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ABSTRACT: Landslides cause hundreds of deaths and billions euros of damage to infrastructure and the environment each
year. The field of landslide hazard and risk assessment has gone through a massive development in the last twenty years by
introducing a wealth of statistical and geotechnical landslide susceptibility models. However, these efforts have been largely
restricted to landslides occurring in natural terrain. Current risk assessment approaches for earthworks on large transportation
networks still largely take form of subjective risk matrices with inputs gathered by visual walkover surveys. This paper shows
the application of two distinctive objective landslide susceptibility approaches on a case study of Irish rail. The first is a
‘statistical’, or ‘data-driven’ approach, which uses logistic regression as a statistical tool to establish the influence of slope-
describing variables that have led to landslide occurrence. In ‘geotechnical’ or ‘deterministic’ approach, geometrical and
geotechnical properties of each slope are used to carry out probabilistic slope stability analysis, resulting in probability of failure
for each slope. Both approaches result in susceptibility zoning for earthwork assets across the network, effectively ranking them
in the criticality terms. This study compares the requirements, applicability and outcomes of each approach, and discusses the
methods needed for developing each of them into hazard and risk assessments.

KEY WORDS: Landslide susceptibility; Engineered slopes; Risk assessment; Transport network.

1 INTRODUCTION

Landslides represent a serious geohazard across the world,
resulting in hundreds of billions euros in damage and

thousands of injuries and deaths each year [1]. To respond to Susceptibility Temporal

this, much research over the past 20 years has gone into analysis analysis

developing and enhancing the prediction of landslides’ spatial

and temporal distributions and consequences. All these

procedures follow a general landslide risk assessment A r

framework. Risk assessment is derived by combining hazard HAZARD ASSESSMENT

assessment (probability of occurrence of a landslide of certain

size in a certain time period) and consequence assessment |
(impact of that landslide on elements at risk which can be Elements Vulnerability
people, structures, environment etc.) [2], outlined in Figure 1. at risk analvsis
Hazard assessment further consists of susceptibility analysis, ¥

obtaining the spatial distribution of landslide likelihood; and

temporal analysis evaluating its frequency, often combined
with  consideration of landslide size (magnitude).

CONSEQUENCE ASSESSMENT

Consequence assessment incorporates the identification of
elements at risk and their vulnerability assessment.

A large variety of methods for calculating and mapping
landslide susceptibility, hazard and risk have been developed v Y
and applied to different areas up to date [3], [4], [5]. Landslide RISK ASSESSMENT
susceptibility methods are usually subdivided into qualitative

and quantitative methods. Qualitative methods are subjective
as they are based on expert opinion and engineering judgment,
either directly or indirectly through subjective determination
of factor weightings. Examples of qualitative methods include
geomorphological mapping, analytic hierarchy process and
weighted linear combination.

Figure 1. Risk assessment framework

Quantitative methods try to find a numerical correlation
between study area’s topographical, geotechnical and
environmental attributes and landslide occurrence. These
methods are generally considered more effective due to their
reduced subjectivity, bypassing the need for expert opinion.
Quantitative methods are usually carried out using either a
deterministic (or ‘geotechnical’) or a statistical (or ‘data-



driven’) approach. The deterministic approach is based on
geotechnical slope stability calculations, while statistical
approach is based on statistical evaluation of the influence of
slope attributes on landslide-affected slopes by examining past
failure data using a variety of statistical techniques.
Commonly used statistical methods include frequency ratio
analysis, discriminant analysis and logistic regression
analysis. Additionally, other data-driven methods such as
artificial neural networks are also in use.

While numerous examples of these methods applied to case
studies of natural hillslopes can be found, there is relatively
little research focused on engineered slopes (cuttings and
embankments) on transportation networks. That is somewhat
surprising since, due to their location immediately adjacent to
transport networks, these landslides can result in drastic
consequences such as infrastructure damage, massive
transport delays, injuries and even fatalities. Current state of
the art of risk assessment methodologies used by asset
managers is largely limited to simple subjective risk matrices
with data stemming from visual walkover surveys. However,
this can be improved by developing quantitative
susceptibility, hazard and risk assessment methods that focus
on engineered slope specifics.

