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Proper Orthogonal Decomposition (POD) plays an important role in the analysis of complex nonlinear systems 
governed by partial differential equations (PDEs), since it can describe the full-order system in a simplified but 
representative way using a handful of dominant dynamic modes. However, determining a POD from the results 
of complex unsteady simulations is often impractical using traditional approaches due to the need to store a large 
number of high-dimensional solutions. As an alternative, the incremental Singular Value Decomposition (SVD) 
has been developed, which can be used to avoid the storage problem by performing the POD analysis on 
the fly using a single-pass updating algorithm. Nevertheless, the total computing cost of incremental SVD is 
more than traditional approaches. In order to reduce this total cost, we incorporate POD mode truncation into 
the incremental procedure, leading to an enhanced algorithm for incremental SVD. Two error estimators are 
formulated for this enhanced incremental SVD based on an aggregated expression of the snapshot solutions, 
equipping the proposed algorithm with criteria for choosing the truncation number. The effectiveness of these 
estimators and the parallel efficiency of the enhanced algorithm are demonstrated using transient solutions from 
representative model problems. Numerical results show that the enhanced algorithm can significantly improve 
the computing efficiency for different kinds of datasets, and that the proposed algorithm is scalable in both the 
strong and weak sense.

1. Introduction

Modal analysis is an important tool for understanding unsteady nonlinear phenomena in complex physical systems [1]. One of the most popular 
techniques is the Proper Orthogonal Decomposition (POD) [2,3], also known as the Karhunen-Loeve procedure or Principal Component Analysis 
(PCA). This provides a set of modes ordered in terms of their contributions to the total energy of the system. By truncating this set, one can build 
reduced-order models (ROM) [4]. These are useful in many applications, such as fluid-structure interaction [5,6], optimization problems [7,8], 
uncertainty quantification [9,10], and optimal control [11–13].

Common approaches to computing the POD of a data set 𝑿 ∈ ℝ𝑛×𝑚 have been discussed in several comprehensive reviews, e.g. [1,14]. These 
consist of eigenvalue decompositions, the method of snapshots, and singular value decomposition (SVD). POD was introduced to fluid dynamics by 
Lumey [15] who used the eigenvalue decomposition of the covariance matrix (i.e. 𝑹 =𝑿𝑿𝖳). For cases when the number of degrees of freedom (DoF) 
(viz. the number of rows) is larger than the number of snapshots (the number of columns), the method of snapshots [16] was proposed by considering 
a more easily-found eigenvalue decomposition of 𝑪 =𝑿𝖳𝑿, from which the POD modes can be derived. SVD [17] can also be applied to 𝑿 directly 
to find the POD due to its relation to the eigenvalue decomposition. SVD has been shown to be robust in the presence of round-off errors [1]. All of 
these work on the complete snapshot matrix and are thus referred to as offline approaches. They can be applied to data sets with different structures, 
as shown in Fig. 1. However, datasets from high-fidelity simulations, such as large-eddy simulations, are high-dimensional, both in terms of DoF 
and snapshots. These are often prohibitively expensive to analyze using offline approaches.

In order to address this issue, researchers have proposed the recursive POD [18,19], randomized SVD [20,21], and the incremental SVD [22,23]. 
Here we focus on the latter. The incremental SVD (iSVD) can be used to perform POD online during high-dimensional large-scale simulations without 
storing the snapshot matrix. The iSVD is initialized using a small data set with a known SVD, which is then updated during the simulation as new 
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Fig. 1. Common approaches for solving POD with applications on different structures of data sets and their computing complexities, and the necessity of developing 
cost-effective algorithms for high-dimensional data.

snapshots become available. The incremental SVD was proposed by Brand [22] for application to incomplete datasets in computer vision and audio 
feature extraction. Fareed et al. [24] further extended the iSVD algorithm with a weighted inner product, and gave an error analysis [25].

Although the iSVD can be used to build a POD online for high-dimensional data, the cumulative cost over all snapshots, (𝑛𝑚3), can be higher 
than the cost of offline approaches [23]. This limitation can be overcome by either reducing the size of the snapshot matrix or improving the 
algorithm of iSVD. For the former, the adaptive selection of snapshots [26,27] has been proposed. For the latter, one possibility is to perform a low-

rank incremental SVD using a prescribed mode truncation number. This has been applied to efficiently solve unsteady adjoint equations [28,29] in 
nonlinear problems, although the selection of the truncation number has been ad hoc or heuristic. By considering both aspects, Phalippou et al. [30]

proposed an on-the-fly snapshots selection for the incremental SVD algorithm using an error estimator, which incorporates information lost due 
to the projection of skipped snapshots and the truncation of small singular values. Although the reduction of snapshot matrices can be effectively 
utilized to reduce the computational cost, a reasonable user-specified threshold must be given as a selection criterion.

Considering that one desires a low number of POD modes used to build a low-order representation, we propose an alternative method for the 
truncation of POD modes based on their contributions to the total energy. This method truncates the POD online as the incremental SVD proceeds, 
which we refer to as an enhanced iSVD. To this end, we develop an aggregated expression for the snapshot solutions and construct two estimators 
for evaluating the energy captured by the low-order approximation. This enables us to determine the number of POD modes based on cumulative 
energy. We also investigate the parallel performance of the proposed enhanced incremental SVD for large-scale datasets.

The remainder of this paper is organized as follows. In Section 2, we present the methodologies for building PODs offline and online, including an 
overview of three offline POD approaches and the standard incremental SVD for online PODs. We then describe the enhanced incremental SVD and 
its parallel implementation adapted from [31]. The enhanced algorithm is further discussed in Section 3, with the development of an aggregated 
expression for the snapshot matrix and the establishment of two a posteriori estimators. Serial numerical experiments are used to demonstrate 
the impact of the online truncation in this section. The parallel performance of the enhanced incremental SVD is then investigated for large-scale 
solutions generated from a synthetic data and an unsteady one-dimensional Burgers problem in Section 4. Finally, we conclude the paper with 
Section 5.

2. Methodologies

We begin by presenting the offline and online approaches to POD in Section 2.1 and Section 2.2, respectively. An enhanced online algorithm to 
improve the efficiency of the online POD is then proposed in Section 2.3, followed by the design of parallelization for this algorithm in Section 2.4.

2.1. Offline POD

The goal of POD analysis is to identify an optimal set of basis functions for representing a given dataset. Specifically, for a dataset defined by 
snapshots 𝒖(𝑖)(𝑥) ∈ (Ω), 𝑖 = 1, 2, ⋯ , 𝑁t , 𝑥 ∈Ω, we seek a set of functions 𝝋(𝑥) ∈  that represent the dataset such that the mean square projection on 
all snapshots is maximized, i.e.

max
𝝋∈

1
𝑁t

𝑁t∑
𝑖=1

|⟨𝒖(𝑖),𝝋⟩|2⟨𝝋,𝝋⟩ . (1)

Here ⟨⋅, ⋅⟩ denotes an inner product defined on Ω, and ⟨𝒖(𝑖), 𝝋⟩ describes a projection of the snapshot 𝒖(𝑖) onto a function 𝝋. This maximization 
problem is equivalent to the following eigenvalue problem [2,11,15]

𝑲𝝓 = 𝜆𝝓 , (2)

where 𝝓 denotes the optimal function and

𝑲𝝓 = 1
𝑁t

𝑁t∑
𝑖=1
𝒖(𝑖) ⟨𝒖(𝑖),𝝓⟩ = 1

𝑁t

𝑁t∑
𝑖=1

∫
Ω

𝒖(𝑖)(𝑥)𝒖(𝑖)(𝑥′)𝝓(𝑥′) d𝑥′ . (3)

It is noted that 𝑲 is expressed using continuous functions over Ω. For discrete solutions 𝑿 ∈ ℝ𝑛×𝑚, Equation (2) can be interpreted as finding the 
eigenvalue 𝜆𝑗 and eigenvectors 𝜙𝑗 defined by
44
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𝑹𝝓𝑗 = 𝜆𝑗𝝓𝑗 , (4)

where 𝑹 = 𝑿𝑿𝖳 ∈ ℝ𝑛×𝑛1 is the covariance matrix based on an inner product defined by ⟨𝒂, 𝒃⟩ = 𝒂𝖳𝒃. There are three different approaches to 
computing the POD offline. First, by solving the eigenvalue problem (4), we can obtain the POD modes 𝝓(𝑗), where 𝑗 = 1, 2, ⋯ , min(𝑛, 𝑚). In practical 
applications, the number of DoF (𝑛) associated with the computational mesh is often larger than the number of snapshots (𝑚), leading to a huge 
covariance matrix that is difficult to analyze directly. The method of snapshots [16] was proposed to overcome this difficulty by instead finding the 
eigenvalue decomposition of 𝑪 =𝑿𝖳𝑿, leading to eigenvalues 𝜆𝑗 and eigenvectors 𝝍 (𝑗), where 𝑗 = 1, 2, ⋯ , 𝑚. The POD modes are then computed as 
follows

𝝓(𝑗) =𝑿𝝍 (𝑗)∕
√

𝜆𝑗 . (5)

The eigenvalue decomposition of 𝑿𝑿𝖳 can also be related to the singular value decomposition (SVD) of 𝑿. In the following, SVD will be performed 
using the LAPACK library [1], which gives 𝑿 = 𝑽 𝚺𝑾 𝖳, where 𝚺, 𝑽 and 𝑾 are the singular value matrix, the left singular vector matrix and the right 
singular vector matrix, respectively. Each column of 𝑽 denotes one POD mode 𝜙(𝑗). The associated coefficients 𝛼𝑗 (𝑡𝑖), 𝑖 = 1, 2, ⋯ , 𝑚 are determined 
by 𝚺 and 𝑾 . This SVD-based offline POD is utilized as a reference for the online PODs introduced in the next sections.

