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Synthetic Air Data System for Pitot Tube Failure Detection on
the Variable Skew Quad Plane

Frédéric D. Larocque∗ and Tomaso De Ponti† and Bart D.W. Remes‡ and Ewoud J.J. Smeur§

Delft University of Technology, 2629 HS Delft, The Netherlands

Pitot tube-free airspeed estimation methods exist for fixed-wing and multirotor configurations,
but lack direct applicability to hybrid unmanned air vehicles due to their wide flight envelope
and changing dynamics during transition. This work proposes a novel synthetic air data
system for the Variable Skew Quad Plane (VSQP) hybrid vehicle to allow airspeed estimation
from hover to high speed forward flight and provide pitot tube fault detection. An Extended
Kalman Filter fuses Global Navigation Satellite System (GNSS) and inertial measurements
using model-independent kinematics equations to estimate wind and airspeed without the use
of the pitot tube. The filter is augmented by a simplified vehicle force model. Pitot tube fault
detection is achieved with a simple thresholding operation on the pitot tube measurement and
the airspeed estimation residual. Accurate airspeed estimation was validated with logged test
flight data, achieving an overall 1.62 m/s root mean square error. Using the airspeed estimation,
quick detection (0.16 s) of a real-life abrupt pitot tube fault was demonstrated. This new airspeed
estimation method provides an innovative approach for increasing the fault tolerance of the
VSQP and similar quad-plane vehicles.

Nomenclature
Abbreviation Description Unit

𝐴𝑅 Aspect Ratio -
𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧 Acceleration in Body Frame m s−2

𝐶𝐿 Lift Coefficient -
𝐶𝑑 Drag Coefficient -
𝑑 Diameter of Propeller m
𝑒 Oswald Factor -
𝐹 Force N
𝑓 (𝑥, 𝑢) State Dynamics -
𝑔(𝑥, 𝑢) Output or Measurement Dynamics -
𝑮 Control Effectiveness -
𝑔 Gravity m s−2

𝐾 Gain, Parameter or Coefficient -
𝐿 Lift N
𝑚 Mass kg
𝑝, 𝑞, 𝑟 Angular Rate in Body Frame rad s−1

𝑷 State Error Covariance Matrix -
𝑸 Process Noise Covariance Matrix -
𝑹 Measurement Noise Covariance Matrix -
𝒓 Residual -
𝑆 Surface, Area m2

𝑇 Thrust N
𝒖 Input vector -
𝑢, 𝑣, 𝑤 Velocity in Body Frame m s−1

𝑉𝑎 Airspeed Norm m s−1
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Abbreviation Description Unit

𝑉𝑝 Propeller axial airspeed m s−1

𝒗𝑎 Airspeed Vector m s−1

𝑉𝑁𝐸𝐷𝑥 , 𝑉𝑁𝐸𝐷𝑦 , 𝑉𝑁𝐸𝐷𝑧 Ground Velocity in Earth Fixed Frame m s−1

𝒗𝑤 Wind Velocity Vector m s−1

w Noise -
𝒙 State -
𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏 Body axis -
𝒚 Innovation -
𝒛 Measurement -
𝑍 Threshold -
𝛼 Angle of Attack rad
𝛽 Sideslip Angle rad
Λ Wing Skew Angle ◦

𝜇𝑥 , 𝜇𝑦 , 𝜇𝑧 Wind Velocity in NED Frame m s−1

𝜌 Density kg m−3

𝜎2 Variance -
𝜙, 𝜃, 𝜓 Euler angles rad

I. Introduction
Hybrid Unmanned Air Vehicles (UAVs) are versatile vehicles capable of flying in both fixed-wing and Vertical

Takeoff and Landing (VTOL) configurations. They leverage efficient wing-derived lift and achieve high cruising speeds,
while also enabling seamless transitions to hover flight, providing precise VTOL capabilities. Hybrid UAVs require
advanced control systems to stabilize their flight in various flying configurations.

Airspeed is one of the most vital measurements required for stable flight as aerodynamic forces vary with airspeed.
Typically, a pitot tube is used to derive airspeed from dynamic pressure measurements. Unlike on larger aircraft,
low-cost pitot tubes normally used on UAVs are particularly prone to water blockage due to the absence of a drain tube.
The pressure slowly or immediately drops, resulting in a reduced or zero airspeed reading [1]. When flight controller
parameters are scheduled with airspeed, any sustained airspeed measurement fault can lead to a loss of stability and
ultimately the loss of the vehicle.

For larger vehicles, redundancy and a voting scheme can be used to isolate faulty pitot tubes and maintain a reliable
airspeed estimation [2]. On smaller UAVs, such a strategy cannot be easily implemented due to weight and space
constraints. Additionally, if one pitot tube is subjected to water blockage when flying in highly humid environment, it is
highly likely that other pitot tubes would suffer from the same failure, as their failure modes are not independent [3]. It is
therefore highly pertinent to estimate airspeed using other sensors on the vehicle to ultimately identify pitot tube failures.

𝜔𝑝

𝜔ℎ1

𝜔ℎ2

𝜔ℎ3

𝜔ℎ4

(a) VSQP at Λ = 0◦, in quad-mode configuration,
with the propellers’ rotation conventions used.

(b) VSQP at Λ = 45◦, in transition

𝒗𝑎

𝑥𝑏

𝑦𝑏

𝑧𝑏

𝛽

𝛼
𝑁

𝐸

𝐷

(c) VSQP at Λ = 90◦, in forward flight configura-
tion, with axes definitions used.

Fig. 1 Different skew angle on the VSQP Prototype. In quad-mode configuration 1a, the wing is placed over the fuselage and hover
motors are extended. In forward flight configuration 1c, the wing is completely extended and hover motors are stowed in the fuselage
for reduced drag.

Synthetic air data systems or the estimation of airspeed without the use of a pitot tube is a well-explored topic for
fixed-wing airliners. Different strategies can be used to fuse measurements from sensors such as Global Navigation
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Satellite System (GNSS), Inertial Measurement Unit (IMU), angle of attack and side-slip vanes to obtain an estimation of
airspeed and wind [1, 4]. Rhudy et al. [5] use measurements from such sensors and wind triangle kinematics equations
(see Fig. 2) to derive airspeed and wind estimations for fixed-wing vehicles. As a model-independent estimation
method, it can be applied to different vehicles with minimal additional work, but requires angle of attack and side-slip
measurements.

When such measurements are not available, a model of the fixed wing vehicle can be used to derive airspeed. Youn
et al. [6] explored the use of the 𝑧-axis accelerometer and knowledge of the wing’s and elevator’s 𝐶𝐿 curve to estimate
airspeed. For hybrid vehicles such as the Variable Skew Quad Plane (VSQP), which transitions from hover flight to
forward flight, relying solely on such a strategy is not feasible. Airspeed needs to be known during the transition, before
lift starts being generated by the wing. Hansen and Blanke [7] used a similar approach on the drag axis, linking propeller
rotational speed to an airspeed estimation, with the vehicle’s drag coefficient being known.

Because of its hybrid nature, the VSQP’s airspeed estimation also needs to be assessed in the hover flight portion of
its mission. A simple strategy for airspeed estimation for multirotors links the vehicle’s inclination angle to the airspeed
using wind tunnel data assuming a constant drag coefficient [8]. Hattenberger et al. [9] show that rotor drag is the main
contributor to drag forces on a multirotor and is linear to airspeed. A constant or varying estimation of rotor drag [10]
can be used to estimate airspeed, knowing that the only forces acting on the multicopter come from the rotors’ thrust,
drag or gravity. However, the assumptions used for these methods do not hold for hybrid vehicles that present additional
actuators that can generate forward thrust, a varying drag coefficient and a fuselage that, at higher airspeed, might
generate more drag than the rotors themselves.

