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msiFlow: automated workflows for
reproducible and scalable multimodal mass
spectrometry imaging and microscopy data
analysis

Philippa Spangenberg 1, Sebastian Bessler 2, Lars Widera1, Jenny Bottek 1,
Mathis Richter 3, Stephanie Thiebes 1, Devon Siemes1, Sascha D. Krauß 1,
Lukasz G. Migas4,5, Siva Swapna Kasarla6, Prasad Phapale 6, Jens Kleesiek 7,
Dagmar Führer8, Lars C. Moeller8, Heike Heuer 8, Raf Van de Plas 4,5,9,
Matthias Gunzer 1,6, Oliver Soehnlein 3, Jens Soltwisch 2, Olga Shevchuk 1,
Klaus Dreisewerd 2 & Daniel R. Engel 1

Multimodal imaging by matrix-assisted laser desorption ionisation mass spec-
trometry imaging (MALDI MSI) and microscopy holds potential for under-
standing pathological mechanisms by mapping molecular signatures from the
tissuemicroenvironment to specific cell populations. However, existing software
solutions forMALDIMSIdata analysis are incomplete, requireprogramming skills
and contain laborious manual steps, hindering broadly applicable, reproducible,
and high-throughput analysis to generate impactful biological discoveries. Here,
we present msiFlow, an accessible open-source, platform-independent and
vendor-neutral software for end-to-end, high-throughput, transparent and
reproducible analysis of multimodal imaging data. msiFlow integrates all neces-
sary steps from rawdata import to analytical visualisation alongwith state-of-the-
art and self-developed algorithms into automated workflows. Using msiFlow, we
unravel the molecular heterogeneity of leukocytes in infected tissues by spatial
regulation of ether-linked phospholipids containing arachidonic acid. We antici-
pate that msiFlow will facilitate the broad applicability of MSI in multimodal
imaging to uncover context-dependent cellular regulations in disease states.

The cellular heterogeneity in tissues has a reciprocal and decisive
influence on the microenvironment and enables a balance between
homoeostasis and inflammation. Intra- and intercellular communica-
tion is key in both tissue homoeostasis and inflammation, and lipids

are emerging as critical regulators and key molecules in these
processes1. Moreover, the lipid landscape was recently defined as a
feature of immune cell identity2. Upon inflammation, neutrophils, the
most abundant circulating white blood cell subset, readily infiltrate
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into and navigate through the tissue. Herein, they respond to a ple-
thora of signals from the microenvironment by synthesis of lipid
messengers, such as arachidonic acid (AA) and the oxidised metabo-
lites prostaglandins and leukotrienes, influencing recruitment, phe-
notype and function of neutrophils3–5. In urinary tract infection (UTI),
the third most common bacterial infection in humans6,7 induced by
uropathogenic Escherichia coli (UPEC)8, neutrophils and urothelial
cells are critical cell populations which provide the first immunological
barrier for the containment of infection9–11. Data on lipidomic adap-
tations of urothelial cells and neutrophils in UTI are missing, as algo-
rithms assigning lipids to specific cell populations in tissues are scarce,
hindering insights into the decisive role of lipids in regulating
mechanisms of inflammation and resolution.

In order to decipher the cellular interplay and the behaviour of
specific cell populations in tissues, methods are required enabling in-
depth lipidomic profiling with spatial resolution in the micrometre
range. Immunofluorescencemicroscopy (IFM) efficiently determines the
distribution of various cell types in tissue niches with high spatial
resolution12. In contrast,matrix-assisted laser desorption ionisationmass
spectrometry imaging (MALDI MSI) with laser-induced postionisation
(MALDI-2) provides a label-free technology to investigate the spatial
distribution of a large number of lipids and metabolites that are pre-
dominantly inaccessible by IFM13. Moreover, transmission-modeMALDI-
2 (t-MALDI-2) for high-resolution imaging was introduced recently14,15.
Due to differences in the optical setup, this technique can achieve a pixel
size of down to 1 µm whereas standard MALDI MSI can reach 5–20 µm
pixel size. For lipids, t-MALDI-2 MSI shows a high signal-to-noise ratio
(SNR) while maintaining the depth of analysis (e.g. sensitivity and ion
yield) of regular MALDI-2 MSI14. Thus, combining IFM and MALDI MSI
would enable the assignment of the spatial lipidome to specific cell
populations. A recent study integrated multiplex IFM and MSI to map
myeloid heterogeneity in its metabolic and cellular context16. However,
analysis of high-dimensional MALDI MSI data and image co-registration
to IFM remains challenging due to the lack of algorithms and complete
workflows, that allow reproducible and automated pre-processing, ana-
lysis and visualisation of MALDI MSI data17,18. As technology advances to
achieve higher resolutions, data sizes are increasing, thereby further
complicating data handling. Therefore, most commercial software
solutions offer a user interface to pre-processed data with reduced size.
Although this enables interactive data visualisation and analysis, it offers
limited transparency and control over data pre-processing and data
quality. In contrast to commercial software, which often remains a black
box forusers, existingopen-source softwareoffers incomplete solutions,
as it is mostly designed for specific tasks (e.g. individual pre-processing
steps, image registration, analysis or visualisation) and often requires
programming skills or contains laborious manual steps (e.g. manually
selecting off-/on-tissue regions)18–24. As a result, customised data analysis
pipelines are constructed fromapool of open-sourcepackages, in-house
developed or commercially available software, hindering reproducible
and high-throughput analyses and deterring non-expert users.

In this study, we aimed to bridge this gap by developingmsiFlow,
an open-source software that integrates all steps from import and pre-
processing of raw multimodal and multi-vendor imaging data to
registration, analysis and visualisation in automated workflows. The
workflows operate fully automatically on all major operating systems.
By employing msiFlow to a clinically relevant proof-of-concept study,
we provide insights into the spatial lipidomic interactome in UTI,
revealing a hitherto unknown heterogeneity of neutrophils important
for the immune response against invading pathogens.

