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Phasing out support schemes for renewables in neighbouring countries: An 
agent-based model with investment preferences 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• We simulate renewables pathways 
under different support phase-out 
scenarios. 

• We extend an investment algorithm by 
preferences and calibrated returns. 

• Our improved algorithm incorporates 
more heterogeneity resulting in stronger 
effects. 

• Further auction support is necessary for 
most capacity targets in the case 
countries. 

• Countries should coordinate policy 
changes due to cross-border effects.  

A R T I C L E  I N F O   
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A B S T R A C T   

Support schemes have been central to the expansion of renewable electricity globally and in the European Union. 
As technologies mature, individual member states may decide to phase out these policies. While previous 
research has shown that such policy changes affect investors’ decisions, we investigate how they affect pathways 
and electricity prices by simulating investment decisions in an agent-based model in two case countries. This 
paper contributes and applies an adapted investment decision algorithm that incorporates empirically observed 
technology and return preferences and is calibrated by return observations. The new algorithm yields more 
refined and stronger effects compared to its predecessor. Results show that the phase-out of auctions in Germany 
and the Netherlands slows down their deployment of renewable capacity by up to ~60% and ~35%, respec
tively. With the exception of photovoltaics and onshore wind projects in the Netherlands, the targeted capacities 
can only be reached by continuing support in both countries. Furthermore, ending support in a large country like 
Germany leads to higher electricity prices and fosters a market-driven but insufficient capacity expansion in 
smaller neighbours like the Netherlands. As the electricity grids in many countries are strongly interconnected, 
such cross-border effects are of international relevance. Our findings suggest that continued auctions may be 
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necessary and that countries should coordinate policy changes to stay on track for meeting their renewables 
targets.   

1. Introduction 

Countries around the world have committed to transform their 
electricity systems in response to the climate crisis. For instance, the 
European Union (EU) has set itself the goal of achieving climate- 
neutrality by 2050 [1]. Renewable power sources1 like photovoltaics 
(PV), onshore wind and offshore wind will play an essential role in these 
transformations. A high share of renewable power is attainable but re
quires a massive and rapid expansion of capacity [2]. While renewable 
capacity has increased considerably [3], at least another doubling is 
needed by 2030. To attain this goal, EU member states have established 
National Energy and Climate Plans (NECPs). The specific instrumenta
tion to expand renewables is a member state competence, but the Eu
ropean Commission specifies what policies and designs are allowed. 
Notably, all member states that want to support renewables are required 
to use auctions as their central support scheme [4]. 

Following the shift from feed-in tariffs to auctions, there is now an 
ongoing debate in science and politics about the future of support 
schemes [5]. As renewables mature, individual governments may decide 
that auctions have become obsolete. However, it is still unclear if market 
incentives alone can provide sufficient momentum to scale up renew
ables and meet short- and long-term targets. Should EU member states 
miss their targets, this will not only pose a political problem but may 
also jeopardise climate change mitigation efforts. 

Moreover, discontinuing support has potential side-effects. First, if 
support for specific technologies ends at different times, investors who 
prefer low-risk investments are likely to move to less mature technolo
gies that still receive support [6]. The resulting shift to these more 
expensive technologies may increase transition costs, at least in the short 
term. Second, large-scale changes in the deployment of renewables may 
have cross-border effects in neighbouring, interconnected countries. For 
example, the expansion of renewables in larger countries has contrib
uted to lower electricity prices in smaller ones, affecting investors in 
both countries [7]. 

While research has investigated market-based versus supported 
systems [67], more research is needed to reveal the extent to which 
renewable energy pathways alter following the phase-out of support. 
There is also a paucity of knowledge about cross-border effects following 
policy changes and reason to expect that such effects threaten efforts to 
achieve targets across borders. These are complex issues, depending on 
several system variables like costs, prices, demand, policies, investors’ 
behaviours and their preferences, and hence, require a modelling 
approach. As these open questions are also relevant for upcoming de
cisions of European policymakers, we answer three research questions: 
(1) What are the domestic effects of phasing out support on electricity 
prices and renewables deployment; (2) What are the cross-border effects 
if only one country phases out support; And (3) can countries reach their 
targets without support? 

