
Delta debugging fault-triggering propositional model counting instances
To facilitate debugging of unweighted model counters using SharpVelvet

David N. Coroian1

Supervisor: Dr. Anna L.D. Latour1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 26, 2025

Name of the student: David N. Coroian
Final project course: CSE3000 Research Project
Thesis committee: Dr. Anna L.D. Latour, Dr. Martin Skrodzki

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Propositional model counting (#SAT) is the count-1

ing variant of the Boolean Satisfiability (SAT)2

problem. Development of #SAT solvers has seen3

a boom in recent years. These tools are complex4

and hard to debug. To address this, we propose5

a delta debugger that reduces fault-triggering un-6

weighted model counting instances. Our delta de-7

bugger shows an improvement compared to state of8

the art in the related field of SAT solvers.9

1 Introduction10

The first three paragraphs of this section are based on Latour’s11

project description [2024].12

The aim of Propositional Model Counting [Gomes et al.,13

2021] is to find the number of unique solutions (“models”)14

that satisfy a certain Boolean formula. This is the counting15

version of the Boolean Satisfiability (SAT) [Biere et al., 2021]16

NP-complete problem, which aims to answer whether there is17

at least one solution. Therefore, the problem of model count-18

ing (#SAT) is conjectured to be computationally harder than19

NP.20

There are numerous applications of model counting and21

its variants, three notable examples include: reliability es-22

timation of power grid networks [Duenas-Osorio et al.,23

2017], optimisation problems in bioinformatics and social24

sciences [Latour et al., 2022] and verification of neural net-25

works [Baluta et al., 2019].26

SharpVelvet [Latour and Soos, 2024] is an ongoing27

project that aims to provide model counter developers with28

a fuzzer and a delta debugger. The purpose of the fuzzer is to29

generate and run problem instances, in order to trigger bugs30

in a model counter. Once a bug is found, the delta debugger31

minimises the fault-triggering instance as much as possible,32

whilst still triggering the bug. As such, the model counter de-33

velopers are more likely to locate the incorrect piece of code.34

Since model counters have seen a boom only in the last35

few years, there are not many, if any, other fuzzing tools36

freely available to their developers. Modern model coun-37

ters are complex and hard to debug, also witnessed by a re-38

cently proposed delta debugger for unweighted model coun-39

ters, TestMC [Usman et al., 2020]. We believe we can im-40

prove upon Usman et al. by implementing state of the art in41

general delta debugging [Wang et al., 2021].42

This leads to the research question we answer in this paper:43

“Given an unweighted model counting instance that trig-44

gers a bug in a solver, and means of interacting with that45

solver, how much can we minimise the instance in such a46

way that it still triggers a bug, using heuristics based on47

the CNF structure and properties of individual clauses?”.48

In Section 2 we provide relevant definitions. Section 349

presents state of the art in delta debugging and related work.50

Then, in section 4 we introduce the DeltaMC framework. We51

describe our experimental setup in section 5 and analyse the52

