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SUMMARY

Topological band theory has contributed to some of the most astonishing developments
in solid-state physics. The unique attributes that arise from topological effects are at the
focus of modern experimental and theoretical research. Weyl point, a topological defect
at the Fermi surface, enables topological transitions and transport phenomena. Its ex-
istence is considerably restricted in natural materials due to the tuning and dimension
constraint.

Recently, The Weyl points have been predicted to accommodate within supercon-
ducting nanostructures in the spectrum of Andreev bound states. Theoretically, one
can easily manipulate the dimensionality and the tuning process through elementary
approaches with specially designed structures. This opens up a new window for explo-
rations in a higher dimension, high-order topological effects, Majorana states, and other
complications even though it may be still experimentally challenging.

One realization of such structures is the multi-terminal Josephson junction. The pa-
rameters are the superconducting phase differences of the terminals and the Weyl points
reside at low energies within the superconducting gap. Chapter 2 of this thesis investi-
gates the topological effect in the quantized transconductance of such a structure con-
sidering the presence of the continuous spectrum that is intrinsic to superconductors.
This research is based on scattering formalism and relates the Landauer conductance to
the continuous spectrum as a background field in the regular topological charge picture.

Chapter 3 is based on a very generic superconducting nanostructure setup so long
as it hosts Weyl points in it. The research proposes a unit that tunnel-couples such a
setup with a quantum dot. The distinct feature of the spectrum, especially the distinc-
tion between its spin-singlet and spin-doublet due to spin-orbit coupling, leads to an
exploration of the state manipulation. Eventually, through adiabatic and diabatic ap-
proaches, one can feasibly realize a full unitary transformation of the spectrum. Because
of this, the unit could easily find its promising application in entangled qubits.

Chapter 4 also relies on the generic low-energy Weyl point setup in the supercon-
ducting nanostructure, but instead, it is weakly tunnel-coupled to regular metallic leads.
We know that spintronics explores the intrinsic spin degree of freedom. It is usually real-
ized on magnetic materials. In the setup of this research, the energy spectrum contains
a natural spin-orbit that creates a minimalistic magnetic state in the vicinity of the Weyl
point. The spin structure of the spectrum allows fine-controls over the spin and switch
between magnetic/non-magnetic state. Hence this chapter’s research focuses on the
possible spintronics features based on master equations.

Chapter 5 furthers the research of chapter 4. It considers a universal energy scale sets
up by the tunnel coupling strength. In the language of the Green’s function, this chap-
ter studies the topological effect through the response function. This set up is a suitable
example of low energy Weyl points situated in the presence of a low-energy continuous
spectrum brought by electrons in the leads. We have seen in Chapter 1 how the contin-

vii



viii SUMMARY

uous spectrum above the gap modifies the topology leading to a non-quantized contri-
bution to the transconductance. The peculiarity of coupling Weyl points to a low energy
continuous spectrum is that the dissipation gives rise to a redefinition of the Berry cur-
vature, which manifests as a continuous density of topological charge instead of a point-
like one. This unusual characteristic can be captured by the tunnel current and thus can
assist the detection of Weyl points experimentally.



SAMENVATTING

Topologische bandtheorie heeft bijgedragen aan enkele van de meest verbazingwek-
kende ontwikkelingen in de vaste-stoffysica. De unieke eigenschappen die voortkomen
uit topologische effecten staan centraal in modern experimenteel en theoretisch onder-
zoek. Weyl point, een topologisch defect aan het Fermi-oppervlak, maakt topologische
overgangen en transportverschijnselen mogelijk. Het bestaan ervan is aanzienlijk be-
perkt in natuurlijke materialen vanwege de afstemming en afmetingbeperkingen.

Onlangs is voorspeld dat de Weyl-punten passen binnen supergeleidende nanostruc-
turen in het spectrum van aan Andreev gebonden staten. Theoretisch kan men de di-
mensionaliteit en het afstemmingsproces gemakkelijk manipuleren door middel van
elementaire benaderingen met speciaal ontworpen structuren. Dit opent een nieuw
venster voor verkenningen in een hogere dimensie, topologische effecten van hoge orde,
Majorana-toestanden en andere complicaties, hoewel het nog steeds experimenteel uit-
dagend kan zijn.

Een realisatie van dergelijke structuren is de meerterminal Josephson-kruising. De
parameters zijn de supergeleidende faseverschillen van de terminals en de Weyl-punten
bevinden zich op lage energieën binnen de supergeleidende opening. Hoofdstuk 2 van
dit proefschrift onderzoekt het topologische effect in de gekwantiseerde transconduct-
antie van een dergelijke structuur, rekening houdend met de aanwezigheid van het con-
tinue spectrum dat intrinsiek is aan supergeleiders. Dit onderzoek is gebaseerd op het
verstrooiingsformalisme en relateert de Landauer-geleiding aan het continue spectrum
als achtergrondveld in het reguliere topologische ladingsbeeld.

Hoofdstuk 3 is gebaseerd op een zeer generieke supergeleidende nanostructuurop-
stelling, zolang er maar Weyl-punten in zitten. Het onderzoek stelt een eenheid voor
die een dergelijke opstelling via een tunnel koppelt aan een kwantumpunt. Het onder-
scheidende kenmerk van het spectrum, vooral het onderscheid tussen zijn spin-singlet
en spin-doublet als gevolg van spin-orbit-koppeling, leidt tot een verkenning van de toe-
standsmanipulatie. Uiteindelijk kan men door middel van adiabatische en diabatische
benaderingen een volledige unitaire transformatie van het spectrum realiseren. Hier-
door zou de eenheid gemakkelijk zijn veelbelovende toepassing kunnen vinden in ver-
strengelde qubits.

Hoofdstuk 4 vertrouwt ook op de generieke lage-energie Weyl-puntopstelling in de
supergeleidende nanostructuur, maar in plaats daarvan is het zwak tunnelgekoppeld
aan gewone metalen draden. We weten dat spintronica de intrinsieke vrijheidsgraad van
spin verkent. Het wordt meestal gerealiseerd op magnetische materialen. Bij de opzet
van dit onderzoek bevat het energiespectrum een natuurlijke spinbaan die een minima-
listische magnetische toestand cre’́eert in de buurt van het Weylpunt. De spinstructuur
van het spectrum maakt fijnregeling van de spin mogelijk en schakelt tussen magneti-
sche / niet-magnetische toestand. Daarom richt het onderzoek van dit hoofdstuk zich
op de mogelijke spintronica-eigenschappen op basis van mastervergelijkingen.

ix



x SAMENVATTING

Hoofdstuk 5 bevordert het onderzoek van hoofdstuk 4. Het beschouwt een univer-
sele energieschaal die wordt gevormd door de tunnelkoppelingssterkte. In de taal van
de Green’s functie bestudeert dit hoofdstuk het topologische effect via de responsfunc-
tie. Deze opstelling is een geschikt voorbeeld van Weyl-punten met lage energie die zich
bevinden in de aanwezigheid van een continu spectrum met lage energie dat door elek-
tronen in de leads wordt gebracht. We hebben in Hoofdstuk 1 gezien hoe het continue
spectrum boven de gap de topologie wijzigt, wat leidt tot een niet-gekwantiseerde bij-
drage aan de transconductantie. De bijzonderheid van het koppelen van Weyl-punten
aan een continu spectrum met lage energie is dat de dissipatie aanleiding geeft tot een
herdefinitie van de Berry-kromming, die zich manifesteert als een continue dichtheid
van topologische lading in plaats van een puntachtige lading. Deze ongebruikelijke ei-
genschap kan worden opgevangen door de tunnelstroom en kan zo experimenteel hel-
pen bij het detecteren van Weyl-punten.



1
INTRODUCTION

1.1. PREFACE
Before I stepped into the actual postgraduate physics research, I was heavily influenced
by my father and his colleagues, who are mathematicians, in the ideology. I was obsessed
with the axiomatic structure that bears the foundation of modern mathematics and was
willing to dive into the mathematical discipline that can rigorously describe quantum
mechanics axiomatically. Historically, the relative concern in mathematical physics was
first cited as Hilbert’s sixth problem presented in the year 1900 [1]. Later, after the dis-
covery of quantum mechanics, the basic framework for the quantum mechanics’ math-
ematical formalism, the Dirac-von Neumann axioms, was founded in terms of operators
on a Hilbert space introduced by Paul Dirac and von Neumann in the ’30s of the last cen-
tury [2, 3]. The evolution continued and in the 1950s and 1960s [4, 5], various "axiom-
atizations" of quantum field theory were established. It turns out that the whole series
of work that followed becomes too mathematical for me to find practical. I realized this,
especially after my graduate study in the physics department. The rich context seems a
remote concern for many physicists to chase the shadow because essentially the beauty
of mathematical physics has the quest that leads to the discoveries of experiments.

In the 1980s, the integer quantum Hall effect (IQHE) [6] and the geometric phase
(Berry phase) were discovered [7]. The paradigm developed by Lev Landau suddenly
faced a huge challenge. Differential geometry and topology were consequently intro-
duced to the condensed matter physics, bridging the rich context in abstract mathe-
matics with experimental physics. The motivation of generalizing the 2d IQHE in the
viewpoint of topology, alongside the motivation to describe non-trivial systems using
topological field theory, and as well as the motivation to a brand-new classification of
states of matters quickly attracted talented generations in the field and became a pillar
in the physics community. This new branch of physics flourishes ever since for decades
with multiple Nobel Prizes awarded and is still producing fruitful predictions ahead.

Quantum physics has evolved so rapidly during the past few decades. It eventually
is not only guidance to a conceptual framework or philosophical inspiration, but also

1
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can be realized among technological applications. Physicists started to apply quantum
mechanics to computer science and information theory by designing micro-fabricated
quantum devices. Techniques such as lithography, cryogenics, and microwave control
allow the designs and studies of quantum devices to the pinnacle of quantum mechan-
ical limit. Our abilities have thus extended to the manipulation and control over single
photons, single atoms, nuclear spins, individual electrons, and mesoscopic supercon-
ducting devices. Single systems are typically suitable with few specific tasks, such as
transmitting quantum information, long-time storage of quantum memories, nanosecond-
time-scaled quantum state processing, etc. On top of that, hybrid systems combining
different individual subsystems of quantum devices can achieve complementary func-
tionalities from each component and also obtain new functionalities that are seemingly
forbidden in single systems. This most active interdisciplinary field of research stimu-
lates many masterminds to test the boundary of both the theory and technology.

My past four years of research is nowhere near what I dreamed of when I was still
a newbie physics student. I am fortunate enough to eventually work on the theoreti-
cal interplay of topology and quantum transport, neither too abstract to lose ground to
an experimental science of the actual world, nor too concrete to be inaccessible to the
epitome of intellect. Hereby I will give an introduction to display the core concepts in-
volved in this thesis. It includes mainly four parts: superconductivity, some concepts of
quantum transport, some unfamiliar theoretical methods applied in the research, and
topology from the perspective of the band structure.

1.2. SUPERCONDUCTIVITY
Since the discovery of superconductivity in 1911 in the Leiden laboratory of Kamerlingh
Onnes, it has been studied intensively for its fundamental interest and for promising ap-
plications. Superconducting materials exhibit unusual behaviors including zero resis-
tivity, persistent current, perfect diamagnetism (Meissner effect) and possess an energy
gap in the spectrum, etc.

Upon decades of studies, different varieties of superconductors were discovered and
studied. They can be classified in accordance with several criteria depending on, e.g.,
the critical field, the causing mechanism, and the critical temperature. In the context of
this thesis, we focus only on the ramification of the conventional superconductors that
can be described microscopically as the result of Cooper pair condensation, or in BCS
(Bardeen-Cooper-Schrieffer) framework.

We start with the reduced BCS mean-field Hamiltonian, and for generality, in the
case of an inhomogeneous superconductor [8, 9]. Without translational symmetry, mo-
mentum is no longer a good quantum number, therefore we write the Hamiltonian with
space variables:

HBCS =
∫

dr
∑
σ

{
ψ†
σ(r)Ĥ(r)ψσ(r)+ 1

2

(
∆(r)ψ†

σ(r)ψ†
−σ(r)+∆∗(r)ψ−σ(r)ψσ(r)

)}
, (1.1)

where σ = ±1 signifies spin, the grand canonical Hamiltonian Ĥ(r)(measured from the
Fermi energy) as the particle number is not preserved (doesn’t commute with the num-
ber operator) has an eigenstate of ξ(r), and the antisymmetric(fermionic)∆(r) is the pair-
ing potential that defines the gap in the superconductor.
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To diagonalize HBCS and find a good quantum number for the excitation state con-
sidering the fermionic statistics, we introduce the fermionic operator using the general-
ized Bogoliubov-Valatin transformation:

ψσ(r) =∑
n

(
un(r)γn,σ−σv∗(r)γ†

n,−σ
)

(1.2)

where the quasiparticle creation/annihilation operator γ†
nσ,γnσ at state n and spin σ

satisfies the commutation relations:

{γnσ,γ†
n′σ′ } = δnn′δσσ′

{γnσ,γn′σ′ } = 0 (1.3)

Consequently, with the language of quasiparticles, we have a well-defined ground
state |g 〉, an excited state |ex〉, as well as spin states |σ〉:

γσ|g 〉 = 0; γ†
↑γ

†
↓|g 〉 = |ex〉; γ†

σ|g 〉 = |σ〉 (1.4)

In the basis of an associated Nambu bispinor γ̄nσ ≡ (γn,σ,σγ†
n,−σ)T , the BCS Hamil-

tonian can be rewritten as

HBCS = 1

2

∑
nσ
γ̄†

nσĤBdGγ̄nσ = 1

2

∑
nσ

Enγ
†
nσγnσ (1.5)

This is called the Bogoliubov-de Gennes (BdG) equations. They can be written in a
matrix form: (

Ĥ(r) ∆(r)
∆∗(r) −Ĥ T (r)

)(
un(r)
vn(r)

)
= En

(
un(r)
vn(r)

)
(1.6)

Here, (un(r), vn(r)) is the eigenstate n of the quasiparticle with positive energy. (−v∗
n (r),u∗

n(r))
is that with negative energy.

The gap energy |∆(r)| characterizes the energy scale involved in the superconductor.
The superconducting correlation length λ∼ ħvF /∆ could roughly be understood as the
Cooper pair size [10]. The length is of the order of 1 µm for type-I superconductors. As
such, a normal metal brought into contact with a superconductor can feel the electron
correlations, so that the metallic electron near the interface would also be superconduct-
ing. This is known as the proximity effect.

In the following context, we will express the results related to superconductivities in
the BdG formalism in terms of quasiparticle states.

1.3. CONCEPTS OF QUANTUM TRANSPORT

SCATTERING FORMALISM
Nanostructures made with all fabrication methods are very complicated in detail and
have versatile designs. There are also disorders and random defects. Seemingly the task
to describe a nanostructure is deemed technically impossible.
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Fortunately, a macroscopic approach with a small set of free parameters can describe
the quantum transport process, so long as the electron scattering process within the
nanostructure generates zero energy loss. This approach is call the scattering formal-
ism [10]. This condition is satisfied at sufficiently low external energy. In between the
thermo-equilibrated reservoirs (terminals) is the scattering region, where all the featured
physics occurs. A scatter matrix Ŝ linear relates the plane waves’ amplitudes at energy
E coming through or reflected from the scattering region by a series of reflection and
transmission amplitudes, i.e.,

bαn = ∑
β,m

Sαn,βm aβm (1.7)

where a,b label the amplitudes of incoming and outgoing plane waves, α,β label differ-
ent terminals, and m,n label transport channels (quantized modes of electric transverse
motion). All the designs and concrete configurations are encoded in the transmission
eigenvalues distributions.

The scattering matrix satisfies symmetry conditions. Firstly, imposed by the con-
servation of total number of electrons (total probability summing to 1) in general, it is
unitary:

Ŝ†Ŝ = 1 (1.8)

Further, if time-reversal symmetry holds (not necessarily so), the scattering matrix is
symmetric:

ŜT = Ŝ (1.9)

In particular, the energy dependent scattering matrix for electrons and holes satisfies

Ŝh(E) = Ŝ∗
e (−E) (1.10)

LANDAUER FORMULAR
The current flows in a terminalαhas two contributions: one originates from the terminal
itself, described by a distribution function fα(E) at energy E ; one comes from the open
channels transmitted through the scattering region from other terminals, described by a
distribution function fβ(E) at energy E and has a probability of |Sαn,βm |2. The current in
terminal α is thus:

Iα = 2s e
∑
n

[∫ 0

−∞
dE

2πħ fα(E)+
∫ ∞

0

dE

2πħ
∑
βm

|Sαn,βm |2 fβ(E)
]

= 2s e
∫ ∞

0

dE

2πħ
∑
βmn

[
|Sαn,βm |2 −δαβδnm

]
fβ(E)

=−GQ

e

∫ ∞

0

dE

2πħ
∑
β

Tr
[
δαβ− Ŝ†

αβ
Ŝαβ

]
fβ(E), (1.11)

where 2s takes care both spins, the trace takes over all the transport channels, and the
conductance quanta GQ = 2e2/h. Due to the unitarity of the scattering matrix Ŝ, the
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current of all terminals sums up to zero. This is the Kirchhoff’s current law based on the
conservation of charges.

In the linear regime, consider the scattering matrix depends on much larger energy
compared to the applied voltage Vβ at one terminal β, the current induced in a terminal
α is Iα =GαβVβ, with the conductance

Gαβ =−GQ Tr
[
δαβ− Ŝ†

αβ
Ŝαβ

]
, (1.12)

where the scattering matrix is evaluated at the Fermi energy. This equation 1.12 is the
Landauer formula in the scattering formalism [10].

ANDREEV BOUND STATE
Electrons impinging at the interface between a normal metal and a superconductor could
either be reflected as electrons or holes. This peculiar process is called the Andreev re-
flection [11].

On the superconductor side, the gap energy is position-dependent and are elements
of complex numbers. For convenient purposes, we assume the pairing potential has a
modulus ∆ and complex phase ϕ. Excitation states coupling electrons and holes have
the corresponding energy counting from the Fermi surface

E =
√
ξ2 +∆2, ξ=ħvF (k −kF ). (1.13)

If the excitation energy is above the gap energy E > ∆, quasiparticles can propagate
freely. If the excitation energy is within the gap E < ∆, there are no propagating modes
but only an evanescent solution falling off away from the interface.

On the normal metal side, hole states are decoupled from the electron states and the
amplitude acquires an Andreev reflection factor r A :

r A(E) = e iχ = e−iϕ
(E

∆
− i

p
∆2 −E 2

∆

)
, χ=−arccos

(
E

∆

)
−ϕ, (1.14)

or in short, the reflected hole acquires an additional phase shift. The reflectivity |r A |2 = 1
when E < ∆. This means when the energy is within the gap, the electron would always
turn into a hole upon reflection. Similarly, the electron reflected from a hole acquires a
phase shift

r̄ A(E) = e i χ̄, χ̄=−arccos

(
E

∆

)
+ϕ. (1.15)

An interesting situation arises when a normal region is sandwiched by superconduc-
tors on two sides. The electrons in the gap are Andreev reflected back as holes at one
interface. The holes are then reflected back as electrons on the other interface. We ex-
pect this confined motion of particles to form a discrete set of resonant states, in analogy
to the finite square potential well. These resonant states are called the Andreev bound
state (ABS) [12]. We can describe ABS using the scattering formalism.

A wave incident on the normal region can be represented by a vector of coefficient
c in

N that contains the amplitudes of incoming and outgoing electrons and holes. The re-
flected and transmitted wave have vector of coefficient cout

N . The scattering matrix SN (E)
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of the normal region relates these two vectors, cout
N = SN (E)c in

N . SN (E) decouples elec-
trons and holes in the normal region thus has the block diagonal form in Nambu space.
Each block satisfies unitarity conditions 1.8 and overall satisfies electron-hole symmetry
1.10:

SN (E) =
(

s0(E)
s∗0 (−E)

)
(1.16)

At the interface, specifically within the superconducting gap, define another scatter-
ing matrix S A(E) to count for the Andreev reflection c in

N = S A(E)cout
N :

S A(E) =
(

r A(E)1
r̄ A(E)1

)
(1.17)

where 1 is the unit matrix.
The bound state condition c in

N = S A(E)SN (E)c in
N implies

det
(
1−S A(E)SN (E)

)
= det

(
1− r̄ A(E))s0(E)r A(E)s∗0 (−E)

)
= 0, (1.18)

which reduces to an eigenvalue problem to determine the ABS discrete energy spectrum
of channel n:

En =∆
√

1−Tn sin2(δϕ/2), (1.19)

where Tn is the transmission eigenvalues corresponding to the scattering matrix s0(E)
and δϕ is the phase difference across the junction. The minimum energy ∆

p
1−Tn is

achieved at phase difference δϕ= π. For the situation of a single-phase difference, zero
energy only occurs when the scattering process is transparent Tn = 1.

The ground-state energy is the sum of single-particle excitations at negative energy.
The phase variation of the ground-state energy gives rise to a persistent current – a su-
percurrent (Josephson current):

I (δϕ) =−2e

ħ
∑
n

∂En

∂(δϕ)
= e∆

2ħ
∑
n

Tn sinδϕ√
1−Tn sin2(δϕ/2)

(1.20)

1.4. THEORETICAL METHODS
The derivations of some of the chapters in this thesis rely on several techniques to treat
condensed matter systems. Despite playing important roles in the description of the
dynamical behavior of the system, these techniques are not quite commonly known to
non-experts. It is hence convenient to introduce them at the fundamental level.

MATSUBARA TECHNIQUE
In dealing with equilibrium systems at finite temperature, many texts employ the Mat-
subara technique, named after Takeo Matsubara [13]. This method lifts the conundrum
that the perturbation theory of the many-body system breaks down at zero-temperature
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[14]. It is based on the imaginary time quantum mechanics, which treats the finite tem-
perature T > 0 perturbation theory by an analytical continuation of the real-time t to the

imaginary time −iτ [15]. The method treats the equilibrium density matrix e−βĤ as the
evolution operator. The expectation value of an observable Ô (τ) is evaluated through the

trace of the form 〈Ô〉 = T{Ô (τ)e−βĤ }. It has the advantage that finite temperature pertur-
bation theory can be expressed as integrals of imaginary-time quantities over the interval
−β≤ τ≤ β (inverse temperature β= 1/T ). Consequently, in the Fourier representation,
the Green’s function is defined on the Matsubara frequencies that are discretized on the
imaginary axis of the complex energy plane. It is such that all contributions to the Green’s
function are mathematically well-defined.

To be precise, one decomposes the imaginary-time quantities g̃ (iω) into a Fourier
series with period β and discrete imaginary frequencies that take forms depending on
the bosonic/fermionic mode. Specifically, in the application to Green’s function [16]:

g (τ) = 1

β

∞∑
n=−∞

g̃ (iωn)e−iωnτ (1.21)

ωn = 2nπ

β
, bosonic

ωn = (2n +1)π

β
, fermionic

In the zero-temperature limit β→∞, the summation 1.21 is equivalent to the inte-
gration over the imaginary frequency such that it becomes an evaluation of a contour
integral,

1

β

∑
iω

=
∫ i∞

−i∞
d(iω)

2π
(1.22)

The imaginary-time ordered Green’s function g (τ) = 〈−Tτψ(τ)ψ∗(0)〉 defined on the
imaginary time interval (0,β) in the form of 1.21 satisfies the periodic boundary condi-
tion:

g (τ+β) = g (τ), bosonic

g (τ+β) =−g (τ), fermionic

In the presence of superconductivity, the wave function obeys the BdG equation 1.6.
One can extend the Green’s function GN (τ) to the field operatorsΨ(τ) of Nambu form

G(τ) =−〈TτΨ(τ)Ψ†(0)〉, Ψ(τ) =
(
ψ(τ)
ψ†(τ)

)
, (1.23)

such that the equation of motion (Heisenberg equation) reads

∂

∂τ
ψ= [Ĥ ,ψ],

∂

∂τ
Ψ=−ĤBdGΨ (1.24)

and the Green’s function satisfies

(iωn − ĤBdG)Ĝ(τ) = 1̂ (1.25)
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ACTION FORMALISM
The scattering theory of electron transport can be incorporated into the formalism based
on the semiclassical Green’s function [17, 18]. In the circuit theory of quantum transport,
this effort relates the more mathematical Green’s function methods to a more heuristic
and physical scattering language. In this language, the scatterer is characterized by an
action, expressed as a determinant of a block of the scattering matrix. The generalization
can extend to multi-terminal scatters and superconducting situation, eventually arriv-
ing at the block-determinant relation. For simplicity purposes, we slide over numerous
derivations and only present some of the key results.

The establishment usually is based on the field theory and Keldysh Green’s function.
Keldysh technique is designed to describe out-of-equilibrium quantum systems and in-
volves (anti-)time-ordered operators along the Keldysh contour. A Keldysh index ± de-
notes the forward or backward parts of the contour. It is common to use a "check" to
denote the matrix structure with the Keldysh index.

For a perturbation to the Hamiltonian Ȟ → Ȟ + ȟ(t ), the variation of the action is

δS = Tr[ȟǦτ3] (1.26)

where Pauli matrices τ̂1,2,3 act on Keldysh indices, the "check" Green’s function Ǧ follows
the conventional Keldysh Green’s function definition [19], and the trace includes all the
indices. In the context of a single level k of the reservoir, there is a Σ̌ acting as self-energy
and typically can be written as Σ̌=−i

∑
i (Γi /2)ǧi , Γi being the inverse escape time from

the channel to the reservoir i and ǧi characterizing the reservoir with Eilenberger’s nor-
malization condition ǧ 2

i = 1 [20], then the Green’s function of the state k is in the form
of

Ǧk = 1

ε−εk − Σ̌
, (1.27)

and the action can be written like

S = Tr[lnǦkτ3] (1.28)

When it comes to the scattering theory among many channels, that a scattering ma-
trix Š relates the incoming and outgoing wave function amplitude as in 1.7, the action is
expressed in terms of the determinant of a block of the scattering matrix. Recall that in
the Keldysh structure, the scattering matrix diagonal in Keldysh indices:

Š =
(
Ŝ+

Ŝ−

)
(1.29)

Here in addition to the terminal and channel indices as in 1.7, the time dependent Ŝ±
also is diagonal in time indices and corresponds to wave functions specified by Ȟ±. It
could be understood as that the "check" index refers to the sign of the velocity in corre-
sponding channels. We can present this in a basis-invariant form as following:

L = Tr
[

ln
(1− ǧ

2
+ 1+ ǧ

2
Š

1+ ǧ

2

)]
= lndet

(1− ǧ

2
+ 1+ ǧ

2
Š

1+ ǧ

2

)
(1.30)
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So far, we haven’t associated the action expression with superconductivity that con-
tains a Nambu structure. The derivation of this is far from trivial. Nevertheless, the result
is as per 1.30, apart from that there should be an additional 1/2 prefactor that comes with
the trace over Nambu structure of all matrices and compensates the artificial fermionic
states doubling. Additionally, under the spin-independent situation, a 2s spin doubling
factor cancels with this 1/2 factor of spin-independent scattering to retain the exact form
as in 1.30.