We investigate these questions in the context of assumed policy 
changes in 2025 and two tightly interconnected power systems, the 
Netherlands and Germany. An agent-based model (ABM) simulating 
investors’ reactions to market and policy changes is refined and used. 
The article’s novelty and contribution to gaps in the literature is twofold: 
First, we contribute to the understanding of the domestic/cross-border 
effects of phasing out support schemes for renewables. Results show 
that such effects can be counterintuitive and thus pose a risk for in
vestors. Previous literature has not sufficiently focused on these effects 
and their risks, especially not in the context of the recent debate about 

phasing out support for renewables. Second, we extend the ABM to 
integrate empirically observed technology and return preferences and 
calibrate it with real return observations. This contribution follows a call 
for research to better understand the relevance of societal parameters in 
models [37]. 

2. Background 

2.1. The debate about future support 

Over the last two decades, EU member states have adopted feed-in 
tariffs and tradable green certificates to support immature renewables 
[8]. These policies successfully triggered the expansion of renewable 
capacity [9]. However, there is no consensus on how these mechanisms 
should develop in the future. Some argue that deployment policies fail to 
provide market incentives [11,13], are neither efficient [12] nor cost- 
effective [14], and thus, should be replaced entirely by carbon pricing 
as the only means of ensuring the reduction of greenhouse gas emissions 
across the entire economy. Others find that support schemes should 
continue as they tackle several market failures [15], reduce policy [16] 
and financial risks [10,17], hedge against interest rate fluctuations [18], 
and fulfil secondary policy objectives, e.g. for local economies [5]. While 
it is questionable that fully liberalised markets could meet deep decar
bonisation targets without regulatory interventions [19], an alternative 
to abandoning support in a single step is a gradual transfer of market 
risks to investors [20], e.g. through auctions [21]. 

The decreasing generation costs of renewables and the occurrence of 
support-free projects [68] have strengthened the case for abandoning 
support and letting renewables compete on the general electricity 
markets. European institutions envisage support to end between 2021 
and 2030 [4] or as soon as technologies will have become mature [22]. 
Germany [23] and the Netherlands [24] likewise expect to reach targets 
without support from the mid-2020s. Here, we contribute to this debate 
by showing the domestic/cross-border effects of abandoning support for 
single or all technologies. 

2.2. Cross-border effects 

Price developments in large countries can depress prices in smaller 
neighbours if markets are sufficiently interconnected [25]. Such in
teractions have occurred, for example, in Switzerland due to de
velopments in Germany and France [7]. While these cross-border effects 
can redistribute welfare, they may have negative impacts like an 
increased price volatility [27]. Joint support schemes can mitigate such 
unwanted impacts [26,27] if they are well-designed [28]. This is one 
reason why the EU now mandates to open national support schemes for 
other countries. However, if individual countries phase out support 
completely, joint policies may not be an option anymore. 

Furthermore, as European countries head towards a continental 
electricity market—a comparably low-cost option [29]—their trans
mission and interconnection capacities will increase, making cross- 
border effects more important. However, it is unclear how strong and 
relevant these effects will be if individual countries phase out support at 
the same time. As the strength of effects depends not only on the 
deployment of renewables and transmission capacities but also on in
vestors’ decisions [31], as well as carbon and fuel prices [30], a quan
titative electricity system analysis is required. We perform such an 
analysis using an ABM. 

1 In the remainder of this paper referred to as renewables. 
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2.3. Heterogeneity in agent-based modelling 

Sustainability transitions require researchers to reconsider prevalent 
modelling approaches [33]. Specifically, there is a need to better inte
grate behavioural and social aspects [38]. While models like integrated 
assessment models (IAMs) have advanced in representing techno- 
economical details, they do not represent the behavioural aspects very 
well [36,27]. However, as new actors in the electricity market differ in 
their investment preferences, behavioural heterogeneity increases 
[34,35]. Therefore, research on alternatives like agent-based models is 
growing [32,42]. ABMs feature heterogeneous actors acting on limited 
information about the future and model emergent side-effects of policies 
[39]. They have gained increasing popularity as a means to answer a 
multitude of energy and climate policy questions regarding carbon price 
design [31,41], support scheme design [40], and market liberalisation 
[19]. 

Following a call for research on societal parameters in (future) en
ergy models [37], we focus on which parameters are appropriate to 
represent heterogeneity and myopic investment behaviours. Parameters 
used in this article are based on empirical data, which can be more ac
curate than assumptions [43]. However, data collection is costly, so 
modellers need to know if empirically grounded parameters influence 
model results or if well-informed guesses are sufficient. We cover this 
gap by integrating technology and return preferences of real investors in 
an ABM. 