2 GEOTECHNICAL APPROACH TO LANDSLIDE
SUSCEPTIBILITY ANALYSIS FOR IRISH RAIL NETWORK
EARTHWORKS

A landslide susceptibility model based on probabilistic slope
calculations was developed for cutting and embankments
assets on Irish Rail (IR) network as an initial step towards
bespoke risk ranking model and decision support tool [6]. A
first step included developing a structured database of
geometrical, geotechnical and environmental slope
characteristics for every asset. This database includes data
such as asset location, type, height, slope angle, vegetation
cover, soil type, drainage type, and other. Geometrical
characteristics were collated following the processing of a
detailed digital elevation model (DEM) obtained by aerial
LiDAR survey. Soil type was assigned to each asset based on
the Geological Survey of Ireland’s soil cover maps using a
GIS platform. Six main soil types characteristic for IR’s assets
and surrounding ground were identified: glacial till, granular
material (glaciofluvial sands and gravels), soft clays, peat,
rock and non-engineered fill. The accuracy of soil type
assignment was validated using discrete borehole logs located
on the rail network. For each soil type, a typical range of
geotechnical parameters was identified from background
literature and existing geotechnical reports. This was further
complemented by a detailed site investigation for six assets
representative of each major soil type.

As the Irish rail network stretches over hundreds of
kilometres, large variability in geotechnical parameter values
for each soil type can be expected. For that reason, all
parameters are described using mean value and standard
deviation. This enabled the performance of probabilistic slope

stability = calculations which give a more accurate
representation of stability than standard deterministic
approaches.

The ‘Hasofer-Lind’ first order reliability method (FORM)
[7] was used to calculate the probability of failure associated
with each asset and its coupled limit state. The ‘Hasofer-Lind’
approach is an invariant method for calculating the reliability
index B, which can then be transformed into a probability of
failure Pf.

The first step using this methodology is to transform all

variables into normalised random variables. This is
accomplished by means of equation (1).
= i—E[xi] .
L= % (i=12,..,1n) (1)

After normalising the variables the next step is to express
the limit state in terms of the reduced normal random
variables, as in eqn. (2)

gX) = g(x1, %3, ..., ) @)

In this reduced variable space the limit state surface
describes the boundary between stable and unstable zones.
The Hasofer Lind reliability index is then expressed as the
minimum distance between the origin (the mean value of the
reduced limit state) and the failure zone. Assuming normal
random variables, a probability of failure can then be obtained
using the following equation (3).

pr =plg(X) <0l =1-¢(B) 3

Where ®(p) is the standard normal cumulative distribution
function.

Three limit states reflect the three failure types for which
limit equilibrium slope stability calculations were carried out:
(i) shallow translational, (ii) deep rotational slide, and (iii)
rock wedge failure (for rock cuttings), see Figure 2.

Figure 2. Three failure modes considered in slope stability
analyses: (i) shallow translational, (ii) deep rotational slide,
and (iii) rock wedge failure

The calculations result in baseline probabilities of failure for
each asset. Since these calculations incorporate only simple
geometrical and geotechnical data, detailed observations for
each asset need to be included in order to account for small
differences in landslide-triggering conditions between the
assets, controlled by variables which cannot be easily included
in limit equilibrium calculations. These variables include data
that is usually recorded in a qualitative manner, such as type
and condition of drainage, type and density of the vegetation,
slope erosion and overall condition, etc. Twenty of these
variables, named Degradation Factors (DF), were identified
with the help of experienced Irish Rail site inspectors’
engineering judgment. Each DF was given the weight based
on experience and interrogation of past failures. The total
product of DF weights gives the final DF adjustment factor
which is combined with baseline reliability indices to obtain
final reliability indices and final probabilities of failure.
Flowchart of this process is presented in Figure 3. These final



probabilities of failure enable to effectively rank and compare
all assets across the network.

