
 
 

Delft University of Technology

Impact of Bit Errors in Digitized RF Data on Ultrasound Image Quality

Chen, Zhao; Soozande, Mehdi; Vos, Rik; Bosch, Hans; Verweij, Martin; de Jong, Nico; Pertijs, Michiel

DOI
10.1109/TUFFC.2019.2937462
Publication date
2020
Document Version
Final published version
Published in
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control

Citation (APA)
Chen, Z., Soozande, M., Vos, R., Bosch, H., Verweij, M., de Jong, N., & Pertijs, M. (2020). Impact of Bit
Errors in Digitized RF Data on Ultrasound Image Quality. IEEE Transactions on Ultrasonics, Ferroelectrics
and Frequency Control, 67(1), 13-24. Article 8812978. https://doi.org/10.1109/TUFFC.2019.2937462

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TUFFC.2019.2937462
https://doi.org/10.1109/TUFFC.2019.2937462


IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 67, NO. 1, JANUARY 2020 13

Impact of Bit Errors in Digitized RF Data
on Ultrasound Image Quality

Zhao Chen , Member, IEEE, Mehdi Soozande, Student Member, IEEE, Hendrik J. Vos , Member, IEEE,
Johan G. Bosch, Member, IEEE, Martin D. Verweij, Member, IEEE, Nico de Jong , Member, IEEE,

and Michiel A. P. Pertijs, Senior Member, IEEE

Abstract— This article quantitatively analyzes the impact
of bit errors in digitized RF data on ultrasound image
quality. The quality of B-mode images in both linear array
and phased array imaging is evaluated by means of three
objective image quality metrics: peak signal-to-noise ratio,
structural similarity index, and contrast-to-noise ratio, when
bit errors are introduced to the RF data with different bit-
error rates (BERs). The effectiveness of coding schemes for
forward error detection and correction to improve the image
quality is also studied. The results show that ultrasound
imaging is inherently resilient to high BER. The image
quality suffers unnoticeable degradation for BER lower than
1E-6. Simple 1-bit parity coding with 9% added redundancy
helps to retain similar image quality for BER up to 1E-4,
and Hamming coding with 33.3% added redundancy allows
the BER to increase to 1E-3. These results can serve as a
guideline in the datalink design for ultrasound probes with
in-probe receive digitization. With much more relaxed BER
requirements than in typical datalinks, the design can be
optimized by allowing fewer cables with higher data rate
per cable or lower power consumption with the same cable
count.

Index Terms— Bit error rate (BER), datalink, forward error
detection/correction (FEDC), image quality metrics (IQM),
in-probe digitization.

I. INTRODUCTION

IN CONVENTIONAL ultrasound probes, all transducer
elements are individually connected to an imaging system

using cables. This approach becomes impractical with the
increase in the number of elements, e.g., in 2-D transducer
arrays for 3-D imaging [1], [2]. Moreover, in the case of
small elements with a relatively high electrical impedance,
e.g., in catheter-based transducers, the cable load leads to
significant attenuation, thus reducing the image quality [3], [4].
Integration of an application-specific integrated circuit (ASIC)
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in the probe head, capable of locally conditioning and process-
ing the echo signals, is a solution that can address these issues
[Fig. 1(a)]. By preprocessing the element-level echo signals,
an ASIC allows the probe to use far fewer cable connections
to the imaging system, thus enabling emerging miniature 3-D
ultrasound probes which utilize high-density 2-D transducers
(>1000 elements) and small-size catheters [1], [5], [6].

A variety of efforts have been made recently in ASIC
designs for the reduction of cable count. A two-step beam-
forming scheme [7] is adopted in [1]. Local sub-array pre-
beamforming is realized through analog micro-beamformer
circuits in the ASIC, leading to an order-of-magnitude cable-
count reduction by only transferring the prebeamformed sig-
nals. In [9] and [10], the cable-count limitation is addressed
by using analog time-division multiplexing (TDM) and
frequency-division multiplexing (FDM), realizing eightfold
and fourfold cable-count reductions, respectively.

