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Abstract

This research investigates the assessment of thermal resilience in buildings with passive 
systems during heat waves using innovative computational methods. The study emphasizes the 
importance of resilient buildings in the face of rising temperatures and explores the concepts of 
thermal comfort and thermal resilience. A thorough review of existing methods and tools for 
evaluating thermal comfort and resilience is conducted. 

The main objective is to develop a novel computational approach that integrates research 
findings to assess the thermal resilience of buildings during heatwave conditions. The approach 
incorporates two specific metrics: simplified metrics and Weighted Unmet Thermal 
Performance (WUMTP), which are modified to accurately assess thermal resilience in heatwave 
scenarios. The research also focuses on comparing the performance of these metrics and their 
effective utilization in assessing thermal resilience. 

The computational methods are rigorously evaluated through simulations under 
controlled scenarios, accompanied by a comprehensive sensitivity analysis. This analysis 
explores the impact of modifying input parameters on the assessment of thermal resilience and 
provides insights into the factors influencing building resilience. 

By incorporating sensitivity analysis, this research demonstrates the contributions of the 
developed computational methods, including the modified metrics, in enhancing our 
understanding of the relationship between design parameters, climatic conditions, and thermal 
resilience during heat waves. 

This study aims to fill the research gap in thermal resilience and address the lack of 
assessment metrics and tools specifically tailored to heatwave scenarios. It offers valuable 
contributions to the academic community and practical insights for architects and engineers 
designing buildings resilient to rising temperatures and heat waves. The comparative analysis 
of the simplified metrics and WUMTP further enhances our understanding of their strengths and 
limitations in assessing thermal resilience. 
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1. Introduction
1.1 Scope 

Climate change is already impacting the world, and it is expected to bring about significant 
changes in temperature and precipitation patterns. According to (NASA, 2023), 2022 was the 
fifth warmest year on record, highlighting the ongoing warming trend. As a result, heatwaves 
and other extreme weather events are becoming more frequent and intense, leading to adverse 
effects on human well-being, ecosystems, and the global economy (WHO, “The health impacts of 
2003 summer heat waves,”, 2003). Notable examples of the consequences of heatwaves include 
the Chicago heatwave of 1995 (Karl, 1997) and the Paris heatwave of 2003 (Canouï-Poitrine, 
2006), which resulted in increased mortality, discomfort, decreased productivity, heightened 
energy demands, and significant economic losses amounting to tens of millions of euros. 

The projected increase in mean temperatures due to climate change will further exacerbate the 
occurrence and severity of heatwaves (C.B. Field, 2012). Consequently, there is an urgent need 
to design and construct buildings that are thermally resilient, ensuring improved thermal 
comfort and energy efficiency. Computational methods have emerged as valuable tools for 
simulating and predicting building thermal performance under current and future climate 
scenarios. However, the development of these methods is still in its early stages, necessitating 
further research in this domain. This thesis aims to review the current state of the art in 
computational methods for assessing thermal resilience and the metrics and indicators 
developed to quantify it, thereby advancing our understanding of this crucial topic. 

The thesis begins by providing an overview of the impacts of climate change on building thermal 
comfort and its implications for occupants and building systems. Emphasis is placed on the 
importance of designing thermally resilient buildings capable of withstanding extreme events. 
Subsequently, a comprehensive review of the existing computational methods used to assess the 
thermal resilience of buildings under extreme events is conducted, with a focus on their 
strengths and limitations. 

During this review, a research gap in methods for assessing the thermal resilience of passively 
ventilated buildings during heatwaves is identified. To address this gap, two methods, based on 
the research by S. Homaei and M. Hamdy (Shabnam Homaei, 2021) (Homaei S. &., 2021), are 
modified for heatwave scenarios. These methods are then integrated into a computational 
framework, transforming them into a practical tool for assessing thermal resilience. 

Furthermore, a sensitivity analysis is conducted for different scenarios to demonstrate how the 
developed computational methods contribute to a more comprehensive understanding of the 
complex interactions between design parameters and climatic conditions and their influence on 
the thermal resilience of buildings. 

Overall, with this thesis, I aim to fill the research gap in assessing the thermal resilience of 
passively ventilated buildings during heatwaves. By reviewing existing methods, developing 
modified approaches, and conducting sensitivity analysis, valuable insights were gained, leading 
to an improved understanding and practical guidance for designing thermally resilient buildings. 
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1.2 Research questions 

The main research question that this thesis aims to answer is: 

"How can we assess the thermal resilience of buildings that rely on passive systems 
during heat waves, using innovative computational methods?" 

This primary research question leads to several sub-questions that need to be analysed and 
answered at different stages.  

The literature review has provided answers to the following questions: 

1. What are the effects of heat waves on the thermal comfort and thermal resilience of a
building?

2. What are the current methods and indicators used to assess the thermal resilience of a
building, and what are their advantages and disadvantages?

The methodology and application stage addressed the following questions: 

1. What adaptations to the assessment of indicators are necessary to utilize current
resilience models for heat wave scenarios?

2. What methods can be used to combine and enhance existing resilience models and tools
within a computational framework?

3. What are the applications and advantages of the developed computational tool for
thermal resilience assessment in the early stages of design development?

Furthermore, the results addressed the sub-question: 

1. How does each input design parameter affect the resilience metrics?
2. What is the relation between operative temperature and the resilience indicator? Can

operative temperature inform about thermal resilience?

1.3 Research objective 

The objective of this research is to investigate and identify the gaps in the current models used 
to assess thermal resilience and explore methods for improving and adapting these models. The 
aim is to enhance the capabilities of architects, engineers, and building technologists in designing 
future-ready, thermally resilient buildings that can effectively withstand heat waves. By 
addressing these gaps, this research seeks to contribute to the development of more robust and 
reliable approaches for assessing and enhancing thermal resilience in building design. 
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1.4 Approach 

The research development process is divided into 8 main phases, which overlapped with each 
other during the research process for re-evaluation. 

Phase 1: The research framework 

The initial phase of the research involved establishing the scope of the topic and framing the 
research problems based on existing knowledge. During this phase, the research topic was 
critically evaluated and discussed with my mentors to understand its significance to the field of 
Building Technology and society. The focus was narrowed down to specific aspects that require 
attention. Supporting questions are formulated to guide the literature review in the next phases, 
which aided in forming the final research questions. 

Phase 2: Literature review 

In preparation for the literature review, the following key concepts were identified and 
thoroughly researched: thermal comfort, impacts of extreme heat events, thermal resilience, and 
methods used for assessing thermal resilience in the built environment. The focus was also on 
how computational methods are being applied in relation to these concepts.  

To gather relevant information, various sources were utilized, including books, news articles, 
reputable scientific websites, and research papers available through platforms like 
ScienceDirect, ResearchGate, and Scopus. References cited in the research papers were 
examined and incorporated into the research when applicable. The collected information was 
critically analysed to identify research gaps, which laid the foundation for the thesis research.  
The quality of the research papers was evaluated based on their relevance to the research 
question, the references they cited, metrics such as citations and views, and the authors' 
publication history. 

Phase 3: Thermal resilience assessment metrics and Methods 

During this phase, the primary objective was to gather information and conduct research on 
various thermal resilience models, indicators, and their metrics used for quantifying and 
assessing thermal resilience. The focus is on understanding how these models and indicators are 
derived and utilized in research. 

Extensive literature research was conducted to explore existing thermal resilience models, 
indicators, and their metrics. Different approaches and methodologies for quantifying and 
assessing thermal resilience were examined. This phase contributed to understanding the 
underlying principles, assumptions, and calculations involved in these models and indicators. 

The gathered information and research findings from this phase contributed to the development 
of a comprehensive understanding of the existing thermal resilience models, indicators, and 
their metrics. This knowledge served as a foundation for the subsequent phases of the research, 
enabling the formulation of specific research questions and the development of innovative 
approaches to assessing and enhancing thermal resilience in the built environment. 
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Phase 4: Framework for assessment and development  
 
Different thermal comfort models and assessment frameworks used in thermal resilience were 
analysed and evaluated. Considerations such as accuracy, computational efficiency, and 
compatibility with research objectives were taken into account. A structured approach was 
developed to quantify and represent thermal resilience, forming the basis for subsequent 
research phases. 
 
Phase 5: Development and integration of computational methods 

 
A user-friendly computational tool and structure using Rhino, Grasshopper and MATLAB was 
developed to integrate thermal resilience assessment methods and frameworks into the design 
process. The tool facilitated the evaluation and optimization of thermal performance, providing 
insights into potential comfort and energy efficiency outcomes under heatwave scenarios. 
 
Phase 6: Sensitivity analysis of the tools 
  

A sensitivity analysis was conducted to understand how variations in design parameters 
influenced the outcomes of the developed tools. Controlled scenarios were simulated by 
modifying input parameters, and identifying key factors that significantly influenced thermal 
resilience. The analysis validated and refined the tools, ensuring their accuracy and reliability. 
 
Phase 7: Adaptation and Recommendation 
 

Based on the research findings, recommendations were formulated to improve thermal 
resilience assessment in building design. Areas for adaptation and improvement were identified, 
suggesting the incorporation of resilience-oriented strategies or the development of new tools 
and methodologies. The research outcomes have practical implications for designers and 
stakeholders. 
 
Phase 8: Reporting  

 
The final phase involved compiling the research findings and conclusions into a comprehensive 
thesis report. The report synthesized the research outcomes, including the analysis of thermal 
comfort models, assessment frameworks, computational methods, and sensitivity analysis. It 
serves as a valuable resource for further research and the advancement of knowledge in thermal 
resilience assessment. 
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2.  Literature Review 
 

2.1 Thermal comfort  
 

Thermal comfort is a crucial aspect of indoor environments and refers to the state of satisfaction 
or contentment with the thermal conditions experienced by occupants. The American Society of 
Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) (ASHRAE, Thermal 
environmental conditions for human occupancy, 2004)defines thermal comfort as "the 
condition of the mind that expresses satisfaction with the thermal environment." 
 

