

Delft University of Technology

Optimizing ML Inference Queries Under Constraints

Li, Z.; Sun, W.; Hai, R.; Bozzon, A.; Katsifodimos, A

DOI
10.1007/978-3-031-34444-2_4
Publication date
2023
Document Version
Final published version
Published in
International Conference on Web Engineering

Citation (APA)
Li, Z., Sun, W., Hai, R., Bozzon, A., & Katsifodimos, A. (2023). Optimizing ML Inference Queries Under
Constraints. In International Conference on Web Engineering (pp. 51-66) https://doi.org/10.1007/978-3-031-
34444-2_4

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-34444-2_4
https://doi.org/10.1007/978-3-031-34444-2_4
https://doi.org/10.1007/978-3-031-34444-2_4

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Optimizing ML Inference Queries Under
Constraints

Ziyu Li1(B), Mariette Schönfeld1, Wenbo Sun1, Marios Fragkoulis2,
Rihan Hai1, Alessandro Bozzon1, and Asterios Katsifodimos1

1 TU Delft, Delft, The Netherlands
{z.li-14,m.a.e.schonfeld,w.sun-2,r.hai,

a.bozzon,a.katsifodimos}@tudelft.nl
2 Delivery Hero SE, Berlin, Germany
marios.fragkoulis@deliveryhero.com

Abstract. The proliferation of pre-trained ML models in public Web-
based model zoos facilitates the engineering of ML pipelines to address
complex inference queries over datasets and streams of unstructured con-
tent. Constructing optimal plan for a query is hard, especially when
constraints (e.g. accuracy or execution time) must be taken into consid-
eration, and the complexity of the inference query increases. To address
this issue, we propose a method for optimizing ML inference queries that
selects the most suitable ML models to use, as well as the order in which
those models are executed. We formally define the constraint-based ML
inference query optimization problem, formulate it as a Mixed Integer
Programming (MIP) problem, and develop an optimizer that maximizes
accuracy given constraints. This optimizer is capable of navigating a large
search space to identify optimal query plans on various model zoos.

Keywords: Machine learning inference query · Constrained-based
query optimization · Predicate ordering

1 Introduction

Machine learning (ML) is increasingly used to process unstructured documents
(i.e. text, images, videos), or data streams [6,9,21,24]. Take, for instance, the
scenario of a self-driving car: when it detects (at certain proximity) that a person
is crossing the road, or that another car has turned its emergency lights on, the
car has to trigger an emergency action (e.g., breaking hard). This can be modeled
as a complex ML inference query, and represented as a Boolean expression [5,12]:
(road ∧ person) ∨ (car ∧ light). The literals in the expression are combined
using operations such as and (conjunction) and or (disjunction).

While ML models can be (and often are) tailored to specific inference tasks,
there is a growing interest in the reuse and re-purposing of pre-trained ML mod-
els [8]. This shift, mostly motivated by computational, economic, and environ-
mental considerations, is evident from the proliferation of public, pre-trained ML

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Garrigós et al. (Eds.): ICWE 2023, LNCS 13893, pp. 51–66, 2023.
https://doi.org/10.1007/978-3-031-34444-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34444-2_4&domain=pdf
https://doi.org/10.1007/978-3-031-34444-2_4

52 Z. Li et al.

Fig. 1. Alternative ML query plans for the running example query.

model zoos on the Web, such as HuggingFace and PyTorch Hub1. These hubs
contain thousands of pre-trained models for diverse ML inference needs such
as object recognition, sentiment analysis or audio classification. These models
are described by metadata detailing their inference capabilities (e.g. identified
object classes), and performance (e.g. accuracy and execution time). With the
help of the model zoos, ML inference query plans – i.e. complex workflows of ML
models as the one shown in Fig. 1 – can be executed by leveraging existing ML
models through easily accessible APIs, providing greater flexibility in defining
ad-hoc queries.

ML inference queries are often subject to specific performance constraints
(e.g. inference execution time, accuracy) [11,18]. In such cases, the selection of
a set of models becomes quite complicated: an analyst may manually define a
query plan that is excessively expensive and/or inaccurate if they lack consider-
able systems skills or time. Instead, an optimizer could automate the selection of
(a set of) ML model(s) from the model zoo, so that the query could be answered
under specific execution constraints. That way, data analysts/engineers can focus
on the analytical task at hand, while ML researchers and engineers can indepen-
dently focus on ML model development and enhancement.