results in section 6. We describe how we conducted respon-53

sible research in section 7 and conclude in section 8.54

2 Preliminaries 55

This section introduces relevant concepts. 56

Input format 57

In boolean logic, a proposition in Conjunctive Normal Form 58

(CNF) is defined as a conjunction (∧) of one or more clauses. 59

A clause is a disjunction (∨) of literals. Lastly, a literal con- 60

sists of a variable or its negation. Two examples of proposi- 61

tions in CNF are (p) ∧ (q) and (p ∨ q ∨ r) ∧ (o ∨ (¬z)). 62

Within general delta debugging, the logical proposition in 63

CNF corresponds to the input (“instance”) and a clause cor- 64

responds to an input element. For the scope of this work the 65

literals within a clause are kept unchanged by our delta de- 66

bugger. 67

Delta debugging 68

Delta debugging is defined as minimising a fault-triggering 69

input, such that the resulting reduced instance still triggers 70

a fault in the software that is being debugged. We measure 71

the performance of a delta debugger in terms of achieved re- 72

duction (in %) of the input size (n) and the ratio between the 73

number of delta-debugging tests performed and n. A delta- 74

debugging test consists of running the software with an inter- 75

mediate reduced instance to check whether the bug is repro- 76

duced, and a pass is achieved if so. 77

Model counting flavours 78

There exist four variations of the model counting problem, 79

i.e. unweighted, weighted, projected and projected weighted 80

model counting [Gomes et al., 2021]. In the scope of this 81

paper we focus solely on unweighted model counting. These 82

type of counters accept a proposition in CNF as input, similar 83

to SAT solvers. 84

3 Background and Related Work 85

This section presents general delta-debugging techniques, re- 86

lated work in the field of SAT solvers and one proposed delta 87

debugger for model counters. 88

3.1 General delta-debugging techniques 89

This section presents the four delta-debugging algorithms we 90

found in the literature. 91

Leave-one-out 92

The naı̈ve delta-debugging algorithm [Vu et al., 2023] iter- 93

atively tries to remove an element from the instance. The 94

average-case asymptotic number of tests performed is bound 95

by O(n2). 96

Delta Debugging 97

Zeller and Hildebrandt introduced the concept of delta de- 98

bugging and proposed dd-min [2002], based on the classic 99

algorithm of binary search. Initially, tests are performed for 100

instances containing half of the input. If successful, the algo- 101

rithm discards the other half. Otherwise, it continues with the 102

original instance. Afterwards, quarters of the instance are re- 103

moved and the resulting subsequences are tested. In the same 104

way, the reduction continues until individual elements are re- 105

moved, similar to the leave-one-out strategy. The authors 106

bound the worst-case asymptotic number of tests performed 107

by dd-min by O(n2). 108

Algorithm 1: The prob-dd algorithm.
Input: Set S containing the elements of the initial

instance.
Output: Set Q containing the elements of the reduced

instance.
1 n← |S|;
2 p[1 . . . n]← σ ; // Initial probabilities.
3 repeat

// Next delta-debugging test.
4 D ← SelectTest (p);

// True if fault still present.
5 R← RunTest (D);

// Update probabilistic model.
6 p← UpdateModel (R, p);
7 until ReductionComplete (p);
8 Q← ReducedInput (p);
9 return Q