The interaction between occupants and their surroundings, primarily through conduction, 
convection, evaporation, and radiation, influences thermal comfort. This interaction generates a 
sensation of comfort or discomfort in individuals. Various indicators are used to assess thermal 
comfort in indoor spaces, including temperature, humidity, airspeed, and radiant temperature. 
These indicators are relatively easier to measure and quantify compared to other subjective 
factors such as metabolic rate, clothing index, thermal adaptability, and psychological and 
cultural factors that vary among individuals. 
 
Thermal comfort is influenced by several factors, including building orientation, building 
envelope characteristics, ventilation, shading, weather conditions, and micro-climate. 
Understanding and ensuring thermal comfort, is essential as it significantly impacts occupants' 
physical and mental well-being. Past research reported by Collins (Collins, 1986) has 
demonstrated associations between thermal discomfort and cardiovascular problems, kidney 
and respiratory disorders, and variations in blood pressure. Furthermore, a decline in cognitive 
functions, reduced performance, and decreased ability to perform tasks efficiently by individuals 
have been observed during standardized tests and studies. (Ellfeldt, 2020)(Li Lan, Pawel W., 
2011). 
 
There are a few models that are used for assessing thermal comfort in the build environment. 
Fanger's Predicted Mean Vote (PMV) model (ASHRAE, Thermal Environmental Conditions for 
Human Occupancy., 2017) is widely recognized as a thermal comfort analysis model. It identifies 
six primary factors that have the most influence on thermal comfort: air temperature, mean 
radiant temperature, relative humidity, airspeed, metabolic rate, and clothing value. 
Additionally, psychological factors and human adaptability play a role in determining 
individuals' perceived thermal comfort. 
 
The Adaptive model (Nicol, 2002), another notable comfort model, incorporates the occupants' 
ability to adapt to changes in their surroundings. This model considers all factors from the PMV 
model and recognizes that occupants have a broader range of comfortable temperatures, 
accounting for their adaptive capabilities. Due to this, it is more widely applicable for building 
with passive systems and different climate conditions, compared to the PMV model. 
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2.2 Thermal resilience 
 

Thermal resilience is defined as the “ability of the system to withstand a major disruption within 
acceptable degradation parameters and to recover within a suitable time and reasonable costs 
and risks.” (Haimes, 2009). Various indicators are used to measure and assess thermal resilience, 
including temperature, humidity, and radiant temperature. The PMV and Adaptive models are 
commonly used for thermal resilience analysis, considering factors such as temperature, wind 
speed, and clothing levels. 
 
The research on thermal resilience has many gaps that need to be addressed and explored, it is 
notable that there is no global consensus on the standard of metrics and indicators which can be 
freely applied in most building contexts as researchers tend to develop newer models and 
indicators suited for a specific case study scenario. The gap in research gets wider still for 
methods and indicators for assessing thermal resilience for heat wave scenarios.  
 
There is a relationship between thermal comfort and thermal resilience. Thermal comfort is 
typically defined by an ideal temperature range of ~21 °C (ASHRAE, Thermal environmental 
conditions for human occupancy, 2004), with an upper limit of 26°C and a lower limit of 16°C for 
comfort. The thermal resilience of a building is assessed by evaluating how quickly internal 
temperatures deviate from the comfort range and the building's ability to recover and return to 
the desired temperature (Homaei S. &., 2021) 
 
Methods and models used for thermal resilience analysis 

The PMV model was first introduced in 1984 and has gone through many updates over the years, 
whereas the adaptive model was first introduced in 2004. (S. Carlucci, 2018) (Figure 1) 
 

 

 
Figure 1: timeline showing the various publication adopting PMV and Adaptive models 

Source:  (S. Carlucci, 2018) 
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Although the PMV model is being used for longer, some limitations prevent it from being used in 
different conditions. The model was developed for a mechanical cooling system, which makes it 
harder to apply in the case of passive systems, PMV model overestimated the discomfort felt by 
the occupants as it does not account for the willingness of the occupants to adapt to the change 
in temperature. (S. Carlucci, 2018) 
 
Whereas, the Adaptive model works by assuming the building is naturally ventilated and takes 
the occupant’s willingness to change their settings with the temperature change. (ABCB, 2020). 
The willingness of the occupants to adapt makes a significant difference in thermal resilience 
assessment, as shown in (Figure 2) which is made by hundreds of surveys by M.Humphreys, the 
comfort temperature range is much larger when the Adaptive model is used 
(empty circles represent adaptive model data, and shaded circles represent PMV model data) 
 

 

Figure 2: Graph showing the correlation between Mean operative temperature (x-axis) and neutral temperature (y-axis)  
Source:  M.Humphreys 

 

More studies and researchers are using the Adaptive model as it is easier to modify and use for 
different geographical climate conditions. Furthermore, it works under the condition that 
mechanical systems are either not installed or not working, which makes it more desirable for 
resilience analysis under extreme heat conditions.   
 
Research conducted by (Flores Larsen, 2022)in Argentina refers to the research on the impact 
of overheating risk in Dutch houses (Mohamed Hamdy, 2017), introduces three new indicators 
in assessing thermal resilience 
 

1) Indoor overheating degree (IOD indicator): Quantifies the severity of indoor thermal 
conditions. 

2)  Ambient warmness degree (AWD): Quantifies the severity of the outdoor conditions. 
3) Overheating escalation factor (αIOD): it combines indoor and outdoor environments. 

              Which can be employed along with either the PMV model or the Adaptive model. 
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However, It is to be noted that these metrics are comparably new, and the research on them is 
lacking. Hence, at the time of this review, it’s considered as a novel research, which could be of 
significance in the future. 
 
Tools Used for thermal comfort and resilience analysis 
 

While software tools like DOE-2, EnergyPlus, Ladybug Tools, IDA-ICE, ESP-r, and MATLAB are 
commonly used for thermal behaviour analysis, it's important to note that they primarily focus 
on assessing thermal comfort rather than thermal resilience. These tools can provide insights 
into factors like temperature, humidity, and airflow, but they don't directly measure or analyse 
the building's ability to withstand and recover from extreme heat events. 
 
EnergyPlus, for example, is an extensively used software engine that is also utilized by Ladybug 
Tools. Ladybug Tools, a plugin for Grasshopper in Rhino design software, incorporates tools that 
allow for the use of both the Predicted Mean Vote (PMV) model and the Adaptive model in a 
computational framework. These models provide numeric results within a specific range, 
indicating the comfort level based on factors such as temperature and clothing. 
 
However, it's important to highlight that these tools do not simulate and analyse how a building's 
thermal resilience is affected during temperature changes. Assessing thermal resilience requires 
additional methodologies and tools beyond the scope of these software current applications. 
 
Example of Thermal resilience analysis. 

 

In the conference paper by S. Homaei and M. Hamdy (Shabnam Homaei, 2021), the authors 
proposed methods for assessing thermal resilience in buildings. While their simulation setup 
focused on a power loss scenario during winter, the methods can be adapted for extreme heat 
events. They introduced five indicators to assess thermal resilience: Robustness Duration (RD), 
Collapse Speed (CS), Amplitude of Event (AoE), Recovery Speed (RS), and Expected Performance 
Loss (EPL). These indicators were calculated using simulated data and specific formulas, as seen 
in (Figure 3). The simulation was conducted using the IDA-ICE software, with set boundary 
conditions such as ventilation type, U-value, and energy consumption. 
 

 

Figure 3: Thermal resilience metrics used for analysis 
Source: S. Homaei, M. Hamdy (2021) 

 

Additionally, the same authors published another paper (Homaei S. &., 2021), where they 
introduced a new metric called Weighted Unmet Thermal Performance (WUMTP). This metric 
serves as a unified version of the previously mentioned indicators, providing a comprehensive 
assessment of thermal resilience by assigning different penalties, and it is based on the 
elaboration of the EPL metric. 
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These methods and metrics will be further explored and better understood in Chapter 3 during 
the tool development stage, allowing for their integration into the computational framework for 
assessing thermal resilience. 
 

To conclude, In the context of developing a computational framework for thermal resilience 
during extreme scenarios and analysis, the Adaptive model would be the ideal model to employ 
as it takes the occupant’s adaptability into account, giving a higher range of comfortable 
temperatures to work with and it considers the mechanical cooling/heating systems to be non-
existent or not working.  
The time-based method as seen in the conference paper (Shabnam Homaei, 2021) and research 

paper (Homaei S. &., 2021) are both a valid and implementable method that can be employed 

and developed in a computational framework and has the potential to be combined with the 

Adaptive Model and ladybug tools based on energy plus for assessing thermal resilience for heat 

waves. 

 

2.3 Heat waves 
 

We are seeing an increased occurrence of extreme weather events due to climate change. The 
year 2022 has seen some of the highest recorded temperatures across the globe (NASA, 
2023)(Figure 4). According to the prediction from IPCC, we can expect an increase in the 
frequency, intensity and duration of heatwaves which will affect many countries and millions of 
people caused by higher mean temperature (C.B. Field, 2012) (Houghton, 2021).  
 

 
 

 

Figure 4: Graphical representation of highest recorded temperatures in different countries across the world. 
Source:  World Meteorological Organisation (WMO, n.d.) 
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Thermal discomfort caused by heatwaves and sustained higher temperatures affect the 
occupants' physical and mental well-being as shown by a vast amount of research. 
Cardiovascular problems, kidney and respiratory disorders, and blood pressure variations were 
reported by Collins (Collins, 1986), heat waves have also been linked to higher mortality rates 
in elderly citizens above the age of 65 (McGeehin M.A., 2001). As shown in the study (Eun-hye 
Yoo, 2021) higher temperatures are linked to a spike in the number of hospital visits for 
schizophrenia, dementia, mood and anxiety disorders and substance abuse (Figure 5). A 
decrease in cognitive functions, ability to perform and performance are seen in standardized 
tests (Ellfeldt, 2020)(Li Lan, Pawel W., 2011). European Environment Agency (EEA) reports that 
heatwaves caused 90% of all weather-related deaths between 1980-2022. 
 

