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On sub-surface stress caused by contact roughness in compressible 
elastic solids 

Yaswanth Murugesan a, Syam P. Venugopalan b, Lucia Nicola a,b,* 

a Department of Industrial Engineering, University of Padova, I-35131, Italy 
b Department of Materials Science and Engineering, Delft University of Technology, 2628, CD Delft, the Netherlands   

A R T I C L E  I N F O   
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A B S T R A C T   

Contact between elastic bodies with self-affine rough surfaces is mostly studied with a focus on determining 
surface fields, despite body fields are of great importance to establish, for instance, when and where elasticity 
breaks down. This work aims at analyzing the effect of contact roughness on the body fields of compressible 
frictionless solids modeled using Green’s function molecular dynamics. Although area-load curves are insensitive 
to changes in the Hurst exponent as long as they are correctly normalized and are clearly not affected by 
compressibility, the Von-Mises stress is found to depend on both Hurst exponent and Poisson’s ratio.   

1. Introduction 

Roughness in a self-affine surface spans over multiple length-scales. 
With the smallest wavelength scaling down to nanometer dimensions, 
asperities induce significant contact stresses even when subject to 
moderate loads. This results in severe sub-surface stress concentrations, 
which can lead to plastic deformation and even to the failure of a tribo- 
system. In this work we aim at predicting how the Von Mises stress in the 
body is related to the Hurst exponent of the surface and to the 
compressibility of the material. 

Various methods exist to model the contact response of solids with 
self-affine surfaces [1–5]. Considering that the numerical description of 
contact with roughness spanning over various orders of length scales 
demands fine discretizations, the most efficient numerical methods are 
the Fast-Fourier-transform based Boundary-Element Methods 
(FFT-BEM) [6–11]. In these techniques, the contact is modeled in the 
Fourier domain where the harmonic modes of displacements decouple. 
This enables their independent energy minimization, which renders the 
FFT-BEM techniques significantly faster and thereby more suited to 
study contact-mechanical problems compared to the versatile finite 
element method [12,13]. 

Among the FFT-BEM techniques is the Green’s function molecular 
dynamics (GFMD) method, which was successfully used for simulation 
of the normal contact between rough elastic bodies [7,14,15], and also 
applied to elasto-plastic [16] and viscoelastic bodies [17]. It was 
demonstrated in the contact mechanics challenge that the predictions of 

mean-gap, true contact-area and the proportionality coefficient (κ) of 
load-area obtained using GFMD agrees quite well with analytical the-
ories and experiments conducted in the linear elastic regime [18]. The 
technique was recently applied by Müser et al. [19] to estimate the 
decay of the Von-Mises stress with indentaion depth and thereby provide 
a very quick estimate of the probability of plastic deformation at 
different depths from the surface. In this work we will extend the 
GFMD model to account for the deformation of compressible finite 
bodies that are free to deform in all three directions. The latter is in 
our opinion an important extension, because, even in the case of 
frictionless contact between incompressible bodies, the displacements 
in the direction normal to the loading in the body are non zero, even 
if they are zero at the interface. This entails that the corresponding 
stresses are also non zero and do contribute to the Von Mises stress. 

The content of the paper is organized as follows: a brief introduction 
to the GFMD technique is given in Sec.2; in Sec.3 the Green’s function 
tensor is derived, in Sec.4 the Green’s functions and internal stresses are 
validated by comparing GFMD simulation results for a frictionless 
Hertzian contact against FEM. In Sec.5 the effect of Hurst exponent, 
compressibility and Gaussinity on the Von Mises stress are shown and 
discussed. The notation used in the manuscript is listed in Table 1. 

2. Modeling contact with GFMD 

The Green’s function based boundary integral formulation for an 
arbitrary contact problem is given as 
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ui(r)=
∫

S
Gij(r − r′

)tj(r
′

)dr′

, (1)  

where Gij(r − r′

) is the component of the Green’s function tensor which 
gives the effect of the tractions tj(r

′

) imposed at the location r′ on the 
displacements ui(r) at the location r of the boundary layer S. The non- 
local character of the above boundary equation is eliminated in GFMD 
by formulating Eq. (1) in the Fourier domain as 

ũi(q)= G̃ij(q)̃tj(q). (2) 

The Fourier transformed components of the Green’s function tensor 
G̃ij(q) relate the displacement modes ̃ui(q) to the traction modes ̃tj(q) for 
a given wavevector q. 

Once the Green’s function tensor is known, a displacement or trac-
tion prescribed problem where the contact area is known apriori can be 

solved in the Fourier domain via simple algebraic operations. However, 
for cases where the contact area is not known apriori, the equilibrium 
solution is solved using damped dynamics in Fourier domain [7,16,20]. 

3. Analytical derivation of the 3-D Green’s function tensor 

In this section, we derive the Green’s function tensor of a three- 
dimensional isotropic linear elastic layer having a finite height and 
generic elastic property. To this end, we first obtain the displacement 
fields in the deformed layer by solving the elastic equilibrium equations 
coupled with the constitutive relations: 
[
C44

(
∂2

z + ∂2
y

)
+ C11∂2

x

]
ux + (C12 + C44)∂x∂yuy + (C12 + C44)∂z∂xuz = 0,

[
C44
(
∂2

x + ∂2
z

)
+ C11∂2

y

]
uy + (C12 + C44)∂x∂yux + (C12 + C44)∂z∂yuz = 0,

[
C44

(
∂2

x + ∂2
y

)
+ C11∂2

z

]
uz + (C12 + C44)∂z∂yuy + (C12 + C44)∂z∂xux = 0.

(3)  

Here Cij are the coefficients of the elastic tensor and u = u(x, y, z) are the 
displacements. 

Applying 2-D in-plane Fourier transformation to the above set of 
equations gives the following system of coupled ordinary differential 
equations (ODE):  

Here s = C44
C11 

and ̃ux(q,z), ̃uy(q,z), ̃uz(q, z) are the in-plane displacements. 
Finally, the above set of ODEs are reduced to the following set of linear 
algebraic equations: 

⎡

⎢
⎢
⎣

ũx(q, z)
ũy(q, z)
ũz(q, z)

⎤

⎥
⎥
⎦=

[
fij(q, z)

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1(q)
a2(q)
a3(q)
a4(q)
a5(q)
a6(q)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5) 

The elements of the matrix [fij(q, z)] are: 

Table 1 
Notation.  