Contributions. We propose a method (depicted in Fig. 2) to select the best ML
models as well as their execution order, given a complex ML inference query and
execution constraints. We formulate the problem of inference query optimiza-
tion with constraints as a mixed integer program (MIP) and jointly optimize
model assignment and predicate ordering (indicated as model- & order-optimal
optimizer). The model assignment deals with the mapping of models to predi-
cates, while predicate ordering decides the order in which to evaluate them. The
contributions of this paper can be summarized as follows:

– We formulate the problem of ML inference query optimization as a (MIP)
and propose a MIP-based optimizer that exploits model zoos.

1 https://huggingface.co/, https://pytorch.org/hub/.

https://huggingface.co/
https://pytorch.org/hub/

Optimizing ML Inference Queries Under Constraints 53

– Our approach is the first that jointly optimizes model assignment and predi-
cate ordering, leveraging the selectivity (i.e., the probability of a predicate to
evaluate true) of model-based predicates to decide their order of execution.

– We evaluate our Bypass: Model- & Order-optimal optimizer against base-
lines (Sect. 5), showing that our proposed optimizer can generate plans that
significantly outperform the baselines in diverse model zoos on different con-
straint settings.

2 Related Work

ML Inference Query Optimization. The development of specialized models
for fast inference of object detection queries has received considerable atten-
tion [7,8,17,20]. More recently, related research is targeting the processing effi-
ciency of larger ML inference query [1,3,4,10,18]. NoScope [10] and PP [18]
filtered irrelevant frames by training and deploying special lightweight binary
classifiers, and Tahoma [1] trained model cascades to process video frames. The
cheaper models are trained to achieve very low false negative rates, so that they
did not filter out valid tuples/images/frames, since these can be validated by
more accurate and expensive models downstream.

The most related work to ours is PP [18]. Our work is complementary to
PPs, as it aims at reusing the plethora of existing models available in public
and enterprise model zoos without retraining, and at optimally navigating the
performance to accuracy trade-off of existing models. PP generates query plans
for ML inference queries by first pre-selecting the predicates with a heuristic
solution before optimizing the query plan, thus the query plan is suboptimal.

Multiple-objective Query Optimization. We model the ML inference query
optimization problem presented in this paper as a multiple-objective query opti-
mization problem with a bounded objective method. Notably, the problem at
hand can also be modeled with other methods for multiple-objective optimiza-
tion [15,19,22,23], which seek to find the set of query plans that dominate all
others in terms of the trade-off between two conflicting objectives. However, the
problem we tackle in this paper is different from the classic single- and multi-
objective query optimization problems in existing literature due to the special
treatment that accuracy requires as well as the consideration of predicate order-
ing in our specific problem setting.

3 Problem Definition

In this section, we define the notions of a model zoo and its metadata, and
ML inference query. We also formalize the ML inference query optimization
problem. Note that in this work, we consider the case of ML models that perform
classification tasks.

54 Z. Li et al.

Table 1. Execution time C of models in
a model zoo.

proad pperson plight pcar

model 0 ∞ 25 ∞ ∞
model 1 ∞ 35 ∞ ∞
model 2 ∞ ∞ ∞ 20

model 3 ∞ ∞ ∞ 40

model 4 5 ∞ 5 ∞
model 5 10 ∞ 10 ∞

Table 2. Example accuracy A of models
in a model zoo.

proad pperson plight pcar

model 0 0 0.90 0 0

model 1 0 0.95 0 0

model 2 0 0 0 0.91

model 3 0 0 0 0.93

model 4 0.94 0 0.91 0

model 5 0.96 0 0.95 0

3.1 Metadata of a Model Zoo

We formalize the metadata representation of a model zoo [14] as
R(M, I, P,A,C), where M denotes the set of pre-trained ML models; I denotes
the set of classes that M can infer; P denotes the corresponding set of a Boolean
predicates over the inference classes I; A and C represent the matrices with the
dimensions of |M |× |P |, which store the values of model accuracy and execution
time, respectively. C is depicted in Table 1 while A is depicted in Table 2. In
the following, we explain how we utilize the metadata of a model zoo as prior
information in ML inference query optimization in Sect. 4.