1.5. TOPOLOGY

INTRODUCTION
Topology is a huge subject in mathematics concerned with the properties of certain de-
fined structures. This structure can be a topological space, a group, a ring, etc. Often,
the topological space is visualized by geometric objects that preserve many natural in-
variants upon continuous deformation, such as stretching and twisting but not tearing
or puncturing. That’s why it is sometimes referred to as rubber-sheet geometry.

In 1931, Dirac wrote a paper showing the natural occurrence of discrete magnetic
charges, known as the Dirac monopole [21]. Although the related math work was done
in parallel, it was until more than 40 years later did people realize the math structure
behind it is that of fibre bundles [22]. Fibre bundles is a math language that helps to
distinguish local and global geometry. The distinctive feature that characterizes the fibre
bundle is the topological invariant.

Closely related with the Dirac monopole is the magnetic Aharonov-Bohm effect, or
more generally the Berry phase. The concept of Berry phase quantifies the global phase
evolution of a quantum state transported along a closed path in the parametric space.
This is also the flux through an area enclosing a Dirac monopole. Having this anal-
ogy of electromagnetic vector potential of a charge moving in the background field of
a monopole, relevant concepts of Berry connection, curvature, and Chern number can
also be introduced.

Implementation of the fibre bundle in the band theory results in the topological band
theory. It can be used to understand the Quantum Hall effect, which is the pedestal to
the understandings of topological effect [23]. Further extension is generalized to classify
phases of matter according to symmetries and dimensions [24–28]. This includes the
topological insulators, topological semi-metals, topological superconductors, and many
other systems.

The following subsections will only cover some basic concepts in the topological
band theory for a better understanding of the subject.

TOPOLOGICAL BAND STRUCTURE
Consider a single-particle tight-binding Hamiltonian that has translational invariance
[29, 30]. The parametric eigenvectors |un(k)〉 of the Bloch Hamiltonian

H (k)|un(k)〉 = En(k)|un(k)〉 (1.31)

that satisfies the normalization condition

〈un(k)|un′ (k)〉 = δn,n′ (1.32)
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and commonly through a "periodic gauge choice" so that the eigenvectors

|un′ (k+G)〉 = e−i G·r|un′ (k)〉 (1.33)

with r being the position operator.
For a variation of the parameter k′ = k+dk, the deviation from the unit overlap 1.32

at first order in dk,

〈un(k)|un(k+dk)〉 ≈ 1+〈un(k)|dk ·∇k|un(k)〉 = 1− i dk ·An(k) (1.34)

defines the Berry connection

An(k) = i 〈un(k)|∇k|un(k)〉 (1.35)

The curl of this Berry connection gives Berry curvature F n
i j (k):

Fn(k) = curl An(k) = εi j k F n
j k (k)

F n
i j (k) = i 〈∂i un(k)|∂ j un(k)〉+H.c. (1.36)

In fact, this Berry curvature in the n-th band represents all the virtual transition to
other bands. This can be seen by rewriting 1.36 as

F n
i j (k) = i

∑
n 6=n′

〈un(k)|∂i H(k)|un′ (k)〉〈un′ (k)|∂ j H(k)|un(k)〉
(En′ −En)2 +H.c (1.37)

The Berry curvature expressed in 1.37 manifests that it is valid and well-defined in
the presence of multi bands with gaps. It also presents gauge invariance in contrast to
the Berry connection from 1.35. The Berry curvature also possesses symmetries. For
example, the periodicity, in contrast to the eigenvector, imposes:

F n
i j (k+G) = F n

i j (k) (1.38)

as well as the time-reversal symmetry and the inversion symmetry:

TR: F n
i j (−k) =−F n

i j (k)

I: F n
i j (−k) = F n

i j (k) (1.39)

Two other quantities can be immediate consequences of the Berry curvature. One is
a gauge-invariant geometric phase acquired through a close orbit C in the parametric k
space in the n-th band, or the Berry phase:

Γn(C ) =
∮
C

dk ·An(k) =
∫

S
d 2kF n

x y (k) [2π] (1.40)

where ∂S =C and the Berry phase is defined modulo 2π.
Another quantity is the quantized integral of the Berry curvature over the Brillouin

zone T 2 in space dimension two:

Cn = 1

2π

∫
T 2

d 2kF n
x y (k) ∈Z (1.41)

yields an integer, which is known as the Chern number. If both symmetries given in 1.39
are present, there is only a zero Chern number can be obtained.
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CURRENT AND CONDUCTANCE
For a superconducting system, consider a BdG Hamiltonian H (t ) with time-dependent
parameter k(t). To calculate the averaged current electric current, we introduce the basis
of instantaneous wave function for a particular spin σ in a given band n as in 1.31. The
current operator is defined as

j = 2e

ħ
∂H

∂k
, (1.42)

2e corresponds to the charge of the superconducting Cooper pairs, such as the electric
current of spin σ in the band n up to first order in parametric velocity is [31, 32]

jn,σ(t ) = 2e
[ 1

ħ
∂En,σ(t )

∂k
+ (

i 〈∂kun,σ(k)|∂t un,σ(k)〉+H.c.
)]

= 2e
[ 1

ħ
∂En,σ(t )

∂k
− k̇(t )×Fn(k)

]
(1.43)

The many-body expected value of the averaged supercurrent is obtained by integrat-
ing over the superconducting state. The first term (group velocity) corresponds to the
adiabatic supercurrent and vanishes upon integration. The seconds term (anomalous
velocity [33]) is quantized upon integration if k̇ is parametric independent, say linear
with respect to some external applied vector field k̇ = e

ħE, as

j =−2e
∑
n,σ

(nn,σ− 1

2
)k̇×

∫
T 2

d 2k

2π
Fn(k) =−2e2

ħ
∑
n,σ

(nn,σ− 1

2
)Cn E×ez (1.44)

where nn is the occupation number of the superconducting state n. The quantized con-
ductance conductance is given by

σx y =−2e2

ħ
∑
n,σ

(nn,σ− 1

2
)C x y

n (1.45)

We see that the contribution to the conductance is zero only when the many-body
state is occupied by a single quasiparticle.

WEYL POINT
In the 3-dimensional space, a contact point between two bands can be modeled using a
2×2 Bloch Hamiltonian with Pauli matrices σ̂= (σx ,σy ,σz )

H (k) = d(k) · σ̂ (1.46)

The three coefficients are each analytical functions of three variables k. The contact
point kc corresponds to d(kc ) = 0. As there are three linear equations and three unknown
variables, there generally exists a solution in the parametric space of k [34]. Such an
accidental degeneracy is not required by symmetries but is still topological robust. In
the vicinity of the contact point of a small deviation q = k−kc , the Bloch Hamiltonian is

H (kc +q) =HW (q) =∑
i , j

Mi j qiσ j , (1.47)
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where Mi j is a tensor that linearizes the affine projection.
This point in the parametric space can be considered as a topological defect, which

can be characterized by a topological invariant (wrapping number). This invariant is
also a Chern number and characterizes the total charge of the monopoles the parametric
space encloses. It reads [35]

N = 1

2π

∫
S2

dS ·Fn(k) (1.48)

In the case of the present context, this number (or chirality) is given by

N = signdet(Mi j ) (1.49)

A Weyl Hamiltonian describes hypothetical chiral fermions and can be thought of
as half of a Dirac fermion in the 3D space, in the sense that the Hamiltonian is 2× 2
Pauli matrices instead of 4× 4 Dirac matrices [36]. The chirality in this sense implies
masslessness and has a linear dispersion relation. In order to annihilate the Weyl point,
one needs to merge two Weyl points of opposite chirality (N =±1) [37]. Each Weyl point
occurs in pairs and corresponds to a single source of Berry flux or Berry charge [38].

In superconducting nanostructures, the energy spectrum resides in the space of in-
dependent superconducting phases, which play the role of band structure quasimo-
menta [39]. The spectrum is periodic such that Weyl singularities can be accommodated
given enough dimension of the parametric space for level crossings. When time-reversal
symmetry is preserved, as in 1.39, a Weyl point at k with chirality N guarantees another
one at −k with the same chirality N . In order for the total chirality in the Brillouin zone
to vanish, a minimum of four Weyl points is needed in that case.

1.6. THIS THESIS BRIEF

CHAPTER 2: TOPOLOGICAL PROPERTIES OF MULTI-TERMINAL SUPERCON-
DUCTING NANOSTRUCTURES: EFFECT OF A CONTINUOUS SPECTRUM
Multi-terminal superconducting nanostructures may possess topological properties that
involve Berry curvatures in the parametric space of the superconducting phases of the
terminals, and associated Chern numbers that are manifested in quantized transcon-
ductances of the nanostructure. This chapter investigates how the continuous spec-
trum that is intrinsically present in superconductors, affects these properties. Within
scattering formalism, we derive the action and the response function that permits a re-
definition of Berry curvature for continuous spectrum.

We found that the redefined Berry curvature may have a non-topological phase-
independent contribution that adds a non-quantized part to the transconductances.
This contribution vanishes for a time-reversible scattering matrix. We found compact
expressions for the redefined Berry curvature for the cases of the weak energy depen-
dence of the scattering matrix and investigated the vicinity of Weyl singularities in the
spectrum.

CHAPTER 3: SPIN-WEYL QUANTUM UNIT: THEORETICAL PROPOSAL
Superconducting qubits are important for the practical implementation of quantum com-
puters. In this chapter, we propose a novel type of the superconducting qubit: the spin-
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Weyl quantum unit, a four-state hybrid quantum system that combines states of a spin
and an Andreev superconducting qubit. We demonstrate how the unit can be manipu-
lated to achieve an arbitrary unitary transformation in the space of four states by con-
trolling the superconducting phase only, and a convenient readout.

CHAP 4: SPINTRONICS WITH A WEYL POINT IN SUPERCONDUCTING HET-
EROSTRUCTURES
We investigate transport in a superconducting setup housing a Weyl point in the spec-
trum of Andreev bound states. A minimum magnet state is realized in the vicinity of the
point. We have shown that this minimum magnetic setup is suitable for realization of all
common goals of spintronics: detection of a magnetic state, conversion of electric cur-
rents into spin currents, potentially reaching the absolute limit of one spin per charge
transferred, detection of spin accumulation in the leads. The peculiarity and possible
advantage of the setup is the ability to switch between magnetic and non-magnetic state
by tiny changes of the control parameters: superconducting phase differences. We em-
ploy this property to demonstrate the feasibility of less common spintronic effects: spin
on demand and alternative spin current.

CHAP 5: WEYL POINT IMMERSED IN A CONTINUOUS SPECTRUM: AN EXAM-
PLE FROM SUPERCONDUCTING NANOSTRUCTURES
A Weyl point in a superconducting nanostructure is a generic minimum model of a topo-
logical singularity at low energies. We connect the nanostructure to normal leads thereby
immersing the topological singularity in the continuous spectrum of the electron states
in the leads. This sets another simple and generic model useful to comprehend the mod-
ification of low-energy singularity in the presence of a continuous spectrum. The tunnel
coupling to the leads gives rise to a new low energy scale Γ at which all topological fea-
tures are smoothed. We investigate superconducting and normal currents in the nanos-
tructure at this scale. We show how the tunnel currents can be used for the detection
of the Weyl point. Importantly, we find that the topological charge is not concentrated
in a point but rather is spread over the parameter space in the vicinity of the point. We
introduce and compute the resulting topological charge density. We also reveal that the
pumping to the normal leads helps to detect and investigate the topological effects in
the vicinity of the point.
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2.1. INTRODUCTION
The study of topological materials has been on the front edge of the modern research in
condensed matter physics for the past decade [1–5]. These materials are appealing from
fundamental point of view and for possible applications (TI-based Photodetector[6, 7],
spintronics[8], field-effect transistor[9], catalyst[10] and quantum computing[11, 12]).
The basis for applications is the topological protection of quantum states, which makes
the states robust against small perturbations and leads to many unusual phenomena,
e.g. topologically protected edge states[13–15]. The topological superconductors[16–19]
and Chern insulators[20–23] are the classes of topological materials that are relevant for
the present paper. In the case of the Chern insulator the topological characteristic is
an integer Chern number[24, 25] computed with the Green’s function of electrons occu-
pying the bands in a Brillouin zone of a material - WZW form[26–29]. The first Chern
number reduces to the sum of first Chern numbers of the filled bands. For each band,
the first Chern number is defined as an integral of the Berry curvature over the Brillouin
zone[30, 31]. The Berry curvature is commonly defined[32] as Bαβ = 2Im〈∂αk|∂βk〉 with
|k〉 being the wavefunction in this band and α,β being the parameters: in this case two
components of a wavevector. If the Chern number of a crystal is not zero, the edge states
necessarily appear at the interface between the crystal and the vacuum (since the Chern
number of the vacuum is zero). The dimensionality of topological materials in real space
is restricted by three from above, which significantly limits possible topological phases.

However, there is a way to circumvent this fundamental limitation. Recently, the
multi-terminal superconducting nanostructures with conventional superconductors were
proposed to realize the topological solids in higher dimensions[33]. Such nanostruc-
tures host discrete spectrum of so called Andreev bound states[34–36]. The energies
and wavefunctions of these states depend periodically on the phases of superconduct-
ing terminals. This sets an analogy with a bandstructure that depends periodically on
the wavevectors. The dimensionality of this bandstructure is the number of terminals
minus one. Also, as it was noted[33], the multi-terminal superconducting nanostruc-
tures cannot be classified as the high-dimensional topological superconductors from the
standard periodic table of topological phases[37]. The authors of [33] have considered
in detail 4-terminal superconducting nanostructures and proved the existence of Weyl
singularities[38, 39] in the spectrum. The Weyl singularity is manifested as level cross-
ing of Andreev bound states at a certain point in 3-dimensional phase space. Each Weyl
singularity can be regarded as a point-like source of Berry curvature. Owing to this, a
nonzero two-dimensional Chern number can be realized and is manifested as a quan-
tized transconductance of the nanostructure. This transconductance is the response of
the current in one of the terminals on the voltage applied to the other terminal in the
limit of small voltage, this signifies an adiabatic regime.

The peculiarity of the system under consideration is the presence of a continuous
spectrum next to the discrete one. These states are the extended states in the terminals
with energies above the superconducting gap. Were a spectrum discrete, the adiabaticity
condition would imply the level spacing being much larger than the driving frequency.
The level-spacing is zero for a continuous spectrum, so this complicates the adiabatic-
ity conditions. This has been pointed out already in Ref.[33] but was not investigated
in detail. We note the generality of the situation: a generic gapped system might have
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a continuous spectrum above the certain threshold, and the adiabaticity condition re-
quired for the manifestations of topology needs to be revisited in this situation.

The aim of the present chapter is to investigate this question in detail for a generic
model of a superconducting nanostructure. We have studied the linear response of cur-
rents on the changes of superconducting phases in the terminals. We model a multi-
terminal superconducting nanostructure within the scattering approach[40]. In this ap-
proach the terminals of the nanostructure are described with semiclassical Green’s func-
tions and the scatterer coupled to the terminals is described by a unitary (in real time)
S-matrix. Although it is not crucial, we made use of Matsubara formalism which conve-
niently allows us to concentrate on the ground state of the system and the limit of zero
temperature is formally achieved by considering continuous Matsubara frequencies. So
we do the calculations in imaginary time formalism[41]. At the first step, we obtain the
general effective action describing the nanostructure in terms of the S-matrix and time-
dependent semiclassical Green’s functions of the terminals. At the second step, we ex-
pand the action to the second power in time-dependent phases of the terminals. At the
third step, we concentrate on the limit of small voltage and driving frequency, to obtain
the response function relevant for topological properties.

We can use the properly anti-symmetrized response function as a generalized defi-
nition of the Berry curvature that is suitable for the systems with and without a contin-
uous spectrum. The main result of the present article is that so-defined Berry curvature
is contributed to by a continuous spectrum as well as discrete one even in the case of
energy-independent S-matrix. We derive an explicit formula for it. This solves the para-
dox mentioned in [33]: the Berry curvature associated with discrete Andreev bands is dis-
continuous when the highest Andreev bound state merges with the continuum, which
indicates that the integral of the Berry curvature defined only for discrete spectrum will
not reduce to an integer. The redefined Berry curvature that we find is continuous. It
gives rise to integer Chern numbers if the S-matrix is time-reversible. If it does not we
reveal a specific additional non-topological contribution that does not depend on the
superconducting phases. We note the the importance of the energy scales much larger
than superconducting gap |∆| in this context. This is why we also discuss in detail the
case of an energy-dependent S-matrix the energy scale of variation of which may be in
any relation with superconducting gap. We find that the non-topological contribution
depends on the regularization of the S-matirx at large energies. In particular, it vanishes
if the S-matrix is regularized as S±∞ = 1, this corresponds to no conduction between the
terminals.

The chapter is organized as follows. In Sec. 2.2 we introduce the details of a model
of a multi-terminal superconducting nanostructure and review the main aspects of a
scattering matrix approach formalism in this case. The derivation and discussion of the
response function are given in Sec. 2.4. In Sec. 2.6 we discuss the specific behaviour
near the Weyl singularities, in the absence and presence of a weak spin-orbit coupling.
In Sec. 2.5 we apply the general formulae to the case of a scattering matrix that varies
only slightly on the scale of the superconducting gap |∆|. In Sec. 2.7 we address the
energy-dependent S-matrices at arbitrary energy scale for a specific model of an energy
dependence. We conclude the paper with the discussion of our results (Sec. 2.8). The
technical details of the derivations are presented in Appendices.
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2.2. MULTI-TERMINAL SUPERCONDUCTING NANOSTRUCTURE

Generally a multi-terminal superconducting nanostructure (Fig. 3.1) is a small conduct-
ing structure that connects n superconducting leads. The leads are macroscopic and are
characterized by the phases of the superconducting order parameter. Each lead labeled
by α ∈ {0,1, · · · ,n −1} has its own superconducting phase φα and one of the leads’ phase
can be set to zero valueφ0 = 0, according to the overall gauge invariance. The nanostruc-
ture design and these phases determine the superconducting currents Iα in each lead,
that are the most relevant quantities to observe experimentally.

We aim to describe a general situation without specifying the nanostructure design.
To this end, we opt to describe the system within the scattering approach pioneered by
Beenakker [42]. The superconducting leads are treated as terminals: they are regarded
as reservoirs which contain macroscopic amount of electrons and are in thermal equi-
librium. A common assumption that we also make in this chapter is that all terminals
are made from the same material and thus have the same modulus of the superconduct-
ing order parameter |∆|. At sufficiently low temperatures and applied voltages one can
disregard possible inelastic processes in the nanostructure and concentrate on elastic
scattering only. Following the basics of the scattering approach[40], we assume Nα spin-
degenerate transport channels in terminal α. The conducting structure connecting the
terminals is a scattering region and is completely characterized by a scattering matrix
S which generally depends on energy ε and is a unitary matrix at any ε. In Matsubara
formalism we use imaginary energy ε and the matrix S satisfies the condition SεS†

−ε = 1.
All the details of the nanostructure design are incorporated into the scattering matrix.

The electrons and holes in the superconducting transport channels involved in the
scattering process may be described as plane waves that scatter in the region of the
nanostructure and then return to the corresponding terminals. Amplitudes of incoming
and outgoing waves are linearly related by the S-matrix. The numbers of transport chan-
nels in the terminal α denoted as Nα determines the dimension of the scattering matrix:
dimS = M ×M , where M = 2S

∑
α Nα and 2s counts for the spin. The electrons and holes

experience Andreev reflection in the superconducting terminals: the electrons are con-
verted into holes and turn back, the same happens to holes. The Andreev reflection is
complete at the energies smaller than the superconducting gap ∆. Therefore, electron-
hole waves may be confined in the nanostructure giving rise to discrete energy levels
called Andreev bound states (ABS). The amplitudes and phases of these confined states
are determined by the scattering matrix and Andreev reflection phases that involve the
superconducting phases of the corresponding terminals. One can find the energies of
the ABS ε through Beenakker’s determinant equation[36]:

det(e2iχ−Sεe iφσy (ST
−ε)−1σy e−iφ) = 0, χ= arccos(

ε

∆
) (2.1)

where Sε is the S-matrix at the real energy ε, σy =
(
0 −i
i 0

)
is a Pauli matrix acting in

the spin space and e iφ is the diagonal matrix in channel space ascribing the stationary
superconducting phases of the terminals to the corresponding channels, e iφ → δabe iφα

where a,b label the channels and α is the terminal corresponding to the channel a. The
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Figure 2.1: A multi-terminal superconducting nanostructure. Superconducting terminals are characterized
by the corresponding superconducting phases. Electrons and holes coming from a terminal are scattered at
the scattering region and can go to any other terminals. At least 4 terminals with 3 independent phases are
required for a nanostructure to simulate a 3-dimensional bandstructure with topological properties.

ABS energies and the corresponding eigenvectors in the space of the channels depend
parametrically on n − 1 independent phases φα ∈ [0,2π] and thus can be viewed as a
bandstructure defined in a "Brilluoin zone" of phases. It was noted[33] that (without
spin-orbit interaction) three independent parameters are needed to tune the n − 1 di-
mensional band structure of energy levels of ABS to reach the Weyl singularity at zero
energy. It was also noted[33] that only one parameter is required to satisfy the condition
for the highest ABS to touch the continuum above the gap (ε= |∆|). The ABS merges the
continuum in this case and this implies that one cannot change this level adiabatically
even for arbitrarily slow change of the parameters. When the incommensurate small
voltages are applied to two terminals to sweep the phases[33], the system passes the
points where the highest level merges with the continuum. This makes it questionable
to apply the adiabaticity reasoning in this case. This makes it necessary to consider the
contribution of the continuous spectrum to the response function of the currents in the
limit of slow change of the parameters.

2.3. ACTION

The most general way to describe the nanostructure under consideration is to use an
action method. This method has been pioneered in the context of a simple Josephson
junction in [41]. In this method one deals with an action of the nanostructure that de-
pends on the time-dependent superconducting phases φα(τ). The transport properties
of the nanostructure as well as quantum fluctuations of the phases in case the nanos-
tructure is embedded in the external circuit [41], can be derived from this action.

