaluating ML models. 

A total of 7 widely used machine learning algorithms were evaluated separately: logistic regression 

(LR), random forest (RF), gaussian naive bayes (GNB), linear discriminant analysis (LDA), decision tree 

classifier (DTC), support vector machine (SVM) and  K-nearest neighbors (KNN). These models are 

delivered with the Scikit-learn package, and can be adjusted with different settings. 

A B 

 

C 

 

D 

 

E 
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For LR, the liblinear solver was used as an optimizer and one-versus-rest classification scheme, which 

is especially suited for smaller datasets with a binary classification problem such as the one used in 

this paper. 

In the RF model, the number of trees used was set at 50, which was found through trial and error and 

proved to be the best performing amount of trees. The GNB model provided by Scikit-learn was 

untunable, and was therefore let in default. The LDA model uses the singular value decomposition 

(SVD) solver, without shrinkage applied. In the DTC model, the GINI impurity index was used for 

measuring the quality of a split, and a maximum depth of the tree was set at 15, as a tree too deep 

would encourage overfitting of the model, while a tree with a low depth would result in reduced 

performance. In SVM, the radial basis function (RBF) kernel was used, with degree of 3 used for this 

polynomial, as it was expected that datapoints, or the features, would not be linearly separable by a 

linear kernel. Other settings in the SVM model remained at default. In KNN, the value of k, was set at 

5, which was found through trial and error, and resulted in the highest accuracy. Also in KNN, the 

weight function was set at uniform, so that all neighbors of a given sample were weighed equally.  

Also, a voting classifier was built based on the five best performing models. The voting-based 

classifier gives a prediction based on these outcomes of the other models, and selects the most 

occurring prediction. Selecting just five, and not all of the models, ensures that poor performing 

models are not included in the decision making, while taking into account most of the other, well-

performing models. 

 

3 Results  

3.1 Network training 
Each network was trained for an excessive number of epochs to visually determine the point of 

overfitting, where the validation and training losses started diverging. For network 1 and 2 with non-

augmented training data, this resulted in 11 epochs for both networks. For network 3, optimal 

training on non-augmented data was set at 7 epochs. With augmented training data, epochs were set 

at 10, 10 and 7 for networks 1, 2 and 3, respectively.  

All accuracy and loss graphs can be found in appendix 1A and 1B. 

3.2 Network Performance 
AUROC scores were calculated for each network. The ROCs of the networks trained on non-

augmented data with non-augmented test data can be seen in figure 6A. Figure 6B and 6C show the 

ROCs of the networks trained on the original training sets tested on augmented data and trained on 

augmented data and tested on  original test sets, respectively. Finally, the ROCs of the network 

trained on augmented data and tested on augmented data can be seen in figure 6D. 

Because the model gives an output in the form of a probability between 0 to 1 (or 0% to 100%), the 

network does not tell whether or not a malignancy is present. One way to convert a probability into 

an actual conclusion is to take the highest prediction of the network. With a cut-off probability of 0.5 

(i.e, everything with a malignancy probability of 0.5 of higher was deemed malignant), accuracies, 

sensitivities and specificities could be calculated. 

The performances of all networks with different combinations of training and testing on non-
augmented and augmented datasets are summarized in table 6. 
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Figure 6 ROC curves of A) Networks trained and tested on original datasets; B) Networks trained on augmented datasets 
and tested on original datasets; C) Networks trained and tested on augmented datasets and; D) Networks trained on 

original datasets and tested on augmented datasets. 
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Table 6 Performances of all networks including the averaged model in detecting malignancies, using different combinations 
of augmented and non-augmented datasets. In each table, columns represent the results for a given combination of 
augmented or non-augmented training and test sets. Sensitivity and specificity values were calculated at a cut-off value of 
0.5 (or 50%).  

    Network 1            Network 2       
Training 
set   non-

augmented 
Augmented 

non-
augmented 

Augmented 
 

Training 
set   Non-

augmented 
Augmented 

non-
augmented 

Augmented 

Test set 

 
non-
augmented 

Augmented Augmented 
Non-
augmented   

Test set 

 
Non-
augmented 

Augmented Augmented 
Non-
augmented  

AUC   0.86 0.91 0.86 0.9 
 

AUC   0.92 0.93 0.92 0.93 

Accuracy 
 

77% 84% 79% 79%  Accuracy 
 

84% 85% 86% 85% 

Sensitivity   77% 79% 77% 79% 
 

Sensitivity   84% 78% 87% 78% 

Specificity 
 

78% 89% 82% 88% 
 

Specificity 
 

84% 92% 85 91% 

TP   190 195 189 196 
 

TP   208 192 214 192 

FP 
 

55 27 44 30 
 

FP 
 

39 19 37 22 

TN   195 223 206 220 
 

TN   211 231 213 228 

FN 
 

57 52 58 51 
 

FN 
 

39 55 33 55 

             

    Network 3            Averaged 
Model       

Training 
set   non-

augmented 
Augmented 

non-
augmented 

Augmented 
 

Training 
set   non-

augmented 
Augmented 

non-
augmented 

Augmented 

Test set 

 
non-
augmented 

Augmented Augmented 
Non-
augmented   

Test set 

 
non-
augmented 

Augmented Augmented 
Non-
augmented  

AUC   0.9 0.93 0.91 0.92 
 

AUC   0.91 0.93 0.92 0.93 

Accuracy 
 

84% 85% 82% 85% 
 

Accuracy 
 

85% 86% 86% 86% 

Sensitivity   74% 77% 73% 76% 
 

Sensitivity   81% 79% 81% 78% 

Specificity 
 

93% 92% 92% 93% 
 

Specificity 
 

88% 93% 90% 93% 

TP   184 191 180 188 
 

TP   201 194 200 192 

FP 
 

17 19 20 17  FP 
 

31 18 25 17 

TN   233 231 230 233 
 

TN   219 232 225 233 

FN 
 

63 56 67 59  FN 
 

46 53 47 55 

 

3.3 Occlusion Mapping  
With occlusion mapping, it is possible to map the regions of an image responsible for a certain 

decision by the AI. The aim was to perform occlusion mapping on the best performing model in terms 

of AUROC score and accuracy, sensitivity and specificity. Therefore, the second best model, Network 

2, was selected (trained and tested on augmented data: AUROC = 0.93, accuracy = 85%, sensitivity = 

78% and specificity = 92% at a cut-off probability of 0.5). 

In figure 7, examples of true positives, true negatives, false positives and false negatives are shown 

including corresponding heatmaps. These heatmaps indicate image regions based on which the 

model mostly based its decision to either predict a malignancy (in the case of a malignancy 

probability of 0.5 or higher) or no malignancy (in the case of a malignancy probability of lower than 

0.5). 
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Figure 7 Examples of True Positives(Top left), True Negatives(top right), False Positives (Bottom Left) and False 
Negatives(Bottom right) including corresponding heatmaps. These are examples of classifications from Network 2. 

  

3.4 Probability Distributions 
As each input image results in a prediction by the model between 0 and 1 (or 0% to 100%) for the 

chance of a malignancy being present in the image, it is possible to evaluate if the model is more 

‘certain’, or outputs higher chances of a presence of a malignancy, in images that contain actual 

malignancies compared to images that do not contain a malignancy. 

With a cut-off probability of 0.5, meaning that a malignancy prediction of 0.5 or higher leads to a 

malignancy classification, while probabilities below 0.5 result in non-suspicious classification, the 

averaged model resulted in a sensitivity and specificity of 78% and 93%, respectively. In figure 8 

below, the malignancy probabilities can be seen for each category: true negatives(TN), false 

negatives(FN), false positives(FP) and true positives(TP). The TN had a mean malignancy prediction of 

0.17 ± 0.09, the FN had a mean of 0.29 ± 0.11 and the FP and TP resulted in mean malignancy 

predictions of 0.69 ± 0.14 and 0.91 ± 0.13, respectively. Distributions can be seen in figure 8. 
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Figure 8 Probability distributions of True Negatives(TN), False Negatives(FN), False Positives(FP) and True Positives(TP) of 
the averaged model trained and tested on augmented data. 