3.2 ML Inference Queries

Given a model zoo R(M, I, P,A,C), we write an ML inference query in the form
of (p1∧...∧pi)∨...∨(pj∧...∧pk) , where each pl is a Boolean predicate representing
the inference class inferred by the ML model ml (1 ≤ l ≤ k). According to the
closed-world assumption, we assume that an input ML inference query Q can
be answered by a given model zoo R. Note that it is possible that one model is
selected for multiple predicates.

CNF and DNF Queries. In above definition, Q is in the disjunctive normal
form (DNF), where the clauses Q1 ∨ · · · ∨Ql are connected by disjunctions. An
ML inference query Q and its subqueries Qi are Boolean queries. In the rest of
the paper, for brevity, we will refer to ML inference queries in CNF simply as
CNF queries (similarly for the DNF ones).

3.3 ML Inference Query Plan

We define a ML inference query plan as the orchestration of ML models sup-
porting the execution of a ML inference query. Note that each predicate can
be associated with several models before optimization (Fig. 1(a)). Figure 1(b)
presents the query plan with an optimized model assignment, where each pred-
icate is covered by a model. All the models process all the data and results
are generated with union. We call this type of query plan a sequential plan.
Figure 1(c) depicts a plan with optimized model assignment and execution order
as a bypass plan [13], where we refer to this type of query plan as bypass plan.

Optimizing ML Inference Queries Under Constraints 55

3.4 Problem Definition

Given a ML inference query Q, we aim for an optimization target that maximizes
the accuracy with constraint on the execution time. The Accuracy-maximizing
Model Assignment (AMA) problem is defined as follows: given a model zoo R,
an ML inference query Q, and an upper bound Cbound on execution time, the
goal is to assign a model m ∈ M for each predicate p ∈ P , which maximizes the
accuracy aQ with the constraint of execution time cQ. Formally, the objective
function to optimize is:

Maximize: aQ = facc(Q)
Subject to: cQ � Cbound

In the above definition, we denote the function to compute aQ as facc(Q),
which is detailed in Sect. 4.2. The cost of the query plan cQ is measured by
the average inference time on one data instance. Cbound represents the given
execution time bound that the computation cost of the query should respect.

In a similar way, we can define the Execution-time-minimizing Model Assign-
ment (EMA) Problem, where the goal is to assign a model m ∈ M for each pred-
icate p ∈ P , which minimizes the average execution time on each tuple, i.e., cQ,
with the constraint that the minimum accuracy of the query aQ stays above a
lower bound Abound. We do not detail this version of the problem, for the lack of
space, but the interested reader can refer to an extended version of our paper2.

4 Optimizing ML Inference Queries

Given an ML inference query, the goal is to generate query plan which maxi-
mizes the accuracy and satisfies the constraint on execution time. In this section,
we outline our optimization and execution workflow for ML inference query in
Sect. 4.1. We then present a mixed-integer programming formulation (Sect. 4.2–
4.6) for the ML inference query optimization problem as defined previously,
including accuracy model, execution time model, objective function, and other
relevant components. Due to space limit, we refrain from including the imple-
mentation details such as formulation equations and linearization of quadratic
terms. Instead, we provide descriptions of the key components and refer the
reader to our extended paper version.

4.1 Approach Overview

As depicted in Fig. 2, users can define an ML inference query with ML model-
based predicates. To optimize the query, our MIP-based optimizer leverages the
metadata of a model zoo containing information about the available models
and their performance in terms of accuracy and execution time. The input of
our query optimizer also includes the metadata about selectivity, i.e., statistics
2 Extended version: https://www.wis.ewi.tudelft.nl/assets/files/opt-ml-query.pdf.

https://www.wis.ewi.tudelft.nl/assets/files/opt-ml-query.pdf

56 Z. Li et al.

Fig. 2. Approach overview.

regarding the portion of data that a predicate returns as true. Both types of
metadata are retrieved from a metadata management tool (e.g. [14]). The query
optimizer then parses and optimizes the query. Given different input information,
the MIP-based optimizer applies different optimization approaches to generate
plans that satisfy the constraints.

Modeling as Mixed Integer Programming. The first step in the optimiza-
tion phase is mathematical modeling, where the optimizer takes in different
types of metadata and formulate their relationships. To tackle the Accuracy-
maximizing Model Assignment (AMA) problem in Sect. 3.4, we resolve model
assignment, i.e., mapping between ML models and predicates, and predicate
ordering, i.e., deciding the execution order of predicates.