Results
The msiFlow software
High-dimensional molecular imaging through MALDI MSI holds great
potential for comprehensive spatial mapping of the cellular hetero-
geneity in tissues and deciphering complex molecular interactions

within the tissuemicroenvironment. However, the lack of open-source
and easy-to-use software for automated MSI data processing and
analysis greatly complicates reproducible and precise mapping of
molecular landscapes in situ. To solve this problem, we integrated,
optimised and further developed existing bioinformatic methods for
data pre-processing, registration, analysis and visualisation into msi-
Flow, a collection of automated Snakemake workflows enabling
reproducible and scalable analyses25. We applied msiFlow using a
correlative imaging approach consisting of high-resolution (t)-MALDI-
2 MSI and IFM in an experimental model of UTI. For this purpose,
consecutive bladder sections of 8 µmfromfemalemiceweremeasured
by IFM, t-MALDI-2 MSI and MALDI-2 MSI with a pixel size of 0.2 µm,
2 µmand 5 µm, respectively (Fig. 1a). t-MALDI-2 data weremeasured by
orbitrap and MALDI-2 MSI by time-of-flight (TOF). The generated
multimodal imaging data were processed and analysed by msiFlow.

msiFlow contains seven Snakemakeworkflows for pre-processing,
registration, segmentation and analysis/visualisation. We have delib-
erately divided the software into seven main workflows to make the
application highly flexible andmodular. This modular software design
enables easy integration of individual workflows of msiFlow into
existing analysis pipelines. It is also possible to combine multiple
workflows of msiFlow into one workflow via Snakemake. All workflows
are integrated into aDocker26 image enabling easy-to-use execution on
all major operating systems. Each workflow can be run fully auto-
matically through one command in the terminal. Parameters used by
msiFlow are defined in one configuration file and can be adjusted by
the user depending on the instrument’s setting (e.g. mass and spatial
resolution) and preferred methods. msiFlow also provides a browser-
based interface to adjust the parameters and run the workflows
(Supplementary Fig. 1). Adetailed descriptionof all parameters and the
configurations used in this study forMSI pre-processing is provided in
Supplementary Table 1 and on GitHub for all workflows.

msiFlow includes an MSI pre-processing workflow which imports
raw MSI files from different vendors (Bruker and Thermo Fisher), pro-
cesses all files in parallel, and outputs the processed data in the open
standard imzML format alongwith quality control visualisations (Fig. 1b).
The workflow contains steps for spectral smoothing, peak picking, peak
alignment, matrix removal, peak filtering, normalisation, outlier removal
andde-isotoping togenerate anendogenous/tissue-originmono-isotopic
peak list (see method details in section “Methods”). We established two
UMAP-based clustering approaches to automatically identify and remove
off-tissue/matrix pixels and outliers enhancing data quality for sub-
sequent analysis. To this end MALDI-2 MSI data of each sample were
reduced to two dimensions by UMAP27 followed by HDBSCAN
clustering28 (Supplementary Fig. 2a). The cluster connected to most
border points of themeasured area was considered the off-tissue cluster
(Supplementary Fig. 2b). Clusters with high correlation to the off-tissue
cluster were combined to an extended off-tissue cluster (Supplementary
Fig. 2c) and post-processed to remove isolated objects and fill holes
(SupplementaryFig. 2d).With thisunsupervisedapproachweprevent the
need of defining known matrix peaks beforehand which are often not
consistent throughout all datasets. However, msiFlow also implements a
supervised approach based on knownmatrix peaks. For identification of
outliers, data of all samples were reduced to two dimensions by UMAP
followed by HDBSCAN clustering (Supplementary Fig. 3a) and sample-
specific clusters (SSC) were identified in which 70% of pixels originate
fromone sample (Supplementary Fig. 3b). Finally, samples in whichmost
pixels were SSC pixels were considered sample outliers (Supplementary
Fig. 3c, d).

In addition to MSI pre-processing, msiFlow provides a workflow
for IFM pre-processing and image co-registration to combine MSI and
IFM data. In the pre-processing workflow, noise is removed from the
images by rolling-ball background subtraction and Gaussian smooth-
ing followed by contrast normalisation (Fig. 1b bottom). Here very
high/low intensities are suppressed to enhance image contrast. After
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data pre-processing, MALDI-2 MSI data are combined with the IFM
data through image co-registration in which a transformation aligns a
moving to a fixed image (Fig. 1c). Several methods have been devel-
oped to generate one image out of a MALDI MSI dataset to spatially
visualise molecular differences and similarities29. Here we used UMAP
to reduce the MALDI-2 MSI data to one dimension. Through this
approach, we receive one value for each pixel spectrum which can be
visualised as a greyscale image. This UMAP image represents the main
tissue structure. From IFMwe used the autofluorescence (AF) image as
it similarly represents the main tissue structure. Registration to the

MALDI-2 MSI data was performed using symmetric normalisation
implemented in theAdvancedNormalisationTools (ANTs) library30. To
account for tissue deformations between the consecutive sections, the
workflowuses rigid, affine anddeformable transformationwithmutual
information as the optimisation metric.

From the pre-processed (and registered) data, regions of interest
(ROIs) are extracted through two segmentation workflows (one for
MSI and one for IFM data) (Fig. 1d). The MSI segmentation workflow
includes state-of-the-art dimensionality reduction methods (PCA,
t-SNE31, UMAP) and clustering algorithms (k-means, spatial k-means32,

Fig. 1 | Workflow for correlative multimodal mass spectrometry imaging and
immunofluorescencemicroscopy data. aConsecutivemouse bladder sections of
8 µm are measured by immunofluorescence (immunofl.) microscopy (green),
matrix-assisted laser desorption ionisation combined with laser-induced post-
ionisation mass spectrometry imaging (MALDI-2 MSI) (blue) and transmission-
mode MALDI-2 MSI (red) with a lateral pixel size of 0.2 µm, 5 µm and 2 µm,
respectively.MALDI-2MSI data aremeasured by time-of-flight (TOF) and t-MALDI-2
data by orbitrap. Partially created in BioRender. Engel, D. (2024) https://BioRender.
com/a89e002. b The pre-processing workflow integrates raw files in the common
data formats as input (1) and performs signal smoothing (2), peak picking (3) and
peak alignment (4) as first steps. A UMAP-based clustering approach determines
matrix/off-tissue clusters which are connected to most pixels of the border of the
measured area (5). Ions with low spatial coherence (SC), a measure for ion’s
informativeness, are removed (6), followed by intensity normalisation (7). UMAP
clusters in whichmost pixels originate fromone sample are considered outliers (8).
Finally, de-isotoping generates amono-isotopic peak list (9). The software contains

an optional step for IFM pre-processing and image registration to combineMSI
and IFM. The IFM pre-processing step removes noise from the microscopy
images by background subtraction and Gaussian smoothing, followed by
contrast normalisation. c In registration, a selected channel from IFM is used as
moving image and theUMAP image fromMSI is used asfixed image. The learned
transformation is applied to all other IFM image channels, which results in
transformed data (transf. data). d Imaging data are segmented and visualised
by UMAP. Segmentation of the Ly6G IFM image indicates the distribution of
neutrophils (top). The MSI data are segmented into its main tissue regions
(bottom). e Lipidomic signatures of segmented regions and cell populations
are extracted by machine learning-based classification and correlation (top
left) and statistically analysed (top right). Lipidomic changes are visualised by
UMAP (bottom left), Venn diagrams (bottom middle), pie charts (bottom
middle) and heatmaps (bottom right). Processed data (proces. data), anno-
tated pixel spectra (annot. pixel spectra), lamina propria (lp), muscle (msc),
urothelium (uro), control (ctrl), infected (infct).
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HDBSCAN, hierarchical, gaussian mixture models) to perform unsu-
pervised segmentation which extracts the main tissue context. The
IFM segmentation workflow uses a thresholding-based approach to
segment specific markers.