Using the POD, the reduced-order solution 𝑢̃(𝑥, 𝑡𝑖) is calculated by

𝑢̃(𝑥, 𝑡𝑖) = 𝑢̄(𝑥) +
𝑀∑

𝑗=1
𝛼𝑗 (𝑡𝑖)𝜙(𝑗)(𝑥) , (6)

where 𝜙(𝑗), 𝑗 = 1, 2, ⋯ , 𝑀 , denotes the selected POD modes, and 𝑀 is usually smaller than min (𝑛, 𝑚). 𝑢̄ represents the mean value.

2.2. Online POD using the standard incremental SVD

For high-dimensional datasets, the storage requirements for computing a SVD offline can be prohibitive. Therefore, the incremental SVD algo-

rithm [22] was introduced to achieve POD analysis on the fly, circumventing the storage issue [24].

The standard incremental SVD starts with an initialization defined by

𝚺 = ‖𝒄0‖2 ,𝑽 = 𝒄∕𝚺(1,1) ,𝑾 = [1] , (7)

where 𝒄0 denotes the first snapshot solution. Thus the snapshot matrix is 𝑼 = [𝒄0] = 𝑽 𝚺𝑾 𝖳. The SVD is completed by carrying out the standard 
incremental algorithm (SIA), shown in Algorithm 1, for all remaining snapshots to build the POD online. More precisely, after the projection of 
𝒄 onto 𝑽 , the matrix 𝑸 is computed, where small projections less than a threshold of tol [24] are neglected to prevent the impact of round-off 
errors. A standard SVD then is applied to 𝑸 before the updating process. It is then decided if the added column will increase the rank of the updated 
matrix (lines 8-13). Here the subscript denotes the index of rows and columns starting from 1 (𝑉𝑄(1∶𝑘,1∶𝑘)

is a sub-matrix of 𝑉𝑄 with the first 𝑘-th 
rows and columns, for instance). The truncation of small singular values less than a prescribed threshold tolsv is used to improve efficiency. Finally, 
the updated modes are re-orthogonalized by the modified Gram-Schmidt process if non-orthogonality occurs among them, which improves the 
robustness of the algorithm.

That updated SVD used by the SIA can be proved as follows. Adding a new snapshot 𝒄 ∈ ℝ𝑛×1 leads to an updated matrix 𝑼 𝑢 = [𝑼 𝒄], where 
𝑼 = 𝑽 𝚺𝑾 𝖳. The SVD of 𝑼 𝑢 is given as

𝑼 𝑢 = 𝑽 𝑢 𝚺𝑄 𝑾
𝖳
𝑢 , (8)

where 𝚺𝑄, 𝑽 𝑢 and 𝑾 𝑢 are the new singular value matrix, left and right singular vector matrix, respectively, defined by

𝑽 𝑢 = [𝑽 𝒋]𝑽 𝑄 ,𝑾 𝑢 =
[
𝑾 0
0 1

]
𝑾 𝑄 . (9)

This follows from the fact that 𝑽 𝑢 and 𝑾 𝑢 are orthogonal matrices, which is proved as follows

𝑽 𝖳𝒋 = 𝑽 𝖳 𝒄 − 𝑽 𝒅
𝑝

= 1
𝑝
(𝑽 𝖳𝒄 − 𝑽 𝖳𝑽 𝒅) = 1

𝑝
(𝒅 − 𝒅) = ⃖⃗0

𝑽 𝑢
𝖳𝑽 𝑢 = 𝑽 𝖳

𝑄

[
𝑽 𝖳

𝒋𝖳

]
[𝑽 𝒋]𝑽 𝑄 = 𝑽 𝖳

𝑄

[
𝑽 𝖳𝑽 𝑽 𝖳𝒋

𝒋𝖳𝑽 𝒋𝖳𝒋

]
𝑽 𝑄 = 𝑽 𝖳

𝑄𝑽 𝑄 = 𝑰

𝑾 𝑢
𝖳𝑾 𝑢 =𝑾 𝖳

𝑄

[
𝑾 𝖳 0
0 1

][
𝑾 0
0 1

]
𝑾 𝑄 =𝑾 𝖳

𝑄

[
𝑾 𝖳𝑾 0

0 1

]
𝑾 𝑄 =𝑾 𝖳

𝑄𝑾 𝑄 = 𝑰 .

(10)

2.3. Enhanced incremental SVD for online POD

Although the standard incremental SVD can achieve POD analysis online, the total computational cost is usually higher than that of the offline 
method. In practice, however, the number of POD modes (𝑀) necessary for building an accurate reduced-order model is far smaller than the number 
of DoF (𝑛) and snapshots (𝑚). Thus to improve computing efficiency, we introduce the truncation of POD modes into the incremental SVD algorithm 
as shown in Algorithm 2 between lines 14 and line 16. This leads to an enhanced incremental algorithm (EIA), which can remarkably reduce the 
computing cost of the incremental SVD. This improvement does come with a sacrifice in the accuracy of POD analysis due to the influence of 
neglected high-order modes. However, this sacrifice is often within a reasonable range and can be controlled by adding more POD modes during 
the incremental process, as demonstrated in Section 3.3.

1 Strictly speaking, 𝑹 should be expressed as 𝑿𝑿𝖳∕𝑁t , but 𝑹 =𝑿𝑿𝖳 has been widely used in literature for convenience since its eigenvectors are the same. The 
influence of 𝑁t is thus lumped into the magnitude of eigenvalues. (See also reference [1].)
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Algorithm 1 Standard incremental SVD for building POD.

Input: 𝑉 ∈ℝ𝑛×𝑘, Σ ∈ℝ𝑘×𝑘, 𝑊 ∈ℝ𝑘×𝑘, 𝑐 ∈ℝ𝑛×1 , tol, tolsv
Output: 𝑉 , Σ, 𝑊
1: 𝑘 = nColumns(𝑉 ) ⊳ The number of columns

2: 𝑑 = 𝑉 𝖳𝑐, 𝑝 = (|(𝑐 − 𝑉 𝑑)𝖳(𝑐 − 𝑉 𝑑)|)1∕2 ⊳ Part 1: Projection

3: if 𝑝 < tol then

4: 𝑄 =
[
Σ 𝑑

0 0

]
5: else

6: 𝑄 =
[
Σ 𝑑

0 𝑝

]
⊳ Part 2: SVD solution

7: 𝑉𝑄, Σ𝑄, 𝑊𝑄 = SVD (𝑄)

⊳ Part 3: LSV update

8: if (𝑝 < tol) OR (𝑘 ≥ 𝑛) then

9: 𝑉 = 𝑉 𝑉𝑄(1∶𝑘,1∶𝑘)
, Σ = Σ𝑄(1∶𝑘,1∶𝑘)

, 𝑊 =
[

𝑊 0
0 1

]
𝑊𝑄(1∶𝑘+1,1∶𝑘)

10: else

11: 𝑗 = (𝑐 − 𝑉 𝑑)∕𝑝

12: 𝑉 = [𝑉 𝑗]𝑉𝑄, Σ = Σ𝑄, 𝑊 =
[

𝑊 0
0 1

]
𝑊𝑄

13: 𝑘 = 𝑘 + 1
⊳ Part 5: Small SV truncation

14: if (Σ(𝑘−1,𝑘−1) > tolsv) AND (Σ(𝑘,𝑘) < tolsv) then

15: 𝑘 = 𝑘 − 1
16: Σ = Σ(1∶𝑘,1∶𝑘) , 𝑉 = 𝑉(∶,1,𝑘), 𝑊 = 𝑊(∶,1∶𝑘)

⊳ Part 6: Reorthogonalization

17: if |𝑉 𝖳
(∶,𝑘)𝑉(∶,1)| > min(tol, 𝜀 × 𝑛) then ⊳ 𝜀 is a double-precision machine epsilon

18: 𝑉 = ModifiedGramSchmidt(𝑉 )

Algorithm 2 Enhanced incremental SVD for building POD.

