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Abstract

Karan JAYACHANDRA

Approximately Optimal Radar Resource Allocation
Joint Radar Communication for Automotive Applications

Due to the rising number of wireless device users, it is expected that there will be a scarcity in the spec-
trum. The will especially true for the Automotive Spectrum between 77 and 81 GHz. In this thesis, we apply
Sensor Management to the Joint Radar Communication scenario. We develop an algorithm that can allocate
resources to both sensing and communication tasks. The resources are across both frequency bands and time
division. The proposed solution minimizes the global uncertainty while avoiding interference. The solution
is formulated via an optimization problem and can perform a comparison of communication and sensing
costs side-by-side. The sensing resources are allocated using a cost minimization and the communication
strategy is found by formulating a selection problem. The solution demonstrates that cooperation can lead
to higher accuracy for all sensors involved across multiple targets while using resources more efficiently. The
algorithm is able to allocate resources to multiple sensors in a non-myopic framework. A proof-of-concept
for a distributed version of the algorithm is also shown.
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1
Introduction

1.1. Overview
Among the top ten causes of human fatality, the only non-medical reason is road accidents. This macabre fact
has triggered extensive interest in the research of automotive safety. Each accident could cost the persons
involved dearly. Third parties around the scene may also suffer damages. Such events could also have a
negative environmental impact due to congestion. The governments of the world invest heavily to reduce the
effect of automotive mishaps. The Netherlands brought down the number of road fatalities from 1251 in 1996
to 610 in 2019 [6]. However, these numbers are still considered high, and there are plans to reduce accidents
even more. Although the cause of most accidents is human error, it is up to technology to aid in a further
reduction of fatalities.

Figure 1.1: The Road to Full Automation [25]

Removing the human element can significantly decrease the chances of accidents. However, to create
fully automated driving solutions as described in the plan shown in figure 1.1, the current challenge is to
have an accurate representation of the environment. Information about the surroundings aids the vehicle’s
systems to make better decisions on what actions to take. Without accurate sensors and an understanding of
the environment, the actions taken by a fully automated vehicle could be much worse than a human driver.
In recent decades, innovations in the automotive industry have been for the electrical and not the mechanical
aspects of the vehicles. Currently, the most funded project in automotive research is radar.

Most commonly used automotive radar systems work using Frequency Modulated Continuous Waves
(FMCW) and a Multiple Input Multiple Output (MIMO). Such systems can estimate target positions in range,
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2 1. Introduction

elevation, azimuth, and velocity. Automotive radar systems are used to find the relative speed of targets and
have good performance in poor visibility. These advantages over other sensors, such as LiDAR or Cameras,
make automotive radar sensors vital.

NXP Semiconductors has been one of the leading manufacturers of integrated circuits for automotive,
smart home and city, communication, mobile and industrial technologies. They have been building Radar
Systems for the Automotive Sector such as the TEF82xx and the TEF810X [26] to help car manufacturers add
more safety features for their customers. These Radars work in the 77 GHz band and have three transmitters
and four receivers for MIMO capabilities. These systems work in three ranges, short, medium, and long,
and help the vehicle build an accurate image of the targets in the scene. Automotive radar systems of the
future will have even better resolution and imaging capabilities. The number of automotive radar systems is
increasing dramatically and could require a large block of spectral resources.

Communication and sensing were predominantly separate fields and developed in parallel. But the large
influx of wireless devices since the 1990s has put a strain on the scarce electromagnetic spectrum. Thus,
solutions that use the frequency spectrum more judiciously are preferred. These systems are much better
at utilizing resources, have lower costs and power consumption, and better performance [23]. Joint Radar
Communication (JRC) systems use the same channel to estimate targets and communicate between nodes.
There are three categories of JRC systems: Co-existence, Cooperation, and Co-design [7]. Radar nodes are said
to co-exist when they try to use spectral resources efficiently. Such a solution would mitigate interference
between nodes. Radar nodes that share information are said to co-operate. They perform better in such
a system by considering other nodes while deciding their actions. Co-designed systems are designed from
the ground up to sense and communicate. They have the best performance for all the nodes involved. This
system usher in a new era of nodes that work together instead of considering other nodes as interferers.

The International Telecommunication Union (ITU) has allocated Automotive Radar a large block of the
frequency spectrum between 76 and 81 GHz. This spectrum is going to be shared by a large number of users.
Assigning these resources could be done in different ways across users. The best allocation can found using
an optimization problem. Such an optimization assumes that some facets of the problem can be optimized,
such as target uncertainty.

1.2. Motivation
Section 1.1 establishes the need for road safety. Here we consider the motivation to do this research. Although
sensors have been rapidly improving in their detection capabilities and coverage, sensors have been working
independently. Sensor performance could drop significantly due to radar-to-radar interference when a large
number of sensors are operating simultaneously. Such a scenario could arise due to the increasing number
of road vehicles and more sensors per vehicle. It could also be efficient to allow sensors to communicate with
each other for mutual benefit. Detection algorithms have missed important targets due to various reasons. In
such cases, other sensors could have a better understanding of the targets in the environment. Communicat-
ing this information to the original sensor could be vital to its decision-making. One proposed solution could
be by encoding information about the target in the radar signal. These systems are known to have issues with
reliability and design complexity.

This work focuses on resource allocation schemes to allow all sensors to sense and communicate inde-
pendently in either time or frequency. Such a system should understand how to allocate resources to each
sensor for sensing as well as communication.

Thus, this research aims to answer the question, "In the context of automotive radar systems, can an
algorithm be developed to allocate resources for both sensing and communication tasks"?. The proposed
system allocates resources, but the exact scheduling of the resources in time and frequency is not in the scope
of this work. In other words, the resources are allocated for sensing and communication by each sensor.
However, slotting these resources in time intervals and frequency bands requires future work.

1.3. Assumptions
It is vital to make certain assumptions to keep the scope of this research bounded. Real-world operations
would challenge these assumptions. But the problem is framed and solved within their confines. The Math-
ematical Models and the MATLAB Simulations take these into account. The chapters and appendices of this
thesis provide complete details of the proposed system.

All the assumptions are listed below and are fundamental to the proposed resource allocation system.
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1. Targets: Point Targets
The solution considers sensors tracking several point targets in a scene. This makes the proposed solu-
tion generic and it can be extended to different object types and different sensor types.

2. Sensors: Homogeneous FMCW Radar Systems
The system considers all sensors to have identical specifications. These sensors are FMCW Automo-
tive Radars that use frequency chirps to detect and track targets. However, the system considers the
radiation pattern of these transceivers to be isotropic with 360◦ field of view (FOV).

3. System: Centralized Approach
The research considers a central system performing the optimization and assigning the tasks to the
sensors involved. The system assumes that each sensor in the scene can label the targets uniquely. The
central system can therefore fuse data from different sensors to maintain a global track.

4. Interference: Performance Impact
Radar-to-radar Interference causes loss in the performance of radar nodes. In some edge cases, it can
also lead to missed detections. The proposed solution, therefore, doesn’t allow sensors to operate si-
multaneously. The system considers the cost of interference to be infinite.

5. Perfect Communication
The system does not need to define the model used for communication. The communication model is
arbitrary. The sensor communication is assumed to happen reliably without the loss of data packets.
The system requires only the unit resources needed to communicate.

1.4. The Problem
The proposed solution should consider three aspects from a technical and practical standpoint to address
the research question defined in section 1.2. The objectives of the system to be developed are therefore listed
below.

1. Minimize Global Uncertainty
First and foremost, the solution should provide a better understanding of the environment to all radar
nodes. The nodes can take the best course of action based on a better awareness of the environment.
The system is not worthwhile if the radar nodes lose sensing performance.

2. Fairness and Cooperation
All sensors should benefit from the cooperation that such a system proposes. It should not tolerate any
biases towards or against any of the co-operating sensors. Thus, the system solution is to be entirely
dependent on the environment and not the sensors themselves.

3. Better Resource Use
The sensors should use the limited frequency and time resources efficiently for the mutual benefit of
all. The system should (a) reduce electromagnetic pollution and (b) increase the longevity of the radar
systems. The longevity of the sensors is increased by decreasing the effects of thermal degradation
because not all sensors will operate all the time.

1.5. Novelty
The thesis proposes a novel solution to the problem discussed earlier. More complex use cases can use ex-
tensions of the proposed generic system. The system provides the following features which are unique and
have not been considered in the literature so far:

1. The proposed system defines an adaptable cost function in a generic modular framework and oper-
ates in a multi-sensor multi-target scenario to allocate scarce spectral resources for both sensing and
communication tasks. Prior literature has not developed such a solution to resource allocation for JRC.

2. The proposed approach evaluates the value of the information produced by every sensor. It decides if
other radar nodes should receive this information. Other publications in the field have not shown such
an approach.
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1.6. Nomenclature
The thesis uses the following terms while discussing the problem:

1. Radar Node / Sensor refers to all antenna systems and the processing units in one vehicle. When a
budget is allocated to a Sensor, it refers to all the transmitters.

2. Solution refers to the proposed algorithm and it results in the nearly optimal resource allocation strat-
egy for sensing and communication.

3. Model refers to the model that are considered for the Sensor, Target and the Filter. In this thesis, we
consider constant velocity models for the target movement for most simulations.

1.7. Thesis Outline
The organization of the rest of the thesis document is as follows:

State of the Art Chapter 2 documents the current trends and develop-
ments in Automotive Radar, Sensor Management, and
some aspects of Automotive Radar that help formulate
the proposed solution.

System Prototype Chapter 3 prototypes the new solution using a Kalman
filter in a multi-sensor, multi-target environment with
noisy cartesian readings of the target location.

Sensing Time Optimization Chapter 4 extends the results from chapter 4 with po-
lar readings of the target position. The system is now
more realistic as it corresponds to an automotive set-
ting.

Communication Selection Op-
timization

Chapter 5 considers a significant impact of the com-
munication time between sensors and models a solu-
tion that optimizes both the sensing time and the com-
munication time.

Time and Frequency Division Chapter 6 extends the total available resources of the
solution to include multiple frequency bands. The sys-
tem can use both time and frequency division.

Conclusion Chapter 7 summarizes the work done and possible fu-
ture extensions to more realistic scenarios. To con-
clude, the thesis discusses the implications of the re-
search.



2
State of the Art

To solve the problem discussed in chapter 1, three key technologies need to be considered. The latest devel-
opments in these areas have been discussed in the following chapter. We start with an overview of automotive
radar systems to understand the sensors in use in this thesis, then continue with how these sensors are man-
aged followed by how sensor management can be applied to both sensing and communication tasks.

2.1. Automotive Radar
The need for automotive safety has been discussed in section 1.1. Equipment used to sense the environment
around an automotive vehicle can play a crucial role in the decision making process of the user or the proces-
sor in the case of autonomous vehicles. The use of such information is crucial for autonomous applications.
For example, [32] shows how Cooperative Adaptive Cruise Control can help vehicles move autonomously in
a straight line. Several sensor are currently in use to map the surroundings of a car such as Camera, LiDAR,
Infrared or Radar. Each of these have their own advantages. This thesis however considers the case of Radar
system tracking a target using polar measurements. Radar systems are used widely because of their capabil-
ities to see through fog or mist. Radar system are also used as they have been widely studied in the recent
decades. Radar systems can also be used to discern velocity and angular information about the target using
MIMO systems. Current Radar Sensors operate in the 77G H z band as opposed to 24Ghz due to high spatial
resolution and low antenna sizes.

2.1.1. Modern Radar Hardware

Figure 2.1: NXP Radar Solution [26]

5



6 2. State of the Art

Modern Radar Systems are varied in terms of Semiconductor Technology, Packaging and Antenna Sys-
tems. Several architectures have been proposed in the literature [14]. NXP Semiconductors has been pro-
viding a complete solution in the Automotive Radar sector and a block diagram of their offering is shown in
figure 2.1. Modern Radar Systems require ingenious solutions for the antenna systems to provide high reso-
lution while maintaining power efficiency. Current systems are broadly classified into three main categories
as described in table 2.1.

Type LRR MRR SRR

Maximum Transmit Power 55dBm -9dBm/MHz -9dBm/MHz

Bandwidth 600MHz 600MHz 4GHz

Distance Range 10-250m 1-100m 0.15-30m

Range Resolution (∆R) 0.5m 0.5m 0.1m

Range Accuracy (δR) 0.1m 0.1m 0.02m

Velocity Resolution (∆v) 0.6m/s 0.6m/s 0.6m/s

Velocity Accuracy (δv) 0.1m/s 0.1m/s 0.1m/s

Angular Accuracy (δφ) 0.1◦ 0.5◦ 1◦

Azimuth φ Beamwidth (3dB) ±15◦ ±40◦ ±80◦

Elevation θ Beamwidth (3dB) ±5◦ ±5◦ ±10◦

Table 2.1: Radar Configurations [14]

These configurations are used for different use cases: Long Range Radar (LRR), Medium Range Radar
(MRR) and Short Range Radar (SRR). Current antenna configurations allow for both Mechanical and Digital
Beamforming. LRR is used in situations that require a long range with the need for resolution, such as Adap-
tive Cruise Control. MRR is used in cases where target are generally tracked as it offers better resolution. Cross
Traffic Alert or Lane Change Assist employs this configuration. SRR is used when high resolution is required
at low range such as Obstacle Detection and Parking Assist [14].

Figure 2.2: NXP Semiconductors TEF82xx: Fully Integrated 77 GHz RFCMOS Automotive Radar Transceiver [26]

Typically using the received power and processing the transmitted signal provides information about the
target RCS, range, velocity and angular information. More details about the signal processing is discussed
in section 2.1.2. The received power using a Radar system is well documented and described as shown in
equation 2.1. When the range is know, the RCS of the target can be extracted.
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PR = PT GT GRλ
2

(4π)3R4L
σ N = kT BF SNR = PR

N
(2.1)

In equation 2.1, PR and PT refer to the received and transmitted power. GT and GR are the gains of the
transmitted and the receiver antennas. λ refers wavelength corresponding to the center frequency of the
transmitted signal, L refers to a loss fac tor and σ refers to the Radar Cross Section (RCS) of the target. The
noise terms is defined by the Boltzmann Constant (k), the operating temparature (T ), the bandwidth of the
ADC (B) and the Noise Figure (F ). These two terms therefore can be used to calculate the effective Signal-to-
Noise Ratio (SNR).

Figure 2.3: FMCW Up-Chirp [5]

2.1.2. Modern Radar Signal Processing
Automotive Radars transmit Frequency Modulated Continuous Wave (FMCW) signals. These signal are trans-
mit waveforms with increasing or decreasing frequency, called up-chirp or down-chirp respectively. A depic-
tion of the signal in the frequency domain is shown in figure 2.3. The received wave is generally an attenuated
transmitted signal that has been delayed. Using the delay, the range information is extracted. Further, since
several chirps are transmitted, the phase difference between chirps is used to extract doppler information
from the signal.

Figure 2.4: FMCW Signal Processing Chain [29]

An overview of the signal processing techniques for automotive radar has been shown in [29]. The block
diagram of an FMCW Radar system is shown in figure 2.4. The received signal is mixed back with the trans-
mitted signal to create a beat signal. This signal contains information about the difference in the two signals
and brings it back to the complex base band representation which allows for easier processing. This signal
is rearranged to separate individual chirps and using a two-dimensional Fast Fourier Transform (FFT), range
and velocity information is extracted. A similar FFT can be applied across antennas in a MIMO system to
extract angular information about the target. Several amplification steps can be included in the processing
chain to help detect weaks targets. The use of FFT adds the received chirps coherently which helps detect
signals that are below the noise floor.
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2.1.3. Radar-to-Radar Interference
Radar-to-Radar interference is caused with the transmitted signal from a different Radar Sensor either creates
ghost targets when processing the received signal or adds interference that is noise-like to the signal process-
ing chain. An overview of the impact of interference on signal processing has been shown in [1]. An example
of an interfering signal in time and frequency domain representations is shown in figure 2.5. This cause a loss
in overall performance that is sometimes as drastic as to cause missed detection despite performing coherent
processing.