For analysing the ROIsmsiFlow contains three analysis workflows.
The first analysis workflow is designed to identify and compare
molecular changes in different ROIs (e.g. tissue regions) between two
groups by applying statistical analysis. The workflow outputs volcano
plots, pie charts, Venn diagrams and heatmaps of the regulated lipids
(Fig. 1e right). The second analysis workflow unravels molecular sig-
natures of the ROIs (e.g. cell populations) by using machine learning-
based classification (e.g. tree-based classifiers such as AdaBoost,
LightGBM33, XGBoost34), explainable AI methods (e.g. shapely additive
values (SHAP))35,36 and correlation (e.g. Spearman and Pearson) (Fig. 1e
top left). A prior instanceof retrievingmolecular signatures by SHAP in
a multimodal study employing MSI and IFM can be found in Esselman
et al.37. The third analysis workflow applies a UMAP-based clustering
approach to reveal molecular heterogeneity in the ROIs (e.g. cell
populations) and plots the heterogeneous lipid signals in UMAPs
(Fig. 1e bottom left). In conclusion, msiFlow provides an easy-to-use,
vendor-neutral and platform-independent software for automated,
end-to-end multimodal image analysis, which significantly comple-
ments existing open-source software, as depicted in Supplementary
Table 2.

Spatial lipidomic changes in the infected urinary bladder
We appliedmsiFlow toMALDIMSI data of the clinically relevantmodel
of UTI to reveal niche-specificmolecular changes upon infections with
UPEC. To segment the urinary bladder into the main tissue compart-
ments we applied dimensionality reduction by UMAP followed by
HDBSCAN clustering with manual refinement to the MALDI MSI data.
To indicate the molecular changes in the different tissue regions, MS
spectra from control and infected samples were visualised and com-
pared by the 2D UMAP embedding (Fig. 2a). Annotation of the spectra
to specific tissue areas, i.e. lamina propria (lp), muscle (msc) and
urothelium (uro), indicates specific lipidomic signatures in the differ-
ent tissue regions in control and infected samples (Fig. 2b). In addition,
the UMAP visualisation indicates specific tissue layers, such as the
urothelium, with strong changes upon infection. Spatial mapping of
the UMAP representation visualises the different tissue regions
(Fig. 2c). Next we generated tentative lipid annotations for the m/z
values by using the bulk structure search from the LipidMaps Website
(www.lipidmaps.org) and searched for lipid classes expected for
MALDI-2 analysis in positive-ion mode (fatty acids/esters [FA], cer-
amides [Cer], sphingomyelins [SM], hexosyl ceramides [HexCer], tri-
glycerols [TG], diglycerols [DG], glycerophosphocholines [PC],
glycerophosphates [PA], glycerophosphoserines [PS], glyceropho-
sphoethanolamines [PE], glycerophosphoglycerols [PG] and sterols
[ST]) as [M +H]+, [M−H2O+H]+, [M +Na]+ and [M+K]+ precursor ions
with a mass tolerance of ±0.01m/z. For further analysis, m/z signals
without potential lipid matches were filtered out in order to eliminate
non-lipid peaks (e.g. in-source fragments or chemical background).
Then we compared the lipidomic changes separately in the urothe-
lium, lamina propria and muscle. Therefore, we performed statistical
analysis of the mean intensities of urothelial, lamina propria and
muscle pixels of infected vs. control samples and performed MALDI
MSI in data-dependent acquisition (DDA) mode to validate the lipid
annotations (Supplementary Table 3). This analysis indicated the
strongest lipidomic alterations in the urothelium, the site of bacterial
tissue entry, across various lipid classes (Fig. 2d, e). Out of the 12
investigated lipid classes, themainaltered classes includedTG,DG, PC,
ether-linked PC (PC O), PE and ST. Here TG, DG and PC were upregu-
lated and PE and ST were downregulated in the infected urothelium
(Fig. 2f, g). Among other lipids, TG 54:4 was exclusively expressed in
the urothelium (Fig. 2h). In contrast, PCO-32:0 was not only expressed

in the urothelium, but also in the lamina propria close to the urothelial
expression of TG 54:4. High-resolution MSI (2 µm pixel size) by t-
MALDI-2 revealed the distribution of the UPEC infection by PE 33:1
(704.52m/z), an odd chain fatty acyl PE known to be highly expressed
in E. coli38 (Fig. 2h). The t-MALDI-2 measurement further indicated the
presence of ramified cells (PC O-32:0) in the bladder tissue and pha-
gocytosis of bacteria in TG 54:4-rich urothelial areas by those highly
ramified cells.

Identification of lipidomic signatures of neutrophils
Among others, neutrophils are critical immune cells during bacterial
infections and efficiently migrate into infected tissue areas to phago-
cytose bacteria10. We detected Ly6G+ neutrophils in the lamina propria
around blood vessels and in the infected urothelium suggesting
directed migration towards the infection (Supplementary Fig. 4).
Microscopy also indicated downregulation of CXCR2 in the urothe-
lium, suggesting niche-specific desensitisation of this chemokine
receptor at the site of infection (Supplementary Fig. 4).

To unravel the niche-specific lipidomic signature of neutrophils,
we used our multimodal imaging workflow and performed IFM and
MSI on the timsTOF fleX instrument on consecutive tissue sections 1
day after infection. Ly6G, a specific marker for neutrophils, was used
to localise neutrophils across the tissue and actin, expressed in the
muscle tissue, was used to demarcate the organ boundaries to the
outside tissue areas and the lamina propria (Fig. 3a). For image co-
registration the AF channel from IFM was used as moving and the
UMAP representation from MSI as fixed image (Fig. 3b). The learned
transformation was applied to all IFM image channels. The registra-
tion result was validated by the Jaccard index for the overlap between
transformed urothelial mask from IFM andMSI (average 0.8 Jaccard).
Registered Ly6G images were segmented to annotate the pixel
spectra according to neutrophil-rich areas. Then a binary tree-based
classifier was trained with the Ly6G-annotated pixel spectra to
extract lipidomic signatures of neutrophils (Fig. 3c). The most
important lipids to classify Ly6G+/− pixel spectra were several ether-
linked PCs (Fig. 3d). For the classification model, lipids that are anti-
correlated with neutrophils or present in very low abundance in
neutrophils are as important as lipids which are highly correlated to
neutrophils or present in very high abundance. To distinguish
between lipids that are highly and lowly abundant in neutrophils, the
bar plot is colour-coded according to Pearson’s correlation (Fig. 3d).
The lipid with the highest feature importance and correlation for
neutrophils was PC O-36:4 (Fig. 3e). LC-MS/MS (Supplementary
Fig. 5) and in situ MS/MS (Supplementary Fig. 6) indicated that PC O-
36:4 contains the esterified AA.

