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Adaptive leader-follower synchronization over heterogeneous and
uncertain networks of linear systems without distributed observer

llario A. Azzollini, Wenwu Yu, Shuai Yuan, and Simone Baldi

Abstract— A challenging task in network synchronization is
steering the network towards a coherent solution, when the dynam-
ics of the constituent systems are heterogeneous and uncertain. In
this situation, synchronization can be achieved via adaptive proto-
cols (with adaptive feedback gains, or adaptive coupling gains, or
both). However, as state-of-the-art synchronization methods adopt
a distributed observer architecture, they require to communicate
extra observer variables among neighbors, in addition to the neigh-
bors’ states (or outputs). The distinguishing feature of this techni-
cal note is to show that, for heterogeneous and uncertain networks
of some classes of linear systems, synchronization is possible
without the need for any distributed observer. Such classes are
in line with those in model reference adaptive control literature.
Lyapunov analysis is used to derive a new adaptive synchro-
nization protocol with the simplest communication architecture,
in which both feedback and coupling gains are adapted without
any extra communication other than neighbors’ states (in the full-
state information case) or neighbors’ outputs (in the partial-state
information case).

Index Terms— Adaptive control, synchronization, hetero-
geneous uncertain networks.

[. INTRODUCTION

In recent years, coordination of multi-agent systems has been stud-
ied by different scientific communities, motivated by its applicability
to biology [1], energy systems [2], autonomous vehicles [3], and
many other fields. A common objective in multi-agent systems is
to achieve a desired collective behavior through local actions, i.e.
by updating the behavior of each system (agent) using only its own
information and the information of its neighbors: typical examples
are synchronization or the closely-related topic of consensus [4]. An
established way to solve the synchronization problem is to formulate
it in a cooperative output regulation framework, where synchronized
tracking and disturbance rejection can be treated in a unified way,
even for multi-input multi-output systems. In [5], it was shown
that an internal model requirement is necessary and sufficient for
synchronizability of a network to an autonomous exogenous system,
denoted as exosystem. This means that the well-known internal
model principle [6] can be used to solve synchronization problems.
Motivated by this result, synchronization protocols were designed for
both linear [7], [8] and nonlinear networks [9]. It has to be noticed
that synchronization via cooperative output regulation always requires
the communication of extra auxiliary variables, i.e. the variables of
the distributed observer to reconstruct the exosystem information.

Initial research on synchronization has focused on systems sharing
the same (homogeneous) dynamics, possibly uncertain. Synchro-
nization of these homogeneous networks has been achieved by
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adopting either adaptive coupling [10]-[12], or adaptive feedback
[13]-[15], respectively. In the first case, one increases the coupling
strength according to the synchronization error, exploiting the fact
that synchronization in stable homogeneous networks can be achieved
if the coupling strength is large enough [16], [17]. In the second
case, static couplings have been used, while a stabilizing feedback
gain has been determined in an adaptive way for special classes of
homogeneous uncertain systems [13]-[15], [18].

A more challenging task is that of achieving synchronization
when the systems of the network differ from each other, and also
their dynamics lie in a possibly large uncertainty set (heterogeneous
and uncertain networks). Adaptive feedback strategies have been
mostly explored, namely for unknown linear systems [19], chaotic
systems [20], systems with unknown identical control directions [21],
passifiable systems [22], and systems in the Euler-Lagrange form
[23]-[26]: a notable exception is [27], where a discontinuous protocol
with both adaptive feedback and adaptive couplings is implemented.
Differently from homogeneous approaches that might not require a
distributed observer [13], [14], all heterogeneous approaches share
the need for implementing some form of distributed observer, thus
requiring communication of extra variables to reconstruct the leader
information. Therefore, relevant questions arise: what is the simplest
distributed adaptive architecture for synchronization of heterogeneous
uncertain networks? In which cases is it possible to get rid of any
distributed observer, and reach synchronization by adapting both the
feedback and the coupling gains with no further local communication
than the neighbors’ states (or outputs)?

