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ABSTRACT: Landslides cause hundreds of deaths and billions euros of damage to infrastructure and the environment each 
year. The field of landslide hazard and risk assessment has gone through a massive development in the last twenty years by 
introducing a wealth of statistical and geotechnical landslide susceptibility models. However, these efforts have been largely 
restricted to landslides occurring in natural terrain. Current risk assessment approaches for earthworks on large transportation 
networks still largely take form of subjective risk matrices with inputs gathered by visual walkover surveys. This paper shows 
the application of two distinctive objective landslide susceptibility approaches on a case study of Irish rail. The first is a 
‘statistical’, or ‘data-driven’ approach, which uses logistic regression as a statistical tool to establish the influence of slope-
describing variables that have led to landslide occurrence. In ‘geotechnical’ or ‘deterministic’ approach, geometrical and 
geotechnical properties of each slope are used to carry out probabilistic slope stability analysis, resulting in probability of failure 
for each slope. Both approaches result in susceptibility zoning for earthwork assets across the network, effectively ranking them 
in the criticality terms. This study compares the requirements, applicability and outcomes of each approach, and discusses the 
methods needed for developing each of them into hazard and risk assessments. 

KEY WORDS: Landslide susceptibility; Engineered slopes; Risk assessment; Transport network. 

1 INTRODUCTION 

Landslides represent a serious geohazard across the world, 
resulting in hundreds of billions euros in damage and 
thousands of injuries and deaths each year [1]. To respond to 
this, much research over the past 20 years has gone into 
developing and enhancing the prediction of landslides’ spatial 
and temporal distributions and consequences. All these 
procedures follow a general landslide risk assessment 
framework. Risk assessment is derived by combining hazard 
assessment (probability of occurrence of a landslide of certain 
size in a certain time period) and consequence assessment 
(impact of that landslide on elements at risk which can be 
people, structures, environment etc.) [2], outlined in Figure 1. 
Hazard assessment further consists of susceptibility analysis, 
obtaining the spatial distribution of landslide likelihood; and 
temporal analysis evaluating its frequency, often combined 
with consideration of landslide size (magnitude). 
Consequence assessment incorporates the identification of 
elements at risk and their vulnerability assessment. 

A large variety of methods for calculating and mapping 
landslide susceptibility, hazard and risk have been developed 
and applied to different areas up to date [3], [4], [5]. Landslide 
susceptibility methods are usually subdivided into qualitative 
and quantitative methods. Qualitative methods are subjective 
as they are based on expert opinion and engineering judgment, 
either directly or indirectly through subjective determination 
of factor weightings. Examples of qualitative methods include 
geomorphological mapping, analytic hierarchy process and 
weighted linear combination.  

 

 

Figure 1. Risk assessment framework 

Quantitative methods try to find a numerical correlation 
between study area’s topographical, geotechnical and 
environmental attributes and landslide occurrence. These 
methods are generally considered more effective due to their 
reduced subjectivity, bypassing the need for expert opinion. 
Quantitative methods are usually carried out using either a 
deterministic (or ‘geotechnical’) or a statistical (or ‘data-
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driven’) approach. The deterministic approach is based on 
geotechnical slope stability calculations, while statistical 
approach is based on statistical evaluation of the influence of 
slope attributes on landslide-affected slopes by examining past 
failure data using a variety of statistical techniques. 
Commonly used statistical methods include frequency ratio 
analysis, discriminant analysis and logistic regression 
analysis. Additionally, other data-driven methods such as 
artificial neural networks are also in use. 

While numerous examples of these methods applied to case 
studies of natural hillslopes can be found, there is relatively 
little research focused on engineered slopes (cuttings and 
embankments) on transportation networks. That is somewhat 
surprising since, due to their location immediately adjacent to 
transport networks, these landslides can result in drastic 
consequences such as infrastructure damage, massive 
transport delays, injuries and even fatalities. Current state of 
the art of risk assessment methodologies used by asset 
managers is largely limited to simple subjective risk matrices 
with data stemming from visual walkover surveys. However, 
this can be improved by developing quantitative 
susceptibility, hazard and risk assessment methods that focus 
on engineered slope specifics. 