To validate our results, we performed MALDI-2 MSI from bone
marrow (BM)-derived neutrophils and applied our data pre-processing
workflow (Supplementary Fig. 7a). To extract the main peaks from BM
neutrophils, wefiltered the peaks based on their spatial coherence and
average intensity. The filtered peaks include the top 4 lipids (M+H) for
bladder neutrophils. These lipids are expressed at a very high level in
BM neutrophils, indicating that our imaging workflow identifies cell
population-specific lipids (Supplementary Fig. 7b).

Lipidomic heterogeneity of neutrophils in infection
Neutrophils can adopt specific maturation states in secondary
lymphoid organs such as the BM and spleen, thus establishing sig-
nificant heterogeneity that is important for defence against patho-
gens. However, little is known about this heterogeneity in infected
organs, although certain cellular states may represent specific
adaptations to the tissue environment and infectious conditions. To
reveal the lipidomic heterogeneity of neutrophils in the infected
urinary bladder we usedmsiFlow. Here registered Ly6G images were
first segmented and annotated according to the tissue region (uro-
thelium, lamina propria and muscle) in which they are localised

Article https://doi.org/10.1038/s41467-024-55306-7

Nature Communications |         (2025) 16:1065 4

http://www.lipidmaps.org
www.nature.com/naturecommunications


Fig. 2 | Significant lipidomic adaptations in the urothelium upon infection.
a UMAP embedding of MALDI MSI data of 4 control (grey) and 4 infected (red)
bladder sections (n = 8) from female mice. b UMAP embedding colour-coded
according to the muscle (msc), lamina propria (lp) and urothelium (uro) in the
control (light-coloured) and infected (dark-coloured) tissue sections. c Spatial
mapping of the UMAP clusters shown in (b) in an infected tissue section. d Average
spectra of the different tissue regions (msc, lp and uro) were extracted and sta-
tistically analysed. Venn diagrams revealing the number of significantly down-
regulated (left) and upregulated (right) lipids (p value < 0.05 and |log2(FC)| > 0.5).
e Pie chart showing the percentage of lipid classes regulated in the infected uro-
thelium. fHeatmap showing the average intensity of regulated lipids (p value < 0.05
and |log2(FC)| > 1) in the urothelium for each sample. g The significantly regulated
lipids (p value < 0.05 and |log2(FC)| > 1) in the urotheliumare labelled in the Volcano
plot. A full statistical summary including the exactp values is provided in the source

data file. Lipids validated by on-tissue MS/MS are marked with *, and by LC-MS/MS
are marked with #. hOne infected bladder was measured by t-MALDI-2 MSI. Spatial
distributionof regulated lipids and E. coli (PE 33:1) in the infected bladdermeasured
by t-MALDI-2 MSI. Contrast was enhanced by percentile stretching using 0 as min
and the 99th percentile as max value. Scale bars indicate 300 µm and 50 µm in the
zoom. Urothelium (uro), lamina propria (lp), muscle (msc), diglyceride (DG),
phosphatidylcholine (PC), ether-linked phosphatidylcholine (PC O), phosphatidy-
lethanolamine (PE), sterol (ST), triglyceride (TG). Statistical significance was tested
by two-sided standard t-test for normally distributed populations with equal var-
iances and two-sided Welch’s t-test for normally distributed populations with
unequal variances. Non-normally distributed populations were statistically ana-
lysed by two-sided Wilcoxon rank-sum test. The Shapiro–Wilk test and Levene test
were used to test for normal distribution and equal variances. n = 8 (4 control
versus 4 infected). Source data are provided as a Source Data file.
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(Fig. 4a, b) followed by dimensionality reduction by UMAP (Fig. 4c).
Next HDBSCAN clustering of MSI spectra of Ly6G+ pixels was per-
formed, generating three clusters (Fig. 4d, e). A classification model
was trained on the clustered Ly6G+ pixel data to identify the lipids
with the strongest feature importance and SHAP values. We found
that PC O-36:4 was the most important lipid for the classification
model based on the feature importance (Fig. 4f). Mapping of the
clusters to the different tissue compartments revealed that neu-
trophils in cluster 0 are mainly located in the urothelium by 83%,
neutrophils in cluster 1 are mainly located in the lamina propria by
88% and neutrophils in cluster 2 are equally distributed in the lamina
propria (52.7%) and muscle (46.4%) (Fig. 4g). In addition, binary

classifiers were trained for each class which revealed class-specific
lipidomic signatures (Fig. 4h–j). The distribution of the top lipids
showed strong expression of DG 34:2 (575.5m/z) in cluster 0
(Fig. 4h), PC O-36:4 (768.59m/z) in cluster 1 (Fig. 4j) and SM 42:2;O2
(851.54m/z) in cluster 2 (Fig. 4i). These data demonstrate the spatial
expression of PC O-36:4, which contains the immunologically
important metabolite AA, in neutrophils in different tissue niches in
the urinary bladder. msiFlow resolved the lipidomic heterogeneity
of neutrophils in infected tissue areas, shedding light on the tissue-
specific lipidomic adaptations of neutrophils in infected tissues and
providing possibilities for the adaptations of an immunological
response in tissues.

Fig. 3 | Image co-registration andmachine learning-based classification extract
spatial lipidomic signatures of neutrophils. a Immunofluorescence microscopy
(IFM) of Ly6G for neutrophils (red) and actin for smooth muscle cells (blue) was
performed on four consecutive bladder sections to the MALDI mass spectrometry
imaging (MSI) sections from female mice. Colour bars indicate the scaled inten-
sities (arb. units) ranging from 0 to 1 of Ly6G (red) and actin (blue). Contrast was
enhanced by adjusting the min/max value in Fiji. b IFM images were registered to
the MALDI MSI images. The autofluorescence (AF) image from IFM was used as
moving image and the UMAP image from MSI served as fixed image. The learned
transformationwas applied to all IFM image channels.We validated the registration
result by the Jaccard (Jacc.) index for the overlap between transformed urothelial
mask from IFM (green) and MSI (magenta). We applied spatial k-means clustering
on the MSI data and selected the cluster containing the urothelium. The urothelial
mask from microscopy was manually created. c Segmentation of the registered
Ly6G images was performed to annotate the pixel spectra into neutrophil/non-

neutrophil pixels. Then a machine learning (ML)-based classification model was
trained with the annotated (annot.) pixel spectra for neutrophils. Created in
BioRender. Engel, D. (2024) https://BioRender.com/b17p939.d Feature importance
ranking revealing the top 10 lipids which are most important for the classifier to
distinguish neutrophil and non-neutrophil pixels. The bars are colour-coded
according to Pearson’s correlation coefficient (corr.) ranging from 0.03 (min) to
0.11 (max). Several ether-linked phospholipids were further characterised by on-
tissue MS/MS (marked with *). The top lipid was also validated by LC-MS/MS
(marked with #). e Ion image of the top lipid identified for neutrophils distribution
on the consecutive section to the IFM section shown in (a). Colour bar indicates the
scaled intensity (arb. units) of 768.59m/z ranging from 0 to 1. Contrast was
enhanced by percentile stretching using 0 asmin and the 99.9th percentile as max
value. Urothelium (uro), lamina propria (lp), muscle (msc). Scale bars indicate
500 µm. Source Data are provided as a Source Data file.
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Discussion
In this study, msiFlow, a powerful open-source end-to-end software for
automated pre-processing, analysis, visualisation and registration of
MALDIMSI and IFMdatawasgenerated.UsingmsiFlow,we clarified the
cell-specific lipidomic adaptations of urothelial cells and neutrophils in
UTI at a high spatial resolution and identified specific ether-linked PCs
and the AA metabolism by neutrophils in certain tissue niches.