Variable Description 

ui(r) nodal surface displacements 
ui(q) harmonic modes of the surface displacements 
σ̃ij  components of the stress tensor 
Cij  coefficients of elasticity 

E*  effective Young’s modulus 

C(q) power spectral density of the self-affine rough indenter 
λs  smallest wavelength in the roughness Spectrum 
ql  Wave-vector corresponding to the longest wavelength 
H Hurst exponent 
Δ̃G(qx,qy) harmonic modes of the Gaussian signal 

h(r) roughness height 
gr  mean-squared gradient of the deformed Contact 

σlmax  local stress maxima in the deformed Substrate 

GVM  autocorrelation of the Von-Mises stresses  

s

⎡

⎣
(
iqy
)2ũx(q, z) + (iqx)

(
iqy
)
ũy(q, z) + (iqx)

∂ũz(q, z)
∂z

+
∂2ũx(q, z)

∂z2

⎤

⎦+ (1 − 2s)

[

(iqx)
(
iqy
)
ũy(q, z) + (iqx)

∂ũz(q, z)
∂z

]

+ (iqx)
2ũx(q, z) = 0,

s

⎡

⎣(iqx)
2ũy(q, z) +

(
iqy
)
(iqx)ũx(q, z) +

(
iqy
) ∂ũz(q, z)

∂z
+

∂2ũy(q, z)
∂z2

⎤

⎦+ (1 − 2s)

[

(iqx)
(
iqy
)
ũx(q, z) +

(
iqy
) ∂ũz(q, z)

∂z

]

+
(
iqy
)2ũy(q, z) = 0,

s

⎡

⎣(iqx)
2ũz(q, z) +

(
iqy
)2ũz(q, z) + (iqx)

∂ũx(q, z)
∂z

+
(
iqy
) ∂ũy(q, z)

∂z

⎤

⎦+
∂2ũz(q, z)

∂z2 + (1 − 2s)

⎡

⎣(iqx)
∂ũx(q, z)

∂z
+
(
iqy
) ∂ũy(q, z)

∂z

⎤

⎦ = 0.

(4)   
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f11(q, z) =
2sqr cosh(zqr) − (s − 1)zq2

x sinh(zqr)

(s + 1)qr
,

f12(q, z) =
2q2

x((s + 1)sinh(zqr) − (s − 1)zqr cosh(zqr))

2(s + 1)q3
r

+
4q2

y sinh(zqr)

2(s + 1)q3
r
,

f13(q, z) = f21(q, z) = −
(s − 1)zqxqy sinh(zqr)

(s + 1)qr
,

f14(q, z) = f22(q, z) =
(s − 1)qxqy(sinh(zqr) − zqr cosh(zqr))

(s + 1)q3
r

,

f15(q, z) = f31(q, z) =
i(s − 1)qx(zqr cosh(zqr) − sinh(zqr))

(s + 1)qr
,

f16(q, z) = f32(q, z) =
i(s − 1)zqx sinh(zqr)

(s + 1)qr
,

f23(q, z) =
2sqr cosh(zqr) − (s − 1)zq2

y sinh(zqr)

(s + 1)qr
,

f24(q, z) =
q2

y((s + 1)sinh(zqr) − (s − 1)zqr cosh(zqr))

(s + 1)q3
r

+
2q2

x sinh(zqr)

(s + 1)q3
r

,

f25(q, z) = f33(q, z) =
i(s − 1)qy(zqr cosh(zqr) − sinh(zqr))

(s + 1)qr
,

f34(q, z) =
i(s − 1)zqy sinh(zqr)

(s + 1)qr
,

f35(q, z) =
(s − 1)zq2

r sinh(zqr) + 2qr cosh(zqr)

(s + 1)qr
,

f36(q, z) =
(s − 1)z cosh(zqr)

s + 1
+

sinh(zqr)

qr
,

(6)  

where qr =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
q2

x + q2
y

√
. 

The six unknowns ai(q) in Eq. (5) are determined from the boundary 
conditions at the top and the bottom surfaces of the elastic layer. In the 
case of displacement prescribed boundary value problems these un-
knowns are directly evaluated from Eq. (5). In the case of traction pre-
scribed boundary value problems the unknowns are evaluated through 
the following stress-strain relations 

⎡

⎢
⎣

σ̃zz(q, z)
σ̃yz(q, z)
σ̃zx(q, z)

⎤

⎥
⎦=

[
Cij
]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(iqx)ũx(q, z)
(
iqy
)
ũy(q, z)

∂uz(q, z)
∂z

∂ux(q, z)
∂z

+ (iqx)ũz(q, z)

∂uy(q, z)
∂z

+
(
iqy
)
ũz(q, z)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Cij =

⎡

⎣
C12 C12 C11 0 0
0 0 0 C44 0
0 0 0 0 C44

⎤

⎦, (7)  

by substituting the stress values with tractions at the boundaries z0 and 
zm. After the unknowns ai(q) are evaluated, they are substituted back 
into Eq. (5). This gives the relation between the surface displacements 
and tractions as 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ũx(q, zm)

ũy(q, zm)

ũz(q, zm)

ũx(q, z0)

ũy(q, z0)

ũz(q, z0)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

[

G̃ij(q)
]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t̃x(q, zm)

t̃y(q, zm)

t̃z(q, zm)

t̃x(q, z0)

t̃y(q, z0)

t̃z(q, z0)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (8)  

where the elements of the Green’s function tensor [G̃ij(q)], assuming z0 =

0, are given in A. 
The reader can see that in the limiting case of a frictionless semi- 

infinite elastic half-space, the displacements at the surface reduce to 
those given by the Boussinesq solution [21], 

ui(q, zm)= G̃iz(q, zm)tz(q, zm), (9)  

where 

G̃xz(q, zm) =
i(ν + 1)(2ν − 1)qx

E
(

q2
x + q2

y

) ,

G̃yz(q, zm) =
i(ν + 1)(2ν − 1)qy

E
(

q2
x + q2

y

) ,

G̃zz(q, zm) = −
2(ν2 − 1)

E
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
q2

x + q2
y

√ ,

(10)  

while the other Green’s tensor components G̃zz(q, z0), G̃xz(q, z0) and 
G̃yz(q, z0) tend to zero as the distance between the top and the bottom 
surfaces becomes infinite. 