The above-mentioned approaches all suffer from the inher-
ent vulnerability of analog signals to crosstalk and interference
and the design complexity of analog processing circuits.
Recent studies have looked into utilizing local digital signal
processing (DSP) in the ASICs [Fig. 1(b)], which requires in-
probe digitization using a massively-parallel analog-to-digital
converter (ADC) array [8], [11], [12]. Compared to analog
approaches, in-probe digitization enables more robust digital
data communication, allows high-speed wireline datalink tech-
nology to be leveraged to further reduce cable count and opens
the path toward the use of optical and wireless links in future
ultrasound devices.

However, to be able to adopt digital datalinks in future
ultrasound probes, a deep understanding of the requirements of
such datalinks becomes crucial. On the one hand, the datalink
design is subject to stringent power constraints, especially for
invasive ultrasound probes, in which in-probe power dissipa-
tion has to be limited to prevent tissue overheating [1]; on
the other hand, the performance of the datalink, which is
typically evaluated by the bit-error rate (BER), i.e., the ratio
of the number of bit errors in a received bitstream and the
total number of transmitted bits during a certain time interval,
needs to be sufficient to minimize the impact of nonideal data
transmission on the reconstructed ultrasound image quality.

The BER requirement for data communication is highly
application-specific and may vary by several orders of mag-
nitude. Very low BER is often required in intersystem data
connections. For instance, 1000BASE-X requires a BER better
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Fig. 1. (a) Block diagram of an ultrasound probe with in-probe ASIC. (b) Architecture of a receive ASIC with in-probe digitization.

than 1E-12, as defined by the IEEE 802.3 standard [13]. On the
other hand, substantially higher BER levels are acceptable in
some other applications, like telemetry in implantable devices
for bio-potential recording. It has been reported in [14] that a
BER below 2E-6 is sufficient to extract the spike information
from recorded neural signals.

The BER requirements can have a significant impact on
the power consumption of the datalink design and on the
maximum data rate that can be supported by a cable, as will
be discussed in Section II. However, the impact of bit errors
on ultrasound imaging has not been studied much in detail.
In [15] and [16], the impact of the BER on the quality of real-
time echocardiogram transmission has been studied, but the
transmitted data in this research are a series of reconstructed
ultrasound images, not the RF data. A BER specification
of 1E-5 has been reported for a wireless datalink in a capsule
ultrasound imaging device [17], but without details regarding
the motivation for this choice. In [18], a forward-looking IVUS
probe with receive digitization has been reported with a BER
of approximately 2E-3; however, the impact of the high BER
on the reconstructed image quality has not yet been discussed.

This article investigates the impact of bit errors in digitized
element-level RF signals on the reconstructed image quality.
We propose a simulation setup to quantitatively assess image
quality in the presence of bit errors based on the objective
image quality metrics (IQM). Moreover, the efficiency of
different coding schemes for data transmission is also studied.
A minimum BER requirement is derived from the simulation
results, which can guide the datalink design in future ultra-
sound probes.

This article is organized as follows. Section II discusses
the factors affecting the BER in digital ultrasound probes.
Section III introduces the proposed simulation setup for image
quality analysis (IQA), followed by the simulation results in
Section IV. Finally, Section V presents the discussions and
conclusions.

II. BER IN DATA TRANSMISSION

The BER of a noise-limited communication system can be
estimated from the ratio of the energy per bit and the noise
power spectral density (Eb/N0) in the receiver, where Eb is the

Fig. 2. BER versus Eb/N0 plot for an AWGN channel with 2-PAM coded
data.

signal energy associated with each data bit and N0 is the noise
power spectral density [19]. Fig. 2 shows the BER versus
Eb/N0 curve for data with two-level pulse amplitude modula-
tion (2-PAM) transmitted across a channel with additive white
Gaussian noise (AWGN), obtained in a MATLAB simulation
(MathWorks, Inc., Natick, MA, USA). Though not all sources
of bit errors can be considered as white noise, the curve is
helpful to understand the relation between BER and Eb/N0.
Fig. 2 shows that Eb/N0 reduces with the relaxation of the
BER requirement. To achieve a BER of 1E-12, a minimum
Eb/N0 of 13.9 dB is required, while if the BER is relaxed to
1E-6, the required Eb/N0 is also reduced to 10.5 dB.