– Model assignment. With the model zoo metadata alone (yellow dashed
arrows), the optimization only assign models to predicates adhering to an
execution time constraint.

– Predicate ordering. To exploit the execution time budget and aim for higher
effectiveness, we adopt bypass [13] plans and predicate ordering. The bypass
plan consists of branches that execute only a defined subset of data, filtered
based on prior outcomes. Bypass plans can greatly reduce execution cost by
preventing the execution of models on unnecessary data. Together with pred-
icate ordering, we manage to further increase efficiency and take full advan-
tage of the budget by assigning better models for higher effectiveness with
the available resource. The optimizer makes use of the selectivity metadata
(red dashed arrows). We assume that selectivity is a property of an existing
labeled dataset, and is known in advance.

In this work, we jointly optimize model assignment and predicate ordering given
time constraints, and have shown significant performance for the objective goal
(see Sect. 5 for details).

MIP Solver and Plan Generation. After modeling, we take the constraints
and variables, and feed them to a MIP solver. We use Gurobi as the optimization

Optimizing ML Inference Queries Under Constraints 57

Algorithm 1: BypassPlanGen
Input : query query, model-predicate mapping mapping,

execution order of predicates (random or optimized) order,
indication of the current branch flag

Output: bypass plan plan
1 plan = NULL
2 predicate p ← the first predicate in the order
3 if p is not empty then
4 current node m = mapping[p]
5 suborder ← the remaining order after removing p

// Positive branch

6 subquery ← subquery of query where p is substituted with true

7 pos branch = BypassPlanGen(subquery, mapping, suborder, true)
// Negative branch

8 subquery ← subquery of query where p is substituted with false

9 neg branch = BypassPlanGen(subquery, mapping, suborder, false)
// Generate the plan as a binary tree ([root node, left child, right child])

10 plan = [m, pos branch, neg branch]

11 end
12 return plan

solver. The outcomes of the solver is optimized model assignment, i.e., mapping
between models and predicates, as well as the execution order of the predicates.

Given the model assignment and predicate execution order, the plan gen-
erator produces plans in different mechanisms, e.g., sequential plan with
Model-optimal plan and bypass plan with Model- & Order-optimal plan.
Sequential plan is a set of ML models executing on all the data. The execution
order does not have an impact on the results. Conversely, in bypass plans, models
process the data with filtering conditions, allowing the data flow to be divided
based on the true or false results of the predicates. Algorithm 1 presents the
pseudo code for generating the bypass plan. The algorithm generates a binary
tree as a bypass plan, with the ML models represented as nodes and the predi-
cate filtering conditions indicated by the edges. The root node processes full set
of data while the child nodes processes data filtered with different conditions.

4.2 Modeling Accuracy

We now explain the procedure of estimating query accuracy aQ, i.e., facc(Q) in
the problem definition. The intuition is that the query performance is dependent
on the performance of models assigned to the predicates. We assume that pred-
icates are independent to each other (the same assumption made in [18]), i.e.,
the outcome of one predicate does not impact the performance of others. The
accuracy of a conjunctive query, e.g., road ∧ person, can be estimated by multi-
plying the accuracy of each model, aroad ∗aperson. The accuracy of a disjunctive
query, e.g., car ∨ bus, can be computed using the inclusion-exclusion principle,

58 Z. Li et al.

as acar+abus−acar∗abus. In the same way, we can calculate the accuracy of more
complex Boolean expressions. It is worth noting that the accuracy model is con-
tingent upon the independence assumption, and serves as an indicator of query
performance. The actual, real-world query results may be impacted by predicate
correlation: when two predicates have high correlation, the performance of one
model can influence the output of another. In future work we can leverage the
correlated performance of a model (given the output of another) to align the
estimation of query accuracy with its actual value.

4.3 Modeling the Execution Time

The measurement of execution time is determined by the form of the outcome
plan, i.e., sequential (a set of models processing all the data) and bypass (mod-
els processing different subset of data based on the outcomes of the previous
executed ones). Execution time is denoted by ftime(Q).

Sequential Plan. In this case, the optimization does not take into account
selectivity. The execution plan is a set of selected models executing on complete
data. When computing the execution time, we only need to consider whether a
model is selected, and we sum the cost of all the selected models. The models’
execution time should be measured only once: the model can be executed once
on the input and can output predictions for multiple classes.