3. Method 

3.1. Model 

The ABM EMLab-Generation, here referred to as EMLab (1&2), is 
used to simulate electricity producers’ behaviour in electricity markets 
and the domestic/cross-border effects of their investment decisions on 
capacity deployment and electricity prices. Using an ABM, previous 
research [6] is extended by translating (parts of) empirical investment 
preferences into actual activity. 

3.1.1. Base model 
EMLab considers short- and long-term developments: in the short 

term, the bidding and selling, and in the long term, investments in power 
plants. Previous research applied an earlier version of the model (EMLab 
1) to study climate and energy policy, security of supply, and investment 
decisions [39]. The model represents the electricity sector, including 
power generating technologies, two interconnected electricity markets, 
energy producers, carbon policies, different fuels, and dynamic load 
profiles. 

With this paper, EMLab 2 was rewritten and optimised for compu
tational efficiency. The second version is similar to the first, except for a 
redesigned “engine”. A comprehensive description of the different 
components, roles, domains and classes of EMLab 1 is covered elsewhere 
[44,45]. Here, the focus lies on the changes and additions to the in
vestment behaviour and the implemented auction module [40]. The 
model2 is open-source software and written in Java and R. 

3.1.2. Investment algorithms 
The main agents in EMLab are energy producers. An investment 

decision algorithm defines a producer’s investment behaviour. If pro
ducers invest, other producers notice their investment activity and adapt 
their decisions. Investments occur either because of market signals or if a 
producer wins an auction (see Section 3.1.4). In the former case, pro
ducers act in the free market according to an investment decision al
gorithm. This algorithm evaluates and selects projects until the 
predicted future demand is met or producers run out of capital for loan 
down payments. The original algorithm in EMLab 1 (labelled NPV- 
algorithm) assumes that producers decide rationally, i.e. they first 
evaluate if capacity additions are reasonable. Second, the NPV- 
algorithm iterates through all technologies and markets, and pro
ducers select the one project with the highest net present value (NPV) 
per MW [44]. 

NPV is defined as: 

NPVg = CProfit,g − COM,g − Ig (1)  

with CProfit,g as gross profit, COM,g as fixed operation and maintenance 
costs and Ig as investment cost of a project g. Monetary values CProfit,g 

and COM,g are discounted according to: 

C
(1 + WACC)t (2)  

with C as a cash flow, WACC as the weighted average cost of capital and t 
as simulation year. 

In this paper, a new decision algorithm is developed and tested 
(labelled preference-algorithm). It goes beyond the single-factor evalu
ation of a positive NPV to a joint consideration of multiple investment 
characteristics. The preference-algorithm is based on utility theory 
[46,47] and assumes that actors strive to maximise their total utility. 
The total utility of a product, or investment, follows a conjoint consid
eration of attributes for which investors have varying preferences. 
Random utility theory considers that repeated choices are inconsistent 
[47], and so overall utility is: 

U =
∑m

i=1
(ui + e) (3)  

with ui as the part-worth utilities of m attributes and an error term e. 
Moreover, an assumed error of 5% adds a slight variation. 

The data originates from a previous conjoint analysis study that 
assessed the investment preferences of 93 heterogeneous investors [6]. 
This study identified part-worth utilities for four different investment 
characteristics: technology, country, (expected) return on equity (ROE), 
and the support mechanism. Our study differentiates between distinc
tive technology and ROE preferences, whereas policy and country 
preferences are constant3 (Table 1). Although the referenced study 
assessed a wide range of part-worth utilities, quantified by the standard 
deviation (SD), our paper only uses the mean values to represent the 
eight investors (of renewables). This simplification clarifies the analyses 
and results while also being in line with previous EMLab studies, which 
rely on relatively few energy producers. 

In principle, the technology and return attributes are representable 
in EMLab. However, the model uses the NPV instead of ROE as decision 
criteria. Hence, several intermediate steps are needed to map the 
simulated NPV values, which producers calculate in the algorithm, to 
the empirical part-worth utilities. The discounted ROE is defined as 

Table 1 
Attributes and attribute levels. Adopted from the conjoint analysis 
deriving the preference data used in this paper. Source: [6].  