Probabilistic Delta Debugging109

Wang et al. recently introduced the prob-dd algorithm that110

employs a probabilistic model to guide the reduction of the111

input. The description of the algorithm is based on the origi-112

nal paper [2021].113

A minimal version of the original algorithm can be seen114

in Algorithm 1. The input S is assumed to be pre-processed,115

possibly using domain-specific knowledge, such that all sta-116

tistical dependencies between elements are eliminated. Sub-117

sequently, the model assigns each input element a Bernoulli118

random variable, representing whether the element is in-119

cluded in the final, reduced instance Q. Together with the120

previous assumption, it immediately follows that these vari-121

ables are mutually independent. All the variables are assigned122

an initially identical value of σ.123

Moving on to the delta-debugging part, prob-dd forms a124

subset D of the last fault-triggering instance, initially S, ac-125

cording to the probabilities p. As explained earlier, a higher126

probability implies a greater chance of an element belong-127

ing to the set Q. Afterwards, the delta-debugging test is per-128

formed and the model is updated to reflect whether D pro-129

duced a bug. Finally, the reduction concludes when all prob-130

abilities are either 0 or 1. Wang et al. bound the worst-case131

asymptotic number of tests conducted by prob-dd by O(n).132

For an in-depth explanation of the prob-dd algorithm, we133

point the reader to the original article.134

Similarity-Based Isolation135

Vu et al. introduced similarity-iso [2023], improving dd-136

min and dd [Zeller and Hildebrandt, 2002] on localizing the137

fault-triggering elements by using a domain-specific distance138

metric to group such elements. The algorithm is bound by139

the underlying performance of dd-min. We refer the reader140

to the full article for more details.141

3.2 Delta Debuggers for SAT solvers142

Based on the literature study we conducted, state of the art143

in SAT delta debuggers is considered to be the adaptation of144

dd-min [Zeller and Hildebrandt, 2002] introduced by Brum-145

mayer et al. [2010]. The authors improve the performance146

of the original dd-min algorithm by incorporating domain- 147

specific knowledge. We refer the reader to the original paper 148

for technical details. 149

3.3 Delta Debuggers for Model Counters 150

The TestMC framework [Usman et al., 2020] is the only im- 151

plementation of a delta debugger, developed specifically for 152

model counters, that we were able to find during our litera- 153

ture study. The proposed delta debugger is based on the dd- 154

min algorithm and achieved a 30% reduction of the input. At 155

the time of submission of this paper the TestMC source code 156

is not publicly available. 157

4 Methodology 158

This section describes the scope of this research, our pro- 159

posed delta-debugging framework, and the two delta debug- 160

gers we applied to unweighted model counting. 161

4.1 Scope 162

Given the duration of this project, we implemented a delta 163

debugger solely for unweighted model counters. The pro- 164

jected, weighted and projected weighted model counting 165

problems are more complex and therefore a non-trivial delta 166

debugger implementation for these types of model counters 167

would require considerably more effort. Out of the four 168

delta-debugging techniques, we chose to implement prob- 169

dd [Wang et al., 2021]. In addition, we apply cnfdd [Brum- 170

mayer et al., 2010] to unweighted model counting. The 171

naı̈ve method of leave-one-out [Vu et al., 2023] cannot 172

achieve better performance than dd-min [Zeller and Hilde- 173

brandt, 2002], which is implemented by cnfdd. In addition, 174

considering that similarity-iso [Vu et al., 2023] is built on top 175

of dd-min, we decided to apply prob-dd in order to experi- 176

ment with a different delta-debugging approach. 177

4.2 DeltaMC framework 178

We present DeltaMC, an optional extension of SharpVel- 179

vet [Latour and Soos, 2024] that enables support for delta 180

debugging model counters. 181

DeltaMC can be used to debug any type of model counter, 182

i.e. unweighted, weighted, projected or projected weighted, 183

if provided with a corresponding delta debugger implementa- 184

tion. 185

The high-level design can be seen in Algorithm 2. Ini- 186

tially, the delta debugger is instantiated for an instance that 187

produced a bug in the debugged model counter. Afterwards, 188

preprocessing of the CNF formula takes place, during which 189

free and fixed variables are removed and equivalent adjacent 190

clauses are merged. Subsequently, the main loop will run un- 191

til the delta debugger is unable to minimise the instance fur- 192

ther. Within one iteration, a delta-debugging test is selected, 193

then SharpVelvet is employed to fuzz the model counter and 194

lastly the result of the test, i.e. pass if fault produced, is passed 195

onto the delta debugger. Finally, the resulting reduced in- 196

stance is printed, and as such it can be further manually re- 197

viewed and reported to the model counter developers. 198

Algorithm 2: The DeltaMC framework.
Input: Delta debugger DD, fault-triggering input

instance, debugged solver buggy mc.
Output: Reduced instance in CNF.

1 Function DeltaDebug(instance, buggy mc)
begin
/* Initialise delta debugger with

the preprocessed instance. */
2 preprocesssed ins← Preprocess

(instance);
3 DD.Initialise (preprocessed ins);
4 while !DD.Finished () do

/* Select the next
delta-debugging test. */

5 test ins← DD.SelectTest ();
/* Check whether fault is

triggered. */
6 bug present← Fuzz (buggy mc, test ins);