One of the advances of this Article is the derivation of such action for multi-terminal
nanostructure and arbitrary S-matrix in Matsubara formalism. The details of the deriva-
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tion are given in 2.9. Here we give the answer:

2L =−Trlog[Π++Π−Ŝε], Π± = 1± g

2
(2.2)

whereΠ± and Ŝε are matrices in a space that is a direct product of the space of channels,
the imaginary-time space, spin and Nambu space. The matrix Ŝε is diagonal in the corre-
sponding energy representation, therefore it depends on the difference of the imaginary
time indices only. Its Nambu structure is given by

Ŝε =
(
Sε 0
0 ST−ε

)
(2.3)

where Sε is the electron energy-dependent S-matrix (see App. 2.9). The matrix g is com-
posed of the matrices diagonal in energy and diagonal in time in the following way:

g =U †τzU , U † =
(

e
iφ(τ)

2 0

0 e
−iφ(τ)

2

)(
A−ε Aε

Aε A−ε

)
(2.4)

where

Aε =
√

E +ε
2E

, E =
√
ε2 +|∆|2, (2.5)

where τz is the 3rd Pauli matrix acting in Nambu space and the Nambu structure has
been made explicit in U †. This form assumes that |∆| is the same in all the terminals.
If it is not so, the matrix Aε also acquires the dependence on the channel index. It is
worth noting that g 2 = 1 so that Π± are projectors. The matrix g can be associated with
the semiclassical Green’s function in a terminal[40, 43]: e iφ(τ) is the diagonal matrix in
channel space ascribing the time-dependent superconducting phases of the terminals
to the corresponding channels, e iφ(τ) → δabe iφα(τ) where a,b label the channels and α is
the terminal corresponding to the channel a. We note the gauge invariance of the action:
due to the invariance of the trace under unitary transformations, the superconducting
phases can be ascribed to the terminal Green’s functions g as well as to the scattering
matrix. Let us assume that the matrix Sε does not depend on spin. Then the trace over
spin is trivial. It is convenient to apply the unitary transformation U † as in (2.4) to all the
matrices in (2.2). This transforms the matrix g to τz . Then the projectors take a simple
form Π± → 1±σz

2 and the matrix in (2.2) reduces to the lower block-triangular form in
Nambu space. The determinant is then equal to the determinant of the lower right block
of the transformed matrix S̄ε. Then the action takes the form

−2L = 2S Trlog[Aεe
−iφ(τ)

2 Sεe
iφ(τ)

2 Aε+

+ A−εe
iφ(τ)

2 ST
−εe

−iφ(τ)
2 A−ε] (2.6)

the S-matrix in Matsubara formalism is subject to the unitarity constraint,

S†
−εSε = 1 (2.7)

In what follows we ascribe the stationary phase to the S matrix. We also concentrate on
the zero-temperature limit kB T ¿ |∆|, so the summations over discrete frequencies are
replaced with integrations

∫ dε
2π .
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2.3.1. STATIONARY PHASES
In the stationary case φ(τ) = φ+δφ(τ) with constant φ and δφ(τ) ≡ 0 the value of the
action gives the stationary phase-dependent ground state energy of the nanostructure
Eg = limkB T→0 T L0:

Eg =−2S

2

∫
dε

2π
TrlogQε (2.8)

Qε = A2
εSε+ A2

−εST
−ε (2.9)

where Trace is now over the channel space and the Trace over spin space is taken explic-
itly as a factor of 2S unless specifically addressed. The operator Qε introduced here has
the properties of the inverse of the Green’s function although it is not related to an oper-
ator average: its determinant as function of complex ε vanishes, detQε = 0, at imaginary
values ε = ±iεk corresponding to the ABS energies (compare with (2.1)). In addition to
these singularities the operator Qε has two cuts in the plane of complex ε corresponding
to the presence of a continuous spectrum in the terminals above the gap |∆|. We choose
the cuts as shown in Fig. 2.2. The expression (2.8) can be simplified in the case when the
S-matrix does not depend on energy

Eg =− 2S
2

∫ dε
2πTrlog

( E+ε
2E + E−ε

2E SS∗)+ 2S
2

∫ dε
2π logdet(ST ) (2.10)

the second (divergent) contribution here does not depend on the superconducting phases
so we omit it. To compute the integral it is convenient to choose the basis in which the
unitary matrix Λ = SS∗ is diagonal. This is a unitary matrix, so the eigenvalues are uni-
modular complex numbers. The phases of the eigenvalues are related to the energies of
ABS:Λk = e2iχk , χk = arccos[εk /|∆|], χ ∈ [−π/2;π/2]. The eigenvalueΛk = 1 is doubly
degenerate and corresponds to the values εk = ±|∆|. The eigenvalues come in complex
conjugated pairs Λ∗

k = Λ−k , where (−k) corresponds to the Nambu-counterpart of the
k−th eigenvector. So only the eigenvalues ImΛk > 0 correspond to the quasiparticle
states with positive energies. We will label them with positive indices k. In what fol-
lows we define a "bar" operation that links these pairs |k̄〉 = S|k?〉 = |−k〉 where |k〉 is
some eigenvector of Λ. We note, however, that this operation is not a convolution, since

| ¯̄k〉 =Λk |k〉.
In this basis we can rewrite the integral as

Eg =−2S

2

∑
k>0

∫
dε

2π
log[

(E +ε)2 + (E −ε)2 +2cos2χk

4(ε2 +|∆|2)
] (2.11)

Evaluation of the integral brings to the known result

Eg =−2S

2

∑
εk>0

εk (2.12)

where εk are the stationary phase-dependent ABS energies, as discussed above. The
derivative of the ground state energy with respect to a stationary phase in terminal α
gives the stationary current in the corresponding terminal,

Iα = 2e
∂Eg

∂φ(0)
α

. (2.13)
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Figure 2.2: Singularities of the matrix Qε in the complex plane of energy ε. The symmetric cuts [±i |∆|,±∞]
manifest the states of continuous spectrum. The isolated zeroes of the determinant of the matrix are situated
at the imaginary axis within the interval [−i |∆|,+i |∆|] (red crosses in the Figure). Their positions correspond
to the ABS energies.

We expect this relation to hold in the adiabatic limit. In the following Section, we will
access the time-dependent currents concentrating on the next order correction in the
limit of small frequencies.

2.4. RESPONSE FUNCTION OF THE CURRENTS
To compute the response function of the currents we assume small nonstationary phase
addition to the stationary phases φ, φ(τ) =φ+δφ(τ), δφ(τ) ¿ 2π and expand the action
to the second order in δφ(τ) (first order vanishes automatically since δφ(τ) is nonsta-

tionary
∫ β

0 dτδφ(τ) = 0). We give the details in Append. 2.10. The total contribution to
the action reads

δL = ∑
α,β

∫
dω

2π

δφαωδφ
β
−ω

2
Rαβ
ω , (2.14)

δφω being the Fourier transform of δφ(τ). The frequency-dependent response function

of the current Rαβ
ω is given by

Rαβ
ω =

−2S

∫
dε

2π
Tr

{
Q−1
ε A2

ε [
Pα
2

(Sε−ω−Sε)
Pβ
2

+

+ Pβ
2

(Sε+ω−Sε)
Pα
2

]+ (2.15)

+ 1

2
Q−1
ε

∂2Qε

∂α∂β
− (2.16)

− 1

2
Q−1
ε+ω(A−(ε+ω)(

i Pα
2

ST
−ε−ST

−(ε+ω)
i Pα

2
)A−ε−
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− Aε+ω(
i Pα

2
Sε−Sε+ω

i Pα
2

)Aω)×

×Q−1
ε (A−ε(

i Pβ
2

ST
−(ε+ω) −ST

−ε
i Pβ

2
)A−(ε+ω)−

− Aε(
i Pβ

2
Sε+ω−Sε

i Pβ
2

)Aε+ω)
}

(2.17)

here the stationary phases are ascribed to the S-matrix. We use a shorthand notation
∂/∂α = ∂/∂φα and define a set of matrices that project channel space onto the space of
the channels in the terminalα, (Pα)ab = δab if a is a channel in terminalα and (Pα)ab = 0
otherwise. The term in (2.15) vanishes at zero frequency and in the case of the energy-
independent S-matrix. The second term (2.16) does not depend on frequency ω. In the
limit of zero frequency the second and the third terms (2.17) reproduce the stationary
response function of the currents

lim
ω→0

Rαβ
ω =−2S

2

∂2

∂α∂β

∫
dε

2π
TrlogQε =

∂2Eg

∂α∂β
(2.18)

Let us consider the limit of smallω¿|∆| and concentrate on the first order correction to
the adiabatic limit

Rαβ
ω = ∂2Eg

∂α∂β
+ωBαβ+O(ω2) (2.19)

We note that the response function is analytic in the vicinity of ω = 0. This is guaran-
teed by the gap in the density of states, which is given by the energy of the lowest ABS.
Away from the zero-energy Weyl singularity it can be estimated as |∆|/N with N being
the total number of ABS in the nanostructure. The vicinity of a Weyl singularity has to be
treated more carefully as we discuss in Sec. 2.6. Let us note that for any system with a
discrete spectrum the quantity Bαβ can be related to the Berry curvature[30–32]. For any
state in the discrete spectrum the Berry curvature corresponding to this state is given
by B (i )

αβ
= 2Im〈∂αi |∂βi 〉 with i labeling discrete states and |i 〉 being the wavefunction of

the corresponding state. In our case we are interested in the total Berry curvature of
the superconducting ground state defined as Bαβ = − 1

2

∑
i B (i )

αβ
where i labels the (spin-

degenerate) wavefunctions of the BdG equation with positive eigenvalues[33]. However,
the adiabaticity condition which justifies the expansion in Eq. (2.19) for the case of dis-
crete spectrum requires the frequency to be much smaller than the smallest energy spac-
ing between the levels.

In our system, the continuous spectrum above the superconducting gap is present.
In principle, any continuous spectrum can be approximated with a discrete spectrum
with a vanishing level spacing δ→ 0. By doing this we can utilize the previous expres-
sion for the response function Bαβ since it is valid for the discrete spectrum. However,
the adiabaticity condition which is necessary for this expression to be valid would reduce
to ω¿ δ→ 0. This condition contains an artificially introduced δ and is by construction
very restrictive in ω. On the other hand, the expansion in Eq. (2.19) is valid under a
physically meaningful and less restrictive condition ω¿ |∆|/N . Taken all that into ac-
count, we conclude that the response function Bαβ defined in Eq. (2.19) does not have
to reduce to the expression for a total Berry curvature of a superconducting ground state
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of a system discussed above. The topological properties of this quantity also have to be
investigated separately.

One may conjecture that the resulting response function in Eq. (2.19) reduces to the
sum of the Berry curvatures of the discrete ABS spectrum, so that it is not contributed
to by the continuous spectrum. This conjecture relies on the analogy between the ex-
pressions for the total Berry curvature and the superconducting ground state energy. In
the case when the S-matrix is energy-independent, only the discrete states contribute
to the ground state energy. Thus motivated, in the following we investigate the response
function Bαβ defined by means of Eq. (2.19) in detail. We find that there is a contribution
from the continuous spectrum to this quantity as well as from the discrete one. We also
find that in general the integral of Bαβ over the phases φα,φβ that would normally de-
fine an integer Chern number, is not integer. Therefore, Bαβ contains a non-topological
contribution. This non-topological part is contributed by the continuous as well as the
discrete part of the spectrum.

The tensor Bαβ defined in Eq. (2.19) is antisymmetric (since Rαβ
ω = Rβα

−ω). The con-
crete expression for Bαβ reads:

Bαβ =−2S

2

∫
dε

2π

(
1

2
Tr

[
Q−1
ε

∂Qε

∂ε
Q−1
ε

∂Qε

∂α
Q−1
ε

∂Qε

∂β

]
+

+ ∂

∂β
Tr

[
Q−1
ε A2(ε){

∂Sε
∂ε

,
i Pα

2
}

])
− (α↔β) (2.20)

The first term here resembles the usual WZW form[29] for a Chern number. Usually, the
form contains the matrix Green’s functions[29], in our case the form utilizes the matrix
Qε defined by Eq. (2.9). We note however that in distinction from common applications
of WZW forms here one cannot regard Qε as a smooth function of parameters φα,φβ,ε
defined on a compact manifold without a boundary. This is because in general this ma-
trix has different limits at positive and negative infinite energies S−∞ for ε→ −∞ and
ST−∞ for ε→+∞ that also depend on the phases. Due to this reason the integral of the
first term over a compact surface without a boundary in a space of phases does not have
to reduce to an integer ·(2π)−1. The second term in Eq. (2.20) has a form of a total deriva-
tive with respect to a phase of a periodic and smooth function, so the integral of this one
over a compact surface will give zero.

In order to obtain the value of this integral let us consider first the variation of this
value upon the small smooth variation of the matrix Qε→Qε+δQε that comes from the
small variation of the S-matrix δSε, so δQε = A2

εδSε+A2−εδST−ε. The value of the integral of
the second contribution in Eq. (2.20) does not contribute to the integral over a compact
submanifold in phase space, so we needn’t consider its variation. It is known [44] that
the variation of the first contribution to Bαβ reduces to the total derivatives with total

antisymmetric tensor eαβ:

δ{
∫

dε

2π
Tr

[
Q−1
ε

∂Qε

∂ε
Q−1
ε

∂Qε

∂α
Q−1
ε

∂Qε

∂β
eαβ

]
} =

=
∫

dε

2π
∂εTr

[
Q−1
ε δQεQ

−1
ε

∂Qε

∂α
Q−1
ε

∂Qε

∂β

]
eαβ+ (2.21)



2.4. RESPONSE FUNCTION OF THE CURRENTS

2

27

+
∫

dε

2π
∂αTr

[
Q−1
ε δQεQ

−1
ε (

∂Qε

∂β
Q−1
ε

∂Qε

∂ε
− ∂Qε

∂ε
Q−1
ε

∂Qε

∂β
)

]
eαβ (2.22)

The value of the integral of (2.22) over a compact submanifold in phase space vanishes
if the submanifold does not pass Weyl singularities corresponding to detQ−1

ε →∞, be-
cause it has a form of a total derivative of a smooth function. Evaluation of the integral
in (2.21) yields the following contribution to the variation of Bαβ

1

2π
δ{Tr[S−∞

Pα
2

S†
+∞

Pβ
2

]}eαβ (2.23)

We note that this contribution is generally nonzero and does not depend on phases.
Let us turn to the evaluation of the topological charge that is proven to be very useful

in the field [28]. The value of the topological charge is defined in a usual way with the
divergence of the topological field ~E and total antisymmetric tensor eγαβ

2πq = div~E , Eγ ≡ 1

2
eγαβBαβ (2.24)

To compute the topological charge we need to consider a special variation of the S-

matrix that just corresponds to the stationary phase derivative δSε = [Sε,
i Pγ

2 ]δφγ. Since
the expression under the trace in (2.23) does not depend on phases, the topological
charge vanishes at any point where the field ~E is well-defined, or alternatively detQ−1

ε is
finite. The Weyl singularities give rise to the point-like integer charges being the sources
of the field ~E . We consider this in detail in Sec. 2.6. This situation is in complete analogy
with that of the standard Berry curvature of a discrete spectrum where Weyl singularities
correspond to band crossings. However, we have computed the topological charge for

the particular phase-dependence of the S-matrix on phases (e−
iφ
2 Se−

iφ
2 ). We have not

considered the topological charge in the space of 2 phases φα,φβ and some other pa-
rameter characterizing the scattering matrix, this charge could be nonzero and have a
continuous distribution. The investigation of the general parametric dependence of the
S-matrix is beyond the scope of the present article.

We separate the field ~E into three parts: a part produced by the point-like charges,

divergenceless field that is zero in average, and a constant part ~̄E . The value of the inte-
gral

2πC 12 =
∫ 2π

0

∫ 2π

0
dφ1dφ2

Bαβeαβ

2
=

∫
(d~s,~E) (2.25)

is given by the flux of the topological field through the corresponding surface. This flux
reduces to the integer for the first contribution to ~E , vanishes for the second divergence-
less contribution and may result in some value for the constant part of the field. We stress
that the last contribution being present is the main distinction from the common case.
The value of this constant field is then given by the integration of the variation (2.23):

Ēγ = 1

2π
{Tr[S−∞

Pα
2

S†
+∞

Pβ
2

]}eγαβ (2.26)

This constant field can contribute to the flux through any plane in the phase space:

C = n +2π(~̄E ,~n) (2.27)
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where ~n is the normal vector to this plane. As it has been shown in Ref. [33] the value
of C 12 is directly related to the observable transconductance between the leads α and
β. Therefore, in contrast to the conclusions of Ref. [33] the value of transconductance
does not always quantize although the change of transconductance with a phase can be
quantized.

So, in principle a nonzero non-topological contribution to (2.27) can be present. This
contribution is nonzero if the S-matrix is not regularized at infinite energy such that
[S−∞,Pα] = 0. If the S-matrix is regularized in this way, then the Qε matrix is defined on a
compact space of parameters (ε,α,β), so the first contribution to Eq. (2.20) would reduce
to an integer n (with proper normalization). If it is not regularized this way, then this
boundary term leads to the presence of a non-topological contribution to the response
function, that comes due to the presence of a continuous spectrum and, formally, from
the fact that the matrix Qε is not defined on a compact space, as discussed above. In the
limit of energy-independent S-matrix, this contribution reduces to the antisymmetric
part of the Landauer conductance[40, 45]. In this case, if the bare S-matrix (without the
stationary phases of terminals ascribed) is non-symmetric (which means the breaking
the time-reversibility condition) we obtain a nonzero value of (2.26). If the S-matrix is
time-reversible, the non-topological contribution is zero and the integer quantization of
transconductance is restored.

2.5. WEAK ENERGY DEPENDENCE OF THE S−MATRIX
In the description of the realistic nanostructure a reasonable approximation is to con-
sider the S-matrix to be constant on the scale of |∆|. It corresponds to the case of a
short nanostructure (smaller than the superconducting coherence length). So a logi-
cal approximation would be to describe the nanostructure with a constant S-matrix at
all energies. The response function Bαβ is given by an integral over energy in Eq. (2.20).
Would this integral accumulate in the region ε ∼ |∆|, then the approximation of a con-
stant S-matrix at all energies would be accurate. However, there can be a significant
contribution from the energy scales εÀ |∆| to the integral yielding Bαβ. In this case the
energy dependence of the S-matrix at the large energies becomes important. To investi-
gate this we consider the contributions from the small scales ε& |∆| and from the large
scales εÀ|∆| in the Subsections 2.5.1 and 2.5.2 respectively.

2.5.1. ENERGY-INDEPENDENT S−MATRIX:
In this Subsection we analyze the small-scale (ε∼ |∆|) contribution to (2.20). For this we
approximate the S-matrix to be constant at all energies and extend the integration limits
to infinity. The second term in (2.20) vanishes since ∂Sε

∂ε = 0. The integral in the first term
in (2.20) converges on the scale ε& |∆|. This statement only necessarily holds if the S-
matrix is energy-independent. Otherwise, the contribution from the larger scales can be
present and we investigate it in 2.5.2. Similarly to (2.11), the result of integration under
consideration can be expressed in terms of the eigenvalues and eigenvectors of the uni-
tary matrix Λ= SS∗. We use the same notations |k〉 and

∣∣k̄〉
for the eigenvectors related

to the complex conjugated eigenvalues pairΛk andΛ∗
k correspondingly as described af-

ter Eq.(2.10). We remind that the phase of the eigenvalue Λk = e2iχk with k > 0 is related
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Figure 2.3: The choice of the branch cut of the logarithm in Eq. (2.28) in the plane of complexΛ.

to the energy of ABS as χk = arccos[εk /|∆|]. We also remind thatΛk = 1 is degenerate and
corresponds to the energy of one of the ABS εk = |∆|. Upon crossing this point in phase
space, this ABS state exchanges the wave function with its Nambu counterpart with the
eigenvalue εk ′ =−|∆|. Due to this we call such points gap touching singularities.

Evaluating the integral yields

4πBαβ =−2
∑
k

(
logΛk − log(1+ i 0sg n(k))

)〈∂αk|∂βk〉−

−∑
k, j

(1− Λk

Λ j
)〈 j |∂αk〉〈 j |∂βk〉− (α↔β) (2.28)

where k, j label the eigenvalues of Λ, and the summation goes over indices with both
signs. If the number of channels is odd, there is an eigenvector of Λ corresponding pre-
cisely to the eigenvalue Λk = 1. Then the index k = 0 corresponds to this state. If the
number of channels is even, the indices in Eq.(2.28) do not take the zero value. In the fol-
lowing we consider the number of channels to be even. The logarithm here has a branch
cut along the real axis as [0,+∞] (see Fig. 2.3) to avoid the gap touching singularity am-
biguity Λk = 1. Let us consider the behaviour of Bαβ in the vicinity of the gap touching
singularity. Since the wave function corresponding toΛk → 1+i 0 is discontinuous upon
crossing this singularity, it is not obvious that Bαβ is continuous. However, one can ob-
serve that the first term is a sum of Berry curvatures of individual levels multiplied by
the eigenvalue-dependent prefactors logΛk . This prefactors vanish for the discontinu-
ous wavefunctions at the gap touching degeneracy and guarantee the continuity of the
first term. Also, one can show that the second term in Eq.(2.28) is continuous. Conse-
quently, Bαβ is continuous at this point (see Fig. 2.4). The only possibility for Bαβ to
be ill-defined at some points in phase space is the zero-energy Weyl singularity where
detQ−1

ε diverges (see Sec.2.6).
The response function Bαβ is expressed in terms of eigenvalues and eigenvectors of

the matrix Λ. So is the ABS contribution to the ground state Berry curvature, which was
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Figure 2.4: Example plots of B12. To produce the plots, we chose one channel per terminal and took a random
non-symmetric 4×4 scattering matrix describing the structure. We fix φ2 = 1.20π,φ3 = 0.48π and change φ1.
(Upper panel) (a) the value of B12 as given (2.28). It is clearly a continuous function ofφ1. (b) The contribution
of the discrete ABS to B12. The contribution experiences a jump at a point where the highest ABS merges with
the continuum. (a)-(b) is thus the contribution from the continuous spectrum. (See also Fig. 2.6)
(Lower panel) The ABS energies versusφ1. The point where the highest level touches the gap egde by coincides
with the point of discontinuity of the discrete spectrum contribution

conjectured as a result for Bαβ (see Sec. 2.4). It was shown[33] that this ABS contribution

is given by B ABS
αβ

= − 2S
2

∑
k>0 B (k)

αβ
, B (k)

αβ
= 2Im〈∂αk|∂βk〉. Since one of the wavefunctions

contributing to this sum is discontinuous at the gap touching singularity, we conclude
that B ABS

αβ
is discontinuous contrary to Bαβ. One can understand the difference between

Bαβ and B ABS
αβ

by considering the computation of the integral in the first term in Eq. (2.20)

by means of complex analysis (in the plane of complex ε). By shifting the integration
contour to the upper half-plane, one can see that the integral is contributed to by the
poles, corresponding to ABS and the cut above the gap (see Fig. 2.2). The contribution
from the poles results in BABS, but the contribution from the cut, B cut

αβ
= Bαβ−B ABS

αβ
6= 0,

is equally important (see Fig. 2.4 and Fig. 2.6).
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Figure 2.5: An example plot of the "Chern number" C12 defined as the integral of B12 over φ1,2 (see (2.27)).
To produce the plot, we have chosen a randon 4×4 scattering matrix that is not invariant with respect to time
reversal. We have found two Weyl singularities of opposite charge at φ3 = ±0.07π. We plot C 12 versus φ3 to
demonstrate the integer jumps at the positions of Weyl singularities along with a non-integer, non-universal
offset.

For the integrated Bαβ we obtain in accordance with Eq. (2.27)

∫ 2π

0

∫ 2π

0
dφ1dφ2

eαβBαβ

2
= 2π(n + 1

4
Tr(S†PβSPα)eαβ) (2.29)

so the value of transconductance is not necessarily quantized in the approximation of
the energy-independent S-matrix.

2.5.2. CONTRIBUTION FROM THE LARGE SCALES

In the previous Section we have shown that the non-topological contribution to the
transconductance comes from the boundary terms at ε=±∞ (see Eq.(2.21)). This means
that, contrary to intuition, there is an essential contribution to Bαβ coming from the en-
ergy scales much larger than the energy gap. In order to investigate the large energy
contribution we assume the regularization of the S-matrix at large energies. So, in this
Subsection we consider Bαβ for a particular energy-dependence of the S-matrix. It is
chosen such that the S-matrix is regularized at infinity such that it varies slowly on the
scale of a superconducting gap |∆| and S±∞ = 1. This S-matrix corresponds to a complete
isolation of the terminals at the largest energies. With this regularization, the matrix Qε is
defined on a compact parameter space (α,β,ε) and the first contribution in (2.20) must
reduce to an integer. Due to the scale separation, there are two contributions to Bαβ.
One comes from the scales ε ∼ |∆| and is given by the same result (2.28). Another one
comes from the scales εÀ|∆|.



2

32
2. TOPOLOGICAL PROPERTIES OF MULTI-TERMINAL SUPERCONDUCTING

NANOSTRUCTURES: EFFECT OF A CONTINUOUS SPECTRUM

Figure 2.6: Example plots versus φ1,φ2. A random non-symmetric scattering matrix has been chosen to pro-
duce the plots, that varies slowly at the scale of |∆|, while S∞ = 1. Upper panel: A density plot of the continuous
spectrum contribution to B12 (Eq. (2.20))versusφ1,φ2 atφ3 = 0.48π. There is a discontinuity at the lines of the
gap edge touching. Lower panel: the lines of the gap touching.

For negative energies, the large scale contribution with asymptotic accuracy equals

− 1

2
eαβ

∫ 0

−∞
dε

2π
Tr[

∂S†
−ε
∂ε

Sε
∂S†

−ε
∂α

∂Sε
∂β

] =

=− 1

2
eαβ

∫ 0

−∞
dε

2π
∂εTr[S†

−ε
i Pα

2
Sε

i Pβ
2

] =

=− 1

4π
eαβTr[S† i Pα

2
S

i Pβ
2

]+ 1

4π
eαβTr[S†

+∞
i Pα

2
S−∞

i Pβ
2

] (2.30)

with the notation S = Sε=0.
For positive ones:

− 1

2
eαβ

∫ +∞

0

dε

2π
Tr[

∂S?ε
∂ε

ST
−ε
∂S?ε
∂α

∂ST−ε
∂β

] =
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=− 1

2
eαβ

∫ +∞

0

dε

2π
∂εTr[S?ε

i Pα
2

ST
−ε

i Pβ
2

] =

=− 1

4π
eαβTr[S† i Pα

2
S

i Pβ
2

]+ 1

4π
eαβTr[S†

+∞
i Pα

2
S−∞

i Pβ
2

]. (2.31)

So, the both contributions give the following addition to the response function

1

2π
eαβTr[S† Pα

2
S

Pβ
2

]− 1

2π
eαβTr[S†

+∞
Pα
2

S−∞
Pβ
2

] (2.32)

Both terms here do not depend on phases. The first one is exactly equal to the constant
part of the topological field defined previously with an opposite sign (computed for an
energy-independent S-matrix case). So after integration over two phases, it cancels the
non-topological contribution from small scales in (2.29). Since we assume a regulariza-

tion S±∞ = 1, the second term is zero (Tr[S†
+∞

Pα
2 S−∞

Pβ
2 ] = 0), so the total mean value of

the transconductance is quantized in correspondence with the theory of characteristic
classes.

The second contribution to Bαβ in Eq. (2.20) contains the energy-derivative of the
S-matrix under the integral. Due to this the energy scale of its dependence drops out
from the integral. So, one may expect that it contributes to the large scale contribution
to Bαβ. However, with asymptotic accuracy it vanishes in the limit when the S-matrix
varies slowly on the scale |∆|. Indeed, in the limit |ε|À |∆|

Q−1
ε ' S?ε , A2

ε ' 0, ε> 0 (2.33)

Q−1
ε ' S†

−ε, A2
ε ' 1, ε< 0 (2.34)

In this limit for ε< 0, the integrand equals

∂

∂β
Tr[Q−1

ε A2(ε){
∂Sε
∂ε

,
i Pα

2
}] '

' ∂βTr[
i Pα

2
(
∂Sε
∂ε

S†
−ε−

∂S†
−ε
∂ε

Sε)] = 0 (2.35)

with asymptotic accuracy, since the expression under the trace does not depend on
phases. For ε> 0 the integrand vanishes since A2

ε → 0 for εÀ|∆|.