With msiFlow, we address the current lack of complete, auto-
mated andopen-sourceMSI softwareby integrating all necessary steps
from raw data import tomultivariate analysis and visual output as well
as registration into msiFlow. All steps are automated in Snakemake
workflows, which enables parallel data processing for high-throughput
analyses. All workflows canbe run via a single command in the terminal
on all major operating systems and do not require complicated
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package installations, as we incorporated all workflows into a Docker
image,making it broadly applicable and suitable for non-programmers
compared to common software which only runs on Windows (e.g.
SCiLS Lab, LipoStar and msiQuant39) or requires programming skills
(e.g. Cardinal). Nevertheless, msiFlow provides full flexibility to define
all desired steps and preferredmethods to be executed by specifying a
manageable number of parameters in one configuration file. In addi-
tion, msiFlow is fully developed in the open-source programming
language Python, as opposed to the widely used proprietary pro-
gramming language MATLAB. Thus, msiFlow is more affordable and
accessible than commercial or proprietary software developed in
MATLAB16,22,40. Unlike most software that only accepts data in imzML
format21,22,39–42, msiFlow accepts raw timsTOF data in addition to
imzML, preventing the need for additional software for data parsing
and the dependence on manufacturer-specific software.

We have made special efforts to develop a complete pre-
processing pipeline to filter the data into an endogenous/tissue-ori-
gin mono-isotopic peak list for downstream analysis. Simple peak
picking is often not sufficient to filter out non-informative or exo-
genous signals (e.g. from matrix, isotopes and chemical noise) from
raw spectra43. Such unfiltered data can lead to prediction models
learning from non-biological meaningful signals. Therefore, our
workflow includes a peak filtering step in addition to standard peak
picking. Our workflow performs pixel-wise peak picking and utilises
the spatial information for peak filtering by computing the spatial
coherence metric44, presenting a significant improvement over com-
mon MS software that uses single mass spectra without considering
spatial information45. In addition, we have developed twoUMAP-based
clustering approaches that sufficiently determine matrix/off-tissue
pixels andoutliers in datasets fully automatically, whichwas previously
often donemanually (e.g. manual selection of specific regions in SCiLS
Lab). The automated matrix detection approach is applicable for
whole-sample measurements due to its reliance on tissue architecture
and borders and the outlier detection approach is effective for multi-
sample datasets as it relies on spectral similarity across multiple
samples. Our workflow also provides visual results after each pre-
processing step, offering transparency and the possibility of quality
control compared to commercial software.

msiFlownot only enables end-to-end analysis ofMSI data, but also
registrationwith IFM formultimodal imaging, complementing existing
open-source software which either does not include registration42 or
focuses on registration without data pre-processing and analysis18. In
this study, we registered IFM to high-resolutionMALDIMSI to account
for the emerging interest in multimodal analyses. Typically, immuno-
histochemistry of tissue sections is registered to molecular data from
MSI and annotated by pathologists46,47. However, registration with IFM
enables the precise localisation of specific cell populations to char-
acterise the phenotypical and molecular heterogeneity of cells in the
tissue context. We deliberately used consecutive sections as the
washing steps of the staining procedure of cell-specific molecules
strongly reduce the signal-to-noise of the spatial lipidome. Thus, our
approach avoids this problem by registering imaging data from con-
secutive tissue sections. However, we acknowledge limitations in

achieving complete cell-specificity due to the usage of consecutive
tissue sections and lateral diffusion of lipids from surrounding cells
during MSI sample preparation. While our automated registration
approach might be less accurate than the popular landmark-based
registration selecting features present in both modalities16,48 or laser
ablation marks fromMSI18, it does not require manual steps and is not
dependent on a post-acquisition pattern. Furthermore, ourMSI data of
BM-derived neutrophils revealed a substantial abundance of the
identified lipids, validating the adequacy of our image registration,
segmentation and feature extraction approach for identifying mole-
cular signals associated with particular cells within tissue sections to a
certain degree.

So far msiFlow does not include an annotation or interpretation
step, as we see the main aim of the software in identifying interesting
molecular patterns and preliminary candidates which can be validated
by MS/MS in the next step. However, as msiFlow provides a mono-
isotopic peak list and contains a mass alignment procedure, tentative
lipid annotations for interesting candidates canbemade throughmass
matching to databases such as LipidMaps, as presented in this study.
Due to the modular software design, an annotation routine as well as
available software for biological interpretation49 can easily be added in
the future.Moreover,we anticipate thatmsiFlowcanbe scaled toother
MSI modalities, such as metabolomics and proteomics.

To demonstrate the strength of our multimodal imaging
approach and msiFlow to biological research, we applied msiFlow to
lipidomic MSI and IFM data of UPEC-infected bladders. This revealed
high abundance of ether-linked PCs in neutrophils which is in line with
previous studies2,50,51. Polyunsaturated fatty acids (PUFAs) containing
lipids, such as PCO-36:4, strongly influence cellular function via effects
on membrane properties, and by acting as a precursor pool for lipid
mediators, such as AA. Among others, these mediators are enzymati-
cally converted by cyclooxygenase and lipoxygenase to generate
eicosanoids, such as prostaglandins and leukotrienes4. These meta-
bolites are critical for neutrophil migration and swarming in the three-
dimensional tissue context52. Recently, changes in the composition of
PCs were observed during neutrophil differentiation stages, indicating
reduced abundance of this PUFA in mature stages of neutrophils2.
Similarly, we found that PC O-36:4 was most abundant in neutrophils
after extravasation in the lamina propria, but not detectable at the site
of infection in the urothelium, suggesting metabolic oxidation of AA
into leukotrienes to facilitate neutrophil swarming towards the local
infection in the urothelium. Besides AA oxidation, the reduced abun-
dance of PC O-36:4 in the urothelium could also indicate neutrophil
apoptosis as it is assumed that ether-linked PCs are important mem-
brane components required for neutrophil survival53. In addition, the
location of UPEC, visualised by PE 33:1 in our t-MALDI-2 data (Fig. 2h),
may play a crucial role for the function of uroepithelial cells and neu-
trophils. In particular, lipopolysaccharides from UPEC are recognised
by Toll-like receptor (TLR) 4 expressed by both neutrophils and
uroepithelial cells54. Upon sensing through TLRs, uroepithelial cells
secrete a wide range of soluble factors, including the antimicrobial
peptides cathelicidin and β‑defensin, as well as chemokines, such as
CXC-chemokine ligand 1 (CXCL1), the latter regulating neutrophil