Both Eb and N0 are affected by the cascade of a transmitter,
communication channel, and receiver. The nonideal channel is
the most significant limiting factor of Eb/N0 since the channel
is typically subject to stringent physical constraints. Efforts
need to be taken in the transmitter and receiver design to
compensate the channel nonideality to achieve the required
BER. A channel inevitably introduces channel loss and noise,
causing an Eb/N0 reduction. For wireline communication
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Fig. 3. Block diagram illustrating the simulation flow.

using cables as channels, channel loss becomes more sig-
nificant at high frequency due to the cables’ skin effect
and dielectric losses [20]. Moreover, the channel dispersion
introduces intersymbol interference (ISI), i.e., the phenomenon
that a symbol transmitted across the cable is affected by the
preceding symbol [21]. ISI is data-dependent and cannot be
considered as white noise.

To minimize the impact of ISI, a typical method is to imple-
ment equalizer circuits in the transmitter and/or the receiver
to compensate for the frequency response of the channel [22].
A communication system with sufficient equalization should
guarantee that ISI does not dominate the BER performance,
thus making the system noise-limited.

Although the BER performance is limited by Eb/N0, for-
ward error detection/correction (FEDC) coding can effectively
reduce the impact of the error bits in the received data
[21], [23]. FEDC adds redundant bits to the transmitted data
and allows the receiver to detect and even correct a finite
number of bit errors. FEDC is required in the existing 4-PAM
standard improving the raw BER from 1E-6 to 1E-12 [24].
The BER mentioned in this article is the raw BER measured
before the error correction in the receiver.

For catheter-based/endoscopic ultrasound imaging applica-
tions, the receivers will be implemented in the imaging system,
where substantial computation power can be made available.
In such a case, we can assume ISI can be fully compensated
by complex equalizations in the receiver, making the system
noise-limited. Then, it becomes crucial to know the BER
requirement of the system to maximize the data rate per
cable, or to minimize Eb/N0, and eventually the in-probe
power dissipation. For example, if a datalink is transmitting
data at 0.9 Gbit/s across a 2-m Sumitomo cable (0.4DS-PBA,
Sumitomo Electric) which has a nominal attenuation of 5 dB
at 0.9 GHz and 8.4 dB at 2 GHz, according to Fig. 2, when
relaxing the BER requirement from 1E-12 to 1E-6, a designer
can either increase the data rate to 2 Gbit/s on the cable,
or, with the same data rate, reduce the transmit power by

3.4 dB, saving half of the power consumed in the probe for
data transmission.

III. EVALUATION METHODS

A. Overview

We have performed a MATLAB simulation to emulate
the proposed ultrasound system consisting of an ultrasound
probe with receive digitization, a datalink, and back-end image
reconstruction. Fig. 3 illustrates the simulation flow: raw
element echo signals are acquired from a simulation using the
ultrasound simulation tool Field-II [25], [26] on a transducer
with a predefined phantom and then quantized and encoded
in a binary format; bit errors are randomly introduced to the
binary data with prescribed BER levels; a reference image Iref
and distorted images Idst are reconstructed from the binary
data before and after the bit-error introduction, respectively;
finally, objective IQMs are calculated from a 100-run Monte
Carlo simulation to evaluate the image quality of the distorted
images. If FEDC is enabled, extra encoding and decoding steps
are applied to the binary data before and after the introduction
of the bit errors. The effectiveness of FEDC on image quality
improvement can be analyzed by turning on and off this
option.

B. Raw Echo Data Acquisition

As representative case studies, a linear array transducer
and a phased array transducer, both with 128 elements, have
been simulated using Field-II. The methodology can also be
applied to other transducers with different array sizes and array
configurations, such as 2-D transducers.