// Process result of test.
7 DD.Update (bug present);
8 end

/* Print the reduced CNF
instance. */

9 DD.PrintReducedInstance ();
10 end

4.3 Prob-dd application199

Wang et al. assume statistical independence between the in-200

put elements when defining the probabilistic model [2021].201

In the context of model counting, some degree of dependence202

is still present in the preprocessed input. This is caused by203

propositional variables that occur in more than one clause.204

Therefore this assumption does not hold, since an instance205

where each variable belongs to at most one clause can easily206

be solved by modern model counters. In spite of that, we be-207

lieve that in practice prob-dd will have a good performance,208

since clauses in the preprocessed input are fairly distinct, re-209

sulting in a low degree of statistical dependence.210

The authors assume no prior knowledge of the input ele-211

ments. In the original paper, Wang et al. state that the choice212

of σ does not considerably influence the number of tests per-213

formed, neither the input size reduction. In the scope of this214

work, we integrate prior knowledge of the input elements in215

order to improve the performance of prob-dd. Our hypothe-216

sis is that setting higher initial probabilities for the more com-217

plex clauses and lower values for the simpler clauses, could218

reduce the amount of delta-debugging tests and possibly im-219

prove the input reduction.220

4.4 Prob-dd Heuristics221

We now present the three heuristics we used for setting the222

initial probabilities of the model:223

Heuristic 1 (H1)224

We assign each variable an initial probability of 0.1. Wang et225

al. set the initial probability based on the expected reduction226

ratio [2021].227

Heuristic 2 (H2) 228

We use the ratio between the number of literals present in the 229

clause and the total number of literals in the proposition as 230

initial probability. 231

Heuristic 3 (H3) 232

We compute a score for each clause based on the rarity of its 233

literals, i.e. how often they appear in the entire proposition. 234

We believe that a literal that appears more frequently results 235

in stronger clauses, i.e. harder to solve by the model counters 236

and more likely to trigger bugs. 237

We define the frequency F of a literal p as the number of its 238

occurrences in the proposition L. As can be seen in equation 239

1, the score S of a clause c is calculated as the sum of frequen- 240

cies of its literals, divided by the total sum of frequencies. 241

Sc =

∑
p ∈ c

Fp∑
p ∈ L

Fp
(1)

Probabilities scaling 242

Running prob-dd with the raw scores of H2 and H3 resulted 243

in unexpected behaviour, since the values are often below 244

0.01. Such values rendered the model unable to select the 245

next delta-debugging test. To address this, we further scale 246

the initial probabilities to [0.1, 0.4]. 247

4.5 Cnfdd application 248

We obtained the latest version [Artho et al., 2013] of 249

cnfdd1 [Brummayer et al., 2010]. Since SAT CNF instances 250

are similar to unweighted model counting CNF instances, the 251

only change needed in the source code was printing c t mc 252

at the top of the delta debugger output file. This comment 253

line signalled to model counters to treat the instance as un- 254

weighted. 255

5 Experimental Setup 256

This section presents the experimental setup used for the 257

DeltaMC framework, our implementation of prob-dd, the 258

cnfdd setup, our assumptions about faults, the hardware 259

setup, the solvers and generators used. 260

5.1 Research Questions 261

Through the experiments we aim to answer the following two 262

research questions: 263

Q1: How do the prob-dd heuristics perform when applied to 264

unweighted model counting? 265

Q2: How do prob-dd and cnfdd compare in terms of perfor- 266

mance? 267

5.2 DeltaMC setup 268

The framework is implemented in Python 3.11, using 269

Cython 3.0.112 to integrate C++ implementations of delta 270

debuggers. The choice of programming languages followed 271

naturally, given that SharpVelvet [Latour and Soos, 2024] is 272

1Source code available at https://fmv.jku.at/
cnfuzzdd/cnfuzzdd2013.zip

2https://cython.org/

https://fmv.jku.at/cnfuzzdd/cnfuzzdd2013.zip
https://fmv.jku.at/cnfuzzdd/cnfuzzdd2013.zip
https://cython.org/