4. Validation of the model: Hertzian indentation 

4.1. Surface fields compared with analytical solution 

Firstly, we consider the frictionless indentation of a rigid sphere on 
an elastic half-space and compare the results of the simulation with 
Hertz theory [22] (refer Fig. 1). The analytical Hertzian solution is first 
derived for a two-dimensional array of indenters that are equally spaced 
in the x− and y− directions. This is done to enable a comparison with the 
GFMD solution which is intrinsically periodic. The normal surface 
displacement uz(ri) reads 

uz(ri) =
1 − ν2

E
3Po

8ar

[
π
(
2a2

r − r2
i

)
+ 2upt

z

]
, ∀ri ≤ ar

uz(ri) =
1 − ν2

E
3Po

4ar

[
(
2a2

r − r2
i

)
sin− 1ar

ri
+ arri

(

1 −
a2

r

r2
i

)0.5

+ upt
z

]

, ∀ri ≥ ar

(11)  

Here, 

upt
z =

∑∞

k = − ∞
k ∕= 0

∑∞

l = − ∞
l ∕= 0

[
(
2a2

r − r2
d

)
sin− 1ar

rd
+ arrd

(

1 −
a2

r

r2
d

)0.5
]

. (12)  

rd =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Lxk − xi)
2
+
(
Lyl − yi

)2
√

, (13) 

ri is the location at which the displacement is evaluated, ar is the 
contact radius and Po is the mean pressure. The terms included in the 
summation represent the contribution to the displacement from periodic 
replicas centered at (Lxk,Lyl), where k and l take integer values. 

Also note that, using simple geometry, the normal displacement 
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within the region of a spherical contact is evaluated from the radius of 
curvature R and the indentation depth uo

z as 

uz(ri)= uo
z −

r2
i

2R
, ∀ri ≤ ar (14) 

Using the above Eqs. 11–14, the mean pressure is expressed in terms 
of the contact radius and indenter curvature as 

Po =
1

(
ut1

z − ut2
z

)
4Ea3

r

3R(1 − ν2)
(15)  

where, 

ut1
z =π

(
2a2

r

)
+

2
∑∞

k=− ∞

k∕=0

∑∞

l=− ∞

l∕=0

[(

2a2
r − rd(0)2

)

sin− 1 ar

rd(0)
+arrd

(

0

)(

1−
a2

r

rd(0)2

)0.5
]

,

ut2
z =π

(
a2

r

)
+

2
∑∞

k=− ∞

k∕=0

∑∞

l=− ∞

l∕=0

[(

2a2
r − rd(ar)

2

)

sin− 1 ar

rd(ar)
+arrd

(

ar

)(

1−
a2

r

rd(ar)
2

)0.5
]

,

rd

(

0
)

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Lxk)2
+
(
Lyl
)2

√

,

rd

(

ar

)

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Lxk − ar)
2
+
(
Lyl
)2

√

.

(16) 

The mean pressure evaluated using Eq. (15) for a given contact 
radius and indenter curvature is imposed onto the surface layer in the 
GFMD simulation. The GFMD layer with a unit aspect ratio is discretized 
with nx×ny discretization points, where nx, ny are equal to 128. The 
Young’s modulus of the substrate was chosen to be 70 GPa. Three 
different values of the Poisson’s ratio are considered to see the effect of 
compressibility on the material response. 

The equilibrium solution in GFMD is obtained through damped dy-
namic energy minimization. Herein, the motion of the modal displace-
ments towards equilibrium is integrated using the position-Störmer- 
Verlet scheme. The harmonic modes are slightly under-damped with a 
damping factor that is 0.99ηcr, where ηcr is the critical damping factor of 

the slowest mode. This ensures convergence of the displacements to 
their correct equilibrium position. The critical damping factor of the 
principal mode for a semi-infinite halfspace was derived in the work of 
Prodanov et al. [7] as, 

ηcr∝
(

P0

E*g

)α
̅̅̅̅̅
β
Lx

√

, (17)  

Here, E* is the effective modulus, g is the root mean squared gradient of 
the surface profile. α and β are positive real valued parameters that 
depend on Lx and are found empirically. We use the hard-wall in-
teractions at the interface to avoid inter-penetration between the sub-
strate and the Hertzian punch. 

In Fig. 2, the solid lines represent the analytical solution and the solid 
squares the GFMD solution. Fig. 2a shows the effect of Poisson’s ratio on 
the load-area curves. As expected, stiffness increases with Poisson’s 
ratio. While the analytical solution describes the behavior of an infinite 
body only, the simulations can now model also a slab of material. The 
elastic slab is modeled as a periodic cubic unit cell (Lx = Ly = Lz) and is 
indented to a depth u0

z such that u0
z /Lx = 0.02Lz/R. The Young’s modulus 

and Poisson’s ratio of the elastic slab are chosen to be 70 GPa and 0.33, 
respectively. Fig. 2b confirms that a slab is stiffer than the infinte solid. 

4.2. Validation of the GFMD body fields through comparison with FEM 

The body fields derived in Sec. 3 are validated through a quick 
comparison with the results obtained from a finite element analysis of 
the Hertzian indentation of a finite slab, to gain confidence in our 
method and then proceed with addressing rough contacts. The FEM 
simulations are performed using the commercial software Abaqus. A 
mesh sensitivity analysis lead us to discretize the 3-D unit cell into 64 ×

64 × 64 brick elements. These elements are fully integrated 20-node 
type in the bulk region. The near-surface region of the cubic unit cell 

Fig. 2. GFMD (squared symbols) and Hertz theory (solid line) solutions: (a) The 
effect Poisson’s ratio on the load-area curves, (b) The effect of substrate 
thickness on the load-area curves. 

