
 
 

Delft University of Technology

Surface gravity wave-induced drift of floating objects in the diffraction regime

Xiao, Q.; Calvert, R.; Yan, S.Q. ; Adcock, T.A.A.; van den Bremer, T.S.

DOI
10.1017/jfm.2024.31
Publication date
2024
Document Version
Final published version
Published in
Journal of Fluid Mechanics

Citation (APA)
Xiao, Q., Calvert, R., Yan, S. Q., Adcock, T. A. A., & van den Bremer, T. S. (2024). Surface gravity wave-
induced drift of floating objects in the diffraction regime. Journal of Fluid Mechanics, 980, Article A27.
https://doi.org/10.1017/jfm.2024.31

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1017/jfm.2024.31
https://doi.org/10.1017/jfm.2024.31


J. Fluid Mech. (2024), vol. 980, A27, doi:10.1017/jfm.2024.31

Surface gravity wave-induced drift of floating
objects in the diffraction regime

Q. Xiao1,†, R. Calvert2,3, S.Q. Yan4, T.A.A. Adcock1 and
T.S. van den Bremer1,3

1Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
2School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
3Department of Civil Engineering and Geosciences, TU Delft, Stevinweg 1, 2628 CN Delft,
The Netherlands
4School of Science and Technology, City, University of London, London EC1V 0HB, UK

(Received 7 June 2023; revised 20 December 2023; accepted 22 December 2023)

Floating objects will drift due to the action of surface gravity waves. This drift will depart
from that of a perfect Lagrangian tracer due to both viscous effects (non-potential flow)
and wave–body interaction (potential flow). We examine the drift of freely floating objects
in regular (non-breaking) deep-water wave fields for object sizes that are large enough
to cause significant diffraction. Systematic numerical simulations are performed using
a hybrid numerical solver, qaleFOAM, which deals with both viscosity and wave–body
interaction. For very small objects, the model predicts a wave-induced drift equal to the
Stokes drift. For larger objects, the drift is generally greater and increases with object
size (we examine object sizes up to 10 % of the wavelength). The effects of different
shapes, sizes and submergence depths and steepnesses are examined. Furthermore, we
derive a ‘diffraction-modified Stokes drift’ akin to Stokes (Trans. Camb. Phil. Soc., vol.
8, 1847, pp. 411–455), but based on the combination of incident, diffracted and radiated
wave fields, which are based on potential-flow theory and obtained using the boundary
element method. This diffraction-modified Stokes drift explains both qualitatively and
quantitatively the increase in drift. Generally, round objects do not diffract the wave
field significantly and do not experience a significant drift enhancement as a result.
For box-shape objects, drift enhancement is greater for larger objects with greater
submergence depths (we report an increase of 92 % for simulations without viscosity and
113 % with viscosity for a round-cornered box whose size is 10 % of the wavelength). We
identify the specific standing wave pattern that arises near the object because of diffraction
as the main cause of the enhanced drift. Viscosity plays a small positive role in the
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enhanced drift behaviour of large objects, increasing the drift further by approximately
20 %.

Key words: wave-structure interactions

1. Introduction

Floating marine objects, moored, propelled or freely floating, are all exposed to and
influenced by the ocean environment. These objects vary greatly in size, shape and density.
The assessment of wave-induced drift of floating objects in the ocean is of importance for
environmental and offshore engineering alike (Arikainen 1972; Wilson 1982; Perrie & Hu
1997; Law & Huang 2007; Webb & Fox-Kemper 2011; Meylan et al. 2015; van den Bremer
et al. 2019; Monismith 2020). Recently, there has been much interest in the topic because
of concerns about marine plastic pollution (e.g. Law et al. 2010; van Sebille et al. 2020).

An unrestrained object floating in a surface gravity wave field will normally experience
a net drift in the direction of wave propagation, known as the Stokes drift (Stokes 1847),
in addition to the oscillatory motion associated with the waves. This net drift typically
only becomes relevant over long time scales due to its small magnitude (typically, of
a few cm s−1 in the ocean). Unlike a perfectly Lagrangian tracer, whose drift is equal
to the Stokes drift in the absence of Eulerian-mean flows, an object of finite size may
display a different behaviour, and a velocity difference between the object and an idealized
(i.e. Lagrangian) fluid parcel may emerge (Santamaria et al. 2013; Meylan et al. 2015;
Calvert et al. 2021; DiBenedetto, Clark & Pujara 2022).

The drift of small floating objects in periodic waves was investigated experimentally
by Nath (1978). For small wave amplitudes, Lagrangian drift behaviour was found for
very small objects, while for a spar-type drifting buoy with a deep draft, enhanced drift
compared with the Stokes drift was reported. Huang, Law & Huang (2011) explored
the drift motion of objects of different shapes with two different submergence depths.
Enhanced drift was found for all shapes, and objects with a larger submergence depth
experienced a greater increase in drift regardless of shape. The studies of Tanizawa,
Minami & Imoto (2002) and He, Ren & Qiu (2016) showed that small objects behave
like Lagrangian particles, following the Stokes drift, while large objects drift faster than
Lagrangian particles with wave reflection off the object evident.

Theoretical models developed for wave-induced loads can be grouped into two main
categories: models that take the object to be part of the boundary of the fluid domain
allowing for calculation of diffraction effects based on potential-flow theory (Haskind
1946; Faltinsen & Løken 1979; Chen 1994; Stansberg & Kristiansen 2011; Pessoa &
Fonseca 2015), and a second class of models that express loads in terms of the velocity
field in the absence of the object considering both viscosity (drag) and fluid inertia, for
example, using Morison’s equation (Morison, Johnson & Schaaf 1950; Shen & Zhong
2001; Grotmaack & Meylan 2006; Huang, Huang & Law 2016).

For objects of small size relative to the incident wavelength, the disturbance of the
wave field by the object can be neglected, and thus, Morison’s equation can provide an
acceptable approximation. Morison’s equation is applied by considering the motion of the
object at its centre of mass and calculating the total force due to the waves as the sum of the
inertial force, including the effect of added mass, and the drag force (caused by the velocity
difference between the object and surrounding water). Rumer, Crissman & Wake (1979)
conducted pioneering work by extending Morison’s equation to study wave-induced drift
of small floating objects including inertia, buoyancy, added mass and drag effects. The
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Enhanced wave-induced drift of floating objects

concept underlying their approach is to regard the free surface as an oscillating slope.
A (dynamic) force balance normal to the free surface is achieved through the combined
effect of a gravity force component and buoyancy, while the tangential component of
gravity causes the drift motion of the object, and this is termed the slope-sliding effect
(Rumer et al. 1979). The slope-sliding concept has been applied and developed to study
wave-induced motions of various objects by Shen & Ackley (1991) and Huang et al. (2016).
They showed that a model that includes the slope-sliding term predicts enhanced drift
but tends to underestimate the enhancement of the wave-induced drift of small floating
objects compared with experiments. Also making use of a slope-sliding term, Calvert
et al. (2021) used a transformed coordinate system and employed perturbation methods
to derive a closed-form solution for the drift of spherical floating objects. Enhanced drift
motion is explained by two mechanisms in Calvert et al. (2021). First, the magnitude of
the linear motion (normal to the free surface) of a floating particle is enhanced compared
with a Lagrangian particle, and, second, the dynamic buoyancy force has a net effect when
averaged over the wave cycle in a similar fashion to the slope-sliding term of Rumer et al.
(1979).

To accurately predict the drift when the object is large relative to the wavelength it
is essential to account for the disturbance in the fluid field caused by the presence of
the object. For models based on potential-flow theory, the fluid can be described by a
velocity potential, which satisfies the Laplace equation subject to boundary conditions on
the wetted body’s surface as well as on the free surface, bottom boundary conditions and a
radiation condition. When exposed to an incident wave field, objects experience forces and
moments due to the waves. These encompass both unsteady forces, leading to oscillatory
motion, and steady (or wave-averaged) forces arising from nonlinear effects. The steady
forces, often referred to as drift forces, affect the magnitude and direction of objects’ drift,
resulting in a slow and steady drift motion unless the object is moored (Suyehiro 1924;
Watanabe 1938; Havelock 1942). Two approaches to calculate second-order forces are
highlighted here: the first solves for the far-field velocity potential and the second solves
for the near-field velocity potential. Newman (1967) utilized conservation of momentum
to relate the drift forces to the far-field potential and derived the horizontal steady
second-order forces on a freely floating body in regular waves. The drift forces are found to
differ considerably both in magnitude and sign depending on the wavelength and direction
relative to the object. Pinkster & Hooft (1976), Pinkster & Van Oortmerssen (1977) and
Pinkster & Huijsmans (1982) calculated the mean (or low-frequency) forces for different
directions in regular and irregular waves by directly integrating the pressure distribution on
the object. Their results show that the mean horizontal force due to the relative elevation
between the object and surrounding waves can be significant in certain cases. Importantly,
viscosity is not included in these calculations, but may have strong effects (Huse 1977).

This paper examines the net drift of floating objects under the influence of unidirectional
regular waves in deep water for objects that are sufficiently large to diffract the wave field.
To do so, we use a hybrid numerical model that employs a fully nonlinear potential-flow
model to capture the incident wave field and a Navier–Stokes (NS) model to calculate
the detailed flow pattern near the object. Both viscous effects and (nonlinear) wave–body
interactions are modelled. Objects with different sizes, drafts (submergence depths) and
shapes in waves with different wave steepness are investigated in the presence and absence
of viscosity with the objective of understanding the effect of these variables on drift and
the mechanisms involved. To help explain our results, we propose a diffraction-modified
Stokes drift. In this case, we use a simplified linear boundary element method (BEM) to
generate the linear wave fields solving the (linear) wave–body interaction problem based
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Figure 1. Shapes and dimensions of the two objects considered: RCBs and ROs.

on potential-flow theory, which in turn forms the basis of the diffraction-modified Stokes
drift.

This paper is laid out as follows. We commence with the description of our two models,
the hybrid numerical model qaleFOAM and the diffraction-modified Stokes drift model
in § 2. The validation and verification of the hybrid numerical model are presented in
§ 3 (convergence tests are reported in Appendix B). In § 4, drift estimates based on
the hybrid numerical model are presented for objects with a range of sizes, different
steepnesses and two different shapes: rectangular boxes with round corners and round
objects. The effects of viscosity are explored in each case. For the largest box, different
submergence depths (drafts) and different radii of the round corners (corresponding to
different submerged shapes) are simulated. In § 5 the results from non-viscous simulation
of the hybrid numerical model are compared with the diffraction-modified Stokes drift
model. Finally, conclusions are drawn in § 6.

2. Models

2.1. Problem formulation
We examine the wave-induced motion and drift of objects with different size, submergence
depth and shape. We consider two shapes: a round-cornered box (RCB) and a round object
(RO) with dimensions shown in figure 1. We define the size of the object as its length l in
the direction of wave propagation (for ROs, l = D with D the diameter), the submergence
depth is hd, the height of the RCB is h, and the radius of the rounded corner is r. Objects
are placed in a regular incident wave field with wave amplitude aw and angular frequency
ω in deep water (i.e. kd > 3, where k is the wavenumber and d the depth of the fluid).

Two models are used: the hybrid model qaleFOAM and a diffraction-modified Stokes
drift model, which is solved based on the linearized potential-flow BEM. We use both
models to conduct two-dimensional (2-D) simulations. In the hybrid qaleFOAM model,
an inertial coordinate system (X, Z) is chosen with its origin O located at the bottom left
corner of the fluid domain, with waves propagating from left to right, the X-axis positive in
the direction of wave propagation, and the Z-axis positive upwards, as shown in figure 2(a).
In the diffraction-modified Stokes drift model, we establish a Cartesian coordinate system
(x, z) with its origin o located on the still-water level at the horizontal centre of the
object, the x axis in the direction of wave propagation, and the z-axis positive upwards,
as shown in figure 3. Both coordinate systems, (X, Z) and (x, z), are inertial, earth-fixed
coordinate systems and do not move with the objects. The only difference between these
two coordinate systems is the position of the origin.
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Figure 2. Domains, domain boundaries and coordinate system used in the hybrid numerical model
qaleFOAM. (a) Schematic of the hybrid computational domain. (b) Boundaries of the NS domain.
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Figure 3. Domain and coordinate system in the diffraction-modified Stokes drift model for the two objects
considered, also showing object dimensions. Results are shown for a (a) rectangular box (RB) and (b) RO.