implemented in Python while our implementation of prob-273

dd is in C++. In addition, we built the framework decoupled274

from the actual delta debugger implementation to facilitate275

future research in this field.276

5.3 Prob-dd implementation277

Our prob-dd implementation is exclusively based on the al-278

gorithm described in the original paper [Wang et al., 2021].279

The implementation is in C++ 20, and we reused parts of the280

GPMC solver [Suzuki et al., 2017] source code3.281

We chose to build our delta debugger on top of an exist-282

ing model counter since it enabled us to implement solely the283

prob-dd logic. As such, our implementation makes use of284

the existing functionality for parsing, printing, preprocessing285

and storing in-memory CNF instances.286

5.4 Cnfdd setup287

Since adapting the implementation to follow the pro-288

posed API was outside the scope of this work, we289

wrapped cnfdd with a short Python script containing the290

DeltaMC fuzzing logic.291

5.5 Solvers292

We used the binaries [Fichte et al., 2024] submitted to the293

2024 edition of the Model Counting Competition [Fichte294

et al., 2021]. The unweighted track, with exact pre-295

cision, had ten participants, out of which we selected296

Ganak [Sharma et al., 2019], D4 [Lagniez and Marquis,297

2017] and GPMC [Suzuki et al., 2017], corresponding to298

the first, fourth and eighth positions of the leader-board re-299

spectively. By applying our delta debugger to state-of-the-300

art solvers with different underlying implementations, we301

demonstrate its relevance and future potential to assist devel-302

opment of model counters.303

5.6 Fault definition304

We consider three types of faults, namely wrong counts,305

crashes and timeouts.306

Wrong count307

The model count of a solver is considered wrong if the ma-308

jority of the other surveyed solvers agree on a different result.309

Crash310

A crash is defined as an abnormal early exit of a solver, with-311

out providing any result.312

Timeout313

We expect solvers to finish counting within a limit of 10 sec-314

onds for an easy instance. An instance is considered easy315

if any of the three model counters is able successfully solve316

it within the time limit. This limit was chosen to facilitate317

experimenting with the delta debugger, considering the time318

frame of this project.319

3Source code available at https://git.trs.css.i.
nagoya-u.ac.jp/k-hasimt/GPMC

5.7 CNF generators 320

SharpVelvet provides adaptations of the CNFuzz and 321

FuzzSAT generators [Brummayer et al., 2010]. We gen- 322

erated 100.000 CNF instances, 70.000 using CNFuzz, and 323

30.000 using FuzzSAT. We used the default configuration of 324

CNFuzz, since the resulting instances were of varying hard- 325

ness and size. For FuzzSAT we used three configurations, in 326

order to vary the size and structure of the generated instances. 327

5.8 Hardware 328

We acknowledge the use of computational resources of the 329

DelftBlue supercomputer [Centre (DHPC), 2025]. We ran 330

experiments on nodes equipped with Intel Xeon E5-6248R 331

CPUs, running at 3.0 GHz. The operating system of the clus- 332

ter is Red Hat Enterprise Linux 8.1. Each solver was allocated 333

64 GB of RAM and one core, since the underlying implemen- 334

tations do not make use of parallelisation. 335

6 Results 336

This section presents the fuzzing results and delta-debugging 337

performance achieved. 338

6.1 Triggered faults 339

Model counting software has improved considerably in re- 340

cent years. In addition, it is highly likely these tools were 341

fuzzed and debugged using the CNFuzz and FuzzSAT gen- 342

erators [Brummayer et al., 2010]. As a consequence, we were 343

not able to trigger any wrong count or crash bugs. We fuzzed 344

solvers with 100.000 CNF instances, which exhibited a con- 345

siderable amount of variety in structure and hardness. While 346

we consider our sample size relevant, finding bugs is an un- 347

certain process. 348

In an ideal scenario, the performance of a delta debugger 349

is measured by reducing fault-triggering instances. Consid- 350

ering we were not able to produce any bugs, we tested our 351

delta debugger implementation by reducing inputs that trig- 352

gered timeouts. This experiment showcases the ability of the 353

delta debugger to narrow the hardness of the instance, i.e. the 354

subset of clauses which take the longest to solve. We believe 355

this performance would further translate well to reducing in- 356

stances that trigger wrong count or crash bugs. Out of the 357

100.000 CNF instances we fuzzed solvers with, a small pro- 358

portion triggered timeouts, from which we randomly selected 359

30 CNF instances and delta debugged. 360

6.2 Delta-debugging performance 361

Table 1 presents the average input reduction performance and 362

Table 2 presents the average ratio between the number of 363

delta-debugging tests performed and input size. 364

We now answer our research questions: 365

Q1: Heuristics performance. While all of the three heuris- 366

tics achieve a high reduction of the input, on average H2 per- 367

forms better by a small margin, followed by H3. Similarly, 368

H2 conducts the least amount of delta-debugging tests, while 369

H1 requires the most tests. Thus, we show that, in the context 370

of unweighted model counting, prior knowledge of the in- 371

put successfully improves the performance of the probabilis- 372

tic model by a small yet non-insignificant margin. 373

https://git.trs.css.i.nagoya-u.ac.jp/k-hasimt/GPMC
https://git.trs.css.i.nagoya-u.ac.jp/k-hasimt/GPMC

Solver H1 H2 H3 cnfdd
Ganak 84.69 91.46 90.13 89.43
D4 84.06 89.44 87.28 90.41
GPMC 82.89 86.10 84.18 86.52

Table 1: Average input reduction (%) achieved by the three prob-
dd heuristics and cnfdd.