Both transducers have a center frequency of 5 MHz and
a fractional bandwidth of 100%. The element pitches of the
linear and phased array transducers are one wavelength and
half wavelength of the center frequency, respectively. The
parameters of the two transducers are listed in Table I.
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TABLE I
SIMULATION PARAMETERS FOR BOTH THE LINEAR ARRAY

AND PHASED ARRAY TRANSDUCERS IN FIELD II

Fig. 4. Imaging phantom and its positioning in the Field-II simulation.

We have created a 2-D simulation phantom with a size
of 40 mm × 55 mm, positioned at 10 mm from the surface
of the transducers, composed of 150 000 (6.5 per wavelength)
randomly distributed scatterers (Fig. 4). The region between
the transducer and the phantom (marked by slash lines) is
acoustically transparent. Four hyperechoic and four anechoic
circular regions with different diameters are placed 10 mm
away from the center of the phantom at different depths
(from 22 to 52 mm, with a step of 10 mm), marked by the
white and black circles in Fig. 4. All depths are measured
from the transducer surface. The amplitudes of the scatterers,
representing the return echo intensities, are set to 10 and 0
in the hyperechoic and anechoic regions, respectively; the
amplitudes of the background scatterers are randomly set,
following a Gaussian distribution with a mean of 0 and a
standard deviation of 1.

For the linear array transducer, 29 elements are active
in each pulse-echo simulation, and for the phased array

transducer, all elements are active to steer beams from −45◦ to
45◦ with an angular step of 0.91◦, thus forming 100 scanlines
across the aperture in both cases. A fixed transmit focus point
is placed at a depth of 50 mm, while multiple focal points at
a depth from 10 to 65 mm, with a step of 5 mm are used in
receive. The active elements are excited by a two-cycle sinu-
soidal burst in transmit. Hamming apodization is applied in
both transmit and receive. The sampling frequency in reception
is set to 20 MS/s, 4 × the transducers’ center frequency. The
calculated raw element echo signals are acquired and stored in
two data sets. Each point in these data sets indicates a sample
of the element-level echo signals. Propagation attenuation is
not taken into account in the simulation for simplicity since it
is assumed that attenuation will be fully compensated for by
time–gain compensation in the analog front end before analog-
to-digital conversion, thus leading to similar echo signals.
The signals are digitized to binary data with 10-bit resolution
across their full signal swing.

C. Bit-Error Introduction

The random bit-error introduction is realized by feeding the
binary data into a noisy binary symmetric channel. The chan-
nel randomly introduces bit errors according to the predefined
channel error probability, which is an accurate approximation
of the channel BER when the data set is large enough. We use
six discrete BER levels from 1E-6 to 1E-1 for this simulation,
one level per decade.

D. Error Detection and Correction

Different FEDC schemes can be applied to the binary data
to improve its immunity to bit errors. Since the encoding
should be done in the probe, a simple and low-power hardware
implementation of the encoding scheme is crucial. Moreover,
stronger error detection/correction capability often requires
more redundancy. Powerful encoding schemes improve the
received BER at the cost of a reduction of the effective
data rate per channel unless a higher bit rate is adopted.
A lower effective data rate implies that more cables will be
needed, while a higher bit rate translates into higher power
consumption to keep the same BER. The tradeoff between
error detection/correction capability and redundancy needs to
be carefully considered when choosing a suitable encoding
scheme in the ultrasound probe design. The simulation should
take this tradeoff into account.

Two types of FEDC schemes, parity checking [27] and
Hamming coding [28], have been used in the simulation.
Parity checking can detect any odd number of bit errors
in a string of binary data. It is the simplest error-detection
code in terms of hardware implementation which adds only
one redundant bit, but parity cannot detect an even number
of bit errors and is not capable of correcting the detected
errors. Hamming coding uses more than one parity bit in a
string of binary data and arranges them in a way that error
bits at different locations produce unique parity-check results.
By adding more redundant bits to a string of binary data,
Hamming coding enables not only the detection of bit errors
but also the correction of single-bit errors [28].
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Fig. 5. Illustrations of the FEDC schemes. (a) Parity checking. (b) Ham-
ming coding.

Since the echo signals are digitized with 10-bit resolution,
the FEDC encoding is also applied to every 10-bit binary
sample. Fig. 5 shows different encoding schemes that have
been applied.