 

Figure 5: Graphs showing the relation between daily average temperature and the number of cases of ER visits per day 
RR:  Regression results 

Source:  Eun-hye Yoo., 2021 
 

Heatwaves are among the most dangerous of natural hazards but rarely receive adequate 

attention because their death tolls and destruction are not always immediately obvious. From 

1998-2017, more than 166 000 people died due to heatwaves, including more than 70 000 who 

died during the 2003 heatwave in Europe. Population exposure to heat is increasing due to 

climate change. Between 2000 and 2016, the number of people exposed to heatwaves increased 

by around 125 million. (WHO, Heat and Health, 2018) 

Heatwaves and sustained high temperatures have dire consequences on the built environment 
and infrastructures. Urban heat islands lead to increased temperature and thermal discomfort, 
and the building materials deteriorate faster due to increased expansion and contraction 
impacting the structural integrity. The cost-of-living increases as the demand for energy for 
cooling spikes, this could overload the mechanical systems and energy supply infrastructures, 
leading to failure. (Coghlan, 2022). Thermally resilient buildings as shown to have lower energy 
demands and lower lifetime maintenance costs. 
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The environmental impacts due to weather events such as drought, forest fires, premature 
deaths, failure of infrastructure and an increase in violence etc., directly affect the economy. 
European Environment Agency (EEA) estimates a loss of 560 billion euros in 32 EU countries 
between 1980-2000 due to extreme weather, and heatwaves accounted for 81% of deaths and 
15% of financial losses. (MilletNews, 2023) 
 
 

2.4 Prediction of heat waves 
 

Predicting natural extreme events has been the subject of research for hundreds of years, 
scientists and researchers have been trying to predict natural extreme events like earthquakes, 
tsunamis, floodings, heatwaves etc, for generations. 
Due to the advent of Artificial intelligence (AI) and Machine learning (ML) tools that are being 
constantly developed and improved. We are seeing significant progress in various fields, in 
which predicting weather takes the lead due to the various global joint research and 
development efforts in tracking the climate and weather patterns around the world and the 
factors that influence them. We have the data and tools needed to predict the weather months 
in advance with fair accuracy. 
 
Through efforts like Coupled Model Intercomparison Project (CMIP), which is used as a source 
for The Intergovernmental Panel on Climate Change (IPCC) climate projection, we have the 
means to get an estimate of the future climate scenarios decades ahead (Figure 6). This has been 
used as the basis for various international conferences to develop guidelines and policies to 
combat global climate change. 
 

 

Figure 6: Graphs showing the global avg., temperature projects  
Source:  CMIP6 

https://climate.copernicus.eu/sites/default/files/inline-images/Temp%20graph.png 
 

 

This provides us with an opportunity to use the available data to prepare ourselves to face the 
inevitable future by using methods for heatwave detection, namely: 
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1. Ouzeau’s method: (Ouzeau, 2016) 
This method was developed for the climate in France, the country's temperature 
thresholds were determined using mortality data as a result of previous heatwave 
episodes. The technique was recently used to forecast upcoming heatwave episodes in 
Paris (Machard, A., Inard, C., ,2020). A CORDEX climate dataset has been used to validate 
Ouzeau's method for identifying past heatwaves. By redefining their thresholds as 
percentiles over the air temperature distribution over several years, it was also applied 
to different climates. 
 

2. Nairn and  Fawcett’s method (“Australian” method): (Nairn, 2011) 
In the Australian method, the acclimatization of the human body to higher temperatures 
is considered. This process may take from two to six weeks and involves physiological 
adjustments for the cardiovascular, endocrine, and renal systems. In this model, 30 days 
are employed as the period required for acclimatization. 

 
3. Argentinean National Meteorological Service (SMN) method (Flores Larsen, 

2022)The SMN method defines two cases of days associated with heat events: a “warm 
period” and a “heatwave”. the heatwave is characterized by: its duration (days), the 
maximum absolute temperature during the event, and the maximum value of the 
minimum daily temperature. Definitions for the intensity and severity of heat waves are 
not explicitly provided in the current SMN formulation. 

 
These methods have been compared and analysed in detail in the research (Flores Larsen, 2022), 
concluding that all three methods are fairly good at predicting heat waves and give similar 
overall results.  
 
However, these methods can be reliably used to forecast heatwaves 2-3 weeks ahead. In the 
context of designing buildings that are expected to function efficiently for a couple of decades, 
they are not suitable.  
 
An excel based tool, CCWorldWeatherGen (Jentsch, 2013) offers a better option in this context, 
using this tool we can modify and produce an estimated weather file for scenarios in 2050 and 
2080 using the current updated version of weather file (epw file) for a specific location and the 
prediction models by IPCC.  
 
However, this tool could not be used for my research due to the limitations associated with the 
latest weather file (2022) I am using for the chosen case study. Due to these constraints, the 
scope was scaled down for the latest available weather data on the most recent heatwave in the 
region.  
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3.  Methodology 
 

3.1 Current Frameworks for resilience assessment 
 

In the development of the framework, the approach involved analysing and understanding the 
methods and metrics developed by Homaei, S. and Hamdy, M. in their papers (Shabnam Homaei, 
2021) and (Homaei S. &., 2021). 
 
The simulation in the paper (Shabnam Homaei, 2021) focused on a power loss scenario during 
winter, specifically for the loss of heat. The building considered in the research is heating-
dominated and does not have cooling demands. The case study model used in the research was 
taken from a previous paper by the same authors (Homaei S. &., 2020) 
 
The building's thermal performance is divided into three phases: pre-disturbance, disturbance, 
and post-disturbance, as shown in (Figure 8). The framework utilizes five indicators to assess 
resilience: Robustness Duration (RD), Collapse Speed (CS), Amplitude of Event (AoE), Recovery 
Speed (RS), and Expected Performance Loss (EPL). These metrics are calculated using the 
formulas presented in (Figure 7) and are based on the operative temperature of the simulation 
zone, as depicted in (Figure 8). 
 

 

Figure 7: Thermal resilience metrics used for analysis 
Source: S. Homaei, M. Hamdy (2021) 

 

 

Figure 8: Graph showing the temperature changes by time in different phases. 
Source: S. Homaei, M. Hamdy (2021) 
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These five indicators demonstrate the effect of the event on the building during specific phases 
of the event. Three temperature ranges are set for the experiment: the acceptable range (21°C 
to 18°C), the habitable range (18°C to 15°C), and the uninhabitable range (below 15°C). The 
lowest recorded temperature is denoted as Tmin. 
 
The Robustness Duration (RD) indicates the time it takes for the temperature to drop from the 
ideal temperature of 21°C to 18°C, reflecting how long the building takes to lose heat to the 
surroundings. The Amplitude represents the largest temperature deviation from the ideal 
temperature during the event. The Collapse Speed (CS) and Recovery Speed (RS) indicate the 
speed at which heat is lost and gained, respectively, during different phases of the event. The 
Expected Performance Loss (ELP) is a unique indicator that measures the area under the curve 
developed from the simulated data, providing an overall assessment of the building's 
performance. A lower ELP value indicates greater resilience. 
 
It's important to note that all five indicators are comparative and can be effectively used when 
comparing different case scenarios for the same building design. 
 
 

WUMTP metric 
 
In their research paper "Thermal resilient buildings: How to be Quantified? A novel 
benchmarking framework and labelling metric" (Homaei S. &., 2021), the authors further refined 
the Expected Performance Loss (EPL) indicator and introduced a new metric called Weighted 
Unmet Thermal Performance (WUMTP). 
 
Unlike the previous method, the WUMTP metric excludes the pre-disturbance phase and focuses 
only on the disturbance phase and post-disturbance phase, also known as the recovery phase. 
The simulation setup remains the same as the simplified method described earlier. 
In this method, the authors divide the performance curve into smaller segments based on the 
temperature ranges set: the acceptable level, habitable level, and uninhabitable level set in the 
previous method. This division is shown in (Figure 9) 
 

 
 

Figure 9:Associated penalties for different segments inside the resilience test framework 
Source: Homaei. S, Hamdy M(2021) 
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In their research, the authors divide the performance curve into 12 segments based on the 
occupants' perspective, considering their pessimistic view during temperature drops and 
optimistic view during temperature recovery. The duration of the operative temperature in each 
temperature level is also taken into account. 
 
To further refine the metric, the authors assign penalties to each segment based on the phase, 
hazard level, and duration (Figure 10). These penalties are based on the authors' combined 
experiences but require further research in human physiology for refinement. 
 

 
 

Figure 10: Associated penalties for different segments inside the resilience test framework 
Source: Homaei. S, Hamdy M(2021) 

 
The Weighted Unmet Thermal Performance (WUMTP) is calculated by multiplying the area of 
each segment by its corresponding penalty and summing up all the values (Figure 11). 
  

 

Figure 11: WUMTP calculation equation 
Source: Homaei. S, Hamdy M(2021) 

 

For buildings with multiple zones, the overall WUMTP is calculated by summing up the zonal 
WUMTPs and dividing by the sum of the area of all zones. (Figure 12) 
 

 

Figure 12 : WUMTP overall calculation equation 
Source: Homaei. S, Hamdy M(2021) 

 

Unlike the Expected Performance Loss (EPL), which is an indicator, WUMTP is developed as a 
resilience metric. The resilience class labelling scheme allows for its application in simulations 
assessing the thermal resilience of buildings during winter power loss scenarios. (Figure 13) 
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Figure 13 : Resilience classes for buildings labelling 
Source: Shabnam Homaei, Mohamed Hamdy (2021) 

 

In conclusion, the framework developed by the authors, including the Simplified method and 
WUMTP method, provides a solid foundation for the development of a tool that can be utilized 
in assessing thermal resilience specifically for heatwave scenarios. By integrating these methods 
into a computational framework, the tool can effectively analyse and quantify the thermal 
resilience of buildings, aiding in the design process for creating thermally comfortable and 
resilient structures in the face of extreme heat events. 
 

3.2 Adaptation and Development  
 

3.2.1 Adaptation and Development of the new method and tools 
 

To adapt the metrics and indicators for resilience analysis to the heatwave scenario, several 
modifications were made based on the findings from the literature research conducted in 
Chapter 2. 
 