2.2. Hybrid numerical model: qaleFOAM
The hybrid numerical model qaleFOAM is used in this paper. The model is
based on the domain-decomposition method, which couples the quasi arbitrary
Lagrangian–Eulerian finite element method (QALE-FEM) potential-flow model with the
two-phase incompressible NS model InterDyMFOAM in OpenFOAM. For details, see Ma
& Yan (2010), Jacobsen, Fuhrman & Fredsøe (2012), Li et al. (2018), Gong et al. (2020),
Yan et al. (2020) and references therein. QaleFOAM has been applied to study various
wave-structure interaction problems (Li et al. 2018; Yan et al. 2019; Gong et al. 2020).
The structures in these studies are either moored or self-propelled, and their sizes are at
least 0.2 times the characteristic wavelength. Thus, the application of this model to smaller
and unmoored objects (down to 0.01 times the wavelength) is new.

In the hybrid numerical model, the larger outer domain is solved by QALE-FEM
to capture the incident waves; a smaller inner domain surrounding the object uses
OpenFOAM to solve the NS equations, as shown in figure 2(a). In the NS model, both
the air and water phases are assumed incompressible, and the volume-of-fluid method is
used to identify the phases and their interface. The coupling approach employed in this
paper is a one-way coupling, which means that at the interfaces, the NS model only takes
the solutions of the QALE-FEM solver but does not feed its solutions back. The wave
diffraction problem is thus solved in the NS domain, and we have to ensure that this domain
is large enough so its finite size does not affect the solution, while not too large to become
computationally prohibitive. By performing simulations with different domain lengths (in
the range of 1–4 wavelengths), we demonstrate that our results (notably for object drift)
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are independent of the length of the NS domain. The left and right interfaces of the NS
domain are equipped with passive wave absorbers (Yan et al. 2020). The left interface
of the NS domain is coupled with the QALE-FEM solver, where the waves generated in
the QALE-FEM domain using a flap-type wavemaker are transferred into the NS domain.
The boundaries of the NS domain are shown in figure 2(b). We note that to ensure the
two-dimensionality of the simulations performed in this paper (using a numerical model
that is, in principle, three dimensional), the front and back interfaces in the NS domain
are not used. Furthermore, a laminar viscosity model is employed (i.e. we do not use a
turbulence model).

Waves are generated on the left boundary in the QALE-FEM domain and absorbed on
the right boundary. It takes time for waves generated by the wavemaker to propagate to the
NS domain. In order to save computational cost, a reference time period tR is set, during
which the NS model is turned off. The tank length Lx for all simulations in this paper is
chosen to be sufficiently long so that simulations finish before the reflected waves reach
the object’s location. The distance between the NS domain and the wavemaker is chosen
to be at least 3 wavelengths in order to minimise the effects of evanescent waves from the
wavemaker.

2.3. Diffraction-modified Stokes drift model
To provide an estimate of how object drift is affected by the diffraction of the wave field
(without viscosity), we first use a BEM to solve the linearized potential-flow problem.
From these linearized potential-flow solutions we obtain an estimate of the object drift
(second order in steepness) in a fashion akin to Stokes (1847) but by taking into account
the modified wave field and object motion. To do so, we need to define all the boundaries
of the fluid domain (see figure 3): d is the depth of the fluid (at z = −d a no-flow bottom
boundary condition must be satisfied) and x = ±LBEM/2 correspond to the left and right
boundaries of the fluid domain, where the radiation condition must be satisfied. We choose
a value of LBEM/2 that is large enough for the far-field truncation of the radiation condition
not to affect our results. The boundaries C1, C2 and C3 in figure 3(a) and Cr in figure 3(b)
require kinematic agreement of the fluid velocity and the (rigid) object’s motion for the
rectangular box (RB) and the RO, respectively. For the diffraction-modified Stokes drift
model, we only consider a RB with square corners (i.e. r = 0), whereas for the hybrid
numerical model, we explore the effect of the radius of the rounded corner for the RCB.

At first order in steepness (i.e. for linear waves) the flow is described by a velocity
potential Φ, which can be further divided into an incident potential ΦI , diffraction
potential ΦD and radiation potential ΦR, i.e.

Φ(x, z, t) = ΦI(x, z, t) + ΦD(x, z, t) + ΦR(x, z, t)

= Re{φI(x, z)e−ιωt} + Re
{
φD(x, z)e−ιωt} + Re

{
φR(x, z)e−ιωt} , (2.1)

where all three components oscillate with the same angular frequency ω. We denote
the incident wave amplitude as aw, and the wavenumber k is obtained from the linear
dispersion relationship ω2 = gk tanh(kd), where g is the gravitational acceleration.
Although we will consider deep-water waves in this paper (i.e. kd > 3 so that tanh(kd) ≈
1), our diffraction-modified Stokes drift model is valid for general water depth. The
time-invariant part of the incident wave potential φI can be expressed as

φI = awg
ιω

cosh k(z + d)

cosh kd
eιkx. (2.2)
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The boundary value problems for φR and φD are governed by the Laplace equation and
solved using the Green’s function method; the corresponding forces and equations of
motions can then be found using standard methods (e.g. Newman 2018). We use the
implementation of these standard methods by Chen et al. (2018), Yang, Zhu & Hong
(2019a) and Yang et al. (2019b) (see Appendix A for details).

2.3.1. Estimating wave-induced object drift velocity
To obtain a leading-order (in steepness) estimate of object drift, we perform the same
perturbation expansion, up to second order in wave steepness as Stokes (1847) originally
used to estimate the Stokes drift (see also van den Bremer & Breivik 2018). Instead of only
the linear incident wave field, we use the total linear wave field (cf. (2.1)) to estimate the
‘diffraction-modified Stokes drift’ for objects that are large enough to diffract the wave
field:

uS,O = ξx
∂2Φ

∂x2 + ξz
∂2Φ

∂x∂z

= ξx

(
∂2ΦI

∂x2 + ∂2ΦR

∂x2 + ∂2ΦD

∂x2

)
+ ξz

(
∂2ΦI

∂x∂z
+ ∂2ΦR

∂x∂z
+ ∂2ΦD

∂x∂z

)
. (2.3)

Here ξx = Re{Axe−ιωt} and ξz = Re{Aze−ιωt} are the linear horizontal and vertical
harmonic oscillatory motions of the object, and the overline denotes averaging over the
wave period. We term our estimate of the object drift in (2.3) the ‘diffraction-modified
Stokes drift’, as it is based on the (linear) diffracted wave field. The diffraction-modified
Stokes drift uS,O in (2.3) is calculated conceptually by (a leading-order estimate of)
the difference between the Lagrangian-mean object speed and the Eulerian-mean fluid
speed (i.e. uS,O = ūL,O − ūE, cf. Bühler 2014). We do not compute the second-order
Eulerian-mean flow, as this is generally very small for deep-water waves (e.g. van den
Bremer & Taylor 2015; van den Bremer et al. 2019) in the absence of the Earth’s rotation,
which is not considered here (cf. Higgins, Vanneste & van den Bremer 2020), and thus,
set ūE = 0. Below we show that we have negligible Eulerian flow in our simulations.

The different contributions to the diffraction-modified Stokes drift (2.3) can be made
more explicit. We denote

ξx = Axeιθx, ξz = Azeιθz; (2.4a,b)

∂2φI

∂x2 = kωAI
xxeιθ I

xx,
∂2φI

∂x∂z
= kωAI

xze
ιθ I

xz; (2.5a,b)

∂2φR

∂x2 = kωAR
xxeιθR

xx,
∂2φR

∂x∂z
= kωAR

xze
ιθR

xz; (2.6a,b)

∂2φD

∂x2 = kωAD
xxeιθD

xx,
∂2φD

∂x∂z
= kωAD

xze
ιθD

xz , (2.7a,b)

where symbols A denote the (potentially spatially dependent) magnitudes of the terms
(given as amplitudes, in metres), and the phase and (oscillatory) spatial dependencies are
captured by symbols θ with sub- and super-scripts on both A and θ used as to indicate
the different terms (and not derivatives). These amplitudes and phases can be obtained
from the linear BEM model, which includes the equation of motion of the object. Now,
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diffraction-modified Stokes drift (2.3) can be rewritten as

uS,O

uS
= Re{Âxeι(θx−ωt)}[Re{ÂI

xxeι(θ I
xx−ωt)} + Re{ÂR

xxeι(θR
xx−ωt)} + Re{ÂD

xxeι(θD
xx−ωt)}] + . . .

Re{Âzeι(θz−ωt)}[Re{ÂI
xze

ι(θ I
xz−ωt)} + Re{ÂR

xze
ι(θR

xz−ωt)} + Re{ÂD
xze

ι(θD
xz−ωt)}],

= Âx cos(θx − ωt)[ÂI
xx cos(θ I

xx − ωt) + ÂR
xx cos(θR

xx − ωt) + ÂD
xx cos(θD

xx − ωt)] + . . .

Âz cos(θz − ωt)[ÂI
xz cos(θ I

xz − ωt) + ÂR
xz cos(θR

xz − ωt) + ÂD
xz cos(θD

xz − ωt)],

= Âx

2
[ÂI

xx cos(θx − θ I
xx) + ÂR

xx cos(θx − θR
xx) + ÂD

xx cos(θx − θD
xx)]

+ . . .
Âz

2
[ÂI

xz cos(θz − θ I
xz) + ÂR

xz cos(θz − θR
xz) + ÂD

xz cos(θz − θD
xz)], (2.8)

where the overline denotes wave averaging in time, upon which all the super-harmonic
terms (of the form cos(2ωt + β) with β an arbitrary phase) disappear, and the symbol
Â denotes the normalization of the corresponding magnitude A by the incoming wave
amplitude aw (i.e. Â = A/aw). The theoretical Stokes drift uS is given by (Stokes 1847)

uS = aw
2ωke2kz = ε2 ω

k
e2kz, (2.9)

in which ε = kaw is the incident wave steepness, where we have used z = 0 in the
normalization in (2.8).

3. Validation and verification of the hybrid numerical model (qaleFOAM)

In this section, validation and verification are conducted for the qaleFOAM hybrid
numerical model (see Appendix A for validation and verification of the BEM model).
To do so, we first examine the (Stokes) drift of a Lagrangian particle (i.e. a fluid parcel)
through analysis of the Lagrangian-mean velocity (the Eulerian-mean velocity field as well
as grid convergence are examined in Appendix B). We then examine the Lagrangian drift
behaviour of small floating objects.

3.1. Drift of a Lagrangian particle
First, we consider, in turn, regular waves in deep water with two different frequencies. For
each frequency, a series of waves are simulated with different wave amplitudes, and the
horizontal drift velocities of fluid particles are calculated to confirm these are equal to
the theoretical Stokes drift based on (2.9). The mean drift velocity of a fluid particle in
quasi-steady state is obtained by applying the best linear fit to its horizontal trajectory and
determining the slope of the linear fit line. The trajectories themselves are obtained from
solving the ordinary differential equation dxL/dt = u(xL(t), t), where xL(t) is the position
of a Lagrangian particle.

The properties of the waves and the numerical parameters of the simulations are given
in table 1, where Tdur and T = 2π/ω refer to the total time duration of the simulations
and the wave period, respectively, and Lx is the (horizontal) length of the total domain.
The parameters �x, �z and �t denote the horizontal and vertical grid sizes and time
steps, respectively. The horizontal positions xL and xR represent the left and right boundary
locations of the NS domain, respectively, and zA denotes the vertical location of the top
of the air phase relative to the still-water level in the NS domain. Horizontal grid size is
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given as a fraction of the wavelength λ and vertical grid size as a fraction of the linear wave
amplitude aw. Finally, the maximum Courant number Co = �t|u|/�x = 0.25, in which
|u| refers to the maximum absolute velocity.

We use a Crank–Nicolson scheme for time integration and a non-uniform mesh with
finer resolution close to the free surface in the z direction in both the QALE-FEM and
NS domains. Specifically, the grid density in the z direction in QALE-FEM increases
exponentially with distance to the free surface, and the vertical grid size is defined by the
number of layers in the vertical direction, for which 20 are typically enough for deep-water
simulations. The mesh sizes in table 1 all refer to those in the region near the free surface.

For InterFoam and InterDyMFoam solvers, Larsen, Fuhrman & Roenby (2019) provide
a detailed analysis of different combinations of discretization schemes, mesh sizes and
Courant numbers for surface waves to maintain stable amplitudes over long times.
For these solvers, Devolder et al. (2015) reported instability of the added mass term
and suggested how to choose the initial values of the added mass relaxation factor in
order to obtain fast convergence and stable motion. Moradi, Zhou & Cheng (2015),
Palm et al. (2016), Mohseni, Esperanca & Sphaier (2018) and Palm et al. (2018) have
investigated wave–body interaction. Based on the above, we choose the PISO algorithm
to solve the pressure–velocity coupling, a limited second-order Crank–Nicolson scheme
(implicit) with a blending factor of 0.9 is used for time integration (ddtSchemes),
a minimally diffusive gradient limiter (cellMDLimited Gauss linear 1, which is
second order and bounded) is used for gradients (gradSchemes) to avoid over and
undershooting. To compute the divergence term (divSchemes), a second-order total
variation diminishing (TVD) scheme (Gauss MUSCL) is used for the momentum
convection term. A second-order and bounded TVD scheme (Gauss vanLeer01 with Gauss
interfaceCompression) is used to compute the volume fraction.