Attribute Levels 

Technology PV, onshore and offshore wind 
Return on equity 5%, 6% and 7%  

2 Sourcecode is available at https://doi.org/10.5281/zenodo.5526127 

3 Auctions are considered, but they are not part of the preference-investment 
algorithm. Also, our study assumes that investors only invest in their own 
country. 
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Rg =
ROIg

rE
|ROIg =

NPVg

Ig⋅teL
(4)  

with ROIg as return on investment, rE as rate of equity and NPVg, Ig as 
shown in Equation (1). Dividing by the expected lifetime teL results in a 
yearly average return. In the preference-algorithm, producers select 
projects with the highest total utility. Still, a positive NPV is a precon
dition to avoid bankruptcy. 

3.1.3. Assigning part-worth utilities and mapping data to models 
An essential step in the investment algorithm is the assignment of the 

empirically assessed part-worth utilities to simulated values4. This 
assignment is straight-forward for the technology attribute because it is 
already present in the original algorithm of EMLab, but for the ROE 
attribute, it is more complex. In principle, simulated returns could be 
assigned to the corresponding levels to get the part-worth utilities. 
However, the original part-worth utilities are only valid for a narrow 

return range of 5–7%. While these are reasonable for most power plants 
in Germany and the Netherlands in 2017 (Table 2), simulated values can 
lie far beyond this range because of two reasons. First, models do not 
accurately replicate the actual socio-economic and technical context. 
Second, small markets offer less balancing capacity, so investors may 
expect more lost load events in small countries (i.e., hours with very 
high electricity prices). 

In summary, the literature only provides part-worth utilities for 

realistic returns. However, if simulated return expectations differ 
strongly from the realistic values, the part-worth utility assignment 
becomes problematic. Extreme returns may even dominate in the total 
utility5 and become the only decisive factor. To better integrate the 
conjoint consideration, a mapping function is developed in this paper. 
Namely, the model is aligned with the data context (Table 2) by limiting 
and rescaling the simulated ROE values. The linear mapping function 
comprises a slope and an intercept for each market and technology. The 
remapped ROE Rre is defined as 

Rre =
Rsim,10− 90%

Robs
+Rsim⋅

Rsim,90% − Rsim,10%

Robs,max − Robs,min
(5)  

with Rsim as the simulated ROE; for the intercept, Rsim, 10-90% and Robs as 
mean values of simulated and observed ROEs; and for the slope, Rsim, x% 

as xth-percentiles of the simulated ROEs andRobs, max/min as the range of 
actually observed ROEs (see Table 2). Values between the 10% and 90% 

Table 2 
Observed returns on equity (±SDs) for renewables in 2017. Sources: onshore 
wind and PV in DE: [17]; other figures estimated from capital costs: [48].   

Germany Netherlands 

Onshore wind 6 ± 2% 7 ± 2% 
Offshore wind 8 ± 2% 11 ± 2% 
PV 5 ± 2% 7 ± 2%  

Table 3 
Design elements of real and simulated policies. Real policies encompass the main German and Dutch renewables policies from 2021. The simulated policy is an 
assumption. Sources: [40]; for real policy: [50] and res-legal.eu.  

Design-element Description Real German policy (EEG 2017) Real Dutch policy (SDE+) Modelled policy 

Warranty Support renewables by warranting either a price or a 
quantity. 

Quantity for PV & wind if 
project > 750 kW. 

Quantity for offshore wind. 
Price (premium) for wind and 
PV. 

Quantity to follow 
NECP targets pathways. 

Pricing rule Pay-as-bid awards individual bids to winners. Uniform 
awards the highest winning bid to all winners. 

Pay-as-bid and Uniform (from 
2017). 

Pay-as-bid. Uniform (the only 
option in the policy 
module). 

Contract with respect to 
the electricity price 

The electricity price is accounted for ex-ante (before 
electricity prices are known) or ex-post (electricity 
price is known). 

Tender: ex-post (sliding 
premium as the difference to 
yearly prices). 

Premium: ex-post. 
Tender: ex-ante (considered in 
basic energy price). 

Ex-post to lower risks 
for investors. 

Technology specificity Differentiation of support for technologies. Specific tenders. Specific tender and premiums. Specific tender. 
Duration Duration from the start until the end of payments. 20 years. 15 years. 17 years (average). 
Pre-qualification Mechanisms to inhibit strategic biddings, like the need 

for permits or upfront payment. 
Several (see sources in caption). Several (see sources in 

caption). 
None.  

Fig. 1. Relative targets for renewable capacity. This study determines quantities for auctions by targets. Due to model input needs, relative targets are used and 
interpolated from electricity consumption targets and own assumption (for 2050). “Other” denotes other renewables. Regression causes minor deviations. Sources: 
NECP DE1/2 (p. 154/48) [51]; NECP NL (p. 30) [24]; NREAP [53]. 