Solver H1 H2 H3 cnfdd
Ganak 0.44 0.33 0.37 3.26
D4 0.49 0.36 0.42 3.59
GPMC 0.50 0.40 0.47 3.18

Table 2: Average ratio between number of tests and input size,
i.e. efficiency of the three prob-dd heuristics and cnfdd (lower is
better).

Q2: Comparison with cnfdd [Brummayer et al., 2010]. H2374

reduces the input approximatively as much as cnfdd, while375

H1 and H3 achieve a slightly weaker reduction. All the376

heuristics perform considerably less tests compared to cnfdd,377

with H2 performing ∼ 10× less tests. In practice, this trans-378

lates to a significantly shorter runtime of the delta debugger.379

This improvement is explained by the efficiency of prob-dd.380

7 Responsible Research381

This section presents ethical considerations of this work, how382

scientific integrity was observed while conducting research,383

and finally the transparency and reproducibility aspects.384

7.1 Ethical considerations385

The resulting tool, DeltaMC, could at most be used for de-386

bugging model counting software. This software is already387

freely and publicly available. To our knowledge there has388

been no malicious use of such solvers at the time of submit-389

ting this article. While we consider malignant use unlikely to390

happen in the future, model counting does have practical ap-391

plications. Considering the example of verifying neural net-392

works [Baluta et al., 2019], one could ask about the ethical393

implications or intended uses of the verified neural network394

itself. Therefore, we consider this project does not introduce395

new ethical concerns.396

7.2 Scientific integrity397

All the source code and binaries were obtained and used ac-398

cording to their respective open-source licenses. No use of399

AI tools was made at any point of this research.400

7.3 Transparency and Reproducibility401

All our research artifacts are available open source and we402

provide instructions on how to use our delta debugger in the403

repository.404

In order to abide by the terms of the various licenses gov-405

erning the source code and binaries we made use of, our arti-406

facts are published in two separate repositories.407

The DeltaMC code, prob-dd implementation and408

the CNF instances used are available under MIT li-409

cense at: https://github.com/davidcoroian/410

cse3000-deltamc, commit hash 8d9377f.411

The adapted cnfdd source code and wrapper script are 412

published under GPLv3 license at: https://github. 413

com/davidcoroian/cse3000-cnfdd, commit hash 414

93dd8d7. 415

8 Conclusions and Future Work 416

This paper focused on delta debugging unweighted model 417

counters. First, we proposed the DeltaMC framework, an op- 418

tional extension of SharpVelvet [Latour and Soos, 2024] that 419

can be coupled with a delta debugger implementation to de- 420

bug a model counter. Then, we implemented a delta debugger 421

based on the state-of-the-art technique of probabilistic delta 422

debugging [Wang et al., 2021]. Finally, our empirical evalua- 423

tion of the performance of our delta debugger demonstrates a 424

∼ 10× improvement in terms of number of delta-debugging 425

tests performed compared to state of the art in the related field 426

of SAT solvers. 427

While our findings are promising, during this research we 428

were unable to produce wrong count or crash bugs and we 429

benchmarked our delta debugger by reducing timeouts. We 430

believe the delta debugger would achieve a good performance 431

when minimising wrong count or crash bugs, but this remains 432

to be tested in future experiments. 433

Future work in this field includes implementing delta 434

debuggers for weighted, projected and projected weighted 435

model counters. In addition, it could be worth experiment- 436

ing with other recently proposed delta-debugging techniques 437

such as similarity-iso [Vu et al., 2023]. 438

References 439

[Artho et al., 2013] Cyrille Artho, Armin Biere, and Martina 440

Seidl. Model-Based Testing for Verification Back-Ends. 441

In Margus Veanes and Luca Viganò, editors, Tests and 442

Proofs, pages 39–55, Berlin, Heidelberg, 2013. Springer 443

Berlin Heidelberg. 444

[Baluta et al., 2019] Teodora Baluta, Shiqi Shen, Shweta 445

Shinde, Kuldeep S. Meel, and Prateek Saxena. Quantita- 446

tive Verification of Neural Networks and Its Security Ap- 447

plications. In Proceedings of the 2019 ACM SIGSAC Con- 448

ference on Computer and Communications Security, CCS 449

’19, pages 1249–1264, New York, NY, USA, November 450

2019. Association for Computing Machinery. 451

[Biere et al., 2021] Armin Biere, Marijn Heule, Hans van 452

Maaren, and Toby Walsh, editors. Handbook of Satisfiabil- 453

ity, volume 336 of Frontiers in Artificial Intelligence and 454

Applications. IOS Press, second edition edition, 2021. 455

[Brummayer et al., 2010] Robert Brummayer, Florian Lons- 456

ing, and Armin Biere. Automated Testing and Debugging 457

of SAT and QBF Solvers. In Ofer Strichman and Stefan 458

Szeider, editors, Theory and Applications of Satisfiabil- 459

ity Testing – SAT 2010, volume 6175 of Lecture Notes in 460

Computer Science, pages 44–57. Springer, Berlin, Heidel- 461

berg, 2010. 462

[Centre (DHPC), 2025] Delft High Performance Comput- 463

ing Centre (DHPC). DelftBlue Supercomputer (Phase 464

2). https://www.tudelft.nl/dhpc/ark: 465

/44463/DelftBluePhase2, 2025. 466

https://github.com/davidcoroian/cse3000-deltamc
https://github.com/davidcoroian/cse3000-deltamc
https://github.com/davidcoroian/cse3000-deltamc
https://github.com/davidcoroian/cse3000-cnfdd
https://github.com/davidcoroian/cse3000-cnfdd
https://github.com/davidcoroian/cse3000-cnfdd
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2