Fig. 1. Schematic representation of a unit cell of elastic substrate indented by a 
Hertzian punch. 
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is discretized into fully integrated 27-node brick elements. In the case of 
GFMD, a discretization 32 × 32 did suffice, but we used anyhow 64× 64 
for the sake of comparison. 

In GFMD, equilibration is obtained by damping the harmonic modes 
with the critical damping factor of the slowest mode: 

ηcr =
2

Δt

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E

2Lz(1 + ν)

√

−
E

2Lz(1 + ν), (18)  

where Δt is the time step. In the FEM analysis, the total indentation is 
applied in several adaptive incremental steps. For each of the tentative 
incremental steps, equilibrium is assumed to be reached when the force 
residual at all the nodes is less than 0.5% of the average nodal forces in 
the solid. If the solution has not converged within 16 iterations or if the 
solution appears to diverge, the tentative increment is reduced by a 
factor 0.25. If, instead, less than five iteration are required to reach 
convergence for two increments in a row the subsequent incremental 
step is increased by a factor 0.5. 

Fig. 3a and c present the normal displacement and normal stress 

fields along the diagonal plane of the substrate, as obtained from GFMD. 
In Fig. 3b and d, the relative differences are shown between the solutions 
obtained through GFMD and FEM. It is seen from the figures that the 
results obtained using GFMD differ from those obtained using FEM 
1.0%. As expected, their differences are concentrated mostly near the 
edges of the contact region. The tensile and shear stresses under a 
Hertzian contact are shown along the diagonal plane in Fig. 4a and 
Fig. 4b, respectively. The relative errors for both tensile and shear 
stresses are also below 1.0%, but not shown here. 

5. Indentation with a rough rigid surface 

5.1. Description of surface roughness 

The rough surfaces are generated using the Power Spectral Density 
(PSD) method, which gives the PSD of a self-affine surface as the power- 
law relation 

C(q)=C0

(
ql

q

)2H+2

. (19)  

Here H is the Hurst exponent and ql is the wavevector corresponding to 
the longest wavelength contained in the surface. C0 is a real valued 
constant that is varied to obtain a rough surface with a given root-mean- 
square (rms) height. A roughness profile h̃(qx, qy) is created by the 
convolution of the PSD with a Gaussian signal, 

h̃
(
qx, qy

)
= Δ̃G

(
qx, qy

) ̅̅̅̅̅̅̅̅̅̅
C(q)

√
. (20)  

Here a Gaussian complex variable Δ̃G(qx, qy) is obtained by the Box- 
Muller transform [23], 

R

{

Δ̃G

}
(
qx, qy

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 2 ln(U1)

√
cos(2πU2),

I

{

Δ̃G

}
(
qx, qy

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 2 ln(U1)

√
sin(2πU2),

(21) 

Fig. 4. Tensile (σxx) and shear (σxz) stress components under a Hert-
zian contact. 

Fig. 3. The normal component of displacement (a) and stress fields (c) are 
shown under a Hertzian contact along with the corresponding relative differ-
ences between the GFMD and FEM solutions. 
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with U1 and U2 being the independent random numbers that are uni-
formly distributed between the interval [0, 1]. The sinusoids in Eq. (21) 
are given a random phase and this ensures that the generated height 
distributions best mimic the experimentally observed surface roughness 
as a random process [24]. Additionally, since real surfaces are self-affine 
only in a certain range of length-scales, the in-plane wave-vectors qx, qy 

that constitute a roughness profile are made to span over a maximum of 
three orders of magnitude between qs and ql. Where qs and ql are the 
wavevectors of the longest (λl) and shortest wavelength (λs) of the sur-
face, respectively. 

5.2. Effect of Hurst exponent 

An isotropic linear elastic flat solid represented by a periodic unit cell 
with a unit aspect ratio is deformed by indenting with a rough indenter 
with RMS height Lx/1000 to a contact area fraction of ar = 10% (see 
Fig. 5). Two different values are considered for the Hurst exponent of the 
indenter, i.e. H = 0.2 and 0.8 (refer Fig. 6). 

The shortest and longest wavelength are λs = Lx/256 and λl = Lx/ 8. 
At the beginning of the simulation, the indenter is positioned such that 
the bottom-most point is in contact with the substrate and it does not 
exert any pressure. This means that the average spacing between sur-
faces is larger when the RMS height is larger. 

The surface is discretized with 2048 × 2048 nodes. Following Müser 
et al. [7], the discretization of the surface is selected to be λs/ 8× λs/ 8 in 
both the directions. The Von Mises stress fields are evaluated analyti-
cally on an equispaced 3D grid with grid points also spaced by λs/ 8 in 
order to capture the sub-surface stress peaks corresponding to the 
smallest wavelengths. The local stress maxima that occur underneath 
each contact area (σlmax

VM ) are identified by picking the Von Mises stress 
values that exceed the values at the neighboring nodes. To evaluate the 
peak stress statistics, the probability density function of the local max-
ima is calculated, by grouping the N values of σlmax

VM into 100 bins of 
width wbin. The same procedure is used to calculate the probability 
density funcion of the traction peaks tlmax

3 , to see if there is a one-to one 
correlation between surface and Von-Mises peaks. 

The traction distributions obtained at a contact fraction of 10% in 
Fig. 7 show that, as expected, a smaller Hurst exponent gives rise to finer 

Fig. 5. Schematic representation of the indentation of the unit cell of an elastic 
flat substrate by a rigid rough indenter. Different colors in the rough indenter 
represent different heights of the self-affine rough surface. (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 6. (a) Probability density function of the surface heights and (b) cross- 
section of the surface for H = 0.2 and H = 0.8. 

Fig. 7. Traction distribution (t3/E*gr) for a) H = 0.2, b) H = 0.8.  
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and more dispersed local contacts. 
It is well-known that there is a linear relation between relative true 

contact area ar and normalized load Po/(E*gr), where gr is the root mean 
square gradient of the true contact. With this normalization, the curves 

for different Hurst exponents overlap as shown in Fig. 8a. Therefore, also 
the curves that represent the probability density function of the traction 
peaks in Fig. 8b overlap. 