4 The “own country” and “no policy” levels are assigned to all renewables- 
investors. 

5 E.g. if simulated ROEs are 1–4%, all projects would receive the same part- 
wort utility of the 5% level; the lowest observed value. 
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percentiles are considered for the simulated values to give less weight to 
outliers6. It is also considered that utility decreases with increasing gains 
[49] by limiting the function, i.e. high values are all the same. 

3.1.4. Policy module implementations 
To investigate policy phase-outs, a policy module from a previous 

EMLab study is adopted [40]. That study has simulated policies as a 
combination of design elements which allow to represent and simulate 
auctions like those in Germany and the Netherlands. Here, three 
technology-specific tenders per country are simulated, granting a yearly 
payment to cover producers’ levelized costs of energy (Table 3). The 
modelled policy is simplified and a compromise between the real 
German and Dutch schemes. There are several differences between the 
modelled and actual schemes, including the pricing rules and pre- 
qualification criteria. First, the model applies uniform pricing to 
award most producers higher remunerations than pay-as-bid. Second, it 
omits pre-qualifications to allow more investors to take part (which may 
lower bids). Finally, all simulated support payments last for 17 years. 
Moreover, the model is adjusted to allow auctions to end at any given 
time (nevertheless, producers will continue to receive payments if they 
have a running support contract). 

The technology-specific quantity targets of auctions are based on 
“renewable energies’ share of gross electricity consumption” in the 
NECPs of Germany [51] and the Netherlands [24]. These targets and 
their policy implementations are valid for 2021–2030. The relative 
targets for all simulation years are interpolated using a general line
arised model. The interpolation resulted in relative target pathways for 
2015–2050, in which renewables approach a share of 95–99% in 2050 
(Fig. 1). To show that results are reasonable, they are compared to 
reference scenarios from the literature [52] (see next section). 

3.2. Assumptions and data 

This section explains assumptions specific to this study. Model and 
data assumptions of the base model are covered elsewhere [44]. 

3.2.1. Model 
EMLab simulates yearly changes in the electricity system, beginning 

in 2015. While this is before the papers’ focus period, it leads to more 
balanced results as a lot of dismantling occurs early (several of the 
conventional and renewable power plants in the input data have 
exceeded our lifetime assumptions). Per scenario, 30 iterations are 
simulated. More iterations do not significantly affect capacity and price 
changes (differences are < 5% for more iterations). Maximum invest
ment limitations are applied to lignite, coal, nuclear and hydro to 
replicate bans on new investments and exhausted technology potentials. 
The deployment of the other technologies is not limited (see discussion 
in Section 5.3). 

3.2.2. Countries and demand 
The simulations comprise two power price areas with different de

mand developments, initial capacities, and auction targets. The focus 
lies on the interaction between the German and Dutch markets because 
they are well interconnected. This focus allows us to study the conse
quences of policy interactions between countries on power mixes and 
prices, in particular, between a large and small market. EMLab aggre
gates the load duration curve from 8760 h to 20 segments for compu
tational efficiency. The demand is based on hourly load data from 2015 
[54]. As future demand is uncertain, randomly varying demand growth 
rates are assumed in each iteration (see Appendix A). 

3.2.3. Producers and power plant list 
Two types of energy producers are implemented (see Table 4). 

Incumbent-investors invest in conventional technologies, while renew
ables-investors only invest in renewables. Incumbent-investors decide 
according to the NPV-algorithm and renewables-investors according to 
the preference-algorithm. However, if auctions are available, renew
ables-investors have two investment options: first, renewables in
vestments resulting from successful bidding in auctions, and second, 
activity in the free market (using the preference-algorithm). These op
tions are important because it allows investors to shift to the free market 
and invest in more capacity than what governments put out to tender. 

Preferences for renewables-investors are mainly based on empirical 
data from Germany. Preferences for Dutch investors are not available. 
However, investors’ actual residence leads to less variation in prefer
ences than the typical investment range of projects [6]. Therefore, it is 
differentiated between the investor types small, medium, large, and very 
large instead of the domicile. 