The direct applicability of fixed-wing and multirotor synthetic air data methods to hybrid vehicles is limited.
Therefore, the main goal of this work is to obtain a synthetic air data system capable of accurately estimating airspeed
throughout the VSQP’s flight envelope using existing sensors such as GNSS and IMU. With an accurate estimation of
airspeed, pitot tube faults can be detected and effectively addressed. Although this research focuses on the application
of synthetic airspeed estimation for the VSQP platform, it can be applied after some modifications to hybrid vehicles
with a similar quad-plane configuration.

This work provides an Extended Kalman Filter (EKF) with model-independent state equations based on kinematics,
augmented with a 3 body axes simplified model of the vehicle. The covariance of measurements is scheduled according
to the flight phase, taking advantage of the axis providing the most accurate airspeed estimation. A simple pitot tube
fault detection is achieved using a residual based thresholding method. The main contributions of this work are: 1)
reliable airspeed estimation in the whole flight envelope of a hybrid vehicle, 2) a model of the VSQP with sufficient
fidelity to estimate airspeed depending on the flight phase and 3) pitot tube fault detection on actual flight test data with
a failure. To the best of the authors’ knowledge, this is the first synthetic air data system designed for a hybrid vehicle
such as the VSQP.

II. The Variable Skew Quad Plane
The VSQP was designed as a derivative of the well-known quad-plane platform [11]. In hover flight, the VSQP

operates as a normal quadrotor, powered by two motors fixed to its fuselage and by two motors arranged perpendicular
to the wing, as shown in Fig. 1a. The wing is positioned over the fuselage to minimize susceptibility to wind gusts and
reduce the landing footprint. The wing-motor assembly can be rotated 90◦ around its 𝑧 axis to transition from hover
(defined as Λ = 0◦) to forward flight (defined as Λ = 90◦), as shown in Fig. 1c. Drag is reduced by retracting the hover
motors inside the fuselage. In forward flight, thrust is produced by a pusher motor while control is achieved using normal
aerodynamic flight controls on the wing and tail. The vehicle is equipped with a pitot tube, GNSS receiver and IMU.

Due to its variable skew wing, the VSQP possesses certain characteristics in common with the oblique flying wing,
a manned aircraft concept where the whole wing is skewed around its center axis. Lift, drag, side force generated by
the wing all become function of the skew angle [12]. Thus, modelling the vehicle and designing a conventional flight
controller based on axis decoupling pose significant challenges.

An Incremental Nonlinear Dynamic Inversion Control (INDI) controller was developed by Van Wĳngaarden and
Remes [13] and De Ponti et al. [14] for both the stabilization inner loop and guidance outer loop for the VSQP. It
requires limited model knowledge, at the expense of increased sensor dependency. The vehicle’s nonlinear dynamics
can be inverted using the control effectiveness of actuators 𝑢 on the vehicle’s state dynamics 𝑓 (𝑥, 𝑢) to obtain a linear
system, easily controllable using classical control methods. The control effectiveness is the jacobian of 𝑓 𝑥, 𝑢 with
respect to 𝑢 and can be obtained analytically or using a least square estimation with flight test data [15, 16].

The inner loop’s control effectiveness of the aerodynamic control surfaces (ailerons, elevator and rudder) and the
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outer loop’s control effectiveness of the wing are both dependent on airspeed as these actuators are lifting surfaces.
Additionally, to perform transition, the wing is skewed according to a schedule that aims to minimize power consumption
and maximizes overall control effectiveness [14]. The result is an optimal wing skew angle for the current airspeed.
Loss of airspeed data following a pitot tube failure leads to incorrect control effectiveness for the inner and outer loops
and an incorrect wing skew position. If sustained, the fault can lead to the vehicle’s loss of stability.

III. Model-Independent Airspeed Estimation
GNSS measurements can provide precise ground speed 𝒗𝑔 information. Airspeed 𝒗𝑎 can be derived using the wind

triangle, knowing the wind 𝒗𝑤 . The wind triangle is visualized in Fig. 2 and is expressed in vector form as:

𝒗𝐸𝑔 = 𝒗𝐸𝑎 + 𝒗𝐸𝑤 . (1)

Note that 𝐸 represents the earth-fixed reference frame defined by the North, East, Down (NED) axes, and 𝑏 indicates the
body coordinate frame. The axes used in this work are defined in Fig. 1c. The side slip angle 𝛽 is defined as the angle
between the aircraft airspeed 𝒗𝑎 and its plane of symmetry. The rotation matrix 𝑹𝐸𝑏 is used to transfer from body to
earth fixed frame to obtain: 

𝑉𝐸𝑥

𝑉𝐸𝑦

𝑉𝐸𝑧

 = 𝑹𝐸𝑏


𝑢

𝑣

𝑤

 +


𝜇𝑥

𝜇𝑦

𝜇𝑧

 , (2)

where 𝝁 is the wind velocity in NED frame.

𝑁

𝐸

𝒗𝐸𝑔

𝒗𝐸𝑎
𝒗𝐸𝑤

Fig. 2 Wind triangle between airspeed, ground speed and wind speed. Airspeed can be derived from a subtraction between ground
speed and wind speed.

In most cases, the wind is not known and must be estimated simultaneously with airspeed. An EKF can be used to
estimate the airspeed by assuming slow changing wind magnitude and direction [5].

The state transition dynamics for the velocities in the body frame are expressed as:

(3)


¤𝑢
¤𝑣
¤𝑤

 = −
©­­«

𝑝

𝑞

𝑟

 + w𝜔
ª®®¬ ×


𝑢

𝑣

𝑤

 + 𝑹𝑏𝐸


0
0
𝑔

 +


𝑎𝑥

𝑎𝑦

𝑎𝑧

 + w𝑎 .

The kinematics equations themselves present no process noise. Angular rate noise w𝜔 and acceleration noise w𝑎
are added as zero mean Gaussian process noise. Acceleration and angular rates are assumed to be bias free as they are
obtained from an independent attitude and position EKF removing bias.

Wind is modeled as a random walk process, as Rhudy et al. [17] showed it to lead to lower airspeed error standard
deviation compared to a Gauss-Markov wind model. The wind state dynamics are modeled with zero mean Gaussian
process noise w𝜇:

¤𝝁 = w𝜇 (4)

The original implementation of this model-independent airspeed method by Rhudy et al. [5] requires angle of attack
and side-slip vane measurements. As the VSQP is not equipped with them, they are replaced by model-dependent
airspeed estimation using the vehicle’s accelerations. These additional measurements serve a dual purpose, as they also
help accelerate wind estimation convergence when the vehicle is not moving relative to the ground or is moving in a
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straight line. They provide an additional airspeed estimation source. Indeed, to converge on a valid wind estimation
using the model-independent method, the vehicle must perform turns, to change the orientation of wind in relation to
the vehicle’s ground track.