2.6. THE VICINITY OF A WEYL POINT
In this Section, we investigate the Berry curvature in the vicinity of a Weyl singularity, that
occurs at some point ~φ0 in the 3-dimensional phase space. Such Weyl points have been
analyzed in [33] assuming spin symmetry, in [46] the analysis has been extended to cover
weak spin-orbit interaction. Without spin-orbit coupling, the Weyl points are situated at
zero energy and detQ−1

ε=0 diverges near the point. A conical spectrum of ABS is found in
the vicinity of the point [33]. A weak spin-orbit coupling splits the energy cones in spin
and shifts the Weyl point to a finite energy [46]. Further, we discuss separately the cases
of vanishing and weak spin-orbit coupling.
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2.6.1. VANISHING SPIN-ORBIT COUPLING
When the spin-orbit (SO) coupling is absent, the Weyl singularities are located at some
points in the phase space ~φ0 and occur at zero energy ε± = 0. To consider the vicinity of
the singularity, we assume a small phase deviation δφ̂ = φ̂− φ̂0 ¿ 1 from the singular-

ity point and assign it to each channel via the diagonal matrix eδφ̂. In the vicinity, Bαβ

defined by Eq. (2.20) only has non-zero contributions from the first term of quasi-WZW
term. The second term vanishes asymptotically when the energy approaches zero, as
shown in Eq. 2.33. Conform to these approximations, we extend the domain of the inte-
gration over the phases to infinity since Bαβ is concentrated near the singularity point.

To compute Bαβ, we approximate the Q matrix near the Weyl point with the expres-
sion that keeps the first orders in ε and of the variation: Q = (ε+ 1

2δΛ)ST = MST , S being
the scattering matrix in the singularity point at ε = 0. Conveniently, we can replace Q
with M in Eq.(2.20). We find the variation δΛ by expanding the S-matrix in δ~φ:

S → S +δφS = e−iδφ̂/2Se iδφ̂/2 = S − [
iδφ̂

2
,S] (2.36)

Λ= SS∗ →Λ+δφΛ=Λ+ i Sδφ̂S†Λ− iδφ̂Λ (2.37)

We can contract the dimension of M projecting it to two eigenvectors ofΛ that achieve
singular values at the Weyl point. Following [33], we separate the singular part of M and
write in the basis of ABS eigenvectors |+〉 and |−〉 satisfying S |±〉 =±|∓〉∗,Λ|±〉 =−|±〉:

M = ε+ 1

2
δΛ≡ ε+ i

2
~h ·~τ (2.38)

where ~τ are the Pauli matrices in the space of these two eigenvectors, and the com-
ponents of ~h are proportional to the components of ~φ: hx + i hy = 2〈−|δφ̂ |+〉, hz =
〈+|δφ̂ |+〉−〈−|δφ̂ |−〉.

The form of M is similar to the generic form of Green’s function of a two-level system.
We expect that the two poles of M−1 should be positioned symmetrically on the imagi-

nary axis ε due to BdG particle-hole symmetry. Indeed, we find these poles at ε± =±i |~h|
2 .

Using the trace relations of Pauli matrices, we reduce in the leading order Bαβ to the
Berry curvature of the corresponding levels :

Bαβ =−1

4

∫
dε

2π
Tr

(
M−1
ε

∂Mε

∂ε
M−1
ε

∂Mε

∂α
M−1
ε

∂Mε

∂β

)
= 1

8

∫
dε

2π

∑
a,b,c=x,y,z

1

(det M)2

(
ha∂αhb∂βhcεabc−

− (α↔β)
)
=

~h

4|~h|3
·∂α~h ×∂β~h − (α↔β) (2.39)

We note that in this section all the matrices have the spin index. For an N dimen-
sional space of superconducting phases, the singularities are concentrated in the N −3
dimensions and the relevant space is reduced to a 3-dimensional subspace {δφ1,δφ2,δφ3}.
For certainty, we set the indices α,β = 1,2, and consider the curvature defined in the
φ1 −φ2 plane at a fixed phase φ3.
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The φ3 dependence of the integral of the curvature with respect to superconduct-
ing phases φ1, φ2 witnesses the change of first Chern number C 12 when the integration
plane passes the singularity point. Since we only concentrate on the vicinity of the Weyl
singularity, the integral under the approximations made can only indicate the change
of the Chern number, rather than its total value that can be determined by integration
over the regions far from the singularity point. To compute the integrated Bαβ, we notice
from Eq.(2.38) that the energy spectrum is linear in δφ, and introduce a linear relation
hi =∑

αδφαTαi with Tαi = ∂αhi being a real invertible matrix. The integrated B12 is then
obtained as:

C 12 = 1

2π

∫
B12dφ1dφ2 = 1

2
sgn(δφ3 detT ) (2.40)

sgn(δφ3) determining the orientation of the δφ3 deviation.
This implies that whenever the integration plane passes the Weyl point, the first

Chern number is changed by ∆C 12 = 1
2 sgn(δφ3 detT ) − 1

2 sgn(−δφ3 detT ) = ±1. This
manifest the the integer values of the topological charge. The integrated Bαβ in Eq.(2.40)
specifies the flux of the Berry field penetrating the plane which is either above or below
the singularity point. This flux, owing to symmetry, is a half of the total flux, this explains
the half-integer values. Therefore, the main contribution to Eq.(2.28) in the vicinity the
Weyl point is given by the Berry curvatures of the two levels that are close to zero energy,
and can be presented as

2πBαβ = 2πi [〈∂α+| ∂β+
〉−〈∂α−| ∂β−

〉
] (2.41)

2.6.2. WEAK SPIN-ORBIT COUPLING
Let us turn on a weak spin-orbit interaction and take it into account perturbatively giving
a small spin-dependent change to the scattering matrix that preserves its unitarity, as is
done in [46]. The first order variation thus reads

S →e−iδφ/2Se i~σ·~K e iδφ/2

=S +δφS + i S(~σ · ~K ) (2.42)

Λ=Sσy S∗σy →Λ+δφΛ+δKΛ

=Λ+δφΛ+ i S(~σ · ~K )S†Λ+ iΛ(~σ · ~K ∗) (2.43)

where the last equality sign implies the commutation relation σyσ
∗
i σy = −σi . Here, ~σ

are the Pauli matrices in spin space and ~K being the corresponding Hermitian matrix in
the channel space characterizing the spin-orbit effects. Owing to the time reversibility,
~K (~φ) =−~K (−~φ), yet in the vicinity of the singularity we may disregard its dependence on
superconducting phases.

As in the previous Subsection, we project the matrix Q onto singular subspace that
has now dimension of 4 to account for spin, and replace it with the matrix M . Writing
the latter in the basis of eigenvectors |±〉|↑ (↓)〉:

M = ε+ 1

2
δΛ= ε+ i

2
(~h ·~τ−~σ · ~K ′) (2.44)
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Figure 2.7: Spin-orbit splitting of Weyl singularity [a]: ABS energies versus φ1 through the singularity for a
choice φ2,3 corresponding to the singularity. The cone shifted upward(downward) specifies spin up (down).
[b]: ABS energy with the same φ2,3 along the line φ1 that misses the singularity. [c]: The ABS cross zero energy
at the surface of the ellipsoid depicted. The ellipsoid encloses the singularity (central point). The ground state
within the ellipsoid is of odd parity and the Berry curvature is zero. The central dot is the the Weyl singularity
φ0 enclosed in the ellipsoid. The ABS energies in [a,b] are plotted along the solid [a] and dashed [b]lines
in the Figure. [d]: The "Chern number"C12 versus φ3. The topological quantization is absent owing to the
discontinuity of the ground state at the surface of the ellipsoid.

~K ′ = 〈+|~K ∗ |+〉+ 〈−|~K ∗ |−〉. We can conveniently choose the spin quantization axis in

the direction of ~K ′ replacing the operator ~σ · ~K ′ with its eigenvalues ±|K0| = ±
√

|~σ · ~K ′|
for spin up and down, respectively.

The spin-orbit coupling lifts the spin degeneracy of the ABS in the vicinity of a Weyl

point. The poles at imaginary energies become ε↑ = i (± |~h|
2 + |K0|

2 ) for spin up and ε↓ =
i (± |~h|

2 − |K0|
2 ) for spin down. Contrary to the spin-degenerate case, the singularities at

|~h| = 0 are no longer at zero energy. Instead, they are shifted to ±i |K0|, see Fig. 2.7. The
conical singularity of the spectrum remains and the topology is still protected, as we will
explain below in detail.

The ABS energies cross zero energy when

|K0| = |~h| =
√∑

δφαXαβδφβ (2.45)

is satisfied. (Here, we introduce a positively defined matrix Xαβ = ∑
i Tαi Tiβ. Eq.(2.45)

defines an ellipsoidal surface in the 3D superconducting phase space that encloses the
singularity at φ̂0 where |~h| = 0. Outside the ellipsoid, two positive imaginary poles at
ε+↑(↓) = i

2 (|~h| ± |K0|) hold a half of the residue of the spin degenerate pole ε+ each. Two

negative imaginary poles ε−↑(↓) at ε−↑(↓) = i
2 (−|~h| ± |K0|) have the opposite residues. In-

side the ellipsoid, poles of ε+↑ and ε−↓ exchange their values as well as wave functions,
thus canceling the contributions from the other two poles. Thus, Bαβ is zero inside the
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ellipsoid and is the same as in the spin-degenerate case outside the ellipsoid,

Bαβ =
{ ~h

4|~h|3 ·∂α~h ×∂β~h − [α↔β], |K0| < |~h|
0, |K0| > |~h|

(2.46)

The result of integration of B 12 over two superconducting phasesφ1,φ2 at a fixed δφ3

thus reads

C 12 = 1

2π

∫
dφ1dφ2B 12θ(|~h| ≥ |K0|2) (2.47)

One can understand this result geometrically by presenting Eq. (2.47) as an integral over
the corresponding plane in~h space,

C 12 = 1

2π

∫
|~h2|>|K0|2

( ~h

2|~h|3
· n̂h

12

)
d2h12

= sgn(δφ3 detT )

4π

∫
|~h2|>|K0|2

d2h12

h2

= sgn(δφ3 detT )

2

Ω12

2π
(2.48)

where n̂h
12 is the vector normal of the corresponding plane andΩ12 is eventually the solid

angle at which a part of the φ1 −φ2 plane outside the ellipsoid is seen from the Weyl
singularity (see Fig.2.7). Generally, this angle is expressed through elliptic integrals.

The integral can be simplified if we choose the coordinate system in 3D space of
the phases in such a way that T13 = T31 = T23 = T32 = 0. With this, the integral can be
evaluated as

C 12 = sgn(detT )δφ3

2

∞∫
1

(|K0|2 −T 2
33δφ

2
3)r dr

[(|K0|2 −T 2
33δφ

2
3)r 2 +T33δφ

2
3]

3
2

= 1

2
sgn(detT )

δφ3

|K0|
(2.49)

We see that in the vicinity of a Weyl point the C 12 is not a topologically protected
quantity confined to the integer values: rather, it changes linearly in an interval of δφ3

defined by the strength of the spin-orbit coupling (Fig. 2.7 )
To explain this, and eventually restore the topological protection of C12, let us con-

sider many-body states in the vicinity of the Weyl point. Their energies are given by the
eigenvalues of the many-body Hamiltonian HMB

HMB = E↑(n̂↑−
1

2
)+E↓(n̂↓−

1

2
) (2.50)

where E↑(↓) = 1
2 (|~h|±|K0|) are the energies of quasiparticle excitations with spin up(down),

n̂↑(↓) are the number operators of the quasiparticles with the corresponding spin. The
energy spectrum EMB for each of the four possible states is given in Fig. 2.8. As we see
from the Figure, the ground state of the superconducting nanostructure corresponds to
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Figure 2.8: Many-body energy spectrum EMB given by (2.50) corresponding to FIG. 2.7. The ground singlet
state, single quasiparticle states of different spin and the excited singlet are labeled as |0〉, |↓ (↑)〉 and |↑↓〉, re-
spectively. The solid (dashed) lines correspond to the ABS plots FIG. 2.7 a (FIG. 2.7b). As the phase is varied,
the ground state parity transition between |0〉 state and |↓〉 state takes place at the point defined by (2.45).

n↑ = n↓ = 0 at |~h| > |K0| and to n↓ = 1,n↑ = 0 within the ellipsoid |~h| < |K0|. These states
differ in fermion parity, that is the conserving quantity for the superconducting Hamil-
tonian. This is why the parity transition that takes place at |~h| = |K0| is accompanied by
the discontinuity of the wave functions, which violates the topological quantization of
C 12. It is evident from Fig. 2.8 that the states of the odd fermion parity do not depend on
phases in the vicinity of the Weyl point therefore corresponding to zero B 12.

The topological protection is restored if one considers the ground state at fixed par-
ity. Then for the even ground state C 12 is the same as for the spin-degenerate case and
experiences an integer jump when the integration plane passes the singularity point. No
change of topological charge occurs for the odd ground state and it remains topologi-
cally trivial.

2.7. ENERGY-DEPENDENT S−MATRIX
In this Section we consider the effect of the energy dependence of the S-matrix on B12

given by (2.20) for arbitrary relation between the energy scales of the scattering matrix
and the gap |∆|.

We make use of the following model scattering matrix:

Sε = iε−µ−E (Ĥ + i Γ̂/2)

iε−µ−E (Ĥ − i Γ̂/2)
, [Ĥ , Γ̂] = 0 (2.51)

where Γ̂, Ĥ are Hermitian dimensionless matrices with eigenvalues of the order of one,
E being some real energy scale. This expression can be regarded as a rather general po-
lar decomposition of an energy-dependend scattering matrix. Since the matrices Γ̂, Ĥ
can be diagonalized simultaneously, the expession has poles at the complex energies
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Figure 2.9: An example plot of B12 (Eq. 2.20) for a randomly chosen energy-dependent S versus the energy
scale E for several choices of the energy scale µ at φ1 = 0.22π,φ2 =−0.67π,φ3 =−π. The dashed line gives the
limiting value of B12 at E À|∆| where the energy dependence of the scattering matrix is weak.

E = µ+E (Hn − iΓn/2) defined by the corresponding eigenvalues. The poles can be seen
as the scattering resonances. The eigenvalues Hn set the energies of those resonances
and the corresponding eigenvalues Γn give the inverse lifetimes of these resonances, Γn

must be positive to assure the correct causal properties of the scatterimg. Real energy
scale E then sets the typical spread of the poles in energy around their average posi-
tion µ. We note that Sε → 1 as ε→∞, so the conditions of regularization described in a
previous Section are fulfilled and the integral of B12 over a compact subspace in phase
space that does not cross the Weyl singularities, reduces to an integer. We remind that
the limit Sε → 1 corresponds to isolated terminals. In distinction from the weak en-
ergy dependence case, the ABS energies defined by Eq. (2.1) can not be readily obtained
and the resulting spectrum may be complicated with more ABS per transport channel.
It is no more plausible to separate the contributions to Bαβ coming from discrete and
continuous spectrum. This, however, does not change the qualitative features of these
contributions discussed above.

Let us consider and illustrate the dependence of B12 on these two energy scales. We
choose random matrices Ĥ , Γ̂ that satisfy the conditions stated, and compute B12 from
Eq. (2.20) at rather arbitrary settings of 3 phases. The integration over the imaginary
energy in Eq. (2.20) permits the evaluation with no regard for the details of a complicated
ABS spectrum. We plot the result versus the energy scale E at several settings of µ. (Fig.
2.9)

Let us consider µ 6= 0 first. In this case, at E → 0 the transmission between the ter-
minals is limited to a small circle of the radius ' E near µ. This suppresses the Andreev
scattering that requires good transmission at opposite energies, and all quantities that
depend on the phase differences including Bαβ. In Fig. 2.9, this is manifested as almost
zero B12 at E < µ. The further increase of E restores the Andreev scattering bringing
B12 to its typical values of ∼ (2π)−2. We note a non-monotonous dependence on E and
explain it by the fact that different poles of the scattering matrix contribute to B12 with
typically different signs, and the magnitude of the contribution depends on the position
of the pole with respect to the energy scale '∆. At E À∆ the energy dependence of the
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scattering matrix is weak at ε'∆ and B12 saturates at a value that does not depend on µ
and is given by Eqs. (2.28) and (2.32) (dashed line in the Figure 2.9).

The case of µ = 0 is special at small E since the concentration of transmission in a
small circle of energies does not suppress the Andreev scattering. The ABS in this case
are concentrated in this small energy circle (see [47]) and depend on all phases. This is
why B12 does not drop to 0 but rather approaches a finite limit at E → 0. At E À ∆ B12

still saturates at the value corresponding to the weak energy dependence case.

2.8. SUMMARY AND CONCLUSIONS
In this Article, we address the topological properties of multi-terminal superconducting
nanostructures. This involves Berry curvatures in the parametric space of the supercon-
ducting phases of the terminals and associated Chern numbers that manifest themselves
in quantized transconductances [33].

The specifics of the superconducting nanostuctures is the presence of continuous
spectrum along with the discrete one. The Berry curvature is readily defined for a dis-
crete spectrum. Its generalization for a (partly) continuous spectrum is not straightfor-
ward, and is a problem of general interest. It has not been solved in Ref. [33].

We perform the calculation in imaginary time, and model the nanostructure with an
energy-dependend scattering matrix. We have derived a general action of superconduct-
ing nanostructure with time-dependent phases, this is a separate advance. We expand
the action near a point in the space of phases to compute the response function at finite
frequency. We define the tensor quantity Bαβ (Eq. (2.20)) as a first term in the expan-
sion of the response function at small frequency. This quantity would have been Berry
curvature if the spectrum were entirely discrete.

We analyze the topological properties of the computed quantity. Like for Berry cur-
vature, the topological charge associated with divergence of Bαβ is concentrated in the
singular points of 3d phase space where ABS cross zero energy — Weyl points. Unlike
Berry curvature, the quantity Bαβ has a non-topological contribution that is constant
over the space of phases (Eq. (2.26)). This in general adds a non-quantized part to
"Chern" numbers defined as integrals of Bαβ over two superconducting phases, and to
the corresponding transconductances. This contribution is determined by the scatter-
ing matrix at ε→∞. It vanishes if the scattering matrix without superconducting phases
is time-reversible and if the scattering matrix approaches isolation limit Sε = 1 at large
energies. For an energy-independent scattering matrix, the non-topological term is as-
sociated with the anti-symmetrized part of the conductance matrix of the structure in
the normal state.

We consider in detail the case of weak energy dependence of the scattering ma-
trix. We separate the contributions of the discrete and continuous spectrum, find them
equally important and derive a compact relation for Bαβ (Eq. (2.28)).

We analyze in detail the Berry curvature in the vicinity of Weyl points. We have found
a violation of topological protection of "Chern" number in case of weak spin-orbit cou-
pling. This, however, is rather trivially related to the transition between the ground states
of different parity near the Weyl point and associated discontinuity of the wave func-
tions. The topological protection is restored if one considers a ground state of a fixed
parity.
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Figure 2.10: The concrete model for the derivation of the action. The electons are moving in 2N spin-
degenerate channels connected to the corresponding superconducting terminals by tunneling (wavy dashed
lines). In the picture, all the terminals in Eq.3.1 are combined into a single superterminal for convenience.
Right of the vertical line, the tunnelling between the channels provides the scattering described by N ×N ma-
trix.

We also investigate the properties of Bαβ for the scattering matrices that essentially
depend on energy at the energy scale '∆.

2.9. APPENDIX A: DERIVATION OF THE ACTION

In this Appendix, we derive the effective action for a multi-terminal superconducting
junction within the scattering approach. We follow the lines of Ref.[48]. In contrast to
Ref.[48] we proceed in Matsubara formalism. Let us start with the formulation of a con-
crete microscopic model. Since the scattering formalism is universal, there is a great
degree of arbitrariness in the choice of the model: all models that are characterized by
the same scattering matrix will result in the same action. Properties of the scatterer are to
be completely described by an S-matrix, the details of the model that describes the sys-
tem are not important. So we choose the model in a way we find it convenient (see Fig.
2.10). We consider a system of independent 1-dimensional channels with pairwise op-
posite velocities and a linear spectrum. They are defined in the interval −∞< x < 0. The
total number of channels is 2N , number N includes the spin doubling. Two channels in
a pair with opposite velocities are coupled to the same superconducting reservoir: this
is required to assure the time-reversibility of the model at this level. The coupling is a
tunnel one, and the coupling strength is characterized by the dwell time scale τ: at this
time scale, an electron in a channel would tunnel to a reservoir. The tunneling results in
an addition of self-energy to Green’s functions in the channels, which is proportional to
the tunneling rate 1/τ and to a matrix Green’s function g characterizing a reservoir (see
its concrete definition below). The channels defined in such a way model the electron
states coming from and going to the reservoirs that are scattered at the nanoscructure. In
the scattering region with a coordinate y ∈ [0, l ], there are N spin-degenerate channels of
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the same velocity direction. At the boundary y = 0 the electron amplitudes in the chan-
nels match those in the channels of positive velocity at x = 0 (incoming states), while
at y = l the amplitudes match those in the channels with the negative velocity(outgoing
states). As we will show, the S-matrix relates the amplitudes at y = l and y = 0.

To find the action for the nanostructure, we will compute its variation with respect
to the variation of g . To this end, we require the values of the Green’s functions in the
channels x, x ′ < 0 in close points x ≈ x ′. We find the variation in three steps. At the
first step, we express the Green’s functions at any x in terms of the Green’s functions at
x ≈ 0. At the second step, we consider the scattering region that provides a boundary
condition. With this, we relate these Green’s functions, and solve for them. This permits
to find the variation and the action at the third step.

In the channels, we choose the basis in the following form
u+
v−
u−
v+

 (2.52)

where u±, v± are N vectors in the space of the channels associated with the electron and
hole amplitudes of the Bogolyubov wave function, and ± refers to the sign of the velocity
in corresponding channels. In this basis, the equation for Green’s function reads(

iετ3 + i vη3τ3∂x + i

2τ
g

)
GCh(x, x ′) = δ(x −x ′) (2.53)

where v is the velocity that we can set the same for all the channels, ε is the Matsubara
frequency, τi are Pauli matrices in Nambu space, and η3 =± distinguishes channels with
positive and negative velocities. The matrix g is block-diagonal in the channel space. For
a given reservoir, it is given by

g = 1√
ε2 +|∆|2

(ετ3 + iσ2[τ1(
∆−∆∗

2
)+ iτ2(

∆+∆?
2

)]), (2.54)

g 2 = 1, ∆ being the superconducting order parameter in the corresponding reservoir.
We define a block structure

GCh =
(
G1 G3

G4 G2

)
(2.55)

We are only interested in the diagonal blocks G1;2 since the off-diagonal blocks will not
contribute to the variation of the action. We integrate the equation assuming ετ¿ 1 for
G(x, x ′) at x < x ′ we obtain

G1(x, x ′) = [(
1− g

2
e

(x−x′)
2vτ + 1+ g

2
e−

(x−x′)
2vτ )]G−

1 (x ′) (2.56)

G2(x, x ′) = [(
1+ g

2
e

(x−x′)
2vτ + 1− g

2
e−

(x−x′)
2vτ )]G−

2 (x ′) (2.57)

where we use special notations for the Green’s functions in the close points

G−
1 (x ′) =G1(x ′−0, x ′), G−

2 (x ′) =G2(x ′−0, x ′) (2.58)
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Since the solution for the Green’s function should not grow x →−∞, these Green’s func-
tions should satisfy the following conditions

Π+G−
1 = 0, Π+ = 1+ g

2
, G−

1 = lim
x′→−0

G−
1 (x ′) (2.59)

Π−G−
2 = 0, Π− = 1− g

2
, G−

2 = lim
x′→−0

G−
2 (x ′) (2.60)

These matrices G−
1;2 can be fixed if we consider the boundary conditions, that can be

obtained by solving the equations for the Green’s functions in the the scattering region
y ∈ [0; l ]. To derive these condition, let us introduce the amplitude vectorsΨ(y) =G(y, x),

X (y) =G(x, y) that have Nambu structure

(
u(y)
v(y)

)
and satisfy the equations

(
iετ3 + i vτ3∂y −

(
U (y) 0

0 U T (y)

))
Ψ(y) = 0 (2.61)

(
iετ3 − i vτ3∂y ′

)
X (y ′)−X (y ′)

(
U (y ′) 0

0 U T (y ′)

)
= 0 (2.62)

where U (y,ε) is the N ×N matrix potential acting on electrons inside the scattering re-
gion and mixing different channels. The solution of the Eq.(2.62) gives a linear relation
on the amplitudes

X (y = l ) = X (y = 0)Ŝ†
−ε (2.63)

where we define the S-matrix for electrons and holes arranged in Nabmu structure

Ŝε =
(
Se (ε) 0

0 (Sh(ε))−1

)
(2.64)

(Sh(ε))−1 ≡ ST
−ε. (2.65)

The electron scattering matrix is given by

Se (ε) = Sε = e−
εl
v ×Ty e−

i
v

∫ l
0 d yU (y,ε) (2.66)

where Ty implies the ordering of the U (y) operators in the exponent according to the
values of y in the increasing order. We do not need to specify the energy dependence fo
the S-matrix except for the general condition SεS†

−ε = 1.
The relation on the amplitude (2.63) gives the relation between the diagonal and off-

diagonal blocks of the Green’s function (2.55) outside the scattering region but close to it
|xε/v |¿ 1, |x ′ε/v |¿ 1

G3(x, x) =G1(x, x ′)Ŝ†
−ε =G−

1 Ŝ†
−ε, (x < x ′) (2.67)

The solution of Eq. (2.61)
Ψ(y = l ) = ŜεΨ(y = 0) (2.68)

yields another relation between the blocks

G2(x ′, x) =G+
2 = ŜεG3(x, x), (x < x ′) (2.69)
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Combining Eq. (2.69) and (2.67) we obtain the required boundary condition that relates
the diagonal sub-blocks

ŜεG
−
1 Ŝ†

−ε =G+
2 (2.70)

Combining the equations (2.70), (2.59) and (2.60), and the condition

G+
Ch −G−

Ch =− i

v
τ3η3 (2.71)

that follows directly from (2.53) we solve the complete linear system of the equations to
obtain the follwing for the diagonal blocks of the general Green’s function (2.55)

G−
1 = i

v

1

Π++Π−Ŝε
Π−Ŝε, G+

1 = −i

v

1

Π++Π−Ŝε
Π+ (2.72)

G−
2 = −i

v

1

Π−+Π+Ŝ†
−ε
Π+Ŝ†

−ε, G+
2 = i

v

1

Π−+Π+Ŝ†
−ε
Π− (2.73)

Next, we employ the formula that expresses the action variation in terms of Green’s
functions. We vary the reservoir Green’s function g keeping normalization g 2 = 1, so that
{g ,δg } = 0, then the variation of the action L is

δL =
∫

d xTr[δΣ(x)GCh(x, x)] (2.74)

where δΣ= −i
2τδg is the variation of self-energy of electrons in channels and GCh(x, x) is

their Green’s function at coinciding points. We note here that indeed only the diagonal
blocks G1;2 in Eq.(2.55) contribute since Σ is diagonal in this basis. The contribution
from the channels corresponding to G1 gives

2δLi n =+
∫ 0

−∞
d xTr[δΣGCh(x, x)] =

= −i

2τ

∫ 0

−∞
d xTr[δgGCh(x, x)] = −1

2
Tr[δg

1

Π++Π−Ŝε
Π+] (2.75)

The futher calculations is convenient to do in the basis that diagonalizes g . In this basis,

δg =
(

0 V
W 0

)
, g =

(
1 0
0 −1

)
, Ŝ =

(
S1 S2

S3 S4

)

Y −1(g +δg )Y = g , Y (Ŝ +δŜ)Y −1 = Ŝ (2.76)

we find

Y =
(

1 −V
2

W
2 1

)
, δS4 =−S3

V

2
− W

2
S2

2δLi n = 1

2
TrV S−1

4 S3 (2.77)
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where all the realtions are valid up to the first order in variations. The contribution from
the outgoing channels reads

2δLout = 1

2
Tr[δg

1

Π−+Π+Ŝ†
−ε
Π−] =

= 1

2
Tr[δg Sε

1

Π−Sε+Π+
Π−] = 1

2
TrW S2S−1

4 (2.78)

Summing both contributions, we obtain

2δL =−Tr[δS4S−1
4 ] (2.79)

Hence
2L =−TrlogS4 =−Trlog[Π++Π−Ŝε] (2.80)

This so-called block-determinant result for the action is similar to the one obtained pre-
viously [48] within the Keldysh formalism.