 

3.5 Misclassifications 

3.5.1 False Negatives  
Network 2, trained and tested on augmented data, had a better performance (AUROC = 0.93) and 

the false negatives resulting from this algorithm were also analyzed and categorized. In the case of 

false negative classifications, there could have been several reasons for the network missing a 

malignancy in the breast image. These reasons include: 1) No apparent lesion visible in this 

projection; 2) lesion is present, but too small or insignificant for a malignancy probability of 0.5 or 

higher;  3) lesion is partially outside of FOV, and therefore not significant enough to provide a 

malignancy probability of 0.5 or higher and 4) lesion location is close or adjacent to an intense 

thoracic wall. The amount of false negatives and the corresponding mean malignancy probabilities 

for each category is shown in table 7. 

Table 7 Categories of false negatives in the  test set of Network 2, trained and tested on augmented data. Category 1: No 
apparent lesion, Category 2: Small or insignificant lesion, Category 3: Outside of FOV, Category 4: Close to thoracic wall 

 

FALSE NEGATIVES  
NETWORK 2 – AUGMENTED TRAINING AND TEST DATA 

CATEGORY Amount Mean Malignancy 
probability(%) 

1 20 13.2 ± 8.6 
2 25 33.77 ± 19.41 

3 4 8.75 ± 0.71 
4 6 16.30 ± 14.29 
TOTAL 55 22.82 ± 18.15 
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Examples of each category  of false negatives including their corresponding heatmaps are shown in 

figure 9. 

 

 

 

Figure 9 Examples of False Negatives of Network 2; Top Left: category 1, Top Right: category 2, Bottom Left: category 3, 
Bottom right: category 4 

 

3.5.2 False Positives  
False positives resulting from network 2 were also categorized based on the previously mentioned 

categories:  1) artefacts ; 2) thoracic wall identified as lesion ; 3) Diffuse uptake in breast and 4) 

intense uptake in the nipple. In table 8, the amount of false positives and the mean malignancy 

probability of each category is summarized. In figure 10, examples of each category of false positives 

are shown. 

Table 8 Categories of false positives in the  test set of Network 2, trained and tested on augmented data. . Category 1: 
Artefacts, Category 2:Thoracic wall, Category 3: Diffuse uptake, Category 4: Intense nipple 

FALSE POSITIVES 
NETWORK 2 – AUGMENTED TRAINING AND TEST DATA 

CATEGORY Amount Mean Malignancy 
probability(%) 

1 1 96.57 ± 0.0 
2 5 89.57 ± 8.07 

3 11 74.72 ± 17.11 

4 2 87.34 ± 12.34 
TOTAL 19 81.11 ± 16.18 
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Figure 10 Examples of False Positives of Network 2; Top Left: category 1, Top Right: category 2, Bottom Left: category 3, 
Bottom right: category 4 

 

3.5 Malignant versus Benign lesions 
The same trained models and weighed model were used to evaluate their performance in 

discriminating between malignant and benign lesions, rather than detecting malignant lesions versus 

non suspicious BSGI images. This means that lesions that were classified as suspicious for malignancy 

by a nuclear medicine physician, but later were found to be benign through pathological assessment, 

were used instead of non-suspicious breasts.  

Figure 13 shows all ROC curves for the three networks and the averaged model trained and tested on 

both original data and augmented data. 
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Figure 11  Malignant versus benign - ROC curves of A) Networks trained and tested on original datasets; B) Networks trained 
on augmented datasets and tested on original datasets; C) Networks trained and tested on augmented datasets and; D) 

Networks trained on original datasets and tested on augmented datasets. 

 

All accuracies, sensitivities and specificities at a cut-off probability of 0.5 for all networks and data 

setup combinations can be viewed in table 9. 
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Table 9 Performances of all networks including the averaged model in discriminating malignant from benign lesions, using 
different combinations of augmented and non-augmented datasets. In each table, columns represent the results for a given 
combination of augmented or non-augmented training and test sets. Sensitivity and specificity values were calculated at a 
cut-off value of 0.5 (or 50%). 

    Network 1 
Malignant 

versus 
Benign  

    

 

    Network 2 
Malignant 

versus 
Benign  

    

Training 
set   non-

augmented 
Augmented 

non-
augmented 

Augmented 
 

Training 
set   non-

augmented 
Augmented 

non-
augmented 

Augmented 

Test set  non-
augmented 

Augmented Augmented 
Non-
augmented   

Test set  non-
augmented 

Augmented Augmented 
Non-
augmented  

AUC   0.79 0.83 0.81 0.84 
 

AUC   0.87 0.86 0.87 0.87 

Accuracy  69% 73% 73% 75% 
 

Accuracy  81% 77% 80% 78% 

Sensitivity   79% 77% 79% 82% 
 

Sensitivity   87% 77% 86% 78% 

Specificity  60% 70% 68% 68% 
 

Specificity  76% 77% 73% 77% 

TP   114 111 114 119 
 

TP   126 112 125 113 

FP  58 43 46 46 
 

FP  35 33 39 33 

TN   87 102 99 99 
 

TN   110 112 106 112 

FN  31 34 31 26 
 

FN  19 33 20 32 

             

    Network 3 
Malignant 

versus 
Benign  

    

 

    
Averaged 

Model 

Malignant 
versus 
Benign  

    

Training 
set   non-

augmented 
Augmented 

non-
augmented 

Augmented 
 

Training 
set   non-

augmented 
Augmented 

non-
augmented 

Augmented 

Test set  non-
augmented 

Augmented Augmented 
Non-
augmented   

Test set  non-
augmented 

Augmented Augmented 
Non-
augmented  

AUC   0.83 0.85 0.83 0.88 
 

AUC   0.88 0.87 0.86 0.86 

Accuracy  76% 76% 74% 82% 
 

Accuracy  80% 78% 79% 78% 

Sensitivity   74% 75% 68% 83% 
 

Sensitivity   86% 79% 81% 78% 

Specificity  77% 76% 80% 81% 
 

Specificity  74% 78% 78% 79% 

TP   107 109 99 121 
 

TP   125 114 117 113 

FP  33 35 29 28 
 

FP  38 32 32 31 

TN   112 110 116 117 
 

TN   107 113 113 114 

FN  38 36 46 24 
 

FN  20 31 28 32 

 

3.5.1 Occlusion Mapping 
Figure 12 show examples of TP, TN, FP and FN predictions by Network 3 trained on augmented data 

and tested on original data. (AUROC = 0.93,  accuracy = 82%,  sensitivity = 83% and specificity = 81% 

at a cut-off probability of 0.5). 
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Figure 12 Examples of True Positives(Top left), True Negatives(top right), False Positives (Bottom Left) and False 
Negatives(Bottom right) including corresponding heatmaps. These are examples of classifications from Network 3 

3.5.2 Probability Distributions 
Similarly to the malignancy detection results, a boxplot (figure 15) was generated to visualize the 

distribution of malignancy predictions for each outcome: TN, FN, FP and TP. The cut-off probability 

value in this case was 0.5. 

For TN, mean predicted probability of a present malignancy was 0.21 ± 0.11. For FN and FP, the mean 

predictions of a malignancy were 0.30 ± 0.11 and 0.77 ± 0.17, respectively. Finally, the mean 

malignancy prediction for actual malignancies (TP) was 0.93 ± 0.10.  These distributions are shown in 

figure 13. 
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Figure 13 Probability distributions of True Negatives(TN), False Negatives(FN), False Positives(FP) and True Positives(TP) of 
Network 3 trained on augmented data and tested on a malignant versus benign augmented dataset.  

 

3.5.3 Misclassifications – Malignant Versus Benign 

False Negatives  

The best performing algorithm on discriminating malignant from benign lesions is Network 3, trained 

on augmented data and tested on orignal data. Using this algorithm on the test set resulted in a total 

of 24 false negatives, where a malignancy was missed and the malignancy probability fell below the 

0.5 probability threshold. These 24 false negatives were categorized using the following four 

categories: 1) No lesion visible in this projection; 2) Diffuse uptake pattern not fitting with 

malignancy; 3) Lesion present, but not focal or intense enough for malignancy prediction and 4) 

malignancy too close to thoracic wall for identification. The number of false negatives and their 

corresponding malignancy predictions are shown in table 10, and examples are shown in figure 14. 