Input: 𝑉 ∈ℝ𝑛×𝑘, Σ ∈ℝ𝑘×𝑘, 𝑊 ∈ℝ𝑘×𝑘, 𝑐 ∈ℝ𝑛×1 , tol, tolsv
Output: 𝑉 , Σ, 𝑊
1: 𝑘 = nColumns(𝑉 ) ⊳ The number of columns

2: 𝑑 = 𝑉 𝖳𝑐, 𝑝 = (|(𝑐 − 𝑉 𝑑)𝖳(𝑐 − 𝑉 𝑑)|)1∕2 ⊳ Part 1: Projection

3: if 𝑝 < tol then

4: 𝑄 =
[
Σ 𝑑

0 0

]
5: else

6: 𝑄 =
[
Σ 𝑑

0 𝑝

]
⊳ Part 2: SVD solution

7: 𝑉𝑄, Σ𝑄, 𝑊𝑄 = SVD (𝑄)

⊳ Part 3: LSV update

8: if (𝑝 < tol) OR (𝑘 ≥ 𝑛) then

9: 𝑉 = 𝑉 𝑉𝑄(1∶𝑘,1∶𝑘)
, Σ = Σ𝑄(1∶𝑘,1∶𝑘)

, 𝑊 =
[

𝑊 0
0 1

]
𝑊𝑄(1∶𝑘+1,1∶𝑘)

10: else

11: 𝑗 = (𝑐 − 𝑉 𝑑)∕𝑝

12: 𝑉 = [𝑉 𝑗]𝑉𝑄, Σ = Σ𝑄, 𝑊 =
[

𝑊 0
0 1

]
𝑊𝑄

13: 𝑘 = 𝑘 + 1
⊳ Part 4: Enhanced process

14: if (𝑘 > 𝑀) then

15: Σ = Σ(1∶𝑀,1∶𝑀) , 𝑉 = 𝑉(∶,1∶𝑀), 𝑊 = 𝑊(∶,1∶𝑀)
16: 𝑘 = 𝑀

⊳ Part 5: Small SV truncation

17: if (Σ(𝑘−1,𝑘−1) > tolsv) AND (Σ(𝑘,𝑘) < tolsv) then

18: 𝑘 = 𝑘 − 1
19: Σ = Σ(1∶𝑘,1∶𝑘) , 𝑉 = 𝑉(∶,1,𝑘), 𝑊 = 𝑊(∶,1∶𝑘)

⊳ Part 6: Reorthogonalization

20: if |𝑉 𝖳
(∶,𝑘)𝑉(∶,1)| > min(tol, 𝜀 × 𝑛) then ⊳ 𝜀 is a double-precision machine epsilon

21: 𝑉 = ModifiedGramSchmidt(𝑉 )

2.4. Parallel design of the enhanced online algorithm

There are two existing approaches to parallelizing the iSVD. Iwen and Ong [32] proposed a hierarchical approach, which involves computing a 
local iSVD on each processor and then performing a global agglomerative iSVD over all processors. This avoids data communication during local 
operations but does not produce global POD results until the terminating time step. An alternative approach is to recognize that the incremental 
SVD involves multiplications between vectors and matrices, and thus the parallelization of these operations can be used. This approach is adopted 
by Arrighi et al. [31] in the open-source library libROM and can offer a global POD analysis at each incremental step. Our method is developed 
based on this library, and we modify it to incorporate the enhanced process using the same parallel data structure.

In libROM, vectors are distributed among 𝑛𝑝 processors, as illustrated in Fig. 2. The data matrix is distributed in a similar way but for each 
column. This ensures that each part of the dataset will be operated on by only one processor. The different types of computations using matrices 
46
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Fig. 2. Parallelization designs of matrices and vectors in incremental SVD.

Table 1

Parallelization operations in incremental SVD.

Different types of data Local operations Global operations

Vector𝖳 ⋅ Vector undisa ⋅ undis → undis disb ⋅ dis → undis

Matrix ⋅ Vector undis ⋅ undis → undis dis ⋅ undis → dis

Matrix𝖳 ⋅ Vector undis ⋅ undis → undis dis ⋅ dis → undis

Matrix ⋅ Matrix undis ⋅ undis → undis dis ⋅ undis → dis

Matrix𝖳 ⋅ Matrix undis ⋅ undis → undis dis ⋅ dis → undis

a denotes undistributed data.
b denotes distributed data.

and vectors are summarized in Table 1, where a local operation is one that employs data stored on the same processor, while a global operation 
employs data from other processors as well.

3. Performance of the enhanced algorithm in serial

The number of selected POD modes (𝑀) is of key importance as it determines the accuracy of a reduced-order model. There are different methods 
to determine 𝑀 , including heuristic and statistical methods [33]. A common method is to quantify the energy captured by the selected POD modes, 
namely the cumulative energy 𝑒𝑀 , computed as

𝑒𝑀 =
∑𝑀

𝑖=1 𝜎2
𝑖∑min(𝑚,𝑛)

𝑖=1 𝜎2
𝑖

, (11)

where 𝜎𝑖 denotes the singular values, which are ordered in terms of their contributions to the total energy of the entire system. Choosing 𝑀 so 
that 𝑒𝑀 is larger than 90% [14] of the total energy is a standard way to ensure that the POD analysis rationally represents full-order solutions. In 
literature, other thresholds of the cumulative energy captured, such as 99% [6,11–13], have also been used. We define the required accuracy of the 
truncation using the 99% criterion.

In the following, an aggregated expression is formulated for the enhanced incremental SVD, by which the snapshot matrix is divided into the 
reconstructed and truncated components. Using this expression, we establish two estimators for the lower bound of the cumulative energy captured 
during the incremental process. The aggregated expression is described in Section 3.1. The lower-bound estimators are given in Section 3.2, followed 
by the investigation of their fidelity using an unsteady Burgers problem in Section 3.3.

3.1. An aggregated expression for the enhanced algorithm

In this section, we analyze the influence of the enhanced process on the incremental SVD, focusing on the accuracy of reconstructed solutions 
based on the selected POD modes. For 𝑀 POD modes, we can express the snapshot matrix at any 𝑘-th incremental step as follows

𝑼𝑘 =
⎧⎪⎨⎪⎩
𝑼𝑘 𝑘 ⩽ 𝑀

𝑼𝑘 +𝑼 ′
𝑘 𝑘 = 𝑀 + 1

𝑼𝑘 +𝑼 ′
𝑘 +

∑𝑘−1
𝑖=𝑀+1𝑼

′ (𝑘)
𝑖 𝑘 ⩾ 𝑀 + 2

, (12)

where 𝑼𝑘, 𝑘 = 1, 2, ⋯ , 𝑛 is a sub-matrix of the entire snapshot matrix 𝑿 defined by the first 𝑘 columns. 𝑼𝑘 = 𝑽 𝑘𝚺̃𝑘𝑾
𝖳

𝑘 represents the reconstructed 
solution after the 𝑘-th incremental step, defined as

𝑽 𝑘 =

{
𝑽 (𝑘)

𝑽
(𝑘)
(∶,1∶𝑀)

𝚺̃𝑘 =

{
𝚺(𝑘)

𝚺(𝑘)
(1∶𝑀,1∶𝑀)

𝑾 𝑘 =

{
𝑾 (𝑘) , 𝑘 ⩽ 𝑀

𝑾
(𝑘)
(∶,1∶𝑀) , 𝑘 ⩾ 𝑀 + 1

, (13)

where 𝚺𝑘 and 𝑽 𝑘, 𝑾 𝑘 denote the singular value matrix and singular vector matrices. 𝑼 ′
𝑘 = 𝑽 (𝑘)

(∶,𝑀+1) 𝚺
(𝑘)
(𝑀+1,𝑀+1)𝑾

(𝑘)
(∶,𝑀+1)

𝖳
is the truncated solution 

at the 𝑘-th incremental step, and vanishes when 𝑘 ⩽ 𝑀 .

𝑼
′ (𝑘)
𝑖 (𝑘 > 𝑖 ⩾ 𝑀 + 1) represents solutions truncated at the 𝑖-th step but extended to the 𝑘-th step, and it is defined by

𝑼
′ (𝑘)
𝑖 = [𝑼 ′

𝑖
⃖⃗𝟎 ⋯ ⃖⃗𝟎
⏟⏞⏞⏟⏞⏞⏟

] .
(14)
𝑘−𝑖
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This implies

𝑼
′ (𝑘+1)
𝑘

= [𝑼 ′
𝑘

⃖⃗𝟎], 𝑘 ⩾ 𝑀 + 1

𝑼
′ (𝑘+1)
𝑖 = [𝑼 ′ (𝑘)

𝑖
⃖⃗𝟎], 𝑘 > 𝑖 ⩾ 𝑀 + 1 .

(15)

It is worth noting that the third case in Equation (12), 𝑘 ⩾ 𝑀 + 2, is the scenario we usually meet in practice. We give a proof of Equation (12) as 
follows.

Proof. When 𝑘 ⩽ 𝑀 , the expression is identical to the standard incremental SVD. This is to say that 𝑼 𝑘 = 𝑽 (𝑘)𝚺(𝑘)𝑾 (𝑘)𝖳 =𝑼𝑘.

When 𝑘 = 𝑀 + 1, we have 𝑼𝑀+1 = [𝑼𝑀 𝒄𝑀+1] = [𝑼𝑀 𝒄𝑀+1]. The SVD is utilized to obtain

𝑼𝑀+1 = 𝑽 (𝑀+1)𝚺(𝑀+1)𝑾 (𝑀+1)𝖳 ⊳SVD

= 𝑽 (𝑀+1)
(∶,1∶𝑀)𝚺

(𝑀+1)
(1∶𝑀,1∶𝑀)𝑾

(𝑀+1)
(∶,1∶𝑀)

𝖳
+ 𝑽 (𝑀+1)

(∶,𝑀+1)𝚺
(𝑀+1)
(𝑀+1,𝑀+1)𝑾

(𝑀+1)
(∶,𝑀+1)

𝖳
⊳Additivity

∶= 𝑽 𝑀+1𝚺̃𝑀+1𝑾
𝖳

𝑀+1 + 𝒗
(𝑀+1)
𝑀+1 𝝈

(𝑀+1)
𝑀+1 𝒘

(𝑀+1)
𝑀+1

𝖳
⊳Definition

∶=𝑼𝑀+1 +𝑼 ′
𝑀+1 ,

(16)

which gives the second expression. It is noted that 𝑼 ′
𝑀+1 will be truncated since we only consider 𝑀 POD modes.