The main contribution of this work is to show that, for certain
classes of linear systems, we can get rid of the distributed observer
architecture. This results in a direct adaptive control approach having
the simplest communication architecture, without any extra local
communication than neighbors’ states (in the full-state information
case) or neighbors’ outputs (in the partial-state information case).
These classes of systems are in line with those for which Model
Reference Adaptive Control (MRAC) can be adopted [28], [29], i.e.
systems with matched uncertainties. Such systems broadly appear in
literature on networks of cooperative vehicles [3], oscillators [30],
fully-actuated Euler-Lagrange systems [26], [27], etc., making the
proposed approach applicable in all these settings.

The rest of the paper is organized as follows: the problem formu-
lation is given in Sect. II, while the full-state and partial-state designs
are given in Sect. III and Sect. IV, respectively. Numerical examples
are provided in Sect. V, with conclusions in Sect. VL

Notation: The notation in this paper is standard. The transpose of
a matrix or of a vector is indicated with X and z” respectively.
A vector signal z € R™ is said to belong to Lo class (z € L2),
if fof |z(7)||?> dr < oo, V& > 0. A vector signal = € R" is said
to belong to Loo class (x € Loo), if rtn>a(>)(\|x(t)|| < oo, Vt > 0.

An undirected graph of order N is completely defined by the pair
G = (V,&), where V = {1,...,N} is a finite nonempty set of
nodes, and £ C V x V is a set of corresponding non-ordered pair of
nodes, called edges. Let \V; denote the subset of 1 which consists of
all the neighbors of node 4. The adjacency matrix A = [a;;] of an
unweighted undirected graph is defined as a;; = O and a;; = aj; = 1
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if (i,7) € &, where i # j. The Laplacian matrix of the unweighted
graph is defined as £ = [l;;], where [;; = Zj aij and l;; = —a;j,
if © # j. An undirected graph G is said to be connected if, taken
any arbitrary pair of nodes (7, j) where i,j € V, there is a path that
leads from i to j. Let 7 C V be the set of those nodes, called target
nodes, which receive information from a leader. The target nodes can
access the leader state through the diagonal target matrix M € ID)J>V0,
which is defined as follows: M = [m;;], where m;; = 1if i € T
and m;; = 0 otherwise. Let the leader-follower topology matrix be
defined as B = £ + M, which is positive definite by construction
[19].

[I. PROBLEM FORMULATION

A network of linear heterogeneous systems with unknown dynam-
ics is considered in this work

& = Agwi + biug

1
1€V M

T

Yi = Cj Ty,

where z; € R" is the state, u; € R is the input, and y; € R is the

output. Time index ¢ is omitted when obvious. The triple (A;, b;, ¢;) is

unknown with matrices of appropriate dimensions, and possibly A; #

Aj, by #bj and ¢; # ¢j, © # j, i,j € V (uncertain heterogeneous

systems). As common in adaptive literature [28], let us focus on the

single-input single-output case. The equivalent transfer function form
of (1) is

ieV. @)

Zi(s
yi = ki z_()

RZ(S) Ug,

Analogously, the triple (k;, Z;, R;) is unknown with R;(s) being
monic polynomials of order n, Z;(s) being monic polynomials of
order ¢ < n, k; being constants referred to as the high-frequency
gains. In addition to the N systems in (1) (or (2)), a special role
is played by system O (leader system), with state xo and output yg,
whose dynamics can be completely determined by the designer as
clarified later in Assumptions 2 and 3.
The following connectivity assumption is made.

Assumption 1: The graph G of the network is undirected and
connected, and the leader interacts with at least one system (7~ # ).

The following problem is considered:

Problem 1 (Adaptive synchronization): Let Assumption 1 hold for
a network of uncertain heterogeneous systems (1) plus a leader. Find
a state-feedback (resp. output-feedback) adaptive distributed strategy
(i.e. exploiting only measurements from neighbors) for the control
input u; such that synchronization to the leader state (resp. output)
is achieved, i.e. x; — zg — 0 (resp. y; — yo — 0), Vi € V.