Firstly, the set point temperature (Tsp) or the middle of the comfort range was adjusted to 24°C 
instead of the commonly accepted 23°C for summer weather (ASHRAE, Thermal Environmental 
Conditions for Human Occupancy., 2017). This adjustment is supported by the concept of 
adaptive thermal comfort, as individuals tend to adapt to higher temperatures during heat 
waves. The shift in the set point temperature reflects the understanding that occupants may 
perceive higher temperatures as comfortable during such extreme weather conditions. 
 
The comfort range, which indicates the range of temperatures within which occupants feel 
comfortable, was redefined to span from 24°C to 28°C (Trt). This range takes into account the 
elevated temperatures experienced during heatwaves while still providing a comfortable 
environment for building occupants. 
 
Additionally, the habitable range was established to capture temperatures beyond the comfort 
range that can still be tolerated by individuals. In the context of heatwaves, the habitable range 
was set from 28°C to 32°C (Tht), which is less than 35°C as mentioned by (Crownhart, 2021). 
This range acknowledges that occupants may tolerate higher temperatures during heatwaves 
but with potential discomfort and reduced thermal satisfaction. 
 
Temperatures exceeding 32°C were considered beyond the habitable range and categorized as 
the uninhabitable range. The highest recorded temperature during the heatwave event was 
marked as Tmax. This distinction helps identify critical temperature thresholds beyond which 
the indoor environment becomes unsuitable for human occupancy. 
 
These ranges are applied for both the new simplified method and WUMTP.  
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3.2.2 Modifications for the simplified method 
 

In the context of heatwaves, where the focus is on the temperature rise, some modifications were 
made to the equations used to calculate the indicators in the simplified methods. These 
adjustments allow for a more appropriate assessment of thermal resilience during heatwave 
events. (Figure 14) 
 

 
Figure 14: Illustrative graph of the simplified method, single day 

The Robustness indicator (R), which represents the duration it takes for the temperature to 
increase from the set point temperature (Tsp) to the upper limit of the comfort range (Trt), 
remains unchanged in the new method.  
 
To capture the speed of temperature escalation during a heatwave, the Collapse speed (CS) 
indicator was replaced with the Escalation speed (ES) indicator. The ES measures the rate at 
which the temperature increases above the set point temperature (Tsp), reflecting the rapid 
temperature rise experienced during heat waves.  
 
The Amplitude of the event (AoE) indicator remains the same, representing the maximum 
temperature deviation from the set point temperature (Tsp) during the heatwave event. 
 
The Recovery speed (RS) indicator measures the rate at which the temperature decreases back 
to the comfort range after reaching the maximum temperature. This indicator helps assess the 
building's ability to recover from the heatwave conditions.  
 
Lastly, the Expected performance loss (EPL) indicator was modified to account for the 
temperature rise above the set point temperature (Tsp). The new equation [Limits 0 to t(T(t)-
Tsp) dt] calculates the area under the curve of the temperature deviation above the set point 
temperature, indicating the overall performance loss during the heatwave event. 
 
In the new method for assessing thermal resilience under heatwave scenarios, the simulation 
settings have been adjusted to align with the research objective of evaluating buildings with 
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passive systems. As a result, the focus is no longer on simulating power loss scenarios, but on 
capturing the performance of the building during heatwave days. 
 
The simulation is conducted for multiple heatwave days within the defined simulation period. 
For each simulated heatwave day, all five indicators (RD, ES, AoE, RS, EPL) are calculated. This 
generates a set of 'n' values for each indicator, corresponding to the 'n' simulated heatwave days. 
 
To select the representative value for each indicator, the criteria are as follows: 

1. Robustness Duration: The Highest value is chosen, as it represents the instance with the 
highest robustness, indicating the longest duration until the temperature reaches the 
upper comfort limit. 

2. Escalation speed: The highest value is selected, as it signifies the fastest rise in operative 
temperature during the heatwave event. 

3. The amplitude of events: The highest value is considered, as it represents the peak 
temperature deviation from the set point temperature, indicating the intensity of the 
heatwave event. 

4. Recovery speed: The lowest value is chosen, as it indicates the slowest rate of 
temperature decrease after reaching the maximum temperature during the heatwave. 

5. Expected performance loss: The highest value is selected, as it reflects the worst overall 
performance of the building during the heatwave event. 
 

By considering the worst performance among the 'n' values for each indicator, the method ensures that 

the most challenging conditions and the building's least resilient aspects are taken into account for 

further analysis and evaluation of thermal resilience under heatwave scenarios. 

 

3.2.3 Modifications for WUMTP 
 
In the modified WUMTP method, adjustments have been made to the division of segments in the 
graph. Since the authors did not explicitly state how they divided the segments between the set 
temperature ranges, logical assumptions were made based on the occupants' perception during 
a heatwave event. 
 
Considering that occupants have a pessimistic view as the temperature rises and an optimistic 
view when the temperature is dropping, the segment division (Figure15) is revised as follows: 
 

1. For the first two segments (S1, S2) and the last two segments (S11, S12) between Tsp and 
Trt, the segment division is set at the temperature of 27°C. This temperature is closer to 
the edge of the comfort zone and marks the transition from the comfort range to the 
higher temperature range. 
 

2. For the segments (S3, S4) and segments (S9, S10) between Trt and Tht, the division is 
made at 30°C. This temperature is chosen as the midpoint between the comfort range and 
the uninhabitable range, indicating the transition from habitable conditions to the higher 
temperature range. 

 
3. As for the segments (S5, S6, S7, and S8) that lie beyond Tht, they are divided immediately 

after Tht at 33°C. Beyond this point, the temperature is considered hazardous and falls 
into the range of extreme heat. 
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By adjusting the segment divisions in this manner, the modified WUMTP method takes into 
account the specific temperature ranges and the occupants' perception during a heatwave event, 
enabling a more accurate assessment of thermal resilience under heatwave conditions. 
 
To select the representative value for WUMTP, the criteria is to select the highest WUMTP among 
the ‘n’ simulated heatwave days as it represents the worst performance. 
 

 
Figure 15: Illustrative graph of the WUMTP method, single day 

 

3.3 Integration of the new method into the computational workflow 
 
To incorporate the new simplified method and the adapted WUMTP method for heatwave 
scenarios, the first step was to select a platform for creating the model and conducting the 
necessary simulations to obtain the operative temperature data required for thermal resilience 
analysis. 
 
Rhinoceros 3D software was chosen as the primary platform for modelling and running 
simulations using the integrated Grasshopper platform, along with the Ladybug tools, Honeybee, 
and Colibri plugins. The Ladybug and Honeybee tools allow for complex simulations using the 
EnergyPlus and OpenStudio simulation engines. 
 
A shoe box structure with dimensions of 8m x 8m and a height of 3m was used during the 
development stage of the method and tool to facilitate understanding and reduce complexities 
in the initial stages. The Honeybee plugin was used to define the physical characteristics of the 
model, while the Ladybug tools were utilized to conduct simulations. The Colibri plugin enabled 
the automation of simulations for a large number of samples. More details on the structure and 
setup can be found in Appendix A. 
 
After setting up the model and simulation space for an eight-day period during the summer 
months in the context of Jordan's climate, a single sample was simulated to obtain hourly 
operative temperature data for the simulated period. This data was exported as a .csv file using 
a custom Python script.. 
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MATLAB software was employed to import the operative temperature data and plot the 
temperature vs. time graph. Separate MATLAB scripts were developed for calculating the 
indicators of both the simplified method and the WUMTP method using the same .csv file as the 
data source, ensuring clarity. 
 
To enhance the accuracy of the indicator calculations, a MATLAB script was implemented to 
interpolate the hourly operative temperature data and add three additional data points between 
each of the simulated data points. This interpolation allowed for estimating the operative 
temperature every 15 minutes during the simulation period. The interpolated data was then 
used as the input for calculating the indicators in both the simplified method and the WUMTP 
method. 
A detailed overview of the scripts developed for the simplified and WUMTP methods is given in 
Appendix B. 
 
Although the simulation was conducted for an eight-day period, the indicator calculations for 
both methods were performed only for four days, excluding the first and last two days. This was 
done to focus on the operative temperature pattern during the heatwave period being assessed. 
 
Upon initiation of the script, it automatically generated the graph (Figure 17) and calculated all 
the indicators for each day of the heatwave period (Figure 16). Similarly, the WUMTP script 
generated the graph and calculated the WUMTP for a specific number of days (Figure 18), with 
the selection of values based on the criteria mentioned in sections 3.2.2 and 3.2.3. 
 
 

 
 

Figure 16 : Script snippet from MATLAB 
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Figure 17: New simplified method graph 
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Figure 18: New WUMTP graph 
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Both scripts have been designed to be robust, independent, and easily modifiable, ensuring that 
they are not biased towards any specific model or data. This flexibility allows the tool to be 
utilized with different climate data and building case study scenarios, making it adaptable and 
applicable in various contexts. 
 
In conclusion, this study has successfully adapted the simplified method and the Weighted 
Unmet Thermal Performance (WUMTP) method for assessing thermal resilience in buildings 
during heatwave scenarios, particularly those with passive systems. By integrating these 
methods into a computational workflow using software such as Rhino, Grasshopper, and 
MATLAB, the study has developed a tool that can effectively evaluate the thermal resilience of 
buildings under heatwave conditions. 
 
The tool's robustness and independence ensure that it can be applied to different climate data 
and building study scenarios without introducing any biases. This adaptability makes it a 
valuable asset during the initial phase of the design process, enabling designers to assess the 
thermal performance of buildings and make informed decisions regarding the integration of 
passive systems. 
 

3.4 Using developed methods and tools through sensitivity analysis  
 

The sensitivity analysis conducted in this study offers valuable insights into the relationship 
between design parameters and thermal resilience. By employing SOBOL's method and 
generative sequence of input parameters, changes in thermal resilience indicators can be 
observed, allowing designers to identify the most influential factors and prioritize design 
interventions accordingly. 
 
The calculation and analysis of First-order, second-order, and Total-order indices further 
enhance the understanding of potential trade-offs and synergies between different design 
parameters. By examining the simultaneous impact of changes in one parameter on multiple 
indicators, designers can make informed decisions that optimize thermal resilience while 
considering other design objectives, such as energy efficiency, cost-effectiveness, and occupant 
comfort. 
 