Nonetheless, the Von Mises stress peaks that are induced underneath 
the traction peaks at a depth in the body dictated by the size of the local 
contact area, present a probability density distribution that depends, 
although not strongly, on the Hurst exponent (see Fig. 9a). The smaller 
Hurst exponent corresponds to a larger probability of having high stress 
peaks. This suggests that the stress components contributing to the Von 
Mises stress, do not all scale as the normal stress component. 

To confirm this, we present in Fig. 9b the probability density func-
tions of σxx and σxz. The distribution of the tensile stress peaks σlmax

xx is 
independent of the Hurst exponent, given that σxx scales as σzz with the 
rms gradient. However, this does not hold true for the shear stresses: a 
smaller value of the Hurst exponent corresponds to larger shear stress 
peaks σlmax

xz . 
In Fig. 10 the distribution of the stress peaks along the depth of the 

substrate is contrasted for Hurst exponents H = 0.2 and 0.8. Consistently 
with the previous figure, the larger Hurst exponent, leads to a broader 
distribution of the Von-Mises stress peaks values. One can also see that 
for the larger Hurst exponent the higher stress peaks are further away 
from the surface, which is to be expected, given that the depth of the 
subsurface stress peaks is controlled by the size of the contact patches 
that induces them, which are larger for H = 0.8. 

The average decay of the Von-Mises stress peaks into the depth of the 

Fig. 9. Effect of Hurst exponent on the probability density function of a) the 
Von Mises stress peaks, σlmax

VM and b) on the peaks of σxx i.e. σlmax
xx , and of σxz i.e. 

σlmax
xz , for bodies with ν = 0.33. 

Fig. 10. Distributions of σVM/E*gr along the depth of the body for (a) H = 0.2 
and (b) H = 0.8. The Poisson’s ratio is ν = 0.33. 

Fig. 8. (a) Relative contact-area ar versus normalized nominal-pressure P0/

(E*gr) for different Hurst exponents. (b) Probability density function of the 
traction peaks PDF[t3 /E*gr ]. 
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substrate, shown in Fig. 11a can be evaluated by computing the auto-
correlation GVM(z). 

GVM(z)=
〈

σVM

(
r, zlmax

peak

)
σVM(r, z)

〉

r
−
〈

σVM

(
r, zlmax

peak

)〉

r

〈
σVM(r, z)

〉

r
, (22)  

where zlmax
peak is the height in the substrate where the largest stress peak is 

induced. Again, it is the size of the contact patches that control the 
decay, so the rough contact with smaller Hurst exponent has a faster 
decay of the stresses. 

Similarly, a faster decay is observed in Fig. 11b for the in-plane decay 
of the stresses. The decay is presented in the plane containing the stress 
peak with largest magnitude. From Fig. 11, we learn that although rough 
contacts with small Hurst exponents reach locally larger Von Mises 
stress, the regions that are subjected to those stresses are very small, 
given that the stresses decay fast both along the depth and the plane. If 
plastic deformation were to occur in the subsurface it would be very 
confined. On the contrary, when the Hurst exponent is large the regions 
that are affected by a high Von Mises stress are broader. In bodies that 
show size dependence in the onset of plasticity, as metals, this also 
means that it is more likely to observe early plasticity in bodies with 
larger H than with smaller H. In metals this is because the carriers of 
plastic deformation are dislocations, which nucleate from discrete 
sources. The probability of finding a dislocation source in a highly 
stressed region increases with the size of the region itself. 

5.3. Effect of compressibility 

Although surface tractions in frictionless contacts are insensitive to 
changes in the Poisson’s ratio of the slab, its compressibility is likely to 
play a role on the subsurface stress components different from σzz, and 
consequently on the Von Mises stress. The effect of compressibility on 
the Von Mises stress obtained by indenting an elastic body with a 
Hertzian punch is shown in Fig. 12. 

For indentation with a rough surface with Hurst exponent 0.8, 
Fig. 13a shows that the smaller the Poisson’s ratio, the broader is the 
distribution of the Von Mises stress peaks. Additionally, the Von-Mises 

Fig. 11. Effect of the Hurst exponent on the average decay of the sub-surface 
Von-Mises stress peaks (a) along the depth and (b) along the plane of 
maximum Von-Mises stress in the substrate. Fig. 12. Von-Mises stress σVM/(E*gr) for the indentaion with a Hertzian a) 

ν = 0.0, b) ν = 0.5. 

Fig. 13. Effect of Poisson’s ratio on the probability density function of a) σlmax
VM 

b) σlmax
xx and σlmax

xz . 
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stress peaks in the subsurface of a fully compressible body reach values 
that are approximately 1.5 times larger than those in an incompressible 
body. Thus, the latter is much less likely to deform plastically. Here, it is 
the shear stress component that does not scale, contrary to the normal 
stress component, with the rms gradient of the surface (see Fig. 13b). 

In Fig. 14, the distribution of stress peaks along the depth of the 
substrate is shown for Poisson’s ratios ν = 0 and 0.5 and Hurst exponent 
H = 0.8. In substrates with smaller Poisson’s ratios the Von-Mises stress 
peaks have a broader distribution, reach larger values, and occur closer 
to the surface compared to less compressible substrates. 

The stress peaks autocorrelation in the depth of the body and in the 
plane of maximum Von Mises stress in Fig. 15 show negligible differ-
ences in the decay of the stresses with compressibility. Thus, a body with 
smaller Poisson’s ratio has not only larger subsurface stress peaks but 
also larger regions with high Von Mises stress. 