Baseline
reliability index
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Figure 3. Flowchart of incorporation of degradation factors

3 STATISTICAL APPROACH TO LANDSLIDE SUSCEPTIBILITY
ANALYSIS FOR IRISH RAIL NETWORK EARTHWORKS

Another landslide susceptibility analysis on the same network
was carried out using a ‘statistical’ (or ‘data-driven’)
approach. This approach aims to interrogate the usefulness of
past failure records in obtaining conclusions on landslide
distribution across the network. The logistic regression
statistical technique uses the historical landslide data (some
examples in Figure 4) to quantify the influence of
topographical, geotechnical and environmental slope
characteristics (factors) of slopes on which landslides were
recorded. It then uses these results to assess the probability of
landslides on all other assets in the network based on their
own combinations of these factors.

This approach was tested on the case study area of Athlone
Division, a north-western section of Irish Rail network
comprising about a third of all earthwork assets (cuttings and
embankments). The extent of Irish Rail network (thin lines)
and Athlone Division (thick lines) is outlined in Figure 5. A
database prepared for the geotechnical approach of
susceptibility analysis (described in previous section) was
used here to obtain the data on slope characteristics. Since
different factors are responsible for initiating different
landslide types, it is a common practice to carry out a
susceptibility analysis for each landslide type separately [5].
In this example, susceptibility analysis was carried out for
shallow translational slides, as they were found to be the most
prevalent landslide type across the Irish rail network.

Figure 4. Examples of typical landslides on Irish rail network:
a) on embankment, b) and c) on cutting

A selection of factors relevant to landslide initiation is a
process that depends on landslide type and study area
characteristics. Budimir et al. [7] carried out an extensive
literature review on the topic of landslide susceptibility
analysis using logistic regression, with the aim of determining
the frequency and significance of factors used for
susceptibility analysis. The review showed that there are no
universal criteria established for selecting factors, resulting in
the factors selected for analysis varying wildly between
studies.



Figure 5. Irish Rail network with rail lines in Athlone
divisions (thick lines)

In this study, nine factors describing the asset have been
selected, each with a number of possible classes. Factors were
selected based on background literature research and the
reported causal factors from the available landslide register.
The factors selected are slope height (scalar), slope angle
(scalar), asset type (cutting or embankment), aspect (classes:
N, NE, E, SE, S, SW, W, NW), vegetation type (bare ground,
grass, shrubs, trees), adjacent slope (flat terrain, flow towards
asset or flow from the asset), soil type (glacial till, granular
material, soft clays), annual rainfall (800-1000 mm, 1000-
1200 mm, 1200-1400 mm) and slope conditions (1, 2 or 3
based on inspector’s observations). Some of these factors such
as asset type or slope condition are specific to engineered
slopes for transport networks and have not been used in
landslide susceptibility studies before.

The goal of logistic regression is to find the best fit model
that describes the combined relationship between these factors
(independent variables) and the presence or absence of
landslides (dependent variable) on all slopes. The final result
of this model is a probability p of the landslide occurring, with
values ranging from 0 to 1 for each asset, calculated by:

1
1+e Z

“)

where Z is generated by the coefficients depending on the
input data for each factor, obtained by Equation (5):

Z = Bo+ BiXy + B Xy + o+ BrXy (%)

p:

where B1, B2,..., Pn are the regression coefficients that
determine the contribution of the different input factors
(independent variables X1, X2,..., Xn), obtained iteratively
using maximum likelihood estimation. B is the intercept value
of the model.

The asset factor database was divided into training set (70
%) using which the model was set up and the validation set
(30 %) against which the model results were verified. The
logistic regression was then carried out on the training set.
Regression coefficients obtained for each factor class are
presented in the Table 1.