We vary the steepness of the simulated waves of the two different frequencies from
0.03 to 0.13, and let the relaxation zone vary in length from 1 to 1.5 wavelengths as the
wave steepness increases (Yan et al. 2019). Correspondingly, the location of the right-hand
side of the NS domain is adapted so that the length of the NS domain is equal to the
relaxation zone length plus the necessary length for particles to move during the proposed
time duration of the simulation. The initial position of the tracked particles is chosen to
avoid disturbance by transition through the relaxation zone. The initial horizontal position
xL,0 is chosen some distance to the right of the left relaxation zone, and the initial vertical
position zL,0 is chosen immediately below the trough of the wave.

Figure 4(a) displays the horizontal trajectory xL(t) of the tracked particles (xL0, zL0) for
ε = 0.034, ω = 4.09 rad s−1 as an example. It is evident that in addition to the oscillatory
motion of the waves, the Lagrangian particle undergoes a mean drift that agrees well with
the theoretical Stokes drift according to (2.9), in which we set z equal to the initial vertical
position of the tracked particle zL0. A comparison between the numerical prediction of the
mean drift and the theoretical Stokes drift for different steepnesses is shown in figure 4(b).
Excellent agreement is achieved for both higher and lower frequencies and for a range
of steepnesses. Finally, we confirm that the Eulerian-mean velocity is negligibly small
everywhere in our domain in the case without viscosity (shown in Appendix B, so that
ūL = uS). Together, this validates our model and confirms its ability to predict the drift
velocity of an infinitely small object. The deviation from perfectly quadratic behaviour in
figure 4(b) results from the initial vertical position zL0 being chosen just below the trough
for each steepness; this vertical position is also used to evaluate the theoretical Stokes drift
according to (2.9), hence, the very good agreement.
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Figure 4. Drift of Lagrangian particles in simulations of the hybrid numerical model (qaleFOAM) without
viscosity (ν = 0): (a) time history of the horizontal motion of a Lagrangian particle (xL0 = 22.5 m, zL0 =
−25.0 mm) for ε = 0.034 for the lower-frequency case in table 1, where the theoretical Stokes drift is evaluated
using (2.9). The wave amplitude here is aw = 20.0 mm; thus, the vertical position of the particle is always
below the trough of the wave. The black dashed line denotes the time at which a quasi-steady state has been
achieved and the drift speed has become constant (ts = 32 s). The drift speed in (b) has been obtained from
the average speed for t > ts. (b) Comparison of non-dimensional drift velocities of a Lagrangian particle ūL/c
between numerical solutions (red and blue squares) and theoretical Stokes drift (red and blue lines) as a function
of wave steepness for higher and lower frequencies, where c = ω/k is the phase speed of the waves.

3.2. Drift of very small objects
To further validate our model, we examine whether it correctly predicts the drift of very
small but finite-size objects, which should be equal to the Stokes drift (in the absence
of Eulerian-mean flows). Clear experimental evidence exists that when the size of an
object is very small, its behaviour is purely Lagrangian (Nath 1978; van den Bremer et al.
2019). Two different object shapes are examined here: a RB and a RO. We choose the
lower-frequency (ω = 4.09 rad s−1) wave condition from table 1 and a small steepness of
ε = 0.034. The round-cornered RB has a length (in the direction of wave propagation) of
l = 0.036 m (l/λ = 0.97 %), a draft hd = 0.025 m and the radius of the rounded corner is
r = 0.006 m. The diameter of the RO is D = 0.05 m (D/λ = 1.3 %). Both of the objects
have a density of ρ = 500 kg m−3. The height of the box and the radius of the RO are
chosen to make sure that the object will not be submerged by the waves.

Table 2 gives the object drift velocities of both objects with and without viscous effects
modelled in the simulation (i.e. ν = 1.00 × 10−6 m2 s−1 and ν = 0). The total number
of cells of the discretization mesh Nc reported in table 2 is the one for the non-viscous
simulation, based on which six vertical layers are added and one level of refinement is
applied near the object for the corresponding viscous simulation. The results confirm the
drifts of both very small objects (∼1 % of the wavelength) are approximately equal to the
theoretical Stokes drift in both the viscous and the non-viscous simulation. By comparing a
coarser grid to a finer grid, table 2 also shows the convergence of several physical quantities
(wave amplitude, horizontal viscous forces on the particle and the object drift velocity) for
both the viscous and non-viscous simulations. We note the horizontal resolution changes
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with distance to the object in order to make the grid’s aspect ratio approximately unity in
the object’s near field.

4. Results from the hybrid numerical model (qaleFOAM)

In this section we explore the role played by a variety of factors, namely size, shape,
submergence depth, viscosity and wave steepness, in determining an object’s drift
behaviour. The wave field is equivalent to that considered before in § 3 (see table 1).
The two object shapes considered along with the definitions of object dimensions are
given in figure 1. We use RCBs instead of boxes with sharp corners to avoid generation
of undesirable vorticity that would complicate the analysis (cf. Moradi et al. 2015). To
organize our findings, we define the following dimensionless parameters: relative object
size is described by l/λ (for ROs l = D) and the radius of the corners of the RCB by r/hd.
The total duration Tdur is around 60–80 s for all simulations; it takes around 25–30 s for
object drift to achieve a steady state, and another 25–35T is sufficient to estimate the drift
velocity. The spatial resolution of the mesh for all cases without viscosity lies in the range
from �x = λ/200, �z = aw/20 at a location 1–1.5λ away from the object to �x = aw/20,
�z = aw/20 within a distance of 2–4l surrounding the object. For the cases with viscosity,
we add six vertical layers near the surface and apply one level of refinement near the object.
The maximum Courant number is Co = 0.25.

We conduct three categories of simulations. In the first category (category I), we
consider the effect of size for a RCB and a RO (§ 4.1). For RCBs, we keep the aspect
ratio hd/l and submerged shape r/hd constant, and we consider only RCBs to avoid the
effect of undesirable vorticity from sharp corners. To begin our analysis with a case of
the simplest possible geometry, we set the object density ρ = 500 kg m−3, so that both
objects are exactly half-submerged. As the RCBs are hydrodynamically unstable for this
density, we constrain the object rotation to be zero in the category I simulations, the
consequences of which we discuss in § 4.1. In the second category (category II), we keep
the size of the object constant but vary its submergence depth and submerged shape by
changing the radius of the round corner (§ 4.2). Instead of changing the aspect ratio of
the objects, we vary the submergence and roundness of the objects, which is intended to
examine the effect of ‘streamlining’ of objects of constant size. The density of the objects
in category II is different from category I, as we no longer wish to constrain the object’s
rotation; specifically, we choose a density (ρ = 781 kg m−3) that is high enough for RCBs
to become hydrodynamically stable while maintaining the same size and aspect ratio hd/l
as the objects in category I. Unlike the first and second categories, which are all conducted
on low-steepness waves, in the third category (category III), we simulate drift behaviour
for a range of wave steepnesses (§ 4.3). We examine the role of viscosity explicitly in § 4.4
for the experiments in categories I and II.

4.1. Effect of size (category I)
To study the effect of size, we vary the size of the two objects measured relative to the
wavelength from 1 % to 10 % in 1 %-point steps. Detailed object dimensions are given in
table 3. For the RCB, we set r/hd = 0.24. The differences between a RCB and a RO of
equivalent relative size are the submerged shape and submergence depth of the object.
The simulations are performed with and without the inclusion of viscosity. Simulation
results are shown in figure 5. The non-dimensional magnitude of oscillatory motion in
the horizontal and vertical directions are shown in figures 5(a) and 5(b), respectively.
The amplitudes of the oscillatory motions Ax and Az are obtained by filtering out sub-
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RCB l/λ (%) 1.0 2.0 3.0 4.0 5.1 6.0 7.0 8.0 9.0 10.0
l (m) 0.037 0.07 0.11 0.15 0.19 0.22 0.26 0.29 0.33 0.37
hd (m) 0.025 0.05 0.075 0.10 0.13 0.15 0.18 0.20 0.23 0.25
r(m) 0.006 0.012 0.018 0.024 0.03 0.036 0.043 0.048 0.054 0.06

RO l/λ (%) 1.4 2.0 3.0 4.0 5.1 6.0 7.0 8.0 9.0 10.0
D (m) 0.05 0.07 0.11 0.15 0.19 0.22 0.26 0.29 0.33 0.37

Table 3. For category I, simulations exploring the effect of size, object dimensions of the two different
objects considered: RCBs and ROs (ρ = 500 kg m−3 for both).

and super-harmonic components, before obtaining amplitudes after the quasi-steady state
has been achieved. Figure 5(c) shows the influence of sizes and shape on drift. Finally,
figure 5(d) depicts the local wave amplitude as a function of its horizontal distance to
the centre of mass of the objects for RCBs of relative sizes l/λ = 1 %, l/λ = 9 % and
l/λ = 10 % and ROs of relative size l/λ = 10 %.

We start by examining the oscillatory motion for the RCB, shown in figures 5(a) and
5(b). When the object is very small, the magnitudes of oscillatory motion in both directions
are very close to the incident wave amplitude aw, suggesting the object behaves as a
Lagrangian particle. As object size increases, the horizontal oscillatory motion is reduced
as an approximately linear function of relative size, while the vertical oscillatory motion
increases nonlinearly at an increasing rate. For the object drift velocity in figure 5(c), we
observe that when the box is very small, its drift rate is equal to the Stokes drift, while,
as the box becomes larger, the drift speed is enhanced significantly. The enhanced drift
is minimal for RCBs with a relative size less than approximately 7 %, but becomes more
evident for larger boxes. Significant increases in the drift for RCBs only become evident
at greater relative size compared with increases in the vertical oscillatory motion. For
completeness, we note the drift is slightly reduced compared with the theoretical Stokes
drift for intermediate-size RCBs with a relative size of 3 % ≤ l/λ ≤ 7 % and ROs with
5 % ≤ l/λ ≤ 8 %.

From the wave-field analysis in figure 5(d), a standing wave pattern emerges in the case
of a large RCB (with large submergence depth). On the upstream side, the time-averaged
wave amplitudes show a pattern of partial nodes and anti-nodes with smaller and larger
amplitudes locally compared with the incident undisturbed wave amplitude (and compared
with the 1 % relative size object, for which a standing wave pattern is not discernible).
Wave amplitudes on the far downstream side for large objects are unaffected, while
for locations near the object on the downstream side, smaller amplitudes are found.
Differences in surface elevation between the two sides of the object become most evident
for the larger RCBs. We note (numerical) wave gauges are set at a fixed spatial interval;
thus, there may be small errors in determining maxima and minima. The (partial) standing
wave pattern becomes difficult to discern for RCBs with a relative size smaller than 7 %
(not presented here for brevity). All the above trends are similar whether viscosity is
included or not; the drift of RCBs is enhanced further by viscous effects and even more so
for larger objects, by up to 20 %, as shown in figure 5(c). For practical computational
reasons, the local wave amplitude is obtained by analysing the surface elevation in a
stationary reference frame and not in the referencing frame moving with the object, in
which the standing wave pattern most likely forms. As the object drift is always small
relative to the phase speed (i.e. uO/c ≤ 2.5 × 10−3), we anticipate the standing wave
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Figure 5. Effect of object size on object motion and drift (category I simulations): (a) horizontal oscillatory
motion amplitude Ax, normalized by input wave amplitude aw, as a function of relative object size; (b) vertical
oscillatory motion amplitude Az, normalized by wave amplitude aw, as a function of relative object size;
(c) celerity-normalized object drift uO/c as a function of relative object size; (d) non-dimensional amplitude
of the local surface elevation a(x)/aw as a function of horizontal distance (scaled by wavenumber) from the
centre of mass xc without viscosity (ν = 0). The gap between the two vertical red lines in (d) represents the
position of the object for l/λ = 10 % and corresponds to its left and right sides, respectively. The percentage
(%) in (d) represents the relative size of the object l/λ. The results for Calvert et al. (2021) in panels (a–c) are
their results for spheres with an equivalent diameter to our ROs.

patterns in both reference frames to be similar albeit likely smaller and more diffused
in the stationary reference frame shown here.