2 GEOTECHNICAL  APPROACH  TO  LANDSLIDE 
SUSCEPTIBILITY  ANALYSIS  FOR  IRISH  RAIL  NETWORK 
EARTHWORKS 

A landslide susceptibility model based on probabilistic slope 
calculations was developed for cutting and embankments 
assets on Irish Rail (IR) network as an initial step towards 
bespoke risk ranking model and decision support tool [6]. A 
first step included developing a structured database of 
geometrical, geotechnical and environmental slope 
characteristics for every asset. This database includes data 
such as asset location, type, height, slope angle, vegetation 
cover, soil type, drainage type, and other. Geometrical 
characteristics were collated following the processing of a 
detailed digital elevation model (DEM) obtained by aerial 
LiDAR survey. Soil type was assigned to each asset based on 
the Geological Survey of Ireland’s soil cover maps using a 
GIS platform. Six main soil types characteristic for IR’s assets 
and surrounding ground were identified: glacial till, granular 
material (glaciofluvial sands and gravels), soft clays, peat, 
rock and non-engineered fill. The accuracy of soil type 
assignment was validated using discrete borehole logs located 
on the rail network. For each soil type, a typical range of 
geotechnical parameters was identified from background 
literature and existing geotechnical reports. This was further 
complemented by a detailed site investigation for six assets 
representative of each major soil type. 

As the Irish rail network stretches over hundreds of 
kilometres, large variability in geotechnical parameter values 
for each soil type can be expected. For that reason, all 
parameters are described using mean value and standard 
deviation. This enabled the performance of probabilistic slope 
stability calculations which give a more accurate 
representation of stability than standard deterministic 
approaches.  

 
 

The ‘Hasofer-Lind’ first order reliability method (FORM) 
[7] was used to calculate the probability of failure associated 
with each asset and its coupled limit state. The ‘Hasofer-Lind’ 
approach is an invariant method for calculating the reliability 
index β, which can then be transformed into a probability of 
failure Pf.  

The first step using this methodology is to transform all 
variables into normalised random variables. This is 
accomplished by means of equation (1). ݔపഥ = ௫೔ିா[௫೔]ఙ[௫೔] 							(݅ = 1,2, … , ݊)

                                     
(1)

 

After normalising the variables the next step is to express 
the limit state in terms of the reduced normal random 
variables, as in eqn. (2) ݃( തܺ) = ,ଵݔ̅)݃ ,ଶݔ̅ … ,  ௡)                                               (2)ݔ̅

In this reduced variable space the limit state surface   
describes the boundary between stable and unstable zones. 
The Hasofer Lind reliability index is then expressed as the 
minimum distance between the origin (the mean value of the 
reduced limit state) and the failure zone. Assuming normal 
random variables, a probability of failure can then be obtained 
using the following equation (3). ݌௙ = )݃]݌ തܺ) < 0] = 1 −  (3)                                    (ߚ)߶

Where Φ(β) is the standard normal cumulative distribution 
function. 

Three limit states reflect the three failure types for which 
limit equilibrium slope stability calculations were carried out: 
(i) shallow translational, (ii) deep rotational slide, and (iii) 
rock wedge failure (for rock cuttings), see Figure 2. 

 

 

Figure 2. Three failure modes considered in slope stability 
analyses: (i) shallow translational, (ii) deep rotational slide, 

and (iii) rock wedge failure 

 
The calculations result in baseline probabilities of failure for 

each asset. Since these calculations incorporate only simple 
geometrical and geotechnical data, detailed observations for 
each asset need to be included in order to account for small 
differences in landslide-triggering conditions between the 
assets, controlled by variables which cannot be easily included 
in limit equilibrium calculations. These variables include data 
that is usually recorded in a qualitative manner, such as type 
and condition of drainage, type and density of the vegetation, 
slope erosion and overall condition, etc. Twenty of these 
variables, named Degradation Factors (DF), were identified 
with the help of experienced Irish Rail site inspectors’ 
engineering judgment. Each DF was given the weight based 
on experience and interrogation of past failures. The total 
product of DF weights gives the final DF adjustment factor 
which is combined with baseline reliability indices to obtain 
final reliability indices and final probabilities of failure. 
Flowchart of this process is presented in Figure 3. These final 



probabilities of failure enable to effectively rank and compare 
all assets across the network. 

 
 

 

Figure 3. Flowchart of incorporation of degradation factors 

3 STATISTICAL  APPROACH  TO  LANDSLIDE  SUSCEPTIBILITY 
ANALYSIS FOR IRISH RAIL NETWORK EARTHWORKS 

Another landslide susceptibility analysis on the same network 
was carried out using a ‘statistical’ (or ‘data-driven’) 
approach. This approach aims to interrogate the usefulness of 
past failure records in obtaining conclusions on landslide 
distribution across the network. The logistic regression 
statistical technique uses the historical landslide data (some 
examples in Figure 4) to quantify the influence of 
topographical, geotechnical and environmental slope 
characteristics (factors) of slopes on which landslides were 
recorded. It then uses these results to assess the probability of 
landslides on all other assets in the network based on their 
own combinations of these factors.  