Table 1. Regression coefficients

Factor Class B
Object type Embankment 0
Cutting 1.327
Aspect E 0
N 0.312
NE -0.405
NW -0.236
S -0.540
SE 0.832
SW -0.636
W 1.110
Adjacent slope -1 -0.797
0 0
1 1.704
2 1.410
Asset height Height [m] 0.135
Asset slope angle Angle [°] 0.078
Vegetation type Bare 1.383
Grass 0.932
Shrubs 0.394
Trees 0
Soil type Granular till 0
Granular material -0.542
Soft clays -21.393
Rainfall 800-1000 mm 0
1000-1200 mm 0.239
1200-1400 mm 0.959
Condition 1 0
2 2.000
3 3.284
Constant Bo -8.54

In general, results identified the slope angle as the most
important driver for the shallow instability, complementing
similar conclusions made for natural slopes [8]. Cuttings were
found to be more susceptible to failure than embankments,
attributed among other things to influence of groundwater
level which was generally at shallower depth for cuttings.
Slope condition was found to exert a significant influence on
landslide occurrence, highlighting the role of small localized
defects in landslide initiation.

These results were also used to infer quantitative
comparison of the relative influence between classes of the
same factors to landslides occurrence. Some of the results are
graphically presented in the Figure 6. These results for
example show that bare slopes are 4 times more likely to fail



than densely vegetated ones, and that west facing slopes are 3
times more likely to fail than the east facing ones.

1000-1200 mm - 1.27
| 100

0 1 2 3

800-1000 mm

Figure 6. Odds-ratios for a) aspect, b) vegetation type and c)
annual rainfall

The performance of the model was interrogated using
several statistical measurements such as chi-square test and
McFadden’s and Nagelkerke’s R? tests. These results
indicated a very good fit of the model. The model was then
validated using the validation dataset. Probabilities of failure
of assets in validation dataset were obtained by applying
regression coefficients acquired through training model.
Assets with p>0.5 were regarded to be predicting the
landslides. They were then compared to the actual state of
assets (presence/absence of landslides). Comparison was
carried out with the help of confusion matrix [9], classifying
assets into true positives, true negatives, false positives and
false negatives. The confusion matrix showed the overall
accuracy of the model to be 92.3%, but slightly overpredicting
the absence of landslides. That was attributed to a small
sample size of landslide-affected assets in both training and
validation datasets. Model was additionally validated using
Receiver Operating Curve (ROC), shown in Figure 7. The
ROC curve presents the relationship between the model’s
sensitivity and specificity, expressions inferred from the
values from the validation confusion matrices with varying
cut-off levels. ROC confirmed a very good fit of the model,
with area under curve (AUC) of 0.902 for validation dataset
(AUC=0.5 representing a random fit and AUC=1 indicating a
perfect fit).
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Figure 7. ROC curve for validation dataset

Using the calculated probabilities, assets were classified
into five susceptibility classes: very low (79.4% of all assets),
low (13.0%), moderate (3.9%), high (2.3%) and very high
(1.4%); effectively identifying and ranking the top critical
assets. A large percentage of assets in a ‘very low’ class is
indicative of engineered slopes, which are designed to satisfy
stability.

4  STEPS TO RISK ASSESSMENT

Landslide susceptibility analysis presents the spatial
distribution of landslide occurrence likelihood. However it
does not provide information on the frequency of occurrences
or the impacts landslides can cause.

The temporal occurrence of landslide can be expressed in
terms of frequency, return period, or exceedance probability.
It is often obtained through statistical empirical analysis of
past failures in the study area in a discrete time interval. For
landslide hazard assessment on transport networks, it is
common to look at joint temporal aspects of landslide event
and traffic features, such as temporal probability that a vehicle
(car or train) will be at the debris path. Similar approach can
also be used to obtain magnitude-frequency curves, jointly
assessing landslides’ size and temporal aspect.