5.4. Effect of skewness and kurtosis of the height distribution 

The surfaces so far considered have a Gaussian distribution of 
heights. However, it is well known, that most of the common 
manufacturing processes produce surfaces that have a non-Gaussian 
distribution height distribution [25]. For example, turning [26] and 
electro-discharge machining processes [27] produce surfaces that have a 
positive skewness and low kurtosis. Differently, machining processes 
such as milling [28–30], grinding [25] produce surfaces that have a 
negative skewness and high kurtosis. Here, we study the effect of 
skewness and kurtosis on the internal stresses induced during the 
indentation to a contact area fraction of 10%. For this, we take the 
Gaussian rough surface with H = 0.8 and λs = Lx/128 that we considered 
in the previous section and change its skewness and kurtosis indepen-
dently. The skewness of the surface is changed by applying Johnson’s 
transformation [31] to the Gaussian surface G(r), so that the skewed 
surface S(r) is defined as: 

S(r) =
λeV(r) + ζ

(
eV(r) + 1

)

eV(r) + 1

V(r) =
G(r) − γ

δ

(23) 

The height distributions of the skewed surface S(r) lie within the 
interval [ζ,ζ + λ]. Here, we take ζ = − 4, and λ = 8. γ and δ are the shape 
parameters of the skewed surface. The magnitude of the skewness is 
controlled by δ, which can take only positive real values, its sign by γ. As 
mentioned before, since both positively skewed and negatively skewed 
surfaces are commonly encountered in practice, we consider both cases: 
the positively skewed distribution SP(r) is generated with γ = 1.25, the 
negatively skewed SN(r) with γ = − 1.25. The surface height 

Fig. 14. Effect of Poisson’s ratio on the depth dependent distributions of σVM/

E*gr : (a) ν = 0.5 , (b) ν = 0.0. 

Fig. 15. Effect of Poisson’s ratio on the average decay of the sub-surface Von- 
Mises stress peaks (a) along the depth and (b) along the plane of maximum Von- 
Mises stress in the substrate. 
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distributions are represented in Fig. 16a together with the original 
Gaussian distribution. In Fig. 16b the Gaussian distribution is instead 
shown together with two distributions with various kurtosis, obtained 
by varying the small wavelength of the surface spectrum. The surface 
indicated with K1(r) has λs = Lx/64, the surface K2(r) has λs = Lx/512. 

When comparing the two skewed distribution in Fig. 17a it is 
possible to see that the positively skewed induces normalized Von-Mises 
stress peaks with larger magnitude, compared to the negatively skewed. 
This is because the positively skewed distribution corresponds to blunter 
hills and sharper valleys on the indenter surface. Here, we call hills the 
parts of the surface that first enter into contact with the substrate. Given 
that the contact area fraction reached in these simulations is only 10%, 
what happens to the valleys is irrelevant. Notice that trend observed in 
the figure is a consequence of the normalization of the distribution on 
the rms gradient, which is significantly lower for positively skewed 
surface. Without normalizing on the rms gradient the Von Mises stress 
peaks would be smallest for the positively skewed surface height dis-
tribution. As seen from Fig. 17b, increasing the kurtosis by including 
smaller wavelength in the description of the surface induces Von Mises 
stresses with larger magnitudes and broader distribution. Additionally, 
by including smaller wavelengths the high stress concentrations occur 
closer to the interface, as shown in Fig. 18. 

Fig. 16. The height distribution of the rough indenters are shown for different 
(a) skewness and (b) kurtosis. 

Fig. 17. The effect of (a) skewness and (b) kurtosis of a rough surface on the 
probability density function of the Von Mises stress peaks. 

Fig. 18. Distributions of σVM/E*gr along the depth of the body for surfaces with 
kurtosis (a) G(r) : λs = Lx/128 and (b) K2(r) : λs = Lx/512. λsn = Lx/128. 
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6. Conclusions 

This work focusses on two aspects that have, in our opinion, received 
too little attention from the contact mechanics community: the subsur-
face stresses induced by contact between rough surfaces and the effect of 
compressibility of the bodies on those stresses. When two solids are 
brought into frictionless contact, although the interface experiences only 
normal displacement, the stress tensor induced in the body can have 
non-zero stress components in directions normal to the loading. These 
stress components need to be considered if one wants to calculate the 
Von Mises stress acting in the body, since they cannot in general be 
inferred from the normal stress fields. In this work we have first 
extended the Green’s function molecular dynamics technique to address 
contact between compressible finite elastic bodies in three-dimensions. 
Next, we have analysed the local subsurface Von Mises stress peaks 
induced by contact between a flat solid with various compressibility and 
a rough rigid surface with different Hurst exponent. Results show that 
for a given contact roughness the larger is the compressibility of the 
substrate, the smaller is the stress normal to the loading direction, and 
thus the higher are the Von Mises stress peaks: a factor of 1.5 between 
zero and maximum compressibility. This entails that the compressible 
bodies will deform plastically at a lower applied load when in contact 
with a rough surface. The decay of the stress peaks in the bodies is 
negligibly affected by compressibility. 

While surfaces with different Hurst exponent induce a distribution of 
contact traction peaks that scales with the rms gradient, the same scaling 
does not hold for the subsurface Von Mises stress peaks, because those 
are also affected by the shear stresses in the body, which scale differ-
ently. The shear stresses are however rather small compared to the 
normal stresses, so their effect does not change the Von Mises stress very 
much. The decay of the stress peaks is slower when the Hurst exponent is 
large. This entails that there are larger regions in the subsurface where 

the Von Mises stress reaches large values. It is expected that bodies 
where plasticity is size dependent are more likely to deform plastically 
when the Hurst exponent is large. 

When considering indenters with skewed height distribution, we find 
that the induced Von-Mises stresses have smaller magnitude if the 
skeweness is positive, because the surface roughness is blunter at its hills 
and has a small rms gradient compared to the negatively skewed. 
Increasing the kurtosis of the distribution by including smaller wave-
length has the effect of increasing the magnitude and breadth of the 
subsurface Von Mises stress peaks and moving the peaks closer to the 
interface. 
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Appendix A. Green’s function tensor 

The surface displacement is related to the traction via Green’s function tensor [G̃ij(q)] read as: 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ũx(q, zm)

ũy(q, zm)

ũz(q, zm)

ũx(q, z0)

ũy(q, z0)

ũz(q, z0)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

[

G̃ij(q)
]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t̃x(q, zm)

t̃y(q, zm)

t̃z(q, zm)

t̃x(q, z0)

t̃y(q, z0)

t̃z(q, z0)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A.1)  

with 

[

G̃ij(q)
]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G̃11(q) G̃12(q) iG̃13(q) G̃14(q) G̃15(q) iG̃16(q)
G̃12(q) G̃22(q) iG̃23(q) G̃15(q) G̃25(q) iG̃26(q)
− iG̃13(q) − iG̃23(q) G̃33(q) iG̃16(q) iG̃26(q) G̃36(q)
G̃14(q) G̃15(q) − iG̃16(q) G̃11(q) G̃12(q) − iG̃13(q)
G̃15(q) G̃25(q) − iG̃26(q) G̃12(q) G̃22(q) − iG̃23(q)
− iG̃16(q) − iG̃26(q) G̃36(q) iG̃13(q) iG̃23(q) G̃33(q)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A.2) 