Parity coding extends a 10-bit sample (D10–D1) to 11 or
12 bits by adding an even parity bit in every 10 or 5 bits,
as shown in Fig. 5(a). The effective transmission rate in the
two cases is 90.9% and 83.3%, respectively.

Hamming coding extends a 10-bit binary sample to 14 bits
by adding four redundant bits (P1–P4), and P1–P4 are
the parity bits of the specific bits in the 10-bit binary
sample [Fig. 5(b)].

Any single-bit error in the coded 14-bit data produces a
unique combination of P1–P4, thus allowing the decoder to
identify the locations of the single-bit errors and to correct
them [28]. However, the error detection and correction will
fail if the coded data contain multi-bit errors. Since the
evaluated BER range is from 1E-6 to 1E-1, there is still
a large probability that multi-bit errors, especially dual-bit
errors, appear in the coded 14-bit data. An additional parity bit
(P5) is added to enable dual-bit error detection. P5 is the even
parity bit of all the data bits (D10–D1) and parity bits (P4–P1).
The combination of P5 and P1–P4 detects dual-bit errors and
corrects single-bit errors. Then, the effective transmission rate
of the Hamming coding is 71.4% and 66.7%, in cases w/ and
w/o the global parity bit.

The data with bit errors are first decoded before image
reconstruction on a sample-by-sample basis if FEDC is
enabled. Parity bits are separated from the data bits and sent
to a parity checker. For coding with only a parity-check bit,
samples which fail the parity check are discarded and replaced
by 0. For Hamming coding, if a sample fails both the parity
check of P1–P4 and P5, the error in the sample is considered

as a single-bit error and the error bit is flipped; if a sample
only fails the parity check of P5, the error is considered as a
single-bit error at P5 and the sample is considered as error-
free; while if a sample only fails the parity check of P1–P4,
the error in the sample is considered as a dual-bit error and
the sample is discarded. The error-corrected 10-bit data are
converted to a decimal format for image reconstruction.

E. Image Reconstruction

The image reconstruction uses simple delay-and-sum beam-
forming. The beamformed data B at the kth time sample are
calculated by

B(k) = N

N − Nerr
×

N∑

i=1

Si (k) (1)

where N and Nerr are the total number of samples and
the number of error samples in one beamforming operation,
respectively, and Si is the delayed echo signal of the i th
element. Since, as mentioned, samples with detected errors
have been replaced by zeros, this expression effectively rep-
resents a beamforming operation on the (N − Nerr) correct
samples. Envelopes extracted from the beamformed data are
logarithmically compressed and then displayed on a 50-dB
gray-scale image. The dynamic range of the envelopes is
limited to 100 dB, with respect to the maximum value in the
reference image, for the following IQM calculations.

F. Image Quality Analysis

Since a reference image can be constructed from the raw
error-free element echo data, a full-reference IQA can be
performed. Three full-reference IQMs are adopted in the eval-
uation: peak-signal-to-noise ratio (PSNR), structural similarity
(SSIM), and contrast-to-noise ratio (CNR).

PSNR is calculated as the ratio between the maximum pixel
power in a reference image and the mean-squared error (MSE)
of a distorted image, where MSE is defined as the averaged
squared difference between the values of the pixels in the
reference image and in a distorted image [29]. For reference
image R and distorted image D consisting of m × n pixels,
the equations of PSNR and MSE are given as follows:

PSNR = 10 · log10
[max (R)]2

MSE
(2) (2)

and

MSE = 1

m · n

m∑

i=1

n∑

j=1

[R(i, j) − D(i, j)]2. (3)

PSNR is one of the most widely used IQM for full-reference
IQA because it is simple to calculate, has clear physical
meaning, and is mathematically convenient for image quality
optimization [30]. However, in some cases, it shows low
correlation with the perceptual quality of the distorted images,
especially for ultrasound images in which significant speckle
noise exists [31].