The initial capital of producers determines how much activity is 
possible. Although the simulated capital is an informed estimate based 
on the projected capital requirements of the energy transition [55], the 
precise figure does not influence results much (a 25% variation is of little 
effect, see Appendix). Moreover, it is assumed that German renewables- 
investors have more initial capital than the Dutch because Germany is 
projected to have a 4–5 times higher demand in 2050. Also, the capital of 
incumbent-investors is lower than that of renewables-investors to 
discourage a significant expansion of fossil capacity. Moreover, risks are 
considered through a 10% discount rate for all investors. 

3.2.4. Technology assumptions and flexibility 
The simulated power system comprises conventional and renewable 

electricity generating technologies (see Appendix A for assumptions like 
lifetimes, capacities, and fuel price trends). The initial power plant 
portfolio is based on national capacity figures from 2015 from ENTSO-E. 
Because of the large number of producers, data is aggregated to limit the 
calculation time and simplify data analysis. First, the total capacity is 
randomly distributed to the 14 energy producers (renewables-investors 
only invest in renewables), and second, power plants are aggregated to 
large-scale plants. Also, all types of producers dismantle power plants 
after the assumed lifetimes. 

Load factors for conventional power plants are adopted from as
sumptions in the base model [39] and dynamic capacity factors derived 
for renewables from hourly simulations [56]. Past (up to 2019) and 
projected installation cost stem from IRENA (Fig. 2). 

Table 4 
Energy producers/investors in the simulations. Information includes their count 
(N), country and initial capital.  

Energy producer Country N Initial capital 

Renewables-investors Germany 4 €24 billion 
Renewables-investors Netherlands 4 €6 billion 
Incumbent-investors Germany 3 €3 billion 
Incumbent-investors Netherlands 3 €3 billion  

Fig. 2. Historical and projected installation costs of renewables. Historical 
costs up to 2019 are based on average costs for Germany. Projections from 2020 
to 2050 (starting from the vertical line) are based on expected global averages 
for 2030 and 2050. Sources: [9,57,58]. 

6 We recode heavy outliers that skew the final mapping function. 
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Due to increased intermittent generation, flexibility is essential, e.g., 
through flexible demand/supply, storage, and interconnectors. 
Although European countries lack clear and explicit plans to increase 
flexibility [59], gas-powered generation will likely remain relevant in 
the short term [51]. Hence, gas7 turbines (CCGT/OCGT) are considered. 
Moreover, additional flexibility is provided through interconnectors 
with a capacity of 4.5 GW for the entire duration of the simulation [60]. 

EU member states may enact policies to phase out fossil-fuel- 

powered generation and accelerate emission reductions. Such policies 
are partly considered by banning new coal and lignite capacity8. Power 
plants are also subject to the EU Emission Trading Scheme (ETS). 
Therefore, a simplified carbon price system is simulated. Carbon prices 
start at €7 in 2015 and increase by €1.5 per year. As future prices are 
unknown, the sensitivity of this parameter is tested. 

3.3. Scenarios and reporting 

The main results compare an auction scenario to different policy 
phase-out scenarios (Table 5). The baseline scenario is the auction sce
nario. In this, Germany and the Netherlands continuously support re
newables during the entire simulation. Both countries follow their target 
trajectories (Fig. 1). Investors are incumbent-investors and renewables- 
investors. Investing in the free market is still possible. Producers make 
free-market investments if they expect a high profit, even without sup
port, and if foreseeable investments do not cover future demand. 

In the phase-out scenarios, countries phase out auctions for renew
ables in 2025. This follows an unspecified political decision and is not a 
reaction to a model development (e.g., a cost threshold). To simulate 
situations without coordination between countries and investigate cross- 
border effects, one set of scenarios solely phases out support in Germany 
(scenarios 5–8), and another one solely in the Netherlands (scenarios 

Table 5 
Scenarios and parameters. Support ends in every scenario in 2025 except in 
scenario 0 (support continues).  

Nr Scenario- 
name 

Country where support 
ends 

Technology for which support 
ends 

0 Auction N/A N/A 
1 Both all tech. Both countries All technologies 
2 Both onshore Both countries Onshore 
3 Both offshore Both countries Offshore 
4 Both PV Both countries PV 
5 DE all tech. Only Germany All technologies 
6 DE onshore Only Germany Onshore 
7 DE offshore Only Germany Offshore 
8 DE PV Only Germany PV 
9 NL all tech. Only the Netherlands All technologies 
10 NL onshore Only the Netherlands Onshore 
11 NL offshore Only the Netherlands Offshore 
12 NL PV Only the Netherlands PV  

Fig. 3. Capacity developments in the auction scenario. Boxplots depict medians and SDs over 5-year intervals and 30 model iterations. Small dots denote outliers. 
Reference scenarios are used for validation reasons. Depicted technologies encompass 90% of simulated capacity. Sources: ENTSO-E [52]; NECP targets: p.50 [51], 
p.75 [24]. 