IV. Model-Aided Airspeed Estimation
Specific forces acting on the vehicle can be derived from the different body axes accelerations. The vehicle is

modeled by separating it in different components that generate forces: fuselage, hover propellers, wing, ailerons, pusher
propeller, elevator and rudder. Ailerons, elevator and rudder are assumed to generate forces that are negligible compared
to other components or average to zero on a long horizon. As such, the measured acceleration relates to the sum of
forces from the fuselage, hover motors, wing and pusher motor:

𝒂 =
1
𝑚

( 𝑭 𝑓 + 𝑭ℎ + 𝑭𝑤 + 𝑭𝑝). (5)

A. Fuselage
Drag is modeled as:

𝐷 =
1
2
𝜌𝑉2

𝑎 𝑆 𝐶𝑑 . (6)

The fuselage is assumed to have a constant drag coefficient and to generate negligible lift. By grouping constant
parameters and assuming that the angle of attack is small so that 𝑢 ≈ 𝑉𝑎, the force generated by the fuselage is defined
as proportional to 𝑢 squared:

𝐹𝑥 𝑓 = 𝐾𝑥 𝑓 𝑢
2. (7)

The side force is estimated by assuming that part of the fuselage’s drag force 𝐷 𝑓 is projected on the 𝑦 body axis
when side-slip angle 𝛽 is present [18]:

sin 𝛽 =
−𝐹𝑦 𝑓
𝐷 𝑓

. (8)

Using a small angle approximation on 𝛽, substituting Eq. 6 into Eq. 8 and combining constant parameters, the side force
generated by the fuselage can be written as:

𝐹𝑦 𝑓 = 𝐾𝑦 𝑓 𝛽 𝛽𝑉
2
𝑎 . (9)

B. Pusher Propeller
Standard definitions for propellers aerodynamic coefficient define a propeller’s thrust coefficient 𝐶𝑇 :

𝐶𝑇 =
𝑇

𝜌 𝜔2 𝑑4 , (10)

where 𝜔 is the propeller’s rotational speed and 𝑑 its diameter. Test data shows that the thrust coefficient is proportional
to the advance ratio 𝐽 = 𝑉𝑝

𝜔 𝑑
[19]:

𝐶𝑇 = 𝑎 𝐽 + 𝑏, (11)

where 𝑎 and 𝑏 are coefficients experimentally found and 𝑉𝑝 the propeller axial flow speed.
Isolating thrust in Eq. 10 and substituting the thrust coefficient from Eq. 11, the thrust can be modeled:

𝑇 = 𝜌 𝑑3 𝑎 𝜔𝑉𝑝 + 𝑏 𝜌 𝜔2 𝑑4. (12)

An additional term proportional to airspeed (𝐾𝑥𝑝3 ) is added to better fit wind-tunnel data. It modifies the RPM at which
the propeller starts generating thrust depending on airspeed.

For the pusher propeller, the propeller axial flow 𝑉𝑝 corresponds to body velocity 𝑢. Grouping all constant
parameters, thrust generated by a propeller is obtained:

𝑇𝑥𝑝 = 𝐾𝑥𝑝1 𝜔
2
𝑝 + 𝐾𝑥𝑝2 𝜔𝑝 𝑢 + 𝐾𝑥𝑝3 𝑢. (13)
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C. Hover Propellers
The hover propellers are modeled in a similar way to the pusher propeller. Flow perpendicular to the propeller’s axis

of rotation can increase thrust given a constant rotational speed [20]. As the hover motors are to be used mainly in
low-speed hover flight, this effect is assumed to be negligible. Axial flow 𝑉𝑝 is also assumed to be 0, as the vehicle’s
climb speed in quad mode is generally low. These assumptions lead to another derivative of Eq. 12, where the average
hover propeller rotational speed 𝜔ℎ is used:

𝑇𝑧ℎ = 𝐾𝑧ℎ 𝜔
2
ℎ . (14)

In cross flow, hover propellers mostly generate drag due to a linear difference in local airspeed for the advancing
and retreating blade of a rotor. Rotor drag is known to be proportional to the product of rotor RPM and airspeed [21].
Assuming RPM to be constant in hover, hover motors can be modeled as generating drag linear to the incoming airflow
[9]:

𝐹𝑥ℎ = 𝐾𝑥ℎ 𝑢 (15)
𝐹𝑦ℎ = 𝐾𝑦ℎ 𝑣. (16)

D. Wing
Classical lift and drag forces are defined as perpendicular to the airflow on the wing. At non-zero angles of attack,

part of the lift and drag are projected in the 𝑥 and 𝑧 body axes:

𝐹𝑥 = 𝐿 sin𝛼−𝐷 cos𝛼 (17)
𝐹𝑧 = −𝐿 cos𝛼−𝐷 sin𝛼. (18)

Eq. 17 and 18 can be further expanded by developing the lift and drag equations. Lift is modeled in its usual form

𝐿 =
1
2
𝜌𝑉2

𝑎 𝑆 𝐶𝐿 . (19)

The lift coefficient can be assumed to change linearly with the angle of attack

𝐶𝐿 = 𝐶𝐿𝛼 𝛼 + 𝐶𝐿0 . (20)

with 𝐶𝐿0 being the lift coefficient value at 0◦ angle of attack.
Additionally, assuming constant air density 𝜌 and wing surface 𝑆, and substituting Eq. 20 into Eq. 19, constant

terms can be grouped together to lead to a formulation of lift as a function of the angle of attack multiplied by airspeed
squared:

𝐿 = (𝐾𝐿0 + 𝐾𝐿1 𝛼)𝑉2
𝑎 . (21)

A similar strategy can be used with drag as well. The drag coefficient can be modeled with the simple parabolic
drag polar:

𝐶𝑑 = 𝐶𝑑0 +
𝐶2
𝐿

𝜋 𝐴𝑅 𝑒
. (22)

The aspect ratio 𝐴𝑅 and Oswald efficiency 𝑒 are assumed to be constant. Substituting Eq. 20 and Eq. 22 into Eq. 6 and
grouping all common constants, a second order polynomial multiplied by airspeed squared is obtained:

𝐷 = (𝐾𝐷0 + 𝐾𝐷1 𝛼 + 𝐾𝐷2 𝛼
2)𝑉2. (23)

Using the small angle approximation on Eq. 17 and 18, substituting in Eq. 23 and 21 and removing third order terms
as they are of small magnitude compared to first and second order terms, a formulation of forces in the 𝑥 and 𝑧 axis due
to lift and drag is obtained:

𝐹𝑥 = (𝐾𝑥0 + 𝐾𝑥1 𝛼 + 𝐾𝑥2 𝛼
2)𝑉2 (24)

𝐹𝑧 = (𝐾𝑧0 + 𝐾𝑧1 𝛼 + 𝐾𝑧2 𝛼
2)𝑉2. (25)

Lift for the skewed wing is assumed to be derived from the chordwise airspeed 𝑉𝑛 component of airspeed 𝑉𝑎 [14]:

𝑉𝑛 = 𝑉𝑎 sinΛ, (26)
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where Λ is the skew angle.
When fully retracted, the wing can still generate some lift and drag, captured by the addition of a constant term

(𝐾𝑥𝑤3 ). It follows that force in the 𝑥 and 𝑧 body axes can be modeled as a function of airspeed, skew angle and angle of
attack:

(27)𝐹𝑥𝑤 = (𝐾𝑥𝑤0
+ 𝐾𝑥𝑤1

𝛼 + 𝐾𝑥𝑤2
𝛼2) (sin2 Λ + 𝐾𝑥𝑤3 )𝑉

2
𝑎

(28)𝐹𝑧𝑤 = (𝐾𝑧𝑤0
+ 𝐾𝑧𝑤1

𝛼 + 𝐾𝑧𝑤2
𝛼2) (sin2 Λ + 𝐾𝑧𝑤3

)𝑉2
𝑎 .

The wing generates a side force when it is skewed as some of its resultant aerodynamic force is projected in the 𝑦
body axis. As such, it is expected that side force will be a function of skew angle, angle of attack and airspeed. To
simplify the model, the side force is modeled at a singular angle of attack that should be representative of the vehicle’s
angle of attack during transition. As transition occurs rapidly in 4–5 s, this model offset error should have limited impact
on the airspeed estimation. Wind tunnel testing lead to an empiric relationship between side force, skew angle and
𝑥-body axis airspeed:

𝐹𝑦𝑤 =
(
𝐾𝑦𝑤 sinΛ cos2 Λ

)
𝑉2
𝑎 . (29)

A model of side force based on the physical phenomena of lift and drag was attempted but lead to model offset when
validated with wind tunnel data. Refer to Appendix A for additional information.