Comparing the RO and the RCB, both display a similar linear decrease in horizontal
oscillatory motion with relative size (figure 5a), whereas the vertical motion of ROs is
only enhanced by a very small amount compared with RCBs (figure 5b). Furthermore, for
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l/λ (%) 10.0 10.0 10.0 10.0 10.0 10.0

hd (m) 0.25 0.25 0.25 0.25 0.25 0.25
r (m) 0.03 0.06 0.08 0.10 0.12 0.15
r/hd 0.12 0.24 0.32 0.40 0.48 0.60

Table 4. For category II, simulations exploring the effect of object shape with fixed height (group 1): object
dimensions for different shapes (l = 0.37 m, h = 0.32 m, ρ = 781 kg m−3).

ROs, as depicted in figure 5(c), no obvious enhancement of the drift speed is found in the
absence of viscosity even when the relative size is as large as 10 %. In the presence of
viscosity, a small amount of enhanced drift is observed as the RO becomes larger (relative
size larger than 8 %). The motion of ROs is thus distinctly different from that of RCBs,
especially their vertical oscillatory motion and enhanced drift. To explain this, we note
that the standing wave pattern in figure 5(d) for the largest RO (10 %) is even smaller than
for the 8 % relative size RCB (not shown in the figure). The standing wave pattern is an
indication of the presence of a diffracted wave field; the extent to which diffraction occurs
depends on the streamlining of the object. In § 6 the effect of shape is examined further.

We note that in the above simulations (category I), we have constrained the object’s
rotation. This is necessary, as in keeping the object density constant at ρ = 500 kg m−3,
we have considered a RCB where height h exceeds length l (i.e. h/l = 1.33). This is
hydrodynamically unstable, and would normally start to rotate upon small perturbations
from its vertically upright position. In presenting the results here, we have thus assumed
the interaction between the motions in the different degrees of freedom (translation and
rotation) is small. In Appendix C we keep the submergence depth and submerged shape
of the RCB the same as in table 3 but change its density to properly explore the effects of
rotation. We show that allowing rotation does not affect the conclusions presented in this
section. In the following sections, we will allow rotation.

4.2. Effect of shape and submergence depth (category II)
Motivated by the difference in drift enhancement between box-shaped and round objects of
equivalent, relatively large size in category I above, we proceed to examine how the shape
and size of the submerged part of a RCB affect the standing wave pattern and the drift
enhancement (category II). Unlike in category I, the objects in category II are allowed to
rotate but, to simplify the analysis, we do not include viscosity. In all cases, the object size
and density are kept constant at a relative size of 10 % and a density of ρ = 781 kg m−3,
respectively. Two groups of RCBs, one where each object has a different round-corner
radius r (group 1) and the other where each object has a different height submergence
depth hd achieved through varying the height of the box h (group 2), are simulated. For
group 1, the boxes have the same height, and we vary the radius of the round corners to
change their submerged shape. Object dimensions for group 1 are given in table 4. For
group 2, we vary the submergence depth of the box by varying its height, keeping the
radius of the round corner constant. Object dimensions for group 2 are given in table 5.

For group 1, the amplitudes of the oscillatory part of the motion in both the horizontal
and vertical directions are given as a function of normalized round-corner radius r/hd
in figures 6(a) and 6(b), respectively. Amplitudes are obtained in the same way as
for category I simulations. Figure 6(c) presents the normalized time-averaged object
drift speed uO/c as a function of normalized round-corner radius r/hd for group 1.
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l/λ (%) 10.0 10.0 10.0 10.0

hd (m) 0.25 0.22 0.20 0.18
h (m) 0.32 0.30 0.29 0.26
r (m) 0.06 0.06 0.06 0.06

Table 5. For category II, simulations exploring the effect of submergence depth with fixed radius of the round
corners (group 2): object dimensions for different submergence depths (l = 0.37 m, ρ = 781 kg m−3).
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Figure 6. Effect of the shape of the submerged part of a RCB as determined by the radius of the rounded
corner r, scaled by submergence depth hd , on object motion and drift (category II simulations, group 1):
(a,b) non-dimensional amplitudes of oscillatory motion in the horizontal and vertical directions, respectively;
(c) celerity-normalized object drift velocity. Blue square markers in (a–c) represent the results for RCBs. Red
lines in (a,b) denote the oscillatory motions of a Lagrangian particle, these in (c) denote the theoretical Stokes
drift. (d) Non-dimensional amplitude of the local surface elevation a(x)/aw as a function of horizontal distance
(scaled by wavenumber) from the centre of mass xc. The gap between the two vertical red lines in (d) represents
the position of the object and corresponds to its left and right sides, respectively. The line denoted by FEM in
(d) corresponds to simulations of the incident wave field only.

Finally, figure 6(d) depicts the spatial wave amplitude distribution as a function of the
wavenumber-normalized distance from the centre of mass of the object for group 1.
Figure 7 gives analogous results for group 2.

We begin examining the influence of shape by returning to the results for category I. As
shown in figure 5(a), RCBs and ROs experience a similar linear decrease of the horizontal
oscillatory motion amplitude with relative size. The amplitude of the vertical oscillatory
motion of ROs increases much less with relative size compared with RCBs (figure 5b). The
difference in object drift becomes large when the relative size is larger than approximately
7 % (figure 5c). We note that increased drift is always accompanied by an increase in
amplitude of the vertical motion.
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Figure 7. Effect of the submergence depth hd of a RCB on object motion and drift (category II, group 2):
(a,b) non-dimensional amplitudes of oscillatory motion in the horizontal and vertical directions, respectively;
(c) celerity-normalized object drift velocity. Blue square markers in (a–c) represent the results for RCBs. Red
lines in (a,b) denote the oscillatory motions of a Lagrangian particle, these in (c) denote the theoretical Stokes
drift. (d) Non-dimensional amplitude of the local surface elevation a(x)/aw as a function of horizontal distance
(scaled by wavenumber) from the centre of mass xc. The gap between the two vertical red lines in (d) represents
the position of the object and corresponds to its left and right sides, respectively. The line denoted by FEM in
(d) corresponds to simulations of the incident wave field only.

We now turn to the simulations in category II, group 1, in which we vary the radius
of the rounded corners. Figure 6(c) shows that as the radius of the rounded corner
becomes larger, which corresponds to a more rounded shape, the drift speed decreases.
So does the amplitude of the vertical motion (figure 6b). The amplitude of the horizontal
oscillatory motion increases by only a small amount with increasing radius (figure 6a).
Furthermore, the standing wave pattern becomes less apparent with increasing radius
(figure 6d). Accordingly, the wave amplitude difference between the two sides of the object
decreases. To sum up, figure 6 provides strong support for the idea that the increase in
object drift compared with the Stokes drift is related to the standing wave pattern and is
determined by how ‘streamlined’ the object is. We note that even for the RCB with the
largest rounded-cornered radius, the enhanced drift is still significant, which is due to its
large submergence depth, as we will examine next.

For RCBs with different submergence depths (category II, group 2), it is evident from
figure 7 that as the submergence depth increases, the object drift increases significantly, as
does the amplitude of the oscillating vertical motion. The horizontal oscillatory motions
increase by only a small amount with increasing submergence depth. Figure 7(d) reveals
that the increase in object drift is accompanied by an increase in the standing wave
pattern. The largest wave amplitude on the upstream side and the relative difference in
wave amplitudes between both sides of the object both increase as the submergence depth
increases, further supporting our finding that the standing wave pattern drives enhanced
drift.
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Taking the above analysis of the effects of size, shape (of the submerged part of the
object) and submergence depth together, the role of the standing wave pattern generated
by the object and the relative wave amplitude difference between the two sides of the object
stands out. All these effects described above can be understood in terms of the ability of
the object to ‘hinder’ the flow pattern associated with the incident wave field. The larger
the submergence depth and the more box-like the submerged shape, the more the objects
hinder the flow. Enhanced drift is always accompanied by a (small) reduction in horizontal
oscillatory motion and a (large) increase in vertical oscillatory motion.

4.3. Effect of wave steepness (category III)
Simulations in category I and II have all been conducted for low-wave steepness kaw =
0.034 (aw = 0.02 m). In category III we examine the dependence of drift on wave
steepness. We select three different relative sizes (l/λ = 5.1 %, 8.0 %, 10.0 %; see table 8
in Appendix C for all object properties) and perform simulations with steepness in the
range kaw = 0.02 to kaw = 0.13. Cases with and without viscosity are considered.

The dimensionless amplitudes of the horizontal oscillatory motion Ax/aw and the
vertical oscillatory motion Az/aw are shown as a function of wave steepness kaw in
figure 8(a) and 8(b), respectively. The wave celerity-normalized object drift velocities of
the objects of different sizes are shown as a function of wave steepness kaw in figure 8(c);
the object drift is shown as a ratio of the Stokes drift, namely uO/uS, in figure 8(d), noting
uS ∼ (kaw)2. Finally, the local wave amplitude distribution of a RCB with l/λ = 10 %
is shown as a function of horizontal distance from the centre of mass of the object in
figures 8(e) and 8( f ) for three values of wave steepness. In (e) the wave amplitude is given
in dimensional form as a difference between the local wave amplitude a(x) and the input
wave amplitude aw. In ( f ) the local wave amplitude is scaled by its corresponding input
wave amplitude, which is different for each steepness.

We commence our analysis with the oscillatory motions of the objects. For each box,
the horizontal oscillatory motion amplitude, scaled by aw, does not show any obvious
variation with steepness (figure 8a), while the vertical motion amplitude, scaled by aw
shows a small decrease as the wave steepness increases (figure 8b). We note that this is
consistent with the reduction in the heave response amplitude operator with increasing
wave height reported for wave energy devices of similar 2-D shape (Palm et al. 2018).
This is attributed therein to the induced drag and nonlinearity of the force the waves exert
on the object. For the object drift, figures 8(c) and 8(d) show that an object of relative
size l/λ = 5 % continues to follow the Stokes drift without notable enhancement (2 %)
despite the increase in wave steepness (for ν = 0). As the object becomes large enough
to induce a drift enhancement at low steepness (i.e. l/λ = 8 % and 10 %; cf. § 4.1), the
drift is further enhanced as the waves become steeper. The amplification factors uO/uS of
these large boxes initially decrease somewhat with increasing steepness for low values of
steepness, but then reach constant values as steepness increases. This is consistent with
what has been found in the experiments conducted by Huang et al. (2011), Huang & Law
(2013), He et al. (2016) and Tanizawa et al. (2002). To be more specific, in the experiments
of Huang et al. (2011) for ‘small’ floating objects (l/λ = 13 %–16 %), these authors found
that object drift is enhanced more as wave steepness increases and that the amplification
factor uO/uS behaved in a similar fashion as presented here. Due to the large computational
cost, we do not increase the relative size of our object beyond 10 %.

Focusing on the standing wave pattern, identified in §§ 4.1 and 4.2 as intimately related
to drift enhancement, figures 8(e) and 8( f ) show the wave amplitude distribution for a
round-cornered box with l/λ = 10 % for three different values of steepness kaw. The
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Figure 8. Effect of wave steepness on object motion and drift (category III): (a) non-dimensional
horizontal oscillatory motion amplitude; (b) non-dimensional vertical oscillatory motion amplitude;
(c) celerity-normalized object drift velocity; (d) Stokes drift-normalized object drift velocity; (e) difference
between the local wave amplitude distribution a(x) and the input wave amplitude aw for three different
values of wave steepness for the object size of l/λ = 10 %; ( f ) normalized local wave amplitude distribution
a(x)/aw for three different values of wave steepness for the object size of l/λ = 10 %. Diamond, star and
square markers represent the results for RCBs of l/λ = 5 %, 8 %, 10 % relative sizes, respectively. Red lines in
(a,b) denote input wave amplitudes, while in (c,d) they denote theoretical Stokes drift. The local wave amplitude
distributions a(x) in (e, f ) are given as functions of horizontal distance (scaled by wavenumber) from the centre
of mass xc, and the gaps between the two vertical red lines in (e) and ( f ) represent the position of the object
(l/λ = 10 %) and correspond to its left and right sides, respectively.
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absolute magnitude of the standing wave pattern increases with steepness, which is
consistent with the increase in object drift shown for this object in figure 8(c). However,
the normalized wave amplitude distribution in figure 8( f ) shows a modest decrease in the
amplitude of the wave pattern for the higher-steepness cases (kaw = 0.07, 0.09), which is
consistent with the behaviour of the amplification of object drift relative to Stokes drift in
figure 8(d).