Another way of obtaining the temporal patterns of landslide
occurrence is by analysing the frequencies and return periods
of the triggering factors that initiate the landslides, rather than
the landslides themselves. For rainfall triggered landslides, the
influence of rainfall is typically interrogated using either
physical model or rainfall thresholds. Physical models couple
the hydrological and slope stability models to assess the
response of the slopes in study area to the applied rainfall
[10]. Rainfall thresholds represent the lower bound of a
combination of some rainfall characteristics such as intensity,
duration or accumulation necessary to induce landslides [11].
They are obtained in an analytical way by collating the data
on rainfall characteristics in place during and before the
known historical landslides.

Another major subcomponent of a risk assessment is the
consequence assessment. Consequence assessment aims to
quantify the impact that a specific landslide has on the



surrounding built and natural environment. The first step here
is to define the elements at risk that can be potentially affected
by landslides and for which risk assessment is being carried
out. The examples of elements at risk are people, buildings,
infrastructure, and other. The next step involves obtaining the
vulnerability of each element at risk to the landslide.
Vulnerability is defined as the degree of potential damage, or
loss a given element may experience as a result of a landslide
of a particular type and intensity [4]. The vulnerability of an
element depends on the element at risk observed, the type of
landslide, relative position of element at risk to the landslide,
and the magnitude and run-out distance of the landslide. For
example, vulnerability of people in vehicles to slow moving
deep rotational landslide is extremely low, while the
vulnerability of a road or rail element positioned at the crest or
toe of the same landslide is extremely high. Conversely,
vulnerability to shallow rapid moving debris flow is much
higher for people than for reinforced concrete buildings or
road/rail elements. Vulnerability is typically expressed using
vulnerability factors with values ranging between 0 and 1,
quantified through expert judgment or by using statistical
methods to analyse the consequences of historical landslides.
The alternative way of obtaining the vulnerability values is by
developing the fragility curves, which express the conditional
probability of exceedance of a pre-defined damage level for
various values of landslide intensity [12].

The final risk value is obtained as a product of hazard and
consequence assessment results. The last step in risk
assessment typically involves evaluating the risk against
existing risk criteria. Risk criteria depend on the perception of
risk in the society exposed to hazard, and as a result they vary
from country to country and between infrastructure
management organisations. Further actions towards risk
acceptance or mitigation are covered in detail through risk
management frameworks.

5  CONCLUSIONS

Two approaches to landslide susceptibility assessment for
engineered slopes on transport infrastructure are outlined in
this study. Both approaches were applied on the earthworks
on the rail network in Ireland. The first, ‘geotechnical’
approach is based on slope stability calculations for each of
the cutting and embankment on the network. Slope stability
calculations were carried out in a probabilistic fashion to
accommodate the large uncertainty in soil parameter values
expected across the network. The resulting probabilities of
failure were then fine-tuned using engineering experience to
include the detailed asset-specific observations. The second,
‘statistical’ approach is based on interrogating the past
landslide records to quantify the influence of geotechnical and
environmental attributes of those slopes on landslide
occurrence. It was carried out using a statistical multivariate
method of logistic regression. Statistical model was trained on
the training dataset and resulted in probability of the landslide
occurrence for all geotechnical assets in the study area.

While both approaches were proven to be highly useful for
determining landslide susceptibility for engineered slopes, the
approaches differ in some features. In comparison, statistical
method requires less computing power and explicitly takes
past experience into account. It also results in the quantitative

recommendations of influence of each factor class to failure
occurrence. However, it is very sensitive to the completeness
of past failure dataset and the variations in dataset size and
training/validation ratios. It also needs to be carried out for
every landslide type individually. Unlike statistical approach,
the geotechnical approach takes account of soil mechanics
principles and geotechnical characterisation of each asset.
That makes results progressively more precise as the available
asset data is being widened following site investigation across
the network. It is also able to readily include the effect of any
observation through the use of degradation factors.

Landslide susceptibility assessments like the two described
in this study require temporal analysis and vulnerability
assessment to be developed into the full risk assessment. This
study finally gives a short overview of the typical methods
used to carry out these steps.
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