Figure 2.5: FMCW-FMCW Signal Inteference [1]

A comparison of different signal models in terms of interference impact has been done in [28] and shows
that no signal is robust against interference. Therefore, to reduce the impact of interference several possible
solutions have been proposed in [36], [38] and [17]. [38] and [17] propose solutions that are done to mitigate
interference without any cooperation between vehicles as opposed to [36]. [38] proposed techniques to sep-
arate the interfering signal from the received signal while [17] proposes a solution that randomizes the Radar
operation parameters such as Center Frequency and Bandwidth. The solution proposed in [36] considers
active cooperation between radar nodes and points to solutions that involve managing a group of sensors.
Such a solution involves Sensor Management and is discussed in section 2.2. [21] for example shows how
Radar resources can be allocated to multiple users to allow for reduced mutual interference. The results of
this has been shown in figure 2.6. To allow sensors to cooperate solutions might require synchronization
between nodes. This has been demonstrated in [3] where sub-nano second level synchronization of radar
nodes has been achieved to allow for cooperative radar nodes that act as passive and active radars and [10]
shows that such synchronization can be done over-the-air as well. Further, [20] shows that a system level
synchronization can be done to allow for communication between Radar Nodes as well. These systems use
the same resource for both sensing and communication and are discussed in section 2.3. Some of these can
be considered sensor management approaches.

Figure 2.6: Interference Mitigation using Reinforcement Learning [21]

2.2. Sensor Management
Traditionally, Sensor Management referred to the problem of selecting the right sensor or set of sensors to
use to generate a measurement. This was also referred to as ’Sensor Scheduling’. Both terms were used
interchangeably when sensors were rudimentary and did not have many degrees of freedom. However, in
modern applications, Sensor Management is defined as determining the optimal measurement configuration
of a set of sensors. This configuration would affect the physical performance of the sensors and therefore,
using Sensor Management, the performance of the system can be controlled.
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2.2.1. Overview

Figure 2.7: Partially Observable Markov Decision Process [40]

Historically, Sensor Management was developed because of the need for accurate measurements. Closed
loop strategies were first steps developed to help take more accurate measurements. Initial applications were
to decide what information would be relevant for the limited attentions pilots could spare to the cockpit
[15]. With the advancement of sensor technology, new methods to manage sensors were developed. Most
commonly the use of Multi-Armed Bandit (MAB) representations and Partially Observable Markov Decision
Processes (POMDPs). POMDPs are described in figure 2.7 and formulate sensor management as a decision
process. MAB approached calculated a reward associated with every action taken by Sensor Management.
POMDP are a subset of MAB formulations. POMDPs are processes where an action decides the subsequent
state of a system. The Markovian aspect refers to the system having no memory, that is, the next state is only
dependent on the current action and not the previous ones. The partially observable property refers to the
fact that direct access to the state might not be available to an observer.

The advantages of Sensor Management are well documented. [11] for example, shows that using sen-
sor management can decrease power consumption of a distributed radar system by 50% when it is used to
optimize power usage. When it is used to optimize power allocation, it can be used to minimize the mean-
square-error (MSE) of the target track. This shows that Sensor Management can be used to optimize sensor
use for different objective functions.

With Shannon’s ’Mathematical Theory of Communication’, POMDP were supplemented by evaluations of
actions based on the information gain they provided. Current research methodologies have been focusing on
such mathematical approaches. Several solution to the POMDP formulation have been developed over the
course of the last few decades [8]. This led to optimization that favoured the minimization of the Cramer-Rao
Lower Bound (CRLB) as shown in [4]. Here, Sensor Management is used to optimize budget allocation to a
set of sensors tracking a target following a trajectory as shown in figure 2.8. The budget allocated per sensor
have been documented in figure 2.9 and the results are as expected. The sensors closest to the target receive
the most budget. Such approaches are common and are also documented in [41] and [27].

Figure 2.8: Target Trajectory
(Figure from [4])

Figure 2.9: Dynamic Budget Allocation using Information
Gain (Figure from [4])
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2.2.2. POMDP Solutions
Solutions to POMDPs have generally been based on the approximation of Q-Values [8]. A Q-Value of an
action can be defined as a reward function associated with taking that action. The Q-Value is defined per
action and is dependent on the horizon (H). The horizon is defined as the number of time intervals in the
future the system looks ahead to decide the reward of the action. To define the Q-Value, we look at Bellman’s
Principle at described in [8]. Bellman’s Principle states that the optimal objective function V ∗

H (b0) defined
over a horizon H with an initial belief state b0 to be:

V ∗
H (b0) = max

a

(
r (b0, a)+E

[
V ∗

H−1(b1)|b0, a
])

(2.2)

An objective function defines a quantity that needs to be optimized by the process. Potential candidates
could be accuracy or precision of the track or resource use. A belief state refers to the current best estimate
of the state of the system or a probability distribution across possible states. Bellman’s principle in essence
states that the optimal objective function with a look ahead of H is decided by the expected value of reward
obtained by taking an action a as the state transitions from b0 to some future belief state b1. This implies
therefore that the best action to be taken can be defined as the action that maximizes the reward defined in
2.2.

π∗
0 (b0) = arg max

a

(
r (b0, a)+E

[
V ∗

H−1(b1)|b0, a
])

(2.3)

This principle can therefore be extended to a recursive process and an objective function can be defined
for every action that can be taken within the POMDP framework. This function is referred to as the Q-Value of
an action. There the best action that can be taken can be rewritten as the action that has the highest Q-Value
as described in equation 2.5.

QH−k (bk , a) = r (bk , a)+E
[
V ∗

H−k−1(bk+1)|bk , a
]

(2.4)

π∗
k (bk ) = arg max

a
QH−k (bk , a) (2.5)

Figure 2.10: Deep Reinforcement Learning Control for Radar Detection and Tracking in Congested Spectral Environments [37]

π∗
k (bk ) is referred to as the optimal policy as it describes the best action taken at belief state bk . If the value

of H is very large, the optimal policy can be considered to be stationary. This is because, if the function can
decide the best action for a sufficiently large horizon, the best action would generally not change with time
intervals. It is important to note that Q-Value is the sum of the term r (bk , a), immediate reward for choosing
action a and E

[
V ∗

H−1(b1)|b0, a
]
, the expected value of the reward until horizon H . The first term can be

calculated easily but to calculate the second term, certain approximations are required as it is calculated for
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a large horizon. Several methods have been proposed to approximate Q-Values of the action. Some of them
have been discussed below:

1. Monte Carlo Sampling methods use a computer to generate a large number of simulations using ran-
dom variables and find the expectation using these simulations. This solution is generally avoided due
to the computational complexity.

2. Relaxation of the Optimization Problem can be done in certain situations. This can result in formula-
tions that are easily solved using known algorithms. The expected value term can be reformulated into
such a problem leading to bounded problem.

3. Heuristic Approximations can help simplify the calculation of the expected reward across the horizon
using domain knowledge. Examples can include the use of terrain maps to assign rewards based on
expected target positions. This can lead to easier calculation of the expected value for the future reward.

4. Parametric Approximations uses knowledge of how the Q-Value should behave to develop a numerical
model to calculate the expected value of the reward. Popular solution for this approach include offline
learning methods such as Reinforcement learning or Q-learning.

5. Action-sequence Approximations are used to describe solutions that fix the actions to be taken before
they actually happen. This would lead to solutions that are easier to solve as compared to a Monte Carlo
simulation.

6. Rollout is used when the best action is reached iteratively using a known value for a base policy. The
base process can be calculated using a Monte Carlo simulations or Numerical Analysis.

Approximations are generally used in all solutions to the POMDP framework, however, the main consid-
erations for the solution proposed in this thesis have summarized in figure 2.11. The two solutions based on
Offline Learning and Policy Rollout were considered because other solutions are too simplistic and consider
heuristic approximations. Although Offline learning scored better than the Policy Rollout in the operational
efficiency, Policy Rollout had it’s advantages in terms of the ease of implementation and degrees of control
of the solution. The accuracy of the solutions have been shown to be the same. A third solution name ’Ideal
Solution’ has been added for comparison to describe the optimal best policy of the POMDP framework. This
solution would be the most accurate and would not need to be calculated if already known. However, it can-
not be implemented or controlled. Both implementations have been considered in the literature. The need
to avoid interference has been shown in section 2.1. [37] uses Deep Reinforcement learning in this regard
to alter the Bandwidth and Center Frequency of the transmitted LFM waveform to improve performance. A
comparison with Policy Rollout is also done and it is shown to have better performance as shown in figure
2.10. [35] has also demonstrated how a Radar System can maximize its performance when it is required to
operate in conjunction with a communication system using Reinforcement Learning.

Figure 2.11: POMDP Solution Comparison

The use of Policy Rollout has been described in section 2.2.3 and offers other advantages. Implementation
of solution using Policy Rollout is faster as it does not require training data. In the context of this thesis, data
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sets for Joint Radar Communication are not easily available as is the case in new areas of research. The thesis
aims to show that POMDPs can be used to answer the research question but other implementations could
produce results more efficiently. As described in [31], both online and offline algorithms need to be developed
in synergy with one another. They are not at odds with each other.

2.2.3. Policy Rollout
A Policy Rollout is used to describe solutions that define a base policy πbase and it is used as a reference to
calculate a policy marginally better in the next iteration. This is repeated until the optimal policy π∗ is found.
Therefore the initial object function can be defined as as shown in equation 2.6. At every iteration, a new
policy is found that marginally improves the Q-Value. Therefore a sequence of actions are calculated leading
to the optimal action to be found at the end. Finding the optimal policy using Policy Rollout can also be
done in parallel using multiple base policies. This would help in finding the optimal policy faster in instances
where the base policy is quite different from the optimal policy.

Figure 2.12: Budget Allocation using POMDP
(Figure from [33])

Figure 2.13: Dynamic Budget Allocation using POMDP
(Figure from [34])

Research along these lines have been done in [33] and [34]. In [33] optimal budgets were allocated in a
tracking scenario to different targets being observed using a Radar system. The budget is allocated based
on the impact the action has on the track accuracy defined by the error covariance matrix of a Kalman Filter
tracking the target. It uses a policy rollout with a Lagragian relaxation to solve the POMDP framework. The
results are shown in figure 2.12. [34] extends these results dynamic scenario and the results are shown in
figure 2.13. The results show that budget have been allocated for multiple ’tasks’ denoted by the colored lines.

Qπbase (b, a) = r (b, a)+E
[
V πbase (b′)|b, a

]
(2.6)

These approaches however have proposed solutions that decide between similar tasks, i.e., sensing bud-
gets. The latest trend wireless devices however has been in using the same resources for both sensing and
communication. Therefore there is a need to develop a solution that can used to allocate resources for both
tasks. In section 2.3 we motivate the need for such systems and current trends in their development and use.

2.3. Joint Radar Communication
As the number of users of wireless devices are growing, there is a need for more efficient use of spectral
resources. This has forced the users of Radar bands to consider using the same resources as those used in
communication standards. Such systems have shown to have benefits in [30]. Their use cases range from
(a) Automotive and V2V Communications, (b) Commercial Flight Control, (c) Communications and Military
Radar, (d) Medical Sensors and Monitoring and so on. Several topologies have also been considered to solve
this problem and can be mainly categorized into the following types [23]:

1. Non-integration is the currently used scenario for wireless devices. This relies on users avoiding chan-
nels currently in use and relying on isolation from other users to operate. This however is not perfect
and users are very susceptible to interference.

2. Co-existence scenario treat other users as interferers for the current use case. They use different mit-
igation strategies to avoid interference effects but with increasing number of users, this might not be
feasible. This is the current level of sensing-communication RF convergence.
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3. Cooperation between users can greatly benefit everyone involved and can create solutions that could
not be possible earlier. Here information is exchanged willingly between users and they employ strate-
gies to ensure minimal impact on others.

4. Co-design implies that systems are designed with other users in mind. For example, radar systems are
designed with embedded communication waveforms to help other vehicles understand the surround-
ings better. This could also be used by communication users to use standards that could help Passive
Radar operate.

Figure 2.14: IEEE 802.11ad Radcom System Data Rate [18]

Employment of such systems has been proposed in the Automotive Radar spectrum as well in [23] and it
has been shown that such applications require advanced signal processing techniques. Proposed solutions
need to be robust because of high attenuation and short coherence times in this band. Such systems can
also be used to remove Interference effects as described in section 2.1 in dense use cases. [18] proposes a
solution based on IEEE 802.11ad standard and demonstrates that a GBps connection rate can be maintained
while sensing targets as shown in figure 2.14. Experimental results have also been documented in [19] and
have shown that using realizable hardware, phase coded FMCW waves are able to perform both sensing and
communication operations.

Other solutions have employed the JRC framework to specifically mitigate the Interference cause of Radar
Nodes as shown in [2]. Here a distributed network employing a novel solution called ’RadChat’ was able to
avoid interference using scheduling across time and frequency. Their solution is able to remove Radar-to-
Radar interference in a timely manner with differing number of Radars as shown in figure 2.15. However this
approach does not factor in the environment in their analysis. [22] however documents other approaches
that can be considered while designing JRC systems. It is shown that time and frequency sharing as possible
alternatives to signal sharing. As described earlier, the joint waveform design approaches require complex
hardware and signal processing algorithms, while time or frequency duplexing can mitigate some of this
complexity. The existing approaches for JRC have been also documented more thoroughly in [13] and have
been summarized in table 2.2.

[12] have applied the time and frequency sharing approach by optimizing information gain as described
in section 2.2 to decide both sensing and communication budget. However the solution proposed here is
myopic and does not take into account information about the environment. Their results are shown in figure
2.16 and it is shown that an minimum CRLB can be meet with minimal violations while providing resources
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Figure 2.15: IEEE 802.11ad Radcom System Data Rate [2]

Methods Coordination Pros Cons

Infrastructure-
Based Methods

Coordinated
Easy to implement, efficient re-
source management, few changes
on existing standards

Coordination overhead, con-
struction and maintenance of
control entities

Control channel-
based methods

Coordinated
Low cost, efficient resource man-
agement, distributed implemen-
tation

Coordination overhead, reserva-
tion of a common control chan-
nel, synchronization

Distributed power
control

Uncoordinated
Simultaneous spectrum access,
no synchronization requirement,
coordination-free

Spectrum sensing overhead, low
efficiency due to lack of global in-
formation

Dynamic channel
selection

Uncoordinated
Reliable protection of legacy
users, local interference-free
access, coordination-free

Spectrum sensing overhead, con-
gestion on high-quality channels,
power asymmetry

Adaptive frequency
hopping

Uncoordinated
Fast discovery of free channels,
flexible hopping set, protection of
high-power devices

Spectrum discovery delay, unable
to handle both internal and exter-
nal interference

Listen-before-talk Uncoordinated

Easy implementation,
interference-free access, no
synchronization, coordination-
free

No fairness guarantee, low effi-
ciency on handling inter-network
coexistence

Spatial spectrum
reuse

Uncoordinated
Simultaneous spectrum access,
more practical modeling of inter-
ference

Potential hidden terminal prob-
lem, requires spatial information
of coexisting devices

Fractional fre-
quency reuse

Uncoordinated
Efficient inter-cell interference
mitigation, coordination-free, no
synchronization

Static spectrum allocation, only
apply to dense homogeneous net-
works

Cognitive radio
technology

Uncoordinated
Efficient reuse of licensed bands
without affecting legacy users,
coordination-free

Only apply to vertical spectrum
sharing, spectrum sensing/dis-
covery overhead

Sharing rule-based
methods

Uncoordinated
Easy to implement, coordination-
free, possible performance guar-
antees

Spectrum sensing overhead, re-
quire knowledge of neighbors be-
fore developing rules

Table 2.2: Spectrum Sharing Methods [13]

for communication. Here the optimization has been done to reduce the use of the resources. [42] provides
a generic solution to the resource allocation problem by proposing sensor collaboration that considers the
sensing environment. It optimizes the information gain based on sensor measurements while considering
multiple sensors combined in a sensor network.
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Figure 2.16: Optimal spectrum utilization in joint automotive radar and communication networks [12]





3
System Prototype

The following chapter develops the prototype used to build other models to solve the problem discussed
in chapter 1. In an automotive scenario, when the vehicle has full awareness of the surroundings, it can
take the best course of action in regards to human safety. To develop an awareness of the surroundings,
maintaining a track of the different objects around the vehicle is generally used. Tracking can be done using
several methods. In this chapter, we use a simple target, sensor, and tracking model. This tracking model is
controlled using the prototype.