The coefficients for the all the previous models are obtained with wind tunnel experimentation and adjusted slightly
with flight test results. Appendix A reviews the wind tunnel data validation campaign completed.

E. Model-Dependent EKF Formulation
With the whole aircraft model developped, the measurement equations for the EKF can be written as the sum of the

forces generated by each vehicle’s component on each body axis:

𝑎𝑥𝑚 =
1
𝑚

(𝐹𝑥 𝑓 + 𝐹𝑥𝑤 + 𝐹𝑥ℎ + 𝑇𝑥𝑝 ) (30)

𝑎𝑦𝑚 =
1
𝑚

(𝐹𝑦 𝑓 + 𝐹𝑦𝑤 + 𝐹𝑦ℎ ) (31)

𝑎𝑧𝑚 =
1
𝑚

(𝐹𝑧𝑤 + 𝑇𝑧ℎ ). (32)

V. Extended Kalman Filter for Airspeed Estimation
The states 𝒙, inputs 𝒖 and measurement 𝒛 are defined:

𝒙 =
[
𝑢 𝑣 𝑤 𝜇𝑥 𝜇𝑦 𝜇𝑧

]𝑇
(33)

𝒖 =
[
𝑎𝑥 𝑎𝑦 𝑎𝑧 𝑝 𝑞 𝑟 𝜙 𝜃 𝜓 𝜔𝑝 𝜔ℎ Λ

]𝑇
(34)

𝒛 =
[
𝑉𝐸𝑥 𝑉𝐸𝑦 𝑉𝐸𝑧 𝑎𝑥𝑚 𝑎𝑦𝑚 𝑎𝑧𝑚

]𝑇
. (35)

A classical EKF formulation is used and detailed in Appendix B. All measurements are pre-filtered using a second
order Butterworth filter with an empirically chosen cutoff frequency of 5 Hz, to reduce acceleration noise for the
model-based component of the filter, at the expense of a slight time-delay. To ensure that lag is not introduced between
measurements and inputs, all inputs are filtered with the same cutoff frequency.

A. Process Noise
The derived kinematic equations (Fig. 3) themselves do not present process noise, however, they use inputs that do.

For each sensor, its variance is calculated when the vehicle is at rest and used to populate the process noise matrix

𝑸 = 𝑑𝑖𝑎𝑔
( [
𝜎2
𝑎𝑥

𝜎2
𝑎𝑦

𝜎2
𝑎𝑥

𝜎2
𝑝 𝜎2

𝑞 𝜎2
𝑟 𝜎2

𝜇𝑥
𝜎2
𝜇𝑦

𝜎2
𝜇𝑧

] )
. (36)
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The resulting numerical values are enumerated in Tab. 2. The vertical wind 𝜇𝑧 covariance is set arbitrarily to a value 10
times smaller than the horizontal winds 𝜇𝑥 and 𝜇𝑦 , as vertical wind is assumed to be close to zero and with limited gusts.

The optimal covariance to model the wind dynamics is obtained by minimizing the Root Mean Square Error (RMSE)
between the filter’s airspeed estimation and the airspeed measured by a pitot tube installed onboard. For the six flights
presented in Tab. 5, wind covariance is cycled through values ranging from 1 × 10−8 to 1 × 10−2 leading to Fig. 3.

The RMSE is minimized for a wind covariance within 1 × 10−6 to 2 × 10−4 m2 s−2. A high value of 1.25 × 10−4

m2 s−2 within the range was chosen to allow the wind estimation to adapt fast enough for gusts, but not to adjust
excessively to measurement errors and lead to a wrong wind estimation.
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Fig. 3 Wind covariance tuning by minimizing airspeed estimation RMSE.

Q
𝜎2
𝑎𝑥

(m/s2)2 1.2 × 10−4

𝜎2
𝑎𝑦

(m/s2)2 6.2 × 10−4

𝜎2
𝑎𝑧

(m/s2)2 3.0 × 10−4

𝜎2
𝑝(rad/s)2 3.1 × 10−9

𝜎2
𝑞(rad/s)2 1.2 × 10−9

𝜎2
𝑟 (rad/s)2 1.3 × 10−9

𝜎2
𝜇𝑥

(m/s)2 1.25 × 10−4

𝜎2
𝜇𝑦

(m/s)2 1.25 × 10−4

𝜎2
𝜇𝑧

(m/s)2 1.25 × 10−5

R
𝜎2
𝑉𝑥

(m/s)2 4.1 × 10−5

𝜎2
𝑉𝑦

(m/s)2 4.2 × 10−5

𝜎2
𝑉𝑧

(m/s)2 1.4 × 10−4

𝜎2
𝑎𝑥𝑚

(m/s2)2 5 × 10−5

𝜎2
𝑎𝑦𝑚

(m/s2)2 1 × 10−4

𝜎2
𝑎𝑧𝑚

(m/s2)2 5 × 10−4

Table 2 Covariance assumptions for process and measurement noise of EKF filter. Sensor noise was obtained by measuring variance
with the vehicle at rest.

B. Measurement Noise
The measurement noise is defined as:

𝑹 = 𝑑𝑖𝑎𝑔
( [
𝜎2
𝑉𝑥

𝜎2
𝑉𝑦

𝜎2
𝑉𝑧

𝜎2
𝑎𝑥𝑚

𝜎2
𝑎𝑦𝑚

𝜎2
𝑎𝑧𝑚

] )
. (37)

It is assumed to be zero mean and Gaussian. For GNSS velocities, the measurement noise is the sensor noise. The
acceleration measurement noise 𝑎𝑖𝑚 contains the addition of sensor noise and modelling noise. It is assumed to be zero
mean and Gaussian. It is hand tuned to provide good filter performance.

C. Initial Conditions
The EKF’s initialization occurs once the aircraft has taken off. This precautionary measure ensures that the filter is

not running while on the ground. As body velocities and wind speed are unknown at initialization, they are set to 0, as
are the offsets. The initial covariance matrix is set to the identity matrix, except for the wind states, which are set to their
process noise 𝑸 value.
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D. Covariance Modifications
To accelerate convergence of the wind estimation to its steady state value, the wind process noise is multiplied by

100 for the first 20 s of flight. This was tuned empirically to allow for quick convergence. The 𝑧 axis acceleration model
only provides airspeed information once the wing starts producing lift. Therefore, its covariance is increased when the
skew angle is smaller than 60◦. A gain 𝐾𝑎𝑧 is scheduled between two hand tuned skew angle set points:

𝐾𝑎𝑧 =


10^2, if Λ ≤ 60◦

10^( −2 (Λ−70)
70−60 ), if 60◦ < Λ < 70◦

10^0, Otherwise.
(38)

The gain is multiplied with the existing acceleration measurement covariance. This scheduling allows a smooth transition
into using the 𝑧 axis during a transition.

VI. Fault Tolerance and Detection
The airspeed estimation is used to detect sensor failures using a simple thresholding method.

A. Pitot Tube Fault Detection
Two types of pitot tube faults are to be detected: incipient and abrupt, modeled as ramp and step response, respectively.