Fig. 4 | Lipidomic heterogeneity of neutrophils. a Registered Ly6G image
showing the distribution of neutrophils in the uro, lp andmsc. Colour bar indicates
the scaled intensity (arb. units) of Ly6G ranging from 0 to 1. b Segmented Ly6G
image, colour-coded according to the different tissue regions. c UMAP of Ly6G+

pixel spectra in four infected bladder samples (n = 4) from female mice colour-
coded according to the different tissue regions. d HDBSCAN clustering was per-
formed on the UMAP embedding of Ly6G+ pixel spectra. The spatial distribution of
the three main clusters is shown in the image of an infected bladder region.
e HDBSCAN clusters shown in the UMAP embedding of Ly6G+ pixels. Cluster −1
indicates noise pixels. f A XGBoost multi-class classifier was trained on the anno-
tated clustered pixel spectra to extract the mean SHAP values of the 10 most

important lipids based on the feature importance. The top 10 lipids are shown in
ascending order according to their feature importance. g Distribution of cluster
pixels in the different tissue regions. h–j AXGBoost binary classifier was trained for
each cluster to reveal cluster-specific lipidomic signatures. The resulting top 10
lipids based on their feature importance are shown in the bar plots (left) and
coloured according to their Pearson’s correlation (corr.). Signal intensities of lipids
with the highest feature importance and positive Pearson’s correlation for cluster 0
(h), cluster 1 (i) and cluster 2 (j) shown in the UMAP (middle) and a spatial heatmap
(right). Urothelium (uro), lamina propria (lp), muscle (msc). Scale bars indicate
200 µm. n = 4 (UPEC-infected). Source data are provided as a Source Data file.
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migration into the urothelium10. Thus, migration of neutrophils, pha-
gocytosis of UPEC and the crosstalk of uroepithelial cells with neu-
trophils could result in significant changes in the lipid composition,
which we have unravelled by msiFlow. Taken together, msiFlow
revealed a heterogeneous distribution of lipids, such as PC O-36:4 in
neutrophils, indicating a critical and spatial role of certain lipid species
for neutrophil state and function.

With the advent of our established software and the high-
resolution t-MALDI-2 MSI technologies, we found an increased
expression of molecules in the population of urothelial cells impor-
tant for mucus production and modulation of the bacterial coloni-
sation, such as PCs, DGs and TGs55,56. Our t-MALDI-2 MSI data
revealed an accumulation of TGs in the urothelium close to the
bacteria. Interestingly, TGs were also among the lipids with the
highest feature importance and correlation to neutrophils in the
urothelium. TGs are stored in lipid droplets (LDs), which have been
described as sites of eicosanoid synthesis57. It is also known that
defence molecules, such as Cathelicidin (CAMP) and histones,
accumulate on the LDs of challenged cells which makes them more
resistant to bacterial species including E. coli58, potentially through
the mechanism of neutrophil extracellular traps (NETs)58. Hence our
findings suggest an important role of LDs in supporting the immune
defence against UPECs in UTI through eicosanoid synthesis and NET
formation.

In conclusion, we established an open-source, platform-
independent and vendor-neutral software for automated, end-to-
end, transparent, reproducible and scalable multimodal MSI and IFM
image analysis with a low barrier to entry. Using msiFlow, we not only
identified lipidomic signatures of neutrophils, validated by MSI of BM
neutrophils and in line with previous studies, but also unravelled a
hitherto unknown lipidomic heterogeneity of neutrophils in UTI. This
is an essential step towards uncovering the context-dependent reg-
ulation of leucocytes in inflammatory conditions. The easy usability
and completeness of our softwarewill facilitate the applicability ofMSI
in the emerging field of multimodal imaging.

Methods
Ethics statement
The animal study was approved by LANUV, Recklinghausen, Germany.
The study was conducted in accordance with the local legislation and
institutional requirements.

Animal studies
Six- to eight-week-old female C57BL/6J mice were used throughout
the experiments. We used female animals for this study, as UTI
mostly affects women. Animals were purchased from Charles River
Laboratories and maintained under specific-pathogen-free condi-
tions in the central animal facility at the University Hospital Essen.
The mice were kept at 20–24 °C and 45–65% humidity in a 12-h dark-
light cycle. They were housed in stable social groups and provided
with species-appropriate food and water, suitable bedding and
nesting material as well as a shelter for rodents. The local review
board (Bezirksregierung Köln, Landesamt für Natur, Umwelt und
Verbraucherschutz NRW in Recklinghausen, Germany) approved the
animal experiments.

Urinary tract infection model
UPEC strain 536 (O6:K15:H31) was cultured for 3 h at 37 °C in LB
medium. The bacteria were harvested by centrifugation at 1500 × g for
20min and then the OD(600) was measured. The bacteria were
resuspended at a concentration of 1010 bacteria/mL in sterile PBS. A
mixture of ketamine and xylazine 80/10mg/kg body weight in 150μl
PBS was injected intraperitoneally to anesthetise the mice. The infec-
tion of the animals was induced by transurethral inoculation of 5 × 108

UPEC in 0.05mL PBS using a soft polyethylene catheter.

IFM
UPEC-infected urinary bladders (n = 4) were fixed overnight in PLP
buffer [pH 7.4, 0.05M phosphate buffer containing 0.1M L-lysine,
2mg/mL sodium periodate and paraformaldehyde with a final w/v
concentration of 1%], equilibrated in 30% sucrose for 24 h and stored at
−80 °C. Bladder tissue was cut into 8 µm thick sections at −20 °C using
a cryostat. Unspecific binding was blocked by incubation of the sec-
tions with PBS containing 1% BSA and 0.05% Triton X-100 for 1 h.
Bladder sections were mounted into MACSwell sample carriers,
blockedusing ablockingbuffer containing 10%BSA and 2%goat serum
for 1 h at RT before nuclei were counterstained using DAPI-staining
solution (Miltenyi Biotec) according to the manufacturer’s recom-
mendations before being placed into a MACSima imaging system.
Sections were then incubated with directly conjugated antibodies
against Ly6G (1A8, Miltenyi Biotec, PE,1:50), EpCAM (REA977, Miltenyi
Biotec, APC,1:50), SMA (REAL650, Miltenyi Biotec, FITC, 1:300) and
CXCR2 (SA044G4, BioLegend, PE, 1:50). Acquired pictures were stit-
ched using the pre-processing pipeline in MACS iQ View Analysis
Software (Miltenyi Biotec) for downstream analysis.