In contrast to statistical metrics like MSE and PSNR, SSIM
is based on human visual perception. It has been used in sev-
eral studies on the quality assessment on medical ultrasound
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Fig. 6. Reference and distorted images for both linear array and phased array transducers at different BER levels (without error detection or
correction).

videos and shows good correlation with the subjective score
provided by medical experts [31]. The computation of the
SSIM index is based on a multiplication of three terms: a
luminance term, a contrast term, and a structural term [30].
For a reference image R and a distorted image D, SSIM is
calculated as follows:

SSIM = (2μR · μD + C1)(2σR D + C2)(
μ2

R + μ2
D + C1

)(
σ 2

R + σ 2
D + C2

) (4)

where μR , μD , σR , σD , and σR D are the means, standard
deviations, and cross-covariance of the two images, C1 and C2
are two constants � 1 to avoid instability for μR = μD = 0
and σR = σD = 0.

Another widely used IQM in medical ultrasound imaging is
CNR [32]. It is used to quantify the detectability of a region
of interest (ROI), normally a cyst, from its background, and
is typically calculated by [33]

CNR = |μROI − μbg|√
σ 2

ROI + σ 2
bg

(5)

where μROI, μbg, and σROI, σbg are the means of the image
pixel intensity inside the ROI and in the background, and the
standard deviations of the image pixel intensity inside the ROI
and in the background, respectively. The pixel intensity used
in the CNR calculation is after logarithmic compression [34].
Since CNR quantifies the contrast between two regions in one

image, the impact of BER is evaluated by the CNR degradation
between the distorted image and the reference image.

Since the bit errors are randomly introduced to the binary
data, bit errors occurring at the most-significant bit (MSB)
and at the least-significant bit (LSB) of a sample will have
a significantly different impact on the calculated PSNR and
SSIM values. Furthermore, the distortions due to bit errors will
only influence the calculated CNR when they are appearing in
an ROI in distorted images. To obtain representative values for
the IQMs despite this varying impact of bit errors, we perform
a 100-run Monte Carlo simulation and obtain IQM estimates
from the statistics of sets of distorted images produced. The
reliability of the results is reflected by the confidence intervals
of the IQM estimates.

IV. SIMULATION RESULTS

The reference image Iref is directly reconstructed from the
digitized raw element echo signals, without bit errors. A set
of distorted images Idst〈1 : 6〉 is reconstructed from the error
data with BER levels from 1E-1 to 1E-6, when FEDC is OFF.
Fig. 6 shows Iref (left-most images) and Idst〈1 : 6〉 for both
linear array and phased array transducers.

For Idst〈1 : 6〉 in both linear array and phased array imaging,
when the BER is 1E-2 or higher, only the hyperechoic regions
can still be distinguished, while the anechoic regions and the
background are below the noise floor; when the BER level
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Fig. 7. IQM versus BER plots for images from both linear array and phased array transducers (without error detection or correction).

goes down to 1E-3–1E-5, both the hyperechoic and anechoic
regions can be distinguished, but erroneous pixels are still
easily visible in the anechoic regions; when the BER level
is further reduced to 1E-6, the distorted image is almost the
same as the reference image.

The statistics of PSNR, SSIM, and CNR degradation
(CNRdst − CNRref) between Idst〈1 : 6〉 and Iref are derived
from a 100-run Monte Carlo simulation. CNR degradations
for both hyperechoic and anechoic regions are calculated. The
ROI and background regions for CNR calculation are marked
in Fig. 6. The calculated IQMs can be plotted using the
mean values of the Monte Carlo results. The PSNR can be
very well represented by their mean values (μ) at high BER
levels, since the high BER leads to a small relative standard
deviation (σ /μ). However, when BER is lower (≤ 10E-5),
the large relative standard deviation makes the mean values
less representative for the expected image quality. Therefore,
we display the IQMs in error-bar plots, where the upper and
lower bounds are the maximum and minimum values in the
100 runs, allowing the IQMs at low BER levels to be estimated
using the worst-case values in the plots.