Ill. FULL-STATE MEASUREMENT ADAPTIVE
SYNCHRONIZATION

Consider the following assumption.
Assumption 2: There exist a family of vectors k] € R™ and
a family of scalars IJ € R (with sgn(l]) known) such that the
following matching conditions are satisfied for some desired (Ao, bp)
{Ai +bik;" = Ao

. Qe 3
15b; = by )

Remark 1: [The structural issue] The equations (3) remind the
well-known matching conditions of standard MRAC [28, Sect. 6.2.3].
Analogously to MRAC, satisfying conditions (3) requires (A;, b;) and
(Ao, bo) to share some common structure. The knowledge of sgn(l})
is typically assumed in MRAC [28, Chapt. 6], which amounts to
having knowledge of the systems control direction. Systems with such
matched uncertainties broadly appear in literature, and examples

include networks of cooperative vehicles [3], oscillators [30], and
fully-actuated Euler-Lagrange systems [26], [27], among others.
Motivated by Assumption 2, let us choose the leader dynamics as

&9 = Agzo  x0(0) = zoo “

where Tg € R"™ is the leader state, accessible to the target nodes
only, as per Assumption 1.

Two results are now given which are instrumental to solving
Problem 1.

Proposition 1: [Ideal state-feedback homogenization] Under As-
sumptions 1 and 2, there exists an ideal controller

N
uf =k e + G 4@ — x5) + mag(e —x0) | 5)
j=1
with f € R"™ to be designed, giving the closed-loop dynamics

N
iy = Aowi +bof T | D aij(ai — ) +mii(z —x0) | . (6)
j=1

Proof: The proof directly follows from applying the control input
(5) to system (1), and using (3).

The following result allows us to design f to achieve synchroniza-
tion for the homogeneous dynamics in (6).

Proposition 2: [Homogeneous network state synchronization] The
homogeneous network (6) synchronizes to the reference state g if

NAg +bofT is Hurwitz, VieV (7

with \; the eigenvalues of the inverse of the leader-follower topology
matrix B~ 1.

Proof: Similar results as Proposition 2 have appeared in litera-
ture, but let us nevertheless sketch the proof, because it will be
useful to understand the upcoming adaptive design. Define x =

[T 23 2T e RV™ and x4, = [z, 2, ... 28T e RV,
and the local synchronization error
N
e;, = Z Qjj (CL‘Z — xj) —+ m”(asZ — CL‘Q) (8)
j=1
where e = el el ... eX]T can be written as [19]
e=(B&In)(z—azm) ©

Moreover, the overall homogeneous network dynamics (6) can be
written in the compact form

o= (Iy® Ag)z + (B@bof")(x — wm)

(10)
= (Iy ® Ag)z + (In @ bo ST )e.

Positive-definiteness of 3 leads to the existence of a unitary matrix
U e RV*N such that UTB~U = diag(A1, Xo,..., An) 2 A
This can be used to define the transformation e = (U ® In)e with
e=el,el,. .. et 4

We can now write the overall error dynamics, using (9) and (10)

e=(B® In)(In ® Ag)z + (B® In)(In @ bof" e

—(B®In)(IN ® Ag)zm (11)
=[(In ® Ag) + (B@ bofT)]e .
Consider the Lyapunov candidate
Vi=e (B! @ Pe (12)
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where P € R™*"™ is a symmetric positive definite matrix. We have

Vi =2¢" (B @ P)[(Iy ® Ag) + (B@bof " )e
=2e"(A® PAg+ Iy @ PhofT)e

— S aT[ , T , 7 }—,
;el P()\ZAOerof )+(/\1A0+b0f ) P 6213)

which is negative definite if

T
{P ()\Z-Ao + bofT) + (AiAo n bofT) P} <0, VieV. (14)
This completes the proof.

Remark 2: [Need for adaptation] Since A; and b; in (3) are
unknown, the ideal control (5) cannot be implemented to solve
Problem 1. Therefore, some distributed adaptation mechanisms must
be devised to estimate the unknown ideal gains in Proposition 1.

The following edge-based state synchronizing protocol is proposed

N
> lijag(@;
i=1

where k; is the estimate of k], while, lij and ly,, are the edge-
based estimates of [;. All the estimates are time-dependent, driven
by distributed adaptive laws to be designed. In the next Theorem 1
we present the adaptive laws.