The elements of the Green’s function tensor assuming z0 = 0 are: 

Y. Murugesan et al.                                                                                                                                                                                                                             



TribologyInternational159(2021)106867

12

G̃11
(
q
)
=
− 8e3zmqr

(
1+ν

)
sinh

(
qrzm

)[
q2

yqr

(
− 2q2

yz2
mcoth

(
qrzm

)
+sinh

(
2qrzm

))]

(
− 1+e2zmqr

)3Eq4
r

[
− 1+q2

r z2
mcosech2

(
qrzm

)]
− 8e3zmqr

(
1+ν

)
sinh

(
qrzm

)[
2q2

xq2
yzm

(
− 1+ν− qrzmcoth

(
qrzm

))]

(
− 1+e2zmqr

)3Eq4
r

[
− 1+q2

r z2
mcosech2

(
qrzm

)]
− 8e3zmqr

(
1+ν

)
sinh

(
qrzm

)[
2
(
ν− 1

)
zmq4

x +q2
x

(
1− ν

)
qrsinh

(
2qrzm

)]

(
− 1+e2zmqr

)3Eq4
r

[
− 1+q2

r z2
mcosech2

(
qrzm

)]

G̃12
(
q
)
=

8e3zmqr
(
ν+1

)
sinh3(zmqr)qxqy

[
coth(zmqr)

(
2νsinh2(zmqr)

)
qr
]

(
− 1+e2zmqr

)3Eq4
r

[
z2

mq2
r − sinh2(zmqr)

] +
8e3zmqr

(
ν+1

)
sinh3(zmqr)qxqy

[
coth(zmqr)

(
− 2z2

mq2
r

)
qr
]

(
− 1+e2zmqr

)3Eq4
r

[
z2

mq2
r − sinh2(zmqr)

] +
8e3zmqr

(
ν+1

)
sinh3(zmqr)qxqy

[
− 2zm

(
ν− 1

)
q2

r

]

(
− 1+e2zmqr

)3Eq4
r

[
z2

mq2
r − sinh2(zmqr)

]

G̃13
(
q
)
=−

(
ν+1

)
qx
[(

2ν− 1
)
sinh2(zmqr)− z2

mq2
r

]

Eq2
r

[
z2

mq2
r − sinh2(zmqr)

]

G̃22
(
q
)
=

8e3zmqr
(

ν+1
)

sinh3(zmqr)
[
− 2zm

(
ν− 1

)
q2

r q2
y

]

(
− 1+e2zmqr

)3Eq4
r

[
z2

mq2
r − sinh2(zmqr)

] +
8e3zmqr

(
ν+1

)
sinh3(zmqr)

[
sinh(2zmqr)

((
ν− 1

)
q2

y − q2
x

)
qr

]

(
− 1+e2zmqr

)3Eq4
r

[
z2

mq2
r − sinh2(zmqr)

] +
8e3zmqr

(
ν+1

)
sinh3(zmqr)

[
2z2

mcoth(zmqr)q2
xq3

r

]

(
− 1+e2zmqr

)3Eq4
r

[
z2

mq2
r − sinh2(zmqr)

]

G̃23
(
q
)
=−

(
ν+1

)
qy
[(

2ν− 1
)
sinh2(zmqr)− z2

mq2
r

]

Eq2
r

[
z2

mq2
r − sinh2(zmqr)

]

G̃33
(
q
)
=
(ν2 − 1)[sinh(2zmqr)+2zmqr]

E
̅̅̅̅̅

q2
r

√ [
z2

mq2
r − sinh2(zmqr)

]

G̃14
(
q
)
=

ezmqr
(

ν+1
)
(coth(zmqr)− 1)

[
2qr

(
z2

mq4
y − sinh2(zmqr)q2

y

)]

Eq4
r

(
z2

mq2
r − sinh2(zmqr)

) +
ezmqr

(
ν+1

)
(coth(zmqr)− 1)

[
2qrq2

x

((
ν− 1

)
sinh2(zmqr)+z2

mq2
y

)]

Eq4
r

(
z2

mq2
r − sinh2(zmqr)

) +
ezmqr

(
ν+1

)
(coth(zmqr)− 1)

[
− zm

(
ν− 1

)
sinh(2zmqr)q2

xq2
r

)]

Eq4
r

(
z2

mq2
r − sinh2(zmqr)

)

G̃15
(
q
)
=

e− zmqr
(
ν+1

)
(coth(zmqr)+1)qxqy

[
− zm

(
ν− 1

)
sinh(2zmqr)q2

r

]

Eq4
r

[
z2

mq2
r − sinh2(zmqr)

] +
e− zmqr

(
ν+1

)
(coth(zmqr)+1)qxqy

[
− 2
(
z2

mq2
r − νsinh2(zmqr)

)
qr
]

Eq4
r

[
z2

mq2
r − sinh2(zmqr)

]

G̃16
(
q
)
=

4zm
(
ν2 − 1

)
sinh(zmqr)qx

E
̅̅̅̅̅

q2
r

√ [
− 2z2

mq2
r +cosh(2zmqr)− 1

]

G̃25
(
q
)
=

2
(

ν+1
)

sinh(zmqr)
[
− zm

(
ν− 1

)
coth(zmqr)q2

yqr

]

E
(
q2

r

)3/2[z2
mq2

r − sinh2(zmqr)
] +

2
(

ν+1
)

sinh(zmqr)
[(

z2
mcosech2(zmqr)q2

r − 1
)
q2

x +
(

ν− 1
)

q2
y

]

E
(
q2

r

)3/2[z2
mq2

r − sinh2(zmqr)
]

G̃26
(
q
)
=

4zm
(
ν2 − 1

)
sinh(zmqr)qy

E
̅̅̅̅̅

q2
r

√ [
− 2z2

mq2
r +cosh(2zmqr)− 1

]

G̃36
(
q
)
=

2(ν2 − 1)[sinh(zmqr)+zmcosh(zmqr)qr]

E
̅̅̅̅̅

q2
r

√ [
z2

mq2
r − sinh2(zmqr)

]

(A.3)   

Y. M
urugesan et al.                                                                                                                                                                                                                             



Tribology International 159 (2021) 106867

13

References 

[1] Bush A, Gibson R, Thomas T. The elastic contact of a rough surface. Wear 1975;35: 
87–111. https://doi.org/10.1016/0043-1648(75)90145-3. 