2.10. APPENDIX B: DERIVATION OF THE RESPONSE FUNCTION
In this Appendix, we present the details of the derivation of the Eq.(2.17) and Eq.(2.20).
We start with the action as given by Eq. (2.6). In order to derive the response function, we
assume that the time-dependent deviation (δφ(τ)) from the stationary phase denoted as
φ is small (δφ(τ) ¿ 2π) so we can expand the action in Taylor series in δφ(τ). We also
note that in time representation the total phase operator is diagonal (φττ′ = δττ′φ(τ)),
which implies that the energy representation of φ reads

φnm =φ(ω), ω= εn −εm (2.81)

We consider here the general case of the energy-dependent scattering matrix. The action
from Eq.(2.6) reads

−2L = Trlog[B +B T ], B = Aεe
−iφ

2 Sεe
iφ
2 Aε (2.82)

T implies the complete operator transposition that includes the reversing of the sign of
energy. We remind the definition

Aε =
√

E +ε
2E

, E =
√
ε2 +|∆|2, (2.83)

We ascribe the stationary part of the phases to an S-matrix Sε → Sε(φ) and expand in
small nonstationary deviation δφ(τ).

B ' B0 +B1 +B2 = B0 + ∂B

∂φαω
δφαω+

1

2

∂2B

∂φαω∂φ
β
−ω

δφαωδφ
β
−ω (2.84)

We introduce
Qε = B0 +B T

0 = A2
εSε+ A2

−εST
−ε (2.85)
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With this,

δTrlog[B +B T ] ' TrQ−1(B1 +B T
1 +B2 +B T

2 )−
1

2
TrQ−1(B1 +B T

1 )Q−1(B1 +B T
1 ). (2.86)

We remind the definition of the matrix, that projects on the channels connected to a
given terminal α:

(Pα)ab = δab

{
1, a =α
0, a 6=α (2.87)

where a,b indices are in channels. With the help of this matrix the phase variation can
be conveniently expressed as

(δφα)ab = (Pα)abδφα(τ) (2.88)

For simplicity of the notations, we denote the stationary phase derivatives ∂φα = ∂α. With
all this we consider the expansion of the S-matrix

e
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2
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2
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−
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2
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2
)2,Sε} (2.89)

Let us we also note the identities for the derivatives with respect to the stationary phases:

∂S
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= [S,
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2

] (2.90)

∂2S

∂α∂β
= Pα

2
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,S} (2.91)

the first term in the expansion (2.86) vanishes since δφω=0 = 0. The second term is
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The first term here does not depend on frequency and does not vanish in the limitω→ 0.
The second term up to linear order in ω can be rewritten as

2ωδφαωδφ
α
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∫
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∫
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i Pα

2
} (2.93)

The second term in the expansion (2.86) reads

− 1

2
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where subscripts mean taking the function at the frequency ε1,2 : ε1 = ε2 +ω and we
denoted ε2 = ε. Summing it with (2.92) we get the general response function as in Eq.
(2.17).

To perform the adiabatic expansion in the small parameter ω/|∆| here we keep ω as
an independent parameter. We will use the identities

i Pα
2

S2 −S1
i Pα

2
=−∂Scl

∂α
− {Sq ,

i Pα
2

} (2.95)

where we introduced "classical" and "quantum" S-matrices as

Scl =
S1 +S2

2
, Sq = S1 −S2

2
(2.96)

With this, we rewrite the term
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Next, we expand the terms that are taken at ε1 = ε2 +ω. Thery come from three factors

here. The expansion of the first factor Q−1
1 'Q−1

2 +ω ∂Q−1
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The expansion of the product of the classical parts is symmetric with respect to α,β, so
it vanishes. The product of quantum parts vanishes in linear order inω. So we only need
to consider quantum times classical and expand the quantum one

Sq ' ω

2

∂Sε
∂ε

(2.99)

it yields
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where the first doubling is due to the same contribution with α↔ β. Summing it with
(2.93) we obtain the total response function as given by (2.20)
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3.1. INTRODUCTION
Superconducting qubits are defined in the micro-fabricated macroscopic-scale super-
conducting circuits with quantum properties. Such circuits generally comprise super-
conducting loops with weak link coupling the superconductors. The artificial quan-
tum mechanics emerging from an interplay of Josephson effect and Coulomb blockade
makes it possible a rich variety of qubit designs. [1] Flux qubit[2, 3], charge qubit[4, 5]
and phase qubit [6, 7] have been developed over the decades. The qubits defined in the
circuits may be arranged to couple a common resonator mode, this enables multi-qubit
quantum gates and non-invasive qubit measurements [8].

Another major direction in solid-state quantum information processing are spin qubi-
ts where the electron spin is used to store quantum information [9]. The spin qubits are
usually realized in quantum dots in semiconductor materials where the electrons are
confined in visibly discrete states. Both singlet[10, 11] and spin doublet[12, 13] schemes
have been realized. The important experiments include [14–17]. The spin coherence
time of these quantum dot systems may achieve milliseconds, which is beneficial for the
quantum manipulation and quantum memory.

A less common but promising design of superconducting qubits exploits Andreev
bound states: the localized quasiparticle states in the vicinity of superconducting con-
tacts. It has been known that with the Andreev bound states one can realize both kinds
of the qubits within the same device. Namely, if the number of excess localized quasi-
particles is even, a (an Andreev) qubit emerges from the ground and excited spin-singlet
states [18]. However, if the number of excess quasiparticles is odd, the superconducting
device houses a conveniently isolated spin qubit [19]. Such realization is more inter-
esting than a traditional electron confinement in quantum dots motivating theoretical
research [20, 21]. These ideas have been realized experimentally [22–24] and remain in
focus of attention of the superconducting qubit community.

Recently, a topological singularity in Andreev spectrum of multi-terminal supercon-
ducting structure — a Weyl point — has been predicted and theoretically investigated.
[25]. For a 4-terminal structure, the spectrum of Andreev states depends on three in-
dependent superconducting phases. At a particular choice of these three phases, the
energy of the lowermost Andreev level approaches zero signaling the degeneracy of the
corresponding spin-singlet qubit. The spectrum is conical in the vicinity of this singular-
ity manifesting the critical dependence of the wave functions: very small changes of the
phases in the vicinity of the point strongly affect the wavefunctions of the states. This is
already advantageous for quantum manipulation applications. The Weyl points in the
superconducting structures have been investigated in [26–34].

As for any Andreev-based setup, the parity effect is crucial here. For even parity, the
spectrum of two spin-singlets is conical and the dependence of the wave functions is
critical in the vicinity of the point. For odd parity, the spin-doublet states are slightly split
owing to spin-orbit interaction.[35] Their wave functions or energies exhibit no critical
dependence on the phases. (Fig. 3.1a)

The quantum spaces of different parity are completely separated and cannot be made
coherent: indeed, a transition between those would involve a quasiparticle coming from/
escaping to the delocalized states of the continuous spectrum. So, despite the fact that
the system can house both superconducting and spin qubit, there is no quantum coher-
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Figure 3.1: The spin-Weyl quantum unit. a. The low-energy spectrum of the multi-terminal superconducting
structure with a Weyl point consists of a pair of flat spin-doublet states an a pair of conical spin-singlets. The
spin-doublets are split by small energy 2B coming from spin-orbit interaction. The pairs are not coherent
corresponding to different parities. b. The spin-Weyl quantum unit provides coherence and hybridization
between the flat and conical states. Sketch of the spectrum presents the hybridization with solid lines and
before hybridization with dashed lines. c. The setup of the spin-Weyl quantum unit. The superconducting
structure with 4 leads and 3 independent phases ϕ1,2,3 is tunnel-coupled with a single-electron quantum dot.
The quantum dot is tuned by the gate electrode, a lead supplies electrons to the dot.

ence between the two.
Whatever tempting such coherence may be, it seems to be forbidden by fundamental

laws. The main point of this chapter is that the coherence can be achieved with a rather
simple extension of the Weyl point setup.

In this Article we propose a hybrid system that can be regarded as two coherently
coupled qubits. It thus exhibits hybridization of flat spin-doublet states with conical
spin-singlet states (Fig. 3.1b.). We term the system a spin-Weyl quantum unit. We show
how the unit can be manipulated to achieve an arbitrary unitary transformation in the
space of 4 states, by the superconducting phase controls only, and can be conveniently
read out.

The system proposed combines a superconducting heterostructure and a single-elect-
ron quantum dot (Fig.3.1c). The two parts are coupled with a weak electron tunneling
between the heterostructure and the dot. The degeneracy at the Weyl point guarantees
that even the weak coupling results in strong change of the spectrum making it advanta-
geous for quantum manipulation applications. The electron tunneling to localized states
of the dot is essential for breaking the parity conservation that forbids the hybridization
of flat and conical states near the Weyl point.

The structure of the Article is as follows. In Section 3.2 we describe the setup, es-
tablish a minimum Hamiltonian required to describe the unit, and explain its relevance
in the wider context of more detailed description of the device. In Section 3.3, we de-
scribe the resulting spectrum and the choice we made for the subspace where quantum
manipulations are performed. We discuss in Section 3.4 read-out, initialization, and var-
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ious methods of quantum manipulation that can be implemented in the unit. In Section
3.5, we describe the implementation of single-qubit gates by means of resonant manip-
ulation. In Section 3.6 we concentrate on diabatic manipulations and demonstrate the
design of various two-qubit gates. We conclude in Section 3.7.

3.2. THE SETUP AND THE HAMILTONIAN
The unit consists of two subsystems: (Fig. 3.1c) the superconducting heterostructure
and the quantum dot. The superconducting heterostructure is connected to four su-
perconducting leads biased with three independent superconducting phases ϕ1,2,3 and
houses the discrete Andreev bound states with the spectrum depending on the phases.
At a certain choice of the phases, the energy lowermost Andreev state reaches zero ex-
hibiting a Weyl singularity [25, 30]. The quantum dot houses discrete number of elec-
trons, this number can be tuned by a nearby gate electrode. A normal-metal lead sup-
plies the electrons. The subsystems are coupled by electron tunneling.

Such setup can be realized with a variety of technologies, including the 2D semicon-
ducting heterostructures, semiconducting nanowires, graphene, brought in proximity
with superconducting metals. Here we do not specify a concrete technology but rather
spell out the physical restrictions. The spacing δ between the Andreev bound states
becomes small in comparison with the superconducting energy gap ∆ if the conduc-
tances G in the superconducting structure exceed much the conductance quantum GQ ,
δ ' (GQ /G)∆. So the conductances should be of the order of GQ . As mentioned in [25],
the existence of Weyl points relies on general scattering theory and does not impose any
further restrictions on the properties of the structure. The vicinity of the Weyl point im-
plies the working energy scale ¿ ∆. The level spacing in the quantum dot should be
big at this energy scale. The tunneling energy should be also at this scale, that is, not too
large. The spin-orbit splitting B is much smaller than∆ in materials with weak spin-orbit
coupling. The tunneling energy should be comparable with B .

Let us consider the full Hamiltonian of the system, that is the sum of the Weyl point
structure Hamiltonian, the quantum dot Hamiltonian, and the tunneling Hamiltonian.

H = Hwp +HT +HQD (3.1)

We will construct a minimum Hamiltonian disregarding possible higher-energy states
in the dot and in the structure. The Andreev levels in the vicinity of the Weyl point are
described by a Weyl BdG Hamiltonian[30]. Assuming spin degeneracy, this Hamiltonian
is a 2×2 matrix in Nambu space. Its general linear expansion near the Weyl point reads

Ĥ WP = τ̂a Mabδϕb (3.2)

here we use tensor convention for repeated indices. a,b = 1,2,3, τ̂a being a 3-vector
of Pauli matrices in Nambu space, δϕb being small deviations of the superconducting
phases from the Weyl point, Mab being a matrix of proportionality coefficients. It is ad-
vantageous to introduce the convenient coordinates in the space of 3 superconducting
phases, φa = Mabδϕb . We will name these coordinates phases for brevity, although they
have dimension energy. The spectrum of the Hamiltonian is conveniently isotropic in
the resulting space, E = ±|~φ|, while the wave functions do depend on the direction. To
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account for spin-orbit interaction, we promote the Hamiltonian to 4×4 matrix in spin
and Nambu space,

Ĥ WP =~̂τ ·~φ+ 1

2
~B ·~̂σ, (3.3)

~̂σ being the vector of Pauli matrices in spin space. The spin and orbital degrees of free-
dom separate, so the spectrum reads E = ±|~φ| + sz 2B , B ≡ |~B |, sz = ±1/2 being the
spin projection on the direction of ~B . We need the Hamiltonian in second quantization
form. We introduce the quasiparticle annihilation operators γ̂σ and associated Nambu
bispinors γ̄a,σ ≡ (γ̂σ,σγ̂†

−σ) to recast it to the standart form,

HWP = 1

2
γ̄†
αĤ WP

αβ γ̄β (3.4)

This Hamiltonian can be reduced to a diagonal form for a certain direction in φ-space,
~φ=φ~n by a Bogoliubov transform of γ̂σ to a direction-dependent ˆ̃γσ. Choosing the spin
quantization axis along ~B , we arrive at

HWP = 1

2
(φ+Bσ)

(
ˆ̃γ†
σ

ˆ̃γσ− ˆ̃γσ ˆ̃γ†
σ

)
(3.5)

This gives the spectrum sketched in Fig. 3.1 a: E = ±φ for the states |0〉, |2↑↓〉 ≡ ˆ̃γ†
↑ ˆ̃γ†

↓|0〉,
E =±B for the states | ↑〉 ≡ ˆ̃γ†

↑|0〉, | ↓〉 ≡ ˆ̃γ†
↓|0〉.

To model the dot at the small energy scale, we only need to take into account three
states that differ by an addition of an electron: a non-degenerate state |0〉 and two spin-
degenerate states d̂ †

σ|0〉, d̂ †
σ being the electron creation operator corresponding to spin

σ. The charging energy of the quantum dot pushes the states of other occupancy too
high in energy. As such, the Hamiltonian reads

HQD = εd d̂ †
σ|0〉〈0|d̂σ, (3.6)

the value of εd can be tuned with the gate voltage. The only function of the normal
metal lead in our setup is to provide equilibration of the total parity, which is impossible
otherwise. This equilibration is not required in course of quantum manipulation and
measurement and thus can be a slow process. The speed of equilibration is determined
by tunneling rate ΓL to/from the lead. We assume the inverse of this rate to exceed all
other relevant time scales in the setup. On this basis, we can disregard the dissipation
and decoherence brought by the lead, as well as neglect the tunneling to/from the lead
in the Hamiltonian description of the setup.

The least trivial and the most important part of the total Hamiltonian describes tun-
neling between the dot and the setup. To derive it, we assume spin conservation regard-
ing spin-orbit as an irrelevant perturbation. Then the most general form of the tunneling
Hamiltonian reads as follows:

HT =
∫

dydxĉ†
σ(y)d̂(x)σt (x,y)+h.c. (3.7)

Here, y and x are the electron coordinates in the superconducting structure and in the
dot, respectively, ĉσ(y), d̂(x)σ are the corresponding electron annihilation operators, and
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t (x,y) is the tunneling amplitude from the point x to the point y. We need to project this
operator to the low-energy electron states involved. To this end, we express the operators
in terms of the wave functions of the quasiparticle states in the superconducting struc-
ture, and the electron states in the dot, and the corresponding creation/annihilation op-
erators,

ĉσ(y) = ∑
n

(un(y)γ̂n,σ−σv∗
n (y)γ̂†

n,−σ); (3.8)

d̂σ(x) = ∑
n
Ψn(x)d̂n,σ (3.9)

where the summation is over all possible states. From this sum, we pick up the low-
energy states, one for the superconducting structure, one for the dot, to arrive at:

HT =
(
t1γ̂

†
σ− t2σγ̂

†
−σ

)
d̂σ+h.c. (3.10)

with

t1 =
∫

dydxu∗(y)Ψ(x)t (x,y); (3.11)

t2 =
∫

dydxv(y)Ψ(x)t (x,y) (3.12)

The tunnel Hamiltonian is thus characterized with two complex effective tunneling am-
plitudes, t1,2, whose common phase is irrelevant. It is important to understand that the

remaining three parameters define the overall tunneling strength T ≡
√
|t1|2 +|t2|2 and

the direction in the phase space. Thus, the tunneling breaks the isotropy in the phase
space.

To analyze the spectrum, it is convenient to make the isotropy breaking explicit. For
this, we fix the 3rd axis of the coordinate system to the direction defined by t1,2, express
φ in spherical coordinates, ~φ = φ(sinθcosµ,cosθ sinµ,cosθ), and perform the unitary
transformation of γ̂σ that diagonalizes HWP. With this, the transformed Hamiltonian
reads

H = 1

2
(φ+Bσ)

(
ˆ̃γ†
σ

ˆ̃γσ− ˆ̃γσ ˆ̃γ†
σ

)
] (3.13)

+T

(
cos

(
θ

2

)
e−iµ/2 ˆ̃γ†

σd̂σ−

sin

(
θ

2

)
e iµ/2σ ˆ̃γ−σd̂σ+h.c.

)
+ HQD

The azimuthal angle µ is not relevant for the spectrum and can be set to 0. The spectrum
depends on the polar angle θ owing to the tunneling term.

It is useful to shortly discuss possible decoherence and dissipation sources in the re-
sulting quantum system. As we will see, the resulting level energies are either essentially
phase-dependent, as the singlet states in Fig. 3.1a. or "flat", as the spin states in the
same figure. As to phase-dependent states, their dissipation and decoherence are deter-
mined by (quantum) fluctuations of the control phase differences. The corresponding
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rates can be estimated as ZGQ E , E being the energy difference between the levels in
the unit, Z being a typical impedance of the electromagnetic environment. Typically,
ZGQ ' 10−2, that guarantees low decoherence at the time scale of quantum manipu-
lation. The dissipation and decoherence of the "flat" states are determined by weaker
sources, the electron-photon interaction may be a plausible one.

3.3. THE SPECTRUM
The whole spectrum consist of 3×4 = 12 states. They are separated into two groups of
different total parity, 6 states in each group. In addition, the states are separated by the
spin projection sz on the B axis.

Let us consider the even parity first. There are two states with sz = ±1, |1↑1↑〉 and
|1↓1↓〉 (first and second number refer to the occupation of the superconducting structure
and the dot, respectively) that are not affected by superconducting phases or tunneling,
with energies εd ±B . The group of four states with sz = 0 is of primary interest for us
and comprises the spin-Weyl unit. Without tunneling, there are two conical states, |00〉,
|2↑↓0〉 with energies ±φ, and two flat states |1↑1↓〉 and |1↓1↑〉 with energies εd ±B (the
second number in this notation is the occupation of the dot). The tunneling hybridizes
the states. The hybridization ceases at sufficiently large distances from the Weyl point,
the energies of the states returning to their values without tunneling. The Hamiltonian
in this basis is obtained by collecting the matrix elements of (3.13) into the 4×4 matrix.
We assume µ = 0. The signs of non-diagonal matrix elements depend on the choice of
signs of the basis vectors, the current choice stresses the antisymmetry of a singlet state:

H4 =


−φ −T sin( θ2 ) T sin( θ2 ) 0

−T sin( θ2 ) εd −B 0 T cos( θ2 )
T sin( θ2 ) 0 εd +B −T cos( θ2 )

0 T cos( θ2 ) −T cos( θ2 ) φ

 (3.14)

The resulting axially symmetric spectrum is shown in Fig. 3.2 for various directions
in the phase space given by the polar angle θ (to compact the plots, we concatenate the
plots at θ and π−θ in such a way that the latter corresponds to negative φ) and three
different settings of εd where the former conical point is above, below or in between the
energies of the flat states.

The spectrum comprises 4 sub-bands that are eventually touch each other in 3 Weyl
points. They are located at symmetry axis corresponding θ = 0 (or θ = π, if φ < 0), left-
most column of the plots. For the middle row of the plots, the Weyl point is visible in
all columns since it is located at ~φ= 0 for a particular symmetric choice εd = 0 made. In
general, the points are shifted from ~φ= 0. The existence of these points is a consequence
of topology, so these points remain even if we perturb the Hamiltonian, for instance,
with the terms breaking the axial symmetry. Apart from this feature, the sub-bands show
rather expected hybridization at φ ' T and go asymptotically to flat and conical states
for φÀ T .

This 4-dimensional subspace suits well to represent two coupled qubits, and we will
use it to realize the spin-Weyl quantum unit.

For completeness, let us also describe the spectrum for odd parity. Six states are
separated in two groups of three with sz =±1/2, that is, into two qutrits. The qutrit with
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Figure 3.2: The spectrum of spin-Weyl unit (even parity, sz = 0) consists of 4 sub-bands connected by three
Weyl points, and emerges from hybridization of two flat and two conical subbands. The spectrum has axial
symmetry. The columns correspond to four different settings of the polar angle θ. The choices of parameters
for rows: upper row, B = T , εd = 2T , both flat bands are above the conical point; middle row, B = 2T , εd = 0, the
conical point is between two flat subbands and remains at ~φ = 0 for this parameter choice; lower row, B = T ,
εd =−2T , both flat bands are below the conical point.
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Figure 3.3: The spectrum of a qutrit (odd parity, sz = 1/2) consists of 3 sub-bands connected by two Weyl
points, and emerges from hybridization of one flat and two conical sub-bands. The spectrum has an axial
symmetry. The columns correspond to four different settings of the polar angle θ. The choices of parameters
for rows: upper row, B = T , εd = 3T , the flat band is above the conical point; lower row, B = T , εd =−T , the flat
band is below the conical point.

sz = 1/2 is composed from the flat state |1↑0〉, and the conical states |01↑〉, |2↑↓1↑〉 with
energies B , εd ±φ. The Hamiltonian is a 3×3 matrix:

H3 =

 −φ+εd −T cos( θ2 ) 0
−T cos( θ2 ) B −T sin( θ2 )

0 −T sin( θ2 ) φ+εd

 (3.15)

The spectrum is plotted in Fig. 3.3 for a set of polar angles and three different settings
of εd where the former conical point is above or below the energy of the flat state. There
are two Weyl points in the spectrum that are situated at the axis. Apart from the number
of flat subbands, the spectrum is similar to that of the spin-Weyl unit. The spectrum of
the qutrit with sz =−1/2 is very similar to be obtained by inverting the value of B .

3.4. QUANTUM INFORMATION PROCESSING
Let us discuss the system under consideration from the point of view of quantum in-
formation processing. Without going to unnecessary details, we describe all elements
required for the processing: state read-out, initialization, and various methods of ma-
nipulation.

Read-out. The most natural read-out in the system utilizes the supercurrents in-
duced in the superconducting leads. For the state i , the supercurrent in the lead j is

given I j = 2e
ħ

dE j

dϕi
. The supercurrents thus distinguish the slopes the states. A realis-

tic measurement scheme is usual for superconducting qubits and involves a change of
non-linear inductance in a resonator by this current, so the current is detected as a shift
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of resonant frequency [23]. One of the advantages of Weyl point is the conical property
of the spectrum whereby the slops are of the same value far and close to the point, and
can be significantly changed by a small change of the phase settings. The ground state
and excited state in a conical pair give opposite supercurrent signals. In distinction, the
spin-like flat states give almost zero supercurrent at φÀ T and thus can not be distin-
guished. This is another advantage: the superposition of spin-like states is preserved by
the measurement. Yet if necessary they can be distinguished as well: one needs to adia-
batically change the phase settings close to zero where these states acquire slops owing
to hybridization.

Initialization. In the unit, one can adopt a conservative approach to initialization:
just wait till the relaxation brings the system to the ground state. After this, one can go to
the desired state by performing a manipulation. The problem may be that the relaxation
without quasiparticle exchange in principle conserves parity, so the unit could stuck in
the ground state of odd parity. In addition, the spin conservation in the process of re-
laxation may lead to a stucking in sz = ±1 states. To prevent this, one requires a tunnel
connection to the lead which will change the parity and the spin projection. Another
problem could be a slow relaxation from the flat states: this can be circumvented by
setting the phases close to zero so these states are not flat any more.