Bypass Plan. In this case, not every model needs to process all the data:
models in the subsequent steps only have to process a subset of the origin data
filtered on the outputs of the previously executed models. The plan’s execution
time for this mechanism is measured with the sum of all the selected model
cost proportioned to the data it need to process. For example in Fig. 1c, pcar
processes images from two different data flows: images with light but without
person (light ∧ ¬person), and images with light and person but without
road (light ∧ person ∧ ¬road). The execution cost of answering pcar is the
execution cost of running the model proportioned to the amount of data it need
to process, which is determined by the input data flows. The key challenge is to
determine the portion of data processed by each predicate, which we will tackle
in Sect. 4.5.

4.4 Modeling Model Assignment

Model assignment is the mapping between models and predicates. It determines
the models used to answer predicates. To perform model assignment, we set
a few constraints: i) we need to allocate exactly one model to each predicate;
ii) only models with non-zero accuracy on a predicate can be assigned. Note
that a model can be assigned to answer multiple predicates. Figure 1(b) presents
the plan that only takes into account of model assignment that maximizes the
accuracy given the time constraint.

Optimizing ML Inference Queries Under Constraints 59

Fig. 3. Bypass plans with different predicate execution order (numbers near by the
arrows indicating the selectivity of the predicates in that path).

4.5 Modeling Predicate Ordering

Predicate ordering has a significant impact when we generate a bypass plan.
If the plan is a sequential execution of models without filtering any data, the
results are the union of the predictions of all the models and the execution order
will not make an effect on the results. On the other hand, a predicate in a bypass
plan can filter insignificant data, which results in different execution cost when
adopting a different execution order of the predicates.

The emphasis of predicate ordering is to measure the selectivity of predi-
cates, clauses and subqueries, given a certain order, i.e., the portion of data that
retained by the previous answered predicates. For example, consider a query
proad∧pperson. If the execution order is proad → pperson, the portion of data pro-
cessed by proad is 100%, while pperson the portion of data where proad returns
true. If proad returns false, the whole query returns false, which ends the
evaluation. The portion of data processed by pperson is thus the selectivity of
proad. When the execution order changes and proad is answered before pperson,
the amount of data being processed in general is different from the previous plan.
Thus, when considering bypass plan, predicate ordering matters, and selectivity
of predicates are taken into account.

Take the previous query as example. In Fig. 3, we present two bypass plans
based on different predicate execution order. Though the model assignment is the
same, the execution cost of these plans are different. Figure 3(b) shows the plan
when we jointly optimize model assignment and predicate ordering. The pred-
icate execution order follows plight → pcar → proad → pperson, which achieves
lower cost than random predicate order in Fig. 3(a).

4.6 Objective Function and Constraints

Our proposed Model- & Order-optimal approach has transformed the objec-
tive functions into the following forms. Given an execution time constraint (solv-
ing the AMS problem):

60 Z. Li et al.

Maximize: facc(Q)
Subject to: Exactly one model is assigned to a predicate;

Only models with non-zero accuracy can be assigned to a predicate;
Execution time of the query plan ftime(Q) is calculated depending
on the type of output plan and execution order of the predicates;
ftime(Q) � Cbound

5 Experimental Evaluation

In this section, we empirically evaluate our method on both real and synthetic
datasets, covering different modalities, i.e., texts and images. We first evaluate
the efficacy of the optimizer with other competing methods on different datasets,
and observe significant performance of our advanced optimizer. We then evaluate
the optimizers’ optimization time on a synthetic setting with different query
sizes, which verifies the complexity of the problem.

5.1 Experimental Settings

Datasets and Evaluation Metrics. We used public datasets covering object
detection in images with COCO [16] as well as sentiment analysis in text with
TweetEval [2]. COCO contains 123K images and 80 distinct classes of objects,
lending themselves to complex queries with multiple predicates. TweetEval is
a corpus of tweets collected from Twitter. We focus on 18 inference classes,
belonging to different categories, such as text sentiments, entity types, etc. We
finetune some NLP models to fit Tweeteval to perform the tasks. We use F1-
score to measure the quality of the models, and milliseconds per instance for
execution time. Each dataset is divided into a validation set (60%) and a test
set (40%). We use the validation set to measure selectivity on each dataset,
as well as execution time. The query execution time shown in the following is
obtained by executing the queries on the test set.