4.4. Effects of viscosity (categories I and III)
Finally, we examine the role played by viscosity, re-examining the category I and III
simulations. We do so by comparing results from our hybrid numerical model qaleFOAM
that are based on the inviscid Euler equations (ν = 0) and those that are based on the
viscous NS equations (ν = 1 × 10−6 m2 s−1). We define and estimate Reynolds and
Keulegan–Carpenter numbers in Appendix D, where we also present simulations using the
Reynolds-averaged NS equations to examine the potential role of turbulence. These results
show that the flow is laminar in our cases (at laboratory rather than field scale) with low
Reynolds numbers and the inclusion of a turbulence model to ensure convergence is not
necessary.

We begin by re-examining the simulations in category I (§ 4.1). As shown in figures 5(a)
and 5(b), the inclusion of viscosity induces negligible change to the oscillatory motion
in the horizontal direction and a small increase in the vertical direction. This is more
evident for RCBs. Turning to the object drift velocity (figure 5c), we start by examining
ROs because no obvious change to the standing wave pattern arises from the inclusion
of viscosity (not shown). In the absence of viscosity no significant drift enhancement is
found for ROs of all sizes considered, whereas enhanced drift becomes evident for ROs
larger than 8 % when viscosity is considered.

Next, we consider RCBs, for which the standing wave pattern comes into play for large
enough relative sizes. When the standing wave pattern is small, which is the case for
objects with a relative size smaller than 7 %, the presence of viscosity contributes to drift
enhancement in a way consistent with the behaviour of ROs. As a RCB becomes larger,
the draft (submergence depth) of the box becomes larger and the standing wave pattern
starts to drive drift enhancement. Viscosity works to promote enhanced drift and yields
a larger drift increase compared with the case without viscosity included. For the largest
RCB, we observe a nearly 20 % increase as a result of the inclusion of viscosity. We note
the effect of the standing wave pattern and the effect of viscosity appear independent, with
viscosity generally not affecting the standing wave pattern (not shown explicitly). From
the simulations in category III, we observe from figure 8 that the inclusion of viscosity
enhances the drift for all boxes. However, as a ratio of the Stokes drift, the enhanced
drift speed reduces with wave steepness for low steepness, then reaches a constant value
(figure 8d).

The fact that drift increases with relative size when viscosity is considered (in the form
of viscous drag) is consistent with the findings of Calvert et al. (2021), who do not consider
diffraction of the wave field and who examine three-dimensional (3-D) spheres instead of
the 2-D ROs considered here. Calvert et al. (2021) propose two mechanisms to explain
enhanced drift motion. First, they note that the linear motion (normal to the free surface)
of a floating particle has a larger magnitude compared with that of a Lagrangian particle,
leading to an increased drift. Second, the dynamic buoyancy force has a net effect when
averaged over the wave cycle in a similar fashion to the slope-sliding term of Rumer et al.
(1979). This net effect arises after averaging over the wave cycle because of a phase change
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that is introduced by the effect of a (viscous) drag force acting in the direction normal to
the free surface. A comparison between our results for 2-D ROs and their results for 3-D
spheres is made in figures 5(a), 5(b) and 5(c). To evaluate the model of Calvert et al.
(2021), we have taken the diameter of our (2-D) ROs to be equal to the diameter of the
spheres in Calvert et al. (2021). Due to the difference in geometry (two dimensional vs
three dimensional), we emphasise that we do not expect quantitative agreement. As shown
in figures 5(a) and 5(b), Calvert et al. (2021) found that the horizontal linear motion
remains unaffected by viscous drag, but the magnitude of vertical linear motion increases
with relative size. We observe similar results for the vertical linear motion, although the
vertical motion we observe is much smaller for the same relative size. Unlike Calvert et al.
(2021), we predict the horizontal linear is reduced. Figure 5(c) shows a reasonable level
of agreement for the drift between our results and Calvert et al. (2021) when the object is
small, but neither theory predicts significant drift enhancement for such small objects. For
larger objects, we observe less enhanced drift than predicted by Calvert et al. (2021). The
discrepancies in linear motion and drift may be due to the fact that the theoretical model
in Calvert et al. (2021), based on the slope-sliding concept, does not consider two-way
coupling between the waves and the object and assumes that the wave field is unaffected
by the presence of the object, thus causing the object in Calvert et al. (2021) to lose
less energy, as only viscous and no wave damping is considered therein. Wave damping
could lead to reduced horizontal and vertical linear motions (Calvert et al. (2021) predict
larger linear motion responses in both directions), which in turn results in less enhanced
drift. Wave damping could also contribute to the phase difference and potentially enhance
the second mechanism. Nevertheless, both mechanisms in Calvert et al. (2021) could
play a role in explaining the phenomenon that the inclusion of viscosity for relatively
large objects enhances the drift. For completeness, we note that we cannot rule out the
occurrence of some boundary-layer streaming in the near-surface wave-driven boundary
layer (see, e.g. Grue & Kolaas 2017), which would also enhance drift and also only arises
in the presence of viscosity, although this boundary layer only has a very short distance to
develop (namely, only in the QALE-FEM domain). We examine the effects of viscosity in
more detail in Appendix C.

4.5. Relationship between local standing wave pattern and the object drift
Thus far, we have investigated the effects of various factors on the drift behaviour of
finite-size floating objects. All the results indicate that drift enhancement is closely related
to the diffraction of the wave field. To gain a more quantitative understanding of this
relationship, figure 9 shows the drift speed as a function of the maximum local wave
amplitude amax obtained from the standing wave pattern. All the results shown in this
figure are based on the same input incident wave and, thus, identical theoretical Stokes
drift. We note that the ‘wave gauges’ we have used to output information about the
free surface elevation from the code are set at fixed intervals, making it challenging to
precisely predict the local wave amplitude maxima. According to figure 9, there is a
positive correlation between the local maximum amplitude amax and the object drift, which
is most clearly observable when the local maximum wave amplitude amax is relatively
large (i.e. amax/aw ≥ 1.05). Figure 9 shows that the correlation between the maximum
local wave amplitude (as a measure of how much diffraction takes place) and object drift
is similar, regardless of differences in shape, submergence or size of the object, as long as
the object is large enough to diffract the wave field.
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Figure 9. The celerity-normalized object drift uO/c as a function of the local maximum wave amplitude
normalized by the input wave amplitude amax/aw: (a) the results for the RCBs and ROs of different sizes
(category I simulations); (b) the results for the objects of l/λ = 10 % with different round-corner radii and
depths of submergence (category II simulations). All results shown are for the same input wave condition:
aw = 0.02 m and uS/c = 0.0012.

It is instructive to note that an increase in the magnitude of the vertical oscillatory
motion is always accompanied by a more distinct standing wave pattern, as particularly
evident in the case of large RCBs. This is because the formation of the standing wave
pattern results from the disturbance to the fluid field caused by the presence of the
object, which would be largest if the object were stationary (in which case we have only
diffraction, no radiation). However, when the object is free to move, its motion serves as a
response to the waves, mitigating the effects of diffraction. The radiated wave field arises
due to the object’s oscillation (as if it were in calm water, in the linear approximation),
generating a wave field that weakens the standing wave pattern present in the combined
diffracted and incident wave field.

5. Comparison between the hybrid numerical model and the diffraction-modified
Stokes drift model

To develop the hypothesis developed in § 4 that drift enhancement is a result of diffraction
of the wave field by the object and gain a better understanding of the underlying
mechanism (in the absence of the viscosity), we compare the predictions of the hybrid
numerical model qaleFOAM presented in § 4 with the diffraction-modified Stokes drift
model introduced in § 2. In particular, the diffraction-modified Stokes drift model can
distinguish the contributions to the object drift of the incident, diffracted and radiated
parts of the wave field. The objects considered are the same as for the hybrid numerical
model, although we do not include rounded corners for the RB in the diffraction-modified
Stokes drift model (we set r/hd = 0.24 in the simulations of the hybrid numerical model
shown in this section). The grid sizes of all BEM simulations are chosen to be �x/hd =
�z/hd = 0.01 for the RB and �l/hd = 0.01 for the RO (following BEM model verification
in Appendix A and a convergence study not shown here). We examine oscillatory motion
(§ 5.1) and object drift (§ 5.2) in turn.
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Figure 10. Comparison of amplitudes of oscillatory motion for objects of different sizes and shapes predicted
by the qaleFOAM (QF) and BEM models for kaw = 0.034: (a) horizontal oscillatory motion; (b) vertical
oscillatory motion of objects. Motion amplitudes in (a,b) are normalized by input wave amplitude aw, with the
red lines then corresponding to the behaviour of a Lagrangian particle. Lines correspond to the results from
BEM simulations, while markers are those from qaleFOAM (QF) simulations. Square markers represent results
for boxes, RBs for BEM simulations and RCBs for qaleFOAM simulations, and circle markers denote ROs.

5.1. Oscillatory motion

5.1.1. Amplitude of oscillatory motion
Figure 10 provides the non-dimensional amplitudes of oscillatory motion as a function of
relative size for the different objects defined in table 3 predicted by both the BEM model
and the qaleFOAM model for low-wave steepness kaw = 0.034. Specifically, for the BEM
model, these take the form

ξx = Ax cos(θx − ωt) and ξz = Az cos(θz − ωt). (5.1a,b)

Figure 10 demonstrates that the amplitude of motion between the two models is in
agreement. The effects of size and shape on the oscillatory motions in the BEM model
are consistent with those in the qaleFOAM model discussed in §§ 4.1 and 4.2. The BEM
and the qaleFOAM models agree well for the full range of steepnesses studied in this paper
(kaw = 0.02–0.11) (not shown explicitly).

5.1.2. Phase of oscillatory motion
Having demonstrated the ability of the BEM model to capture the amplitude of the
oscillatory motion, we now examine its phase. The phases of the vertical and horizontal
oscillatory motions predicted by the (linear) BEM model are defined in (5.1a,b), and we
compare these to the phases of the linear incident wave field. For a linear incident wave
of the form η = aw cos(kx − ωt + θw), (linearized) horizontal and vertical components of
the motion of a Lagrangian particle have the form

ξI,x(t) = aw sin(ωt − kx − θw)x=0 = aw cos(θw + π/2 − ωt), (5.2)

ξI,z = aw cos(ωt − kx − θw)x=0 = aw cos(θw − ωt), (5.3)
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Figure 11. Phase difference of the oscillatory motion between a finite-size object and a Lagrangian particle as
a function of relative object size from BEM simulations: (a) horizontal direction, (b) vertical direction. Blue
lines correspond to RBs and black lines to ROs.

which have been evaluated at the particle’s initial location in the BEM model (x = 0).
Figure 11 shows the phase difference between a finite-size object and a Lagrangian particle
as a function of relative size of the object for both shapes for the horizontal (i.e. θx − θw −
π/2) and vertical (i.e. θz − θw) oscillatory motions predicted by the BEM model.

Figure 11 shows that when objects are very small, the phase difference is zero,
confirming that the objects behave as Lagrangian particles. As the objects become
larger, the magnitude of the phase differences of both horizontal and vertical motions
become larger, and this relationship is nonlinear. Specifically, the larger the object is, the
more phase lag it gains vertically while the more phase lead it shows horizontally. The
magnitudes of the phase difference of the vertical motion are much larger than that of the
horizontal motion, which are negligibly small.

We note that RBs have larger phase lags vertically but smaller phase leads horizontally
compared with ROs. Furthermore, for objects with greater submergence depths, we find
greater phase lags in the vertical and smaller phase leads in the horizontal. The phase
differences are found to be independent of steepness. These results are not shown here
explicitly in the interest of brevity.

5.2. Object drift
We now compare predictions of object drift by the qaleFOAM model already examined
in § 4 to predictions of object drift based on the diffraction-modified Stokes drift model
(i.e. using (2.8)), i.e. an estimate of the drift accounting for the radiated and diffracted as
well as the incident waves. We consider waves with a low input steepness of kaw = 0.034,
and the dimensions of the RBs and the ROs we consider are given in table 3 (and table 8 for
boxes larger than l/λ = 4 %). Figure 12 makes the comparison between drift predictions
by the qaleFOAM and the diffraction-modified Stokes drift model.

It is clear from figure 12 that the diffraction-modified Stokes drift model captures the
main trend well, predicting a significant increase of object drift with increasing relative
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Figure 12. Diffraction-modified Stokes drift velocity uS,O as a function of object size: (a) comparison between
BEM and qaleFOAM (QF) models with (ν = 1.00 × 10−6 m2 s−1) and without (ν = 0) viscosity for ROs
and rectangular boxes (RBs, RCBs); (b) different components of the diffraction-modified Stokes drift velocity
predicted by the diffraction-modified Stokes drift model, where uS,O,I , uS,O,R and uS,O,D, respectively, represent
the incident, radiation and diffraction components of the diffraction-modified Stokes drift velocity.

size for RBs. The diffraction-modified Stokes drift model and the qaleFOAM model
without viscosity (ν = 0) show good agreement except for the largest box with l/λ = 10 %,
for which the diffraction-modified Stokes drift model underestimates the drift velocity
compared with the prediction of the qaleFOAM model (for ν = 0). This discrepancy can
be attributed to two factors: the slight differences in shape between the boxes in the
diffraction-modified Stokes drift model (RB with sharp corners) and in the qaleFOAM
model (RB with round corners) and the approximate nature of the diffraction-modified
Stokes drift model (cf. (2.3)), whose underlying assumptions become less valid as the
object becomes larger.