Manipulation. Let us see how we can manipulate the states in the unit. The most
natural way is to change the superconducting phases in time. As mentioned, the ad-
vantage of Weyl point is that the big changes of the wave functions can be achieved by
small φ' T changes of phases. We do not consider manipulation by magnetic field that
is typical for spin qubits since it is rather impractical: the magnetic fields required for
such manipulation are much bigger than those required to provide the small supercon-
ducting phase changes. More interesting and practical possibility is to change the gate
voltage modulating εd , but we do not consider it here either.

The manipulation methods differ by the way the ~φ is changing in time. Generally,
there are three distinct methods: (Fig.3.4) i. resonant manipulation whereby a small
oscillating phase addition is applied at a working point ~φw, ii. adiabatic manipulation
whereby the phase is slowly changing along a trajectory in the phase space, usually re-
turning to the initial point ~φ, iii. diabatic manipulation where the phases are changed by
sudden jumps, and the changed settings are kept for a time interval before jumping back
to another point or the initial point. Let us discuss each method for the unit in hand.
We acknowledge that an efficient implementation of each method requires Hamiltonian
characterization and subsequent design on the basis of a concrete Hamiltonian. How-
ever, the Hamiltonian is defined by a handful of parameters, so this should be a doable
task. One can also employ the combinations of these methods.

Resonant manipulation is the most common manipulation method working for al-
most all quantum systems. If one applies a modulation δ~φ(t ) that oscillates with the
frequency matching the energies of the states |a〉 and |b〉 defined in a working point φw,
one is able to achieve an arbitrary unitary transformation in the basis |a〉, |b〉 tuning
the duration and phase of the modulation pulse. [1] One needs to do more for a more
general unitary transformation. To implement single-qubit gates, we use the resonant
manipulation in special working points where two energy differences are the same, this
permits unitary transformations in the basis of four states. We discuss the details in the
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Figure 3.4: The quantum manipulation methods for spin-Weyl quantum unit. A. Resonant manipulation. The
phases oscillate around the working pointφw with amplitude δ~φ and frequencyω that matches the level spac-
ing Ω. B. Adiabatic manipulation. Adiabatic change of phases along a trajectory can realize a phase gate (tra-
jectory a) if a trajectory (trajectory a in the plot) is far from a Weyl point~φ0 or a Landau-Zener gate if a trajectory
passes close to the point (trajectory b). Trajectory c passes directly through the point and realizes an exchange
of wave function amplitudes in the sub-bands. C. Diabatic manipulation. The phase settings jump from a
working point ~φw to a series of consecutive points coming back in the end of the manipulation.

Section 3.5.

Adiabatic manipulation involves a change of ~φ along a closed trajectory. (Fig.3.4a)
Usually, adiabaticity implies no transitions between the levels, this requires the velocity
in phase space, ~v ≡ φ̇ to be small in comparison with the energy difference between the
levels. For our system, where the energy difference in interesting region of the phase
space are ' T , this implies v ¿ T 2. With this, one can easily arrange a phase gate: an
amplitude of a quantum state on each level acquires a phase factor with no change of its
modulus (trajectory a in Fig.3.4b). Notably, the presence of Weyl points in the spectrum
of the unit permits design of more complicated gates. The point is that the level splitting
becomes small near the point and, for any fixed v , the adiabaticity criterion is not satis-
fied if the trajectory comes sufficiently close to the Weyl point. (trajectory b in Fig.3.4c)
This realizes a Landau-Zener gate [36]: there is a non-adiabatic transition between two
subbands with an amplitude α given by Landau-Zener formula, |α| = exp(−πφ2

d /v), φd

being the smallest distance between the Weyl point and the trajectory. If the trajectory
goes precisely through the Weyl point, a SWAP gate for two subbands is realized (trajec-
tory c in Fig.3.4b). The phase factors accumulated in the course of the Landau-Zener
transition can be adjusted by tuning the shape or velocity at the returning trajectory.

Diabatic manipulation is implemented as a sequence of sudden jumps between the
points in the phase space, that brings the system back to the initial point. (Fig.3.4c) The
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wave function does not change during the jumps. After each jump, the phase settings are
kept constant during a time interval to let the wave function evolve with a Hamiltonian
local to the point. To prevent the excitation to higher states in the course of jump, its
actual duration should be yet longer than the inverse energy distance to higher levels.
The Weyl point structure is advantageous for diabatic manipulation since big changes of
the Hamiltonian can be produced by small jumps in the phase space.

This variety of manipulation methods permits multiple implementations of quan-
tum gates. To illustrate, we have to make choices.

To start with, we define a bipartition of 4-dimensional Hilbert space into two qubits.
We label the states as |00〉, |01〉, |10〉, |11〉 from the lowest energy to the highest energy,
that is, the second qubit has the smaller excitation energy E01 −E00. For separate non-
interacting qubits, one expects E11 +E00 = E01 +E01. This condition is generally not ful-
filled for the spectrum in hand. However, it is fulfilled asymptotically at εd = 0 and also
in special points of the phase space. We assume |εd | < B , so that the conical point is
between the energies of the flat states.

For the implementation of single-qubit gates, we choose resonant manipulation in
special points. For the implementation of the two-qubit gates, we choose diabatic ma-
nipulation. We describe the implementations in the subsequent sections.

3.5. THE SINGLE-QUBIT GATES
We will realize the single-qubit gates by means of resonant manipulation. This realiza-
tion requires some tuning. Generally, the three energy differences between the levels are
all different and resonant manipulation would result in a two-qubit gate. For instance, if
the frequency of the oscillating field is in resonance with the energy difference between
the states |10〉 and |11〉, one can swap by a pulse the amplitudes of the states |10〉 and
|11〉 realizing the traditional CNOT gate [37].

The single-qubit manipulation is possible at a family of special working points where
E11+E00 = E01+E01, this corresponds to independent qubits with energy splittingsΩ1 =
E10−E00 andΩ2 = E01−E00. At these frequencies, the oscillating field resonates with two
pairs of levels. Since the energy spectrum is independent of the azimuthal angle, these
special working points form a surface of revolution around z-axis.

Let us explain how one realizes the X rotations of the first qubit. As an example, we
take B = 3T , εd = 2T . The special working point can be realized at ~φw/T = (1.3,0,2.25).
The qubit splittings are: Ω1 = 6.0T , Ω2 = 2.0T . We apply an oscillatory modulation
δ~φ(t ) = Re(δ~φe iΩ1t ), δ~φ being a complex vector of the oscillation amplitudes. It results
in a time-dependent perturbation ĥ = 1

2δ
~φ ·~τe iΩ1t +h.c.. For the result of the manip-

ulation not to depend on the state of the second qubit, this perturbation should satisfy
〈10|ĥ|00〉 = 〈11|ĥ|01〉. Since both matrix elements can be presented as scalar products
of complex vectors, h10,00 =~v10,00 ·δ~φ , and similar for another matrix elements. To sat-
isfy independence from the second qubit, the direction of δφ should be orthogonal to
~v10,00 −~v11,01. It also has to be orthogonal to the cross-product of the vectors, since the
modulation in this direction does not appear in the matrix elements. For the example
in hand, this fixes δφ to |δ~φ|(0.16,0.21i ,0.97). To perform the rotation exp(iγσx ), one
chooses γ= 0.34|δ~φ|T , T being the pulse duration.

To design the X-rotation of the second qubit, we proceed in the same way choosing
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the direction of oscillations to achieve 〈01|ĥ|00〉 = 〈11|ĥ|10〉. This fixesδφ to |δ~φ|(0.6,0.7i ,−0.35).
To perform the X-rotation exp(iγσx ), one chooses γ= 0.04|δ~φ|τ, τ being the pulse dura-
tion.

As it is usual in the context of resonant manipulation, the Y and Z rotations can be
achieved by changing the total phase of the oscillation and frequency modulation, re-
spectively.

3.6. THE TWO-QUBIT GATES
More complex gates require realization of an arbitrary 4×4 s-unitary transformations. In
principle, this can be achieved only by means of resonance manipulation and adiabatic
manipulation. However, this requires a tedious design and the time of the manipula-
tion should greatly exceed the inverse energy differences ' T −1. So we turn to diabatic
manipulation.

For diabatic manipulation, it is proficient to work with the spin-Weyl Hamiltonian in
the phase-independent basis where it takes the form

H4 =


−φ3 0 0 φ1 + iφ2

0 εd −B 0 T
0 0 εd +B −T

φ1 − iφ2 T −T φ3

 (3.16)

In this basis, the wave function remains continuous upon a diabatic change of ~φ.
The manipulation starts in a working point ~φw where the Hamiltonian is diagonal-

ized as
H4(~φw) = DEd D−1 (3.17)

Ed being the diagonal matrix of two qubit eigenstates. The phase then goes through a
set of points ~φi staying for a time interval ti in each point and finally returning to

The result of the manipulation is a unitary 4×4 matrix in the basis of two-qubit eigen-
states,

S = D−1e i H4(~φw)
∑

i ti
∏

i
Si e−i H4(~φw)

∑
i ti D ; (3.18)

Si ≡ exp(−i H4(~φi )ti ) (3.19)

To design a manipulation given a target S, we need to choose ~φi , ti in a proper way.
An arbitrary SU(4) transformation depends on 42 −1 = 15 parameters, while each jump-
ing point brings 4 parameters: 3 phases and 1 time interval. Consequently, an arbitrary
SU(4) transformation requires at least 4 jumping points(Fig. 3.4C). To accomplish the
design task numerically, we specify the target unitary matrix St and define a minimiza-
tion function in the space of the manipulation parameters {~φi , ti },

U ({~φi , ti }) = 8−Tr(St S† +SS†
t ). (3.20)

We start the minimization routine with a random point in 16-dimensional space, iterate
to a minimum and check if U = 0 in this minimum. We accomplish this by setting a
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Gate Phase(φ/T ) Time(t/T)

c X ~φw

→ (1.04,−0.11,1.07)
→(4.56,6.76,5.52)
→ (6.62,2.67,−1.11)
→ (5.24,2.13,6.34)
→ ~φw

5.10
→ 5.96
→ 0.03
→ 7.85

cY ~φw

→ (4.40,9.82,12.15)
→ (5.63,1.35,−0.87)
→(0.84,−1.15,−0.46)
→ (11.99,14.25,7.60)
→ ~φw

2.80
→ 3.77
→ 5.43
→ 2.05

c Z ~φw

→ (9.41,2.82,4.57)
→ (−1.28,0.18,0.90)
→ (9.72,9.90,10.22)
→ (1.55,0.91,7.67)
→ ~φw

7.18
→ 6.96
→ 2.53
→ 5.27

Figure 3.5: Design of two-qubit gates by diabatic manipulation. We implement controlled logic gates c X , cY
and c Z gates, the first qubit being control one. The choice of the parameters: B = 3T,εd = 2T , working point:
~φw = (1.3,0,2.25)T . The table specifies for each three gates the set of jumping points ~φi and the time intervals
ti . The plots illustrate the diabatic paths and time intervals. The red mark in each graph indicates the initial
working point. The arrow indicates the diabatic jumping sequence initiated from the working point.

threshold of Uth ¿ T 2 and see if U falls into the interval of [0,Uth]. If 0 ≤ U ≤ Uth, we
have found the solution: the minimum U = 0 is achieved only if S = St . If otherwise
U >Uth, we repeat the procedure starting another random point.

A set of universal quantum gates can be achieved combining elementary quantum
logic gates. The minimum circuit requirement for a general two-qubit manipulation can
be constructed with 3 CNOT (c X ) gates and 15 elementary one-qubit gates[38]. In princi-
ple, the single-qubit gates can be also designed by diabatic manipulation method. How-
ever, we have already achieved these gates as described in the previous Section. Here,

we present the design of 3 controlled Pauli gates, c X , cY and c Z that c(σi ) =
(
σi

1

)
in

the qubit basis with the first qubit serving as control one.
We choose the same parameters and the working point as in the previous Section:

B = 3T , εd = 2T , ~φw/T = (1.3,0,2.25). The results are presented in Fig. 3.5. The advan-
tage of the diabatic manipulation is the speed: the longest manipulation takes no more
than ' 20T −1.

3.7. CONCLUSIONS
In conclusion, we propose a spin-Weyl quantum unit: a four-state system that can be
regarded as a coherent combination of spin and Andreev superconducting qubits. The
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coherence, that seemingly breaks the parity conservation, can be achieved by coupling a
4-terminal superconducting structure housing a Weyl point to a quantum dot. We derive
a simple but non-trivial universal Hamiltonian for the setup and choose 4-dimensional
subspace for the realization of the spin-Weyl quantum unit. We have described the
methods and advantages of the quantum manipulation by controlling the supercon-
ducting phases in the vicinity of the Weyl point. We illustrate this by providing concrete
designs of single-qubit and two-qubit quantum gates.

Such devices can be fabricated and tuned, and, as it is common in superconducting
qubit technologies, can be made work together in a many-unit quantum computer by
coupling them to electric resonant modes. The system described calls for an experimen-
tal realization.
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4.1. INTRODUCTION
Spin currents in metals are conserved at significant length scale of spin-flip length and
therefore can be induced and measured at this scale. The whole field of spintronics [1,
2] concentrates on conversion of electric currents to spin currents, electrical detection
of spin polarization produced by the spin currents, and dynamics of these processes
[3]. Much theoretical research addressed this conversion and detection at ferromagnet-
normal metal interfaces, for collinear[4, 5] and non-collinear[6, 7] configurations of the
ferromagnets. Detection of the complex counting statistics of spin currents has been
addressed as well[8, 9].

New functionalities can be achieved by combining ferromagnets, normal metal and
superconductors, most are based on spin-singlet nature of Cooper pairs forming the
superconducting condensate[10]. For instance, the absolute spin-valve effect [11, 12]
can be achieved in this way, and long-distance triplet proximity effect [13–15] can be
arranged.

While most research and applications in spintronics concentrates on extended struc-
tures, all spintronic effects can be reproduced with the systems involving few quantum
states, for instance, realized in semiconducting quantum dots [16, 17]. Spin filtering
and detection have been demonstrated[17–19] and more research is underway[20]. The
ferromagnets are not needed here since spin effects arise from Zeeman splitting of the
discrete energy levels by external magnetic field.

Recently, Weyl points - the topological singularities in the spectrum of Andreev bound
states - have been predicted in superconducting nanostructures[21]. At a Weyl point,
the energy of the lowest Andreev state crosses Fermi level, so it costs vanishing energy
to excite a quasiparticle near the Weyl point. From general topological reasoning, such
crossing requires tuning of three parameters. This is why the Weyl points are usually con-
sidered in multi-terminal superconducting nanostructures where the parameters are the
superconducting phase differences of the terminals. Four terminals are thus needed to
realize a Weyl point. This prediction gave rise to related experimental and theoretical
research [22–33].

It is important that weak spin-orbit interaction splits the energies of single-quasiparti-
cle states.This can be realized within AIIIBV semiconductors, heavy metals, and curved
graphene. [21, 34–36] Owing to this, the ground state configuration is always magnetic
in a small finite region around the point and is non-magnetic otherwise.[28, 34] The op-
posite magnetization is realized in a small region at opposite settings of the phase dif-
ferences, as required by time reversibility. Thus Weyl point provides a minimum magnet
that involves a single electron spin and can be driven to a non-magnetic state by a tiny
change of the external parameters — superconducting phases. More details are provided
in Section 4.2.

In this Article, we investigate if this minimum magnet can be utilized in spintronic
context. We consider low-voltage transport in a setup where one or two normal leads
are tunnel-coupled to a superconducting structure hosting a Weyl point (Fig. 4.1). We
demonstrate that this suffice to realize all spintronic effects: the magnetic state of the
superconducting structure can be detected, a spin-polarized current can be induced in
the leads, and its polarization can be close to absolute one, non-equilibrium spin ac-
cumulation in the leads can be detected electrically. The peculiarity and a possible ad-
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Figure 4.1: Single-lead (a) and two-lead (b) setups for spintronics with a Weyl point investigated in the Ar-
ticle. The normal leads are tunnel-coupled to a superconducting structure hosting an Andreev bound state
(W.P.A.B.S. in the Figure) that can be tuned to a Weyl point by choosing the superconducting phases φ1,2,3.
Since the model in use applies to any nanostructure, the picture is rather symbolic, the W.P.A.B.S region is
anything that connects the leads thus making the Andreev bound states possible. We demonstrate the spin-
tronic effects in the transport: spin current J in addition to electric current I , and the detection of possible spin
accumulation in the leads.

vantage of the Weyl-point spintronics is the sensitivity of all effects to tiny variations of
the superconducting phases. This enables spintronic effects that are not usually present
in common situations: we discuss how to provide spin on demand and alternative spin
current.

The structure of the Article is as follows. In Section 4.2 we review the generic Hamil-
tonian of the Weyl point and explain the magnetism in its vicinity. In Section 4.3 we
establish a microscopic model of tunneling to/from the nanostructure, identify the ele-
mentary transport processes, compute their rates and derive a master equation describ-
ing the transport. We study the transport in a single-lead setup in Section 4.4. Next, we
describe how to achieve spin on demand and alternative spin current (Section 4.5). Ow-
ing to spin conservation in the superconductor, the d.c. spin current requires two leads:
we consider this situation in Section 4.6 and show how to approach the absolute spin
polarization of the resulting current. We discuss the detection of spin accumulation in
the leads in Section 4.7. We conclude in Section 4.8.

4.2. MAGNETISM NEAR A WEYL POINT
In this Section, we will give the effective low-energy Hamiltonian of the superconducting
nanostructure in the vicinity of Weyl point and describe its magnetic state following the
references[21, 28, 34]. Three independent superconducting phase differences can be
regarded as a 3D vector ~ϕ. Suppose the Weyl points are situated at ±~ϕ0. In the vicinity
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Figure 4.2: Magnetism near a Weyl point (a) Energies of the singlet (g ,x) and doublet (↓, ↑) states in the vicinity
of a Weyl point versus one of the phases. (b) The region of a doublet (magnetic) ground state around a Weyl
point at ~ϕ0 surrounded by the region of a singlet ground state. (c) Opposite magnetizations at Weyl points at
±~ϕ0.

of the point at ~ϕ0 we expand ~ϕ=~ϕ0 +δ~ϕ, |δ~ϕ|¿ 1 and can describe the lowest Andreev
bound states by a 2×2 matrix BdG Hamiltonian

ĤW =φa τ̂a ; φa = Mabδϕb , (4.1)

where τ̂a is a vector of Pauli matrices. This form suggests convenient coordinates ~φ for
the vicinity of a Weyl point that are linearly related and thus equivalent to δ~ϕ. These
rescaled coordinates ~φ are very convenient although they have dimension energy. We
will make consistent use of them in the rest of the paper. In these coordinates of di-
mension energy, the spectrum is isotropic and conical, E = ±|~φ|. The coordinates are
thus defined upon an orthogonal transformation. We thus consider only a pair of An-
dreev bound states. We stress that this approximation is valid at low energy and in the
small vicinity of the Weyl point in any nanostructure, while the criteria on low energy and
small vicinity are specific for a nanostructure. If there are few Andreev bound states in
the overall spectrum, the energy should be lower than the superconducting energy gap
∆, and the phase distance from the Weyl point should be smaller than 2π. The approxi-
mation is also valid if there are many Andreev bound states forming a quasi-continuous
spectrum: in this case, the energy should be smaller than the average level spacing in the
spectrum and the phase distance is restricted by a correspondingly smaller value.

The 2×2 BdG Hamiltonian is obtained by projection on two two-component eigen-
functions |Ψ±〉 related by BdG symmetry. In coordinate representation,

|Ψ+〉 = (u(r), v(r)); |Ψ−〉 = (−v∗(r),u∗(r)), (4.2)

r being the coordinates within the nanostructure.
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Weak spin-orbit interaction within the nanostructure modifies the Hamiltonian split-
ting the Andreev states in spin[34],

ĤW =φa τ̂a +Baσ̂a , (4.3)

σ̂a being a vector of Pauli matrices in spin space, and Ba looks like an external magnetic
field causing Zeeman splitting. However, ~B 6= 0 even in the absence of external magnetic
field and represents the effect of the superconducting phase differences on spin orien-
tation. Owing to global time reversibility, the vectors ~B are opposite for opposite Weyl
points, ~B(−ϕ0) =−~B(ϕ0). The magnitude of ~B can be estimated as the superconducting
energy gap ∆ times a dimensionless factor characterizing the weakness of the spin-orbit
interaction. For a concrete number in mind, we can take B ' 0.1∆' 0.2meV which cor-
responds to niobium. If there is an external magnetic field, it adds to ~B . We note however
that our estimation of B is about 3T , so it requires a significant field to change it. While
the presence of SO is important for the spectrum of the Weyl point, its concrete value
is not that important for our model since it enters only as a single parameter B and all
spintronic properties scale eventually scale with this parameter.

To rewrite the Hamiltonian in the second-quantization form, we introduce quasi-
particle annihilation operators γ̂σ and associated Nambu bispinors γ̄a,σ ≡ (γ̂σ,σγ̂†

−σ) to
recast it to the standard form,

HWP = 1

2
γ̄†
αĤ WP

αβ γ̄β (4.4)

This Hamiltonian can be reduced to a diagonal form for a certain direction in φ-space,
~φ=φ~n by a Bogoliubov transform of γ̂σ to a direction-dependent ˆ̃γσ. Choosing the spin
quantization axis along ~B , we arrive at

HWP = 1

2
(φ+Bσ)

(
ˆ̃γ†
σ

ˆ̃γσ− ˆ̃γσ ˆ̃γ†
σ

)
(4.5)

This gives the spectrum sketched in Fig. 4.2a. The energies are E = ±φ for two spin-
singlet states, ground one |g 〉, and excited one |x〉 ≡ ˆ̃γ†

↑ ˆ̃γ†
↓|g 〉. The energies are E =±B for

two components of the spin doublet | ↑〉 ≡ ˆ̃γ†
↑|g 〉, | ↓〉 ≡ ˆ̃γ†

↓|g 〉. The spin-doublet is split
and its energies exhibit no singularity or phase dependence in the vicinity of the Weyl
point ~φ= 0, while the spin-singlet states retain the conical spectrum.

This leads us to a simple but important conclusion: the ground state of the nanos-
tructure is magnetic in a narrow vicinity of a Weyl point, namely, at |φ| < B (Fig. 4.2a).
Corresponding to our estimation of B , δϕ ' 0.1. Thus, the magnetism can be switched
on and off by variation of magnetic flux controlling the superconducting phase differ-
ences by a tenth of the flux quantum. This is a much smaller action than, for instance, in
quantum dots where it requires a change of electron number and strong magnetic fields,
not mentioning the bulk magnetic structures. The opposite direction of the equilibrium
magnetic polarization is found at the opposite Weyl point (Fig. 4.2c).

This makes a nanostructure with Weyl points a minimum example of a magnet.

4.3. MICROSCOPIC MODEL AND TUNNELING RATES
Let us consider tunneling between the electron states in the nanostructure and those in
a normal lead. Conventionally, we assume a quasi-continuous spectrum in the lead and
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label the electron states with k and spin direction σ, d̂σ,k being an associated electron
creation operator. We start with a rather general model tunneling Hamiltonian

HT =
∫

dr(tk (r)ĉσ(r)†d̂σ,k +h.c.) (4.6)

that describes electron tunnelling to/from a point r in the nanostructure from/to the
state k in the lead, ĉσ(r) being the electron annihilation operator at the point r. The tun-
neling amplitudes can be equivalently given in coordinate representation, t (r,r′), with
the transform involving the eigenfunctions of the states k in coordinate representation.
We assume spin conservation in the course of tunneling, this is consistent with the as-
sumption of weak spin-orbit interaction.

To proceed, one represents ĉσ(r) in terms of the quasiparticle creation/annihilation
operators γ̂σ,n associated with the quasiparticle states in the nanostructure, those are
labelled with n:

ĉσ(r) =∑
n

(
un(r)γ̂σ,n −σv∗

n (r)γ̂†
−σ,n

)
. (4.7)

Here, (un(r), vn(r) is the wave function of the quasiparticle state n.
We concentrate on the tunneling that involves only the lowest quasiparticle state

near the Weyl point, this is relevant at low energies ¿ ∆. We also neglect higher-order
tunneling processes corresponding to two-electron tunneling to the superconducting
nanostructure [37] or Andreev reflection from the nanostructure. With this, we can re-
place

cσ(r) → u(r) ˆ̃γσ−σv∗(r) ˆ̃γ†
−σ (4.8)

where ˆ̃γσ is the direction-dependent quasiparticle creation operator, and (u(r), v(r)) is
the associated wave function which also depends on the direction ~n =~r /|~r |.