MALDI MSI
Unfixed tissue sections of infected and control bladders (n = 10, 5
infected and 5 control) were thawed under a gentle streamof dry N2 gas.
For t-MALDImeasurements, the tissue sectionswerewashedwith 250 µL
of a 150mMammoniumacetate solution to removealkalimetal salts and
dried again under a gentle stream of dry N2 gas. 2,5-DHAP matrix was
applied onto the tissue section by sublimation in a home-build sub-
limation device described earlier by Bien et al.59. 1.5mL of a 20mg/mL
solution of 2,5-DHAP in acetone was filled into the matrix reservoir and
heated to about 120 °C which caused the acetone to evaporate. The
samplewasmounted to the cold side of the sublimationdevice and kept
at around 4 °C at an approximate vertical distance of 6 cm above the
matrix reservoir. The sublimation device was evacuated to a pressure of
about 5 × 10−3 mbar and the sublimation was conducted for 10min. The
samples were measured immediately after sublimation.

All MALDI MSI measurements were carried out in positive-ion
mode. MALDI-2 MSI data with a pixel size of 5 µm was acquired with a
timsTOF fleX MALDI-2 (QTOF) instrument with microGRID extension
(Bruker Daltonics, Bremen, Germany). The MALDI and postionisation
laser were operated with a pulse repetition rate of 1 kHz and a delay of
10 µs. The ablation laser power was set to 80% with 25 shots per pixel.
The ion detection range was set to m/z 300–1500.

The TIMS separated MS/MS measurement was acquired with a
pixel size of 50 µmwith 250 laser shots, a 1/k0 range from 1.4 to 1.8with
N2 as collision gas, a ramp time of 250ms, an isolation window of 1 Da
and 30eV collision energy.

The t-MALDI-2MSI datawith a pixel size of 2 µmwas acquiredwith
a setup which has been described in detail previously14,60. For this, a Q
Exactive Plus Orbitrap mass spectrometer (Thermo Fisher Scientific,
Bremen, Germany) equipped with a modified dual-ion funnel source
(Spectroglyph, Kennewick, WA, USA), which enabled transmission-
mode illumination and MALDI-2 postionisation, was used. Both lasers
were operated with a pulse repetition rate of 100Hz and a delay of
10 µs. A mass resolving power of 70,000 (defined for m/z 200) with a
fixed injection time of 250ms and an ion detection range of m/z
350–1500 were used. MALDI-DDA-MSI was used to confirm some of
the tentatively annotated lipidswith on-tissueMS/MS. For this a similar
approach to the one used by Ellis et al.61. was chosen, which alternates
full-scan and MS/MS pixel. For this front side illumination was used
with a step size in x- and y-direction of 10 µm and 20 µm, respectively.
For the full-scan pixels, an ion detection range of m/z 550–1500 was
used. ForDDAMS/MSmeasurements an isolationwindowof 1 Da and a
fixed first mass ofm/z 100 with an NCE of 25 were used. The exclusion
timewas set to 30 swith isotope exclusion enabled. Themass resolving
power for both full-scan and MS/MS was set to 70,000 and the
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injection time was fixed at 250ms. The MALDI-DDA-MSI data were
analysed using Lipostar MSI (vs. 1.3, Molecular Horizon, Bettona, Italy)
and annotated using the Lipid Maps Structure Database (https://www.
lipidmaps.org/databases/lmsd). The import and annotation settings
for Lipostar MSI are shown in Supplementary Fig. 8.

Isolation of bone marrow-derived neutrophils
BM-derived neutrophils were obtained using a mouse Neutrophil Iso-
lation Kit (Miltenyi Biotec, 130-097-658) following the manufacturer’s
instructions. In brief, the BM of a femur was flushed, and erythrocytes
lysed using RBC Lysis Buffer (BioLegend, 420302; 1min on ice). Cells
were then sequentially incubated with Neutrophil Biotin-Antibody
Cocktail and Anti-Biotin Microbeads before neutrophils were isolated
using a negative selection on a magnetic column. The isolated neu-
trophils were then centrifuged onto slides using a cytospin centrifuge,
fixed for 5min using 4% formaldehyde, washed two times with 500 µL
PBS followed by two washes with 500 µL of a 150mM ammonium
acetate solution to remove the PBS. For MALDI MSI matrix application
was carried out as described above and the cells were measured with
50 µm pixel size on the timsTOF fleX MALDI-2 (QTOF).

LC-MS/MS
Lipids were extracted using methyl tert-butyl ether (MTBE) extraction
and analysed with liquid chromatography-tandem mass spectrometry
(LC-MS/MS) as reported earlier62. In brief, snap-frozen urinary bladder
tissues were homogenised in ice-cold IPA:H2O (1:1 v/v; 150μL), spiked
with 10μL of SPLASH lipid standard mix, and then subjected to
liquid–liquid extraction using MeOH, MTBE and water solvent mixture
with a final ratio of 1:3:1 (v/v/v). The upper organic phase was collected,
dried out under a nitrogen gas stream, and reconstituted in 100μL of
ACN:IPA:H2O buffer (65:30:5 v/v/v). Resuspended lipid extracts (10μL)
were loaded on a reversed-phase ACQUITY UPLC HSS T3 (1.8μm,
100×2.1mm, Waters Corporation) column and separated using a Van-
quish Duo UHPLC-system (Thermo Fisher Scientific, Waltham, MA, USA)
with a flow rate of 250μL/min. The mobile phases consisted of eluent A
(H2O:ACN, 40:60v/v) andeluentB (IPA:ACN, 90:10v/v) bothwith 10mM
ammonium formate and 0.1% formic acid. All the datasets were acquired
independently in negative- and positive-ion mode in a data-dependent
manner using Orbitrap Fusion Lumos Tribrid Mass Spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA) equipped with a heated
electrospray ionisation source. Lipids were annotated and validated with
lipid class and molecular-species specific diagnostic fragment ions63.

MSI data pre-processing
MALDI MSI data were pre-processed by custom-designed Python
scripts which were automated in a Snakemake64 pipeline. The pipeline
takes raw timsTOF files as input, processes all files in parallel and
outputs the processed data in imzML format alongwith various quality
control visualisations for each step. All parameters used within this
study are listed in Supplementary Table 1. In the first step,
Savitzky–Golay smoothing65 was used to reduce spectral random
noise. Centroid spectra were extracted by using the find_peaks func-
tion from the SciPy signal processing library with default parameters.
Peaks with a SNR of at least three were selected. The noise was cal-
culated by themedian absolute deviation. To eliminatemass drifts, the
pipeline contains an alignment procedure using a kernel-based clus-
tering approach adapted from pyBASIS20. Here peaks which were
present in at least 3% of all pixels across all samples formed the com-
monm/z vector to which the peaks were aligned by nearest-neighbour
mapping. Then off-tissue/matrix pixels were identified and removed
for each dataset (Supplementary Fig. 2). To identify matrix pixels, data
of each sample were first reduced to two dimensions by using UMAP
followed by HDBSCAN clustering. The cluster which was connected to
most pixels of the border of the measured area was considered the
matrix cluster. Clusters with a Spearman correlation above 0.7 to the