Table 10 Categories of false negatives (malignant versus benign) in the  test set of Network 3, trained  on augmented data 
and tested on original data. Category 1: No apparent lesion, Category 2: Diffuse uptake, Category 3:Lesion insignificant, 
Category 4: Thoracic wall 

FALSE NEGATIVES  
NETWORK 3 -  MALIGNANT VERSUS BENIGN 

CATEGORY Amount Mean Malignancy 
probability(%) 

1 5 26.10 ± 6.08 
2 6 24.22 ± 8.72 

3 8 27.96 ± 8.18 
4 5 33.14 ± 10.79 

TOTAL 24 0.30 ± 0.11 
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Figure 14 Examples of False Negatives of Network 3; Top Left: category 1, Top Right: category 2, Bottom Left: category 3, 
Bottom right: category 4 

 

False Positives  

This same algorithm led to a total of 28 false positives. Again, these false positives were separated 

into four categories: 1) Uptake pattern similar to malignancy; 2) Thoracic wall identified as 

malignancy; 3) Unclear decision basis and 4) Intense uptake in the nipple. 

In table 11, the amount of images in each category of false positives is shown, as well as the mean 

malignancy probability per category. Figure 15 shows examples of each category. 

Table 11 Categories of false positives (malignant versus benign) in the  test set of Network 3, trained on augmented data 
and tested on original data. Category 1: Uptake pattern, Category 2: Thoracic wall, Category 3: Unclear, Category 4: Intense 
nipple 

 

FALSE POSITIVES  
NETWORK 3 -  MALIGNANT VERSUS BENIGN 

CATEGORY Amount Mean Malignancy 
probability(%) 

1 6 91.88 ± 6.05 

2 13 67.35 ± 8.11 

3 5 74.07 ± 10.84 
4 4 92.08 ± 4.54 
TOTAL 28 0.77 ± 0.17 
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Figure 15 Examples of False Positives of Network 3; Top Left: category 1, Top Right: category 2, Bottom Left: category 3, 
Bottom right: category 4 

 

3.6 Radiomics & Machine learning: receptor status prediction 

3.6.1 Segmentation 
Segmentation was performed on BSGI images consisting of 96 x 96 pixels acquired using the GE 

Discovery NM 750b BSGI system. Pixel size for these images was 2.46mm by 2.46mm.  

A total of 145 RMLO or LMLO images with focal uptake lesions were used as input for the 

segmentation algorithm. In all instances, the lesion location was correctly identified as a possible 

lesion location based on adaptive thresholding. In 116 instances, two or more lesion locations were 

identified other than the actual lesion location.  

With sphericity calculation of the pixel groups identified by means of adaptive thresholding, lesions 

were correctly identified in 102 out of 116 images with multiple possible lesion locations. In 7 cases, 

sphericity of the actual lesion was more than 20% higher than the other possible lesion location, thus 

correctly selecting the lesion based on sphericity. 

In 7 cases, sphericity of possible lesions identified by the algorithm fell within the 20% discriminative 

margin, in which case the smallest Euclidean distance to the center of the whole image gave the 

decisive lesion location. In 6 of these 7 cases, use of the Euclidean distance correctly identified the 

lesion. In 1 lesion, the lesion location had to be manually selected, as the Euclidean distance of the 

other possible lesion location to the image center was closer than the actual lesion location. 

From these segmentations, the custom features were calculated, which are summarized in table 12. 

The P-value is calculated using a two-tailed t-test. 

 



49 
 

Table 12 Custom calculated lesion parameters and lesion size for each lesion receptor status 

 

For classification of the Estrogen, Progesterone and HER2-neu receptor status, 15 features were 

selected used univariate feature selections. The models were also trained with a selection of 25 

features. These selected features are shown in appendix 2A.  

3.6.2 Estrogen Receptor 
The training set consisted of 52 ER-positive lesions and 50 ER-negative lesions, while the external test 

set consisted of 21 ER-positive lesions and 22 ER-negative lesions. Accuracies in predictions of the 

test set of all different combinations of ML classifiers varied between 51% and 72% when using 15 

radiomic features. With 25 features, these accuracies ranged from 53% to 74%. The best overall 

performance, with an accuracy of 74%, was achieved with 25 radiomics features, using the  LDA 

classifier at 3 k-folds. This resulted in a sensitivity of 81.0% and a specificity of 63.3%. The confusion 

matrix for these results is shown in figure 16. 

All results from other classifiers using 15 and 25 features are shown in appendix 3A. 

 

 

Figure 16 Confusion matrix for the classification of ER status using the LDA classifier 

3.6.3 Progesterone Receptor 
With the 15 features selected using univariate selection (table 18), the same models were trained 

and tested, now labelled with either PR-positivity or PR-negativity. The training set consisted of 51 

PR-positive lesions and 51 PR-negative lesions. The test set consisted of 23 PR-positive lesions and 20 

 ER   PR    HER2-NEU 
 + 

N = 73 
- 
N = 72 

 + 
n = 74 

- 
N = 71 

 + 
N=45 

- 
N=100 

 

AREA(CM2) 1.79 
±0.9 

2.22  
±  
1.1 

P = 0.006 1.78 
± 1.0 

2.20 
± 
1.1 

P=0.006 1.91 ± 0.89 1.72 ± 1.19 
 

P = 0.58 

TBRMEAN 1.65 ± 
0.28 

1.67 
± 
0.26 

P = 0.63 1.64 
± 
0.27 

1.65 ± 
0.23 

P= 0.68 1.69 ± 
0.27 

1.62 ± 
0.21 

P = 0.26 

TBRHIGH 1.98 ± 
0.44 
 

2.11 
±  
 0.46 

P = 0.19 2.00 
± 0.44 

2.13 
± 
0.47 

P = 0.19 2.13 ± 0.48 1.94 ± 0.37 P = 0.11 

TBRMAX 2.29 ± 
0.56 

2.54 
 ± 
0.6 

P = 0.054 2.31 
± 0.54 

2.55 
±  
0.07 

P = 0.053 2.55 ± 0.63 
 

2.27 ± 0.57 P = 0.10 

COV 0.16 ± 
0.06 

0.2 
 ±  
0.16 

P =0.06 0.16 ± 
0.05 

0.19 
± 0.15 

P = 0.07 0.20 ± 0.07 0.16 ± 
0.07 

P = 0.06 
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PR-negative lesions.  Accuracies ranged from 51% to 74% with 15 features, and from 53% to 72% 

with 25 radiomics features.  

Similarly to the classification of ER, the best overall performance was found in the LDA classifier, 

using 15 radiomics features. This classifier resulted in an accuracy of 74%, with a sensitivity and 

specificity of 78.3% and 59.1%, respectively. The confusion matrix can be seen in figure 17. 

All results from other classifiers using 15 and 25 features are shown in appendix 3B. 

 

Figure 17 Confusion matrix for the classification of PR status using the LDA classifier 

3.6.4 HER2-Neu Receptor 
The HER2-Neu receptor data-set was in imbalanced dataset with in total 100 HER2-neu negative 

lesions and 45 HER2-neu positive lesions. After splitting the dataset into a training and test set, the 

training set consisted of 31 HER2-neu positive lesions and 71 HER2-neu negative lesions. The test set 

consisted of 14 HER2-neu positive lesions and 29 HER2-neu negative lesions. The selected features 

are shown in table 18 (appendix 2).  

Prediction of HER2-neu receptor using the given machine learning models resulted test set accuracies 

of 51% to 69% with 15 and  51% to 67% with 25 features. The best overall performance was achieved 

using the RF classifier and 15 radiomics features. With an accuracy of 69%, a sensitivity of 60% and a 

specificity of 75%, the RF classifier slightly outperformed other classifiers.  