The third expression can be proved using mathematical induction as follows:

Base case: When 𝑘 = 𝑀 + 2, the solution data is expressed as

𝑼𝑀+2 = [𝑼𝑀+1 𝒄𝑀+2]

= [𝑼𝑀+1 +𝑼 ′
𝑀+1 𝒄𝑀+2]

= [𝑼𝑀+1 𝒄𝑀+2]+ [𝑼 ′
𝑀+1

⃖⃗𝟎]

= [𝑼𝑀+1 𝒄𝑀+2]+𝑼
′ (𝑀+2)
𝑀+1 .

(17)

We apply the SVD to [𝑼𝑀+1 𝒄𝑀+2], resulting in the following statement

[𝑼𝑀+1 𝒄𝑀+2] = 𝑽 (𝑀+2)𝚺(𝑀+2)𝑾 (𝑀+2)𝖳

= 𝑽 (𝑀+2)
(∶,1∶𝑀)𝚺

(𝑀+2)
(1∶𝑀,1∶𝑀)𝑾

(𝑀+2)
(∶,1∶𝑀)

𝖳
+ 𝑽 (𝑀+2)

(∶,𝑀+1)𝚺
(𝑀+2)
(𝑀+1,𝑀+1)𝑾

(𝑀+2)
(∶,𝑀+1)

𝖳

∶= 𝑽 𝑀+2𝚺̃𝑀+2𝑾
𝖳

𝑀+2 + 𝒗
(𝑀+2)
𝑀+1 𝝈

(𝑀+2)
𝑀+1 𝒘

(𝑀+2)
𝑀+1

𝖳

∶=𝑼𝑀+2 +𝑼 ′
𝑀+2 ,

(18)

where 𝑼𝑀+2 = 𝑽 𝑀+2𝚺̃𝑀+2𝑾
𝖳

𝑀+2 and 𝑼 ′
𝑀+2 = 𝒗

(𝑀+2)
𝑀+1 𝝈

(𝑀+2)
𝑀+1 𝒘

(𝑀+2)
𝑀+1

𝖳
. Consequently, the solution is stated as 𝑼𝑀+2 = 𝑼𝑀+2 + 𝑼 ′

𝑀+2 + 𝑼
′ (𝑀+2)
𝑀+1 . In 

other words, the expression of 𝑼𝑘 is satisfied when 𝑘 = 𝑀 + 2.

Inductive step: Assume that the induction hypothesis holds for a particular 𝑘 ⩾ 𝑀 + 2, meaning

𝑼𝑘 =𝑼𝑘 +𝑼 ′
𝑘 +

∑𝑘−1
𝑖=𝑀+1

𝑼
′ (𝑘)
𝑖 . (19)

When 𝑛 = 𝑘 + 1, the updated snapshot matrix is expressed as

𝑼𝑘+1 = [𝑼𝑘 𝑐𝑘+1] = [𝑼𝑘 +𝑼 ′
𝑘 +

𝑘−1∑
𝑖=𝑀+1

𝑼
′ (𝑘)
𝑖 𝑐𝑘+1]

= [𝑼𝑘 𝑐𝑘+1]+ [𝑼 ′
𝑘

⃖⃗𝟎]+ [
𝑘−1∑

𝑖=𝑀+1
𝑼

′ (𝑘)
𝑖

⃖⃗𝟎]

= [𝑼𝑘 𝑐𝑘+1]+𝑼
′ (𝑘+1)
𝑘

+
𝑘−1∑

𝑖=𝑀+1
𝑼

′ (𝑘+1)
𝑖

= [𝑼𝑘 𝑐𝑘+1]+
𝑘∑

𝑖=𝑀+1
𝑼

′ (𝑘+1)
𝑖 .

(20)

We apply the SVD to [𝑼𝑘 𝑐𝑘+1] and express it as follows

[𝑼𝑘 𝑐𝑘+1] = 𝑽 (𝑘+1)𝚺(𝑘+1)𝑾 (𝑘+1)𝖳

= 𝑽 (𝑘+1)
(∶,1∶𝑀)𝚺

(𝑘+1)
(1∶𝑀,1∶𝑀)𝑾

(𝑘+1)
(∶,1∶𝑀)

𝖳
+ 𝑽 (𝑘+1)

(∶,𝑀+1)𝚺
(𝑘+1)
(𝑀+1,𝑀+1)𝑾

(𝑘+1)
(∶,𝑀+1)

𝖳

∶= 𝑽 𝑘+1𝚺̃𝑘+1𝑾
𝖳

𝑘+1 + 𝒗
(𝑘+1)
𝑀+1𝝈

(𝑘+1)
𝑀+1𝒘

(𝑘+1)
𝑀+1

𝖳

∶=𝑼𝑘+1 +𝑼 ′
𝑘+1 ,

(21)

where 𝑼𝑘+1 = 𝑽 𝑘+1𝚺̃𝑘+1𝑾
𝖳

𝑘+1 and 𝑼 ′
𝑘+1 = 𝒗

(𝑘+1)
𝑀+1𝝈

(𝑘+1)
𝑀+1𝒘

(𝑘+1)
𝑀+1

𝖳
. Therefore, we deduce that

𝑼𝑘+1 =𝑼𝑘+1 +𝑼 ′
𝑘+1 +

𝑘∑
𝑼

′ (𝑘+1)
𝑖 . (22)
𝑖=𝑀+1
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Since the expression of 𝑼𝑘+1 also holds true, we establish the inductive step.

Conclusion: As we have proved the base case and the inductive step, the original statement of 𝑼 𝑛 holds for every natural number 𝑛 ⩾ 𝑀 + 2. □

3.2. Lower-bound estimators of cumulative energy

The enhanced process for the incremental SVD can reduce computational cost. However, the accuracy of SVD can deteriorate if the truncation 
number is too small. To this end, we propose error estimators that can quantify the accuracy of the enhanced incremental SVD without solving 
for all eigenvalues. By virtue of the above-mentioned aggregated expression, we establish two lower-bound estimators for the cumulative energy 
obtained by the enhanced process. Since we can evaluate the summation of singular values by the Frobenius norm (𝐹 -norm) of matrices, i.e. ‖𝑨‖F =

√∑Rank(𝐴)
𝑖=1 𝜎2

𝑖 (𝑨), the energy ratio of the 𝑀 -selected POD modes is computed as

𝑒𝑀 =
∑𝑀

𝑖=1 𝜎2
𝑖∑min(𝑚,𝑛)

𝑖=1 𝜎2
𝑖

=
‖𝑼̃‖2

F‖𝑼‖2
F

. (23)

Then two lower-bound estimators at the 𝑘-th incremental step are given as

𝑒𝑘
con =

‖𝑼𝑘‖2F(‖𝑼𝑘‖F + 𝐹 (𝑘)
1

)2 (24)

𝑒𝑘
simp

=
‖𝑼𝑘‖2F‖𝑼𝑘‖2F + 𝐹 (𝑘)

2

, (25)

where 𝑼𝑘 =𝑼𝑘 +𝑼 ′
𝑘, and thus ‖𝑼𝑘‖2F = ‖𝑼𝑘‖2F + ‖𝑼 ′

𝑘‖2F due to the orthogonality of POD modes at 𝑘-th incremental step. 𝐹 (𝑘)
1 and 𝐹 (𝑘)

2 are given by

𝐹 (𝑘)
1 =

𝑘−1∑
𝑖=𝑀+1

‖𝑼 ′ (𝑘)
𝑖 ‖F = 𝐹 (𝑘−1)

1 + ‖𝑼 ′
𝑘−1‖F, 𝑘 ⩾ 𝑀 + 2 (26)

𝐹 (𝑘)
2 =

𝑘−1∑
𝑖=𝑀+1

‖𝑼 ′ (𝑘)
𝑖 ‖2

F
= 𝐹 (𝑘−1)

2 + ‖𝑼 ′
𝑘−1‖2F, 𝑘 ⩾ 𝑀 + 2 , (27)

where 𝐹 (𝑀+1)
1 = 0 and 𝐹 (𝑀+1)

2 = 0. 𝐹 (𝑘)
1 and 𝐹 (𝑘)

2 are only dependent on the solution truncated in previous steps and are utilized to evaluate the error 
at next step. Using Equations (26) and (27) allows us to avoid storing all ‖𝑼 ′ (𝑘)

𝑗 ‖F, 𝑖 = 𝑀 +1, ⋯ , 𝑘 −1, and to use a recursive approach for computing 
the two estimators.