Theorem 1 (Heterogeneous network state synchronization):
Under Assumptions 1 and 2, the heterogeneous uncertain network
(1), controlled using the protocol (15) and the adaptive laws

wp = ki xi+fT —xj) + Limmii(z; — x0) | (15)

k:ZT = —sgn(l*)’ye?Pbom;TF
lij = —sgn(l} )ver PoofT (x; — z;)
iim = _SQn(l )762 PbOf (-Tz - IO)

(16)

with adaptive gain v > 0, reaches synchronization to the reference
state xg, provided that the matrix P and the vector f are chosen such
that condition (14) holds.

Proof: The closed-loop formed by (1) and (15) can be rewritten as
a function of the estimation errors

o; =Agx; + b,'l;iT(t)xz
N
+bof" > aij(wi — x;
=1

+bof ' myi(x

N
Z azy 7“’”])

i — 20) + bif T (tym (5 — o)
where k;(t) = ki(t) =k}, 1i; (t) = Lij(t) =17 and L (t) = Lim (t) —

I¥. By defining for compactness

By (t) =diag(b1 k1 (¢), ..., bk (t))

N
Bl(t) :diag(blfT Z lljalj(ml — -Tj), c
=1
N -~
oyt > Injanj(zn — wj))
=1
. T7
B (t) =d1ag(b1f limmii(z1 — o), . - -

a7

N TN mma N 2y — xo))

the closed-loop for the overall network can be written as

@ =(In ® Ao+ Bp(t))z + (In @ bo f " )e + By(t) + Bm(t) .

From the synchronization error (9), we obtain the error dynamics
=[(Iy ® Ag) + (B@bof)]e+
+ (B® In)(Bg(t)z + Bi(t) + Bm(t)).

The adaptive laws (16) arise from the Lyapunov candidate V' = V7 +
Vo + V3 + Vi, where V7 is (12), and

N 7 15T
Lij(t)y™ 15(¢)
Vs=)_ 0] :
i=1 i

(18)

o (19)
lim t im
vy = 3 ln®1 )
i=1
In fact, following the same procedure as in (13), we have
Vi =2¢7(B™L @ P)[(In ® Ao) + (B bofT)le
+2¢7 (B @ P)[(B ® In)(By(t)z + By(t) + Bm(t))]

_ ivj el [P ()\iAo n bofT) + (/\iAo + bofT)T P} &
=1

N N

+2) K (Heib] Pei+2) (limmai(ei —20))" fb] Pe;
i=1
N

i=1
T

N
Zij(t)alj( szTPei-

— ;)
(20)

Moreover, by using (16) we have

fa 23" i

t)x; bo Pe;

N T
2 :” T
l a” Jij) fbo P@i

%:_22 sgn

. sgn
Vi= —22 g\l* (Limmii (x5 — 20))” fb4 Pe;

leading to

- i &l [P ()\iAo + bofT) + (AZ-AO + bofT)T P} &
=1

which is negative semi-definite provided that condition (14) holds.
Using standard Lyapunov arguments we can prove boundedness of
all closed-loop signals and convergence of e to 0. In fact, since V' > 0
and V < 0, it follows that V/(¢) has a limit, i.e.,

Jim V(e(t), Q(t)) = Voo < 00 @21

where 2 collects all parametric errors. The finite limit implies V', e,
Q € L. In addition, by integrating V' it follows that

/OOO el (1)Qe(r) dr < V(e(0),(0)) — Vao

for some Q > 0, from which we establish that e € Lo. Finally, since
V is uniformly continuous in time (being Vv finite), the Barbalat’s
lemma implies V — 0 as t — oo and hence e — 0, from which we
derive x; — xg, Vi € V. This concludes the proof.

Remark 3: [Non-convergence to ideal gains] The proof shows
that e — 0, but cannot guarantee that k; — ki, l;; — I,
lim — 1, Yi. This is a typical result in direct adaptive control
approaches, where unless the closed-loop signals are persistently
exciting, convergence of the tracking error to zero does not nec-
essarily come with convergence of the estimates to the ideal gains
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defined by the matching conditions [28, Sect. 6.2.3]. This implies
that, while the ideal protocol (5) imposes all systems to homogenize
to (Ag, bo), the adaptive protocol (15),(16), although being thought
as an estimate of (5), achieves synchronization without necessarily
leading to homogenization.