All results from other classifiers using 15 and 25 features are shown in appendix 3C. 
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Figure 18 Confusion matrix for the classification of ER status using the RF classifier 
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4. DISCUSSION 

4.1 Deep Learning 

4.1.1 Lesion Detection 
CNNs used on mammographic images has been widely investigated and proven to be of additional 

diagnostic value in detection and classification of breast lesions42. CNNs developed for breast cancer 

detection in mammograms have become more complex over time, with the one of the earliest CNNs 

presented the CifarNet43 with three convolutional layers, up to the more widely used  and better 

known VGGNet44, which showed the effects of increasingly deep neural networks with up to 19 

convolutional layers.  

This, however, was to the authors knowledge the first study to investigate the possible merits of 

using AI, and specifically deep learning, on BSGI, meaning there is no benchmark to which the results 

presented in this paper can be  objectively compared. 

Several studies have previously successfully implemented deep-learning algorithms on scintigraphic 

images, such as in bone scintigraphy45,46, 47, thyroid scintigraphy40, and myocardial perfusion 

scintigraphy48. As a result of the relative simple morphological image features resulting from 

scintigraphic images, when compared to traditional anatomic imaging modalities such as CT or MRI, 

scintigraphic images are regarded to be more amendable to AI applications, such as deep learning. In 

applications of AI in scintigraphic images described in the studies mentioned above, neural networks 

consisted of three to five convolutional layers, varying in convolutional kernel size, max-pooling filter 

size, and the order of convolutions and pooling operators. These studies have shown AUCs varying 

from 0.85 to 0.96 in bone scinigraphy43,44,45, 0.85 to 0.90 in thyroid scintigraphy and 0.89 to 0.95 in 

myocardial perfusion scintigraphy47, similar to the best performing network presented in this paper.  

Based on the results of this study, a combination of BSGI and AI, especially CNNs, can accurately 

detect the presence of malignancies in patients suspected to suffer from breast cancer with AUCs 

comparable to those of previously described CNN applications in mammographic images and 

scintigraphic images. 

Our models used a balanced dataset consisting of 1,432 BSGI images, which is also similar in size to 

the other studies describing the use of AI in scintigraphy, but smaller than the datasets used in most 

studies on AI in mammography. As a result of the relatively simple nature of these functional images, 

datasets are generally allowed to be smaller than when using functional imaging modalities, as there 

is more variation in functional images, thus requiring more examples in a dataset for the CNNs to 

adapt to patterns. Increasing our dataset with data augmentation generally had a positive impact on 

the network performances and generalizability.  

Comparing the best and worst performing networks, network 1 and 2 leads to the insight that the 

differences in performance are attributable to decreases in both the number of false positives and 

false negatives, which were 55 and 57, respectively, for network 1, and 39 and 39, respectively, for 

network 2. Network 3, however, resulted in a large increase in the number of false negatives (63), 

while having a strong decrease in false positives (17). 

This means that with a number of convolutional layers higher than two, the network is better 

equipped to detect ‘clean’ BSGI images, but has an increased chance of classifying a malignancy as a 

non-suspicious finding, therefore missing out on malignancies. Apparently, if the number of 

convolutional layers becomes too high, the algorithm also extracts features that are not influenced 

by the presence of a possible lesion, thereby reducing the impact of features of actual lesions, such 

as edges, shapes and combinations of these features. 
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Across all networks, reported sensitivity was lower than the specificity. Network 2 resulted in a 

sensitivity and specificity of 78% and 92%, respectively. These performances are similar to the 

sensitivity and specificity in general, without the use of AI, in the detection of malignancies. In 2016, 

Yu et al., reported a sensitivity of 80% and a specificity of 83% in detecting malignancies on BSGI 

images49.  A direct comparison between the results of this deep learning algorithm and the results in 

previous studies, however, is difficult as it is unclear how many patients who received a BSGI BI-RADS 

score <4 by a nuclear medicine physician, and thus deemed not suspicious, in this paper were false 

negatives.  

The occlusion maps confirm that the networks make their classification based on lesions, and not on 

other parts of the image. Lack of explainability of AI algorithms in healthcare settings is often raised 

as an obstacle for actual implementation in a clinical setting, and has raised medical, legal, ethical 

and societal questions.50 Providing occlusion heatmaps is one method of giving transparency into the 

decision making process of neural networks, and could potentially increase trust in these algorithms’ 

decision making and  increase willingness for implementation of more AI applications in healthcare. 

Occlusion maps also expose some of the weaknesses of the networks, with missed lesions partially 

outside the FOV, intense uptake in the nipple classified as a lesion, and in some cases the thoracic 

wall identified as a lesion. This again stresses the need for explainability of AI models used in 

healthcare; not only is it needed to verify correct classifications, but also to easily identify 

misclassifications in case they happen51.  

 

4.1.2 Malignant versus benign 
The best performing network in specifically distinguishing malignant from benign lesions was the 

averaged model, with an accuracy, sensitivity and specificity of 80%, 86% and 74%, respectively. In 

this case, the specificity is lower than the sensitivity, instead of higher. As the benign lesions in the 

test data set were previously identified by nuclear medicine physicians as suspicious, it is to be 

expected that the algorithm trained to detect malignancies also classifies a number of these benign 

lesions as malignant, thus increasing the FP rate, and lowering the specificity.   

As slight differences in tracer uptake distribution, intensity and uptake locations could mean a 

difference in a BSGI BI-RADS 3 or 4 classification by a nuclear medicine physician, these differences 

could potentially also be utilized by deep learning based algorithms to discriminate benign from 

malignant lesions. Improvements to a benign vs. malignant classification algorithm could potentially 

be made with a larger dataset of histopathologically confirmed benign lesions. With the relatively 

small number of images containing confirmed benign lesions in this dataset (n = 145), however, 

training the networks on benign images would not have been feasible, even when data 

augmentation would have been applied. Also, because differences between malignant and benign 

lesions on BSGI images are sometimes difficult to identify, new deep learning networks trained for 

this specific purpose might have to be enlarged in terms of increasing the number of convolutional 

layers and pooling layers to convolve images into smaller and more specific image features. This 

might also explain why the best performance of a standalone network (excluding the averaged 

model) was achieved in network 3, the deepest network with the most convolutional layers.  

Despite promising results about the CNNs abilities to detect malignancies in BSGI images, several 

limitations exist. The main limitation is the per-image basis on which the model evaluation was 

performed. As BSGI acquisition is performed in different perspectives, serval images are made of 

each breast. A nuclear medicine physician would take all images in a certain acquisition into 

consideration when appointing a BI-RADS score to a breast. In BSGI image series of a breast, if a 
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lesion is less visible in one projection, the nuclear medicine physician would still consider the breast 

suspicious for the presence of a malignancy, whereas the AI in this case would result in one wrong 

classification (false negative), while correctly predicting the other projections. Even though this effect 

of using a per-image evaluation instead of a per-patient evaluation potentially affects representation 

of the results, it has to be noted that this effect could also work inversely, where only one projection 

is predicted correctly, while the other projections are classified wrongly. This latter effect, however, 

is expected to be smaller than the first effect, given the overall good performance in detecting 

malignancies. Another limitation is that there is no further clinical information on which the AI is 

trained and tested, but only relies on information provided through the BSGI images. This also is 

different from clinical practice, in which nuclear medicine physicians take more information into 

account when interpreting BSGI images, such as results from other diagnostic tools, patient 

characteristics and medical history.  

A future feasibility study will be conducted on a per-patient basis, and evaluate the correlation 

between predicted outcomes of network 2 and BSGI BI-RADS scores, as well as evaluate the time 

saving capabilities of using AI.  

 

4.2 Lesion Classification  
The secondary aim of this study to apply ML algorithms on radiomics features, which were extracted 

on a semi-automatically segmented lesions in BSGI images, to predict ER, PR and Her2-neu status.  

In the recent years, several studies have attempted to use a combination of radiomics and ML for 

predicting hormonal and Her2-neu status prediction in breast cancer using different imaging 

modalities. Ma et al. published a paper in 2018 attempting to use mammographic images for the 

classification of breast tumors using 331 subjects, reaching accuracies of 80% in the prediction of 

ER/PR status, and 75% in the prediction of Her2-neu status, using the Naive Bayes ML classifier52. In 

2019, Xie et al. described the same goal using MRI instead of mammography. In 190 patients, 

classification accuracies using different ML classifiers (DT, LDA, SVM, KNN, ensemble) in the 

prediction in triple-negative versus non-triple negative tumors varied between 72% and 91%.  