The expression for 𝑒𝑘
con is derived using the Cauchy–Schwarz inequality for the Frobenius inner product, viz. ⟨𝑨, 𝑩⟩F ⩽ ‖𝑨‖F ‖𝑩‖F. We can 

evaluate ‖𝑼𝑘‖2F as

‖𝑼𝑘‖2F = ‖𝑼𝑘‖2F + ‖ 𝑘−1∑
𝑖=𝑀+1

𝑼
′ (𝑘)
𝑖 ‖2

F
+ 2

𝑘−1∑
𝑖=𝑀+1

⟨𝑼𝑘,𝑼 ′ (𝑘)
𝑖 ⟩F

= ‖𝑼𝑘‖2F + 𝑘−1∑
𝑖=𝑀+1

𝑘−1∑
𝑗=𝑀+1

⟨𝑼 ′ (𝑘)
𝑖 ,𝑼 ′ (𝑘)

𝑗 ⟩F + 2
𝑘−1∑

𝑖=𝑀+1
⟨𝑼𝑘,𝑼 ′ (𝑘)

𝑖 ⟩F
⩽ ‖𝑼𝑘‖2F + 𝑘−1∑

𝑖=𝑀+1

𝑘−1∑
𝑗=𝑀+1

‖𝑼 ′ (𝑘)
𝑖 ‖F‖𝑼 ′ (𝑘)

𝑗 ‖F + 2
𝑘−1∑

𝑖=𝑀+1
‖𝑼𝑘‖F ‖𝑼 ′ (𝑘)

𝑖 ‖F

= ‖𝑼𝑘‖2F + 𝐹 (𝑘)
1 𝐹 (𝑘)

1 + 2𝐹 (𝑘)
1 ‖𝑼𝑘‖F

=
(‖𝑼𝑘‖F + 𝐹 (𝑘)

1

)2
.

(28)

Then the first lower-bound estimator of 𝑒𝑘
𝑀

is derived as

𝑒𝑘
𝑀 =

‖𝑼𝑘‖2F‖𝑼𝑘‖2F ⩾
‖𝑼𝑘‖2F‖𝑼𝑘‖2F + 𝐹 (𝑘)

1 𝐹 (𝑘)
1 + 2𝐹 (𝑘)

1 ‖𝑼𝑘‖F

∶= 𝑒𝑘
con . (29)

This estimator can be conservative in practice, as we estimate ‖𝑼𝑘‖2F with an upper bound. If we use this estimator to determine the number of POD 
modes, it will revert towards the standard incremental SVD when its value exceeds the threshold.

Based on Equation (12), however, we can have an accurate computation for ‖𝑼𝑘‖2F as stated in Proposition 1. This will be used to construct a 
second estimator, 𝑒𝑘

simp
.

Proposition 1. Suppose that we have the expression of 𝑼 𝑘 as shown in Equation (12), the Frobenius norm of 𝑼𝑘 is given as

‖𝑼𝑘‖2F =
⎧⎪⎨⎪
‖𝑼𝑘‖2F 𝑘 ⩽ 𝑀‖𝑼𝑘‖2F + ‖𝑼 ′

𝑘‖2F 𝑘 = 𝑀 + 1‖𝑼 ‖2 + ‖𝑼 ′ ‖2 +∑𝑘−1 ‖𝑼 ′ (𝑘)‖2 𝑘 ⩾ 𝑀 + 2
, (30)
⎩ 𝑘 F 𝑘 F 𝑖=𝑀+1 𝑖 F
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Proof. The 𝐹 -norm for the truncated solutions 𝑼 ′ (𝑘)
𝑖 is given before the detailed proof. It satisfies the following equation

‖𝑼 ′ (𝑘)
𝑖 ‖F = ‖𝑼 ′

𝑖‖F , 𝑘 ⩾ 𝑀 + 2, 𝑖 = 𝑀 + 1,⋯ , 𝑘 − 1 . (31)

This is an inherent property of 𝑼 ′ (𝑘)
𝑖 , which can be verified using Equation (14) and the definition of the 𝐹 -norm.

When 𝑘 ⩽ 𝑀 + 1, the expression for ‖𝑼𝑘‖2F is satisfied, since there is no difference from the standard incremental SVD. Then we prove the third 
case by mathematical induction as follows.

Base case: When 𝑘 = 𝑀 + 2, the solution data is expressed as

‖𝑼𝑀+2‖2F = ‖𝑼𝑀+1 𝒄𝑀+2‖2F
= ‖𝑼𝑀+1‖2F + ‖𝒄𝑀+2‖22 ⊳Definition of 𝐹 -norm

= ‖𝑼𝑀+1‖2F + ‖𝑼 ′
𝑀+1‖2F + ‖𝒄𝑀+2‖22 ⊳When 𝑘 = 𝑀 + 1

= ‖𝑼𝑀+1 𝒄𝑀+2‖2F + ‖𝑼 ′
𝑀+1‖2F ⊳Definition of 𝐹 -norm

= ‖𝑼𝑀+2 +𝑼 ′
𝑀+2‖2F + ‖𝑼 ′

𝑀+1‖2F ⊳𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (18)

= ‖𝑼𝑀+2‖2F + ‖𝑼 ′
𝑀+2‖2F + ‖𝑼 ′

𝑀+1‖2F ⊳Orthogonality

= ‖𝑼𝑀+2‖2F + ‖𝑼 ′
𝑀+2‖2F + ‖𝑼 ′ (𝑀+2)

𝑀+1 ‖2
F

⊳Equation (31) .

(32)

Therefore, ‖𝑼𝑘‖2F is satisfied when 𝑘 = 𝑀 + 1.

Inductive step: Assume that the induction hypothesis holds for a particular 𝑘 ⩾ 𝑀 + 2, viz. ‖𝑼𝑘‖2F is expressed as

‖𝑼𝑘‖2F = ‖𝑼𝑘‖2F + ‖𝑼 ′
𝑘‖2F + 𝑘−1∑

𝑖=𝑀+1
‖𝑼 ′ (𝑘)

𝑖 ‖2
F

, (33)

when 𝑛 = 𝑘 + 1, we can obtain the 𝐹 -norm of 𝑼𝑘+1 as

‖𝑼𝑘+1‖2F = ‖𝑼𝑘 𝒄𝑘+1‖2F
= ‖𝑼𝑘‖2F + ‖𝒄𝑘+1‖22 ⊳Definition of 𝐹 -norm

= ‖𝑼𝑘‖2F + ‖𝑼 ′
𝑘‖2F + 𝑘−1∑

𝑖=𝑀+1
‖𝑼 ′ (𝑘)

𝑖 ‖2
F
+ ‖𝒄𝑘+1‖22 ⊳Equation (33)

= ‖𝑼𝑘 𝒄𝑘+1‖2F + ‖𝑼 ′
𝑘‖2F + 𝑘−1∑

𝑖=𝑀+1
‖𝑼 ′ (𝑘)

𝑖 ‖2
F

⊳Definition of 𝐹 -norm

= ‖𝑼𝑘+1 +𝑼 ′
𝑘+1‖2F + ‖𝑼 ′

𝑘‖2F + 𝑘−1∑
𝑖=𝑀+1

‖𝑼 ′ (𝑘)
𝑖 ‖2

F
⊳Equation (21)

= ‖𝑼𝑘+1‖2F + ‖𝑼 ′
𝑘+1‖2F + ‖𝑼 ′

𝑘‖2F + 𝑘−1∑
𝑖=𝑀+1

‖𝑼 ′ (𝑘)
𝑖 ‖2

F
⊳Orthogonality

= ‖𝑼𝑘+1‖2F + ‖𝑼 ′
𝑘+1‖2F + 𝑘∑

𝑖=𝑀+1
‖𝑼 ′ (𝑘+1)

𝑖 ‖2
F

, ⊳Equation (31)

(34)

which proves that the statement for ‖𝑼𝑘+1‖2F is held, thereby establishing the inductive step.

Conclusion: As the base case and the inductive step have been proved, the original statement for ‖𝑼𝑘‖2F holds for every natural number 𝑘 ⩾ 𝑀 +2. □

The second estimator is thus

𝑒𝑘
𝑀 =

‖𝑼̃𝑘‖2F‖𝑼𝑘‖2F =
‖𝑼̃𝑘‖2F

‖𝑼̃𝑘‖2F + ‖𝑼 ′
𝑘‖2F + ‖ 𝑘−1∑

𝑖=𝑀+1
𝑼

′ (𝑘)
𝑖 ‖2

F

=
‖𝑼𝑘‖2F‖𝑼𝑘‖2F + 𝐹 (𝑘)

2

∶= 𝑒𝑘
simp

.
(35)

During the incremental process, it is worth noting that 𝑼𝑘 is a combination of 𝑀 -selected modes for the complete solution 𝑼𝑘 when 𝑘 ⩾ 𝑀 . Since 
the POD is defined by a maximization problem, the POD modes are obtained in a decreasing order of their contributions to the system. Therefore, 
the approximation of the snapshot matrix using first 𝑀 POD modes is the most optimal combination [34]. The summation of first 𝑘 singular 
values from POD is larger than or equal to those from any other rank-𝑘 approximation, thereby leading to ∑𝑀

𝑖=1 𝜎2
𝑖 (𝑼𝑘) ⩽

∑𝑀
𝑖=1 𝜎2

𝑖 (𝑼𝑘). As a result, 
this estimator is a lower bound for the cumulative energy captured by the standard iSVD. Note that the two estimators for the evaluation of the 
enhanced incremental SVD have been constructed without accounting for the original errors from the standard incremental SVD, which are very 
small for the cases considered here.

3.3. Impact of the truncation number on the enhanced algorithm

In this section, we investigate the impact of using different 𝑀 on the accuracy of the lower-bound estimators and the resulting POD modes 
obtained from solutions of a one-dimensional (1D) unsteady Burgers problem. The Burgers equation is often used as a mathematical model for 
applications that involve shock wave propagation in viscous flows or idealized turbulence [35], and it is expressed as
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Fig. 3. Cumulative energy of two estimators, 𝑒con and 𝑒simp at the terminating step (100 steps), compared with the reference value from the standard incremental 
SVD, with different numbers (𝑀) for the enhanced online process.