Remark 4: [Advances wrt the state of the art] In contrast with
[17] (with only adaptive coupling gains) or [19] (with only adaptive
feedback gains), here we manage to adapt both sets of gains. In
contrast with [27], where both feedback and coupling gains are
adapted, we have removed any need for a distributed observer for
the leader velocity.

Remark 5: [Synchronization error and Laplacian eigenvalues] Two
errors have been considered in synchronization problems: the track-
ing error with the leader/exosystem [8], [27], or the disagreement
error with neighbors [19], [21]. Since the former error is not locally
computable, a distributed observer is mandatory in all heterogeneous
networks designs we are aware of. Therefore, we resorted to the
latter error, which is locally computable, to remove the need for
a distributed observer. Although the proposed simpler architecture
requires some information of the Laplacian eigenvalues, c.f. (14),
it has to be remarked that, to the best of the authors’ knowledge,
there exists no adaptive or non-adaptive protocol for heterogeneous
networks based on the latter error that can get rid of any information
of the Laplacian eigenvalues.

IV. OUTPUT MEASUREMENT ADAPTIVE
SYNCHRONIZATION

In place of Assumption 2, in this section we consider the following
assumption.

Assumption 3: Consider some desired homogeneus dynamics de-
fined by (Ao, bo,co) or, equivalently, by the transfer function
(ko, Zo, Ro), with ng and qo representing the order of Ry and Zj,
respectively. There exist a family of vectors h} € R" ™1, g% € R" ™1
and a family of scalars ¢, € R (with sgn(l]) known) such that
the following matching conditions are satisfied

(A(s) — hi"a(s))Ri — kiZi(s) (g7 als) + ¢; A(s))

= Z;i(s)Ao(s)Ro(s) (22)
I = ko/k;
with
a(s) £ [s"72,s"3,...,s,1] forn>2
(52 | drnzo
a(s) =0 forn=1

and with A(s) being a monic Hurwitz polynomial of degree n — 1
that contains Zg as a factor

A(s) = Ao(s)Zo(s)

n—1
=S

(24)

+ pn—28" " + pn—gs" " + .+ o

where Ag(s) is an arbitrary monic Hurwitz polynomial of degree
n—1—qo.

Remark 6: [Structural requirements] Analogously to the full-state
measurement case, (22) remind the matching conditions of output-
feedback MRAC: [28, Lemma 6.3.1] shows that the matching con-
ditions (22) always have a solution when (i) Zy, Rg are monic
polynomials with ng < n, (ii) Z; are monic Hurwitz polynomials
(leading to minimum-phase); (iii) the relative degree of (ko, Zo, Ro)
is the same as that of (k;, Z;, R;), i.e. no —qo =n —q.

For simplicity, and in line with [13], [14], we consider unitary relative
degree for both the desired homogeneous dynamics and the systems,
ie.ng—qg=n—q=1.

Motivated by Assumption 3, let us choose the leader dynamics as

2o = Aogxo

z0(0) = zgo (25)

Yo = ¢z
where zg € R" is the state, yg € R is the output, and the matrix Ag
and the vector co have appropriate dimensions.

Two results are now given which are instrumental to solving
Problem 1.

Proposition 3: [ldeal output-feedback homogenization] Under As-
sumptions 1 and 3, there exists an ideal controller

«T a(s)

* *T (S
uj = h; AES; uj + 9; A Y +ciyi
N (26)
+o D ailyi — v5) + mai(yi — o)
j=1
with ¢ € R to be designed, giving the closed-loop dynamics
N
i = Aowi +bod | Y aij(yi — ) + mii(yi — o)
P @7
yi = 0 @i, teV.

Proof: The proof follows from [28, Sect. 6.3]. Details are not given
for lack of space.

The following result allows us to design ¢ to achieve synchroniza-
tion for the homogeneous dynamics in (27).