With this, we can express all the tunneling rates involving electron energy E in terms
of two combinations of the tunneling amplitudes:

Γu,v = 2π

ħ
∑
k
δ(E −Ek )|T u,v

k |2 (4.9)

T u
k =

∫
dru(r)t∗k (r); T v

k =
∫

drv(r)tk (r) (4.10)

Here, Γu enters the rates of the processes where adding/extracting of an electron in
the lead is accompanied by extracting/adding a quasiparticle, while Γv determines the
rates of the processes where the adding/extracting of an electron goes together with the
adding/extracting a quasiparticle. These rates depend on the direction in the vicinity of
the Weyl point. Transforming the wave functions, we derive the ~n dependence of these
rates:

Γu,v = Γ

2
±~Γ1 ·~n; |~Γ1| < Γ/2 (4.11)

We observe that the tunneling breaks isotropy near the Weyl point. This has been also
noted in [38] where we have considered tunneling to/from a Weyl point nanostructure to
discrete electron states. In the following, we will neglect the energy dependence of Γu,v

which is a common assumption for the tunneling at energies close to the Fermi energy.
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With this, we can straightforwardly evaluate the rates of all relevant processes. Those
include transitions between |g 〉 and doublet states, |e〉 and doublet states, each transi-
tion can proceed with addition of spin σ and either electron or hole to the lead. Let us
consider a transition from |e〉 to | −σ〉 with addition of an electron with spin σ to the
lead. This should involve Γu . The energy of the resulting electron is E = Ee −E−σ, and
the probability to find an empty state for this transition is defined by the filling factor in
the lead at the energy E and with spin direction σ. Therefore,

Γx→−σ,e = Γu
(
1− fσ(Ex −E−σ)

)
(4.12)

The other rates are obtained by similar consideration. Let us list them all (here for brevity
f̄ ≡ (1− f )) :

Γx→σ,e = Γu f̄−σ(Ex −Eσ) (4.13)

Γx→σ,h = Γv fσ(Eσ−Ex ) (4.14)

Γσ→x,e = Γv f̄σ(Eσ−Ex ) (4.15)

Γσ→x,h = Γu f−σ(Ex −Eσ) (4.16)

Γg→σ,e = Γv f̄−σ(Eg −Eσ) (4.17)

Γg→σ,h = Γu fσ(Eσ−Eg ) (4.18)

Γσ→g ,e = Γu f̄σ(Eσ−Eg ) (4.19)

Γσ→g ,h = Γv f−σ(Eg −Eσ) (4.20)

We note that since Eg =−Ex and Eσ =−E−σ, this is the manifestation of the absence
of electron-electron interactions in our model,

Γσ→x = Γg→−σ; Γx→σ = Γ−σ→g (4.21)

for both e and h processes separately. One can easily include more leads into the con-
sideration: each rate will be a sum of contributions of the rates to each lead.

The rates will enter a standard master equation for the probabilities pg , px , p↑, p↓.
We will not write down the equation, since owing to the absence of the interactions, its
solution is easily obtained in a very general situation and reads (F̄ = 1−F ):

pg = F̄u F̄d , p↓ = Fd F̄u , p↑ = Fu F̄d , px = FuFd , (4.22)

where the effective "filling factors" Fd ,u are given by

Fd =Σ−1
∑

j

(
Γ

( j )
u f ( j )

↓ (εd )+Γ( j )
v f̄↑(−εd )

)
; (4.23)

Fu =Σ−1
∑

j

(
Γ

( j )
u f ( j )

↑ (εu)+Γ( j )
v f̄↓(−εu)

)
; (4.24)

εu,d = E↑,↓−Eg ; Σ≡∑
j

(
Γ

( j )
u +Γ( j )

v

)
(4.25)

j being metallic lead index.
We mostly concentrate on the vanishing temperature case, kB T ¿ B . Then in the

absence of spin accumulation the filling factor does not depend on spin and can be ap-
proximated f (E) =Θ(−E + eV ), V being the voltage applied to the lead. It is convenient
to set the superconducting nanostructure at zero voltage.
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Figure 4.3: Transport in the single-lead setup. The lines of thresholds at eV = ±|B −φ| and eV = ±(B +φ)
define the domains with the electric current I =±I0,±2I0. There is no current at low voltage except φ≈ B and
vanishing temperature.

4.4. SINGLE-LEAD TRANSPORT
Let us concentrate on a single lead setup and evaluate the current at various voltages
applied to the lead. To understand the relevant transport processes, let us fist assume
vanishing temperature, eV > 0 and φ > B , that is, the singlet ground state. No current
will flow until the voltage exceeds the threshold required to put a quasiparticle with spin
down to the nanostructure, eV > εd =φ−B . At slightly higher voltage, the states at energy
ed are filled in the lead and an electron at this energy tunnels to the nanostructure adding
a quasiparticle. The rate of this process is Γu . The second quasiparticle can not be added
yet since it requires higher energy. The state of the nanostructure only changes when an
electron at energy−εd enters annihilating the quasiparticle. This process occurs with the
rate Γv . Then the transport cycle repeats itself. We thus have two electrons transferred
per cycle of the average duration Γ−1

u +Γ−1
v , so that the current in this regime is given by

I = e
2ΓuΓv

Γu +Γv
≡ I0. (4.26)

If we start with the magnet ground state, φ< B , the threshold voltage for the same trans-
port regime is determined by opening the pair annihilation process, eV > −εd . Both
thresholds are combined in one by relation eV > |φ−B |. (Fig. 4.3) Upon further increase
of voltage, we achieve another threshold eV > εd = B +φ where electrons coming to the
leads can add a quasiparticle with spin up, either to ground or spin-down state. Owing to
the absence of interaction, this opens up another equivalent and independent transport
channel, and the current doubles in this regime (Fig. 4.3):

I = 2I0 (4.27)

An interesting feature in this regime is a singular dependence of the current at the
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Weyl point φ= 0. Indeed, the current is a function of ~n (see Eq. 4.11),

I = e
4ΓuΓv

Γu +Γv
= eΓ0 −4e

(~Γ1 ·~n)2

Γ
(4.28)

At φ= 0, an infinitesimally small change of ~φ leads to a finite change of the current. Re-
markably, such divergent admittance response persist at finite voltages. In reality, the
singularity is probably smoothed at φ ' Γ, elaboration on this being beyond the ap-
proach of this article. Nevertheless, this anomalously big response can be used for a
simple and reliable identification of the Weyl point position in a realistic experiment.

At negative eV , all the processes are accompanied by electrons leaving the nanos-
tructure rather than entering it. This reverses the sign of the current upon reverting the
voltage.

There is a relatively simple expression for the current beyond the vanishing temper-
ature limit,

I /I0 = ( fF (εd −eV )− fF (εd +eV ))

+ ( fF (εu −eV )− fF (εu +eV )) (4.29)

where fF (ε) ≡ (1 + exp(ε/kB T ))−1 is the Fermi distribution function, two terms corre-
spond to quasiparticle transfer with down or up spin. At finite but small temperature
kB T ¿ B the zero-voltage conductance exhibits a resonant peak in the vicinity of B =φ,
that is, at εd ' kB T ¿ B

d I /dV = eI0

2kB T

1

cosh2(εd /2kB T )
(4.30)

This can be used for identification of the transition to the magnetic state.
There is no dc spin current in the sigle-lead setup owing to a simple fact: the current

to the singlet superconductor bears no spin. In the next Sections, we show how this can
be circumvented.

4.5. SPIN ON DEMAND AND A.C. SPIN CURRENT
Let us understand that despite the fact that the dc spin current is absent for the single-
lead setup, the spin injection is easy to organize. Suppose we want a spin on demand:
single spin injected to the lead in a time window around a time moment t0. We can
do so by changing the superconducting phases, that is, φ. Before t0, we keep φ > B so
the state is the ground singlet. At t = t0, we switch φ to a value < B making down state
energetically favorable. Within a time interval ' Γ0 a spin will be injected to the lead,
either as an electron or hole excitation. To inject a spin of opposite sign, we keep φ< B
before t0 and change it to the value B > 0.

An obvious drawback of this scheme is that we cannot inject the spin of the same
sign twice: we would need to evacuate the quasiparticle somewhere. In the single-lead
setup, it would have to go to the same lead injecting the opposite spin. This drawback
becomes an advantage if the goal is to produce an a.c. spin current J .

Suppose we cycle φ in the following way:

φ(t ) = B + φ̃sin(Ωt ) (4.31)
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Figure 4.4: Time-averaged a.c. spin current (thick curve) from the lead produced by a periodic modulation of
the distance φ (thin curve) from the Weyl point. Upper plot: low frequencies Ω¿ Γ, spin transfers at the time
scale ' Γ upon crossing the boundary of magnetic state region. Lower plot: high frequencies ΩÀ Γ, equal
populations of spin-down and ground singlet state.

In the limit of low frequencies Ω< Γ , we have alternating single-spin injections at time
moments tn = 2πn/Ω (Fig. 4.4). In the opposite limit of high frequenciesΩ> Γ, the down
and ground singlet state are equally populated, the spin transfers are stochastic with the
time-averaged spin current being given by

J (t ) =−sgn(sin(Ωt )) Γ/2 (4.32)

Even in the limit of high frequencies, the amplitude of this a.c. spin current is compara-
ble with d.c. spin currents we will evaluate later.

4.6. TWO-LEAD TRANSPORT
Let us start our discussion of the transport in the two-lead setup with a simple but per-
haps the most interesting example. Let us organize an absolute spin-valve, that is, the
transport involving only electrons of a single spin direction. The tunneling to/from the
two leads is characterized by the rates Γ(1)

u,v , Γ(2)
u,v . We assume vanishing temperature

and φ > B . We also set V2 = 0 and increase the voltage of the first lead. Nothing hap-
pens till eV1 < εd : the nanostructure remains in the ground singlet state. Upon crossing
this threshold, spin-down electrons from the first lead can create a quasiparticle in the
nanostructure. The quasiparticle can go either to the first or two the second lead. Let
us assume Γ(1)

u,v ¿ Γ(2)
u,v . In this case, the created quasiparticle will go to the second lead

almost instantly bringing the nanostructure back to the ground singlet state. Therefore
the transport in the first lead will involve only spin-down electrons, I1 = eΓ(1)

u , J1 =−I1/e.
The absolute spin-valve is realized.

The spin current in the second lead is exactly opposite, J2 = −J1. As to the electric
current, the quasiparticle decaying to this lead can create both electron and hole excita-
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Figure 4.5: Two-lead setup. The absolute spin-valve regime can be realized at small |eV2| < |εd | and Γ(1)
u,v ¿

Γ(2)
u,v . Except the regions with zero spin current J = 0, only electrons with either spin-down or spin-up are

transported in the first lead. In all regions, J = J1 = −J2. The current in the second lead is not completely

polarized, I2 =±βI1 with β≡ (Γ(2)
v −Γ(2)

u )/(Γ(2)
v +Γ(2)

u ), or I2 =±Ĩ , Ĩ = e(Γ(1)
v −Γ(1)

u )β.

tions. So that the current in the second lead is smaller in magnitude than I2 and can be
of either sign depending on the direction near the Weyl point,

I2 = I1(Γ(2)
v −Γ(2)

u )/(Γ(2)
v +Γ(2)

u ) =−2I1(~Γ(2) ·~n)/Γ(2). (4.33)

It is easy to revert the direction of the spin current. If φ < B , the ground state is
spin-down doublet and the transport in the first lead involves the spin-up electrons only,
I1 = eΓ(1)

v , J1 = I1/e. The currents in the second lead follow I1, J1 as in the previous case.

If we rise eV1 above the second threshold, eV1 > εu , at φ> B the quasiparticles with
both spins can be created in the nanostructure, eventually, with equal probability. This
quenches the spin current in this regime, while the electric current I1 = 2eΓ(1)

u is doubled.
If φ < B , the crossing of the second threshold does not change the absolute spin valve
regime since the transitions from the spin-down state to either ground or excited singlet
are both accompanied by the same spin change. The current increases to I1 = eΓ(1)

Reverting V1 changes the sign and magnitude of I1 while J follows the magnitude but
remains of the same sign. The results for the absolute spin valve regime are summarized
in Fig 4.5. At vanishing temperature, the transport is the same through the range −|εd | <
eV2 < |εd |.

General picture of the transport in the two-lead setup beyond the assumption Γ(1) ¿
Γ(2) is more complex. The polarization of the transport electrons is not absolute. For
instance, in the region defined by −|εd | < eV2 < |εd |, φ > B , φ− B < eV1 < φ+ B the
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currents read:

J = J1 =−J2 =−Γ(1)
u

Γ(2)

Γ(2) +Γ(1)
(4.34)

I1 = eΓ(1)
u
Γ(2) +2Γ(1)

v

Γ(2) +Γ(1)
(4.35)

I2 = −eΓ(1)
u
Γ(2)

u −Γ(1)
v

Γ(2) +Γ(1)
(4.36)

The polarization of the current in the second lead is thus∣∣∣∣e J

I1

∣∣∣∣= 1

1+2Γ(1)
v /Γ(2)

< 1 (4.37)

In all voltage regions and arbitrary temperatures the currents are obtained from the gen-
eral formulas

(Γ(2) +Γ(1))J =Γ(1)Γ(2)
u ( fF (εd −eV2)− fF (εu −eV2))

−Γ(2)Γ(1)
u ( fF (εd −eV1)− fF (εu −eV1))

+Γ(1)Γ(2)
v ( fF (εd +eV2)− fF (εu +eV2)

−Γ(2)Γ(1)
v ( fF (εd +eV1)− fF (εu +eV1)) (4.38)

(Γ(2) +Γ(1))I1/e =2Γ(1)
u Γ(1)

v ( fF (εd −eV1)− fF (εd +eV1)

+ fF (εu −eV1)− fF (εu +eV1))

+Γ(1)
u Γ(2)

u ( fF (εd −eV2)− fF (εd −eV1)

+ fF (εu −eV2)− fF (εu −eV1))

+Γ(1)
u Γ(2)

v ( fF (εd +eV2)− fF (εd −eV1)

+ fF (εu +eV2)− fF (εu −eV1))

+Γ(1)
v Γ(2)

u ( fF (εd −eV2)− fF (εd +eV1)

+ fF (εu −eV2)− fF (εu +eV1))

+Γ(1)
v Γ(2)

v ( fF (εd +eV2)− fF (εd +eV1)

+ fF (εu +eV2)− fF (εu +eV1)) (4.39)

4.7. DETECTION OF SPIN ACCUMULATION
So far we have considered equilibrium electron distribution in the normal leads. It is
plausible to arrange a distribution that is not in equilibrium with respect to spin. [1, 3]
For instance, there may be another contact with this lead, that injects spin utilizing the
properties of a traditional normal metal - ferromagnet interface. Owing to the approx-
imate spin conservation, the distributions of the spins of two different directions can
be regarded as independent and may differ in chemical potentials. This difference 2P
characterizes spin accumulation in energy units. If we assume thermalization of the dis-
tributions, the filling factors read

f↓,↑(ε) = fF (ε±P ). (4.40)
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Figure 4.6: The detection of spin accumulation. a. The single-lead setup. The domain of the current with
I = I0 (see Fig.4.3) is spit into two corresponding to majority and minority spin accumulated, those are shifted

in φ by ±P . The currents in the resulting domains are cos2 θ
2 I0, sin2 θ

2 I0. b. The detection in the single-lead
setup requires voltage. Low-voltage conductance corresponding to a. gives two peaks that are well-separated
provided kB T ¿ P . In the plot, kB T = 0.1P . c. In the two-lead setup, the spin accumulation gives rise to a

current in the absence of voltage. The current in the first lead exhibits two plateaux ' cos2 θ
2 ,−sin2 θ

2 . Here,
kB T = 0.1P .

If the axis of the resulting spin accumulation ~P is not in the direction of ~B , the effective
filling factors for two spin directions read

[
f↓(ε)
f↑(ε)

]
=

[
cos2 θ

2 sin2 θ
2

sin2 θ
2 cos2 θ

2

][
fF (ε+P )
fF (ε−P )

]
(4.41)

θ being the angle between ~P and ~B .

A common spintronic effect is an electric current response on spin accumulation at
one side of a contact.[1] This response may be present even without a voltage difference
applied to the contact owing to spin dependence of the transmission coefficients. [2] It
provides a convenient way to detect and measure the spin accumulation.

Let us start with the single-lead setup. In this case, the spin accumulation gives no
current at zero voltage despite the difference in transport of spin-down and spin-up elec-
trons. The reason for this is a rather fine symmetry of the distribution given by Eq. 4.41:
fσ(ε) = f̄−σ(−ε). This guarantees equal amount of electron emission and absorption by
the superconducting nanostructure and thus zero net current. The spin accumulation in
this setup is however detected in the presence of voltage. At vanishing temperature, each
boundary between the regions of different current is split by the spin accumulation. Two
resulting boundaries correspond to thresholds for the transport of minority/majority
spin and are shifted by ±P in eV , as shown in Fig. 4.6 a. At finite temperature and small
voltage, spin accumulation is manifested in splitting and ±P shifts of the conductance
peak. Two separate peaks are formed if the accumulation is not in the direction of ~B ,
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otherwise the conductance peak is shifted by P ,

d I

dV
= eI0

kB T

( cos2 θ
2

cosh2((εd +P )/2kB T )
+ sin2 θ

2

cosh2((εd −P )/2kB T )

)
, (4.42)

c.f. Eq. 4.30, see also Fig. 4.6b. More general expression for the current reads

I /I0 = cos2 θ

2
A++ sin2 θ

2
A− ; (4.43)

A± = f (εd ±P −eV )− f (εd ±P +eV )

+ f (εu ∓P −eV )− f (εu ∓P +eV )

Interestingly, in a two-lead setup the spin accumulation is detected as a current sig-
nal without the voltages applied. We assume the spin accumulation is in the first lead.
The accumulation P < B gives rise to the current response near φ = B (Fig.4.6c.) in the
window |φ−B | < 2P . In this regime, we can disregard the contribution of the spin-up
excitations. The current in the first lead reads

I1 = eΓ(1)Γ(2)

Γ(1) +Γ(2)

[
cos2 θ

2
( fF (ed +P )− fF (εd ))

+ sin2 θ

2
( fF (ed −P )− fF (εd )

]
(4.44)

and I2 =−I1. Finally, we notice that the current response on the spin accumulation also
remains the limit of high temperatures kB T À B ,P where it is small in comparison with
I0 and linear in ~P :

I1 =− eφΓ(1)Γ(2)

8(Γ(1) +Γ(2))(kB T )3

(
2~P ·~B +~P 2) (4.45)

4.8. CONCLUSION
To conclude, we have investigated transport from the normal leads to a superconducting
nanostructure housing a Weyl point. A minimum magnet state is realized in the vicinity
of this point. Owing to this, the transport exhibit all fundamental spintronic effects: the
magnetic state can be detected, spin-on-demand and a.c. spin currents can be arranged
in single-lead setups, spin-polarized current can be produced in two-lead setups, this
includes the absolute polarization, the spin accumulation in a lead can be detected by
electric measurement. The experimental realization of the setup and the corresponding
spintronic experiments are feasible. Such a minimum spintronic device will be a demon-
stration of the power of superconducting nanotechnology and is advantageous because
of its sensitivity to small changes of superconducting phase differences and energy se-
lectivity of the transport.
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5.1. INTRODUCTION
The study of topological materials has been on the front edge of the modern research in
condensed matter physics for the past decade [1–5]. These materials are appealing from
fundamental point of view and for possible applications [6, 7], [8], [9],[10], including
quantum information processing[11, 12]). The basis for applications is the topological
protection of quantum states, which makes the states robust against small perturbations
and leads to many unusual phenomena, e.g. topologically protected edge states[13–15].
The topological superconductors[16–19] and Chern insulators[20–23] are the classes of
topological materials that are under active investigation.

Most topological effects under consideration require discrete quantum states, for in-
stance, electron, photon or phonon bands in a Brillouin zone of a periodic structure.
Topological protection requires a gap in energy spectrum, that is, absence of continuous
excitation spectrum at low energies. It is intuitively clear that immersing the discrete
states in a continuous spectrum, and compromising the energy gaps in this way will
lead to compromising the topology. One of the goals of the present paper to propose
and investigate a simple model for this that can be elaborated analytically to all details.

We concentrate on Weyl points those are most generally defined as topologically pro-
tected crossings of the discrete energy levels in a parametric space. From general topo-
logical reasoning, such crossing requires tuning of three parameters, so it is natural to
consider a three-dimensional parametric space.

Recently, Weyl points - the topologically protected crossings in the spectrum of An-
dreev bound states - have been predicted in superconducting nanostructures[24]. The
specifics of superconductivity that these crossings may be pinned to Fermi level. This re-
stricts the relevant physics to low energies and the properties of the ground state of the
system. At a Weyl point, the energy of the lowest Andreev state crosses Fermi level, so
it costs vanishing energy to excite a quasiparticle in the vicinity of the point. A require-
ment of realization. This is why the Weyl points are usually considered in multi-terminal
superconducting nanostructures where the parameters are the superconducting phase
differences of the terminals. Four terminals are thus needed to realize a Weyl point. This
prediction gave rise to related experimental and theoretical research [25–36] A separate
set of proposals aims to realization of Weyl points in devices combining Josephson effect
and Coulomb blockade [37, 38].

It is important that weak spin-orbit interaction splits the energies of single-quasiparti-
cle states.[24, 39] Owing to this, the ground state configuration is always a component of
a spin doublet in a small finite region around the point and is spin-singlet otherwise.[31,
39] The topological singularity still remains since the energies of two singlet states still
cross in a point owing to topological protection.

In [31] we have noticed that continuous spectrum above the gap may modify the
signatures of topology leading to a non-quantized contribution to the transconductance.
The continuous spectrum at low energies shall bring more drastic modification. The
most experimentally relevant way to bring a continuous spectrum into play is to couple a
system of discrete Andreev levels in the superconducting nanostructure to normal leads.
As we will see in detail in this Article, this brings new energy scale Γ, that is the rate of
tunnelling to the leads from a discrete state. Since we are at a point of energy crossing,
this small energy scale also implies a small scale in the parameter space: the scale at
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Figure 5.1: a. In a four-terminal superconducting heterostructure, the Andreev states may cross Fermi level
in a point - a Weyl point - in 3D parameter space of superconducting phase. The resulting spectrum in the
vicinity of the point is isotropic and conical for two singlet states (x and g in the Figure) and flat for doublet
states. The doublet states are split by spin-orbit interaction, and one doublet state is ground one in the mere
vicinity of the point. b. The setup under consideration. The Andreev bound states near Weyl point (A.B.S.W.P)
are tunnel-coupled with the continuous spectrum of the electron states in several normal-metal leads (two are
shown in the Figure). The tunnel coupling results in an energy scale Γ at which the spectral singularities are
smoothed.

which the energy splitting matches Γ.
We have studied tunnel coupling to discrete normal states in [40] where we propose

a Spin-Weyl quantum unit. Importantly, we have found there that the tunnel coupling
may break isotropy in the vicinity of the Weyl point. In the context of spintronics, we have
recently studied the charge and spin transport in normal leads tunnel-coupled to a Weyl-
point superconducting nanostructure. This is essentially the same setup as we consider
here. However, in [40] we access the transport in the framework of master equation, that
is, assuming that the energy differences of Andreev states exceed much the tunnel energy
scale. In this approximation the quantities characterizing the setup retain singularities:
the superconducting current has a jump at the point, the normal currents jump at volt-
ages corresponging to the energy levels, the Berry curvature diverges upon approaching
the point indicating the point-like topological charge.

In this Article, we investigate the setup at the energy scale Γ revealing how the above-
mentioned singularities are smoothed at this scale. We formulate a generic model of
tunneling suitable for many leads that includes isotropy violation. Technically, the prob-
lem at hand is a case of non-equlibrium Green function technique [41, 42] for non-
interacting Fermions. However, we chose to present an explicit derivation in terms of
Heisenberg equation of motion for the operators of the superconducting current and
those of the currents in the normal leads. We compute these quantities for equilibrium,
stationary and adiabatic cases. Owing to simplicity of the generic setup under consider-
ation, all results are analytical.
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As expected, all singularities are smoothed. We find the maximum derivative of the
supercurrent with respect to the controlling phases, that is set by Γ, and the maximum
differential conductance in the tunneling currents. An experimentally relevant point is
the sharp dependence of tunneling currents in the vicinity of the point in the limit of high
voltages and temperatures. This can be used for detection of Weyl points at temperatures
that exceed the level splitting.

We redefine Berry curvature in terms of the response function in the limit of small
frequencies. The divergence of the redefined curvature gives the density of topological
charge, so we explicitly compute how the point-like topological singularity is spread over
the parameter space.

In addition, we evaluate the tunneling currents generated by an adiabatic change of
the controlling phases. This is the case of parametric charge pumping[43–45]: the result
of a change of the controlling phases along a closed contour is a charge transferred to
the leads that depends on the contour only. We show that this is a convenient tool for
exploration of the vicinity of the Weyl point, including the smoothing of the singularities.

The structure of the Article is as follows. We formulate the model in Section 5.2 and
perform necessary derivations in Section 5.3. We evaluate the superconducting currents
in equilibrium in Section 5.4. There are no tunneling currents in equilibrium. They arise
if the voltages are applied to the leads, and we evaluate these currents for stationary volt-
ages in Section 5.5. Next, we turn to the adiabatic case computing the response functions
in the limit of low frequency. We redefine Berry curvature, evaluate the response func-
tion and the density of topological charge in Section 5.6. The Section 5.7 concentrates
on charge pumping to the normal leads. We conclude in Section 5.8.

5.2. THE MODEL
We start with the effective Hamiltonian in the vicinity of a Weyl point following [24, 31,
39].

Three independent superconducting phase differences can be regarded as a 3D vec-
tor ~ϕ. Suppose the Weyl points are situated at ±~ϕ0. In the vicinity of the point at ~ϕ0 we
expand~ϕ=~ϕ0+δ~ϕ, |δ~ϕ|¿ 1 and can describe the lowest Andreev bound states by a 2×2
matrix BdG Hamiltonian

ĤW =φa τ̂a ; φa = Mabδϕb , (5.1)

where τ̂a is a vector of Pauli matrices. This form suggests convenient coordinates ~φ for
the vicinity of a Weyl point that are linearly related and thus equivalent to δ~ϕ. We will
make use of these coordinates through the paper. In these coordinates of dimension
energy, the spectrum is isotropic and conical, E =±|~φ|. The coordinates are thus defined
upon an orthogonal transform.

Weak spin-orbit interaction within the nanostructure splits the Andreev states in
spin[39], resulting in the following Hamiltonian,

Ĥ W =φa τ̂a +Baσ̂a , (5.2)

σ̂a being a vector of Pauli matrices in spin space, and Ba looks like an external magnetic
field causing Zeeman splitting. However, ~B 6= 0 even in the absence of external magnetic



5.2. THE MODEL

5

93

field and represents the effect of the superconducting phase differences on spin orien-
tation. Owing to global time reversibility, the vectors ~B are opposite for opposite Weyl
points, ~B(−ϕ0) =−~B(ϕ0). The magnitude of ~B can be estimated as the superconducting
energy gap ∆ times a dimensionless factor characterizing the weakness of the spin-orbit
interaction. For a concrete number in mind, we can take B ' 0.1∆' 0.2meV which cor-
responds to niobium. If there is an external magnetic field, it adds to ~B . We note however
that our estimation of B is about 3T , so it requires a significant field to change it.