Fig. 4. Cumulative energy computed by estimators, 𝑒con and 𝑒simp, and reference value from the standard incremental SVD during incremental process for first three 
truncation numbers (𝑀) of the enhanced process.

𝜕𝑢
𝜕𝑡

+ 𝑢
𝜕𝑢
𝜕𝑥

− 𝜈
𝜕2𝑢

𝜕𝑥2 = 𝑓 , (36)

where 𝑢 is the solution, with boundary conditions 𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 and an initial condition 𝑢(𝑥, 0) = 0. Here 𝜈 is the viscosity coefficient, chosen as 
0.01, and 𝑓 ∈ℝ is a known forcing term. We consider the Burgers problem over a space-time domain Ω ∶ [0, 1] × I ∶ [0, 20] with 𝑓 defined as

𝑓 (𝑥, 𝑡) = 1 + 5
30

3∑
𝑘=1

sin(𝑘𝜋𝑡) sin(𝑘𝜋𝑥) . (37)

This forcing term produces a solution with large fluctuations and a boundary layer near the right boundary. The problem is discretized on a mesh 
with 256 elements, using piecewise linear basis functions in space and a variational multiscale method. We apply a Runge-Kutta time marching 
scheme with a time step of Δ𝑡 = 0.001 to advance the solution in time. Time interval of [0, 10] is used for flow development before reaching a 
statistical steady state of the time period [10, 20].

The dataset is constructed by taking a snapshot every 20 time steps from 𝑡 = 10 to 𝑡 = 12, resulting in a 257 × 100 snapshot matrix. We apply the 
enhanced online algorithm to analyze this dataset and compare it with reference data obtained from the standard iSVD. Fig. 3 shows the cumulative 
energy computed based on two estimators, 𝑒con and 𝑒simp, and the reference value at the terminating step when different truncation numbers (𝑀) 
of the enhanced process are considered. As expected, an increasing portion of the solution energy is captured as 𝑀 is increased. It is noted that the 
estimator 𝑒con lies far below the actual value when 𝑀 is small, but does converge to the actual value for 𝑀 > 10. 𝑒simp is also lower than reference 
value but provides a much more accurate estimate than 𝑒con. In this case, a difference less than 0.1% is observed when 𝑀 = 3. For 𝑀 = 4, the 
difference is only 0.04%, which is considered sufficiently accurate. The computation time is reduced by a factor of 125 with 𝑀 = 4. Fig. 4 presents 
the change of cumulative energy for these two estimators during the incremental process when 𝑀 is equal to 1, 2 and 3, respectively. We can 
observe 𝑒simp is more accurate than 𝑒con over the entire incremental process.

It is noted that 𝐹 (𝑘)
2 can be related to the aforementioned 𝐹 (𝑘)

1 as

(
𝐹 (𝑘)
1

)2
= 𝐹 (𝑘)

2 + 2
𝑘−1∑ 𝑘−1∑ ‖𝑼 ′ (𝑘)

𝑖 ‖F ‖𝑼 ′ (𝑘)
𝑗 ‖F . (38)
𝑖=𝑀+1 𝑗=𝑖+1
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Fig. 5. Comparisons of the first three POD modes computed by enhanced and standard (reference) iSVDs, with truncations numbers of 𝑀 = 1,2,3, respectively.

Table 2

First three eigenvalues computed by enhanced (𝑀 = 1, 2, 3) and standard (Reference 
value) iSVDs.

Reference Truncation number (𝑀)

3 2 1

First eigenvalue 27.00840 27.00677 26.54177 24.13557

Second eigenvalue 11.48709 11.48611 10.99621

Third eigenvalue 4.682270 4.678387

Thus we have 𝐹 (𝑘)
2 ⩽ (𝐹 (𝑘)

1 )2. Considering the non-negative values of ‖𝑼𝑘‖F and 𝐹 (𝑘)
1 in Equation (24), 𝑒simp is larger than 𝑒con. In other words, 

𝑒simp provides a more accurate lower bound. Even though the performance of the enhanced iSVD depends on the problem we consider, these two 
estimators equip the enhanced iSVD with a posteriori knowledge of the accuracy of POD analysis. This allows us to approximate the iSVD with a 
desired accuracy while being much more efficient than the standard iSVD.

Fig. 5 compares the POD modes computed using different enhanced iSVDs to a standard iSVD. As shown in Fig. 5(a), the shape of first POD mode 
computed from the enhanced algorithm with 𝑀 = 1 differs significantly from the reference. Increasing 𝑀 reduces this discrepancy. This effect can 
be observed for the second and third mode as well. Table 2 shows the first three eigenvalues from these three enhanced iSVDs in comparison with 
the ones from standard iSVD. We can see that increasing 𝑀 not only allows the POD analysis to capture more kinetic energy, but also improves the 
accuracy of the dominant modes. These results indicate that a truncation number that is larger than the number of selected POD modes (𝑀) will 
yield more accurate versions of the selected POD modes, since this improvement is gained by interactions with other high-order modes.

4. Analyses of parallel performance

In this section, we investigate the parallel performance of the enhanced incremental SVD using both a synthetic matrix and numerical solutions 
from the 1D unsteady Burgers problem. For the latter case, we consider two types of data, a matrix with more DoF (𝑛 > 𝑚) and a matrix with more 
snapshots (𝑛 < 𝑚). All computations were performed on a 32-core node of a Linux cluster equipped with AMD Opteron(tm) Processors and 128 GB 
of RAM.

The enhanced incremental SVD algorithm is divided into six parts, as shown in right side of Algorithm 2, in order to identify the main con-

tributions to computing cost. These consist of projection, SVD solution, LSV (left singular vectors) update, enhanced process, small SV (singular 
values) truncation, and reorthogonalization. In addition, we define “major parallel operations” as the summation of the projection, LSV update and 
reorthogonalization. The behavior of their contributions will be studied in the subsequent sections.

4.1. Synthetic matrix

Strong scaling performance was evaluated using a synthetic matrix with dimension 320000 ×50 formed based on random numbers with a uniform 
distribution. Fig. 6(a) shows the total time consumption for standard and enhanced iSVDs. The computing cost of the standard iSVD is much higher 
than that of the enhanced iSVDs (up to two orders higher in this case). Fig. 6(b) shows the ratio of the standard iSVD’s computing time to the 
enhanced iSVD’s computing time. We call this time ratio as the algorithmic speedup to distinguish it from the speedup of parallel computations, and 
to describe the performance improved by the enhanced algorithm. The enhanced iSVDs are able to retain their significant performance advantage 
as the number of processors (np) is increased.

The parallel speedups for the total incremental time, major parallel operations, and LSV update are shown in Fig. 7, for a standard iSVD and 
three enhanced iSVDs. All of them scale well in parallel. For the LSV update, the enhanced iSVDs show a scaling similar to the standard one, just 
below the ideal value (a speedup proportional to the number of processors). This is observed for the major parallel operations as well, although 
this is less significant. Furthermore, using a smaller number 𝑀 for the enhanced process can degrade the speedup to some extent. This is because 
the enhanced process reduces the computing cost of the major parallel operations, and thus the contribution to the computing cost from other 
undistributed operations becomes more and more apparent with increased number of parallel processors.

The time ratio of the computing cost for the different contributions is given in Fig. 8. Among these, the LSV update provides the largest 
contribution to the total computing time for the both standard and enhanced iSVDs. However, the enhanced algorithm reduces this contribution. 
The smaller the truncation number 𝑀 of the enhanced process, the lower the contribution of the LSV update to the total cost. The enhanced process 
reduces the dimension of 𝑉𝑄 and 𝑊𝑄, and thus multiplications involving those matrices are changed to relatively light computations. In contrast, 
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Fig. 6. Time consumption of standard and enhanced incremental SVDs in parallel for a 320000 ×50 synthetic matrix, and the computing time ratio for these enhanced 
iSVDs. np denotes the number of processors.

Fig. 7. The speedup of standard and enhanced parallel incremental SVDs for the total incremental time, major parallel operations and LSV update for a 320000 × 50
synthetic matrix. np denotes the number of processors.

for a small 𝑀 , the computing cost of the projection becomes relatively significant. As the state vectors are formed from independent randomized 
values, reorthogonalization is not a significant contributor to this problem.

4.2. Unsteady flow problem

The Burgers problem of Section 3.3 was also used to generate large-scale matrices for parallel performance studies. We constructed two types of 
matrices, a matrix with more DoF and a matrix with more snapshots. We refer to the former as a deep matrix and the latter as a wide matrix. Using 
interpolations of the original data set, the deep matrix of 327681 × 200 was used to study strong scaling performance, in which each core held at 
least 10000 data points. The wide matrix (257 × 2000) was used to perform a weak scaling study.

4.2.1. A deep matrix with more DoF

In this scenario, we solve the problem with a fine mesh and assume that we only need to gather a small number of snapshots for modal analyses 
in order to study dominant flow structures. Such a scenario could result from the selection of snapshots described in [26,30] for example, in which 
linearly-dependent solutions are skipped in the POD analysis.

Fig. 9 shows the computing time of the enhanced and standard iSVDs and the algorithmic speedup of the enhanced iSVDs. We can observe 
that the computing time of both standard and enhanced iSVDs is consistently reduced when using more parallel processors, and that the enhanced 
algorithm significantly improves the computational efficiency independent of the number of processors.