To analyse the physical mechanism underlying the drift enhancement, we decompose
the object drift predicted by the diffraction-modified Stokes drift model (i.e. (2.8)) into
contributions from the incident, radiated and diffracted waves, i.e.

uS,O = uS,O,I + uS,O,R + uS,O,D, (5.4)

where

uS,O,I = Ax

2
kωAI

xx cos(θx − θ I
xx) + Az

2
kωAI

xz cos(θz − θ I
xz); (5.5)

uS,O,R = Ax

2
kωAR

xx cos(θx − θR
xx) + Az

2
kωAR

xz cos(θz − θR
xz); (5.6)

uS,O,D = Ax

2
kωAD

xx cos(θx − θD
xx) + Az

2
kωAD

xz cos(θz − θD
xz). (5.7)

Each term (i.e. (5.5), (5.6) and (5.7)) includes contributions from the horizontal (first
term) and vertical (second term) motion of the object. Figures 12(b) and 13 show these
contributions as a function of relative object size. We start by examining the contribution
of the incident wave field to the diffraction-modified Stokes drift, uS,O,I . For very small
objects, we have Ax = aw, θx − θw = π/2, Az = aw and θz − θw = 0 (cf. figures 10 and
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Figure 13. Decomposition of the diffraction-modified Stokes drift predicted by the diffraction-modified
Stokes drift model for RBs according to (5.4) and (5.5): (a) contributions of the incident (uS,O,I) and the sum
of the radiated and diffracted waves (uS,O,R + uS,O,D); and (b) further decomposition into contributions due
to horizontal (x) and vertical (z) components of object motion. The diffraction-modified Stokes drift velocity
components are normalized by the Stokes drift (of an infinitesimally small object).

11). Combined with AI
xx = awgk/ω2 = aw, θI,x − θw = π/2, AI

xz = awgk/ω2 = aw and
θI,z − θw = 0 (from (2.5)) for the deep-water incident wave field we consider, it is readily
evident from (5.5) that

uS,O,I = aw

2
kωaw cos(π/2 − π/2) + aw

2
kωaw cos(0 − 0) = aw

2ωk = uS. (5.8)

Any contributions to the diffraction-modified Stokes drift from the radiated and the
diffracted wave field for very small objects must therefore be equal and opposite (cf. (5.4)),
which is consistent with what is presented in figure 12(b).

As the object becomes larger, the amplitude of horizontal oscillatory motion Ax becomes
smaller (figure 10a), its phase difference does not change significantly (figure 11a), while
the amplitude of vertical oscillatory motion Az becomes larger (figure 10b), but the phase
difference of the vertical motion increases (figure 11a), diminishing the effect of the
enhanced amplitude of vertical motion (cf. Az cos(θI,z − θw)).

A careful reader may observe that the incident component of drift uS,O,I in figures 12(b)
and 13(a) experiences a slight decrease before undergoing a more significant increase. To
explain this, we note that as object size increases, the amplitude of vertical oscillatory
motion increases (cf. figure 10b) but its positive effect on drift is diminished by
the increasing phase difference (cf. figure 11b), while the amplitude of horizontal
oscillatory motion decreases (cf. figure 10a), acting to reduce drift. When the negative
effects resulting from reduced horizontal oscillatory motion compete over the positive
contribution of the enhanced vertical motion, the incident drift component uS,O,I is
reduced. This is evident in figures 12(b) and 13(a) for objects with a relative size between
3 % and 7 %.

Noting that Ax decreases with relative size in a linear fashion (figure 10a), whereas
Az increases nonlinearly at an increasing rate (figure 10b), figures 13(a) and 13(b) show
that the effect of the increased vertical oscillatory motion generally dominates and the
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contribution of the incident waves acts to increase the object drift for larger objects.
However, the increased vertical oscillatory motion cannot explain the majority of the large
drift enhancement observed for large objects.

Turning to the contributions of the radiated and diffracted waves to the
diffraction-modified Stokes drift, uS,O,R and uS,O,D, we observe from figure 12(b) that both
terms decrease rapidly with increasing relative size. Since these two terms have opposing
signs, the fact that uS,O,D decreases more rapidly leads to a net positive contribution
to the diffraction-modified Stokes drift that increases with relative size, as illustrated in
figure 13(a). This explains most of the enhanced drift for large objects found in this paper.

However, if the small reduction of the incident drift component uS,O,I for objects
with intermediate size, described above, cannot be compensated for by the net positive
contribution from the imbalance of diffraction and radiation components, the overall drift
will be reduced. This helps to explain the slight reduction in drift compared with the
theoretical Stokes drift for objects with a relative size of 2 % ≤ l/λ ≤ 6 % in figure 12(a).

From figure 13(b) it is further evident that the horizontal object motion is responsible for
the increase in uS,O,R and uS,O,D and, thus, the total diffraction-modified Stokes drift for
large objects. Note that the motions evaluated in § 4 are linear oscillatory motions, while
the object motion evaluated in figure 13 is the drift motion. According to (5.5)–(5.7), the
drift components are dependent not only on oscillatory motions (amplitudes and phases)
but also on derivatives of the velocity field. Only their combined effect determines the
drift. Physically, such large objects are less able to follow the horizontal motion the waves
would induce for a Lagrangian particle (cf. figure 10a) and are therefore transported at a
faster speed.

It may seem somewhat counter-intuitive that the smallest object has the largest
diffraction/radiation drift components (i.e. uS,O,R and uS,O,D) and that the absolute values
of these components decrease as the object size increases, as shown in figure 12(b).
However, what really matters here is the combined contribution of the diffraction and
radiation components, as shown in figure 13(a), as they do not contribute to drift
independently.

For ROs, the decrease in uS,O,I is not balanced by a sufficiently large increase in
the sum of uS,O,R and uS,O,D, and these objects do not experience an increase in
diffraction-modified Stokes drift for large size (in the absence of viscosity). For increased
submergence depth, the effects discussed above for a RB are only enhanced. Furthermore,
the diffraction-modified Stokes drift model (cf. (2.3)) and the qaleFOAM model agree well
for the full range of steepnesses studied in this paper (kaw = 0.02–0.11). These results are
not shown here explicitly in the interest of brevity.

6. Conclusions

In this paper we have investigated the fluid mechanics that can lead to enhancements
in the drift of floating objects under the influence of gravity waves beyond that of the
well-understood Stokes drift. We restrict our analysis to unidirectional waves on deep water
and where the object is less than 10 % the size of the wavelength. Based on numerical
modelling we have identified two mechanisms that can explain increased drift compared
with the Stokes drift: a mechanism that relies on viscosity and a mechanism that is
related to the diffraction of the wave field by the object and the standing wave pattern
that arises. Both these mechanisms come into play when the size of the object is larger
than a few percent of the wavelength. When the object is smaller than this, the inertial
(i.e. non-Lagrangian) behaviour of the object becomes less evident and the difference in
velocity between the object and the surrounding fluid can be ignored. There is no obvious
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increase in the amplitude of the vertical motion, and the drift motion becomes that of a
Lagrangian particle. As the object becomes larger, the amplitude of the motion normal to
the free surface increases, which creates a drag force because of the difference between the
object motion and the fluid surrounding it. This effect can cause enhanced horizontal drift
(Calvert et al. 2021). In addition, as the object size becomes larger, the draft of the object
(submergence depth) becomes larger, and the submerged part of the object acts to impede
the fluid motion associated with the waves and thereby changes the waves themselves. That
is, the object diffracts the wave field. Dependent on how large the submerged part of the
object is and on its shape, the impeding effect is different, and thus, the drift is enhanced
to a different degree. The larger the submergence depth is and the closer the shape of the
object is to a box (i.e. not streamlined), the stronger is the impeding effect, yielding a larger
increase in horizontal drift.

We consider objects of up to 10 % of the wavelength and, for the largest of these drift
enhancements over that of a Lagrangian particle, can be as large 92 % of the Stokes drift for
simulations without viscosity or 113 % with viscosity. Most of the increased drift results
from diffraction for RCBs with viscosity typically contributing a further 20 %. For ROs,
diffraction only has a small effect, and the much smaller enhanced drift arises because of
the effects of viscosity.

To enable quantitative predictions to be made about the contribution of diffraction
to drift, we have derived a diffraction-modified Stokes drift akin to Stokes (1847), but
accounting for the combination of the incident, diffracted and radiated wave fields rather
than simply the first of these. To calculate the necessary diffracted and radiated fields, a
linear BEM model based on potential-flow theory is used. Two effects become clear. First,
the increased vertical oscillatory motion of the object causes a greater contribution from
the incident wave field to the diffraction-modified Stokes drift. Second, the combination of
diffracted and radiated waves makes an additional contribution to the diffraction-modified
Stokes drift that is not present when the object is small. Although we have not analysed the
force and momentum balance resulting in the object’s (enhanced) drift motion, we foresee
this will give valuable insight into the mechanism and recommend it as future work.

Various authors have found evidence for enhanced drift in different circumstances.
Calvert et al. (2021) (based on previous work by Rumer et al. (1979), Shen & Ackley
(1991) and Huang et al. (2016)) explored the influence of viscosity described above using
a theoretical model that considers viscous forces but ignores the diffraction of the wave
field caused by the presence of the object (required for the second mechanism). Future
work should quantitatively compare the findings of the present work on the effect of
viscosity to the predictions of Calvert et al. (2021), taking account of Reynolds number
and wave steepness, but most importantly for the same geometry, that is, by extending
the 3-D model of Calvert et al. (2021) to a 2-D model or our 2-D numerical simulations
to 3-D numerical simulations. According to the experiments and theoretical analysis by
Longuet-Higgins (1953, 1960), Grue & Kolaas (2017), the presence of viscosity should
also be accompanied by an additional mechanism for (Eulerian-mean) wave-induced
drift, namely boundary-layer streaming. In principle, boundary-layer streaming of the
free surface is included in the viscous simulations performed in this paper but it is
not explicitly investigated and likely only small, as the boundary layer only has a short
distance to develop in the NS part of the hybrid numerical model. As boundary-layer
streaming is associated with strong vertical shear, its differential effect on objects of
different submergence depths is foreseeable and should be investigated for inertial objects
in future work.
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Enhanced object drift due to diffraction has probably been observed in previous
experiments, although it has not been identified as such. Harms (1987) showed using
experiments that, for ice floes (box shaped) with large submergence depths, the drift
velocity increased with the draft of the object, keeping size constant (for relative sizes
smaller than approximately 25 %). Enhanced drift was also found for larger submergence
depths in experiments conducted by Huang et al. (2011), and a similar trend of the drift
scaled by Stokes drift as a function of wave steepness can be identified in their results.
In the experiments carried out by He et al. (2016) for regular waves in finite depth,
drift enhancement is seen to increase with wave steepness for boxes with l/λ = 9 % and
10 %. Future experiments should focus explicitly on identifying the standing wave pattern
associated with diffraction and should explore the roles of both length and width (i.e. 3-D
effects) of objects relative to the wavelength.
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Appendix A. Mathematical formulation and verification of the BEM model

In the BEM model we deal with the problem based on linearized potential-flow theory,
which assumes the fluid is homogeneous, incompressible, inviscid and the flow is
irrotational. The flow is described by a velocity potential Φ, which, under the linear
approximation, can be further divided into an incident potential ΦI , a diffraction potential
ΦD and a radiation potential ΦR (cf. (2.1)), where the incident potential neglects the
influence caused by the presence of the object, the diffraction potential considers the
disturbance induced by the presence of the object on the incident wave field and ignores
the oscillatory motion of the object, and the radiation potential describes the wave field
forced by the oscillatory motion of the object in still water. The incident potential is given
in (2.2).

A.1. Radiation potential
Based on potential-flow theory (e.g. Newman (2018), specifically, §§ 6.15–6.19), the
radiation potential φR can be further decomposed into components representing radiation
of waves due to horizontal, vertical and rolling object motions, i.e.