Comparing the local and global sensitivity analysis for both the simplified and WUMTP 
indicators enables a comprehensive evaluation of their strengths and limitations. This 
comparison provides valuable insights into the performance of the metrics and facilitates a 
deeper understanding of their applicability in different contexts. 
 
Furthermore, sensitivity analysis contributes to the advancement of knowledge in the field of 
thermal resilience. By analysing the sensitivity of the developed tools across various scenarios 
and design parameters, trends and patterns can be identified, leading to a more profound 
understanding of the complex interactions between building design, passive systems, and 
thermal resilience. This knowledge can inform the refinement and improvement of 
computational methods and guide future research and development efforts. 
 
To provide an overview of the analysis process, Figure 19 illustrates the software and tools used, 
as well as their order of implementation. This visualization helps to demonstrate the systematic 
approach employed in the analysis. 
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Figure 19: Flowchart of the tools and analysis 
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3.4.1 Case study 
 

The choice of a school building designed for the hot climate of Jordan using passive systems 
aligns well with the objective of assessing thermal resilience in a heatwave scenario and 
evaluating the effectiveness of passive design strategies. By selecting a specific classroom within 
the school building as the focus of the analysis, a more detailed investigation of thermal 
performance and resilience was conducted. 
 
The use of an EPW file from the year 2022, corresponding to a recorded heatwave event at the 
end of August (ArabiaWeather., 2022)., adds realism and relevance to the analysis. Simulating 
the building's performance during an actual heatwave event allows for the capture of specific 
challenges and vulnerabilities that arise in extreme weather conditions. This approach ensures 
that the findings and insights derived from the sensitivity analysis are applicable and useful for 
designing resilient buildings in similar climates and scenarios.  
 
Figure 20 represents the simplified model used for the sensitivity analysis, based on the design 
by Samanwita (Ghosh, 2022). The model includes a classroom with windows on two opposite 
walls, providing a specific space for evaluating design parameters and their impact on occupant 
comfort and resilience.  
 
The choice of a classroom within the school building as the focus of the analysis allows for a more 
detailed investigation of the thermal performance and resilience of a specific space. This level of 
granularity enables a more targeted evaluation of design parameters and their impact on 
occupant comfort and resilience within a specific context. 
 

 
 

Figure 20: Simplified model for sensitivity analysis  
Source:  based on (Ghosh, 2022) 

 

By conducting the sensitivity analysis on this specific case study, the study gains a deeper 

understanding of the thermal performance and resilience of the chosen building under heatwave 

conditions. This knowledge can be utilized to optimize the design of the school building and 

inform future design decisions, ensuring the development of thermally resilient buildings in hot 
climates. 
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3.4.2 Variables for the sensitivity analysis 
 

The following variables were chosen as input variables for the scope of this analysis 
 
 

Input parameters  
 

Units LL | UL 

Thermal transmittance of the external walls Uwallext W/m2K {0.85 | 4.64} 

Thermal transmittance of the roof Uroof W/m2K {0.43 | 4.60} 

Thermal transmittance of the floor Ufloor W/m2K {0.87 | 5.07} 

Density of the external walls Dwallext kg/m3 {500| 2500} 

Density of the roof Droof kg/m3 {1500 | 2800} 

Density of the floor Dfloor kg/m3 {2000 | 2800} 

Specific heat of the external wall SHwallext J/kg K {700 | 1500} 

Specific heat of the roof SHroof J/kg K {900 | 1500} 

Specific heat of the floor SHfloor J/kg K {950 | 1500} 

Solar absorptance of the external walls awall – {0.2 | 0.8} 

Solar absorptance of the roof aroof – {0.2 | 0.8} 

Fraction of the ventilation area by the 
opening area 

Fvent – {0.2 | 1.0} 

Air Infiltration Rates of the windows InfWindow kg/s.m {0.00001 | 0.04} 

Window-to-wall ratio W2Wratio – {0.15 | 0.6} 

Solar Heat Gain Coefficient of the windows SHGCwindow – {0.36 | 0.87} 

Thermal transmittance of the glass Uglass W/m2K {0.6 | 5.2} 

Azimuth of the main facade of the building Az degrees {0 | 360} 

 

The thickness of the construction components was fixed for the purpose of this study. 
 
External wall construction was fixed to 0.25 m 
Roof construction was fixed to 0.20 m 
Floor construction was fixed to 0.15 m  
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The sensitivity analysis conducted in this research focuses on 17 input variables, which were 
selected based on their potential impact on the resilience indicators of the building in a heatwave 
scenario. These variables were chosen to assess their influence on the thermal performance and 
resilience of the building. 
 
To evaluate the impact of these variables, SOBOL's sensitivity analysis method is employed. A 
script was developed in Jupyter Notebook to generate a sample size of 9,728 for calculating the 
first-order and total-order indices. Additionally, a sample size of 4,608 was generated 
specifically for calculating the second-order indices. The script's details, including its 
implementation and functionality, are provided in Appendix C of the research. 
 
By generating output data for all the samples across the 17 input variables, the analysis enables 
a comprehensive examination of the relationships between the input variables and the resilience 
indicators. This extensive dataset allows for further analysis and interpretation of the sensitivity 
analysis results, providing insights into the relative importance and interactions of the selected 
variables in relation to thermal resilience. 
 
The output for all the samples was generated for each of these 18 variations for further analysis. 

 
Output Variables  Units 

  
Robustness (R)  hours (hr) 

Escalation Speed (ES) Degree/hours 

The amplitude of Events (AoE) Degree 

Recovery speed (RS) Degree/hours 

Expected performance loss (EPL)(new) Degree hours /sqm 

  
WUMTP (new) Degree hours /sqm  
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4.  Results 
 

The simulation process for the sensitivity analysis involved a substantial computational time due 

to the large number of samples generated and the complexity of the calculations involved. For 

the calculation of the First and Total-order indices, a total of 9,728 samples were generated. This 

process took approximately 24.5 hours to complete. The simulations were conducted for each 
sample, and the resulting data were used to calculate the sensitivity indices.  

Additionally, the interpolation of the operative temperature and the calculation of the resilience 

metrics for all the samples required an additional hour of computational time. This step involved 

processing the data obtained from the simulations and performing the necessary calculations to 

determine the resilience indicators. Similarly, for the calculation of the Second-order indices, a 

total of 4,608 samples were generated. The simulation process for these samples took 
approximately 12.5 hours to complete. 

It is important to note that the computational time may vary depending on the specific hardware 

and software configuration used for the simulations.  

4.1 Results from First and Total-order indices for 9,728 samples 
 

The results for all the output variables for the 17 input variables are shown in the tables below. 
 

First-order:  AoE EPL ES RD RS WUMTP 

Uwallext: 0.003236911 0.012353177 0.027105396 0.009758064 0.028404818 0.00412876 

Uroof:  0.014809087 0.001207212 0.074674719 0.039362229 0.032066624 0.015893302 

Ufloor: 0.256436521 0.497660278 0.015478321 0.067424787 0.069462296 0.279758091 

Dwallext:  0.025086191 0.000550905 0.032497432 0.003302812 0.063365486 0.015012847 

Droof: 0.001349058 0.000529885 0.002198741 -0.013867927 0.02801727 0.003133768 

Dfloor:  0.000481574 -9.47E-06 0.007037133 -0.007863793 0.008937151 0.001836954 

Shwallext:  0.002896493 0.000821897 0.029937356 0.014185978 0.012980879 0.001610854 

Shroof:  0.005096649 -0.000205319 0.015076911 0.007606314 0.002840781 0.00318728 

Shfloor: 0.000370022 -3.16E-06 0.013105848 -0.006863104 0.001838042 0.001988821 

SAwall: 0.015260587 0.045023787 0.00066866 0.01390254 0.008373441 0.022509072 

SAroof:  -6.05E-05 0.000193758 0.002928088 0.005162471 -0.000890549 0.001202856 

Fvent: 0.014242015 0.003905989 0.048204058 0.014469417 0.013199043 0.012862952 

InfWindow:  -0.000180127 0.003905989 0.029171531 0.012592452 0.00561956 0.002159256 

W2Wratio: 0.372351929 0.149002207 0.230585735 0.288931839 0.345543311 0.288165437 

SHGCwindow: 0.040421381 0.046898928 0.005099909 0.052423106 0.073536149 0.04848539 

Uglass: 0.007202693 0.003281582 0.010849376 0.014894575 0.015367986 0.009106085 

AZangle:  0.160156932 0.222600484 0.397707358 0.340018898 0.195936765 0.238314518 

       

Total 0.919398044 0.987936078 0.942326572 0.884035483 0.905489601 0.949356243 

 

Ideally, for First-order, the sum of all the indices for an output variable should be less than or 

equal to 1, as seen in the above table for all the output variables the total is less than 1. 
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Total-order:  AoE EPL ES RD RS WUMTP 

Uwallext: 0.00669639 0.007710545 0.080041492 0.061845812 0.040567965 0.004176279 

Uroof:  0.018161519 0.002026533 0.089849403 0.068288084 0.054617594 0.011872039 

Ufloor: 0.280017334 0.502929482 0.05221669 0.199710433 0.110317487 0.297823645 

Dwallext: 0.026149956 0.00092421 0.095830272 0.101787898 0.100449296 0.014796586 

Droof: 0.002083103 0.000409927 0.03701732 0.051967661 0.025282478 0.002245873 

Dfloor:  0.00071947 3.72E-05 0.012931787 0.013314029 0.014796095 0.000715212 

Shwallext: 0.00278457 0.000573891 0.053599433 0.057121479 0.041653314 0.004030072 

Shroof:  0.002715715 0.000125777 0.026594204 0.043377965 0.01645802 0.002313436 

Shfloor: 0.001405412 7.15E-05 0.01889129 0.023192179 0.01800559 0.001728322 

SAwall: 0.012332202 0.035225771 0.018575191 0.073441901 0.012854408 0.01568866 

SAroof:  0.000395651 0.000785558 0.005257733 0.011166605 0.002592934 0.000747253 

Fvent: 0.016909886 0.003940771 0.110435327 0.011166605 0.066367972 0.007832506 

InfWindow:  0.002147765 0.002283226 0.05340759 0.011166605 0.028502314 0.001372225 