Model Zoos. We collected all of our pre-trained from HuggingFace (NLP tasks)
and PytorchHub (object detection). To navigate the space of different model
zoos that may be encountered in the real world, we manually curated different
types of model zoos – each with different characteristics in terms of included
models, the inference classes they support, as well as accuracy and performance
characteristics. Those are summarized in Table 3:

– Real-World: Model Zoo ❶ contains 48 real-world models that can tackle NLP
tasks. Each model in this model zoo, covers all inference classes of the NLP tasks.
Model Zoo ❷ includes 33 models that can be used in object detection tasks in
images; each model in this model zoo covers all object classes in COCO.
– Synthetic: Model Zoo ❸ , Model Zoo ❹ are derived from Model Zoo ❷ . Each of
the 33 models has 5 variants; to that end, we have introduced a 0–30% accuracy
penalty to all models uniformly, while we have also added an execution time

Optimizing ML Inference Queries Under Constraints 61

Table 3. Summary of model zoos.

Repo. Name Modality Class Coverage Performance Variation Number of Models

Model Zoo ❶ Text All None 48

Model Zoo ❷ Image All None 33

Model Zoo ❸ Image 1 Accuracy, Cost 165

Model Zoo ❹ Image 13 (avg) Accuracy, Cost 165

penalty of 0–50%. By applying these variations we obtain 165 models in total.
These three model zoos differ in terms of the inference classes that the models
can answer (see Table 3).

Optimization Methods. We compare four strategies for optimizing ML infer-
ence query given a certain constraint. Note that there are two ways to execute
the query plans: in sequential, i.e., not applying bypass and executing the plans
in sequence; and in bypass, i.e., executing the plan using the bypass mechanism,
given a predicate execution order.

Baseline 1 - Sequential: Greedy. This optimizer applies greedy heuristic
and loops over predicates and selects the model with the highest rank greedily,
i.e., accuracy

cost (similar to predicate ordering based on rank). The optimizer stops
when every predicate is assigned to a model and the constraint is met.

Baseline 2 - Sequential: Model-optimal. The model selection optimizer
relies on MIP to optimize the model assignment under constraints, as compared
to the greedy optimizer that approximates model assignment.

Baseline 3 - Bypass: Model-optimal. This baseline extends Baseline 2.
Given the model assignment optimized with model-optimal approach, this base-
line generates bypass plan.

Proposed method - Bypass: Model- & Order-optimal. This approach
jointly optimizes for both model assignment and predicate ordering and create
a bypass plan. It takes into account of the selectivity of predicates in a dataset
and creates bypass plans.

Queries. Since there are no benchmark queries that we could use from other
works for our datasets, we adopted a similar approach as [18] to curate queries.
We generate queries for two scenarios: comparing optimizer quality (Sect. 5.2,
5.3) and measuring optimization time (Sect. 5.4).

Optimizer Performance. We manually curated 10 queries (exemplified in Table 4)
for image analysis (classes adopted from COCO), and 6 queries for text process-
ing (tasks including name entity recognition, topic classification and sentiment
analysis), in CNF and DNF forms. The queries range from 2 to 6 predicates with
varying constraints on execution cost.

Query Optimization Time. We generate a set of queries in different complexity
levels (the number of predicates ranging from 2 to 64), in total, 60 queries in
CNF and DNF. The classes are adopted from COCO. For each predicate, we
sample the classes with a uniform distribution.

62 Z. Li et al.

Table 4. Examples of different ML inference queries (accuracy measured by F1-score,
and cost measured by average inference time per instance).

Modality Example Query Constraint

text e.g., ner=person ∧ sentiment=negative
∧ (topic=news ∨ topic=sport)

e.g., accuracy > 80%

image e.g., person ∧ (car ∨ bike) ∧
emergency light

e.g., cost < 100 ms

Fig. 4. Average speedups of query execution time compared to the Greedy approach
on the query workload with different accuracy constraints.

Exec. Time Constraints. We create a number of experiment settings by enu-
merating different execution time bounds to verify optimizers’ performance on
different levels of constraints. We regard Baseline 1 as the reference and record
the minimum time constraint on which it can generate a query plan. The time
constraints are set to be proportional to the minimum time constraint with scales
of {80%, 90%, 100%, 110%, 120%} (we have observed that the performance con-
verges from 120% onwards).