[Duenas-Osorio et al., 2017] Leonardo Duenas-Osorio,467

Kuldeep Meel, Roger Paredes, and Moshe Vardi.468

Counting-Based Reliability Estimation for Power-469

Transmission Grids. Proceedings of the AAAI Conference470

on Artificial Intelligence, 31(1), February 2017. Art. no.471

1.472

[Fichte et al., 2021] Johannes K. Fichte, Markus Hecher, and473

Florim Hamiti. The model counting competition 2020.474

Association for Computing Machinery Journal of Exper-475

imental Algorithmics (JEA), 26:1–26, October 2021.476

[Fichte et al., 2024] Johannes Fichte, Markus Hecher, and477

Arijit Shaw. Model counting competition 2024: Submitted478

solvers. https://doi.org/10.5281/zenodo.479

14249109, November 2024.480

[Gomes et al., 2021] Carla P. Gomes, Ashish Sabharwal, and481

Bart Selman. Model Counting. In Armin Biere, Marijn482

Heule, Hans van Maaren, and Toby Walsh, editors, Hand-483

book of Satisfiability, volume 336 of Frontiers in Artificial484

Intelligence and Applications, pages 993–1014. IOS Press,485

second edition edition, 2021.486

[Lagniez and Marquis, 2017] Jean-Marie Lagniez and Pierre487

Marquis. An Improved Decision-DNNF Compiler. In Pro-488

ceedings of the 26th International Joint Conference on Ar-489

tificial Intelligence, IJCAI-17, volume 17, pages 667–673,490

2017.491

[Latour and Soos, 2024] Anna L.D. Latour and Mate Soos.492

SharpVelvet. https://github.com/meelgroup/493

SharpVelvet, August 2024.494

[Latour et al., 2022] Anna L.D. Latour, Behrouz Babaki,495

Daniël Fokkinga, Marie Anastacio, Holger H. Hoos, and496

Siegfried Nijssen. Exact stochastic constraint optimisa-497

tion with applications in network analysis. Artificial Intel-498

ligence, 304:103650, March 2022.499

[Latour, 2024] Anna L.D. Latour. Finding different ways500

to break a solver. https://projectforum.501

tudelft.nl/course_editions/106/502

generic_projects/5772, November 2024.503

[Sharma et al., 2019] Shubham Sharma, Subhajit Roy, Mate504

Soos, and Kuldeep S Meel. GANAK: A Scalable Proba-505

bilistic Exact Model Counter. In Proceedings of the 28th506

International Joint Conference on Artificial Intelligence,507

IJCAI-19, volume 19, pages 1169–1176, 2019.508

[Suzuki et al., 2017] Ryosuke Suzuki, Kenji Hashimoto, and509

Masahiko Sakai. Improvement of projected model-510

counting solver with component decomposition using SAT511

solving in components. Technical report, JSAI Technical512

Report, SIG-FPAI-506-07, 2017.513

[Usman et al., 2020] Muhammad Usman, Wenxi Wang, and514

Sarfraz Khurshid. TestMC: Testing Model Counters us-515

ing Differential and Metamorphic Testing. In Proceedings516