3.1. Target Model
A target model uses Newtonian mechanics to understand its movement. Complicated models of movement
exist that consider higher-order derivatives of the laws of motion. However, the proposed system can be
applied to any model that can be codified using a state dynamics equation which is discussed in the following
sections. In this case, we assume a simple model for target movement. The target follows a constant velocity
in two dimensions with noise.

3.1.1. Target Unknowns
Consider the case of tracking a target in two dimensions. The unknowns about the target are the positions
and velocities in two dimensions. Let the dimensions be labeled x and y . The unknowns can be then charac-
terized by the vector s. The vector s encapsulates all the required unknowns about the target as shown below.
px and py refers to the position in the x and y dimensions and vx and vy refers to velocity in the x and y
dimensions.

s =


px

py

vx

vy

 (3.1)

3.1.2. State Dynamics
As mentioned earlier, to demonstrate the proposed solution, the target is assumed to follow a constant veloc-
ity model. With this in mind, the state dynamics of the target are defined as shown below. The position of the
target in a dimension changes based on the velocity in the corresponding dimension and the time interval.
The velocities of the target are constant and hence do not change with time.

p
′
x = px + vx ∆t (3.2)

p
′
y = py + vy ∆t (3.3)

v
′
x = vx (3.4)

17
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v
′
y = vy (3.5)

This can be described in matrix form as shown below and describes the dynamics of the target.
p

′
x

p
′
y

v
′
x

v
′
y

=


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1




px

py

vx

vy

 (3.6)

Henceforth, the we define a matrix F as which relates the new state of the target s′ to the old state s as
shown in equation 3.8 ( equation 3.6 in matrix form ) :

F =


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

 (3.7)

s′ = F s (3.8)

However, the dynamics of the system are known to have noise in the dynamics that can be characterized
by a random process. This adds a noise term w to the system dynamics equation shown in equation 3.8,
thereby making the system dynamics equation in noise:

s′ = F s+w (3.9)

The noise term w can be quantified in terms of a random process that is dependent on the time interval
∆t . The covariance matrix of the random process is defined as shown in equation 3.10 with the term σw

dependent on the target. For more information about how this is defined please refer to appendix C.

Qw =



∆t 2

2 0

0 ∆t 2

2

∆t 0

0 ∆t


∆t 2

2 0 ∆t 0

0 ∆t 2

2 0 ∆t

σ2
w =



∆t4
4 0 ∆t 3

2 0

0 ∆t 4

4 0 ∆t 3

2

∆t 3

2 0 ∆t 2 0

0 ∆t 3

2 0 ∆t 2

σ
2
w (3.10)

3.2. Sensor Model
With the dynamics of the system defined, we now address how the state of the target is measured. Assuming
that a measurement of the position is provided by a sensor, we can define the measurement as shown below
in relation to the target state. The measurement in the two dimensions are defined as mx and my . This is
an extremely unrealistic measurement model where independent measurements of the position in x and y
dimensions is provided by the same sensor.

mx

my

=
1 0 0 0

0 1 0 0




px

py

vx

vy

 (3.11)

In matrix form we define the measurement vector as y to be related to the target state x by the matrix H
defined in equation 3.12 and the measurement equation itself as shown in equation 3.13.

H =
1 0 0 0

0 1 0 0

 (3.12)
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y = H x (3.13)

However, sensors cannot measure the target with perfect accuracy. The measurements themselves have
noise. This results in a noise term v added to the measurement equation and results in a noisy measurement
equation as shown in equation 3.14.

y = H s+v (3.14)

The statistics of the noise are dependent on the sensor and the target properties. In the case of automotive
radar, this would depend on the radar transceiver properties such as radiation pattern, transmit power, and
noise figure and the target properties such as radar cross-section and distance from the radar. We, therefore,
define the measurement noise to be independent in the two dimensions and as shown in equation 3.15

Qv =
σx 0

0 σy

 1

τ
(3.15)

The term τ is the measurement time and is vital to control the sensor. If the sensor is given a longer time
to measure the target, it can negate the effects of the noise using various techniques. Most commonly the
Fast Fourier Transform can be used across multiple chirps of an FMCW radar can provide better results for
measurements in noise if we consider the τ to be the number of chirps that the automotive radar transceives.
It is important to note that using the variable τ we can control the accuracy of the sensor measurements.

3.3. Kalman Filter

Figure 3.1: Kalman Filter

In 1960, R. E. Kalman published his landmark paper, "A New Approach to Linear Filtering and Prediction
Problems" [16]. It has had a huge impact on various applications. A Kalman Filter complements measure-
ments of the target with known dynamics that the target is expected to follow. Thus for a system about which
complete information is known, in terms of (a) the noise, (b) the system dynamics, and (c) the measurement
model, the Kalman Filter can produce results quite close to the actual trajectory with very high accuracy. It
is optimal for linear systems. However, it should be noted that this method is known to suffer from biases for
non-linear systems. In this chapter, we demonstrate that a solution can be provided to the original research
question using a simple model. The Kalman Filter provides a solution to estimate the unknown target state x
when the state dynamics is described as shown in equation 3.9 and the measurement is described as shown
in equation 3.14. These equations are rewritten in recursive form in equations 3.16 and 3.17. Here we extend
the previous equations to a case with multiple time intervals. This implies that the state of the target depends
on the state of the target in the previous time interval and the measurement is dependent on the current
state of the target. This results in the introduction of the term n that denotes the current state and n +1 that
denotes the next state or the predicted state.

s[n +1] = F s[n]+w[n] (3.16)

y[n] = H s[n]+v[n] (3.17)
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The operation of the Kalman Filter can then be shown to be recursive and described as shown in figure
3.1. The filter starts with a initial estimate of the target state x̂(0|0) and error in the state P(0|0). When this is
completely unknown, the target state can be taken based on random values with large error covariance. The
filter then predicts the next state of the target based on this initial estimate using the prediction equations for
the state and the error as described in equations 3.18 and 3.19. This is referred to as the ’Predict’ step of the
process.

ŝ(n|n −1) = F ŝ(n −1|n −1) (3.18)

P(n|n −1) = F P(n −1|n −1) FT +Qw (3.19)

The filter then receives a measurement of the target which is used to update the prediction based on the
new information. This is sometimes referred to as the ’Update’ or the ’Innovate’ step of the process. The step
is then used to update the target state and the error as described in the equations. This new state is then used
to predict the state for the next time interval.

K(n) = P(n|n −1) HT [
H P(n|n −1) HT +Qv

]−1
(3.20)

ŝ(n|n) = ŝ(n|n −1)+K(n)
[
y(n)−H ŝ(n|n −1)

]
(3.21)

P(n|n) = [I−K(n) H]P(n|n −1) (3.22)

From equation 3.20 we can see that the Qv can be used to affect the accuracy of the trajectory. We also
know that we can control the matrix Qv using the parameter τ as described in equation 3.15. This parameter
can therefore be used to optimize the error in the target trajectory as described in the following sections. It
should be noted that the update step of the Kalman Filter can be done using multiple measurements within
the same interval. Using measurements from different sources, the update step can be repeated multiple
times, provided the measurement noise matrix Qv is also adjusted. If we consider a set of M sensors updating
the Kalman Filter each with a corresponding value for τ characterized as τi . Then the vector τ can be defined
as shown in equation 3.23.

τ =
[
τ1 τ2 . . . τM

]T
(3.23)

This update and predict process is done recursively for every time interval and the estimated state of the
Kalman Filter converges to the actual trajectory of the target after multiple recursions even for bad initial
estimates provided that the measurements are accurately described.

3.4. Optimization Problem
The algorithm developed is required to provide the best selection of the element of the vector τ that is defined
in equation 3.23. In essence, the algorithm decides the sensing time for the M sensors considered in the
optimization. It is therefore clear that the variable used in the optimization problem is the vector τ but the
cost function and constraints are yet to be defined. The cost function helps evaluate the performance of
choosing a particular set of sensing times and the constraint defines the conditions for the optimization.
These are described in the following sections.

3.4.1. Cost Function
To optimize the accuracy of the track we would need to define a cost function that captures the performance
of the tracking filter. This cost function would therefore vary based on the optimization variable τ. Since
the target state itself is not of concern (with the simplistic measurement model) to as much as its accuracy
the error in the state of the Kalman Filter is the first and most obvious choice for the cost function. Thus,
to formulate this optimization problem, we consider the sum of the first two diagonal terms of the Kalman
Filter Error P, as the cost function as described in equation 3.24. Other Cost functions can be formulated for
different use cases. The dimensions of the Kalman Filter Error is a 4 by 4 matrix with the first two diagonal
elements describing the error in the estimate of the position in the two dimensions. A good selection of the
element of the vector τ will provide a low value of the cost and a bad selection of the elements of the vector
will increase the overall cost function implying a worse tracking accuracy.

C (τ ) = P 11
i +P 22

i (3.24)
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3.4.2. Constraints
The system cannot operate with unlimited resources, thus the operation time of the sensors needs to be
within a pre-allocated budget, B . Further, it is assumed in the thesis as described in chapter 1 that no two
sensors can operate simultaneously. Therefore the system needs to operate under the assumption that the
summation of the sensing time should be equal to the total available budget, B . If the total time assigned is
lower than the budget, the sensing performance would be worse. Therefore the constraint for the optimiza-
tion problem is shown in equation 3.25 where the vector 1 is a vector with the same length as τ .

1T τ = B (3.25)

3.4.3. General Optimization Problem
From equations 3.24 and 3.25 we can write the full optimization problem as shown in equation 3.26. We see
that if the optimization minimizes the cost function as described 3.24 when the constraint defined in 3.25 is
met, the overall set of M sensors would track the N target with the least error in the Kalman Filters.

minimize
τ

C (τ )

subject to 1T τ = B
(3.26)

The optimization is solved using the Lagrangian relaxation as shown in equation 3.27. The maximization
of the Lagrangian multiplier or the dual variable ensures that the constraint is satisfied while the Policy Roll-
out is used to find the optimal values for the elements of the vector τ [33]. Refer to chapter 2 on the choice of
the Policy Rollout to solve the optimization problem.

ZD = max
λ

(
mi n
τ

(
C (τ )+λ(

1T τ −B
)))

(3.27)

To perform the gradient descent, the first derivative of equation 3.27 with respect to the dual variable λ
is done and the resulting update equation for next recursion of the descent is shown in equation 3.28 where
λ

′
is the update dual variable and λ is the current dual variable. ∆ is the step size for the recursion and is a

design parameter. The recursion ends when the end condition defined as the gradient is close to zero within
a degree of error ε.

λ
′ =λ+∆ (

1T τ −B
)

(3.28)

3.5. Policy Rollout
The Policy Rollout is used to search for the best possible sensing times for the M sensors in the optimization. It
provides a great deal of control over the parameters and the use of the Kalman Filter helps make the solution
non-myopic. The Policy Rollout defines a set action space to find the best action that minimized the cost
function. The action space and the process to find the best action is detailed in the following sections.

3.5.1. Action Space
The Action Space is defined as all the possible actions that the optimization problem can take to minimize the
cost function. In this case, the action space would be all combinations of sensing times that can be allocated
to each of the sensors. For example, if the total sensing budget can be quantified using 2 chirps and there are
2 sensors involved. There are 8 possible actions.

Sensors Actions

Sensor 1 0 0 1 1 2 2 0 2

Sensor 2 0 1 0 2 1 0 2 2

Table 3.1: Simple Action Space

Although some of the actions defined in table 3.1 do not satisfy the constraints, it is still possible to choose
one of these actions in the context of the sensing times. The Policy Rollout evaluates the cost associated with
each of these actions by plugging in the values of the sensing times in the Kalman Filter measurement noise as
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described in 3.15 using the variable τ and calculating the cost using equation 3.24. The action space defined
in table 3.1 is quite small and it is easy to calculate the cost of the actions. However, it is easy to see that the
number of possible actions and the sensors decide the size of the action space. If the total number of actions
is K in number, the actions and the action space are defined as follows.

A = {a1, a2, a3, ..., aK } (3.29)∣∣AM ∣∣= K M (3.30)

Consider all set of possible actions for each sensor as shown in equation 3.29, all the possible actions that
a set of M similar sensors can take is the M-ary Cartesian power of the set A which can be defined as AM

where M denotes the total number of sensors in the optimization. The set AM therefore defines the action
space for the Policy Rollout. The size of this action space can be easily written as shown in equation 3.30.
For 4 sensors and 128 possible actions, the action space size, therefore, becomes 268435456. This implies an
algorithmic complexity of O(n2) using the Policy Rollout.

3.5.2. Reduced Complexity
To simplify the process in the Policy Rollout and bring down the complexity, we employ a tweak where we
consider one sensor at a time and find the best action for that sensor only. This is done by calculating the cost
using the best actions for the sensors that are not optimized from the previous recursion and then applying all
possible actions for the optimization sensor to choose the best action for it. This is repeated for every sensor
and this brings the algorithmic complexity to O(n). This is a significant difference because each sensor has to
evaluate K actions only. This has also been shown and implemented in [39].

Sensors Actions

Sensor 0 1 2

Table 3.2: Simple Action Space

The new action space for the example discussed earlier, therefore, reduces to the one shown in table 3.2.
This is however repeated for every sensor in the optimization process.

3.5.3. Base Policy
The Policy Rollout starts with assumptions for the elements of the optimization variable vector τ. When this
assumption is close to the solution of the optimization the number of recursions needed before the algorithm
reaches the end condition also drops. This is a design choice but can also be complemented based on infor-
mation from other sources such as machine learning models. For this thesis, we assume a base policy of equal
resource allocation to all sensors. This implies that when all sensors provide information of equal importance
the algorithm converges faster as compared to imbalances in the information quality of the sensors involved.
This is because the solution is already closer to the expected result.

3.6. Full Algorithm
The overall process of the optimization is shown in figure 3.2. The process starts with an initial estimate of
λ and calculates the best actions for each sensor using this value. Then the new set of best actions are used
to calculate the gradient. If this gradient value is within ε the recursion ends, else the λ is updated based on
equation 3.28. This process repeats until the end condition is reached. It should be noted that the tracking of
the target is not implemented in the system prototype. The results of this chapter are proof-of-concept that
such a system can be implemented where the cost defined by the error in the track can be optimized using the
sensing times. The Input parameters of the algorithm are listed below. The algorithm uses this to provide the
best allocation of sensing times (τ) across all sensors that would be used in the next time interval as Output.

1. Action Space : The action space needs to be passed to the algorithm for the Policy Rollout to evaluate
the best action for each sensor. This is done by passing three parameters in the MATLAB implementa-
tion: (a) Sensing Space Size: Decides how the total Budget should be divided and (b) Total Budget: Total
Sensing Time available for optimization.
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Figure 3.2: Algorithm

2. Optimization Parameters : The optimization parameters contain information required for the gradient
descent. Parameters such: (a) Initial Lambda (λ), (b) Step Size (∆), (c) Horizon Length and (d) Max
Recursions are passed to the algorithm.

3. Environmental Input : The algorithm also requires information about the accuracy of the sensors and
information about the target. Thus we pass (a) Measurement Variances (σx and σy ), (b) Maneuver-
ability Variance (σx ), and the (c) Prior Error Covariance which captures the prior knowledge about the
situation.

3.7. Results
This thesis doesn’t consider single target or signal sensor scenarios as they are trivial and don’t require any
optimization. This is because: (a) In cases where there is one target, in a simple case, the target with the best
accuracy can be given the full sensing time (b) For single sensor scenarios, no optimization is needed as all
the sensing time is allocated to the single sensor. In this section, we look at the sensing times allocated by
sensors based on the accuracy of the sensors involved. The prototype considers a single target being tracked
by two sensors in a two-dimensional case. The two sensors have different accuracy in the two dimensions
and the system allocates a budget based on the impact the information has on the prior information about
the target. The scenario is described in figure 3.3.