φR(x, z) =
3∑

j=1

−ιωAjφ̂j(x, z), (A1)

in which Aj (for j = x, z, α) represent the amplitudes of the corresponding three modes of
motion of the object, and φ̂j ( j = x, z, α) represents the radiation velocity potential due to
unit body motion in mode j. Three motion modes are included: horizontal ( j = x), vertical
( j = z) and rolling motion ( j = α, where α is defined as the angle of rotation around the y
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axis in the (x, z) plane). The potential φ̂j is governed by Laplace’s equation [L] and subject
to a linearized free surface boundary CF condition [F], body surface CB condition [B],
bottom CD condition [D] as well as a far-field radiation CR condition [R], shown as

[L]
∂2φ̂j

∂x2 + ∂2φ̂j

∂z2 = 0,

[F]
∂φ̂j

∂z
− ω2

g
φ̂j = 0 for z = 0, CF,

[B]
∂φ̂j

∂N
= Nj for CB,

[D]
∂φ̂j

∂z
= 0 for z = −d, CD,

[R] lim
x→±∞

(
∂φ̂j

∂x
∓ ikφ̂j

)
= 0 for CR,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A2)

in which CB refers to boundaries of C1, C2 and C3 in figure 3(a) and Cr in figure 3(b), N
is the unit normal vector of the object surface and Nj represents the projection of the unit
normal vector of the relevant boundary in the jth direction.

In numerical simulations, we truncate the domain at x = ±LBEM/2 for both horizontal
sides (shown in figure 3) and rewrite the radiation condition in a uniform expression for
both ends as

∂φ̂j

∂N
= ikφ̂j. (A3)

A.2. Diffraction potential
The governing equation and boundary conditions of the diffraction potential φD are

[L]
∂2φD

∂x2 + ∂2φD

∂z2 = 0,

[F]
∂φD

∂z
− ω2

g
φD = 0 for z = 0, CF,

[B]
∂φD

∂N
= −∂φI

∂N
for CB,

[D]
∂φD

∂z
= 0 for z = −d, CD,

[R]
∂φD

∂N
= ikφD for CR.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A4)

From (A4) and (A2), it can be seen that the description of the diffraction potential is
very similar to that of the radiation potential; the only difference is in the body surface
condition.
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A.3. Equations of motion
The equations of motion of the object are given by

Ma = F R + F C + F K + F D, (A5)

in which M is the general mass matrix, a is the acceleration, F R, F C, F K , F D are the
radiation, restoring, incident and diffraction forces, respectively. The radiation forces FR,kj
can be expressed as

FR,kj = −Re{(−ω2μkj − ιωλkj)Aje−ιωt}, (A6)

where λkj, μkj are the added mass coefficient and damping coefficient, respectively. They
can be calculated by

μkj = Re

⎛
⎜⎝ρf

∫
CB

φ̂jNk dl

⎞
⎟⎠ , (A7)

λkj = ω Im

⎛
⎜⎝ρf

∫
CB

φ̂jNk dl

⎞
⎟⎠ , (A8)

where Re and Im represent the real and imaginary parts of the complex number, and ρf is
the fluid density, Nk represents the projection of the unit normal vector of the boundary in
the kth direction. The restoring forces FC,k can be calculated by

FC,k = Re{−Ckj · Aje−ιωt}, (A9)

where Ckj is the matrix of restoring force coefficient. Einstein notation is used here to
imply the summation over a set of j = 1, 2, 3. The incident wave forces (Froude–Krylov)
FI

k can be calculated by

FI
k = Re{ f I

k e−ιωt} = Re

⎧⎪⎨
⎪⎩ρf ιω

∫
CB

φINk dle−ιωt

⎫⎪⎬
⎪⎭ . (A10)

The diffraction wave forces FD
k of the kth mode in the BEM model can be calculated in

two ways:

FD
k = Re{ f D

k e−ιωt} = Re

⎧⎪⎨
⎪⎩ρf ιω

∫
CB

φDNk dle−ιωt

⎫⎪⎬
⎪⎭ , (A11)

FD
k = Re{ f D

k e−ιωt} = Re

⎧⎪⎨
⎪⎩−ρf ιω

∫
CB

φ̂k
∂φI

∂N
dle−ιωt

⎫⎪⎬
⎪⎭ . (A12)

Here (A11) calculates the diffraction force by directly integrating the diffraction potential,
while (A12) calculates the diffraction force using the Haskind formula. If we substitute
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(A6), (A9), (A10), (A11) into (A5) and take the time factor e−ιωt out, we obtain the
equations of motions in the frequency domain for the kth motion mode (k = 1, 2, 3):

3∑
j=1

[−ω2(mkj + μkj) − ιωλkj + Ckj] Aj = f I
k + f d

k . (A13)

The equations of motion for the object contain the (added) mass, hydrodynamic damping
and restoring forces on its left side and forces due to the incident and diffracted wave field
on the right side. We thus take the object’s inertia and wave–body interaction into account.

A.4. Two-dimensional Green’s function method
The potentials φ̂j and φD are harmonic functions and are governed by the Laplace equation.
Assuming P(x, z) is a field point in the fluid domain and Q(x′, z′) is the source point in the
field, we choose a Green’s function that satisfies ∇2G(P, Q) = δ(P, Q), then according to
Green’s second formula, the value of the potential φ̂j and φD can be determined uniquely
by giving its value and normal derivative over all boundaries (Newman 2018). We have

α(P)φ̂j(P) = −
∫
C

[
φ̂j(Q)

∂G(P, Q)

∂N
− G

∂φ̂j(Q)

∂N

]
dl, (A14)

α(P)φD(P) = −
∫
C

[
φD(Q)

∂G(P, Q)

∂N
− G

∂φD(Q)

∂N

]
dl, (A15)

in which C represents the boundaries of the fluid domain, including free surface
boundaries CF, body surface boundaries CB, far-field radiation boundaries CR and bottom
boundaries CD. For a smooth boundary, α(P) is valued as

α(P) =
⎧⎨
⎩

2π, P ∈ Ω,

π, P ∈ S,

0, P /∈ S ∪ Ω,
(A16)

where Ω represents the region inside of the fluid domain and S denotes the boundary of
the fluid domain. Here, the simple Green’s function G(P, Q) = ln(1/r(P, Q)) is used. As
ln(1/r(P, Q)) is the general solution of the governing equation and does not satisfy any
boundary conditions, this requires the source to be distributed over all boundaries.

A.5. Second derivatives of the velocity potential
Calculation of the diffraction-modified Stokes drift based on (2.8) requires the evaluation
of second derivatives of velocity potentials in (2.6) and (2.7). Due to the singularity of
the Green’s function method employed here, direct numerical evaluation of these second
derivatives based on finite differences is challenging as it may cause a loss of accuracy
(Zhang, Bandyk & Beck 2010; Chen et al. 2018). We follow Zhang et al. (2010) and use the
so-called desingularized source distribution method. Different from the standard source
distribution method (Newman 2018), the desingularized method enforces the boundary
conditions that are satisfied exactly on the boundary (denoted by P) but distributes the
source points Q slightly outside the boundary, so that the singularities on the boundaries
are removed (see also Raven (1988) and Kim & Kim (2007) for more details). We set the
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distance of the source points to the boundaries to be 1–2 times the grid size in the direction
normal to the boundary. Second derivatives at point P are thus calculated as

∂2φ(P)

∂x2 =
∫

Cl
′
σ(Q)

∂2G(P, Q)

∂x2 dl; ∂2φ(P)

∂x∂z
=

∫
Cl

′
σ(Q)

∂2G(P, Q)

∂x∂z
dl, (A17a,b)

in which Cl
′ denotes the boundaries where the source points Q are located, obtained

by moving a certain distance from the original fluid boundaries (i.e. C1, C2 and C3 in
figure 3a) according to the desingularized source distribution method. In (A17), σ(Q) is
the source strength at source point Q. Based on (A17), we can obtain the second derivatives
in (2.8) once the source strength σ(Q) is known. The source strength σ(Q) is solved
following the standard source distribution method. Derivatives of the incident potential
are directly calculated from (2.2).

It is worth noting that, theoretically, based on (A17), the diffraction-modified Stokes
drift could be evaluated on the surface of the body or at the object’s centre of mass. For
large objects, we use the second derivatives obtained by (A17) evaluated at the object’s
centre of mass. However, when the size of the object is very small, the second derivatives
evaluated at the centre of mass or at the boundaries of the object become very sensitive
to small changes in position in the direction normal to the boundary due to the use of
the desingularized source distribution method. Instead, we make use of the boundary
conditions on the object boundary (C1, C2, C3 or Cr) to calculate second derivatives.

To improve the accuracy of second derivatives evaluated on object boundaries in the
BEM model (i.e. in (2.6) and (2.7)) when the object is small, we take advantage of the
boundary conditions, which are themselves given in the form of normal derivatives on the
boundary. For the RB defined in figure 3(a), there are three object boundaries: C1, C2 and
C3. We will examine the general principle of our method using C2 as an example. The
boundary conditions on C2 for the radiation and the diffraction problem are

∂φ̂j

∂z
= Nj = [0, 1, −x] for j = x, z, α on C2; (A18)

∂φD

∂z
= −∂φI

∂z
on C2, (A19)

where Nj represents the projection of the unit normal vector of the relevant boundary
in the jth direction. For the object boundary C2 (see figure 3a), the normal vector is in
the vertical direction and the normal derivative of its velocity potential in the form of a
Green’s function is continuous in the x direction but not continuous in the z direction. We
can therefore evaluate horizontal derivatives directly along the boundary and we have

∂2φ̂j

∂x∂z
= [0, 0, −1]; (A20)

∂2φD

∂x∂z
= −∂2φI

∂x∂z
. (A21)

The second derivative ∂2φR/∂x∂z in (2.6) can now be calculated directly based on (A20)
and (A1). The second derivatives ∂2φD/∂x∂z in (2.7) can be calculated directly based on
(A21). The second derivatives ∂2φ̂j/∂x2, ∂2φD/∂x2 can be calculated numerically directly
from the potential as the latter is continuous over the boundary C2 in the horizontal
direction. Finally, to obtain a single value to be used to estimate the diffraction-modified
Stokes drift, we evaluate the second derivative at the centre of the boundary C2.
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Figure 14. Non-dimensional added mass (μii) and damping (λii) coefficients for example 1 (d/hd = 3,
l/hd = 1) of the BEM model verification. The black squares are the predictions by the BEM model, the red
lines correspond to the theoretical solutions of Zheng et al. (2004) based on (A7) and (A8), ρ0 is the density of
water and d the water depth.

A.6. Verification of the BEM model
To verify the BEM model we use in this paper, we evaluate the radiation and diffraction
solutions for three specific examples involving rectangular objects in regular waves and
compare these numerical solutions to the theoretical solutions of Zheng, You & Shen
(2004). In their theoretical model, the added mass coefficient μkj and radiation damping
λkj are calculated based on (A7) and (A8) based on an analytical solution for φ̂j. The wave
excitation forces in their paper are

fk = f I
k + f D

k = ρf ιω

∫
CB

(φI + φD)Nj dl, (A22)

In example 1 the object’s size and density are chosen so that d/hd = 3 and l/hd = 1.
The (truncation) length of the domain LBEM/2 = 10hd, and the grid size is chosen
to be �x/hd = �z/hd = 0.01. Figure 14 compares the normalized added mass and
hydrodynamic damping coefficients μ and λ predicted by our BEM model to their
theoretical counterparts by Zheng et al. (2004). Good agreement is achieved for both
added mass and hydrodynamic damping coefficients for a broad range of water depths
kd, including the deep-water values we examine in the paper.

For example 2 and 3, we consider objects with d/hd = 2, l/hd = 2 and d/hd = 2, l/hd =
6, respectively, and we compare the wave-induced forces predicted by our BEM model to
their theoretical counterparts by Zheng et al. (2004). We choose the (truncation) domain
length to be LBEM/2 = 15l and �x/hd = �z/hd = 0.01 for both cases. The diffraction
wave forces FD

j of the jth mode in the BEM model can be calculated in two ways based
on (A11) and (A12). Given the accuracy with which our BEM model solves the radiation
problem, as verified in example 1 (figure 14), consistency between the two approaches
(i.e. (A11) and (A12)) confirms the diffraction potential is solved correctly. The results of
this comparison and the comparison to the theoretical solutions of Zheng et al. (2004) are
given in figure 15 for examples 2 and 3. The BEM model performs well in predicting the
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Figure 15. Non-dimensional wave-induced forces for example 2 (d/hd = 2, l/hd = 2) and example 3 (d/hd =
2, l/hd = 6) of the BEM model verification. The black and blue squares are the predictions by the BEM model
using (A11) and (A12), respectively. The red lines correspond to the theoretical solutions of Zheng et al. (2004)
based on (A22).

wave forces for a range of water depths kd, and the two different approaches agree well for
both examples, further verifying the model.