Hardware. We perform our experiments on a Ubuntu server with a single GPU
(Nvidia A40, 8 GB RAM).

5.2 Using Uniform Model Zoos

We analyse the behavior of our optimizer using the model zoos Model Zoo ❶ and
Model Zoo ❷ . In this experiment we consider the constraint of 100% to be the
execution time that allowed the Sequential:Greedy optimizer to find a solution
to all the queries. We constrain the execution time to gradually increase from
90% - 120% to observe how the optimizers behave with different constraints. We
present those results in bar plots (e.g., Fig. 4). The first observation is that when
we put a low constraint on the execution time, our solution, Bypass: Model- &
Order-optimal, succeeds to find proper solutions. Since the models used in both
model zoos ❶ and ❷ have very similar accuracy, we do not observe large differ-
ences. It is worth noting that generating a bypass plan for the Model-optimal

Optimizing ML Inference Queries Under Constraints 63

Fig. 5. The average accuracy on the query workload with different time (objective)
constraint levels.

query plan can lead to a reduction in accuracy. This is because the random
ordering of predicates can sometimes result in poor performance when a low-
performing model is executed early in the process. Applying bypass plan can
increase efficiency when executing the plan, however, with early filtering, this
approach may wrongly filter data in an early stage, leading to decrease in accu-
racy.

5.3 Using Model Zoos with Diverse Model Distributions

We study the effect of diverse accuracy and execution time distributions, and
class coverage in model zoos. More specifically, we run experiments using Model
Zoo ❸ where each model answers exactly one inference class and Model Zoo ❹
average of 13 inference classes per model. We want to see if in such constrained
environment the order optimizer can bring benefits.

Figure 5 shows the accuracy of all queries, for different values of execution
time constraint. We observe that Bypass: Model- & Order-optimal consis-
tently obtains higher query accuracy than the baselines. As in earlier experiment,
bypass plans do not gain benefits when execution time is constrained. While
Bypass: Model- & Order-optimal jointly optimizes for both model selection
and predicate ordering can make use of predicate ordering and perform early
filtering, making better use of execution time budget.

Results show that using bypass plans can lead to higher efficiency, while not
necessarily increasing accuracy. The Bypass: Model- & Order-optimal opti-
mizer outperforms the other baselines and can achieve higher query accuracy,
especially given very diverse model zoos with different execution time and accu-
racy tradeoffs.

5.4 Query Optimization Time

We now evaluate the scalability of different approaches. We are interested in find-
ing the limit of the Bypass: Model- & Order-optimal optimizer, with respect
to the number of predicates that can be included in a query. Note that for brevity
we exclude Baseline 3 (Bypass: Model-optimal): converting a given plan to its

64 Z. Li et al.

Fig. 6. Optimization time on queries with varying number of predicates.

bypass version requires a very small fraction of the optimization time. Thus,
Bypass: Model-optimal in this case does not differ from Bypass: Model- &
Order-optimal. We evaluate the efficiency of our optimizers in generating a
query plan by varying the number of predicates in a query as shown in Fig. 6.
The experiments were performed on Model Zoo ❹ .

All the optimizers show exponential increase in execution time with the
increase of predicate number in a query (Fig. 6 is plotted in log scale), except
the Sequential:Greedy approach. The exponential increase also hints that the
problem we are tackling has a very high complexity (Sect. 3). We observe that the
advanced optimizers require much longer time to generate a plan as the number
of predicates increases. In fact, when accuracy is constrained, the optimization
time for 64 predicates did not finish (X). Future work can focus on applying
approximation schemes to increase efficiency.

6 Conclusions and Future Work

In this paper we address the problem of ML inference query optimization, which
aims for high accuracy given constraints on execution time. We formulate the
problem as an MIP to perform optimal model selection and predicate order-
ing. Our optimizer that considers both model selection and predicate ordering
achieves high performance, especially when the constraints are tight. In future
work, we will consider additional objectives, such as model power consumption
and memory footprint. Further research can focus on i) exploring multi-objective
optimization problems, ii) applying approximation schemes in the MIP formu-
lation of the problem and iii) lifting the assumptions made in this paper, con-
sidering especially the correlation of inference predicates and concept drift.