Fig. 4. Origin of renewable capacity in the auction scenario. Pref. = with preference-algorithm. Areas depict mean averages of total capacities over 30 
model iterations. 

7 Here, natural gas. Other carriers like biogas play a minor role for electricity 
generation. 

8 Also, new capacity from nuclear- and hydropower is restricted for political 
reasons (decisions in Germany and lack of plans in the Netherlands) and 
technical limits (exhausted hydropower potentials), respectively. Sources: 
[51,24]. 
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9–12). 
In comparing the auction to the phase-out scenarios, the two values 

are divided and reported as percentages (relative to the auction sce

nario). Standard deviations quantify the variation between model iter
ations and years and are calculated based on the SDs of the individual 

averages as SDdiff =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

SD2
1 + SD2

2

√

. If SDs are higher than the average 
percentages, the effect is ambiguous, and interpreted as an effect of low 
significance. 

4. Results 

4.1. Continued auction schemes for renewables 

In the auction scenario outcome, renewables continuously increase 
in both countries (Fig. 3). Some conventional technologies like gas 
expand, but others have either reached political and technical limits 
(nuclear and hydro) or are banned from further expansion (coal and 
lignite). While all incumbent-investors are, by definition, active in the 
free market, most renewables-investors only participate in auctions 
(Fig. 4). Nevertheless, some expansion is driven by the free market, e.g., 
by Dutch renewables-investors in later years. 

Average electricity prices are €53–58 per MWh in both countries 
(Fig. 5). There is some variation between iterations that increases over 
time. Nonetheless, the two countries’ price developments are similar 
(indicated in Fig. 5 by a high correlation of prices). These prices are 
realistic and in line with official projections [61]. 

To judge whether NECP and decarbonisation targets are met 
following a phase-out of support–a research question of this paper–the 
auction scenario should represent a realistic and expectable future 
pathway. This is the case because the auction scenario tracks targets well 
and is similar to other projections, as explained in the following passage. 
First, auction-based investments dominate, so the total deployment 
closely follows the quantity targets of auctions and, consequentially, the 
target pathways (see Fig. 1). Second, the simulated deployments mostly 

Fig. 5. Average power price developments in the auction scenario. Boxplots 
depict the median and the variation in 5-year intervals over 30 model itera
tions. “Cor.” denotes the (Pearson’s r) correlation coefficient of the countries’ 
prices across all iterations. 

Fig. 6. Capacity and price changes in the phase-out scenarios. Figures show percentage changes in (a) renewables capacity and (b) average electricity prices 
following the phase-out of auctions in 2025. Percentages (±SD) are mean averages over 30 model iterations and depict the differences between the auction scenario 
and the 12 phase-out scenarios. Darker colours signify stronger effects, and greyed-out numbers are of low significance. 
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match the absolute NECP targets (square points in Fig. 3). Third, the 
simulated pathways for PV and offshore wind are in line with ambitious 
decarbonisation pathways, namely the 2040 GCA scenario in Fig. 3 [52]. 
Because of these reasons, the auction scenario simulations are deemed 
suitable for comparisons with the phase-out scenarios (see next section). 

4.2. Phasing out support for renewables 

Compared to the auction scenario, the deployment of renewables is 

slower in most phase-out scenarios, and hence both countries fail their 
renewables targets (Fig. 6a, showing differences in renewable9 capacity 
between the auction and phase-out scenarios). The most substantial ef
fects are observed if all support ends in 2025 (Scenario 1): resulting in as 
much as 61% and 34% less new renewable capacity in Germany10 and 

Fig. 7. Origin of renewable capacity in scenarios 1 & 5. Pref. = with preference-algorithm. Areas depict averages over 30 model iterations.  

Fig. 8. Capacity developments of different technologies. Percentage changes are mean averages over 30 model iterations and depict the differences between the 
auction scenario and the 4 phase-out scenarios. The vertical line marks the phase-out of auctions in both countries in 2025. Shaded areas depict 95%-CIs. 