In contrast to anatomical imaging techniques, functional imaging such as BSGI have not been as 

extensively investigated for the efficacy of applying radiomics and ML in predicting subtypes of 

cancer. Han et al., however,  described in 2021 the use of PET-only radiomics (no CT) in predicting 

histological subtypes of non-small cell lung cancer (NSCLC) using a variety of ML techniques. The 

authors concluded that  ML could help differentiate the histological subtypes of NDCLC, with 

accuracies of up to 79% (for both the LDA and SVM classifiers). To the best of our knowledge, no 

papers have been published on the combination of radiomics and ML in BSGI.  

Several studies, however, performed semi-quantitative analysis of BSGI images and found 

correlations with the TBR and hormonal status and Her2-neu status. In accordance with those 

studies29,30,53, we found that our calculated TBRmax, TBRhigh and TBRmean also was lower on average in 

ER and PR positive tumors than in ER and PR negative tumors. The same similarity was seen in Her2-

neu status, where Her2-neu positivity was associated with a higher TBR.  

The best accuracies in predicting ER, PR and Her2-neu status we found were 74%, 74% and 67%, 

respectively. These accuracies lower than accuracies found in the previously mentioned studies that 

used anatomical imaging on which radiomics and ML were applied. There could be several 

explanations for this relatively poor discriminative performance. First, many radiomic features that 

are extracted are based on texture analysis of the ROI. Texture features have been shown to be 
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increasingly sensitive with increasing spatial resolution54, and with the relatively low spatial 

resolution of BSGI compared to for instance MRI and mammography (3.5 mm (GE Discovery 

NM750b)55, 0.5 - 1mm (3T MRI)56, 0.1mm (digital mammography57)) , BSGI texture analysis is a more 

challenging task, as a low spatial resolution limits the number of discriminative image features. Also, 

the limited amount of pixels present in the segmented ROIs in BSGI images compared to MRI, CT and 

mammography result in relatively large alterations on extracted features if extra pixels, or less pixels 

are included in the ROI after segmentation. This is especially troublesome in lesions with less focality, 

leading to more uncertainty about the correctness of the segmentation. Future scintigraphic imaging 

modalities, however, could increase the potential for combining ML and radiomics, if spatial 

resolution and pixel sizes are reduced significantly.58 

With ER and PR positivity found in approximately 87% and 71% cases of breast cancer, respectively, 

the prediction of hormonal receptor status using ML should be treated with caution59. For rare 

occurrences, such as ER and PR negative tumors, which are bad prognostic factors and should be 

ruled out, a test should generally have a high specificity. With specificities of 64% and 59%, however, 

ML seems to be insufficient for proper detection of ER and PR negative tumors. HER2-neu positivity 

occurs in approximately 9.9% of cases, and is a poor prognostic factor, which should thus be ruled 

out by a high sensitivity. The sensitivity of 57% does not meet the requirements for sufficiently ruling 

out the more risky HER2-neu positive lesions. 

Especially since the major clinical implications of subtyping tumors, IHC or pathological assessment 

should remain the gold standard, as receptor status prediction based on radiomics and ML in BSGI 

result in inferior specificities and sensitivities.  

Future research directions could focus on combining different imaging modalities, such as 

mammography and/or MRI, to non-invasively predict hormonal and Her2-neu status, as a 

combination of anatomical and functional imaging might contain sufficient data on a textural feature 

level, as well as information on metabolic activities, such as high TBR levels which are associated with 

poor prognostic factors such as ER/PR negativity and HER2-neu positivity.  
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5. Conclusion 
In this paper, the aim was to create and validate CNNs designed with the purpose of accurately 

detecting abnormalities in BSGI images, as well as discriminate malignant from benign lesions. 

According to standards in literature60, the detection of malignancies of these novel networks can be 

considered outstanding, and the specific task of discriminating malignancies from lesions that were 

deemed possibly malignant at first, but turned out to be benign lesion can be considered excellent. 

In patients undergoing BSGI for problem-solving, AI could potentially  aid in quickly identifying 

patients with a high chance of suffering from breast cancer, or identify those with negligible risk. 

Also, it could potentially be used as a decision-support tool for lesions that are one the border of 

receiving a BI-RADS 3 or 4 classification, by providing the nuclear medicine physician with an extra 

parameter: the AI prediction. 

The combinations of radiomics and ML is currently not sufficiently accurate for reliable classification 

of breast tumors based on ER/PR and Her2-neu status. Future research should focus on expanding 

the scope of combining radiomics and ML in the classification of lesions. This could potentially be 

achieved by the addition of radiomics derived from mammographic and/or MRI images.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 
 

Appendices 

Appendix 1A  
Loss-accuracy graphs of Network 1, Network 2, and Network 3 trained on original, non-augmented data. Left column: 

graphs with an excessive amount of epochs, used to determine the point of divergence for training and validation curves. 

Right column: final graphs, where models are trained until this previously determined point of divergence. 
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Appendix 1B 
 Loss-accuracy graphs of Network 1, Network 2, and Network 3 trained on augmented data. Left column: graphs with an 

excessive amount of epochs, used to determine the point of divergence for training and validation curves. Right column: 

final graphs, where models are trained until this previously determined point of divergence. 
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Appendix 2 
Selected Radiomics features using univariate feature selection 

 

# FEATURE NAME 

 Estrogen Receptor 
Classification 

Progesterone Receptor 
Classification 

HER2-neu Classification 

1 Maximum 2D Diameter Row Maximum 2D Diameter Row  Maximum 2D Diameter Row  

2 Maximum 2D Diameter 
Column 

Maximum 2D Diameter 
Column  

Minor Axis length 

3 Minor Axis length Surface Area Surface Area  

4 Major Axis Length First Order Energy  First Order Energy  

5 Surface Area First Order Total Energy  First Order Skewness  

6 First Order Energy GLDM Dependence Non 
Uniformity  

First Order Total Energy  

7 First Order Total Energy GLDM Gray level Non 
Uniformity  

GLDM Dependence Non Uniformity  

8 GLDM Dependence Non 
Uniformity 

GLRLM Gray Level Non 
Uniformity  

GLDM Dependence Variance  

9 GLDM Dependence Variance GLRLM Long Run Low Gray 
Level Emphasis  

GLDM Gray level Non Uniformity  

10 GLDM Gray level Non 
Uniformity 

GLRLM Run Length Non 
Uniformity  

GLDM Large Dependence Low Gray Level 
Emphasis 
 

11 GLRLM Gray Level Non 
Uniformity 

First Order Skewness GLRLM Long Run Low Gray Level Emphasis  

12 GLRLM Long Run Low Gray 
Level Emphasis 

GLDM Dependence Entropy GLRLM Run Variance  

13 GLRLM Run Length Non 
Uniformity 

GLDM Dependence Variance  GLSZM Large Area Low Gray Level Emphasis 
 

14 GLRLM Run Variance GLRLM Run Variance  TBRhigh 

15 GLSZM Large Area Low Gray 
Level Emphasis 

GLSZM Large Area Low Gray 
Level Emphasis  

TBRmax 

16 First Order Minimum 
 

Major Axis Length 
 

Shape Elongation 
 

17 First Order Range 
 

First Order 10 Percentile 
 

Maximum 2D Diameter Column 
 

18 First Order Skewness 
 

First Order 90 Percentile 
 

First Order 10 Percentile 
 

19 GLDM Dependence Entropy 
 

First Order Mean 
 

First Order Interquartile Range 
 

20 GLDM Large Dependence Low 
Gray Level Emphasis 
 

First Order Median 
 

First Order Kurtosis 
 

21 GLRLM Run Entropy 
 

First Order Minimum 
 

GLDM Dependence Entropy 
 

22 GLRLM Short Run Emphasis 
 

First Order Root Mean Squared 
 

GLDM Dependence Non Uniformity Normalized 
 

23 TBRhigh 
 

GLDM Large Dependence Low 
Gray Level Emphasis 
 

GLRLM Gray Level Non Uniformity 
 

24 TBRmax 
 

TBRmean 
 

GLRLM Shor tRun Low Gray Level Emphasis 
 

25 COV COV COV 
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Appendix 3A 
Estrogen receptor results from different ML classifiers, using 15 and 25 features. 