The pitot tube’s measurement is compared to the EKF’s airspeed estimation to obtain the pitot tube’s residual 𝑟. To
identify a fault, a thresholding operation is performed on the residual’s low-pass filtered signal using two criteria:

1) |𝑟 | ≥ 𝑍𝑛𝑜𝑟𝑚 for a time 𝑇𝑛𝑜𝑟𝑚
2)

���𝑑𝑟
𝑑𝑡

��� ≥ 𝑍𝑑𝑒𝑟𝑖𝑣 for a time 𝑇𝑑𝑒𝑟𝑖𝑣 ,
with 𝑍 being a threshold and 𝑇 a threshold time condition.
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Fig. 4 Autocorrelation for the pitot tube residual and residual’s derivative, using airspeed estimation results for 23 test flights (over
2 hours of flight time).

The thresholds and time conditions must be selected as a compromise between rapid failure detection and limiting
false detections. A threshold set too low will not allow fault detection while a threshold set too high will lead to false
detections. Estimating the likelihood of positive detection is more challenging and will be evaluated experimentally.

A statistical approach is used to select thresholds and timing values to reach a desired false detection rate. Assuming
non-correlated signals, the probability 𝑝𝑠𝑒𝑞 of the absolute value of a signal sequence to be be higher than a threshold 𝑍
for a set time 𝑇 is derived:

𝑝𝑠𝑒𝑞 = 𝑝𝑠𝑖𝑛𝑔𝑙𝑒
𝑓𝐸𝐾𝐹 𝑇 , (39)
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where 𝑓𝐸𝐾𝐹 is the frequency of the filter and 𝑝𝑠𝑖𝑛𝑔𝑙𝑒 the probability of the signal’s absolute value being higher than the
threshold for a single occurrence. The false detection’s probability per flight hour 𝑇ℎ can be found as:

𝑝ℎ = 1 −
(
1 − 𝑝𝑠𝑒𝑞

)𝑇ℎ 𝑓𝐸𝐾𝐹 . (40)

A rate of < 0.1% false detection rate per flight hour is used to select thresholds. It can be modified depending on the
vehicle’s required fault detection time and the operator’s tolerance to false detections. A false detection would result
in disregarding a healthy sensor, using an alternate airspeed estimation and landing as soon as possible as airspeed
measurements would no longer be redundant.

The residuals for 23 flights were compiled to compute the pitot tube’s residuals distribution and autocorrelation. As
shown in Fig. 4, autocorrelation for the derivative is minimal and allows Eq. 40 to be used. The residual’s derivative
distribution is shown in Fig. 5. The area under the curve is used to compute the residual’s probability of exceeding a
certain threshold.

The pitot tube’s residual autocorrelation is significantly higher than its derivative, hypothesized to be a result of
the wind estimation slowly changing and increasing the likelihood of the residual being correlated to last values. A
false detection probability cannot be calculated statistically using the above method due to the higher autocorrelation.
Thresholds are hand-tuned to ensure that false detection does not occur during flights.
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Fig. 5 Distribution of the pitot tube’s residual derivative. The histogram is used to estimate false detection rate.

The selected thresholds are presented in Tab. 3. The time thresholds for the residual’s derivative are low, as fast
changes in residual need to be detected rapidly as they are indications of an abrupt pitot tube failure. To ensure a
low false detection rate, derivatives’ threshold values are high. The pitot tube residual threshold value is high, as the
residuals can occasionally reach such high values during normal operation at the start of flight when the wind estimation
has not fully converged. Pitot tube fault detection could be inhibited during that phase of flight, but this would limit the
detection capabilities when the pitot tube is first used near the ground.

Component Threshold
Value

Time
Threshold

[s]

Cutoff
Frequency

[Hz]

False
Detection

Probability [%
per flight

hour]

Pitot Tube Res. 5.5 m s−1 0.25 5 -

Pitot Tube Res.
Derivative 25 m s−2 0.12 5 4 × 10−2

𝑉𝐸 Innov. 2.5 m s−1 0.08 5 7 × 10−2

𝑉𝐸 Innov. Derivative 30 m s−2 0.08 5 2 × 10−3

𝑎𝑥𝑚 Innov. 1.25 m s−2 2 0.1 < 1 × 10−6

𝑎𝑥𝑚 Innov.
Derivative 250 m s−3 0.12 0.1 5 × 10−5

Table 3 Thresholds selected for pitot tube detection and sensor fault detection using statistical analysis.
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B. EKF Fault Tolerance
If a sensor feeding the estimation system fails without being detected, the precision of the estimation diminishes.

The drop in precision might be attributed to a pitot tube failure while the failure may lie within the filter itself. It is
crucial to detect sensor faults before the pitot tube fault detector can attribute them to a pitot tube fault.

First, we consider the accelerations, Euler angles and angular rates to be fault free, as they are estimated by a state
estimation filter that can be made triple redundant∗. The Euler angles are used to convert ground speed measurements
from the NED frame to the body frame (see Eq. 2). Without them, no ground speed measurement could be used for
the state update. Additionally, the accelerations, Euler angles and angular rates are used directly in the state update
equations (refer to Fig. 3). Their absence would render the state prediction and the whole EKF inoperative.

Measurement innovation is defined as the difference between the EKF’s expected measurement value and its actual
measurement value. Various sensor failures will have effects on different innovation values, as derived in Tab. 4. This
table was built by identifying where each sensor is used in the model-dependent and independent equations. A similar

Impact
Innovation

Failure
Type

Pi
to

t

G
N

SS

Sk
ew

Se
ns

or

R
PM

H
ov

er

R
PM

Pu
sh

Pitot X
𝑉𝐸𝑥 X
𝑉𝐸𝑦 X
𝑉𝐸𝑧 X
𝑎𝑥𝑚 X X
𝑎𝑦𝑚 X X
𝑎𝑧𝑚 X X

Table 4 Innovation impact depending on failure. Table can be interpreted as such: if a failure occurs on a specific sensor (column),
it will impact specific innovation values (rows).

strategy as for the pitot tube fault detection is used, with one detector for each EKF’s measurement innovation. Once a
fault is detected, the filter does not update the state with the measurement and increases its covariance to represent the
measurement’s faulty state.

Thresholds are selected using a similar strategy used for the pitot tube fault detection and are presented in Tab. 3.
For the acceleration, the innovation needs to be aggressively filtered. Noise makes it challenging to distinguish small
innovation changes due to sensor fault from the background noise. For this work, only thresholds for the 𝑥 axis innovation
acceleration were implemented, but a similar approach can be used for the other axes.

VII. Results and Discussion
This section details the experiments and results used to determine the airspeed estimation precision of the newly

developed EKF and its usability to detect pitot tube and sensor faults.

A. Airspeed Estimation
Six test flights with the VSQP were selected to demonstrate the filter’s precision in different flight phases and wind

conditions, as enumerated in Tab. 5. Flight 1’s flight trajectory is shown in Fig. 6 as an example of a typical transition
flight. The different measurements and inputs required for the EKF filter are logged during each flight. The filter is ran
offline at 25 Hz from raw logged data. The filter’s airspeed estimation is compared to the pitot tube’s measured airspeed
to obtain the error Δ𝑉 and subsequent RMSE over the different flight modes. The comparison is completed when the
estimated angle of attack and side-slip are within ±25◦, the typical range where pitot tube readings are not sensitive to
flow angles [22]. The quantitative results for each flight are summarized in Tab. 6.

∗Refer to PX4’s EKF: https://docs.px4.io/main/en/advanced_config/tuning_the_ecl_ekf.html
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Fig. 6 Flight 1 trajectory, with the skew angle shown as line color. Note the different takeoff and landing points, as the aircraft was
launched from a moving ship.

The filter is implemented in C++ in the open source autopilot paparazzi UAV† for use in flight. Performance tests on
the PX4 Cube Orange main computing board ‡ demonstrated that the filter requires approx. 140 µs per cycle, leaving
ample time for other autopilot processes.