W2Wratio: 0.391470384 0.162766546 0.349558689 0.382241474 0.444341701 0.335498018 

SHGCwindow: 0.06239356 0.069465374 0.065169694 0.093627687 0.130660063 0.083342943 

Uglass: 0.008678166 0.002184959 0.039716282 0.071294477 0.038332734 0.007284889 

AZangle:  0.213936833 0.24243296 0.630363805 0.452247497 0.431909659 0.308094528 

4.2 Analysis First and Total-order indices for 9,728 samples 

Figure 21: First-order ranking of input variables on their effect on AoE and RD 

Figure 22: First-order ranking of input variables on their effect on ES and RS
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Figure 23: First-order ranking of input variables on their effect on EPL and WUMTP 

  

Figure 24: Total-order ranking of input variables on their effect on AoE and RD 

 

Figure 25: Total-order ranking of input variables on their effect on ES and RS 

  

Figure 26:Total-order ranking of input variables on their effect on EPL and WUMTP 



31 

 

The First-order and Total-order indices provide valuable insights into the relative influence of 

different input variables on the thermal resilience indicators. The rankings of the variables in 

terms of their influence on each indicator can help prioritize design interventions and identify 

key parameters for improving the building's thermal performance during heatwave scenarios. 

For the simplified metrics, the Total-order indices shown in Figures 24, 25, and 26 demonstrate 

the global sensitivity of the indicators and highlight the influential input variables. In the case of 

the Escalation speed indicator, the Azimuth angle has the greatest influence, followed by the 

window-to-wall ratio and Fvent (ventilation factor). The Recovery speed indicator is 

predominantly influenced by the window-to-wall ratio, followed by the Azimuth angle and solar 
heat gain coefficient of the window. 

Each indicator in the simplified method exhibits distinct influences from different input 

variables, with varying magnitudes. However, the window-to-wall ratio and Azimuth angle 

consistently emerge among the top three variables for all indicators, indicating their significant 

influence on the thermal resilience of the building. The U-value of the floor is another important 

input variable, demonstrating a higher degree of influence on three out of the five resilience 
indicators, placing it among the top three variables 

The findings are further supported by the analysis of the Weighted Unmet Thermal Performance 

(WUMTP) indicator, which combines the characteristics of the simplified method. It confirms 

that the window-to-wall ratio (W2Wratio), Azimuth angle (AZangle), and U-value of the floor 

(Ufloor) have the most significant influence on the thermal resilience of the building, in that 
order. 

By understanding the influential variables, designers and researchers can focus on optimizing 

these parameters to enhance the thermal resilience of buildings during heatwave events. These 

insights provide guidance for design interventions and inform decision-making processes to 
create more resilient and energy-efficient buildings. 

4.3 Analysis Second-order indices for 4,608 samples 
 

The Second-order indices provide valuable insights into the interactions between pairs of input 

variables that may not be evident from the First-order and Total-order indices. These 

interactions can reveal hidden relationships and dependencies that affect the thermal resilience 

indicators. 

In the case of the AoE indicator, the Second-order indices (Figure 27) show that the combination 

of the window-to-wall ratio (W2W ratio) and U-value of the glass has a strong influence. This 

suggests that for a resilient design, when aiming to minimize the maximum temperature 

deviation from the setpoint (Tsp), a higher W2W ratio should be accompanied by a lower U-

value and Solar Heat Gain Coefficient (SHGC) of the window. In other words, a design with a 

lower W2W ratio, along with lower U-value and SHGC of the window, would be more resilient in 
terms of reducing temperature deviations. 

Similarly, the Second-order indices for the Resilience Duration (RD) indicator (figure 28), which 

measures how long the building stays within the comfort temperature zone, highlight the 

influence of the U-value of the floor when paired with other variables such as the external wall 
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thickness (Dwallext), floor thickness (Dfloor), wall surface area (SAwall), W2W ratio, and SHGC 

of the window. This suggests that the U-value of the floor plays a significant role in determining 

how heat is transferred from the indoor space to the ground below. A lower U-value of the floor 

would result in slower heat transfer to the ground, potentially leading to a longer duration 

within the comfort temperature zone. On the other hand, a higher U-value of the floor may 

facilitate faster heat transfer to the cooler ground below. 

 

Figure 27: correlation matrix, Second-order indices for AoE 

 

The correlation matrix (Figure 27 and Figure 28) provide visual representations of the Second-
order interactions between input variables for the AoE and RD indicators, respectively 
 

For the Escalation Speed (ES) indicator, the correlation matrix (Figure 29) shows that the 

interaction between the Azimuth angle (AZangle) and the Solar Heat Gain Coefficient of the 

window (SHGCwindow) has a high influence. This suggests that the orientation of the building 

(represented by AZangle) and the solar heat gain characteristics of the windows (represented 

by SHGCwindow) interact to impact the rate of increase in the operative temperature during a 

heatwave. Understanding this interaction can help designers make informed decisions about 

building orientation and window properties to mitigate rapid temperature escalation. 
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Figure 28: Correlation matrix, Second-order indices for RD 

 

Figure 29: Correlation matrix, Second-order indices for ES 
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Figure 30: Correlation matrix, Second-order indices for RS 

The correlation matrix for the Recovery Speed (RS) indicator (Figure 30) reveals that the 

interactions between the external wall thickness (Dwallext) and the Azimuth angle (AZangle), 

as well as between Dwallext and the window-to-wall ratio (W2Wratio), have a high influence. 

This suggests that the density of the external walls, in combination with the building orientation 

and window-to-wall ratio, plays a significant role in determining the rate at which the operative 

temperature decreases towards the setpoint after a heatwave. Designers can consider these 

interactions to optimize the building envelope and orientation for faster temperature recovery. 

For the EPL indicator, the correlation matrix (Figure 31) highlights the strong interaction of the 

U-value of the floor (Ufloor) with most other input variables. Additionally, the strongest 

interaction is observed between Ufloor and the Solar Heat Gain Coefficient of the window 

(SHGCwindow). This indicates that the U-value of the floor has a significant influence on the 

overall resilience of the building, and its interaction with other variables, such as the SHGC of the 

window, can impact the effectiveness of passive design strategies. 

Finally, the correlation matrix for the WUMTP indicator (Figure 32) shows higher levels of 

interaction between input variables compared to the correlation matrixes of the simplified 

indicators. The U-value of the floor (Ufloor) and external wall thickness (Dwallext) exhibit a 

strong influence on WUMTP, when paired with other input variables. This suggests that these 

two variables play crucial roles in determining the overall thermal resilience of the building 
when considering multiple aspects of thermal performance. 
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Figure 31: Correlation matrix, Second-order indices for EPL 

 

Figure 32: Correlation matrix, Second-order indices for WUMTP 

The calculated values of the Second-order indices are listed in Appendix D. 
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4.4 Analysis of best and worst performing design iteration out of 9,728 
samples 

 

For filtering the top five best and worst performing designs, the samples and the results for both 

the Simplified indicators and WUMTP were used separately to generate a parallel coordinate 

plot using Design explorer.  

Based on the analysis and conclusion from chapter 4.2, we know that the Ufloor, W2W ratio and 

AZ angle have the most influence on the Simplified indicators and WUMTP. As discussed in 

chapter 3.2.2 and 3.2.3, a low EPL, ES, AoE and WUMTP values along with high RS and RD values 

are desirable as they represent better thermal resilience.  

By filtering the samples for the top 3 variables and the desired results for simplified indicators 

(Figure 33) and WUMTP (Figure 34), I was able to observe where the input variables are placed 

between the upper and lower limits, leading to the 5 best performing design options. 

 

 

Figure 33: Parallel Coordinate plot- Top 3 Input variables for best performance - Simplified indicators 

 

 

 

 

Figure 34: Parallel Coordinate plot- Top 3 Input variables for best performance- WUMTP 

 

 

By looking at the above plots, it is evident that higher Ufloor value, lower W2Wratio and AZ angle 

around 180 led to the best thermally resilient designs according to both the Simplified and 
WUMTP indicators. 
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Similarly, the lower Ufloor value, higher W2W ratio and AZ angle around 300 and 45 lead to the 

worst thermally resilient designs according to both the Simplified indicators (Figure 35) and 
WUMTP (Figure 36)  

 

 

Figure 35:Parallel Coordinate plot- Top 3 Input variables for worst performance - Simplified indicators 

 

 

 

Figure 36:Parallel Coordinate plot- Top 3 Input variables for worst performance - WUMTP 
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5.  Discussions 
 

By studying and working with the two resilience assessment methods, I was able highlight some 
important points to make comparisons between the Simplified method and the WUMTP method. 
 

1. The Similarity in Results: Both the Simplified method and WUMTP show similar results 
in terms of the influence of input variables on thermal resilience. This indicates 
consistency and reliability in assessing the impact of design parameters. 
 

2. Comparative Indicators vs. Overall Resilience: The Simplified method provides five 
indicators that offer insights into the resilience characteristics of the building at different 
phases of a heatwave. In contrast, the WUMTP is an overall resilience performance 
indicator, providing a comprehensive assessment of thermal resilience. Each method has 
its advantages in terms of the level of detail and breadth of evaluation. 

 
3. Resilience Classification: The WUMTP can be used to classify the thermal resilience of 

a design by applying resilience class index calculations. This allows for a more specific 
and standardized categorization of the building's resilience level. The Simplified method, 
on the other hand, primarily serves as an indicator rather than a classification metric. 
 

4. Consideration of Occupant Perception: The WUMTP incorporates penalties at 
different stages of the calculations to account for the psychological perception of 
occupants. This aspect does not apply to the Simplified method. By considering 
occupants' experiences and comfort, the WUMTP provides a more comprehensive 
evaluation of thermal resilience. 