Fig. 10 shows the parallel speedup of the total incremental process, major parallel operations and LSV update for the standard and enhanced 
incremental SVDs. For the total incremental time, good strong-scaling performance is observed, occasionally exceeding the theoretically ideal 
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Fig. 8. The time ratio of computing cost for different parts during the standard/enhanced parallel incremental SVDs for a 320000 ×50 synthetic matrix, including the 
projection, SVD solution, LSV update, reorthogonalization, enhanced process, small SV truncation. np denotes the number of processors.

Fig. 9. Time consumption of standard and enhanced incremental SVDs in parallel, and the computing time ratio for the enhanced process for a deep matrix (327681 ×
200). np denotes the number of processors.

value. The performance for major parallel operations behaves in a similar manner. However, the parallel speedup of the LSV update is well below 
the ideal value. The observed hyper-speedup results from the computational cost of the reorthogonalization. Fig. 11(a) presents the number of 
reorthogonalizations versus the number of processors. It is seen to decrease as the number of processors is increased. In this case, the computational 
cost of reorthogonalization benefits from reduced round-off errors when computing sums with a parallelized algorithm. Fig. 11(b) compares the 
non-orthogonality values computed by the standard iSVD with 1 and 32 processors respectively. The number of non-orthogonality values exceeding 
the threshold in 1-processor case (17) is larger than that number with 32 processors (6).

Fig. 12 shows the time ratio of each part in the standard and enhanced iSVDs. These ratios keep roughly constant for all iSVDs. The LSV update 
and reorthogonalization are the two major contributions to the computing cost. When using a small 𝑀 , the contribution of the projection also plays 
an important role in the computing cost.

Normalized time consumption. Since the need for reorthogonalization is strongly affected by numerical round-off errors, the number of reorthog-

onalizations varies when we run the problem with different number of processors. To remove the resulting oscillations in the scaling graph, we 
normalize the computing time of the reorthogonalization to obtain

𝑡normal = 𝑡total − 𝑡reorthogonal +
𝑡reorthogonal

𝑛
, (39)
reorthogonal

54



X. Li, S. Hulshoff and S. Hickel Computers and Mathematics with Applications 126 (2022) 43–59
Fig. 10. Parallel speedups of standard/enhanced incremental SVDs for the total incremental time, major parallel operations and LSV update on a deep ma-

trix (327681 × 200). np denotes the number of processors.

Fig. 11. The number of reorthogonalizations of the standard and enhanced incremental SVDs in parallel, and the comparison of non-orthogonality values computed 
for 1-processor and 32-processor cases for a deep matrix (327681 × 200). np denotes the number of processors.

where 𝑡total and 𝑡normal denote the total computing time before and after the normalization. 𝑡reorthogonal and 𝑛reorthogonal represent the computing time 
and the number of reorthogonalizations. When 𝑛reorthogonal = 0, the computing time is kept the same. Otherwise the normalized value will be utilized. 
Fig. 13 shows the parallel speedups of normalized computing time, which now have the expected scaling, just below the ideal value.

4.2.2. A wide matrix with more snapshots

Another scenario may occur when we are interested in statistically steady phenomena. In this case, we consider a large number of snapshots 
which exceeds the number of DoF of a computational mesh, leading to a wide matrix. Fig. 14(a) presents the total computing time of the standard 
and enhanced iSVDs for a 257 × 2000 wide matrix. Here, we examine weak scaling in which the computing time ideally remains constant while the 
number of processors is increased. As shown in Fig. 14(b), the algorithmic speedup of the enhanced algorithm remains constant although this value 
is degraded for the case of 𝑀 = 1. Fig. 15 shows the computing cost of major parallel operations and the LSV update. The cost of major parallel 
operations exhibits a trend similar to that of the total computing time. However, the LSV update shows a constant computing cost with increasing 
the number of processors. Overall, the enhanced incremental SVD shows good scaling for this wide matrix.

4.2.3. Improvement of computational performance by the enhanced process

The algorithmic speedup of the proposed enhanced online algorithm is shown to be constant for both deep and wide matrices. Considering that 
the dominant computational cost results from the LSV update, we can estimate the improvement by an a priori analysis of the computing complexity, 
as described in Proposition 2.
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Fig. 12. The time ratio of computing cost for different parts during the standard/enhanced parallel incremental SVDs on a 327681 × 200 deep matrix, including the 
projection, SVD solution, LSV update, reorthogonalization, enhanced process, small SV truncation. np denotes the number of processors.

Fig. 13. Parallel speedups of standard/enhanced incremental SVDs on a deep matrix (327681 × 200), with the normalized computing time for the total incremental 
process, major parallel operations and LSV update.

Proposition 2. Suppose we have a dense matrix 𝑼 𝑛×𝑚. The floating-point operations for the LSV update of the standard iSVD can be estimated to be 
(𝑡standard),

𝑡standard =

{
2𝑛[𝑚

6 (𝑚 + 1)(2𝑚 + 1) − 1] + 3𝑛, 𝑛 ⩾ 𝑚

2𝑛[ 𝑛
6 (𝑛 + 1)(2𝑛 + 1) − 1 + 𝑛2(𝑚 − 𝑛)] + 3𝑛, 𝑛 < 𝑚 .

(40)

If we use 𝑀 = 𝑘𝑒, 𝑘𝑒 < min(𝑛, 𝑚), for the enhanced iSVD, these floating-point operations can be reduced to (𝑡enhanced),
𝑡enhanced = 2𝑛[

𝑘𝑒

6
(𝑘𝑒 + 1)(2𝑘𝑒 + 1) − 1 + (𝑘𝑒 + 1)2(𝑚 − 𝑘𝑒)] + 3𝑛 . (41)

𝑡enhanced is equivalent to 𝑡standard when 𝑘𝑒 =min(𝑛, 𝑚).

Proof. We first verify the expression for a deep matrix (𝑛 ⩾ 𝑚). For the standard iSVD, we need an initialization, with floating-point opera-

tions (FLOP) of (3𝑛), before proceeding to the LSV update. We can evaluate the FLOP in each LSV update as (2𝑛𝑙2), where 𝑙 denotes the number of 
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Fig. 14. Time consumption of standard and enhanced incremental SVDs in a weak study on a wide matrix (257 × 2000), and the computing time ratio for the 
enhanced incremental SVDs. np denotes the number of processors.

Fig. 15. Time consumption of the major parallel operations and LSV update with the standard and enhanced incremental SVDs during a weak scaling study for a 
wide matrix (257 × 2000). np denotes the number of processors.

snapshots. This depends on [𝑼𝑗]𝑛×𝑙 and 𝑽 𝑙×𝑙
𝑄 . The LSV update starts with the second snapshot (𝑙 = 2) after initialization. Therefore we can estimate 

the complexity of the total computation as

𝑡standard = 2𝑛(22 +⋯+ 𝑚2) + 3𝑛 = 2𝑛[𝑚
6
(𝑚 + 1)(2𝑚 + 1) − 1] + 3𝑛 . (42)

Likewise, we can compute the complexity of the enhanced iSVD by replacing the cost with (2𝑛(𝑘𝑒 +1)2) after the 𝑘𝑒-th incremental step, leading to

𝑡enhanced = 2𝑛[22 +⋯+ 𝑘2
𝑒 + (𝑘𝑒 + 1)2 + (𝑘𝑒 + 1)2⋯+ (𝑘𝑒 + 1)2] + 3𝑛

= 2𝑛[
𝑘𝑒

6
(𝑘𝑒 + 1)(2𝑘𝑒 + 1) − 1 + (𝑘𝑒 + 1)2(𝑚 − 𝑘𝑒)] + 3𝑛 .

(43)

For a wide matrix (𝑛 < 𝑚), 𝑡enhanced is the same as shown for the deep matrix, and 𝑡standard can be computed by

𝑡standard = 2𝑛(22 + 32 +⋯+ 𝑛2 + 𝑛2 +⋯+ 𝑛2) + 3𝑛

= 2𝑛[ 𝑛
6
(𝑛 + 1)(2𝑛 + 1) − 1 + 𝑛2(𝑚 − 𝑛)] + 3𝑛 .

(44)

When 𝑘𝑒 =min(𝑛, 𝑚) for a deep or wide matrix, the enhanced iSVD is equivalent to the standard iSVD, leading to 𝑡enhanced = 𝑡standard. Consequently, 
Proposition 2 is confirmed. □

As the computing cost mainly results from matrix/vector multiplications, we can assume that the LSV update is the leading contribution as 
shown in Sections 4.1 and 4.2. Then we can estimate the algorithmic speedup provided by the enhanced online algorithm as (𝜂), where

𝜂 =
𝑡standard . (45)

𝑡enhanced
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Table 3

Float-point operations in the projection part at the 𝑘-th incremental step with 
𝑽 𝑛×(𝑘−1)(𝑘 ≥ 2).

Input operation Float-point operations

𝒅 = 𝑽 𝖳𝒄 (2𝑛(𝑘 − 1))
𝑽 𝒅 (2𝑛(𝑘 − 1))
𝒉 = 𝒄 − 𝑽 𝒅 (𝑛)
𝒉𝖳𝒉 (2𝑛)

Total (4𝑛𝑘 − 𝑛)

Fig. 16. A priori analyses on the efficiency improved by the enhanced online algorithm for incremental SVD over (a) a deep matrix (327681 × 200) and (b) a wide 
matrix (257 × 2000), compared with the physical data.