1. Overall Results
The average RMSE between airspeed estimation and pitot tube readings for all flights is 1.62 m s−1, with an average

error of −0.49 m s−1. Using a completely model-independent EKF, Rhudy et al. [5] obtained a better overall average
error of 0.22 m s−1, albeit by using angle of attack and side-slip vanes on a conventional fixed wing vehicle. For
a model-dependent method based on the lift coefficient, Youn et al. [6] obtain a slightly higher 1.89 m s−1 RMSE.
Considering our method is not using additional angle of attack or side slip sensors, it provides airspeed estimation results
comparable to the model-dependent and independent method on which it was based. Contrary to the two methods cited,
our strategy is able to estimate airspeed in all flight phases of the vehicle.

The RMSE in quad mode is on average twice as large compared to forward flight. The increased error in quad mode
can be attributed to three different factors. First, there is generally less movement to estimate wind and airspeed using the
ground speed measurement. The filter has to rely on the acceleration model-dependent airspeed estimation. Additionally,
propeller-induced vibrations introduce increased noise levels during hover. This creates challenges for extracting the
necessary acceleration signal for accurate airspeed estimation. Finally, the accuracy of pitot tubes generally decreases
with airspeed [23]. As it is used as a reference, in low speed hover flight, its reduced precision could increase the hover
flight RMSE.

In forward flight, the estimation error is reduced compared to quad mode. Ground speed, 𝑥 and 𝑧 acceleration
measurements can be used to estimate the airspeed, providing higher precision. Additionally, acceleration noise is
reduced, providing easier airspeed estimation from acceleration measurements.

In transition, the higher RMSE compared to forward flight can in part be attributed to the changing wing dynamics
in transition and possible imprecision of the wing model when skewed. In flight 4, which was flown with a sustained
wing skew, the RMSE is increased, as is the average error Δ𝑉 . Again, this points to some model uncertainty that offsets
the airspeed estimate. For example, the wing model could be overestimating the lift at a set skew angle, leading to a
lower airspeed to be propagated in the filter.

†https://github.com/paparazzi/
‡https://ardupilot.org/copter/docs/common-thecubeorange-overview.html
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Flight Duration

Flight Flight Type Average Wind
Speed [m s−1]

Total
[s]

Quad
Mode

[s]

Forward
Flight

[s]
1 Transition 4.6 352 169 79
2 Transition 5.7 241 140 92
3 Transition 5.3 310 155 139

4 Wing Skewed
30-60 degrees 9.1 227 164 0

5 Hover Flight 7.6 307 307 0
6 Pitot Tube Failure 7.0 338 249 0

Table 5 Flight selection for testing the EKF filter, with different flight types and wind speeds.

RMS Δ𝑉 [m s−1]

Flight Full
Flight

Quad
Mode Transition Forward

Flight
average(Δ𝑉)

[m s−1]
1 1.25 1.70 1.14 0.91 -0.14
2 1.42 2.06 1.80 0.75 -0.82
3 2.03 2.58 1.40 1.29 1.12
4 1.91 2.04 1.56 - -1.34
5 1.50 1.62 - - -0.75
6 1.64 1.73 - - -0.99

Average 1.62 1.95 1.47 0.98 -0.49
Table 6 Airspeed error for selected flights, comparing between EKF’s estimation and pitot tube measurements. Transition is defined
as a skew angle between 30–80◦. RMSE is smallest in forward flight and biggest in quad mode.

2. Closer Examination of a Single Flight
Flight 3 shows higher error values than other flights due to various factors. It warrants a closer examination in Fig. 7.

The vehicle takes off in quad mode (Λ = 0◦). As the vehicle took off, the wind covariance is increased, leading to the
wind estimation to quickly converge in about 10 s to its steady state value.

At 𝑡 = 350 s, the vehicle starts its transition to forward flight, with the airspeed estimation closely following the
pitot tube measurement. Once in forward flight (Λ = 90◦), the aircraft travels in circles with the airspeed estimation
oscillating slightly, at the same period as the wind estimation. This is due to a slight side-slip angle offset varying
throughout the circle that is not captured by the filter, generating an oscillating wind estimation to compensate. This
increases the forward flight RMSE slightly compared to other flights.

At 𝑡 = 545 s, the drone comes back to its landing pad and descends slowly. An offset between pitot tube and airspeed
estimation builds up starting from 𝑡 = 550 s. This is assumed to be due to the reduction in wind velocity close to the
ground, as the landing pad is sheltered from the wind. The filter’s wind estimation magnitude does decrease slowly, but
not rapidly enough, contributing to the increased hover airspeed estimation error.

B. Pitot Tube Fault Detection

1. Abrupt Fault
The ability of the thresholding method to detect abrupt pitot tube faults was validated using real flight test data where

a fault was present. An abrupt pitot tube fault occurred during flight 6 at 𝑡 ≈ 311.9 s, as shown in Fig. 8a. The fault is
first detected by the derivative criterion in 0.16 s and later by the normal criterion. The derivative criterion detected
the fault earlier than the normal residual criterion, as the abrupt fault is characterized by a rapidly changing airspeed
measurement. Such a quick detection time should allow sufficient time for the autopilot to switch to the synthetic
airspeed estimation before loss of stability.

Both the normal and derivative criteria detection time are longer than their time threshold (0.25 and 0.12 s
respectively) due to the delay induced by filtering the residual. Increasing the low pass filter’s cutoff frequency would
reduce the delay, but would require a higher threshold to guarantee the same low false detection rate.
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Fig. 7 Flight 3 with full transition from quad to forward flight mode at 𝑡 = 350 s. Overall 2.03 m s−1 RMSE, hover RMSE
2.58 m s−1, transition 1.40 m s−1 RMSE, forward flight 1.29 m s−1 RMSE

2. Incipient Fault
The incipient fault is simulated on flight 2 as a negative ramp with a −2.5 m s−2 rate, simulating a water blockage [1].

Fig. 8b shows a detection only occurring after 2.5 s, resulting in an approx. 7 m s−1 airspeed error. The long detection
time is due to the high 6 m s−1 residual threshold required before starting to recognize the behavior as a possible fault.
This is a limitation of the thresholding method. A lower threshold could be used, but would lead to false detections at
the start of the flight, where the wind is converging to its real value. Other methods that examine the statistical mean
and variance of the signal such as generalized likelihood tests [24] can be explored to reduce detection time. These
come at the expense of additional computing power, as a statistical model needs to be fitted to the residual signal in real
time to see if this model changes over time.

C. EKF Fault Tolerance
To validate the EKF’s ability to tolerate sensor faults and to detect them in time, simulated sensor faults were

inserted in flight 2’s logged data.

1. GNSS Fault
A GNSS failure is simulated in forward flight, by setting the measurement to 0. Fig. 9 shows detection by the

derivative criterion in 0.12 s, at which point the GNSS ground speed measurement is no longer used to update the states.
As a result, the wind estimation stops being updated and stays constant. The fault results in a 2 m s−1 drop in estimated
airspeed which would not trigger the pitot tube fault detector. The airspeed estimation converges back to the pitot tube
measurement after the fault. Precision after the fault is reduced from 1.55 to 2.23 m s−1, due to the reduced number of
measurements used to update the airspeed.
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(a) Abrupt pitot failure in flight 6 at 𝑡 ≈ 311.9 s. Fault is detected in
0.16 s by the derivative criterion and by the normal criterion 0.36 s later.
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(b) Simulated incipient pitot tube fault at 𝑡 = 448.8 s during flight 2.
Detection is achieved in 2.5 s by the normal residual criterion.