 
 
By modifying the Simplified and WUMTP methods to analysis the buildings thermal resilience 
for heatwave scenario, and developing a computational framework for their application, for this 
thesis and research a few steps taken to narrow the research gap in the field.  
 
The current version of the developed tool focuses on analyzing and calculating indicators for 
individual zones within a building. This makes it suitable for studying specific zones and 
evaluating their thermal resilience. However, further work is needed to enable analysis and 
calculations for multiple zones simultaneously. 
 

The operative temperature serves as a fundamental input for calculating indicators in both the 
Simplified method and the WUMTP. While several indicators are derived from the operative 
temperature data, the Amplitude of Event (AoE) stands out as the only indicator that can be 
directly calculated using a simple function within the Grasshopper environment. 
 
Lower values of AoE consistently indicate better thermal resilience, while higher values indicate 
poorer thermal resilience, as supported by the findings presented in Figures 33 and 35. This 
trend aligns with the observations made for the other indicators within the simplified method. 
Therefore, by analyzing the simulated operative temperature data and evaluating the AoE, it is 
possible to gain a partial understanding of the thermal resilience of the design. 
 
However, it is important to note that while the AoE provides valuable insights into the magnitude 
of temperature fluctuations experienced by occupants, it represents only one aspect of thermal 
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resilience. The Simplified method and the WUMTP offer a more comprehensive assessment by 
considering multiple indicators and capturing various dimensions of thermal performance 
during heatwave scenarios. 
 
Therefore, while analyzing the simulated operative temperature and assessing the AoE can 
provide initial insights into the thermal resilience of a design, a more comprehensive evaluation 
should involve considering the broader range of indicators and metrics provided by the 
established methods. 
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6.  Conclusion 
 

 

This research aimed to assess the thermal resilience of a school building in a hot climate using 

passive design strategies during a heatwave scenario. Through the analysis and evaluation of 

various indicators, the research findings have provided valuable insights into the factors 

influencing thermal resilience and the effectiveness of design interventions.  

The research questions were addressed by conducting sensitivity analysis using SOBOL's 

method and examining the first-order, second-order, and total-order indices. The results 

revealed that variables such as the window-to-wall ratio, azimuth angle, and U-value of the floor 

had the most significant impact on thermal resilience indicators. The correlations between these 

variables and the resilience indicators were further explored, highlighting the importance of 

specific design considerations for achieving improved thermal performance 

The significance of this work lies in its contribution to the understanding of thermal resilience 

and the development of computational tools and methods for assessing building performance in 

extreme weather conditions. By evaluating the thermal resilience of a specific zone within the 

building, the research provides insights into the design parameters and strategies that can 

enhance occupant comfort and energy efficiency while reducing the negative effects of heat 
waves. 

The implications of this work extend to the field of sustainable building design and the broader 

context of climate change adaptation. The findings can guide architects and designers in 

developing strategies to create buildings that are more resilient to heat waves and other climate-

related challenges. Moreover, the research highlights the need for considering multiple 

indicators and a holistic approach to assessing thermal resilience, taking into account occupant 

comfort, energy efficiency, and cost-effectiveness. 

For future research, it is recommended to expand the analysis to multiple zones within the 

building and explore the interactions between different zones. This would provide a more 

comprehensive understanding of thermal resilience at a building level. Additionally, 

investigating the impact of different passive design strategies and materials on thermal 
resilience would contribute to the development of optimized design guidelines. 

In conclusion, this research has shed light on the important factors influencing thermal resilience 

and demonstrated the value of sensitivity analysis and computational tools in assessing building 

performance. By incorporating thermal resilience considerations into the design process, 

architects and designers can contribute to the creation of more sustainable and resilient built 
environments.  
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Appendices 
 

 

Appendix A: Simulation setup in Rhino and Grasshopper 
 

The basic geometry of the design was modelled in Rhino 3D, which was then added into the 
Grasshopper environment. Here, the geometry was divided into two sets, zone that was going to 
be assessed and the contextual model. 
The selected zone is exploded into faces for ease of assignment of boundary conditions and 
windows. As seen in the Image 1. 
 

 
Image 1: Assignment of BC and windows 

 

The 17 input variables along with their upper and lower limits were used to generate 9,728 
samples using SOBOL’s method, which was taken in Grasshopper, a slider was set-up to sort the 
sample one step at a time for all the input variables simultaneously. (Image 2) 
 

 
Image 2: Sorting one value at a time simultaneously for all input values 
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Image 3: Input parameters assigned to Honeybee components 

 
All the input parameters were plugged into the Honeybee components to read and assign the 
material and condition values for the simulations as seen in the Image 3.  
All the required components were connected to the simulation component, where the time 
period for the simulation was defined and the simulation was run to generate the operative 
temperature for the model with the set input and context condition variables, Image 4 
 

 
Image 4: Simulation segment  
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A simple Python script was written inside grasshopper for exporting the operative 
temperature for each simulation in an sequential order, this script is as follows. 
 
 
from ghpythonlib import treehelpers as th 
from Grasshopper.Kernel import GH_RuntimeMessageLevel as RML 
import os 
import csv 
 
i = 1  # Start the counter at 1 
 
while True: 
    filename = "SampleData_" + str(i) 
    DIR = os.path.dirname(ghdoc.Path) + "\\" + filename + ".csv" 
     
    if not os.path.exists(DIR): 
        break 
     
    i += 1 
 
# Convert GH tree to Python list structure 
data = th.tree_to_list(data, False) 
 
# MAIN 
# Check data types and add to final SampleData 
SampleData = [] 
for row in data: 
    for item in row: 
        SampleData.append([item]) 
 
# Write the data to the CSV file 
try: 
    with open(DIR, 'wb') as f: 
        writer = csv.writer(f, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) 
        writer.writerows(SampleData) 
 
    msg = "CSV successfully written to {}".format(DIR) 
    ghenv.Component.AddRuntimeMessage(RML.Remark, msg) 
except IOError: 
    msg = "CSV is probably open in another window." 
    ghenv.Component.AddRuntimeMessage(RML.Warning, msg)  
 
 
this process was automated for the large number of samples using the Colibri plugin for 
grasshopper. 
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Appendix B: Overview of MATLAB scripts 

The first script that was used after generating the operative temperature for all the samples was 
to interpolate the data to increase the accuracy of the calculations of the indicators. 
The script when engaged, prompt an input from the user asking for the number of interpolated 
values to generate, an input of 1 generates one interpolated value between each of the available 
data to convert an hourly data to half-hourly data. similarly, an input of 2 and 3 generate 
operative temperature for every 20 mins and 15 mins respectively.   

This prompt is asked only once at the beginning of the operation, after which it generates the 
interpolated values for an input file and saves it as another file of the same format. Once the 
sequence is complete, it automatically looks for another file in the same sequence of the previous 
file to repeat the entire process, which goes on till it is not able to find an input file in the 
sequence. Below is the MATLAB script that is used. 

clear 
close all 
clc 

% Initialize sequence number 
sequenceNumber = 1; 

% Initialize interpolation flag and number of interpolations 
isFirstInterpolation = true; 
numInterpolations = 0; 

while true 
    % Specify the file names 
    inputFile = sprintf('SampleData_%d.csv', sequenceNumber); 
    outputFile = sprintf('InterpolatedData_%d.csv', sequenceNumber); 

    % Check if the input file exists 
    if ~exist(inputFile, 'file') 

disp('Input file not found. Exiting the loop.'); 
break; 

    end 

    % Read the input CSV file 
    data = csvread(inputFile); 

    % Compute the number of rows and columns in the data 
    [numRows, numCols] = size(data); 

    % Prompt for the number of interpolated values only once 
    if isFirstInterpolation 

numInterpolations = input('Enter the number of interpolated values to insert: 
'); 

isFirstInterpolation = false; 
    end 

    % Compute the new number of rows 
    newNumRows = numRows + numInterpolations * (numRows - 1); 

    % Preallocate the interpolated data matrix 
    interpolatedData = zeros(newNumRows, numCols); 
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    % Perform linear interpolation between rows 
    for col = 1:numCols 
        for row = 1:numRows-1 
            startIndex = (row - 1) * (numInterpolations + 1) + 1; 
            endIndex = row * (numInterpolations + 1) + 1; 
 
            % Compute the interpolated values 
            interpolatedValues = linspace(data(row, col), data(row + 1, col), 
numInterpolations + 2)'; 
 
            % Assign the interpolated values to the target matrix 
            interpolatedData(startIndex:endIndex, col) = interpolatedValues; 
        end 
    end 
 
    % Write the interpolated data to the output CSV file 
    csvwrite(outputFile, interpolatedData); 
 
    disp('Interpolation completed and output file generated.'); 
 
    % Increment the sequence number for the next iteration 
    sequenceNumber = sequenceNumber + 1; 
end 

 
 

Simplified method 
 
using the interpolated operative temperature, the indicators for the Simplified method are 
calculated using another MATLAB script. This script is about 350 lines long, however over 50% 
of it is a repetitive code with minor changes for calculating the indicators for each of the days 
separately. 
 
%% Temperature ranges/limits 
 
TSP = 24; % degC 
TRT = 28; % degC 
THT = 32; % degC 

 
% Divide data into groups 
    Day1 = Temp(209:304); 
    Day2 = Temp(305:400); 
    Day3 = Temp(401:496); 
    Day4 = Temp(497:592); 
 

As seen the above snippet, Tsp, TRT and THT are defined and the operative temperature 
indexes are divided into the number of days as required for the calculations. 
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After the setting the required limits and defining where each of the time steps should lie, the 
indicators are calculated for each day separately within the script as shown in the snippet 
below. 

Robustness1 = (t1_1-t0_1)/4; 
T1 = TRT - TSP; 
T2 = Tmax - TRT; 
EscalationSpeed1 = (T1 + T2) / ((t2_1 - t0_1)/4); 
AoE1 = T1 + T2; 
RecoverySpeed1 = (T1 + T2) / ((t3_1 - t2_1)/4); 

disp("Day 1 Analysis:") 
disp("Robustness: " + Robustness1) 
disp("Escalation Speed: " + EscalationSpeed1) 
disp("Amplitude of Event: " + AoE1) 
disp("Recovery Speed: " + RecoverySpeed1) 

after the calculation, for all the days are completed, the script look for highest or lowest 
indicators values as defined in the research. 
Similar to the interpolation script, this script has also been modified to automatically look for 
files in a sequential order for calculating the indicators, sorting and saving the results from all 
the samples into a single .csv file. 