Figure 3.3: Scenario for Prototype
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The prior information is described using the initial Error Covariance matrix Pinit. This matrix is random-
ized for the different simulation runs and the sensors are described using the measurement error matrix Qv.
Both sensors has different measurement error matrices Qv1 and Qv2. For the first test, we keep Pinit and Qv2

constant while increasing decreasing the accuracy of the sensor 1 using Qv1. The accuracy of the sensor is
inversely related to the measurement noise. In this scenario, we run the simulation 20 times with increasing
measurement noise. The simulation values are tabulated in table 3.3 and the results are shown in figure 3.5.

Variable Value

Pi ni t


84.48 0 0 0

0 26.80 0 0

0 0 22.80 0

0 0 0 29.30



Qv1 , Qv2

var 0

0 35

 ,

20 0

0 5



Table 3.3: Effect of Sensor Accuracy - Simulation Parameters

The values of var referred to in table 3.3 are show in figure 3.4 as ¦. It is seen that with an increasing
value of var , the weight allocated to sensor 1 is decreasing until it reaches a set minimum value. This is
the smallest possible action that a sensor can take. Since there are only two sensors involved, the rest of the
budget is automatically allocated to sensor 2 and this value is not shown to prevent redundancy. From this
figure, we can attest that the algorithm correctly judges the value of the information provided by the sensors
and only considers the impact of the information of the sensor on the error covariance for the optimization.

Figure 3.4: Effect of Sensor Accuracy - Results

For the second test, the sensor accuracy is made constant using Qv1 and Qv2 while the values of the initial
error covariance matrix changes. The values used in the simulation are shown in table 3.4. It is important to
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note that Sensor 1 has better accuracy in the first dimension and Sensor 2 has better accuracy in the other di-
mension based on the measurement noise. Two simulation parameters are changed over the simulation runs
that define the initial error in position in the two dimensions for the track. The values used in the simulations
for the two variables in each dimension are shown in ¦ and ∗ in figure 3.5. We can observe that as the initial
error increases in the first dimension, the weight given to sensor 1 increases. This is to ensure a good overall
track of the target. The opposite can be observed as well. As the tracking accuracy in the second dimension
gets better, the weight given to the sensor 2 drops. The optimization algorithm, therefore, checks the impact
of the information from each sensor in both dimensions on the initial error covariance and chooses weights
that minimize the total error as defined in equation 3.24.

With the effect of the sensor accuracy and the initial error covariance of the filter documented, the final
important result to discuss is shown in figure 3.6. As discussed in section 3.5.2, the need to optimize the
solution for situations with a large number of sensors is necessary. To verify this approach, two simulation
runs were performed using the same parameters for both algorithms: (a) Using all of the action combinations
and (b) optimizing one sensor at a time. For the full code of all these simulations please refer to appendix B.
The first simulation uses the action space as defined in table 3.1 while the second simulation use the actions
as defined in table 3.2. Both simulations extend the action space size to 100.

Figure 3.5: Effect of Initial Error Covariance - Results

The results of this simulation are shown in figure 3.6. It is clearly seen both algorithms converge to the
same result within a degree of precision. However, the algorithm time is significantly reduced. Using all
combinations of actions for two sensors using an action space of size 100, the algorithm time was: 45.93
seconds for 20 simulation runs. However using the proposed approach of optimizing one sensor at a time,
the algorithm time was: 1.99 seconds for 20 simulation runs. This can be attributed to the fact that using the
first approach, each recursion within a simulation run had to evaluate the cost 10000 times whereas using
the second approach, each recursion evaluated the cost 200 times. This effect increases with the number of
sensors and for a simulation with larger than five sensors, it would not be practical to use the first approach.
The computation time would be too high. An action space size of 100 would require evaluating the cost 1e10
times for every recursion.

3.8. Conclusion
The results from chapter 3 considered a system running Kalman Filters to track targets using noisy Cartesian
measurements from sensors and allocating sensing budgets to the sensors involved. The model assumed
that: (a) The communication time for the measurement information was considered negligible. This meant
that all information would be sent to the central system and the system would share this information with all
sensors, both accurate and inaccurate, operating within it. (b) The system did not allow interference and al-
located resources such that only one sensor could be operational at a time. Interference might cause sensors
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Variable Value

Pi ni t


var1 0 0 0

0 var2 0 0

0 0 102.64 0

0 0 0 117.53



Qv1 , Qv2

10 0

0 35

 ,

20 0

0 5



Table 3.4: Effect of Initial Error Covariance - Simulation Parameters

to observe higher noise floors and thereby lose information about the target. This impact was considered to
be too high. (c) The scenarios consider here were static. This system was able to allocate resources to sensors
more efficiently based on the impact the information they provided had on its track accuracy. Thus this sys-
tem was able to optimize the sensing times of the sensors involved. The system could improve the longevity
of the sensors due to reduced usage. As sensors didn’t always stay ’on’, the thermal degradation of the sensors
reduced. The key results of the simulations are listed below:

1. The system could optimally assign resources to sensors based on the impact they had on its track ac-
curacy.

2. When sensors didn’t have worthwhile information to provide, the system automatically assigned them
the lowest possible resources. More accurate sensors were assigned more resources to observe the
target and this led to better accuracy of the system.

3. The prior information about the targets played a role in the budget allocation for the sensors involved.
In a scenario where the system had a good understanding of one target but had vague information
about another target, the system assigned high resources to a sensor that could provide information
about the second target despite other sensors providing better information overall.
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Figure 3.6: Reduced Complexity - Results





4
Sensing Time Optimization

Chapter 3 demonstrated that using the tracking accuracy as a cost function can help algorithms choose ac-
tions that sensors can take to track targets. This solution provided did not however actually track targets but
worked with only the initially Error Covariance Matrix. The following chapter deals with the implementation
of a more realistic tracking scenario using an Extended Kalman Filter to consider measurements taken in po-
lar coordinates by a set of sensors. The target model remains the same as the one discussed in section 3.1.
However, this chapter extends it to N targets.

4.1. Sensor Model
As discussed in section 3.2, the prototype assumed that the sensors were static. Chapter 3 developed a system
that did not estimate the target state. Its results were based on the Error Covariance Matrix. This negligence of
state estimation meant that the position of the sensor was not of concern, only the error in its measurements
was important. In this section, the state estimation is performed. The position of the sensors is important for
the central system to fuse the data from different radar nodes. This requires that the central system know the
positions of the sensor. This is now assumed.

4.1.1. Sensor Dynamics
The sensors are not treated as targets and are assumed to move using the same constant velocity model as
defined for the targets. Assuming the range mr and azimuth mθ of the target is estimated by the sensors, the
data is fused into the filter using the relations shown in equation 4.1 where gx and g y are the two-dimensional
positions of the radar node. The central system receives the measurements done by the radar nodes for
each target, offsets these measurements based on the sensor position to obtain measurements in the global
coordinates. This way information from different sensors can be fused considering the context in which the
measurements were made. The sensors label the measurements that they provide uniquely such that the
central system can combine the data using the tracking algorithm.

y =
mr cosθ− gx

mr sinθ− g y

 (4.1)

4.1.2. Polar Measurements
Although the target model does not change, the sensor is now assumed to take measurements of the target
position in polar coordinates. The measurements taken by the sensors are related to the target state based on
equations 4.2 and 4.3. Since this is not a linear relation, the tracking algorithm needs to be updated.

mr =
√

p2
x +p2

y (4.2)

mθ = tan−1
(

py

px

)
(4.3)

29



30 4. Sensing Time Optimization

The noise in the polar measurements is now estimated based on the signal-to-noise ratio of the target.
The signal strength is defined using the radar relationship as defined in equation 2.1 where Pt refers the to
transmitted power, Gt and Gr refer to the gain in the transmitter and receiver, λ refers to the central wave-
length of the transmitted signal, σ is the Radar Cross Section (RCS) of the target and R refers to the range of
the target. The noise strength is defined based on the equation 2.1 where k refers to the Boltzmann constant,
T and B refer to the operating temperature and the Bandwidth and F refers to the Noise Figure. The signal to
noise (SNR) ratio can then be defined as shown in equation 2.1.

PR = PT GT GRλ
2

(4π)3R4L
σ N = kT BF SNR = PR

N
(2.1 revisited)

Two methods can be then be used to define the accuracy of the measurement based on the signal-to-noise
ratio. The first method calculate the accuracy in range based on the fact that, for FMCW Radars, accuracy is
defined as shown in equations 4.4 and 4.5 where δR and δθ are the resolution in range and azimuth. In these
equations c refers to the speed of light, B refers to the bandwidth, N refer to the number of virtual element
and s refers to the spacing between elements. Since we assume an isotropic antenna, θ is considered to be
zero. The second method assumes a reference accuracy (δ0) at a particular range and calculates the accuracy
based on different RCS and the Range of the target based on equation 4.6.

δR = ∆Rp
SN R

, ∆R = c

2B
(4.4)

δθ = ∆θp
SN R

, ∆θ = 0.886

(N −1)s cosθ
(4.5)

δ= δ0
R2

p
RC S

(4.6)

4.2. Extended Kalman Filter
Extended Kalman Filters are used in scenarios where there are non-linearities in the state dynamics or the
measurement equations defined by equations 3.16 and 3.17. Matrices H and F cannot be defined using linear
relationships in many cases and an Extended Kalman Filter helps build a solution in these scenarios.

x[n +1] = F x[n]+w[n] (3.16 revisited)

y[n] = H x[n]+v[n] (3.17 revisited)

One of the simplest solutions to solving the non-linearity problem is to linearize the equation. The Ex-
tended Kalman Filter does this using by calculating the Jacobian of the non-linear relationship. Since the
targets are assumed to move using the same model, the state dynamics equation behaves in the same way as
discussed in chapter 3. Hence, the matrix F does not change. However, we now assume that the sensor takes
polar measurements as discussed in section 4.1, of the target reflective of automotive radar sensors. In this
case, the measurements taken by the sensor are related to the target using the relations shown in equations
4.2 and 4.3. Applying the Jacobian operator to this relationship provides a variable H matrix. The Jacobian
relationship is shown in equation 4.7. Evaluating the partial derivatives results in the terms of the matrix that
is dependant on the target state as shown in equation 4.8.

mr

mθ

=
 ∂mr
∂px

∂mr
∂py

∂mr
∂vx

∂mr
∂vy

∂mθ

∂px

∂mθ

∂py

∂mθ

∂vx

∂mθ

∂vy




px

py

vx

vy

 (4.7)

mr

mθ

=


px

p2
x+p2

y

py

p2
x+p2

y
0 0

−py√
p2

x+p2
y

px√
p2

x+p2
y

0 0




px

py

vx

vy

 (4.8)
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H =


kpx

k2
px +k2

py

kpy

k2
px +k2

py
0 0

kpy√
k2

px +k2
py

kpx√
k2

px +k2
py

0 0

 (4.9)

Since the target position is not directly available, the H is created using the last best known state of the
target. This matrix is calculated after every time interval to update the Extended Kalman Filter. Therefore the
measurement matrix H is now defined based on equation 4.9 where the values of kpx , kpy , kvx and kvy are the
estimates of the target position and velocity based on the current information.

x̂(n|n −1) = F x̂(n −1|n −1) (3.18 revisited)

P(n|n −1) = F P(n −1|n −1) FT +Qw (3.19 revisited)

The update and the predict steps of the Extended Kalman Filter remain the same as discussed in section
3.3. The prediction of the state and the error is defined in equations 3.18 and 3.19. The definition of matrix H
in equation 4.9 and the measurement y defined in the equation 4.1 are used to update/correct the filter.

K(n) = P(n|n −1) HT [
H P(n|n −1) HT +Qv

]−1
(3.20 revisited)

x̂(n|n) = x̂(n|n −1)+K(n)
[
y(n)−H x̂(n|n −1)

]
(3.21 revisited)

P(n|n) = [I−K(n) H]P(n|n −1) (3.22 revisited)

4.3. Dynamic Optimization
To consider multiple targets, the cost function of the optimization assumes that all targets are equally im-
portant. It sums the cost for the error in target trajectory across multiple targets to define the cost of the
optimization as defined in equation 3.24. Here equation 4.10 refers to the cost of the tracking the i th tar-
get. Equation 4.11 therefore defines the cost for tracking N targets. Minimizing this cost will result in a total
decrease in the overall tracking error of the system.

Ci (τ ) = P 11
i +P 22

i (4.10)

C (τ ) =
N∑

i=1
Ci (τ ) (4.11)

With the new definition for the cost function, the optimization problem can now be formulated as shown
in equation 4.12. It is important to note that the sensing time is shared across targets within a sensor. Since
the sensor has a full Field-Of-View, when the sensor is on, measurements of the positions of all targets are
taken simultaneously. More sensing time implies more accurate measurements across all targets that a radar
node can observe.

minimize
τ

N∑
i=1

Ci (τ )

subject to 1T τ= B

(4.12)

The optimization problem is solved using the Lagrangian relaxation to satisfy the constraints and the
policy rollout to decide the sensing times as discussed in chapter 3. The solution produced by the system now
optimizes the tracking accuracy of N targets by observed by M sensors. Henceforth, the reduced complexity
algorithm is used as defined in section 3.5.2 since its efficacy has been proven in chapter 3.

4.4. Results
Complete details of the simulation parameters are provided in appendix A. The first simulation assumes two
sensors observing two targets, both targets and sensors are static. The simulation is for 20 time intervals.
For each time interval, the number of total FMCW chirps is 128. The sensors each are allotted a certain
number of chirps which are processed coherently before being sent to the central system. The system uses
this information to update the filters that are tracking the targets. Figure 4.1 shows the locations of the sensors
and targets. The sensors are marked using Diamonds and the target measurements are marked using black
points. The estimation of the target position by the filter is marked using colored circles. It is clear from the
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diagram that sensor 1 is much further from the targets compared to sensor 2. Since the target SNR is based
on the range, we can say that sensor 2 has a better understanding of the target positions. The results of the
optimization are shown in figure 4.2. In this chapter the targets have the same RCS value of 150m2.

Figure 4.1: Scenario 1 for Sensing Model

The first 10 time intervals are not optimized. The Kalman Filters are run for this duration to let them
achieve a steady state. Running the optimization without a steady-state might result in incorrect results for
the weights. The results show that the optimization program starts allocating more budget to sensor 2 as
it realizes that the accuracy of measurements from it is lower. The more the optimization is run, the more
confidence the optimization has that sensor 2 will provide more information. This is reflected in the result. In
this scenarios a basic case if considered to demonstrate how the optimization might work and the simulation
results after 20 seconds are not considered. The simulations will reach a steady value after several time steps
further into the simulation.

Figure 4.2: Results of Scenario 1

Henceforth, the result of the optimization is not shown when the steady-state of the Kalman Filter is not
reached. In the second scenario, we assume that the targets are moving, while the sensors are stationary.
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This actual trajectory of the target is shown in figure 4.3 as the black line. The measurement of the sensors
are shown using black dots and the trajectory the Filter take are shown using the colored circles. One target
is moving away from sensor 1 diagonally while the second target is moving vertically upwards. The implies
that initially, both sensors have accurate information about one target. But as the target move, sensor 2 starts
providing more accurate measurements as the targets are closer to it. The results of this simulation are shown
in figure 4.4.

Figure 4.3: Scenario 2 for Sensing Model

The results are as expected. Initially, both sensors are given approximately the same weight. But as the
simulation continues, sensor 2 starts taking up more sensing time. As the targets are moving towards sensor
2, the measurements it makes are more accurate because of lower SNR. Therefore if sensor 2 is allowed to
transmit and coherently process more chirps, the more accurate the measurement is and this results in an
overall better track.