matrix cluster were combined to an extended matrix cluster. In the
third step, the binary image of the extended matrix cluster was post-
processed by removing isolated objects of up to 5 pixels followed by a
binary closing operation using a 5 × 5 pixel square structuring element
for the dilation and a 2 × 2 pixel square structuring element for the
erosion. For the post-processing, the scikit-image and SciPy libraries
were used. After matrix removal, the spatial coherence44 was calcu-
lated for each ion which measures its informativeness. Ions with low
spatial coherence were removed. Then the data were normalised by
median-fold-change normalisation to account for intra-sample and
inter-sample variation. To indicate spectra variations among the sam-
ples, a UMAP-based outlier detection method was applied (Supple-
mentary Fig. 3). Here the data of all samples were first reduced to two
dimensions by using UMAP followed by HDBSCAN clustering. Then
SSCs were identified. SSCs are clusters in which most pixels originate
fromone sample. Finally, samples inwhichmost pixelswere SSCpixels
were considered sample outliers. De-isotoping was performed as the
last step. In an iterative approach, isotopes were identified based on
their theoretical m/z value within a predefined tolerance range and
their theoretical intensity pattern.

Lipid annotation
In the first step, a list of tentative annotations ofm/z values wasmade
by using the bulk structure search provided on the LipidMaps web-
site (www.lipidmaps.org). We searched for matches between all
expected lipid classes (fatty acids/esters [FA], ceramides [Cer],
sphingomyelins [SM], hexosyl ceramides [HexCer], triglycerols [TG],
diglycerols [DG], glycerophosphocholines [PC], glycerophosphates
[PA], glycerophosphoserines [PS], glycerophosphoethanolamines
[PE], glycerophosphoglycerols [PG], sterols [ST]) and [M+H]+, [M
−H2O +H]+, [M +Na]+ and [M+ K]+ precursor ions with a mass toler-
ance of ±0.01m/z. This list was then manually curated considering
the biological context and expanded with the annotations gained
from MALDI-DDA-MSI as well as other on-tissue MALDI MS/MS
experiments. In addition, some lipidswere validated by LC-MS/MS, as
described in LC-MS/MS validation strategy for lipid annotations66. If
no further information from MS/MS was gained, the annotation is
only based on the lipid species level, which means in the context of
ether lipids, that 1-O-alkyl lipids with at least one double bond could
also be interpreted as 1-O-alkenyl ethers, as described in lipid
nomenclature guidelines67.

Data analysis, statistics and visualisation
Tissue segmentation was performed on the full m/z spectrum of all
control and infected urinary bladder sections by UMAP (n_neighbors =
10, min_dist =0.0, dist_metric = ‘cosine’) followed by HDBSCAN cluster-
ing (min_samples = 50, min_cluster_size = 10,000). The clusters were
manually merged into super-clusters which represent the main tissue
context (urothelium, lamina propria andmuscle). Then mean spectra of
the pixel clusters were extracted and statistically analysed by two-sided
statistical tests using the Python package SciPy. The standard t-test was
used for normally distributed populations with equal variances and the
Welch’s t-test for normally distributed populations with unequal var-
iances. Non-normally distributed populations were statistically analysed
by the Wilcoxon rank-sum test. The Shapiro–Wilk test and Levene test
were used to test for normal distribution and equal variances. The ratio
between the means of two populations (here control and infected) was
determined as log2(fold change). A full statistical summary (means,
standard deviations, test statistics, degrees of freedom, p values and fold
changes) is provided in the source data file.

For the lipidomic analysis of neutrophils, we reduced the m/z
spectrum by filtering outm/z values for which no lipid in the database
couldbematched based on ourm/z tolerance, aswell as tissue-specific
m/z values with a Pearson’s correlation (SciPy Python package) above
0.5 to one of the tissue regions extracted from the previous tissue
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segmentation (urothelium, lamina propria, muscle). To differentiate
between Ly6G+ and Ly6G− pixels, we segmented the registered Ly6G
images using the Python package Scikit-image. First images were
Gaussian smoothed with sigma= 1 followed by Otsu thresholding.
Finally, small objects (below 10 pixels size) were removed. Unsu-
pervised clustering of Ly6G+ pixels was performed by UMAP
(n_neighbors = 3, min_dist = 0.0, dist_metric = ‘cosine’) followed by
HDBSCAN clustering (min_samples = 30, min_cluster_size = 500).

Important lipids for the ROIs (here tissue regions and neutrophils)
were extracted by using Extreme Gradient Boosting (XGBoost)-based
classification with class weights, Pearson’s correlation and SHAP
values. Therefore, the Python packages XGBoost, SciPy and SHAPwere
used. Class weights were calculated by #samples / (#classes * #occur-
ences) using the Python package scikit-learn.

The Python packages Pandas, Seaborn,Matplotlib andmatplotlib-
venn were used to generate all visualisations (volcano plots, scatter-
plots, pie charts, Venn diagrams, segmented images and bar plots).

Microscopy data pre-processing
Images were pre-processed by rolling-ball background subtraction,
Gaussian smoothing with sigma= 3 followed by percentile stretching
using the Python library scikit-image.

Registration of microscopy and MALDI MSI
Initial transformation of the images was performed in Fiji for
microscopy (rotation and cropping) to match the imaged tissue
region and orientation of bothmodalities. For precise registration we
used symmetric normalisation (SyNRA) as transformation, consisting
of rigid, affine and deformable transformation, and Mattes mutual
information as optimisation metric implemented in the ANTs
library30. We down-sampled the microscopy image, using linear
interpolation, to the same spatial dimensions as the MALDI image
using the Python package ImgAug (https://github.com/aleju/
imgaug). The down-sampled AF from microscopy was used as mov-
ing image and the UMAP image from MSI, which visualises the main
tissue structure similar to the AF image, was used as fixed image. We
validated the registration result by the Jaccard index for the overlap
between registered urothelial mask from microscopy and MSI mask.
We applied spatial k-means clustering on the MSI data and selected
the cluster containing the urothelium. The urothelial mask from
microscopy was manually created.

Statistics and reproducibility
All experiments were conducted once. No measures were taken to
verify the reproducibility of the experimental findings, as the primary
objectivewas todemonstrate the software’s applicability by aproof-of-
concept study.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All MALDI MSI and IFM data (raw and results) generated in this study
have been deposited in Zenodo under accession code https://doi.org/
10.5281/zenodo.14184882. The intermediate pre-processing results of
the MALDI-2 MSI bladder data are available upon request from the
corresponding author D.R.E. The data are not publicly available due to
data size. Requests will be fulfilled within 2 weeks. The LC-MS/MS data
generated in this study have been deposited in MassIVE under identi-
fier MSV000096465. Source data are provided with this paper.

Code availability
The msiFlow source code is publicly available on GitHub (https://
github.com/Immunodynamics-Engel-Lab/msiflow)68.
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