The script for WUMTP works very similarly to the Simplified method script. However, due to the 
complexity of the calculations it requires, the script is almost three times as long.  
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Appendix C: SOBOL’s sensitivity analysis script 
 

 

The minimum number of samples required for reliably calculating the first and Total-order 
indices is 1050 according to A research paper, comprehensive evaluation of various sensitivity analysis 

methods: A case study with a hydrological model. Environmental Modelling & Software (Gan, Y (2014)) 

 
For the generation and calculation of SOBOL’s sequence and indices along with plot generation 
requires a set of Python modules to be installed and available.  
 
The next step was to add the 17 input variables and their respective lower and upper limits to 
generate the SOBOL’s samples. (Image 5) 
 

 
Image 5: Input variables and their bounds  

 
The sample sizer is used as an input to generate the samples for simulation (Image 6), For this 
research, Saltelli sampling was used in place of latest SOBOL’s sampling algorithm. This was 
mainly to keep the generated sample sequence consistent across multiple runs of the script, 
where SOBOL’s algorithm generates a new set of sample sequence for each run of the script. 
 

 
Image 6: SOBOL’s sequence generator snippet 

 
The number of generated depends on the number of input variable and the sample sizer or also 
known as the number of repetitions. The formula for it is as follows 
 
For first-order and total-order indices calculation  
Number of samples = 2^n (Pm+2) 
2^n= number of repetitions  
Pm = number of parameters (input variables) 
 
If, second-order indices are also calculated. 
 
Number of iterations = 2^n ((Pm*2)+2) 
 
here, number 2 indicates the order being calculated. So, for third-order indices, it is replaced by 
3 
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Image 7: Results input and Indices calculation 

 
As seen the above Image 7, the script exports the generated script as .csv file, which is taken into 
Grasshopper for conducting the simulations. 
The results for the indicators are imported back to the script for calculating the first-order, 
second-order and Total-order indices in this sequence 
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Appendix D: Second-order indices values 

As I have considered 17 input variables for the study, making a sequence where each of the 
variables is pair with the other variables gives us 136 combinations, as a example of the indices 
values below is the second order indies for Amplitude of events. A negative indices indicates that 
the interaction has a negative impact on the output variable. 

Second-order: AoE 

Uwallext-Uroof: -0.0011953755700638852 

Uwallext-Ufloor: 0.0030740916057933054 

Uwallext-Dwallext: -0.003035815598109849 

Uwallext-Droof: -0.0027541532092774396 

Uwallext-Dfloor: -0.002719843385540881 

Uwallext-Shwallext: -0.0033144977366392474 

Uwallext-Shroof: -0.002951843146045325 

Uwallext-Shfloor: -0.0027992674666195024 

Uwallext-SAwall: -0.004168499544548971 

Uwallext-SAroof: -0.004040373411686323 

Uwallext-Fvent: -0.002934914010715179 

Uwallext-InfWindow: -0.0033067228136723897 

Uwallext-W2Wratio: -0.001182584302922951 

Uwallext-SHGCwindow: -0.0011784792749573864 

Uwallext-Uglass: -0.0030575311960479405 

Uwallext-AZangle: 0.0026090247775133746 

Uroof-Ufloor: 0.022101737254693943 

Uroof-Dwallext: 0.011464370077350836 

Uroof-Droof: 0.006233464301667905 

Uroof-Dfloor: 0.004577044467264334 

Uroof-Shwallext: 0.004507094790730295 

Uroof-Shroof: 0.0047709249380801155 

Uroof-Shfloor: 0.005189013826321648 

Uroof-SAwall: 0.006158243769226079 

Uroof-SAroof: 0.004588875157861205 

Uroof-Fvent: 0.003567306108395254 

Uroof-InfWindow: 0.0056117413961643105 

Uroof-W2Wratio: 0.015236644476069261 

Uroof-SHGCwindow: -0.00042948868987423283 

Uroof-Uglass: 0.005565838973452839 

Uroof-AZangle: -0.0050995819650072605 

Ufloor-Dwallext: -0.004428507477910735 

Ufloor-Droof: 0.002701917888299151 

Ufloor-Dfloor: 0.0032674593810655076 

Ufloor-Shwallext: 0.005756723709244186 

Ufloor-Shroof: 0.004118103276099361 

Ufloor-Shfloor: 0.0022265392297696517 

Ufloor-SAwall: 0.0043428207169929345 

Ufloor-SAroof: -0.00045341185746745774 

Ufloor-Fvent: 0.019044428302080387 
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Ufloor-InfWindow: 0.0027215399219748205 

Ufloor-W2Wratio: 0.005554608552329143 

Ufloor-SHGCwindow: 0.024857607664517403 

Ufloor-Uglass: 0.0024038435976603927 

Ufloor-AZangle: -0.018915208638942665 

Dwallext-Droof: 0.028358100931049127 

Dwallext-Dfloor: 0.029179837219149164 

Dwallext-Shwallext: 0.029845992947352542 

Dwallext-Shroof: 0.0317861851549629 

Dwallext-Shfloor: 0.030886034622663743 

Dwallext-SAwall: 0.03046118885839085 

Dwallext-SAroof: 0.028634705925427918 

Dwallext-Fvent: 0.03650826450425239 

Dwallext-InfWindow: 0.02851635796917935 

Dwallext-W2Wratio: 0.038721145509562405 

Dwallext-SHGCwindow: 0.03063013538934356 

Dwallext-Uglass: 0.028714006855667575 

Dwallext-AZangle: 0.05052751792078439 

Droof-Dfloor: 0.004411943545752063 

Droof-Shwallext: 0.003434363975965582 

Droof-Shroof: 0.004244729336600872 

Droof-Shfloor: 0.004645995820239325 

Droof-SAwall: 0.004982575273195702 

Droof-SAroof: 0.0033815404761041164 

Droof-Fvent: 0.006165094259137301 

Droof-InfWindow: 0.003755795875728842 

Droof-W2Wratio: -0.001886368021660756 

Droof-SHGCwindow: 0.003961145794680557 

Droof-Uglass: 0.0034165481545948423 

Droof-AZangle: 0.0002110303369205202 

Dfloor-Shwallext: 0.0016480841047516234 

Dfloor-Shroof: 0.002196827823082605 

Dfloor-Shfloor: 0.0023152496698345413 

Dfloor-SAwall: 0.0034624736253278665 

Dfloor-SAroof: 0.0020837999830774783 

Dfloor-Fvent: 0.0028243223979058617 

Dfloor-InfWindow: 0.0018043296791786937 

Dfloor-W2Wratio: 0.0008420864938716854 

Dfloor-SHGCwindow: 0.0029389758289854323 

Dfloor-Uglass: 0.0017382551490442329 

Dfloor-AZangle: -0.0049880302139513055 

Shwallext-Shroof: -0.008824115476445384 

Shwallext-Shfloor: -0.00902787264454644 

Shwallext-SAwall: -0.00700525968544256 

Shwallext-SAroof: -0.008899393479278745 

Shwallext-Fvent: -0.006987854366868374 

Shwallext-InfWindow: -0.008835223682120325 

Shwallext-W2Wratio: -0.011552292432222444 
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Shwallext-SHGCwindow: -0.0074335372530947436 

Shwallext-Uglass: -0.008844673456497146 

Shwallext-AZangle: -0.009198502236965 

Shroof-Shfloor: -0.000337631842085428 

Shroof-SAwall: 0.0002815869963591587 

Shroof-SAroof: -0.0006096392051427338 

Shroof-Fvent: -0.0010313815682736656 

Shroof-InfWindow: -0.00037836192956022374 

Shroof-W2Wratio: 0.002382507468935091 

Shroof-SHGCwindow: 0.001807376630841101 

Shroof-Uglass: -0.0005032779305537624 

Shroof-AZangle: -0.0027213641113241482 

Shfloor-SAwall: -0.003187760332599425 

Shfloor-SAroof: -0.004644413086084545 

Shfloor-Fvent: -0.004098772768895573 

Shfloor-InfWindow: -0.005047978385383743 

Shfloor-W2Wratio: 0.0014990978767452923 

Shfloor-SHGCwindow: -0.002411934677266775 

Shfloor-Uglass: -0.004823745337790213 

Shfloor-AZangle: -0.004690791692040008 

SAwall-SAroof: -0.010599719383255808 

SAwall-Fvent: -0.012467162285259629 

SAwall-InfWindow: -0.010486634072859186 

SAwall-W2Wratio: -0.007505250782107287 

SAwall-SHGCwindow: -0.00420459483630195 

SAwall-Uglass: -0.009828606300027704 

SAwall-AZangle: -0.01474496020281768 

SAroof-Fvent: 0.00464951369023351 

SAroof-InfWindow: 0.004247401570834165 

SAroof-W2Wratio: 0.005124752777812325 

SAroof-SHGCwindow: 0.006803142721887853 

SAroof-Uglass: 0.004535508853572609 

SAroof-AZangle: 0.0018800073128987238 

Fvent-InfWindow: -0.01601386984972652 

Fvent-W2Wratio: 0.009486539242479775 

Fvent-SHGCwindow: -0.011684961868927257 

Fvent-Uglass: -0.016909767573053264 

Fvent-AZangle: -0.020066123575811418 

InfWindow-W2Wratio: -0.005194576032313214 

InfWindow-SHGCwindow: -0.006250791517808933 

InfWindow-Uglass: -0.007097174393814468 

InfWindow-AZangle: -0.014168117904802768 

W2Wratio-SHGCwindow: 0.06437066883929977 

W2Wratio-Uglass: 0.0696622387182584 

W2Wratio-AZangle: 0.04471116446841014 

SHGCwindow-Uglass: -0.0369008152545172 

SHGCwindow-AZangle: -0.04873179320336504 

Uglass-AZangle: -0.008822454981943118 
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