Fig. 8 Pitot tube fault cases.

2. Pusher RPM Sensor Fault
A pusher RPM sensor failure is simulated by setting the measured RPM to 0 in forward flight, when it would

normally be around 8000 RPM. With RPM at 0 and at a high airspeed, the filter estimates a reduction in airspeed.
Fig. 10 shows a 4.3 s detection time that leads to a 2 m s−1 drop in estimated airspeed similar to the GNSS fault.

Airspeed estimation is maintained. As with the GNSS fault, the loss of a measurement leads to a drop in airspeed
precision, from 1.55 to 2.33 m s−1. It is shown that the filter can tolerate and detect sensor faults. Once a fault is
detected, it is recommended to land as the airspeed estimation’s precision is reduced and cannot guarantee accurate pitot
tube fault detection using the thresholds defined for the fault-free sensor condition.

D. Application to Other Vehicles
To validate that the filter can be applied to hybrid vehicles of a similar configuration with minimal work, the filter

was tested on an older VSQP prototype, flying in TU Delft’s Open Jet Facility (OJF) wind tunnel [14]. Compared to a
normal flight where the vehicle is moving and wind is varying slowly, in the wind tunnel tests, the vehicle is trying to
keep its position constant while incoming wind is changed. The wind covariance was increased to model these changes.
The sensor covariance was adjusted to fit the sensors installed on the older prototype. The prototype’s force model
coefficients were identified using flight test data in different configurations. As RPM feedback from the motors was not
available, the Pulse Width Modulation (PWM) control signal is used to estimate motor RPM.

Fig. 11 shows three transitions. The overall 1.66 m s−1 RMSE is comparable to results with the newest VSQP.
Airspeed estimation oscillations can be observed during transition, which seems to be derived from the pusher motor
oscillating. In forward flight, the RMSE is low, due to the constant magnitude and gust-free airflow of the wind tunnel.

Overall, the precise airspeed estimation obtained on an older prototype show that the filter can be used on other
platforms having a similar configuration. Instead of using wind tunnel data to obtain the coefficients necessary to model
the forces, flight test data can be used to empirically estimate them.

VIII. Conclusion
The intent of this work was to develop a synthetic air data system for the Variable Skew Quad Plane (VSQP)

hybrid vehicle in order to detect pitot tube failures. An Extended Kalman Filter (EKF) based on kinematic equations
using GNSS and inertial measurements was developed. It is augmented using a simplified model of the vehicle and
acceleration measurements. Validation on six different test flights lead to an average airspeed Root Mean Square Error
(RMSE) of 1.62 m s−1 and an average airspeed error of −0.49 m s−1. Precision is maximal in forward flight, when all
measurements can be used to estimate airspeed and the rotor induced acceleration noise is minimal. The airspeed
estimation was able to detect a real-life abrupt pitot tube fault in 0.16 s using a simple residual thresholding method. A
similar approach was shown to provide fault tolerance to the filter, ensuring that sensor faults do not lead to a wrong
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Fig. 9 Simulated GNSS Failure at 𝑡 = 448 s during flight 2. Detection is achieved in 0.12 s, leading in a 2 m s−1 airspeed estimation
drop.

airspeed estimation and to false pitot tube failure detection. One of the biggest benefits of the developed EKF filter is its
ability to estimate airspeed for the whole flight envelope of the hybrid vehicle using conventional GNSS and inertial
sensors, without the use of angle of attack or side slip vanes.

A. Recommendations
Additional work should examine how to improve the force models to reduce the average airspeed estimation error.

To guide this research, the authors recommend to analyze the effect of each model component (fuselage, wing, pusher
propeller, hover propeller) on the precision of the airspeed estimation. Such a sensitivity analysis would contribute to
a better understanding of the robustness of model-dependent airspeed estimation in relation to variations in vehicle
characteristics.

The airspeed estimation filter was initially developed as to be completely independent from the pitot tube. Integration
of the pitot tube as a measurement into the filter should be considered, for which faults are monitored on each
measurement’s innovation. Such a system would improve the airspeed estimation during fault-free flight and group the
airspeed estimation and fault detection functions in a single, easier to implement package on the vehicle.

Alternative detection methods based on statistical signal analysis should also be explored. They could provide a
shorter detection time that be less affected by the measurement noise. These could identify the change in mean or
standard deviation that occurs on innovation after a fault, while being more robust to noise. This would directly improve
the detection time for the incipient fault. Although they might require increased computing power, they could potentially
offer better and more robust fault protection.

Finally, if the filter’s airspeed estimation is to be ultimately used for control of the vehicle, further research should go
into characterizing and understanding the interaction between the estimation and control aspects. For example, pusher
RPM oscillations have been seen to lead to airspeed estimation oscillations. These should be contained as to not lead to
control oscillations, that could be amplified by the estimation process, leading to instability.
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Fig. 10 Simulated pusher RPM sensor failure at 𝑡 = 448 s during flight 2. Detection is achieved in 4.3 s and leads to a 2 m s−1

airspeed estimation drop.
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Fig. 11 Airspeed estimation during wind tunnel flights with the older VSQP prototype. Wind is increased and decreased while the
model tries to hold its position. Overall 1.66 m s−1 RMSE, hover 1.92 m s−1 RMSE, Transition 2.06 m s−1 RMSE, forward flight
0.40 m s−1 RMSE. Note that North is defined as pointing towards the wind tunnel and airflow.
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Appendix A. Model Validation
The force models presented in Sec. IV were validated using wind tunnel data obtained at TU Delft’s OJF. The model

is set on a pole connected to a 6-component balance measuring forces and moments. The assembly is placed on a
turntable to submit the vehicle to different angles of attack or side-slip angles, as shown in Fig. 12.

Fig. 12 Static test in TU Delft’s OJF wind tunnel. The VSQP is placed on a 6-component balance that is rotated through 360◦ to
subject the vehicle to various angle of attack and side-slip conditions.

Different test rounds are completed with the same wind speed, angle of attack, side-slip and actuator commands, but
removing components on the vehicle (wing, elevator, hover propellers, pusher propellers). Specific components of the
vehicle can be isolated by subtracting test rounds results with the same parameters.
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The coefficients for the force models can be determined by minimizing the average RMSE between model estimation
and wind tunnel data points. Fig. 13 to 16 report the wind tunnel data points and the estimation obtained for the fuselage,
hover propeller, wing and pusher propeller.

Fig. 14a shows that a constant drag coefficient with angle of attack can be assumed without sacrificing significant
fidelity. A second order fit on the angle of attack leads to a slightly better average 0.3 N RMSE compared to the initial
0.6 N RMSE, but results in a more complex model. Fuselage side force is well modeled as linear to side-slip angle in
Fig. 14b, with a small 1.21 N average RMSE in comparison to the ±50 N range. Assuming a negligible fuselage 𝑧 axis
force, this leads to a low 1.93 N RMSE, relative to the wing or hover motors that produce approx. 60–70 N.

Fig. 15a and 15c show the relationship between angle of attack and wing 𝐹𝑥 and 𝐹𝑧 forces. To simplify results,
force is divided by the airspeed squared. For a skew angle of 0◦, the wing generates minimal body 𝑥 or 𝑧 axis force. As
skew angle is increased, as modeled by Eq. 27 and 28, the wing generates more force. The 𝐹𝑥 wing model developed in
Eq. 24 is validated by a 3 × 10−3 N/(m/s)2 RMSE. The 𝐹𝑥 force becomes positive when approaching an angle of attack
of 2–3◦, as the lift force is projected forward in the body 𝑥-axis and supplants the drag force projection. The 𝐹𝑧 wing
model developed in Eq. 28 is validated in Fig. 15c with a low 1.7 × 10−2 N/(m/s)2 RMSE. Validation for both models
was limited to an angle of attack ranging from −5 to 15◦, which corresponds to the general flight envelope of the vehicle
in forward flight.