15 FEATURES 

MODEL K-fold 
 3 5 10 15 
 CV Test CV Test CV Test CV Test 
LR 72% ± 2% 72% 67% ± 8% 67% 65 ± 5% 65% 63% ± 2% 67% 

RF 67% ± 4% 67% 67% ± 9% 65% 69% ± 9% 67% 65% ± 11% 65% 

NB 66% ± 12% 65% 53% ± 11% 56% 61% ± 2% 65% 58% ± 9% 56% 

LDA 70% ± 7% 72% 65% ± 11% 65% 69% ± 12% 72% 67% ± 5% 63% 

DT 56% ± 2% 51% 55% ± 6% 56% 59%± 4% 65% 60% ± 6% 56% 

SVM 61% ± 5% 56% 65% ± 2% 65% 66% ± 8% 65% 63% ± 5% 65% 

KNN 69% ± 10% 67% 71% ± 6% 67% 70% ± 12% 72% 69% ± 3% 67% 

ENSEMBLE 66% ± 8% 67% 65% ± 5% 65% 66% ± 10% 67% 63% ± 8% 65% 

25 FEATURES 
MODEL K-fold 
 3 5 10 15 
 CV Test CV Test CV Test CV Test 
LR 71% ± 5% 72% 68% ± 4% 67% 73% ± 2% 72% 69% ± 3% 65% 

RF 65% ± 9% 63% 69% ± 4% 67% 67% ± 5% 65% 65% ± 7% 65% 

NB 64% ± 4% 63% 60% ± 5% 58% 65% ± 13% 58% 59% ± 3% 56% 

LDA 74% ± 12% 74% 72% ± 8% 70% 72% ± 7% 70% 66% ± 5% 63% 

DT 63% ± 2% 63% 59% ± 4% 53% 62% ± 5% 58% 55% ± 3% 53% 

SVM 69% ± 4% 65% 71% ± 5% 65% 68% ± 5% 65% 68% ± 9% 67% 

KNN 71% ± 14% 70% 74% ± 10% 70% 71% ± 12% 70% 63% ± 10% 60% 

ENSEMBLE 65% ± 4% 67% 67% ± 3% 67% 69% ± 6% 65% 64% ± 4% 56% 
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Appendix 3B 
Progesterone receptor prediction results from different ML classifiers, using 15 and 25 features. 

15 FEATURES 

MODEL K-fold 
 3 5 10 15 
 CV Test CV Test CV Test CV Test 
LR 71% ± 11% 70% 68% ± 4% 67% 68% ± 3% 67% 62% ± 7% 65% 

RF 65% ± 9% 67% 70% ± 5% 65% 65% ± 11% 67% 69% ± 7% 67% 

NB 66% ±0.12% 65% 54% ± 4% 56% 63% ± 8% 67% 59% ± 6% 56% 

LDA 75% ± 11% 74% 69% ± 10% 67% 71% ± 5% 70% 66% ± 6% 67% 

DT 54% ± 3% 51% 54% ± 6% 56% 64% ± 5% 65% 61% ± 8% 58% 

SVM 61% ± 2% 56% 69% ± 8% 67% 64% ± 3% 65% 62% ± 9% 63% 

KNN 67% ± 5% 65% 70% ± 12% 67% 72% ± 9% 69% 67% ± 9% 67% 

ENSEMBLE 66% ± 8% 67% 64% ± 6% 63% 65% ± 14% 65% 64% ± 5% 63% 

25 FEATURES 
MODEL K-fold 
 3 5 10 15 
 CV Test CV Test CV Test CV Test 
LR 70% ± 7% 72% 69% ± 8% 67% 71% ± 8% 70% 68% ± 7% 67% 

RF 66% ± 11% 65% 69% ± 3% 67% 69% ± 10% 67% 67% ± 4% 65% 

NB 62% ± 8% 60% 59% ± 6% 58% 62% ± 12% 60% 54% ± 7% 53% 

LDA 73% ± 12% 72% 71% ± 6% 67% 70% ± 7% 70% 68% ± 6% 65% 

DT 62% ± 7% 60% 56% ± 9% 53% 60% ± 2% 60% 59% ± 3% 56% 

SVM 65% ± 4% 58% 70% ± 7% 65% 66% ± 9% 67% 65% ± 6% 65% 

KNN 70% ± 10% 67% 73% ± 11% 70% 71% ± 5% 70% 65% ± 9% 63% 

ENSEMBLE 67% ± 6% 67% 69% ± 5% 67% 67% ± 9% 67% 65% ± 3% 60% 
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Appendix 3C 
HER2-receptor prediction results from different ML classifiers, using 15 and 25 features. 

15 FEATURES 

MODEL K-fold 
 3 5 10 15 
 CV Test CV Test CV Test CV Test 
LR 61% ± 8% 58% 66% ± 13% 65% 64% ± 6% 65% 57% ± 9% 53% 

RF 61% ± 4% 63% 62% ± 9% 63% 69% ± 7% 69% 62% ± 8% 65% 

NB 52% ± 10% 53% 50% ± 4% 53% 56% ± 2% 63% 55% ± 3% 56% 

LDA 64% ± 2% 63% 62% ± 6% 65% 70% ± 7% 56% 67% ± 2% 63% 

DT 53% ± 7% 53% 53% ± 9% 51% 57% ± 4% 67% 52% ± 5% 56% 

SVM 62% ± 6% 65% 67% ± 4% 65% 65% ± 5% 65% 63% ± 5% 60% 

KNN 58% ± 3% 56% 63% ± 5% 53% 63% ± 7% 65% 65% ± 7% 65% 

ENSEMBLE 62% ± 5% 65% 63% ± 8% 58% 61% ± 8% 67% 58% ± 6% 56% 

25 FEATURES 
MODEL K-fold 
 3 5 10 15 
 CV Test CV Test CV Test CV Test 
LR 63% ± 7% 60% 67% ± 7% 63% 65% ± 4% 63% 59% ± 4% 58% 

RF 63% ± 5% 63% 62% ± 6% 63% 66% ± 5% 67% 64% ± 2% 60% 

NB 54% ± 7% 56% 56% ± 9% 53% 58% ± 5% 56% 53% ± 5% 51% 

LDA 62% ± 9% 60% 64% ± 3% 63% 71% ± 5% 67% 67% ± 4% 65% 

DT 55% ± 4% 56% 61% ± 4% 58% 56% ± 8% 51% 56% ± 3% 53% 

SVM 66% ± 5% 63% 65% ± 7% 65% 66% ± 3% 63% 66% ± 8% 65% 

KNN 58% ± 6% 53% 67% ± 8% 67% 66% ± 8% 65% 68% ± 8% 65% 

ENSEMBLE 64%  ± 7% 63% 62% ± 5% 58% 65% ± 7% 60% 62% ± 9% 56% 
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Abstract 

Introduction 

Over the years, many applications of artificial intelligence(AI) in healthcare settings have been 

proposed. A small proportion of those, however, fails to be implemented clinically, despite good 

performances in research settings. For clinical implementation, however, AI algorithms must be 

validated and evaluated. In this paper, we aim to: 1) find a possible correlation by the predictions 

made by an AI algorithm and assessments by nuclear medicine physicians in breast-specific gamma 

imaging(BSGI) and 2) determine possible time-saving capabilities of using an AI algorithm when 

compared to standard clinical routine.  

Methods 

13 patients who underwent BSGI for a problem-solving indication were included, and BI-RADS 

classifications made by physicians were compared to predictions made by a previously build 

convolutional neural network(CNN). For this part, the Pearsons correlation coefficient and Cohen’s 

kappa agreement scores were calculated.  Also, the BSGI interpretation times by nuclear medicine 

physicians were compared to the time required by the CNN to make a prediction for each individual 

patient.  

Results 

Out of 26 breasts, only 4 were classified as BI-RADS 4 or higher, resulting in follow-up diagnosis and 

pathological assessment. Correlation coefficients of  r = 0.71 and an r2 = 0.51 were found between 

the average prediction per breast made by the CNN and the BI-RADS classification by the physician. 