Proposition 4: [Homogeneous network output synchronization)
The homogeneous network (27) synchronizes if

()\Z-Ao—s—bofcg,bo,cg) is SPR, VieV ©28)

where \;’s, i € V), are the eigenvalues of the B! matrix.
Proof: The overall homogeneous network (27) can be written in
the more compact form
&= (Iy ® Ao + BD boocq) )(z — om)

29
y=(In®ch)z @)

where y = [y1,¥2, - -, yN]T € RY. Let us now define the state and
output synchronization errors as

N
e = Z a;j(z; — x5) | +myi(x; — x0)
=1
! (30)

N
6= | Y aij(yi —yj) | +maii(yi — vo)
j=1

with e = [eT el ... eX]T and € = [eg, €2, . ..

homogeneous network can be now written as

7eN]T. The overall

i=(Iny ®Ag)z + (In ® byt e 1)
y=(n®ch)r.

Recalling that e = (B ® In)(x — xm), the error dynamics result in
¢= (B I)[(Iy ® Aoz + (Iy ®bogeg e — (In ® Ao)em]
= [(In ® A9) + (B ® booc( )]e.

Now, let us use a similar decomposition as in Proposition 1 and
consider the Lyapunov candidate

T, = (B @ P)e (32)
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where P € R™*"™ is a symmetric positive definite matrix satisfying
the Kalman-Yakubovich lemma [28, Sect. 3]

P (AZ-AO n b0¢c§) n ()\Z-Ao + boqsc(:f)T P<—Q

(33)
Pbg = ¢, VieV.
Then, we have
. AP T T ]
T1=Y el [P (Nido +booed ) + (Aido + booc] ) P &
i=1

which is negative definite if

{P ()\iAo n b0¢c§) n (AiAo n boqsc(:f)T P} <0,VieV

(34)
implied by the first in (33). This completes the proof.

The following edge-based output synchronizing protocol is pro-
posed

wlt) = W O3+ ol (05 i + el

+¢ Z Lij(t)ai; (i — y5) + Lim (6)mas (yi — yo)

Jj=1
(35)

where h;, g;, and ¢; are the estimates of ], gi and cj, respectively,
while I;; and l;;, are the edge-based estimates of I7. The following
synchronization result holds.

Theorem 2 (Heterogeneous network output synchronization):
Under Assumptions 1 and 3, the heterogeneous uncertain network
(1), controlled using the following distributed adaptive controller
ui(t) = HiT(t)wi, 0; = —sgn(l} )ye;w;
(;Jil = Fwil + duy;, d)i2 = FWQ + dy;

T
[hiT of ci [lijljen; lim] ifieT
T

0;

[hiT QZT Ci [lij]je,/\/i] otherwise

T T T

[wil Wiy Yi [0y — yi)ljen; o(yi — yo)] ificT
w; =

{%‘Tl wij; vi [p(yi — yj)]jeNi} otherwise
Sl SRR PN

In—2 O(n—2)x1 O(n—2)x1
(36)

with adaptive gain v > 0, reaches synchronization to the reference
output yg, provided that the scalar ¢ is chosen such that condition
(28) holds. The notation [v] ¢ 7, is used to indicate row vectors that
collect all the components associated to the neighbors of system <.
Please notice that u; in (36) is equivalent to (35), as (F), d) is a state-
space realization of «(s)/A(s). Also notice that, analogously to what
emphasized in Remark 3, convergence of 6; to the ideal gains cannot
be guaranteed.

Proof: The proof follows very similar steps as the one of Theorem
1. The Lyapunov candidate Y1 in (32) should be used together with

N a1 -15
0; (t 0;(t
To = Z % (37)
i=1 @
Then, similar with (20), we have
Ty =2¢7 (B~ @ P)[(In ® Ag) + (B® boocd )]e a38)

+2¢7(B7 @ P)[(B® I)(By(t)w)]

where
. T T
By (t) = diag(b161 (1),...,bnOn(t))
T
, W]

T P (39)
w=[wi,w3,...

and, following a similar procedure as in (20), we obtain
- 7 T T
Ty :Z €; |:P (AiAO + bopch ) + (AiAO + bopch ) P:| €;
i=1

N
+2 Z e?Pbﬁ?(t)wl
i=1

- i &l {P (AiAO + b0¢c0T) + ()\iAo + b0¢c0T)T P} &
i=1

+ 2 i sgn(l;) éT(t)we‘
vt |l;k| 7 €1

where we have used the second equation in (33). Moreover, from
(36) we have

T 7—2§:89”(13‘)5T(t) €
2 = ‘lﬂ i Wi€q
=1

leading to
. T
T=S"er {P (/\iAO n b0¢c0T) n (A,»AO + b()d)cOT) P} g;
i=1
which is negative semi-definite provided that (34) holds. Using stan-
dard Lyapunov arguments as in Theorem 1 we can prove boundedness

of all closed-loop signals and convergence of e to 0, from which we
derive € — 0, i.e. y; = yo, Vi € V.