To represent the Hamiltonian in the second-quantization form, we introduce quasi-
particle annihilation operators γ̂σ and associated 4-component Nambu bispinors γα,
where α= (i ,σ) combines spin and Nabmu index i = e,h, γ̄i ,σ ≡ (γ̂σ,−σγ̂−σ) to recast it
to the standard form,

HW = 1

2
γ̄†
αH W

αβγ̄β. (5.3)

We note that γ†
i ,σ = −σγ−i ,−σ This gives an isotropic spectrum which depends only on

φ ≡ |~φ|.(see Fig. 5.1 a) The energies are E = ±φ for two spin-singlet states, ground one
|g 〉, and excited one |x〉, and E =±B for two components of the spin doublet | ↑〉, | ↓〉. The
energies of the split doublet exhibit no singularity nor phase dependence in the vicinity
of the Weyl point, while the spin-singlet states retain the conical spectrum.

The ground state is magnetic (| ↓〉) in a narrow vicinity of the Weyl point, namely, at
|φ| < B and spin-singlet otherwise. (Fig. 5.1 a)

We will need the current operators in 3 superconducting leads. They are given by the
derivatives of the Hamiltonian with respect to the phases,[45]

Ia = 2e

ħ
∂ĤW

∂ϕa
= 2e

ħ Mab Ĩb ; (5.4)

Ĩa ≡ 1

2
γ†
ατ

a
αβγβ (5.5)

Since there is a trivial linear relation between Ia and Ĩa , we will futher concentrate on
the dimensionless quantities Ĩa .

Let us bring in the coupling with the continuous spectrum of electron states in sev-
eral leads (Fig. 5.1). We will describe the leads with a usual free-fermion Hamiltonian

Ĥleads =
∑
k

Ek d̂ a†
k,σd̂ a

k,σ (5.6)

where k labels the states of the quasi-continuous spectrum in the leads, dk are the corre-
sponding electron annihilation operators, Ek are the corresponding energies. The states
k are distributed over the leads, those are labelled with a. We characterize a general
non-equilibrium state of the leads with the energy-dependent filling factors fa(E) such
that

〈d̂ †
k,σd̂k,σ〉 = fa(Ek ), for k ∈ a. (5.7)

The crucial part of the Hamiltonian is the tunnelling between the electron states in
the leads and the Andreev state in the nanostructure. We will keep it in the most general
form,

ĤT = ∑
k,σ

(
tk γ̂

†
σ− t ′kσγ̂−σ

)
d̂k,σ+h.c. (5.8)
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not specifying the spin-independent tunnel amplitudes tk , t ′k . In the course of the deriva-
tion, we will see which combinations of the amplitudes are the relevant parameters of
the model. It is convenient to present the Hamiltonian in the form of Nambu spinors

2ĤT =∑
k
γ†
αTαβ

k dα
k +h.c. (5.9)

where the matrix Tαβ depends on the Nambu index only,

Tk =
(

t k t ′∗k
t ′k −t∗k

)
(5.10)

With this, we derive the operators of the current to a normal lead a

Ja = e
∑

k∈a,σ
i
(
tk γ̂

†
σ− t ′kσγ̂−σ

)
d̂k,σ+h.c; (5.11)

Ja = i e

2

∑
k∈a

γ†
α(Tαβ

k τ3)αβdα
k +h.c. (5.12)

5.3. DERIVATION
The derivation of expressions for the currents in superconducting and normal leads can
be accomplished by standard methods of superconducting non-equilibrium Keldysh
Green functions [41, 42, 46]. However, for the sake of comprehensibility we give here
an explicit derivation from scratch. This is easy for the system under consideration
and makes explicit the transition from quasi-continuous to continuous spectrum in the
leads.

Let us write down the Heisenberg evolution equations for the operators γ̂α, d̂α
k,σ gov-

erned by the total Hamiltonian Ĥ = ĤW + Ĥleads + ĤT. We use bold-face notations for
bispinors and "check" for the corresponding 4×4 matrices. In these notations,

i γ̇= ȞWγ+∑
k

Ťk d k (5.13)

i ḋ k = Ek τ̌3d k + Ť †
kγ (5.14)

Here, we implicitly assume a time-dependence of H W. Solving equations for each of d̂
gives

d k (t ) = e−i Ek τ̌3t d 0
k +

∫
d t ′ ǧk (t , t ′)Ť †

kγ(t ′) (5.15)

where
ǧk (t , t ′) =−i e−i Ek τ̌3(t−t ′)Θ(t − t ′). (5.16)

Here, d 0 describes the state of the leads. We substitude this to Eq. (5.13) to obtain a
closed equation for γ and express it in terms of d 0:

γ(t ) =
∫

d t ′Ǧ(t , t ′)
∑
k

Ťk e−i Ek τ̌3t ′d 0
k (5.17)
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where we have introduced the advanced Green function defined as

[i∂t − ȞW]Ǧ(t , t ′)−
∫

d t ′′Σ̌(t − t ′′)Ǧ(t ′′, t ′) = δ(t − t ′) (5.18)

where the self-energy Σ̌ reads

Σ̌(t , t ′) =∑
k

Ťk ǧk (t , t ′)Ť †
k (5.19)

We substitute the expression (5.17) to the expressions for the current operators (5.5)
and average over the non-equilibrium state of the leads using Eq. (5.7). This yields

〈Ĩa〉 = 1

2

∫
d t ′d t ′′Tr[τ̌aǦ(t , t ′)F̌ (t ′, t ′′) ˇ̄G(t ′′, t )] (5.20)

where ˇ̄G(t , t ′) ≡ Ǧ†(t ′, t ) and

F̌ = Ťk

(
fk e i Ek (t ′−t ) 0

0 ( f̄k )e i Ek (t−t ′)

)
Ť †

k (5.21)

Here and further on, f̄k ≡ 1− fk . In a similar way, we derive the averages of the currents
in the normal leads. They read:

〈Ja(t )〉 = e
∫

d t1d t2d t3Tr[M̌a(t , t1)Ǧ(t1, t2)F̌ (t2, t3) ˇ̄G(t3, t )]

+
∫

d t1
(
Tr[Ďa(t , t ′)Ǧ(t , t ′)]+H .c.

)
. (5.22)

Here, we define

M̌a =−1

2

∑
k∈a

Ťkτ3e−i Ekτ3(t−t ′)Ť †
k ; (5.23)

Ďa(t , t ′) = −i

2

∑
k∈a

Ťkτ3

(
fk e i Ek (t ′−t ) 0

0 fk e i Ek (t−t ′)

)
Ť †

k . (5.24)

So far, the expressions are valid for any spectrum in the normal lead, either quasi-
continuous or continuous. Let us now specify to continuous spectrum. For this, we
define the following combinations of tunnel amplitudes in each lead:

Γa(E) = ∑
k∈a

(|tk |2 +|t ′k |2)δ(E −Ek ); (5.25)

~Γa(E) = ∑
k∈a

(2Re(t ′k t∗k ),2Im(t ′k t∗k ), |tk |2 −|t ′k |2)δ(E −Ek ) (5.26)

All the constituents of the expressions for the operators can be expressed through Γa(E),
~Γa(E). Those are thus the actual parameters of our model. The continuous spectrum
is implemented by assumption that Γa(E),~Γa(E) are continuous and smooth functions
of energy. Moreover, a convenient and relevant assumption is that these functions vary
at an energy scale that exceeds by far that of the Weyl point. In this case, the energy
dependence can be disregarded and Γa ,~Γa are taken at zero energy.
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Let us see how Σ̌, F̌ , M̌a and Ďa are simplified under these assumptions. In energy
representation, the self-energy becomes

Σ̌(ε) = 1

4π

∑
±

(
Γ(E)±~Γ(E) ·~̌τ

) 1

ε∓E − i 0
(5.27)

where Γ,~Γ ≡ ∑
a Γa ,~Γa . The Hermitian part of Σ̌ in the limit ε adds a constant term to

H and therefore describes a shift, or renormalization of the Weyl point position in the
space of three phases due to tunneling,

δφ=−
∫

dE
~Γ(E)

E
. (5.28)

We will disregard this irrelevant redefinition of the Weyl point position. The anti-Hermitian
part of the self-energy is more important describing the decay of discrete states into the
continuous spectrum,

Σ̌= 1

4

∑
±

(
Γ(±ε)±~Γ(±ε) ·~̌τ

)
≈ Γ

2
(5.29)

where the limit of small ε has been implemented in the last equality. The matrices F̌ ,Ďa

bring the information about the filling factors in the leads and are expressed as

F̌ =∑
a
Γa f +

a +~Γa ·~̌τ f −
a (5.30)

Ďa =− i

2

[
~Γa ·~̌τ f +

a +Γa f −
a

]
. (5.31)

f ±(ε) ≡ fa(ε)± f̄a(−ε)

2
(5.32)

Finally, M̌a = −~Γa ·~̌τ/2. With this, the terms with M̌a in Eq. (5.22) are related to super-
conducting currents,

〈Ja〉 =−~Γa ·~̃I +
∫

d t1
(
Tr[Ďa(t , t ′)Ǧ(t , t ′)]+h.c.

)
(5.33)

From now on, we will denote the expectation values of the currents simply as Ja , ~̃I .

5.4. CURRENTS IN EQUILIBRIUM
In equilibrium and stationary state, the Green functions are diagonal in energy repre-
sentation,

Ǧ , ˇ̄G = 1

ε− ȞW ∓ i Γ2
. (5.34)

There is also a convenient relation

i (Ǧ−1 − ˇ̄G−1) = Γ (5.35)

We note that in equilibrium f (ε) = f̄ (−ε) and filling factors in all leads correspond to
Fermi distribution at zero chemical potential, fa(ε) = fF (ε). With this, F̌ = Γ fF . Invoking
Eq. (5.35), we prove

ǦF̌ ˇ̄G =−i fF (Ǧ − ˇ̄G) (5.36)



5.4. CURRENTS IN EQUILIBRIUM

5

97

-1

-0.8

-0.6

-0.4

-0.2

0

0 2 4 6 8 10

a

b

Figure 5.2: Smoothing of the superconducting current singularity at the scale of Γ. The curve a. corresponds
to B ¿ Γ, while the curve b. to B = 5Γ.

and the currents are expressed as

~̃I =−i
∫

dε

2π
Tr[~̌τ(Ǧ − ˇ̄G) fF (ε)] (5.37)

Let us first recognize that the equilibrium super currents are expressed from the
derivatives of free energy with respect to ~φ. For an isolated superconducting nanostruc-
ture, that is, in the limit Γ¿ B ,φ, and at zero temperature, the ground state energy is
given through the positive energies of Andreev bound states,

Eg =−1

2

∑
i

EiΘ(Ei ) (5.38)

For the nanostructure under consideration, the Andreev bound states are Eσ,± = Bσ±φ
and the currents in this limit read

~̃I =−~nΘ(φ−B) (5.39)

The current has a cusp: that is, its derivative with respect to φ diverges in a point. This
divergence may be in principle used for finding the Weyl point and is smoothed at the
scale of Γ.

At finiteΓ, the Andreev energies correspond to the poles of the Green functions. Their
poles are shifted by ±iΓ/2 from the real axis. The currents are expressed through the
phases of the pole positions ξσ,± ≡ arctan(2(Bσ±φ)/Γ),

~̃I = ~n

2π

∑
σ

(ξσ,−−ξσ,+) (5.40)

The cusps are smoothed by a finite Γ (see Fig. 5.2). The maximum derivative with respect
to φ is now finite and is of the order of Γ−1:

∂Ĩ

∂φ
= 2

πΓ
for B ¿ Γ,

1

πΓ
for B À Γ. (5.41)
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In equlibrium, we expect no currents to normal leads. Indeed, if there were currents,
one could extract energy from the equilibrium system by applying voltages to the normal
leads. Technically, two terms in Eq. (5.33) cancel each other upon applying the relation
(5.36).

5.5. STATIONARY CURRENTS
Now we turn to the case of non-equilibrium filling factors in the leads still assuming
stationary Weyl point Hamiltonian. The currents are given by Eqs. (5.33), (5.20) with
energy-diagonal Green functions (5.34). To keep the formulas simple, we will specify
to differential conductances at vanishing temperature. The voltages in the leads only
change the filling factors, at vanishing temperature ∂ fa/∂eVa = δ(ε− eVa), that is, the
differential conductances are contributed by the specific energies ε=±eVa only.

For the derivatives of supercurrents, we have

2π
∂~I

∂eVa
=~φΓaKo(eVa)+ ((2~φ ·~Γa)~φ+ (~φ×~Γa))Ke (eVa)+~ΓaK3(eVa) (5.42)

where the functions Ko,e,3 are defined as (K −1
σ ≡ ((ε−Bσ)2 −Γ2/4−φ2)2 +Γ2(ε−Bσ)2):

Ko = 2
∑
σ

(ε−Bσ)Kσ;Ke =
∑
σ

Kσ; (5.43)

K3 =
∑
σ

((ε−Bσ)2 +Γ2/4−φ2)Kσ (5.44)

We note that ∫ ∞

0
dεKo = 2(arctan(φ+B)+arctan(φ−B))

Γφ
; (5.45)∫ ∞

0
dεKe = π

Γ(Γ2/4+φ2)
; (5.46)∫ ∞

0
dεK3 = πΓ

2(Γ2/4+φ2)
(5.47)

The derivatives are illustrated in Fig. 5.3 for a single lead and simple case~Γ = 0. They
peak at the positions of resonant levels eV =φ+B , |φ−B |. The peak width is of the order
of Γ. For singlet ground state (the curves a,b the finite current at zero voltage falls to zero
in one or two steps. For the doublet ground state, the current that is small at zero voltage
rises at the first and drops at the second resonant level.

The differential conductances in the normal leads are given by:

∂Ja

∂e2Vb
=−~Γa · ∂~̃I

∂eVb
+ Γδab

2π

(
Γa(K3(eVa)+2φ2Ke (eVa))+ (~Γa ·~φ)Ko

)
(5.48)

We plot in Fig. 5.4 an example of zero-voltage conductances G11,G22,G12 for two
leads. The diagonal conductances peak when the resonant levels are at zero energy,
|φ−B | = 0. The peak widths are of the order of the conductance quantum GQ ≡ e2/ħπ.
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Figure 5.3: The voltage derivative of the superconducting current. There is a single lead,~Γ= 0, we set φ= 3.0.
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An interesting feature is a Hall-like antisymmetric transconductance G12 = −G21. It in-
corporates the effects of vector parts of Γ in two leads, G12 ∝ ~φ · (~Γ1 ×~Γ2) and changes
sign if ~φ→−~φ.

For finite-voltage conductance, we restrict ourselves to the case of a single lead. The
example for |~Γ| = Γ/2 is given in Fig. 5.5. The peaks of differential conductance are situ-
ated at eV = |φ±B |, their width being of the order ofΓ. The peak values are of the order of
GQ . The vector part of Γ brings anisotropy and asymmetry of conductances with respect
to voltage and ~φ.

At high voltages eV À Γ,φ,B applied, the current in the normal lead saturates at
finite value J∞, as it is expected for the transport via resonant levels. We note a peculiar
feature: this current retains the dependence on φ and its direction, this dependence is
smoothed at the small scale of φ ' Γ only. Using the relations (5.42),(5.43),(5.45), we
obtain

J∞/e = Γ− (~Γ ·~φ)2 + (~Γ)2Γ2/4

Γ(φ2 +Γ2/4)
(5.49)

This feature survives rather high temperatures φ ¿ kB T ¿ eV at which the thermal
equilibration eventually cancels the superconducting currents near the Weyl point. This
makes the feature highly proficient for experimental detection of Weyl points in a practi-
cal situation where the finite temperature prevents the detection through the supercur-
rent. One would look at the variation of the tunnel current under variation of φ to find
a signal that is concentrated near the point and shows anisotropy defined by Eq. (5.49).
The maximum derivative for ~φ⊥ Γ

∂J

∂φ
= e

ħ
~Γ2

Γ2 (5.50)

does not depend on the strength of the tunnel coupling, this guarantees a big amplitude
of the detection signal.

5.6. REDIFINITION OF BERRY CURVATURE AND DENSITY OF TOPO-
LOGICAL CHARGE

In this Section, we consider adiabatic case. We assume equilibrium filling factor in the
leads and concentrate on the case of vanishing temperature. If we change the control
phases slowly,the superconducting currents acquire a correction proportional to time
derivatives of the phases:

Ĩα(t ) = Ĩα(~φ(t ))+Bαβ(~φ)φ̇β (5.51)

Thereby we define a tensor response function Bαβ. The symmetric part of this tensor
defines the dissipation in the course of the slow change of the phases,

dE

d t
= φ̇αBαβ(~φ)φ̇β. (5.52)

If the system under consideration is gapped, the dissipative part is absent, while the
antisymmetric part of the response function gives the Berry curvature of the ground state
of the system (see e.g. [24])

Bαβ = 2Im〈∂αΨ|∂ΨΨ〉. (5.53)
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It is convenient to introduce a pseudovector of Berry curvature Bα = eαβγBβγ For the
superconducting Weyl point, the Berry curvature has been evaluated in [24, 31]. For the
singlet ground state, and in the coordinates in use it assumes the standard expression
~B =~φ/(2φ2). The flux of ~B through a surface enclosing the origin is 2πmanifesting a unit
point-like topological charge at the origin. However, ~B = 0 at φ < B where the ground
state is doublet. The continuity of the ground state is broken at φ = B and topological
consideration that guarantees a divergentless ~B cannot be applied anymore.

We evalute Bαβ for the setup under consideration making use of Eq. (5.20). Given a
modulation of the Hamiltonian ˇδH oscillating at frequency ω, the response of the cur-
rents oscillating at the same frequency can be represented as

Ĩαω =
∫

dε

2π

1

2
Tr[τ̌α(Ǧε+ω ˇδHǦεF̌ε

ˇ̄Gε+ (5.54)

ǦεF̌ε
ˇ̄Gε

ˇδH ˇ̄Gε−ω)]. (5.55)

We obtain Bαβ by substituting Ȟ = δφατ̌α and taking the limit ω→ 0. This is valid for
ω¿ Γ. We assume vanishing temperature when integrating over the energy.

To present the answers in a compact form, we introduce a convenient expression
K ≡ (φ2 −B 2 +Γ2/4)2 +B 2Γ2. The dissipative part of the response function reads:

Bαβ = Γ2

2πK

(
δαβ+

φαφβB 2

K

)
(5.56)

It is plotted in Fig. 5.6 for two values of magnetic field. We note that the dissipative part
at small Γ is proportional to Γ2 except φ= B This is because the dissipation requires an
excitation of an electron-hole pair in the normal leads, which is a second-order tunnel-
ing process [45]. At the resonance threshold φ = B , and B À Γ, the dissipative part of
the response function is strongly anisotropic: it is ' Γ−2 for the direction ∥ ~φ and ' B−2

otherwise.
Following [31], we redefine Berry curvature as an asymmetric part of the response

function. For any discrete spectrum and zero temperature, this redefinition would be
exact retaining all topological properties of the curvature provided the limit ω→ 0 im-
pliesω¿ δ, δbeing the level spacing in the spectrum. However, in our case the spectrum
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is continuous, that is, δ= 0, and the limit ω→ 0 rather implies ω¿ Γ. Nevertheless, the
redefined curvature coincides with the standard expression at φ,B À Γ, that is, far from
a close vicinity of the point or the resonance φ= B . General expression reads

~B =
~φ

2πφ3

[∑
±

arctan
2(φ±B)

Γ
+ φ2 −Γ2/4−B 2

K

]
(5.57)

We plot it in Fig. 5.7 for several B . At the origin, ~B ∝ ~φ, the maximum at B = 0 is |~B | ≈
1.2Γ−2 and is achieved at φ≈ 0.3Γ.

So-redefined Berry curvature gives rise to a continuous density of topological charge,

ρ(φ) = 1

2π
div~B (5.58)

This is the most important manifestation of embedding a topological singularity into
a continous spectrum. The point-line unit charge is spead over the parameter space
concentrating either near the origin or, at B À Γ at the surface φ= B . We evaluate

ρ(φ,B) = Γ3

4π2

B 2 +φ2 +Γ2/4

K 2 (5.59)

At small Γ, the density is proportional to Γ3 arising from a complex tunneling process.
Its maximum value ' Γ−3 at B = 0 and ' B−2Γ−1 at B À Γ. We plot the density at several
values of B in Fig. 5.8

5.7. CURRENTS IN NORMAL LEADS: PUMPING
A slow change of control phases may lead to the currents in the normal leads propor-
tional to the time derivatives of the phases,

Ja = e

(
~Aa(~φ) · d~φ

d t

)
(5.60)

~Aa being ~φ-dependent proportionality coefficients. Let us recognize this as a case of
parametric pumping, a phenomenon that has been intensively discussed in quantum
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Figure 5.8: The density of topological charge. Curves a, b, c correspond to B = 0,2,5Γ, b and c are rescaled as
shown in the plot.

transport [43, 45], also in the context of superconducting nanostructures with normal
leads [44]. An ac modulation of φ is expected to result in an ac normal current, that is
difficult to measure. However, it can also give rise to a dc current, that is, to pumping. If
~φ is changing periodically along a closed contour, the charge per cycle depends on the
contour only, and, by virtue of Stokes theorem, is given by a flux of the curl of ~A through
the contour,

Qa =
∫ T

0
d t Ja(t ) =

Ó
dS(~N ·curl~A). (5.61)

We evaluate ~A making use of Eq. (5.33) and expanding the Green functions up to first
order in ˇδH . We notice that the currents, since the filling factors are in equilibrium, are
only due to the vector parts of Γ. Two groups of terms in Eq. (5.33) that cancel each other
in stationary equilibrium case can be rewriten as

Ja = 1

2
Tr[(~Γa ·~̌τ[ f̌ ,Ǧ] ˇ̄G] (5.62)

The commutator in this expression in energy representation can be rewritten as

[ f̌ ,Ǧ] = ( f (ε)− f (ε−ω))Ǧε,ε−ω (5.63)

Since we are to expand to the first order in ω, this will give a weight of ∂ε f in the inte-
gration over ε, and we can neglect small ω in the Green functions. The quantities under
evaluation just sample Green functions in an energy interval ' kB T near zero energy,
this interval going to zero at vanishing temperature. This is in contrast to the response
functions explored in the previous Section, those are determined by integration over all
relevant energies. Nevertheless, the expression of ~A has qualitatively similar features,
the values being concentrated at φ' Γ if B ¿ Γ or at φ= B

~Aa =− Γ

πK

(
~ΓaΓ+~φ(~Γa ·~φ)Γ

4B 2

K
+ (Γa ×~φ)

)
(5.64)
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Since we discuss the pumping, the curl of ~A — let us call it the effective field —is more
relevant for us:

curl~Aa =− Γ

2πK 2 [(~Γa ×~φ)4Γ(φ2 +Γ2/4)+~Γa((B 2 +Γ2/4)2 −φ4)+~φ(~φ ·~Γa)(φ2 +Γ2 −B 2)].

(5.65)

The natural axis in ~φ space is set by the direction of~Γa . In the above expression, we have
separated the effective field into azimuthal, axial, and radial component. The dimension
of effective field is E−2. Far from the resonance, the azimuthal field is estimated as '
Γ3φ−5, and axial/radial field as ' Γ2φ−4. Thus, the typical Qa/e for the contours that
do not cross the resonance are small, (Γ/φ)3, (Γ/φ)2 respectively. At the resonance φ =
B À Γ, the azimuthal field is estimated as B−1Γ−1, and axial/radial field as B−2. At B ' Γ,
and near the origin, all field components are estimated as Γ2. This implies that we can
achieve Qa ' e for small contours with dimension Γ provided they are close to the origin.

We illustrate this with the following examples (Fig. 5.9). For pumping in the lead
a, it is convenient to choose the coordinate system such that z ∥~Γa . We probe the axial
component of the effective field by taking a circular orbit with radius R in the plane z = 0,
that is centered at the origin.(Fig. 5.9 a). The axial field is positive at the origin, and
changes sign atφ=

p
B 2 +Γ2/4. The total flux in z = 0 plane is zero. The charge per cycle

for this orbit is given by

Qa/e = 2|~Γa |ΓR2

(R2 +Γ2/4+B 2)2 −4R2B 2 . (5.66)

It reaches maximum that does not depend on magnetic field,

Qa = 2e
|~Γa |
Γ

, (5.67)

and gets back to zero for the contours of bigger radius. To probe the azimuthal field,
one chooses a contour in e.g. x = 0 plane, that follows the axis at the scale max(B,Γ) to
enclose the maximum positive flux. The charge per cycle in this case does not depend
on the contour details and equals

Qa =−πe
|~Γa |
4Γ

Γ2/2+B 2

Γ2/4+B 2 . (5.68)

The vector parts of Γ are generally different in different leads, so that the same contour
is oriented differently for different leads. We conclude that the pumping to the normal
leads provides an interesting possibility to explore the vicinity of the Weyl point.

5.8. CONCLUSIONS
To conclude, we have investigated the properties of a Weyl point immersed to a continu-
ous spectrum. We take a Weyl point in a superconducting nanostructure that is tunnel-
coupled to the electronic states in the normal leads. The tunnel coupling gives rise to a
new energy scale Γ, that corresponds to a scale in parametric space. We investigate in
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detail how the topological and spectral singularities of the Weyl point are smoothed on
this scale. We evaluate the superconducting currents in equilibrium, the superconduct-
ing and normal-lead currents at constant voltages applied to the leads. We find sharp
features in high-voltage tunnel currents that may be used to detect the Weyl points in
experiment.

Importantly, we consider the adiabatic variation of control phases. This permits us
to redefine Berry curvature and evaluate the density of topological charge that is not
point-like but rather spread around the origin as the manifestation of coupling to the
continuous spectrum.

We investigate the pumping to normal leads and find that it witnesses the peculiar-
ities of Weyl point at the scale of Γ and opens up new perspectives for experimental ex-
ploration of Weyl point singularities.
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