For BI-RADS scores of 1 and 2, a kappa agreement score of 0.53 was found, while a kappa score of 

0.25 for BI-RADS 3 and 4 and  0.64 for BI-RADS 5 were found. Average total interpretation time for a 

single patient by a nuclear medicine physician was 255 seconds, while the CNN made predictions in 

31 seconds. 

Discussion and conclusion 

Despite a positive correlation that was found between BI-RADS scores and predictions made by the 

AI, the small number of patients with suspicious lesions, and the large variability of AI predictions 

within each BI-RADS category indicate the necessity for further research. It is therefore advised that 

similar research with larger cohorts are conducted to confirm the correlation found in this study.  

 

 

 

 

 

 

 

 

 



69 
 

Contents 
Introduction ........................................................................................................................................... 70 

Methods ................................................................................................................................................ 71 

Results ................................................................................................................................................... 72 

Model outputs ................................................................................................................................... 73 

Agreement scores .............................................................................................................................. 74 

Time savings ...................................................................................................................................... 74 

Discussion .............................................................................................................................................. 75 

Conclusion ............................................................................................................................................. 76 

Appendices ............................................................................................................................................ 77 

Appendix 1 ......................................................................................................................................... 77 

References ............................................................................................................................................. 80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



70 
 

Introduction 
Artificial Intelligence (AI) applications in healthcare settings have been widely investigated and 

evaluated in the recent years, with many applications showing high efficacy and efficiency in clinical 

research. Few AI applications however, have made it through to actual clinical practice1,2, with many 

proposed AI-based algorithms remaining in the prototype phase, despite promising results. 

Several reasons exist for this gap between research and clinical practice. Reasons for hesitancy in 

adopting AI-based clinical decision making solutions include lack of explainability, legal and ethical 

issues, and pressure on medical professionals on continuously having to adapt to new technologies, 

resulting in a low number of studies of studies prospectively monitoring AI performance in real-world 

clinical environments3,4. This research-practice gap is also referred to as the ‘AI-chasm’, where 

potentially sound algorithms are not further evaluated in clinical practice5,6. To cross the AI-chasm, 

theoretical algorithms have to be tested on real-world data in order to see whether generalizability is 

achievable, to compare the physicians’ outcomes with the algorithms’ outcomes, and to evaluate the 

effect of AI-implementation on the physicians’ workflow.  

This phase in the development cycle of AI in healthcare is, the clinical validation phase, is an essential 

step in finding failure modes and possible impacts on workflows, as well as finding hidden biases in 

the model. Based on findings from the clinical validation phase, models can be adjusted to specific 

needs for the clinical use case7,8. 

 

Figure 1 Development cycle of clinical AI models4 

 

Recently, we have creating a deep-learning based convolutional neural networks (CNNs) for the 

detection of malignancies in breast-specific gamma imaging(BSGI). BSGI is a scintigraphic nuclear 

medicine imaging technique used in the diagnosis, therapy response monitoring and screening in 

patients with, or patients suspected of having breast cancer9. One of the indications for using BSGI as 

an adjunct imaging modality is problem solving. Problem solving is defined as the evaluation of 

indeterminate breast abnormalities or symptoms, where there are discrepancies between clinical 

and radiological findings, where evaluation of mammographic BI-RADS 3 (Breast Imaging Reporting 

and Data System) lesions is required for patient reassurance, or where (bloody) nipple discharge with 

normal or inconclusive radiological findings is evaluated.10 

The best performing algorithm reached an area under the receiving operating characteristic (AUC) of 

0.93 with an accuracy, sensitivity and specificity of  85%, 78% and 92%, respectively, at a cut-off 

malignancy probability of 0.5(50%). One main limitation of that study, however, was the evaluation 

on a per-image basis, instead of on a per-patient basis, which is the clinical routine.  
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BSGI images are interpreted using a BI-RADS lexicon specifically proposed for BSGI. This BI-RADS 

scoring system is based on uptake patterns, associated findings(axillary uptake, nipple uptake, vessel 

uptake), lesion location, qualitative intensity of lesion uptake and lesion size11. The entire BI-RADS 

lexicon for BSGI images, proposed by Conners et al.11, can be found in appendix 1. Following image 

assessment, each breast is given a BI-RADS score from 0 to 6 (1- Negative (no lesion found), 2- 

Benign(no malignant features), 3- Probably benign(very low probability of cancer), 4- Suspicious 

(intermediate probability of cancer) or 5- Highly suggestive of malignancy).  Categories 1 and 6 are 

assigned to incomplete imaging (wrong acquisition, artefacts, etc.), and known biopsy-proven 

malignancies respectively. Because the extent to which suspected malignancies in this lexicon are 

based on image characteristics, we hypothesize that predictions from our deep-learning application 

positively correlate with BI-RADS scores assigned by nuclear medicine physicians.  

In this paper, we aim to evaluate the deep-learning algorithm on a per-patient basis in patients 

undergoing BSGI for a problem-solving indication(with no pathologically proven diagnosis yet), find 

possible correlations between the predictions of the algorithm and assigned BI-RADS scores, quantify 

the agreement between the AI and nuclear medicine physicians and determine the time-saving 

capabilities of using AI compared to clinical routine.  

 

Methods 
To evaluate the performance of the model in a clinical setting, patients were included from June to 

August 2021 in the Alrijne Hospital Leiderdorp, The Netherlands, who underwent BSGI for a problem-

solving indication with the Discovery NM 750b (GE Healthcare, Chicago, USA). Evaluation of BSGI 

images acquired for these patients was performed according to local clinical routine protocols, and 

patients were assigned BI-RADS scores for each breast, resulting to either scheduled follow-up (BI-

RADS 1-3) or further investigation (BI-RADS >3).  

To evaluate time saving capabilities, nuclear medicine physicians annotated interpretation times for 

each patient including time required for:  1) preparation and reading up on clinical data and ; 2) 

interpretation and reporting times.  Preparation and reading up on clinical data includes viewing 

previously acquired imaging.  

As model inputs, DICOM images from the cranio-caudal (CC) and mediolateral-oblique(MLO) BSGI 

projections were used, as these are the same projections that were used to train the model. Because 

initial evaluation of the model also resulted in the best performance using data-augmentation of the 

test set, this technique was also applied on the images used in this clinical validation. This resulted in 

2 predictions( one for the original image and one for the augmented version) by the model per 

DICOM image, which were averaged to acquire a percentage on the possible presence of a 

malignancy (malignancy prediction).  
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Figure 2 Workflow for the clinical validation phase. Bi-RADS scores are compared to malignancy predictions, and 
interpretation times are compared to the running time of the script. 

To evaluate results, the average malignancy prediction per breast was correlated with its assigned BI-

RADS score. The correlation was calculated using Pearson’s correlation coefficient Also, Cohen’s 

Kappa scores were calculated to find the agreement scores between nuclear medicine physicians and 

the model. To do so, the average malignancy predictions were categorized into 3 categories: 0 – 25%, 

26 – 50% and >50%. We used three categories to make results comparable to a previously published 

study by Conners et al.11, who also used three categories (Negative or benign, probably benign, and 

suspicious) to asses interobserver agreement among physicians in the interpretation of BSGI images. 

For instance, if a breast that was given a BI-RADS 2 score results in an average prediction of the 

model (across all projections of that breast) of 0-25%, both would be in agreement.  

The AI script was run on a computer with 64-bit Windows 10 64-bit OS (v.21H1 )and an Intel® Core™ 

i7-770HQ CPU @ 1.80GHz, with 8GB of RAM. 

Results 

Patients 

A total of 13 female patients were included, all of whom had both breasts investigated with BSGI. 

Mean patient age was 56 at the time of image acquisition. Out of 26 breast investigated, 12 received 

a BI-RADS 1 score by the nuclear medicine physician, 7 received a BI-RADS 2 score, while 3, 4 and 1 

breast received BI-RADS 3, 4 and 5 scores, respectively. These characteristics are summarized in table 

1. 