This approach was tested on the case study area of Athlone 
Division, a north-western section of Irish Rail network 
comprising about a third of all earthwork assets (cuttings and 
embankments). The extent of Irish Rail network (thin lines) 
and Athlone Division (thick lines) is outlined in Figure 5. A 
database prepared for the geotechnical approach of 
susceptibility analysis (described in previous section) was 
used here to obtain the data on slope characteristics. Since 
different factors are responsible for initiating different 
landslide types, it is a common practice to carry out a 
susceptibility analysis for each landslide type separately [5]. 
In this example, susceptibility analysis was carried out for 
shallow translational slides, as they were found to be the most 
prevalent landslide type across the Irish rail network. 

 

 
 

 
 

 

Figure 4. Examples of typical landslides on Irish rail network: 
a) on embankment, b) and c) on cutting 

A selection of factors relevant to landslide initiation is a 
process that depends on landslide type and study area 
characteristics. Budimir et al. [7] carried out an extensive 
literature review on the topic of landslide susceptibility 
analysis using logistic regression, with the aim of determining 
the frequency and significance of factors used for 
susceptibility analysis. The review showed that there are no 
universal criteria established for selecting factors, resulting in 
the factors selected for analysis varying wildly between 
studies.  
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surrounding built and natural environment. The first step here 
is to define the elements at risk that can be potentially affected 
by landslides and for which risk assessment is being carried 
out. The examples of elements at risk are people, buildings, 
infrastructure, and other. The next step involves obtaining the 
vulnerability of each element at risk to the landslide. 
Vulnerability is defined as the degree of potential damage, or 
loss a given element may experience as a result of a landslide 
of a particular type and intensity [4]. The vulnerability of an 
element depends on the element at risk observed, the type of 
landslide, relative position of element at risk to the landslide, 
and the magnitude and run-out distance of the landslide. For 
example, vulnerability of people in vehicles to slow moving 
deep rotational landslide is extremely low, while the 
vulnerability of a road or rail element positioned at the crest or 
toe of the same landslide is extremely high. Conversely, 
vulnerability to shallow rapid moving debris flow is much 
higher for people than for reinforced concrete buildings or 
road/rail elements. Vulnerability is typically expressed using 
vulnerability factors with values ranging between 0 and 1, 
quantified through expert judgment or by using statistical 
methods to analyse the consequences of historical landslides. 
The alternative way of obtaining the vulnerability values is by 
developing the fragility curves, which express the conditional 
probability of exceedance of a pre-defined damage level for 
various values of landslide intensity [12]. 

The final risk value is obtained as a product of hazard and 
consequence assessment results. The last step in risk 
assessment typically involves evaluating the risk against 
existing risk criteria. Risk criteria depend on the perception of 
risk in the society exposed to hazard, and as a result they vary 
from country to country and between infrastructure 
management organisations. Further actions towards risk 
acceptance or mitigation are covered in detail through risk 
management frameworks.  

5 CONCLUSIONS 

Two approaches to landslide susceptibility assessment for 
engineered slopes on transport infrastructure are outlined in 
this study. Both approaches were applied on the earthworks 
on the rail network in Ireland. The first, ‘geotechnical’ 
approach is based on slope stability calculations for each of 
the cutting and embankment on the network. Slope stability 
calculations were carried out in a probabilistic fashion to 
accommodate the large uncertainty in soil parameter values 
expected across the network. The resulting probabilities of 
failure were then fine-tuned using engineering experience to 
include the detailed asset-specific observations. The second, 
‘statistical’ approach is based on interrogating the past 
landslide records to quantify the influence of geotechnical and 
environmental attributes of those slopes on landslide 
occurrence. It was carried out using a statistical multivariate 
method of logistic regression. Statistical model was trained on 
the training dataset and resulted in probability of the landslide 
occurrence for all geotechnical assets in the study area.  

While both approaches were proven to be highly useful for 
determining landslide susceptibility for engineered slopes, the 
approaches differ in some features. In comparison, statistical 
method requires less computing power and explicitly takes 
past experience into account. It also results in the quantitative 

recommendations of influence of each factor class to failure 
occurrence. However, it is very sensitive to the completeness 
of past failure dataset and the variations in dataset size and 
training/validation ratios. It also needs to be carried out for 
every landslide type individually. Unlike statistical approach, 
the geotechnical approach takes account of soil mechanics 
principles and geotechnical characterisation of each asset. 
That makes results progressively more precise as the available 
asset data is being widened following site investigation across 
the network. It is also able to readily include the effect of any 
observation through the use of degradation factors. 

Landslide susceptibility assessments like the two described 
in this study require temporal analysis and vulnerability 
assessment to be developed into the full risk assessment. This 
study finally gives a short overview of the typical methods 
used to carry out these steps. 
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