Figure 4.4: Results for Scenario 2

Scenario 3 assumes that the sensors are moving while the targets are stationary as shown in figure 4.5.
The sensors are moving diagonally, sensor 2 starts near the origin as have better measurements but starts to
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move away from the targets, however, sensor 1 is closer to the target at the end of the simulation. This results
in a slow shifting of weight from sensor 2 to sensor 1 as shown in figure 4.6. As sensor 1 moves towards the
targets, we see more sensing time being allocated to it. The final scenario simulates both sensors and targets
moving as shown in figure 4.7. For comparison, the simulation is repeated with both sensors receiving equal
sensing times in figure 4.8.

Figure 4.5: Scenario 3 for Sensing Model

Sensor 1 is moving diagonally while sensor 2 is moving vertically upwards. The two targets are moving
away from the origin horizontally in opposite directions. It can be seen that initially sensor 2 has a better
understanding of the target positions and is given higher sensing time. However, as the simulation progresses,
the targets are closer to sensor 1 and it starts receiving more weight. The tracking error is also mentioned for
each target on the top right side of the graph.

Figure 4.6: Results for Scenario 3

The scenario discussed in this chapter demonstrated that sensors can be optimized to sense targets. It is
important to note the results of scenario 4 where a comparison was done with a system that always assigned
equal budgets to the targets. They have been shown in table 4.1. With equal budgets, the track errors for the
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Figure 4.7: Scenario 4(a) for Sensing Model

Allocation Track 1 Track 2

Equal Budgets 72.14m2 144.21m2

Optimized Budgets 87.53m2 67.68m2

Table 4.1: Tracking Accuracy of Scenario 4

two targets were 72.14m2 and 144.21m2. With the optimized approach, the errors were 87.53m2 and 67.68m2.
This amounts to a 30% reduction in the tracking error.

Figure 4.8: Scenario 4(b) for Sensing Model
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4.5. Conclusion
Chapter 4 extended the results of the Kalman Filter to a more realistic measurement model in polar coordi-
nates. This solution has the same assumptions as of the prototype but could (a) automatically calculate the
accuracy of measurement based on the signal-to-noise ratio and provided a more realistic use case in an au-
tomotive environment. (b) The model also extended the simulation to dynamic cases where the optimization
might be run repeatedly based on moving sensors and targets within a constant velocity model. The model
could accurately track the targets and adapt to changing environments. While the previous chapter’s simplis-
tic model helped prototype the solution, this model could be considered the first real use case for the system.
Some interesting results worth noting are:

1. The system automatically assigned resources to the sensors based on the predicted information they
might provide. This prediction horizon was configurable.

2. The system was able to accurately track objects in the Cartesian plane using range and angle informa-
tion from the sensors and combining the information to have a better understanding of the environ-
ment.

3. Despite certain sensors not being allocated resources, they had a better understanding of the environ-
ment based on the information provided to them by the system.

4. Compared to a system where there was no cooperation between sensors, the system was able to pro-
vide information about targets that might not be observed by certain sensors using the information
provided by other sensors.

Figure 4.9: Results for Scenario 4
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Communication Selection Optimization

In the previous chapters, the communication was assumed to happen using a second channel with unlimited
bandwidth. No constraints were placed on the amount of communication done by the radar nodes and the
system. In this chapter, we introduce this constraint and look at results in a scenario with multiple targets
and sensors. The target, sensor, and filter operation remains the same. However, the optimization algorithm
is updated.

5.1. Selective Communication
Chapter 2 provided evidence for the advantage of using the same channel for sensing and communication.
To accommodate for such an operation, the optimization problem requires to be changed to consider the
new constraint. The need for selective communication can be derived from the fact that not all information a
sensor provides is accurate. Inaccurate information uses scarce communication bandwidth with little impact
on the track performance. This chapter formulates the use of the same bandwidth for sensing and commu-
nication. The constraint in the optimization problem takes this into account. If the effect the information
has on the filter is considered negligible, the system can automatically decide what information is not to be
communicated across radar nodes and to the system.

5.1.1. Communication Variable
To consider the communication time used by the sensor, we assume that the time taken for communication
about one target by one sensor is f . This would be a constant defined by the communication process, pre-
dominantly the data load. To consider the possibility of communication, we define a binary variable T . T
can only be 0 which corresponds to no communication or 1 which means that the data is communicated. It
is assumed that every sensor has information about every target in the simulations. In cases where a sensor
cannot detect the target, a solution could be formulated where the sensor assumes the target position with
extremely high error and this cause the filter to neglect information it provides. In a scenario with N targets,
every sensor has N selection variables one for each target. If there are M sensors in the scene, the total num-
ber of selection variables are considered to be M ×N . Thus a matrix T can be defined as shown in equation
5.1 that describes all the variables related to the communication process.

T =



T1,1 T1,2 T1,3 ... T1,M

T2,1 T2,2 T2,3 ... T2,M

T3,1 T3,2 T3,3 ... T3,M

...
...

...
. . .

...

TN ,1 TN ,2 TN ,3 ... TN ,M


(5.1)

The total time need for communication can therefore be considered in the constraint using this vari-
able as shown in equation 5.2. The term 1T T1 f refers to the total time needed for communication and as
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discussed previously 1T τ refers to the total sensing time. Therefore the optimization problem can now con-
sider both sensing and communication time using the same constraint. This implies that the system has an
overall budget for communication and sensing. This budget should now be assigned to both sensing and
communication tasks at each radar node. It is important to note that the communication variable is defined
per target per sensor whereas the sensing variable is defined per sensor and is shared across targets.

minimize
τ

N∑
i=1

Ci (τ ,T)

subject to 1T τ +1T T1 f = B

(5.2)

5.1.2. Effect on Cost Function
The variable T is used to decide if the filter is updated with the information from the radar node. The effect
on the cost function is described using the flowchart in figure 5.1. This describes the process of updating the
filter which is repeated for every target in the scene.

Figure 5.1: Communication Selection

Therefore the cost function is dependent on the values of the matrix T. Using this effect, we can allow
the matrix containing binary elements to decide what information is useful to the filter tracking the targets.
If the cost for communication f (communication budget) is high, the algorithm is more selective with re-
gard to the communication. If this value is low, all information is communicated despite its minimal effect
on the cost. Applying this additional variable does not change the target, sensor, or filter operation. They
remain the same as discussed in chapter 4. As described in figure 5.1, the update of the filter is just more
selective to accommodate for the cost of communication within the given budget. This budget allocation for
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the communication follows the same principles of prediction as discussed in the sensing time optimization.
The algorithm considers the effect of a communication action multiple steps into the future.

5.2. Results
The results of the algorithm are discussed in this section in two sections. First, we look at static problems
where the targets and the sensors are not moving. We observe the behavior of the algorithm using these
simplified cases as simple inferences cannot be made in more complex dynamic scenarios.

5.2.1. Static Results

Figure 5.2: Communication Selection - Scenario 1

The first scenario we consider is shown in figure 5.2. Here we have two Radar Nodes denoted by black
filled circles and two blue circles that show the location of the targets. The targets are located at (0, 10) and
(0, -10) while the sensors are located at (-100, 0) and (100, 0). In this scenario, both the targets and the Radar
Nodes are quite close to each other. Each target is at a distance of approx. 100 m from both Radar Nodes.
Both Radar Nodes are symmetrically placed and therefore neither sensor provides any information that the
other cannot provide. Further, since the Radar Nodes are equidistant from the sensor, information from both
nodes is approximately equally accurate. The algorithm can therefore choose either node and use informa-
tion from both to track the targets. The results generated by the proposed solution are shown in figure 5.3.
The bar chart on the left shows the relative sensing budgets for each Radar Node. The right graph is split
into four squares, this defines the communication strategy. If the square is shaded blue, it denotes that in-
formation about the target is requested from the Sensor. The values inside each box represent the accuracy
of the measurements of position in the two dimensions. Low values represent accurate measurements and
high values imply vague measurements. In this case, all information is requested by the central system and
it is used to update the Extended Kalman Filter track. This can be easily explained because all information is
accurate and this information can significantly reduce the previously defined cost function. In this case, the
cost of communication is considered to be worth it, because of how the update step of the filter can decrease
the tracking error. This can be considered the simplest relevant case for the thesis as the single target or single
sensor systems are considered trivial.

For the second scenario, we consider two sensors and two targets placed as shown in figure 5.4. One
sensor is quite close to both targets as compared to the other. In this case, the accuracy of the measurements
for the first sensor is therefore low. The second sensor however due to its proximity to the targets has a much
lower measurement noise. The accuracy of position measurements in the two axes is shown on the graph
on the right in figure 5.5. It should be noted that the sensing allocation and the individual track accuracy are
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Figure 5.3: Communication Selection - Scenario 1 - Result

affected by the RCS of the targets. In this case however, the target have the same RCS value.

Figure 5.4: Communication Selection - Scenario 2

Here, the algorithm correctly chooses the sensor that has a lower error in its measurements and allocates
it most of the sensing time. The first sensor is still allocated some sensing time based on the lowest value in
the action space. The lowest value can be decided based on some safety settings in case communication to
the central system fails. This would allow the sensor to still have some local information about the targets.
The algorithm considers the cost of the communication by the sensor against the value of the information it
can provide. It decides that the potential gain in information from Sensor 1 does not impact the cost function
as much as providing the same resources to Sensor 2 for sensing operations.

The final static scenario that is considered is shown in figure 5.6. In this scenario, each target is close to
one sensor and form a pair close to each other. The pairs are however are distant from each other. This implies
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Figure 5.5: Communication Selection - Scenario 2 - Result

that each sensor has accurate information about one target and provides inaccurate information about the
second target. In these simulations, these accuracy values are based on the range and the target’s unique RCS
value. In this scenario the RCS values of both targets are the same. Therefore it is quite obvious that each
sensor can only sense the target close to it accurately.

Figure 5.6: Communication Selection - Scenario 3

In this case, the algorithm selects information from each sensor that is accurate and does not use infor-
mation that can reduce the tracking error. From these three simple scenarios, we can show the proposed
algorithm can select accurate information from sensors while optimizing sensing time across multiple sen-
sors. The communication cost is weighed against the decrease in the tracking error and based on the effect it
has, only specific information is requested from the targets. Here, Sensor 1 provides information about Tar-
get 1 while Sensor 2 provides information about Target 2. This is used to update the filters while the unused
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resources for communication are used to increase the sensing budget for the overall set of sensors.

Figure 5.7: Communication Selection - Scenario 3 - Result

Please refer to figure 5.8 for results of a Scenario with 6 sensors. The results here show that the algorithm
sometimes prefers sensors with an average accuracy of position measurements of all targets as compared to
a combination of sensors each with the best accuracy of position measurements of one target. This result
implies that when the algorithm dedicates a large amount of the sensing resources to a particular sensor,
it attempts to use information from these sensors as best as it can to decrease the tracking error. When
another communication strategy is chosen by the algorithm, the sensing strategy also needs to be adapted.
The communication strategy denotes the sensors that the algorithm would like to invest sensing time to.
Therefore, a new communication strategy requires a new sensing strategy and vice versa. This describes the
jointness of the operation of the optimization algorithm for both sensing and communication tasks. The
sensing and communication budgets selected by the algorithm are intertwined.

Figure 5.8: Communication Selection - Scenario 4 - Result
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5.2.2. Dynamic Cases
The effectiveness of the algorithm lies in the fact that it is non-myopic. It predicts the worth of information
in the future and can therefore anticipate the value of information multiple steps into the future to decide
the sensing and communication strategy. This therefore cannot be observed in a static scenario. Therefore,
we consider dynamic cases in this section to observe the behavior of the algorithm in more complicated
scenarios. First, a simple scenario is considered to demonstrate an anomaly in the algorithm. In this case,
both targets and sensors are static and are shown to be positioned as considered in Scenario 3 in the previous
section in figure 5.9. In addition to the positions of the sensor (diamonds) and the targets (black circles), the
measurements made by the sensors are shown in dots and the track of the Kalman Filter is shown in blue
circles. The results of the simulation are shown in figure 5.10. The graph on the left is shows the sensing
budget allocated to each Radar Node

Figure 5.9: Communication Selection - Dynamic Scenario 1

Figure 5.10: Communication Selection - Dynamic Scenario 1 - Result

The targets are moving as shown in figure 5.9 based on the trail left behind by the circles and the circle
size denotes the RCS of the target. The circles denote the end point positions of the target. Larger circle sizes
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denote higher RCS values of the target. The simulation is run for a total of 20 seconds. As in the case of
Chapter 4, the simulation is run for the first 10 seconds without the optimization algorithm to allow for the
Kalman Filters to stabilize in terms of the tracking error. The Filters are initialized with a large error covariance
with an initial estimate at the origin. The estimates do not indicate the actual positions of the targets in the
simulation scenarios. The left graph in figure 5.10 describes the relative sensing budget allocated to each
sensor and can take values between 0 and 1 based on the action space. The graph on the right denotes the
communication selection for each time step. If the value is 1, it means the information is transmitted and
vice versa. The anomaly occurs at simulation time 19 seconds, where despite having incorrect information
about target 1, the solution request information from sensor 2. This occurs rarely where the algorithm gets
stuck oscillating across two values across the minima. In this situation, the algorithm does not converge and
an incorrect strategy might be selected. A solution to this problem might be to consider an adaptive step size
for the recursion instead of a fixed step size. This ensures that initially, the convergence is fast while at the tail
end, it is accurate.

The next dynamic scenario under consideration moves each of the targets initially placed close to one
sensor towards the other sensor as the simulation progresses. This is shown in figure 5.11. Target 1 starts near
sensor 1 but at the end of the simulation, it is closer to sensor 2. The black circles denote the end positions
of the targets. The average errors of each track are also shown in the graph along with the Kalman Filter track
using blue circles. The measurements are shown as black dots. Despite the measurements being quite varied,
the filter can start an accurate track early in the target trajectory. Here it is expected that initially each sensor
communicates information about the target closest to it and this switched towards the end of the simulation.
It should also be noted that Target 1 has a larger RCS by approximately 1.5 times.

Figure 5.11: Communication Selection - Dynamic Scenario 2

The results of the simulation are shown in figure 5.12. The behavior of the communication selection is
as expected. Until 13 seconds, Sensor 1 is used to track Target 1 and Sensor 2 is used to track Target 2 but
information about both targets is requested. However, as the simulation progresses after 20 seconds, this
is reversed. In the middle of the simulation between 14 and 20 seconds, Sensor 1 gets most of the sensing
resources and this could be attributed to it being closer to the target with the lower RCS. Both sensors might
provide similar accuracy in the position measurements of the other target. In this case, the algorithm allocates
most of the sensing resources to Sensor 1 and requests information from Sensor 2 rarely. When information
is only used from Sensor 1, its sensing budget also increases to almost the entire budget. This ensures the
information requested by the algorithm is as accurate as it can be. However, it should be noted that in the tail
end, the budgets equalize when the targets are close to the sensors and then start diverging away from each
other to their own stable value corresponding to the Target RCS values. These results show that the algorithm
can adapt in dynamic cases but the results are not as obvious as they seem in more complex scenarios. This
is seen in the results of the following chapter.

Finally, we look at a scenario that could be slightly more realistic in an automotive case as shown in figure
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Figure 5.12: Communication Selection - Dynamic Scenario 2 - Result

5.13. One target is moving with a negative velocity in the y axis while the other target is initially moving with
a positive velocity along with y axis and takes a turn and starts moving along the x axis with constant velocity.
One of the sensors is moving as well while the other is static. This simulation could be visualized as a road
junction and the static sensor could be infrastructure place to track targets while the moving sensor could be
a vehicle. A pedestrian could be moving across the field of view of the vehicle from the top of the graph while
another vehicle arrives at the junction and takes a turn.

Figure 5.13: Communication Selection - Dynamic Scenario 3

The results are shown in figure 5.14 and as discussed earlier, for the first 10 seconds, the optimization is
not run. In this scenario, the RCS of Target 1 is approximately 1.5 times the RCS of Target 2. Once the steady
state of the Kalman Filter is reached, the simulation starts and runs for 20 seconds as shown on the graphs.
Sensor 1 has better measurements accuracy of both target from throughout the simulation as it is closer to
the targets and is therefore assigned most of the sensing budget and it is stable throughout the simulation.
The algorithm also uses information about both target from this sensor while Sensor 2 is considered only to
track target 1 as it has a much lower accuracy when measuring the position of target 2. The communication
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Figure 5.14: Communication Selection - Dynamic Scenario 3 - Result

from Sensor 2 also reflects this. This could reflect a real-world scenario well. As a vehicle approaches a road
junction, it uses it’s sensors less and relies on more accurate sensors attached to the infrastructure at the
junction.