Optimizing ML Inference Queries Under Constraints 65

References

1. Anderson, M.R., et al.: Physical representation-based predicate optimization for a
visual analytics database. In: 2019 IEEE 35th ICDE, pp. 1466–1477. IEEE (2019)

2. Barbieri, F., et al.: TweetEval: unified benchmark and comparative evaluation for
tweet classification. arXiv preprint arXiv:2010.12421 (2020)

3. Cai, Z., et al.: Learning complexity-aware cascades for pedestrian detection. IEEE
PAMI 42(9), 2195–2211 (2019)

4. Cao, J., et al.: Thia: accelerating video analytics using early inference and fine-
grained query planning. arXiv preprint arXiv:2102.08481 (2021)

5. Chang, J.Y., Lee, S.: An optimization of disjunctive queries: union-pushdown. In:
Proceedings of COMPSAC, pp. 356–361. IEEE (1997)

6. Chowdhary, K., et al.: Natural language processing. In: Chowdhary, K.R. (ed.)
Fundamentals of Artificial Intelligence, pp. 603–649. Springer, New Delhi (2020).
https://doi.org/10.1007/978-81-322-3972-7 19

7. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017)

8. Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detec-
tors. In: Proceedings of the IEEE CVPR, pp. 7310–7311 (2017)

9. Jiang, J., et al.: Chameleon: scalable adaptation of video analytics. In: Proceedings
of SIGCOMM, pp. 253–266 (2018)

10. Kang, D., et al.: NoScope: optimizing neural network queries over video at scale.
arXiv preprint arXiv:1703.02529 (2017)

11. Karanasos, K., et al.: Extending relational query processing with ml inference.
CIDR (2020)

12. Kastrati, F., Moerkotte, G.: Generating optimal plans for Boolean expressions. In:
IEEE ICDE, pp. 1013–1024. IEEE (2018)

13. Kemper, A., et al.: Optimizing disjunctive queries with expensive predicates. ACM
SIGMOD Rec. 23(2), 336–347 (1994)

14. Li, Z., Hai, R., Bozzon, A., Katsifodimos, A.: Metadata representations for
Queryable ML model zoos. arXiv preprint arXiv:2207.09315 (2022)

15. Li, Z., et al.: Optimizing machine learning inference queries for multiple objectives.
In: 39th ICDE Workshop on DBML. IEEE (2023)

16. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

17. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

18. Lu, Y., et al.: Accelerating machine learning inference with probabilistic predicates.
In: Proceedings of the SIGMOD, pp. 1493–1508 (2018)

19. Papadimitriou, C.H., et al.: Multiobjective query optimization. In: Proceedings
of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2001, pp. 52–59. Association for Computing Machinery,
New York (2001)

20. Redmon, J., et al.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE
CVPR, pp. 7263–7271 (2017)

21. Shen, H., et al.: Fast video classification via adaptive cascading of deep models.
In: Proceedings of the IEEE CVPR, pp. 3646–3654 (2017)

http://arxiv.org/abs/2010.12421
http://arxiv.org/abs/2102.08481
https://doi.org/10.1007/978-81-322-3972-7_19
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1703.02529
http://arxiv.org/abs/2207.09315
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-46448-0_2

66 Z. Li et al.

22. Trummer, I., Koch, C.: Approximation schemes for many-objective query opti-
mization. In: Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data, pp. 1299–1310 (2014)

23. Trummer, I., Koch, C.: Multi-objective parametric query optimization. SIGMOD
Rec. 45(1), 24–31 (2016)

24. Zhang, H., et al.: Live video analytics at scale with approximation and delay-
tolerance. In: 14th USENIX (NSDI), pp. 377–392 (2017)

	Optimizing ML Inference Queries Under Constraints
	1 Introduction
	2 Related Work
	3 Problem Definition
	3.1 Metadata of a Model Zoo
	3.2 ML Inference Queries
	3.3 ML Inference Query Plan
	3.4 Problem Definition

	4 Optimizing ML Inference Queries
	4.1 Approach Overview
	4.2 Modeling Accuracy
	4.3 Modeling the Execution Time
	4.4 Modeling Model Assignment
	4.5 Modeling Predicate Ordering
	4.6 Objective Function and Constraints

	5 Experimental Evaluation
	5.1 Experimental Settings
	5.2 Using Uniform Model Zoos
	5.3 Using Model Zoos with Diverse Model Distributions
	5.4 Query Optimization Time

	6 Conclusions and Future Work
	References