Fig. 7 shows the error-bar plots of the five IQMs ver-
sus BER for both the linear array and phased array imag-
ing. The trends of the IQM curves are in good agreement
with the image quality observed in Fig. 6. For the unac-
ceptable images (BER > 1E-2), we get PSNR < 20 dB
and SSIM < 0.25, respectively. The CNR degradations in
hyperechoic region and anechoic region are over −3.5 and
−1.5 dB, respectively. For images with no visible distortions
(BER < 1E-6), we get PSNR > 40 dB and SSIM > 0.99, and
the CNR degradations are very close to 0. In contrast with most
telecommunication applications, which normally require BER
levels better than 1E-12–1E-15 [35]–[37], the quality of the
reconstructed ultrasound images remains high at BER < 1E-6.

When FEDC is ON, four distorted images Idst_a , Idst_b,
Idst_c, and Idst_d are reconstructed from the data coded by:
1) one parity bit; 2) two parity bits; 3) Hamming code;
and 4) Hamming code with one additional parity bit. The
distorted images together with the reference image from the
phased array transducer at different BER levels are shown
in Fig. 8.

Visually, the image quality of the four distorted images
at BER = 1E-1 does not differ from the image quality of

Idst in Fig. 6. However, when BER reduces to 1E-2, all four
images with FEDC show much more distinguishable anechoic
regions from the background, compared with Idst. Idstd shows
the best image quality, though several defective pixels can still
be observed in the anechoic regions. When the BER level is
further reduced to 1E-3, hardly any difference can be seen
between Idst_d and the reference image, while Idst_a , Idst_b,
and Idst_c show similar image quality. All the images at BER
level of 1E-4 or better are almost the same as the reference
image.

Fig. 9 shows the error-bar plots of the IQMs of the four
images with FEDC versus BER for both the linear array
and phased array imaging. PSNR values higher than 58 dB
are rounded to 58 dB, to be better displayed in the plots.
Idst_d outperforms all others in all the IQMs in both linear
array and phased array images when BER is better than 1E-2.
When BER is better than 1E-4, the PSNR values of all the
four distorted images are > 45 and the SSIM and CNR
degradations are also very close to their theoretical limits. This
is also well aligned with the visual perception of the images
in Fig. 8.

The effectiveness of the encoding is quantitatively evalu-
ated by comparing the IQMs of the unencoded data image
Idst and the four encoded data images in Figs. 7 and 9.
At BER = 1E-1, there is no significant difference among the
five distorted images. Encoding is not effective at very high
BER levels. This can be expected because the data encoding
is applied in every 10-bit sample. For example, BER = 1E-1
implies that the majority of the samples contain bit errors
and are discarded in the image reconstruction. The images are
reconstructed from the remaining insufficient data samples. At
BER = 1E-2, encoding significantly improves the three IQMs
for all the four encoded data images, especially for Idst_d .
The PSNR and SSIM of Idst_d using Hamming coding and
1-b parity are > 25 dB and > 0.88, respectively, which are
already better than the metrics of Idst obtained at BER = 1E-4.
The degradation of CNR for hyperechoic regions is almost
negligible. However, the degradation of CNR for anechoic
regions in phased array imaging is over 3 dB. When
BER ≤ 1E-4, we have PSNR > 45 dB, SSIM > 0.97, and
there is virtually no CNR degradation for all the four distorted
images, while the BER level needs to be reduced to 1E-6 for
Idst to have similar results.
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Fig. 8. Reference and distorted images for phased array transducers at different BER levels, with error detection using parity bits and error detection
and correction using the Hamming coding.

Though the encoding is not beneficial to the image qual-
ity when the BER is very high or very low, it effectively
relaxes the BER requirement by roughly two orders of
magnitude when the BER is between 1E-2 and 1E-5. For
images reconstructed from data with the Hamming coding,
the image quality at BER = 1E-3 is still very high; even
for images reconstructed from data with simple 1-bit parity

coding, a comparable image quality can be obtained at
BER = 1E-4.

To verify whether the conclusions can be applied to more
complex images, we adopt an artificial phantom for a 3-month
fetus [38] in the simulation. A reference image and four
distorted images from unencoded data at BER = 1E-6, 1-bit
parity coded data at BER = 1E-4, Hamming coded data with



CHEN et al.: IMPACT OF BIT ERRORS IN DIGITIZED RF DATA ON ULTRASOUND IMAGE QUALITY 21

Fig. 9. IQM versus BER plots for images from both linear arrayand phased array transducers (with error detection or correction).