5.3. Conclusion
Chapter 5 introduced the aspect of selective communication in a scenario where the communication time
could not be considered negligible. Although it built upon the model discussed in chapter 4, it challenged
the assumptions from chapter 3 and provided a solution that could optimize both the sensing and commu-
nication time using the same resources. The model could automatically decide what information would be
communicated by each sensor given the size of the communication packet. In contrast to all the informa-
tion being communicated, this decreased the communication load to only the information that improved
the global situational awareness of the system. This removed the ambiguity in the system about its efficiency
in terms of communication performance. The results of this chapter were:

1. The system automatically selected the information that the sensor could provide that was useful in
updating the track.

2. The solution decided the important information that should be communicated and passed this to the
sensors. The sensors then sensed the targets using the allocated sensing time but only communicated
information that had been requested by the solution.

3. This system dynamically predicted and requested only information about certain targets from certain
sensors. This meant that certain sensors that had no information to provide were not allocated any
sensing or communication budget but received information from the system and would operate for a
minimum amount of time for safety precautions.
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Time and Frequency Division

In this chapter, we consider a case where multiple frequency bands can be used by the sensors. The auto-
motive radar spectrum is between 77 GHz to 81GHz. Most radars work within a fraction of this bandwidth.
However, they are capable of shifting this bandwidth across the entire frequency band. This implies that sev-
eral non-overlapping frequency bands are available for usage within the automotive spectrum. Chapters 4
and 5 did not allow sensors to operate simultaneously. However, when sensors operate in different frequency
bands, the interference is minimal to none.

6.1. Constraint Reformulation

Figure 6.1: Frequency Blocks

To consider multiple frequency bands, we assume that the number of sensors is greater than the number
of available frequency bands. If the number of sensors is lower, each radar node can occupy one band and
the optimization of resources is not required. However, when the number of sensors (M) is greater than
the number of frequency bands (F), we can allocate resources in multiple configurations. To accommodate
this, we also assume that the radar node can use only one frequency band at a time. When the number of
frequency bands increases, we can increase the budget available using a simple product between the bands
and the sensing time interval within each band. Therefore we can define a virtual budget (Bv ) as shown
in equation 6.1 where the budget consider in the precious optimization problems (B) is multiplied by the
frequency bands.

Bv = B F (6.1)

Thus the optimization problem can now be reformulated to consider the new budget as shown in equa-
tion 6.2. The constraint now assumes that the budget is increased based on the number of frequency bands
available. Once the optimization result is calculated, the allocated weights can be stacked into different fre-
quency bands by drawing virtual boundaries as shown in figure 6.1.

minimize
τ

N∑
i=1

Ci (τ ,T)

subject to 1T τ +1T T1 f = Bv

(6.2)

However, the optimization needs to consider the fact that radar nodes cannot operate simultaneously
in multiple frequency bands. In a scenario where one sensor has the most accurate information about all
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the targets, the optimization problem described in equation 6.2 would assign all the budget across time and
frequency to this sensor. This is not practical and to consider the limitations of the sensor, an additional
constraint needs to be placed on the optimization problem. The maximum budget that can be allocated to
each sensor cannot exceed the budget available in a single frequency band. This will now ensure that no radar
node is allocated more resources what it can consume. Thus the optimization problem can now be expressed
as shown in equation 6.3.

minimize
τ

N∑
i=1

Ci (τ ,T)

subject to 1T τ +1T T1 f = Bv

τi ≤ B ∀ i ∈ {1,2, ..., M }

(6.3)

Without the second constraint, the problem remains the same as discussed in the previous chapters.
Therefore, to simplify the problem, we allow actions in the action space that meet the constraint related to the
budget allocated to individual sensors. This consideration in the policy rollout, effectively negates the need
for the constraint and the optimization problem previously discussed can be used within a new calculation
for the virtual budget available. This in effect reverts the optimization to the one described in equation 6.2.

6.2. Results
To test this approach, we consider the case of three sensors tracking three targets in a scenario with 2 fre-
quency bands. Each of the three targets is moving with constant velocity with random start positions and
velocities as shown in figure 6.2. The actual target trajectories are shown as lines while the target themselves
are black circles with their size dependent on their RCS values. In this case, the RCS values are approximately
the same. The black circles are the end positions of the targets. The black dots represent the position mea-
surements of the targets by all the sensors, and the blue circles represent the estimation of the target track by
the Kalman Filter.

Figure 6.2: Frequency Division - Dynamic Scenario 1

Each of the targets initially starts close to one of the sensor and at the end, the closest sensors to each
target are different. Target 2 for example starts as the target closest to Sensor 2 but at the end of the simulation
is closest to Sensor 1. At the start of the simulation, until 4 seconds, Sensor 2 is given low weightage, and
therefore, the track corresponding to Target 2 suffers in terms of converging to the actual track. However,
Sensors 1 and 3 are given high weights and the tracks converge much faster. The communication strategy
also reflects this, initially until time interval 4, all information from Sensor 1 and 3 is requested while lesser
information is used from Sensor 2. In the middle of the simulation, between the time interval 5 - 20 seconds,
the algorithm is spoiled for choice of the source of information for the Extended Kalman Filter update. In
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this case, the algorithm can be more selective about the communication strategy as accurate information is
being provided by all sensors. Therefore, in the middle of the simulation at around 5 seconds, Sensor 1 starts
losing sensing budget as it is allocated to Sensor 3. This is because Sensor 3 can provide the same information
that Sensor 1 can. Similarly, Sensor 2 loses sensing budget, and information about fewer targets is requested
from it. Sensor 3 however is placed centrally when considering all targets and is therefore used to more the
majority of the accurate information to the algorithm. At the end of the simulation, after 25 seconds, the
algorithm reverts to using all information from all sensors as accurate information is not available. Therefore
all information is requested from all sensors to update the Kalman Filter track. These interpretations however
are subjective and are based on previous results. In complex scenarios, it is more difficult to assign direct
causes for the algorithm’s results.

Figure 6.3: Frequency Division - Dynamic Scenario 1 - Result

6.3. Distributed Solution

minimize
τ

N∑
i=1

Ci (τ ,T)

subject to 1T τ+1T T 1 f = Bv

τi ≤ B ∀ i ∈ {1,2, ..., M }

(6.3 revisited)

With the full algorithm discussed in the previous sections, we finally show the possibility for a distributed
version of the algorithm in this section. We start with the equations for the optimization problem as described
for frequency division. This is shown in equation 6.3. To distribute the algorithm we discuss the concepts of
free and complicating variables. In a distributed solution, variables that can be decided by each node of the
distributed network on its own are called free variables, and variables that need to be decided by the entire
network are called complicating variables. It is important to note that without complicating variables, the
solution is much simpler. This refers to optimization problems that can be broken into sub-problems that
can be evaluated in parallel. When there are complicating variables involved, this is more difficult. Because
these variables need to be shared across the nodes to agree upon a solution. In the case of this optimization,
we consider each sensor to be a node in the distributed network. The free variables and the complicating
variables for Sensor 1 are shown in the below equation, with a color code.

τ=
[
τ1 τ2 . . . τM

]T
(6.4)
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T =



T1,1 T1,2 T1,3 . . . T1,M

T2,1 T2,2 T2,3 . . . T2,M

T3,1 T3,2 T3,3 . . . T3,M

...
...

...
. . .

...

TN ,1 TN ,2 TN ,3 . . . TN ,M


(6.5)

The variables marked in blue are the free variables of the optimization for Sensor 1 and the variables in
black are dependent on the network. To solve this problem in a distributed sense, we would have to formu-
late this problem so that the recursion steps can be performed by the nodes individually. After the recursion
steps are completed, the nodes must then come to a consensus about the complicating variables of the opti-
mization. To accomplish this, we first formulate the Lagrangian of the problem as shown in equation 6.6. The
second constraint relates to the maximum sensing time is skipped as it is taken care of by the action space. In
chapter 3, to simplify the algorithm, we allowed the calculation of the sensing and communication strategy
for each sensor in parallel by using the values of the sensing and communication strategy from the previous
recursion of the other sensors. We follow a similar procedure here where each sensor finds the best commu-
nication strategy and sensing time for itself. However, the value of λ needs to be constrained. To do this, we
split the Lagrangian into multiple parts each with its own λ value as shown in equation 6.7.

ZD = max
λ

(
mi n
τ

(
C (τ ,T)+λ(

1T τ +1T T1 f −B
)))

(6.6)

Each of the individual parts of the equation relates to the policy of one of the sensors in the network. This
implies that if the values of λ are consistent across the sensors in the network, the solution will converge to
the centralized approach. This means that at the end of each recursion the values of lambda across different
sensors need to be aggregated into a common value that can be used in the next recursion, that is, λ1 = λ2 =
. . . =λM . This can be done using a weighted sum as shown in [24] called the Projected Consensus Algorithm.
A simple version of this algorithm would be to average the values of λ after every recursion.

Figure 6.4: Distributed Solution - Scenario 1 - Result
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λ
(
1T τ +1T T1 f −B

)=λ1(τ1 + f
N∑

j=1
T1, j − B

M
)+

λ2(τ2 + f
N∑

j=1
T2, j − B

M
)+

λ3(τ3 + f
N∑

j=1
T2, j − B

M
)+

...

λM (τM + f
N∑

j=1
TM , j − B

M
)

(6.7)

Therefore, to use this solution, during the optimization process, constant communication is done by the
sensor network. The optimization algorithm starts with an initially agreed-upon lambda, base policy, and
step size by all the nodes. The sensors then perform one recursion and transmit the updated policy and the
individual λ values to the other nodes. Once all the nodes receive information from all other nodes, they
consider the mean of the Lagrangian and perform the next recursion using the updated policies from the
other nodes. This averaging and recursion process is repeated until the same end condition as previously
defined is reached. Using this solution, the static results of the previous cases as shown in chapter 5 have
been replicated as shown in figures 6.4 and 6.5. However more testing needs to be done to shown that the
solution is a viable alternative to the centralized approach.

6.4. Conclusion
Chapter 6 introduced the addition of the frequency resources along with the time division discussed in earlier
chapters. This allowed for a realistic resource use case where the sensor could operate in different frequency
bands within the available spectrum. The solution to this model could allocate resources to the sensors as-
suming a scarcity of the spectrum and that sensors could not operate simultaneously in two different bands.
This model however assumed that the performance across the frequency bands is identical. That is, a sensor
using different frequency bands to observe the same target has no performance difference. This solution also
provided some interesting results as listed below:

1. The system was able to consider resources in both time and frequency and allocate resources across
both.

2. The system performance increased as the total resources available increase based on the number of
frequency bands as compared to the previous models.

3. The system performance devolved exponentially with an increasing number of sensors, targets, and
prediction horizon.
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Figure 6.5: Distributed Solution - Scenario 2 - Result



7
Conclusion

After discussing the background needed to formulate the problem and its solution in chapters 1, 2, and 3,
the thesis considered multiple scenarios of tracking targets and their solutions in chapters 4, 5, and 6. To
conclude, this chapter summarizes the results and reflects on their implications. Finally, it considers the
possible directions of future work.

7.1. Conclusions
The problem under consideration dealt with creating a system that would allocate time and frequency re-
sources to both sensing and communication tasks for a set of Automotive Radar sensors. From the results
of the simulations discussed previously, resources have been assigned to sensors in multiple use cases with
different assumptions. However, there were some overarching assumptions. The proposed system was cen-
tralized. Its task was to manage homogeneous FMCW Radar Systems to track multiple point targets. The
system did not allow any radar-to-radar interference. Perfect communication between sensors was assumed.
Although the system could allocate resources, the scheduling of tasks in the sensor timeline was outside the
scope of this thesis. The goal of this work was to create a system that would minimize the uncertainty in the
environment in a tracking scenario. The system should have to maintain fairness across sensors and foster
cooperation for mutual benefit. The effect of the system would be better resource use, reduce EM pollution,
and potentially increase the longevity of the sensors.

7.1.1. Proposed System
The proposed system allocates time and frequency resources to both sensing and communication tasks in a
multi-sensor and multi-target environment. It was configurable in terms of the (a) Cost Functions, (b) Pre-
diction Horizon, (c) Number of Policy Rollouts, and (d) Unit time for sensing and communication. The pre-
diction horizon defined how far the system would look into the future. The Number of Policy Rollouts defined
how many scenarios the system would simulate. The unit time for sensing and communication specified the
smallest resource block needed for each task. The following list documents the capabilities of the system:

1. The proposed system managed a set of sensors that provides information about multiple targets in an
environment.

2. It evaluates the information that a sensor provides based on its impact on a cost function such as track-
ing error in the context of some prior knowledge about the targets.

3. The system allocates resources to those sensors that best improves the accuracy of the target track.

4. The system can run recursively in a dynamic scenario. It is non-myopic by looking into the future to
see what information would have the best impact on the tracking error.

5. Compared to a scenario with no transfer of information between sensors, the proposed solution pro-
vided sensors a better understanding of the environment.

6. The system is also able to selectively request only certain information from a sensor if communication
was associated with a cost.
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7.1.2. Results
Some of the interesting results from the simulation of the proposed system are discussed in this section.

1. Certain situations require sensors to switch off. In this state, the sensors transmit using minimal re-
sources for safety but receive all information from other sensors. These sensors observe the environ-
ment vicariously through other sensors. The information other sensors provide helps them have a good
understanding of the environment.

2. Not all information that a sensor can provide is useful in the overall situation. When target measure-
ments from a sensors are not precise, this information is not deemed worthy to use communication
resources. This ensures that sensors that provided more precise results are provides more resources.

3. It is important to consider the information that a system already contains. New information should be
judged based on the effect it has on the overall information gain. In situations were the information
gain from a measurement is the same, it needs to be considered within the backdrop of the existing
information. If existing information about a target is vague, new information about this target should
be prioritized.

4. The effect an action has on the future should be considered. Targets generally move within the confines
of some models. This information can be used to decide the best actions based on predictions. This
makes the solution non-myopic as it predicts the quality of information in the future when allocating
resources to each sensor.

5. Multiple frequency bands increase the available budget for the optimization. By using the proposed
framework, this extension can be easily achieved because of it’s modular and generic nature. The
framework however needs to consider that no transmitter can operate at two different bandwidths si-
multaneously.

The novelty of the thesis is in the modular non-mypoic framework developed specifically for the automo-
tive spectrum. Such work has not be published before. The modularity in the framework is it’s strength and
each individual piece can be replaced to create different implementations with different solutions. The cost
function, tracking algorithm and the policy rollout can be replaced with different implementations. The the-
sis is also the first to implement a solution that compares the cost of communication and sensing side-by-side
to decide the optimal strategy.

7.1.3. Implications
In the future, the development and usage of multitudes of wireless devices will likely place an enormous
strain on spectral resources. New devices used for sensing use large bandwidths to provide higher resolution.
The ubiquity of such devices seems inevitable in the area of human safety. Automotive Radar is one such
field. Despite it currently being allocated a huge spectrum, the expected number of vehicles and the number
of radar nodes per vehicle will quickly use up most of the available resources. The resources in the spectral
domain are finite and cannot accommodate an exponential increase in the number of users. Responsible
use of spectral resources is the expected challenge. Newly developed sensors can either collaborate or work
independently from each other. Working alone would require them to perform well despite other sensors.
Whereas working in collaboration could produce results that are of a higher standard because of auxiliary
sensors. This thesis considers the latter and places it to the test.