V. NUMERICAL EXAMPLES

.....

Fig. 1. The undirected communication graph.

Simulations using controllers (15)-(16) and (36) are carried out on
the graph of Figure 1, where system O is the leader node and system
1 is the only target node. The heterogeneous systems (1) are taken
as second-order linear systems with relative degree equal to one

. 0 1 - 0 )
Tq = _in _dli Zq 1 Uj
——_——

~~
Aq b; (40)
Yi = [n2i 7111-] 5
N ——’
T

C>
K3

where the second equation is used only in the output-feedback case.
The parameters and initial conditions for each system (unknown to
the designer and used only for simulation) are reported in Table 1.
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TABLE |
PARAMETERS AND INITIAL CONDITIONS FOR THE SYSTEMS
| dy | do, | m; | m2 | @(0) |

system #1 | 0.75 | 2.5 | 0.5 1 [ ]
system #2 1 2 1 1.5 [0.25 —1]
system #3 | 0.5 1 1075|075 | [

system #4 | 1.25 | 2 1.25 1 [0.5
system #5 | 1.5 | 1.5 1 1.25 | |
system #6 | 0.75 | 1 1.5 2 [1

For the state synchronization case, the desired homogeneous dy-
namics in Assumption 2 and the initial conditions for the leader (4)
are chosen as

o[ ey e[l o []

The vector f and matrix P that satisfy condition (14) are

p_ {0.4774 0.0641} e

0.0641 0.5681 =[-1

—10] .

Finally, the adaptive gain is v = 50 and all estimated gains k;, [;; and
lim are initialized to 0. The resulting adaptive state synchronization
is shown in Figure 2, with adaptive gains shown in Figure 3.

\ 2\ \
AN AN AU ANV A\
/ A\ /A /A I\ / o\
[\ [\ [ [N [\
| \ I \ / \ / i / 4
/L N L U S U A \
/ \ / \ o/ \ \
/ \ \ \ \ \
\ / v/ / 3
\ \ / \ / \ /
\/ \/ \/ \/ 1
15 . . . . . . . . .
5 10 15 20 25 30 35 40 45 50
time [s]

Fig. 2. Synchronization of the states of each system to the leader
reference state using (15) and (16).

For the output synchronization case, the same parameters and
initial conditions as in Table I are taken. The desired homogeneous
dynamics in Assumption 3 and the initial conditions for the leader
(25) are chosen as

o=y g [ o= ]
(41)

that in transfer function form is (s+0.64) /(s> 40.64). Therefore we
have F' = —0.64 and d = 1. The scalar ¢ that satisfies condition (28)
is ¢ = —1. The adaptive gain is taken v = 50 and all estimated gains
0; are initialized to 0. The resulting adaptive output synchronization
is shown in Figure 4 together with the adaptive gains.

VI. CONCLUSIONS

The contribution of this work was to show that, for heterogeneous
and uncertain networks of certain classes of linear systems, synchro-
nization is possible without the need for any distributed observer.
Such classes are in line with those proposed in model reference
adaptive control literature. As a result, any local communication
except from neighbors’ states (or outputs) has been removed.

. . . . . . . . .
0 5 10 15 20 25 30 35 40 45 50
time [s]

Fig. 3. Adaptive gains resulting from (16).

0 5 10 15 20 25 30 35 40 45 50
time [s]

Fig. 4. Synchronization of the outputs of each system to the leader
reference output using (36), and corresponding adaptive gains.

Future work could involve studying the effects of delays in the
computation of the protocols [31] or extending the results in the
switching topology scenario, e.g. using adaptive switching tools [32].
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