[2] Greenwood JA, Williamson JBP, Bowden FP. Contact of nominally flat surfaces. 
Proc Roy Soc Lond Math Phys Sci 1966;295:300–19. https://doi.org/10.1098/ 
rspa.1966.0242. 

[3] Greenwood J. A simplified elliptic model of rough surface contact. Wear 2006;261: 
191–200. https://doi.org/10.1016/j.wear.2005.09.031. 

[4] Ciavarella M, Delfine V, Demelio G. A “re-vitalized” greenwood and williamson 
model of elastic contact between fractal surfaces. J Mech Phys Solid 2006;54: 
2569–91. https://doi.org/10.1016/j.jmps.2006.05.006. 

[5] Persson B. Adhesion between an elastic body and a randomly rough hard surface. 
Eur Phys J 2002;8:385–401. https://doi.org/10.1140/epje/i2002-10025-1. 

[6] Campañá C, Müser MH. Practical green’s function approach to the simulation of 
elastic semi-infinite solids. Phys Rev B 2006;74:075420. https://doi.org/10.1103/ 
PhysRevB.74.075420. 

[7] Prodanov N, Dapp WB, Müser MH. On the contact area and mean gap of rough, 
elastic contacts: dimensional analysis, numerical corrections, and reference data. 
Tribol Lett 2014;53:433–48. https://doi.org/10.1007/s11249-013-0282-z. 

[8] Putignano C, Dapp WB, Müser MH. A green’s function molecular dynamics 
approach to the mechanical contact between thin elastic sheets and randomly 
rough surfaces. Biomimetics 2016;1:1–7. https://doi.org/10.3390/ 
biomimetics1010007. 

[9] Polonsky I, Keer L. A numerical method for solving rough contact problems based 
on the multi-level multi-summation and conjugate gradient techniques. Wear 
1999;231:206–19. https://doi.org/10.1016/S0043-1648(99)00113-1. 

[10] Stanley HM, Kato T. An fft-based method for rough surface contacts. J Tribol 1997; 
119:481–5. https://doi.org/10.1115/1.2833523. 

[11] Wu J-J. Numerical analyses on elliptical adhesive contact. J Phys Appl Phys 2006; 
39:1899–907. https://doi.org/10.1088/0022-3727/39/9/027. 

[12] Hyun S, Pei L, Molinari J-F, Robbins MO. Finite-element analysis of contact 
between elastic self-affine surfaces. Phys Rev E 2004;70:026117. https://doi.org/ 
10.1103/PhysRevE.70.026117. 

[13] Hyun S, Robbins MO. Elastic contact between rough surfaces: effect of roughness at 
large and small wavelengths. Tribol Int 2007;40:1413–22. https://doi.org/ 
10.1016/j.triboint.2007.02.003. 

[14] Dapp WB, Prodanov N, Müser MH. Systematic analysis of persson’s contact 
mechanics theory of randomly rough elastic surfaces. J Phys Condens Matter 2014; 
26:355002. https://doi.org/10.1088/0953-8984/26/35/355002. 

[15] Putignano C, Dapp WB, Müser MH. A green’s function molecular dynamics 
approach to the mechanical contact between thin elastic sheets and randomly 
rough surfaces. Biomimetics 2016;1:1–7. https://doi.org/10.3390/ 
biomimetics1010007. 

[16] Venugopalan SP, Müser MH, Nicola L. Green’s function molecular dynamics meets 
discrete dislocation plasticity. Model Simulat Mater Sci Eng 2017;25:065018. 
https://doi.org/10.1088/1361-651X/aa7e0e. 

[17] Dokkum JSV, Nicola L. Green’s function molecular dynamics including 
viscoelasticity. Model Simulat Mater Sci Eng 2019;27:075006. https://doi.org/ 
10.1088/1361-651X/ab3031. 

[18] Müser M, Dapp W, Bugnicourt R, Sainsot P, Lesaffre N, Lubrecht T, Persson B, 
Harris K, Bennett A, Schulze K, Rohde S, Ifju P, Angelini T, Esfahani H, 
Kadkhodaei M, Akbarzadeh S, Wu J-J, Vorlaufer G, Greenwood J. Meeting the 
contact-mechanics challenge. Tribol Lett 2017;65:118. https://doi.org/10.1007/ 
s11249-017-0900-2. 

[19] Müser MH. Internal, elastic stresses below randomly rough contacts. J Mech Phys 
Solid 2018;119:73–82. https://doi.org/10.1016/j.jmps.2018.06.012. 

[20] Venugopalan SP, Müser MH, Nicola L. Green’s function molecular dynamics: 
including finite heights, shear, and body fields. Model Simulat Mater Sci Eng 2017; 
25:034001. https://doi.org/10.1088/1361-651X/aa606b. 

[21] Sadd MH. Elasticity: theory, applications and numerics. second ed. ed. Boston: 
Academic Press; 2009. https://doi.org/10.1016/B978-0-12-374446-3.50002-9. 

[22] Fischer-Cripps AC. Introduction to contact mechanics. second ed. New York, NY: 
Springer US; 2007. https://doi.org/10.1007/978-0-387-68188-7. 

[23] Box GEP, Muller ME. A note on the generation of random normal deviates. Ann 
Math Stat 1958;29:610–1. https://doi.org/10.1214/aoms/1177706645. 

[24] Nayak P. Random process model of rough surfaces in plastic contact. Wear 1973; 
26:305–33. https://doi.org/10.1115/1.3451608. 

[25] David WJ. Handbook of surface and nanometrology. second ed. ed. Boca Raton: 
CRC Press; 2010. https://doi.org/10.1201/b10415. 
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