The research provides a novel method to the resource allocation problem. The novelty lies in the fact that
it is non-myopic, a generic and modular framework and has shown how both sensing and communication
tasks can be evaluated in the same context. It considers the effect of information that radar node provides
multiple steps into the future to decide the resource allocation scheme. The horizon for the non-myopic solu-
tion is limited by the available hardware due to computational complexity. The proposed solution is modular.
Each part in the proposed system can be swapped out to create different implementations. For example, a
Particle Filter can replace the Kalman Filter or the Policy Rollout can be replaced with a machine learning
model. An ML model could also help add more information to the proposed system. Such a generic frame-
work for the resource allocation scheme has not been proposed earlier. The solution can also consider other
sensors embedded in the infrastructure such as cameras at traffic signals provided they have an estimate of
the error in the provided information. This allows for data fusion between different sensor types.

When the number of users of the spectrum is much larger than what it can accommodate, the proposed
solution can be vital to help everyone sense and communicate. The results of the thesis show simulations
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of the use of sensors in such a scenario. The frequency spectrum should not devolve into a shouting match
between different users, that is, the most powerful transmitters end up using all the resources. It should let
every user have their share of the available resource allowing everyone to enjoy its benefits. A system that
promotes cooperation between sensors would be more than the sum of its parts.

7.2. Future Work
In the future the assumptions of the thesis detailed in chapter 1 could be challenged and a solution could be
considered using the following ideas:

1. Although theoretically, the solution supports N sensors, the simulation time increases exponentially
with sensors, targets, horizon length and number of policy rollouts. More efficient implementations
need to be created to use this framework in real-time. One such approach has already been proposed
in [9].

2. Although the system allocates resources to the sensors, the actual scheduling of the sensing and com-
munication on a timeline is not considered. This could be done in future work.

3. The impact of interference could be taken into consideration to decide if multiple sensors could operate
simultaneously. Currently this impact is considered to be too high and thus the system doesn’t allow
for simultaneous operation.

4. The system could be extended to consider a distributed system. Currently a central system tracks the
targets and provides this information to the sensors involved. We have proposed an approach in chap-
ter 6 but it requires more testing.

5. Network Analysis principles can be applied to the solution. Currently it is assumed that all sensors can
communicate with each other and all information is pertinent to each sensor.

6. The system also assumes that each target can be uniquely labelled by the sensors. Two targets close to
each other could be ambiguous and this could be taken into account in a more realistic setting.





A
Simulation Parameters

The following table documents all the parameters used for the simulation. However, the target RCS, ma-
neuverability and the measurements are randomly generated. The base policy considers all sensors to be
allocated equal budget and all information is communicated by all sensors.

Parameter Value

Time Interval 2 sec

Total Budget 1

Action Space Size 128

Communication Time 0.05

Steady Time 10 sec

Maximum Recursions 1000

Initial Lambda 1500

Step Size 100

Horizon 2

Rollouts 4

End Condition Precision 0.01

Table A.1: Simulation Parameters
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B
MATLAB Code / Tweaks

B.1. Radar Target

1 classdef radarTarget
2 % radarTarget Creates a radar t a r g e t that moves with constant v e l o c i t y
3 % This c l a s s simulates a t a r g e t moving with a constant v e l o c i t y in
4 % two dimensions
5 properties
6 s t a r t P o s i t i o n ( 2 , 1) { mustBeReal } % Define the s t a r t i n g position
7 s t a r t V e l o c i t y ( 2 , 1) { mustBeReal } % Define the constant v e l o c i t y
8 maneuverability { mustBeReal } % Maneuverability noise of t a r g e t
9 radarCrossSection { mustBeReal } % RCS of the t a r g e t

10 currentPosition ( 2 , 1) { mustBeReal } % The current position of the t a r g e t
11 end
12 methods
13 function obj = radarTarget ( i n i t P o s i t i o n , i n i t V e l o c i t y )
14 % radarTarget I n i t i a l i z e d the t a r g e t to s t a r t at a p a r t i c u l a r
15 % position with a p a r t i c u l a r v e l o c i t y
16 i f nargin == 0
17 obj . s t a r t P o s i t i o n = [ 0 ; 0 ] ;
18 obj . s t a r t V e l o c i t y = [ 0 ; 0 ] ;
19 e l s e i f nargin == 1
20 obj . s t a r t P o s i t i o n = i n i t P o s i t i o n ;
21 obj . s t a r t V e l o c i t y = [ 0 ; 0 ] ;
22 e l s e i f nargin == 2
23 obj . s t a r t P o s i t i o n = i n i t P o s i t i o n ;
24 obj . s t a r t V e l o c i t y = i n i t V e l o c i t y ;
25 else
26 error ( ’ Class not i n i t i a l i z e d , provide correct arguments ’ ) ;
27 end
28 obj . maneuverability = round(10 * rand ( ) ) + 1 ;
29 obj . radarCrossSection = round(400 * rand ( ) ) + 1 ;
30 obj . currentPosition = obj . s t a r t P o s i t i o n ;
31 end
32 function obj = move( obj , T)
33 % moveTarget Moves the t a r g e t based on the given time i n t e r v a l
34 obj . currentPosition = obj . currentPosition + T * obj . s t a r t V e l o c i t y ;
35 end
36 end
37 end
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B.2. Radar Sensor

1 classdef radarSensor
2 % radarSensor Simulates a sensor observing a t a r g e t
3 % This object w i l l observe a t a r g e t with a certain noise l e v e l that
4 % i s predefined in polar coordinates
5 properties
6 s t a r t P o s i t i o n ( 2 , 1) { mustBeReal } % Define the s t a r t i n g position
7 s t a r t V e l o c i t y ( 2 , 1) { mustBeReal } % Define the constant v e l o c i t y
8 currentPosition ( 2 , 1) { mustBeReal } % Location of the sensor
9 measurement ( 2 , : ) { mustBeReal } % Current Polar Measurement

10 noise ( 2 , : ) { mustBeReal } % Sensor Noise for t a r g e t
11 coherence { mustBeReal } = 1 % Coherence Gain for Sensor
12 trackedTargets { mustBeInteger } = 0 % Currently tracked t a r g e t s
13 end
14 methods
15 function obj = radarSensor ( location , v e l o c i t y )
16 % I n i t i a l i z e s the sensor to a p a r t i c u l a r position
17 i f nargin == 0
18 obj . s t a r t P o s i t i o n = [ 0 ; 0 ] ;
19 e l s e i f nargin == 1
20 obj . s t a r t P o s i t i o n = location ;
21 e l s e i f nargin == 2
22 obj . s t a r t P o s i t i o n = location ;
23 obj . s t a r t V e l o c i t y = v e l o c i t y ;
24 else
25 disp ( ’ Class not i n i t i a l i z e d , provide correct arguments ’ ) ;
26 end
27 obj . currentPosition = obj . s t a r t P o s i t i o n ;
28 end
29 function obj = move( obj , T)
30 % moveTarget Moves the t a r g e t based on the given time i n t e r v a l
31 obj . currentPosition = obj . currentPosition + T * obj . s t a r t V e l o c i t y ;
32 obj . trackedTargets = 0 ;
33 obj . measurement = [ ] ;
34 end
35 function obj = measure ( obj , radarTarget , coherence )
36 % Generates noisy measurements based on locations
37 obj . trackedTargets = obj . trackedTargets + 1 ;
38 offsetLocation = radarTarget . currentPosition − obj . currentPosition ;
39 [ theta , range ] = cart2pol ( offsetLocation ( 1 ) , offsetLocation ( 2 ) ) ;
40 obj . noise ( : , obj . trackedTargets ) = calcVariance ( range , theta ,

radarTarget . radarCrossSection , ’ S ’ ) ;
41 obj . noise ( : , obj . trackedTargets ) = obj . noise ( : , obj . trackedTargets ) . /

coherence ;
42 obj . measurement ( 1 , obj . trackedTargets ) = range + abs ( sqrt ( obj . noise ( 1 ,

obj . trackedTargets ) ) ) * randn ( ) ;
43 obj . measurement ( 2 , obj . trackedTargets ) = theta + abs ( sqrt ( obj . noise ( 2 ,

obj . trackedTargets ) ) ) * randn ( ) ;
44 obj . coherence = coherence ;
45 end
46 end
47 end
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B.3. Extended Kalman Filter

1 classdef extendedKalman
2 % extendedKalman Creates an extended Kalman F i l t e r
3 % This c l a s s takes polar measurements of t a r g e t s from multiple
4 % sensors at d i f f e r e n t locations and provides the best estimate of a
5 % t a r g e t location using a constant v e l o c i t y model in two dimensions
6 properties
7 F( 4 , 4) { mustBeReal } % State Transition Matrix
8 H( 2 , 4) { mustBeReal } % Measurement Matrix
9 Qw( 4 , 4) { mustBeReal } % Maneuverability Noise Matrix

10 Qv( 2 , 2) { mustBeReal } % Measurement Noise Matrix
11 kState ( 4 , 1) { mustBeReal } = [ 1 ; 1 ; 1 ; 1 ; ] % Best Known Current Location
12 kError ( 4 , 4) { mustBeReal } = diag ( [ 1 e6 1e6 1e4 1e4 ] ) ; % Accuracy of Current

Location
13 kGain ( 4 , 2) { mustBeReal } % Kalman Gain
14 end
15 methods
16 function obj = extendedKalman ( radarTarget , T)
17 % I n i t a l i z e s the EKF based on the time i n t e r v a l
18 i f nargin == 2
19 obj . F = [1 0 T 0 ;
20 0 1 0 T ;
21 0 0 1 0 ;
22 0 0 0 1 ] ;
23 w = [T^2/2 0 ;
24 0 T^2/2;
25 T 0 ;
26 0 T ] ;
27 obj .Qw = w * w’ * radarTarget . maneuverability ;
28 else
29 disp ( ’ Class not i n i t i a l i z e d , provide correct arguments ’ ) ;
30 end
31 end
32 function obj = update ( obj , radarSensor , targetID )
33 % update Updates the Kalman F i l t e r based on the
34 % measurement of t a r g e t position by a sensor at a location
35 % given i t ’ s accuracy
36 x = obj . kState ( 1 ) − radarSensor . currentPosition ( 1 ) ;
37 y = obj . kState ( 2 ) − radarSensor . currentPosition ( 2 ) ;
38 [ theta , range ] = cart2pol ( x , y ) ;
39 obj .H = [ x/range y/range 0 0 ;
40 −y/range^2 x/range^2 0 0 ] ;
41 obj . Qv = [ radarSensor . noise ( 1 , targetID ) 0 ;
42 0 radarSensor . noise ( 2 , targetID ) ] ;
43 obj . kGain = obj . kError * obj .H’ / ( obj .H * obj . kError * obj .H’ + obj . Qv)

;
44 obj . kState = obj . kState + obj . kGain * ( radarSensor . measurement ( : ,

targetID ) − [ range ; theta ] ) ;
45 obj . kError = ( eye ( 4 ) − obj . kGain * obj .H) * obj . kError ;
46 end
47 function obj = predict ( obj )
48 % predictState Predicts the s t a t e of the t a r g e t in the next
49 % time i n t e r v a l given the maneuverability of the t a r g e t
50 obj . kState = obj . F * obj . kState ;
51 obj . kError = obj . F * obj . kError * obj . F ’ + obj .Qw;
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52 end
53 function errorCost = cost ( obj )
54 % getAccuracy Calculates to t o t a l error of the EKF based on
55 % Error Covariance Matrix
56 errorCost = obj . kError ( 1 , 1) + obj . kError ( 2 , 2) ;
57 end
58 end
59 end
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B.4. Best Sensor Action

1 function bestSensorAction = bestAction ( optimizationSensor , currentPolicy , targets ,
sensors , f i l t e r s , system , simulation )

2 % BESTACTION Finds the best action for a given sensor for a given lambda
3

4 % Creating a table of a l l possible actions
5 actionSpace = makeActions ( system . totalBudget , system . actionSpaceSize , system .

t o t a l T a r g e t s ) ;
6 % Counting the t o t a l number of actions
7 totalAct ions = s i z e ( actionSpace , 1) ;
8

9 % Output variable for cost of each action
10 actionCosts = zeros ( 1 , totalAct ions ) ;
11 % Looping through every action and calculat ing t o t a l cost
12 parfor actionIndex = 1 : totalAct ions
13 % Choosing the action under consideration
14 action = actionSpace ( actionIndex , : ) ;
15 % Output variable for cost of each r o l l o u t
16 rol loutCosts = zeros ( 1 , simulation . r o l l o u t s ) ;
17 % Looping through r o l l o u t s to be averaged
18 for rolloutIndex = 1 : simulation . r o l l o u t s
19 % Output variable for cost of tracking each t a r g e t
20 targetCosts = zeros ( 1 , system . t o t a l T a r g e t s ) ;
21 % Looping through each t a r g e t to find cost of each
22 for targetIndex = 1 : system . t o t a l T a r g e t s
23 % Creating a v i r t u a l t a r g e t based on o r i g i n a l t a r g e t
24 v i r t u a l T a r g e t = t a r g e t s ( 1 , targetIndex ) ;
25 % Using the f i l t e r for the the same s t a t e and error data
26 v i r t u a l F i l t e r = f i l t e r s ( 1 , targetIndex ) ;
27 % Walk through the horizon to find the cost in the future
28 for horizonIndex = 1 : simulation . horizon
29 % Calculate t o t a l used budget for current action
30 usedBudget = 0 ;
31 % Loop through the sensors to update the f i l t e r
32 for sensorIndex = 1 : system . totalSensors
33 % Create a v i r t u a l sensor to measure the t a r g e t
34 virtualSensor = radarSensor ( sensors ( sensorIndex ) .

currentPosition ) ;
35 % Update the f i l t e r i f the sensor i s not to be optimized
36 i f sensorIndex ~= optimizationSensor
37 % Choose the action to be taken based on the history
38 sensingAction = currentPolicy . sPol icy ( sensorIndex ) ;
39 communicationAction = currentPolicy . cPolicy ( sensorIndex ,

targetIndex ) ;
40 else
41 % Select the actions to be taken on the f i l t e r based
42 sensingAction = action ( 1 ) ;
43 communicationAction = action ( targetIndex + 1) ;
44 end
45 % I f communication happens , update the sensor
46 i f communicationAction == 1
47 % Create a measurement based on the sensing action
48 virtualSensor = virtualSensor . measure ( virtualTarget ,

sensingAction ) ;
49 % Update the f i l t e r using the measurement
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50 v i r t u a l F i l t e r = v i r t u a l F i l t e r . update ( virtualSensor , 1) ;
51 end
52 % Saving budgets for l a t e r calculat ion
53 sensingBudget = sensingAction ;
54 communicationBudget = sum( communicationAction ) * system .

communicationTime ;
55 usedBudget = usedBudget + sensingBudget +

communicationBudget ;
56 end
57 % The f i l t e r then predicts the location of the t a r g e t and
58 % updates the error
59 v i r t u a l F i l t e r = v i r t u a l F i l t e r . predict ( ) ;
60 % The cost for the t a r g e t i s then calculated based on the
61 % accuracy of t h i s track given a p a r t i c u l a r horizon
62 targetCosts ( targetIndex ) = targetCosts ( targetIndex ) +

v i r t u a l F i l t e r . cost ( ) ;
63 % Move the t a r g e t for the next horizon
64 v i r t u a l T a r g e t = v i r t u a l T a r g e t .move( system . timeInterval ) ;
65 end
66 end
67 % Calculating the Total Used Budget
68 totalBudget = usedBudget / simulation . horizon ;
69 % Store the cost of the current action for further processing
70 rol loutCosts ( rolloutIndex ) = sum( targetCosts ) + currentPolicy . lambda *

totalBudget ;
71 end
72 actionCosts ( actionIndex ) = mean( rol loutCosts ) ;
73 end
74 % The best action for the given sensor i s returnes based on the l e a s t
75 % cost from the action costs table
76 [~ , bestActionIndex ] = min( actionCosts ) ;
77 % Choose the best action from the action space
78 bestAction = actionSpace ( bestActionIndex , : ) ;
79 % Save the return values
80 bestSensorAction . sPolicy = bestAction ( 1 ) ;
81 bestSensorAction . cPolicy = bestAction ( 2 : end) ;
82 end
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B.5. Best Policy