 

 

 

 

 

Patient BSGI Phycisian

BI-RADS

Interpretation Times

Patient BSGI Model

Malignancy Prediction

Script running time
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Table 1 BI-RADS scores assigned to BSGI scans 

    VARIABLES  

PATIENTS N = 13 

AGE(YEARS) 
    MEAN 
 

 
56  (37-74) 

BI-RADS 1 N = 12 

BI-RADS 2 N = 7 

BI-RADS 3 N = 3 

BI-RADS 4 N = 3 

BI-RADS 5 N = 1 

 

Model outputs 

For each patient, BSGI images of both breast were run through the model, generating 8 predictions 

per breast (projections: AVG CC, GEO CC, CC TOP, CC BOT, AVG MLO, GEO MLO, MLO TOP, MLO 

BOT). Figure 3 shows the average malignancy prediction by the algorithm for each BI-RADS score 

assigned to the same series of projections. Also, the average predictions of each BI-RADS category 

are shown. For BI-RADS 1, this average malignancy prediction across all breasts in this category was 

13,17%, 21,51% for BI-RADS 2 lesions, and 34,4%, 49,61% and 92,67% for BI-RADS 3, 4 and 5, 

respectively. Between these observations (average per BI-RADS omitted), the Pearson correlation 

coefficient was 0.71 (p<0.05), and r2 =0.51. 

 

 

 

Figure 3 Average malignancy predictions by the model for each BI-RADS category 
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Agreement scores 

Cohen’s Kappa scores were calculated to determine the agreement between the model and the 

nuclear medicine physician across three categories separately. We found that for breasts being 

classified with either a BI-RADS 1 or 2 score, the kappa score was 0.53. For breasts with either a BI-

RADS 3 or 4 score, the agreement between the nuclear medicine physicians and the AI resulted in an 

agreement of 0.28, while the agreement for breasts with a high BI-RADS score was 0.64.  

The agreement results are summarized in table 2. 

Table 2 Agreement between Nuclear medicine physicians and the AI-model 

PHYSICIANS 
INTERPRETATION 

AI-PREDICTION  
PREDICTED PROBABILITY OF A MALIGNANCY PRESENT 

 0 – 25%  >25% - 50% >50% Kappa score 
BI-RADS 1 & 2 16 3 1 0.53 
BI-RADS 3 & 4 2 2 2 0.25 
BI-RADS 5 0 0 1 0.64 

 

 

Time savings 

Times were noted in 8 instances by nuclear medicine physicians.  The average total time, a 

combination of time spent on reading up on relevant patient specific clinical data (reading) and the 

actual interpretation (reporting) time, was 255 seconds on average, with a standard deviation of 61 

seconds. Average reading time was 191s ( ± 67s), while reporting times were 65s on average (±19s). 

 

Figure 4 Time spent on preparing image interpretation (reading), The actual reporting (reporting), their combined 
time(total) and the time needed for the AI-model to return results for a patient. ***: 1.00e-04 < p <= 1.00e-03 , ****: p <= 
1.00e-04, paired t-test. 
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Average time for the AI model to give predictions for each patient (left and right breast) was 31s ± 2s. 

The AI had a significantly shorter time to interpret all images for a patient compared to clinical 

routine, with p-values well under 0.05. The average reduction in time spent on interpretation was 

reduced from 255 seconds to 31 seconds, a 87.8% reduction.   

 

Discussion 

Interpretation 

In this clinical validation study, we aimed to evaluate: 1) a possible correlation between the output of 

the model and assigned BI-RADS scores by a nuclear medicine phycisian; 2) the agreement between 

phycisians and the models’ output and finally: 3) The potential time-reduction for interpretation of 

BSGI images with AI compared to current clinical routine.  

As hypothesized, a positive correlation (r=0.71, r2=0.51) can be seen between the average predicted 

chances of a malignancy by the AI-model and the BI-RADS scores assigned to those same breasts. 

There appear to be some parralells in the interpretation by the physician and the model. This can be 

explained by the fact that BI-RADS scores are based upon similar features that would be of incluence 

to the activation of neural nodes in the deep-learning model. In the case of high focal uptake, for 

instance, the AI-model has shown to predict higher probabilities of a malignancy being present, 

which is also a subject of the BI-RADS lexicon. Inversely, diffuse uptake patterns have been shown to 

decrease the predicted malignancy probability of the AI-model, and are also subject of the BI-RADS 

lexicon.  

The agreement between the AI-model and the BI-RADS scores vary across different BI-RADS scores. 

The highest agreement can be found in the BI-RADS 5 category. However, only one breast from the 

13 patients included received a BI-RADS 5 score. Therefore, the reliability of this single measurement, 

although correct, must still be doubted and can not lead to any conclusions. The lowest agreement 

was found in BI-RADS 3 and BI-RADS 4 scores. This low score (0.25) is can be mainly attributed to 

some BI-RADS 2 breasts were just above the 25% threshold used in these calculations, while one BI-

RADS 3 breast was slightly above the 50% threshold. This low agreement, however, is in line with a 

prior study by Conners et al11, where an interobserver agreement in the assessment of BSGI images 

in isolation (without additional clinical information) of 0.15 was found in BI-RADS 3 versus BI-RADS 1 

and BI-RADS 2. Conners et al. also found that with the addition of mammograms, interobserver 

agreement increased the kappa to 0.3, indicating more concensus is reached with more information 

available. According to Landis et al.12,  this kappa score of 0.15 implies agreement, albeit very limited. 

A moderate agreement in BI-RADS 1 and 2 lesions compared to other lesions was sginificantly lower 

than the same value reported by Conners et al. (0.53 versus 0.91 respectively) this lower score found 

in this paper was mainly caused by the fact that several BI-RADS 2 classified breasts resulted in 

predictions slightly above 25%, one BI-RADS 1 breast resulted in a predicted probability of slightly 

above 25%, and one BI-RADS 3 breast resulted in a predicted probability of slightly below 25%. 

Furthermore, in one of of the breasts in these categories, high intensity uptake was measured in the 

nipple, an effect that already has caused false positive findings in the network before, as it had not 

seen enough similar examples to distinguish this benign finding from malignant uptake patterns.  

The speed of the AI-model in putting out results has been shown to be significantly higher than that 

of nuclear medicine phycisians. The apparent correlation between BI-RADS scores and outputs by the 

model could potentially pave the way for decision-support AI-models in the workflow of nuclear 

medicine phycisians. A combination of pre-assessed images by the algorithm and clinical information 
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obtained by the nuclear medicine phycisian could speed up the diagnostic process, saving time and 

money, while freeing time for more patients.  

The major limitation of this clinical validation phase is the small number of patients included. As a 

result, a relatively small number of BI-RADS 3, 4, and 5 classifications were tested for correlations 

and agreement with the outputs of the AI-model. Especially the correlation with BI-RADS 3 and 4 

lesions is insufficient to demonstrate with this small cohort, even though these classifications are 

possibly the most interesting in terms of decision-making support using AI, as a shift from a BI-RADS 

3 to 4 or inversely has a direct impact on  further diagnosis and treatment for patients.  

Another limitation is the fact that BI-RADS 3 breasts(or lesions) are classified as ‘probably benign’, 

and not defintively benign, meaning that no further diagnostic testing is performed. Although 

unlikely, there is a possibility that one of the overclassifications by the AI-model was in fact not a 

false-positive, but a true positive. All BI-RADS 4 and 5 classifications were eventaully proven to be 

malignant, except for one BI-RADS 4 classification which the AI-model predicted to be not malignant. 

This lesion was eventually found to be benign after pathological assessment.  

Conclusion 

In conclusion, there appears to be a positive correlation between BI-RADS scores and predictions 

made by the AI-model. This correlation, in combination with slight to substantial agreement between 

nuclear medicine physicians and the speed of AI in estimating the chance of a mlaignancy indicates 

that this study could pave the way for future AI-based decision making algorithms in the diagnosis of 

breast cancer in patients undergoing BSGI. However, future studies should include more patients, 

especially with BI-RADS scores of 3 and higher.  
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Appendices 
Appendix 1 – BSGI BI-RADS Lexicon by Conners et al.11 
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