Fig. 15b shows an empiric fit linking the side force to the skew angle using trigonometric functions from Eq. 29 with
a 0.66 N RMSE for a 6◦ angle of attack. Side force is underestimated at high skew angles. A fit based on James Morris
[25]’s work on oblique wing modelling was also attempted:

𝐹𝑦𝑤 = ±cosΛ
sinΛ

(
𝐶2
𝐿

𝜋 𝐴𝑅 𝑒
+ 𝐶𝐿 𝛼

)
, (41)

where the ± is used to specify the side force sign depending on the skew direction (left or right wing forward).
However, the model in Eq. 41 did not properly capture the peak in side force around 30–35◦ of skew angle. This

might be due to some spanwise flow on the wing modifying the lift behavior at low skew angles. Ultimately, Eq. 29 was
chosen as it better captured the peak side force.

Hover motor drag force as a function of cross-flow is shown in Fig. 16a, for a normal 3800–4100 RPM hover regime.
As expected, the plot highlights a linear relation between hover motor drag force and airspeed, with a slope that increases
with RPM. An average value of −0.75 N s m−1 from the 4000 RPM curve will be used for further work. For the hover
motor thrust force 𝐹𝑧 , a quadratic fit with RPM is validated in Fig. 16b with an average 2.5 N RMSE. As predicted,
cross-flow has no significant effect.

The pusher propeller thrust force as a function of RPM and airspeed is validated in Fig. 13, with a low 0.42 N RMSE
relative to the pusher thrust 30 N range. Thrust force is reduced as airspeed is increased as expected by Eq. 13.
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Fig. 13 Pusher motor 𝑥-axis force fit depending on RPM for different airspeed. Fit shown is 𝑇𝑥𝑝 = 𝐾𝑥𝑝1
𝜔2
𝑝 + 𝐾𝑥𝑝2

𝜔𝑝 𝑢 + 𝐾𝑧𝑝3
𝑢,

with 0.419 N RMSE.
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(a) Linear Fit between fuselage 𝑥-axis force and angle of attack for
different airspeed. Shown fit is 𝐹𝑥 𝑓 = 𝐾𝑥 𝑓 𝑢

2, with 0.6 N RMSE.
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(b) Linear Fit between fuselage 𝑦-axis force and side-slip angle for
different airspeed. Fit shown is 𝐹𝑦 𝑓 = 𝐾𝑦 𝑓 𝛽 𝛽 𝑉

2
𝑎 , with 1.21 N RMSE.
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(c) Fuselage 𝑧-axis force depending on angle of attack for different
airspeed. Fuselage 𝑧-axis force was assumed to be negligible, with
1.93 N RMSE.

Fig. 14 Fuselage fit from wind tunnel testing in OJF
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(a) Airspeed scaled wing 𝑥-axis force depending on angle of attack
for different skew angles. Fit shown is 𝐹𝑥𝑤 /𝑢2 = (𝐾𝑥𝑤0

+ 𝐾𝑥𝑤1
𝛼 +

𝐾𝑥𝑤2
𝛼2), with 0.003 N/(m/s)2 RMSE.
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(b) Wing side force (𝑦-axis) depending on skew angle for a fixed angle of
attack of 6◦. Fit shown is 𝐹𝑦𝑤 =

(
𝐾𝑦𝑤 sinΛ cosΛ2

)
𝑢2, with 0.66 N

RMSE.
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(c) Airspeed scaled wing 𝑧-axis force depending on angle of attack
for different skew angles. Fit shown is 𝐹𝑧𝑤 /𝑢2 = (𝐾𝑧𝑤0

+ 𝐾𝑧𝑤1
𝛼 +

𝐾𝑧𝑤2
𝛼2), with 0.017 N/(m/s)2 RMSE.

Fig. 15 Wing fit from wind tunnel testing.
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(a) Linear Fit between total hover motor 𝑥-axis force and different hover
RPM values. Shown fit is 𝐹𝑥ℎ = 𝐾𝑥ℎ 𝑢, with 1.52 N RMSE.
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(b) Quadratic Fit between hover motor 𝑧-axis force and RPM for different
airspeed. Shown fit is 𝑇𝑧ℎ = 𝐾𝑧ℎ 𝜔

2
ℎ

, with 2.53 N RMSE.

Fig. 16 Hover motor fit from wind tunnel testing.
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Appendix B. Extended Kalman Filter Implementation
State vector 𝒙, input vector 𝒖 and measurement vector 𝒛 are defined as:

𝒙 =
[
𝑢 𝑣 𝑤 𝜇𝑥 𝜇𝑦 𝜇𝑧

]𝑇
(42)

𝒖 =
[
𝑎𝑥 𝑎𝑦 𝑎𝑧 𝑝 𝑞 𝑟 𝜙 𝜃 𝜓 𝜔𝑝 𝜔ℎ Λ

]𝑇
(43)

𝒛 =
[
𝑉𝐸𝑥 𝑉𝐸𝑦 𝑉𝐸𝑧 𝑎𝑥𝑚 𝑎𝑦𝑚 𝑎𝑧𝑚

]𝑇
. (44)

With state dynamics 𝑓 (𝑥, 𝑢) and measurement output function 𝑔(𝑥, 𝑢):

¤𝑥 = 𝑓 (𝑥, 𝑢) (45)
𝑧 = 𝑔(𝑥, 𝑢). (46)

States, output, state noise and measurement noise Jacobian are respectively 𝐹(𝑥, 𝑢), 𝐺(𝑥, 𝑢), 𝐿(𝑥, 𝑢), 𝑀(𝑥, 𝑢):

𝐹(𝑥, 𝑢) =
𝜕 𝑓

𝜕𝒙
(47)

𝐿(𝑥, 𝑢) =
𝜕 𝑓

𝜕w
(48)

𝐺(𝑥, 𝑢) =
𝜕𝑔

𝜕𝒙
(49)

𝑀(𝑥, 𝑢) =
𝜕𝑔

𝜕w
. (50)

The main equations of the EKF are as follows. First, state and covariance are predicted:

𝒙𝑝𝑟𝑒𝑑 = 𝑓 (𝑥, 𝑢) 𝑑𝑡 (51)
𝑃𝑝𝑟𝑒𝑑 = 𝐹(𝑥, 𝑢) 𝑃 𝐹(𝑥, 𝑢)𝑇 + 𝐿(𝑥, 𝑢)𝑄 𝐿(𝑥, 𝑢)𝑇 . (52)

After which innovation and the innovation matrix 𝑆 are calculated:

𝒚 = 𝒛 − 𝑔(𝑥, 𝑢) (53)
𝑆 = 𝐺(𝑥, 𝑢) 𝑃𝑝𝑟𝑒𝑑 𝐺(𝑥, 𝑢)𝑇 + 𝑀(𝑥, 𝑢) 𝑅 𝑀(𝑥, 𝑢)𝑇 . (54)

The Kalman Gain can be calculated and used to update the state 𝒙 and covariance 𝑃:

𝐾 = 𝑃𝑝𝑟𝑒𝑑 𝐺(𝑥, 𝑢)𝑇 𝑆−1 (55)
𝒙 = 𝒙𝑝𝑟𝑒𝑑 + 𝐾 𝒚 (56)

𝑃 = (𝐼 − 𝐾 𝐺(𝑥, 𝑢)) 𝑃𝑝𝑟𝑒𝑑 . (57)
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