1 function new = bestPolicy ( history , targets , sensors , f i l t e r s , system , simulation )
2 % BESTPOLICY finds the best policy for the given set of sensors and t a r g e t s
3 % history = bestPolicy ( policy , targets , sensors , f i l t e r s , system , simulation )
4 % Takes the i n i t i a l policy and checks of the policy i s the best for the
5 % give scenario using information about targets , sensors , the system and
6 % the simulation parameters
7 % Input Parameters :
8 % − history : Variables from previous run
9 % − t a r g e t s : radarTarget object array

10 % − sensors : radarSensor object array
11 % − f i l t e r s : extendedKalman object array
12 % − system : structure with system parameters
13 % − simulation : structure with simulation parameters
14 % Refer to README.md for more information .
15

16 % I n i t i a l i z i n g the recursion variables
17 rPrimalCost = zeros ( 1 , simulation . maxRecursions ) ;
18 rDualCost = zeros ( 1 , simulation . maxRecursions ) ;
19 rGradient = zeros ( 1 , simulation . maxRecursions ) ;
20 rLambda = zeros ( 1 , simulation . maxRecursions ) ;
21 rLambda( 1 ) = history . lambda ;
22

23 % Sett ing the i n i t i a l policy
24 sPolicy = zeros ( system . totalSensors , simulation . maxRecursions ) ;
25 sPolicy ( : , 1) = history . sPolicy ;
26 cPolicy = zeros ( system . totalSensors , system . totalTargets , simulation .

maxRecursions ) ;
27 cPolicy ( : , : , 1) = history . cPolicy ;
28

29 % Staring the recursion process
30 for recursionIndex = 2 : simulation . maxRecursions
31 % Save the current policy for easy access
32 currentPolicy . sPolicy = sPolicy ( : , recursionIndex − 1) ;
33 currentPolicy . cPolicy = squeeze ( cPolicy ( : , : , recursionIndex − 1) ) ;
34 currentPolicy . lambda = rLambda( recursionIndex − 1) ;
35

36 i f simulation . diagnosticsFlag == ’Y ’
37 disp ( currentPolicy . sPolicy ) ;
38 disp ( currentPolicy . cPolicy ) ;
39 end
40

41 % Find best action for each sensor given lambda
42 parfor sensorIndex = 1 : system . totalSensors
43 % Find the best action for given sensor
44 bestSensorAction = bestAction ( sensorIndex , currentPolicy , targets ,

sensors , f i l t e r s , system , simulation ) ;
45 % Change the best action for the next recursion
46 sPolicy ( sensorIndex , recursionIndex ) = bestSensorAction . sPolicy ;
47 cPolicy ( sensorIndex , : , recursionIndex ) = bestSensorAction . cPolicy ;
48 end
49

50 % Slow down the recursion to make sure i t converges
51 sPolicy ( : , recursionIndex ) = slowDown( sPolicy ( : , recursionIndex ) , sPolicy ( : ,

recursionIndex − 1) , system ) ;
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52

53 % Calculate the cost and the budgets for above actions
54 % Looping through each t a r g e t and build a cost
55 targetCosts = zeros ( 1 , system . t o t a l T a r g e t s ) ;
56 for targetIndex = 1 : system . t o t a l T a r g e t s
57 % Creating a v i r t u a l t a r g e t using the o r i g i n a l t a r g e t for
58 % simulations
59 v i r t u a l T a r g e t = t a r g e t s ( 1 , targetIndex ) ;
60 % Using the f i l t e r from the o r i g i n a l run to use the same s t a t e
61 % and error covariance
62 v i r t u a l F i l t e r = f i l t e r s ( 1 , targetIndex ) ;
63 % Looping through the the sensors to update the f i l t e r with the
64 % appropriate sensing action i f communication happens
65 for sensorIndex = 1 : system . totalSensors
66 % Creating a sensor at the same location as the o r i g i n a l
67 % sensors for simulations with d i f f e r e n t measurements
68 virtualSensor = radarSensor ( sensors ( sensorIndex ) . currentPosition ) ;
69 % Choosing the actions to be applied
70 sensingAction = sPolicy ( sensorIndex , recursionIndex ) ;
71 communicationAction = cPolicy ( sensorIndex , targetIndex ,

recursionIndex ) ;
72 % I f communication happens about the t a r g e t by the sensor ,
73 % update the global f i l t e r with the simulated measurement
74 i f communicationAction == 1
75 % Creating a new measurement based on sensing action
76 virtualSensor = virtualSensor . measure ( virtualTarget ,

sensingAction ) ;
77 v i r t u a l F i l t e r = v i r t u a l F i l t e r . update ( virtualSensor , 1) ;
78 end
79 end
80 % The f i l t e r then predicts the location of the t a r g e t and
81 % updates the error
82 v i r t u a l F i l t e r = v i r t u a l F i l t e r . predict ( ) ;
83 % The cost for the t a r g e t i s then calculated based on the
84 % accuracy of t h i s track given a p a r t i c u l a r horizon
85 targetCosts ( targetIndex ) = v i r t u a l F i l t e r . cost ( ) ;
86 end
87

88 % Consider the budgets for the new action to calculate budgets
89 sensingBudget = sum( sPolicy ( : , recursionIndex ) ) ;
90 communicationBudget = sum( squeeze ( cPolicy ( : , : , recursionIndex ) ) , ’ a l l ’ ) *

system . communicationTime ;
91 % Calculate t o t a l used budget using sensing and communication
92 usedBudget = sensingBudget + communicationBudget ;
93

94 % Calculate gradient based on the budget
95 rGradient ( recursionIndex ) = usedBudget − system . virtualBudget ;
96

97 % Update lambda based on the gradient for next recursion
98 rLambda( recursionIndex ) = currentPolicy . lambda + ( simulation . stepSize *

rGradient ( recursionIndex ) ) ;
99

100 % Store the cost of the new action for further processing
101 rPrimalCost ( recursionIndex ) = sum( targetCosts ) ;
102 rDualCost ( recursionIndex ) = rPrimalCost ( recursionIndex ) + rLambda(

recursionIndex ) * rGradient ( recursionIndex ) ;
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103

104 % Printing the s t a t e of the optimization
105 i f simulation . diagnosticsFlag == ’Y ’
106 f p r i n t f ( ’ recursion : %d , lambda : %0.3f , gradient : %0.3f , budget : %0.3 f \n ’

, . . .
107 recursionIndex , rLambda( recursionIndex ) , rGradient ( recursionIndex ) ,

usedBudget ) ;
108 end
109

110 % Checking e x i t conditions by building a window
111 windowStart = recursionIndex − simulation . windowLength + 1 ;
112 windowEnd = recursionIndex ;
113 i f windowStart < 1
114 windowStart = 1 ;
115 end
116 windowValues = abs ( rGradient ( windowStart : windowEnd) ) ;
117 clear windowStart windowEnd ;
118

119 % Based on the type of check break the loop
120 i f simulation . endCondition == ’W’
121 windowCheck = windowValues < simulation . endThreshold ;
122 i f simulation . diagnosticsFlag == ’Y ’
123 disp ( windowValues ) ;
124 disp (windowCheck) ;
125 end
126 % Break loop i f a l l values l i e within the prescribed window
127 i f sum(windowCheck) == simulation . windowLength
128 disp ( ’End Condition Reached ’ ) ;
129 break ;
130 end
131 e l s e i f simulation . endCondition == ’D’
132 f i r s t D e r i v a t i v e = gradient ( windowValues ) ;
133 secondDerivative = del2 ( windowValues ) ;
134 i f simulation . diagnosticsFlag == ’Y ’
135 disp ( f i r s t D e r i v a t i v e ) ;
136 disp ( secondDerivative ) ;
137 end
138 % Break loop i f the f i r s t and second d e r i v a t i v e go to zero
139 i f f i r s t D e r i v a t i v e (end) < simulation . endThreshold
140 i f secondDerivative (end) < simulation . endThreshold
141 break ;
142 end
143 end
144 end
145 end
146

147 % Action of the l a s t recursion as r e s u l t
148 new. sPolicy = sPolicy ( : , recursionIndex ) ;
149 new. cPolicy = squeeze ( cPolicy ( : , : , recursionIndex ) ) ;
150 new. lambda = rLambda( recursionIndex ) ;
151

152 % Create plots i f the make plot f l a g i s set
153 i f simulation . makePlotFlag == ’Y ’
154 % Variables for pl ott ing
155 timeStamp = f i x ( clock ) ;
156 timeStamp = strrep ( num2str ( timeStamp ( 2 : 5 ) ) , ’ ’ , ’ ’ ) ;
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157 customColorMap = [0 0 0 ;
158 0 166 2 1 4 ] ;
159 customColorMap = customColorMap . / 255;
160

161 % Create diagnostics plots
162 i f simulation . diagnosticsFlag == ’Y ’
163 gcf = f i g u r e ( ’ v i s i b l e ’ , ’ o f f ’ ) ;
164

165 set ( gcf , ’ Position ’ , get ( 0 , ’ Screensize ’ ) ) ;
166 s g t i t l e ( ’ Diagnostics ’ , ’ FontSize ’ , 24) ;
167 subplot ( 2 , 2 , [1 2 ] ) ;
168 hold on ;
169 grid on ;
170 grid minor ;
171 plot ( 2 : recursionIndex , rPrimalCost ( 2 : recursionIndex ) , ’ LineWidth ’ , 2) ;
172 plot ( 2 : recursionIndex , rDualCost ( 2 : recursionIndex ) , ’ LineWidth ’ , 2) ;
173 hold o f f ;
174 colormap ( customColorMap ) ;
175 legend ( ’ Primal ’ , ’ Dual ’ , ’ Location ’ , ’ best ’ , ’ FontSize ’ , 14) ;
176 xlabel ( ’ Recursion Step ’ , ’ FontSize ’ , 16) ;
177 ylabel ( ’ Cost ’ , ’ FontSize ’ , 16) ;
178 t i t l e ( ’ Cost and Langrangian Functions ’ , ’ FontSize ’ , 20) ;
179 subplot ( 2 , 2 , 3) ;
180 plot ( 2 : recursionIndex , rGradient ( 2 : recursionIndex ) + system .

virtualBudget , ’ LineWidth ’ , 2) ;
181 grid on ;
182 grid minor ;
183 xlabel ( ’ Recursion Step ’ , ’ FontSize ’ , 16) ;
184 ylabel ( ’ Total Used Budget ’ , ’ FontSize ’ , 16) ;
185 t i t l e ( ’ Budget U t i l i z a t i o n ’ , ’ FontSize ’ , 20) ;
186 subplot ( 2 , 2 , 4) ;
187 plot ( 2 : recursionIndex , rLambda ( 2 : recursionIndex ) , ’ LineWidth ’ , 2) ;
188 grid on ;
189 grid minor ;
190 xlabel ( ’ Recursion Step ’ , ’ FontSize ’ , 16) ;
191 ylabel ( ’Lambda ’ , ’ FontSize ’ , 16) ;
192 t i t l e ( ’ Gradient Descent ’ , ’ FontSize ’ , 20) ;
193 saveas ( gcf , append( timeStamp , ’ _optdiag . png ’ ) ) ;
194 close ( gcf ) ;
195 end
196

197 % Create r e s u l t s plot
198 gcf = f i g u r e ( ’ v i s i b l e ’ , ’ o f f ’ ) ;
199 set ( gcf , ’ Position ’ , get ( 0 , ’ Screensize ’ ) ) ;
200 s g t i t l e ( ’ Optimization Result ’ , ’ FontSize ’ , 24) ;
201 subplot (121) ;
202 bar (new. sPolicy , ’ FaceColor ’ , customColorMap ( 2 , : ) ) ;
203 grid on ;
204 grid minor ;
205 ylim ( [ 0 max(new. sPolicy * 1 . 2 ) ] ) ;
206 xlabel ( ’ Sensors ’ , ’ FontSize ’ , 16) ;
207 ylabel ( ’ Weights ’ , ’ FontSize ’ , 16) ;
208 t i t l e ( ’ Sensing Allocation ’ , ’ FontSize ’ , 20) ;
209 subplot (122) ;
210 imagesc (new. cPolicy ’ ) ;
211 customColorMap ( 1 , : ) = [1 1 1 ] ;
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212 colormap ( customColorMap ) ;
213 customColorMap ( 1 , : ) = [0 0 0 ] ;
214 y t i c k s ( 1 : system . t o t a l T a r g e t s ) ;
215 x t i c k s ( 1 : system . totalSensors ) ;
216 ylabel ( ’ Targets ’ , ’ FontSize ’ , 16) ;
217 xlabel ( ’ Sensors ’ , ’ FontSize ’ , 16) ;
218 t i t l e ( ’Communication Selection ’ , ’ FontSize ’ , 20)
219 for targetIndex = 1 : system . t o t a l T a r g e t s − 1
220 yl ine ( targetIndex +0.5 , ’ k : ’ , ’ LineWidth ’ , 3) ;
221 end
222 for sensorIndex = 1 : system . totalSensors − 1
223 x l i n e ( sensorIndex +0.5 , ’ k : ’ , ’ LineWidth ’ , 3) ;
224 end
225 for targetIndex = 1 : system . t o t a l T a r g e t s
226 for sensorIndex = 1 : system . totalSensors
227 rangeAccuracy = sqrt ( sensors ( sensorIndex ) . noise ( 1 , targetIndex ) ) ;
228 thetaAccuracy = rad2deg ( sqrt ( sensors ( sensorIndex ) . noise ( 2 ,

targetIndex ) ) ) ;
229 caption = { num2str ( rangeAccuracy ) , num2str ( thetaAccuracy ) } ;
230 t = t e x t ( sensorIndex , targetIndex , caption ) ;
231 t . HorizontalAlignment = ’ center ’ ;
232 t . FontSize = 18;
233 end
234 end
235 saveas ( gcf , append( timeStamp , ’ _solution . png ’ ) ) ;
236 close ( gcf ) ;
237

238 % Create world map
239 gcf = f i g u r e ( ’ v i s i b l e ’ , ’ o f f ’ ) ;
240 set ( gcf , ’ Position ’ , get ( 0 , ’ Screensize ’ ) ) ;
241 s g t i t l e ( ’ World ’ , ’ FontSize ’ , 24) ;
242 hold on ;
243 grid on ;
244 grid minor ;
245 for targetIndex = 1 : system . t o t a l T a r g e t s
246 s c a t t e r ( t a r g e t s ( targetIndex ) . currentPosition ( 1 ) , t a r g e t s ( targetIndex ) .

currentPosition ( 2 ) , 80 , ’ MarkerEdgeColor ’ , customColorMap ( 2 , : ) ) ;
247 end
248 for sensorIndex = 1 : system . totalSensors
249 s c a t t e r ( sensors ( sensorIndex ) . currentPosition ( 1 ) , sensors ( sensorIndex ) .

currentPosition ( 2 ) , 80 , ’ f i l l e d ’ , ’kD ’ ) ;
250 end
251 hold o f f ;
252 xlabel ( ’X Axis ’ , ’ FontSize ’ , 16) ;
253 ylabel ( ’Y Axis ’ , ’ FontSize ’ , 16) ;
254 saveas ( gcf , append( timeStamp , ’_worldmap . png ’ ) ) ;
255 close ( gcf ) ;
256 end
257 end

NOTE: For test scripts and run-time code, please reach out to me or one of the contact persons via email.





C
Dynamic Noise

The noise defined in the target dynamics is based on acceleration. We assume that the within a time step, the
object undergoes a constant acceleration ak what is normally distributed with mean 0. Therefore the motion
equation can be written as:

sk+1 = Fsk +Wak (C.1)

The matrix F is defined as described in chapter 3 however the matrix W is dependent on the acceleration.
The terms related to acceleration therefore need to be considered with respect to time. In this case The matrix
W would therefore be as follows:

W =



∆t 2

2 0

0 ∆t 2

2

∆t 0

0 ∆t

 (C.2)

This results in the dynamics of the target state dependent on the acceleration which is treated as a random
process. Thus, the Covariance Matrix can be calculated using W.
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