Fig. 10. (a) Reference fetus image and four distorted images from data. (b) Without error detection or correction, BER = 1E-6. (c) With 1-bit parity
coding, BER = 1E-4. (d) With Hamming coding with additional parity bit, BER = 1E-3. (e) Without error detection or correction, BER = 1E-3.

TABLE II
IQM VALUES OF THE FOUR DISTORTED FETUS IMAGES IN FIG. 10

additional parity bit at BER = 1E-3, and unencoded data at
BER = 1E-3 are shown in Fig. 10(a)–(e), respectively. The
imaging artefacts due to the high BER can be clearly observed
in Fig. 10(e). When reducing the BER to 1E-6, the distorted

images [Fig. 10(b)] are almost identical to the reference image
[Fig. 10(a)]. Similar image quality can also be obtained by
proper data coding, even when the BER remains high. The
IQM of the distorted images is shown in Table II. The PSNR
and SSIM of images [Fig. 10(b)–(d)] are over 45 dB and 0.995,
respectively, a lot better than the 17.61 dB and 0.6 of image
[Fig. 10(e)], which indicates that the distorted images from
coded data are indeed very close to the reference image despite
the high BER levels.

V. DISCUSSION AND CONCLUSION

We have built a simulation model to quantitatively eval-
uate the quality of B-mode ultrasound images reconstructed
from digitized element-level RF echo signals with dif-
ferent BER levels. According to the simulation results
shown in Section IV, ultrasound images show inherent
resilience to BER levels which are typically unacceptable in
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digital communication. The image quality, which is quantified
by PSNR, SSIM, and CNR, shows unnoticeable degradation
for BER levels lower than 1E-6. Unlike other applications
which can also be immune to high BER but require complex
encoding algorithms [16], simple coding schemes with low
hardware cost prove to be very efficient for ultrasound imaging
in further improving the immunity to bit errors. Simple 1-bit
parity coding with 9% added redundancy helps to retain
similar image quality for BER up to 1E-4, and Hamming
coding with 33.3% added redundancy allows the BER to
increase to 1E-3.

The inherent resilience to bit errors is due to the averaging
effect in beamforming. At high BER levels, where the bit
errors can be modeled as a Gaussian-distributed noise super-
imposed to the raw element data, the beamforming operation
effectively reduces the noise power by a factor of N , where N
is the number of elements involved in the beamforming, thus
reducing the impact of a bit error on the final image. At high
BER levels, phased array imaging is more resilient to bit errors
compared to a linear array transducer with the same number
of elements, since the receive beamforming in a phased array
system involves the echo signals of all the elements in the
array, not a subset of the elements, thus resulting in a larger N .
However, if the aperture in a linear array imaging is expanded
to the point where all elements are involved, a similar image
quality is expected from both linear array and phased array
imaging.

The resilience to bit errors can be further enhanced by
compounding multiple consecutive B-mode images in the
time domain, which is commonly used to improve the ultra-
sound image quality. Similar to the spatial beamforming
in a single frame, the inherent averaging effect in a com-
pounding operation can also be effective in suppressing the
image artifacts due to bit errors. By enabling averaging
in both the spatial and time domains, real-time ultrasound
images are likely to tolerate higher BER than static B-mode
images, which are already proven to be quite immune to bit
errors.

This work has focused on the impact of bit errors on
B-mode envelope-processed images. Future work will include
extending the study to Doppler imaging, where the phase
information of the RF data, rather than the envelope of the
beamformed data, is of more importance.

The conclusion of this work can serve as a guideline in
the datalink design of ultrasound probes with in-probe receive
digitization. The simulation results reveal that a nonstan-
dard datalink design with relatively poor BER performance
(>1E-6) can be quite acceptable for ultrasound imaging appli-
cations. This allows the datalink to operate at a higher data
rate per cable, thus reducing the number of cables required,
or to operate at the same data rate per cable, while reducing
the overall power consumption.
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