When the truncation number 𝑀 is small, the computing cost of the LSV update is not the only dominant contribution due to the reduction of the 
size of 𝑽 , 𝑽 𝑄. In such situations, the projection cost also becomes important, as shown in Figs. 8 and 12. Its computing complexity can be estimated 
based on the number of FLOP as summarized in Table 3.

For the standard iSVD of a deep matrix, the computing complexity of the projection over the entire incremental process is (𝑡projs ), where

𝑡
proj
s = 4𝑛(2 + 3 +⋯+ 𝑚) − 𝑛 ∗ (𝑚 − 1) = 2𝑛(𝑚 + 2)(𝑚 − 1) − 𝑛(𝑚 − 1) . (46)

This complexity for a wide matrix is

𝑡
proj
s = 4𝑛(2 + 3 +⋯+ 𝑛 + (𝑛 + 1) +⋯+ (𝑛 + 1)) − 𝑛 ∗ (𝑚 − 1)

= 2𝑛(𝑛 + 2)(𝑛 − 1) + 4𝑛(𝑛 + 1)(𝑚 − 𝑛) − 𝑛(𝑚 − 1) ,
(47)

while the computing complexity for the enhanced iSVD is

𝑡
proj
e = 4𝑛[2 + 3 +⋯+ 𝑘𝑒 + (𝑘𝑒 + 1) +⋯+ (𝑘𝑒 + 1)] − 𝑛(𝑚 − 1)

= 2𝑛(𝑘𝑒 + 2)(𝑘𝑒 − 1) + 4𝑛(𝑘𝑒 + 1)(𝑚 − 𝑘𝑒) − 𝑛(𝑚 − 1) .
(48)

We can thus estimate the effective algorithmic speedup as (𝜂proj),

𝜂proj =
𝑡standard + 𝑡

proj
s

𝑡enhanced + 𝑡
proj
e

, (49)

which consists of the LSV update and projection. The difference between 𝜂 and 𝜂proj is the impact of the projection on the incremental SVDs.

Fig. 16(a) compares the computations of 𝜂 and 𝜂proj using the numerical dataset from the above-mentioned deep matrix. These two estimations 
are similar when predicting the algorithmic speedup for a large number ratio 𝑟𝑒 = 𝑘𝑒∕𝑚, while the 𝜂proj is more accurate for small 𝑟𝑒 values. This is 
because the projection cost is a more significant contribution for smaller truncation numbers 𝑘𝑒, i.e. a small 𝑟𝑒 here. In addition, the performance for 
the wide-matrix case bears a strong resemblance to that of the deep matrix, as shown in Fig. 16(b). Note that the computing complexity is utilized to 
quantify the intrinsic time requirements of the algorithm, whereas the actual costs depend on the computer hardware and software implementation. 
Therefore the computing complexity gives only an indication of the computing time. Furthermore, the actual computing time can also be affected 
by other neglected operations when using a small number of 𝑟𝑒∕𝑘𝑒, as shown in Fig. 12. Overall, the estimation that includes the projection gives 
the most reasonable prediction for the improved efficiency. Given that 𝑡standard, 𝑡enhanced, 𝑡projs and 𝑡proje are linear functions of 𝑛 for deep matrices, 𝜂proj
is independent of DoF (𝑛), yielding an improvement independent of the number of processors.
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5. Conclusions

We have introduced an enhanced online algorithm based on incremental SVD for modal analysis, which can efficiently perform a POD analysis 
on the fly. The accuracy of the method depends on the truncation number (𝑀) of the enhanced process. Results obtained with the enhanced method 
converge to the results of a standard SVD for large 𝑀 . Two lower-bound estimators are formulated for the a posteriori analysis of the enhanced online 
algorithm, with which one can estimate the accuracy of the reconstructed solution obtained from the resulting POD modes. The second estimator, 
𝑒simp, is shown to be more accurate for evaluating the cumulative energy captured by the selected POD modes. Numerical results demonstrate that 
the enhanced online algorithm has significantly better computational efficiency than the standard incremental SVD. A metric based on the number 
of floating-point operations has been used to estimate the speedup by the enhanced incremental SVD. Furthermore, it is shown that the proposed 
enhanced algorithm has good parallel scalability such that the strong reduction of computational cost is maintained in parallel computations.

The choice for truncation number, that is, the required mode number and the resulting cost reduction, is case dependent in practice. Our error 
estimator can guide users by detecting if the value of this user-defined parameter is appropriate. It is reasonable to assume that future users have 
some experience with their application field and can therefore make a reasonably conservative estimate. Even if this estimate is very conservative, 
the cost reduction can still be significant. Our experience with large 3D flow simulations indicates that less than 1% of the full modal basis is typically 
required for a physical analysis [36]. Overall, the results of this paper imply that the enhanced online algorithm will be useful for the engineering 
analysis of high-dimensional problems.
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[34] B.R. Noack, K. Afanasiev, M. Morzyński, G. Tadmor, F. Thiele, A hierarchy of low-dimensional models for the transient and post-transient cylinder wake, J. Fluid Mech. 497 (2003) 
335–363.

[35] J. Caldwell, P. Wanless, A.E. Cook, A finite element approach to Burgers’ equation, Appl. Math. Model. 5 (1981) 189–193.

[36] V. Pasquariello, S. Hickel, N.A. Adams, Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number, J. Fluid Mech. 823 (2017) 617–657.
59

http://refhub.elsevier.com/S0898-1221(22)00380-7/bibBA6D852DD2B7066A11D7A09DB4BD8ED2s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bibBA6D852DD2B7066A11D7A09DB4BD8ED2s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib5927DFC333EB5BF1F2BB0BEC6E325CD2s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib5927DFC333EB5BF1F2BB0BEC6E325CD2s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib5D2373B736AAF2DE1903A58766E45D37s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib5900C35B571E93CB7BC1D6C7F005ED2As1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bibECF66D2CC31A1B6551D54A881D2914F7s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bibA5EC4AAEBD0C9E770AEB7D2E25D9A64Ds1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib612B7D12DDDC467291E38E29C8E640E9s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bibFD21EB447F7D00DDFD9E97EDB81202FDs1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bibFB1A313F91F6FDFC99ACEDE92B5DC456s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib48299DFB5B4AE9DE329A4B50100B636Fs1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bibD235FF794C53160D4985E733A8BC1595s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib93872373EFB760CE8471CCF8E5C7E71Ds1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bibC807F53453BBB361B59A21EAA955D9F3s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bibC807F53453BBB361B59A21EAA955D9F3s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib8C44227D2EBADF41789CA42B090E2A68s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib4C70FE075130BA7C08D9D7A1B6B8D202s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bibD10B9773DFB2A5626F0F8A9E263933F1s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bibC2992C048E7CF04B8F84351072726D96s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bibD618F0E649DEFD98FC4D89D61999E916s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib1DA4BA3808C5D0F8FAD0A445F5D8AD3As1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib1DA4BA3808C5D0F8FAD0A445F5D8AD3As1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib5AF1BD93126FE35E50DC8CFFD8C44DCBs1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bibE9E33F9AFAE9A518D3919B50C25CB5D7s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bibE9E33F9AFAE9A518D3919B50C25CB5D7s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bibA747F056C932D808C7A6D04DFFAAAB45s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib26297CBA3A9EA07CD0CB8006332184D6s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib9619E5F39B370C1693C62AB0F67F185Ds1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bibE07B1DA47B562416D3BAB9BDD1B4D8E0s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bibF987C462F182684AD5623D478EAA2A08s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bibF987C462F182684AD5623D478EAA2A08s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bibA0C06E6F9FCE79ED3A254FBB04F9F967s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bibA0C06E6F9FCE79ED3A254FBB04F9F967s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib6B72FC2522DD89FA1B633AED2AB7416Es1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib6B72FC2522DD89FA1B633AED2AB7416Es1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib8F920ABA4207E6F36C18242AD694CBF6s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib8F920ABA4207E6F36C18242AD694CBF6s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib10361BD7E7297A2F8AAA0EA4BB18A466s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib10361BD7E7297A2F8AAA0EA4BB18A466s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib1BC810A17D71768A122B8F97BA826DE5s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib34E1E77FB011F0819784476292606E5Cs1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib743C2BAA788E0E09A4F66F3E241EB849s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib254B8BF8A351E2BD145B69E92F7F9E2Cs1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib254B8BF8A351E2BD145B69E92F7F9E2Cs1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bib16FC63D48DF031B68003595A4D9B1391s1
http://refhub.elsevier.com/S0898-1221(22)00380-7/bibB8698ACD8F4D396A411DF53D09BBEDF9s1

	An enhanced algorithm for online Proper Orthogonal Decomposition and its parallelization for unsteady simulations
	1 Introduction
	2 Methodologies
	2.1 Offline POD
	2.2 Online POD using the standard incremental SVD
	2.3 Enhanced incremental SVD for online POD
	2.4 Parallel design of the enhanced online algorithm

	3 Performance of the enhanced algorithm in serial
	3.1 An aggregated expression for the enhanced algorithm
	3.2 Lower-bound estimators of cumulative energy
	3.3 Impact of the truncation number on the enhanced algorithm

	4 Analyses of parallel performance
	4.1 Synthetic matrix
	4.2 Unsteady flow problem
	4.2.1 A deep matrix with more DoF
	Normalized time consumption.

	4.2.2 A wide matrix with more snapshots
	4.2.3 Improvement of computational performance by the enhanced process


	5 Conclusions
	Acknowledgements
	References