of the 2020 35th IEEE/ACM International Conference on517

Automated Software Engineering (ASE), pages 709–721,518

Melbourne, VIC, Australia, 2020. ISSN: 2643-1572.519

[Vu et al., 2023] Anh D. Vu, Christos Tsigkanos, Jorge-520

Arnulfo Quiané-Ruiz, Volker Markl, and Timo Kehrer.521

On Irregularity Localization for Scientific Data Analysis 522

Workflows. In Computational Science – ICCS 2023, pages 523

336–351. Springer, 2023. 524

[Wang et al., 2021] Guancheng Wang, Ruobing Shen, Junjie 525

Chen, Yingfei Xiong, and Lu Zhang. Probabilistic Delta 526

debugging. In Proceedings of the 29th ACM Joint Meet- 527

ing on European Software Engineering Conference and 528

Symposium on the Foundations of Software Engineering, 529

ESEC/FSE 2021, pages 881–892, New York, NY, USA, 530

August 2021. Association for Computing Machinery. 531

[Zeller and Hildebrandt, 2002] Andreas Zeller and Ralf 532

Hildebrandt. Simplifying and isolating failure-inducing 533

input. IEEE Transactions on Software Engineering, 534

28(2):183–200, February 2002. Conference Name: IEEE 535

Transactions on Software Engineering. 536

https://doi.org/10.5281/zenodo.14249109
https://doi.org/10.5281/zenodo.14249109
https://doi.org/10.5281/zenodo.14249109
https://github.com/meelgroup/SharpVelvet
https://github.com/meelgroup/SharpVelvet
https://github.com/meelgroup/SharpVelvet
https://projectforum.tudelft.nl/course_editions/106/generic_projects/5772
https://projectforum.tudelft.nl/course_editions/106/generic_projects/5772
https://projectforum.tudelft.nl/course_editions/106/generic_projects/5772
https://projectforum.tudelft.nl/course_editions/106/generic_projects/5772
https://projectforum.tudelft.nl/course_editions/106/generic_projects/5772

	Introduction
	Preliminaries
	Input format
	Delta debugging
	Model counting flavours

	Background and Related Work
	General delta-debugging techniques
	Leave-one-out
	Delta Debugging
	Probabilistic Delta Debugging
	Similarity-Based Isolation

	Delta Debuggers for SAT solvers
	Delta Debuggers for Model Counters

	Methodology
	Scope
	DeltaMC framework
	Prob-dd application
	Prob-dd Heuristics
	Heuristic 1 (H1)
	Heuristic 2 (H2)
	Heuristic 3 (H3)
	Probabilities scaling

	Cnfdd application

	Experimental Setup
	Research Questions
	DeltaMC setup
	Prob-dd implementation
	Cnfdd setup
	Solvers
	Fault definition
	Wrong count
	Crash
	Timeout

	CNF generators
	Hardware

	Results
	Triggered faults
	Delta-debugging performance

	Responsible Research
	Ethical considerations
	Scientific integrity
	Transparency and Reproducibility

	Conclusions and Future Work