Appendix B. Convergence of the hybrid numerical model (qaleFOAM)

Our convergence tests focus on the NS domain, as corresponding tests for the QALE-FEM
domain used to simulate the incident wave field have been performed extensively and are
well documented in the literature (e.g. Ma & Yan 2009; Li et al. 2018). To ensure optimal
relaxation zone lengths, we have conducted a series of simulations with different lengths
and draw similar conclusions to Li et al. (2018) and Yan et al. (2019), namely that for
the high-wave steepness cases, 1.5 wavelengths are required, while a single wavelength is
sufficient for the low-wave steepness cases. In the interest of brevity, these results are not
shown here.

We note that in previous studies the surface elevation is typically considered in a
convergence test, whereas in our simulations the focus is on the velocity field. Our targets
for the convergence tests are surface elevation (wave amplitude), Eulerian-mean velocity
and (Lagrangian-mean) drift rates. Here, we report results for the lower-frequency waves
(from table 1) of the lowest steepness kaw = 0.034 and the highest steepness kaw = 0.126
examined in § 3.1. In each case, four sets of grids have been tested, which are defined by
their spatial resolution, and the three target quantities are examined and compared.

For the lowest-steepness case (kaw = 0.034), figure 16 shows the spatial Eulerian-mean
(time-averaged) velocity distribution covering the region where our object is placed. The
Eulerian-mean velocity ūE is obtained by time averaging the Eulerian velocity after a
quasi-steady state has been achieved, in which the drift speed is constant. The figure
demonstrates that, as the spatial resolution becomes higher, the Eulerian-mean velocity
becomes very small (at most 1 % of the Stokes drift for the highest steepness), which
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Figure 16. Eulerian-mean velocity scaled by the theoretical Stokes drift uS a small distance below the wave
trough aw = 20.0 mm (z = −25.0 mm) for different spatial resolutions as a function of horizontal position; xl
indicates the location of the left boundary of the NS domain.

�x (m) λ/�x �z (m) ain/�z Nc aw/ain ūL/uS ūE/uS

0.03 123 0.001 20 99 015 1.035 0.953 −0.0134
0.02 185 0.001 20 148 350 1.030 1.008 −0.0151
0.01 369 0.001 20 320 407 1.020 1.004 −0.0054
0.005 739 0.0005 40 338 446 1.010 1.000 −0.0034

Table 6. Values of the three target quantities of the convergence tests: wave amplitude aw, Eulerian-mean
velocity ūE and drift rate of a Lagrangian particle ūL. Results are shown for four different spatial resolutions
for the low-wave steepness case, where �x and �z represent the grid size in x and z directions, respectively, Nc
is the total number of cells in the NS domain, and ain is the input wave amplitude.

�x (m) λ/�x �z (m) ain/�z Nc aw/ain ūL/uS ūE/uS

0.02 185 0.0019 39 139 416 0.997 0.972 −0.0148
0.01 369 0.0019 39 278 832 1.003 0.965 −0.0221
0.005 739 0.0019 39 557 664 1.001 0.986 −0.0126
0.005 739 0.00095 78 753 024 1.000 0.989 −0.0101

Table 7. Values of the three target quantities of the convergence tests: wave amplitude aw, Eulerian-mean
velocity ūE and drift rate of a Lagrangian particle ūL. Results are shown for four different spatial resolutions
for the high-wave steepness case, where �x and �z represent the grid size in x and z directions, respectively,
Nc is the total number of cells in the NS domain, and ain is the input wave amplitude.

confirms the (near) absence of Eulerian currents in our numerical wave tank, so that the
Lagrangian velocity becomes equal to the Stokes drift (as already shown in § 3.1).

Tables 6 and 7 outline the values of our three target quantities obtained for four
sets of grids for the lowest-steepness (kaw = 0.034) and the highest-steepness (kaw =
0.126) cases, respectively. Results are given for wave amplitudes, Eulerian-mean and
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l/λ (%) 5.1 6.0 7.0 8.0 9.0 10.0

l (m) 0.19 0.22 0.26 0.29 0.33 0.37
hd (m) 0.13 0.15 0.18 0.20 0.23 0.25
h (m) 0.16 0.19 0.22 0.25 0.29 0.32
r (m) 0.03 0.036 0.043 0.048 0.054 0.06

Table 8. Object dimensions of RCBs of different sizes with ρ = 781 kg m−3.

Lagrangian-mean velocities after a quasi-steady state has been achieved at the location x =
22.5 m, z = −25.0 mm for kaw = 0.034, aw = 20.0 mm and x = 25.2 m, z = −85.0 mm
for kaw = 0.126, aw = 74.0 mm. The Lagrangian-mean velocities are obtained in the same
way as in § 3.1. We find that as the wave steepness is increased, a finer spatial resolution
is required for sufficient convergence. Eulerian-mean flows remain small even for the
highest-steepness case (at most 1 % of the Stokes drift).

Appendix C. Effects of object rotation and density

The boxes in § 4.1 (table 3) were constrained to prevent rotation during the simulations
as these boxes (ρ = 500 kg m−3, h/l = 1.33) are hydrodynamically unstable. To examine
the implications of this assumption and to investigate the effects of object density and
rotation, we simulate the drift of a new set of boxes that are hydrodynamically stable. We
keep the submergence depth and submerged shape of the new set of RCBs the same as
for the previous set but change the height and the density of the boxes. Dimensions of the
new set of boxes are given in table 8. The density of the new boxes is ρ = 781 kg m−3.
For this density, we do not consider relative sizes smaller than l/λ = 5 % to ensure the
freeboard of the object (i.e. h − hd) is larger than the incident wave amplitude, thus
avoiding green-water/plunging impact of the wave onto the object. For this new set of
RCBs, we consider three scenarios: without rotation (i.e. with the rotational degree of
freedom constrained as in § 4.1) and without viscosity; with rotation but without viscosity;
and with rotation and with viscosity. The corresponding object drift velocities are given
in figure 17(a). Figure 17(b) provides a comparison of object drift velocities between the
RCBs with ρ = 500 kg m−3 (defined in table 3 and considered in § 4.1) and the new set
of RCBs with ρ = 781 kg m−3 (defined in table 8) without rotation and without viscosity.

It is clear from figure 17 that restraining the rotational degree of freedom causes only a
very small change to the object drift. Object rotation also does not significantly change the
role that the viscosity plays in altering the drift of the objects. Furthermore, figure 17(b)
shows that as long as the submergence depth and submerged shape of the objects are
unchanged, the density of the object only has a very minor effect on the object drift.

Appendix D. Effects of viscosity and turbulence

D.1. Reynolds and Keulegan–Carpenter numbers
The problem we consider is one of flow around a 2-D bluff body (a RCB) or a circular
object that is freely floating in a surface wave field without a current. We use the
characteristic length of the object l and the velocity difference between the object and
the fluid to define a Reynolds number: Rex = |uo,x − ux|l/ν, where uo,x and ux represent
the magnitude of the horizontal velocity of the object and the fluid, respectively, and
l = D for ROs. The magnitude of the horizontal velocity of the object uo,x is obtained
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Figure 17. Effects of rotation and density on object drift: (a) celerity-normalized drift velocity as a function
of relative size of the objects in table 8 for three different scenarios; (b) celerity-normalized drift as a function
of relative size for objects of density ρ = 500 kg m−3 (cf. table 3) and ρ = 781 kg m−3 (cf. table 8) without
rotation and without viscosity. The red lines correspond to the theoretical Stokes drift.

after a quasi-steady state has been achieved, in which the object oscillates harmonically
and drifts at a constant speed. We estimate the magnitude of the horizontal fluid velocity
as ux = awω exp(−khd) for boxes and ux = ∫ D/2

−D/2 awω exp(−k
√

r2 − x2) dx/D for ROs.
The Reynolds numbers for all simulations in category I (see § 4.1) and category III (see
§ 4.3) are given in tables 9 and 10, respectively. These tables also report the grid size
near the moving object boundary: Δmin = �xmin = �zmin (the aspect ratio of the mesh
near the object is 1). Because OpenFOAM uses collocated grids, which means all of
the flow variables are calculated and stored at the cell centroids and these variables
vary linearly within a cell, we report Δmin/2. In order to evaluate whether the mesh
density in the vicinity of the boundary is sufficient, we estimate the normal-wall distance
yd. We estimate yd from yd = νy+/u∗, where the shear velocity is estimated as u∗ =√

(0.058/2)Re−0.2|ux,o − ux,f |2, and the non-dimensional wall distance y+ is set to 1
(Schlichting & Kestin 1961). By comparing yd to Δmin/2, which is much smaller, we
can conclude from tables 9 and 10 that the mesh used in our simulations is fine enough to
capture the detailed boundary-layer flows around the object.

To determine the relative importance of drag and inertial forces and thereby determine
the likelihood of boundary-layer separation, we also estimate the Keulegan–Carpenter
number: Kc = |uo,z − uz|T/l, T = 2π/ω is the wave period, and we use the size of the
object as the characteristic length scale. In our problem, separation can occur in both the
horizontal and the vertical boundary layers and we thus estimate the Keulegan–Carpenter
number in both directions. We find the Keulegan–Carpenter number in the vertical
directions to always be larger and we therefore report this number in tables 9 and 10.
We estimate the magnitude of the vertical fluid velocity as uz = awω exp(−khd) for both
boxes and ROs. The Keulegan–Carpenter number Kc can be interpreted as the ratio of the
magnitude of the oscillatory motion of fluid particles to the length of the object. When
the Kc number is small, fluid moves only a small distance along the object’s boundaries
without flow separation, and inertial or diffraction forces will be dominant. For large Kc,
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l/λ = 8 %, kaw = 0.08 l/λ = 10 %, kaw = 0.09

ȳ+ uO/c Ax/aw Az/aw ȳ+ uO/c Ax/aw Az/aw

BC1 0.85 0.0085 0.88 0.98 0.62 0.0136 0.80 1.22
BC2 0.85 0.0085 0.88 0.98 0.62 0.0137 0.80 1.22
Laminar — 0.0078 0.82 1.15 — 0.0134 0.78 1.30

Table 12. Effect of including a turbulence model for RCBs with l/λ = 8 %, kaw = 0.08 and l/λ = 10 %,
kaw = 0.09 (category III). The boundary conditions BC1 and BC2 are those in table 11, ȳ+ is the time-averaged
mean value of y+ on the object boundary.

the fluid particle travels a large distance relative to the size of the object, leading to flow
separation and vortex formation. When Kc < 3, the flow is inertia dominated, and the
effects of boundary-layer separation and vorticity are small (e.g. Sumer 2006; Yoon et al.
2016; Mohseni et al. 2018). All of our simulations are in this regime (cf. tables 9 and 10).
Furthermore, we do not observe vortex formation and boundary-layer separation in the
streamlines and in the velocity and vorticity (using the Q criterion) fields.

D.2. Turbulent simulations
Our maximum Reynolds numbers in tables 9 and 10 are Re > 3000; these numbers are
in the sub-critical Reynolds number regime for typical flow around a cylinder, which
suggests the boundary layer is laminar but the wake becomes turbulent (Sumer 2006).
Although our analysis shows that there is no distinct wake in our simulations, given the
Reynolds number of the problem, the flow around the object may become turbulent. To
investigate whether the effects of turbulence need to be taken into account (following Yu
& Li 2013; Li et al. 2018), we implement an unsteady Reynolds-averaged NS (URANS)
model by introducing a shear stress transport k-ω turbulence model. We consider the cases
with the largest Reynolds number in category I (the RCB with l/λ = 10 %, kaw = 0.034)
and category III (the RCBs with l/λ = 8 %, kaw = 0.08 and l/λ = 10 %, kaw = 0.09).
The results are given in tables 11 and 12. Our mesh is fine near the object boundary, as
an accurate prediction of viscous forces (wall shear stress) on the object is important.
Therefore, in terms of the near-wall treatment, we choose a wall-resolving approach and
compare these results with a low-Reynolds-number wall function approach. The boundary
conditions for the object boundary are given in table 11.

The mesh used for simulations with and without the turbulence model (for both
boundary conditions) is the same. It is clear from table 11 that there is no difference
between the two boundary condition (BC) settings, which also confirms that our mesh
is fine enough for a wall-resolving approach. Tables 11 and 12 that, compared with the
results of the laminar model, a URANS model predicts a similar albeit very slightly lower
value of the object drift (uO/c) along with a similar albeit very slightly larger horizontal
motion (Ax/aw) and a similar albeit slightly smaller vertical motion (Az/aw). Sensitivity to
the initial value of the specific turbulence dissipation rate ω is small.
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