9 Results for conventional technologies are reported in Appendix B.  
10 Effects are almost the same in scenarios 1–4 and 5–8, which is expectable: 

the two groups exhibit the same policy changes, and cross-border effects from 
smaller countries usually remain small; minor differences are due to variations 
between iterations. 
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the Netherlands, respectively. Furthermore, average electricity prices 
increase in the long term by up to 52% if countries expose renewables to 
the market (Fig. 6b); conversely, expanding renewables depresses pri
ces. Due to cross-border effects, such price changes occur in both 
countries, and even if only one country ends its support. 

While capacity changes mainly occur in the country that phases out 
support, scenario 5 is a notable exception: if solely Germany ends sup
port for all technologies, cross-border effects cause an increase in Dutch 

prices and new renewable capacity in the Netherlands declines by 
7–10%. This seems counterintuitive, as increasing prices should lead to 
more investment activity. The observed decline can be explained by a 
shift from auctions to the free market, and in the Netherlands, the 
decline in auction-based investment outweighs the increase in the free 
market (compare Fig. 4 to Fig. 7). The underlying reason is the (simu
lated) government’s expectation: because of more (expected) free mar
ket activity, the quantity targets of auctions are lowered. However, as 
future developments are uncertain, the required quantity is under
estimated, triggering a departure from the target pathway (see also 
Section 3.1.4). 

Cross-border effects also influence the deployment of renewables if 
both countries phase out support. Prices are 16–19% higher if Germany 
and the Netherlands end support for PV, compared to a 1–3% (non- 
significant) change if only the Netherlands discontinues support 
(Fig. 6b, Scenario 4 vs 12). These higher prices then incentivise 7–9% 
more investments in the Dutch free market (at least until 2040). 

Deployment changes occur for all technologies but to varying de
grees. For instance, ending support for German offshore wind projects 
leads to only a 20% decline in new capacity, whereas ending support for 
Dutch onshore wind and PV projects does not substantially impact 
growth between 2036 and 2045 (Fig. 6a, Scenarios 2–4). Specifically, 
the Dutch development suggests a high maturity of onshore wind and 
PV. Further, these technologies can temporarily compensate for reduced 
Dutch offshore capacity (Fig. 8, Scenarios 1 & 3), while in the other 
scenarios, supported technologies just continue along their auction 
trajectories. This compensation is possible due to increased free market 
activity in the Netherlands, allowing for more technology shifts (Fig. 7, 
Scenario 1). 

Fig. 9. Capacity and price changes using the alternative NPV-algorithm. Figures show percentage changes in (a) renewables capacity and (b) average electricity 
prices following the phase-out of auctions in 2025. Percentages (±SD) are mean averages over 30 model iterations and depict the differences between the auction 
scenario and the 12 phase-out scenarios. Darker colours signify stronger effects, and greyed-out numbers are of low significance. 

Fig. 10. Impact of preferences on technology mixes. The figure depicts the 
capacity development in Germany and in scenario 1 without (top row) and with 
preferences (bottom row). Columns are different types of renewables-investors. 
Colours are different technologies. Areas are mean averages over 30 
model iterations. 

M. Melliger and E. Chappin                                                                                                                                                                                                                  



Applied Energy 305 (2022) 117959

10

4.3. Impact of the investment algorithm 

The main results in the previous section were simulated using the 
preference-algorithm. In this section, the development of renewable 
capacity (Fig. 9a) and average electricity prices (Fig. 9b) using the 
original NPV-algorithm is shown. Like in the main results, most targets 
are missed without support11, but here, the deployment changes are 
smaller. This is particularly the case in Germany, whereas results for the 
Netherlands are very similar with both algorithms unless cross-border 
effects play a more decisive role (e.g., Scenarios 4 and 5). Smaller 
deployment changes in Germany also cause fewer domestic/cross- 
border price effects. 

The differences found between the algorithms are rooted in the 
preferences used and in the remapping function of the preference- 
algorithm. First, technology preferences affect the evaluation of pro
jects and change the technology mix, e.g., onshore versus offshore wind 

projects of medium investors in Germany (Fig. 10). Preferences also 
change the ratio between PV and onshore wind projects, e.g., in small, 
large, and very large investors with higher preferences for PV. Second, 
the mapping of simulated to actual ROEs (see Section 3.1.3) limits high 
return values and leads to fewer (seemingly) profitable projects. In 
EMLab, this can occur in early simulation years when producers expect 
too many hours of lost load, and hence, high returns12. 

Finally, there are similarities between the algorithms: both represent 
the actual competitiveness of PV and onshore wind adequately. These 
are the most mature and deployed technologies in algorithms and re
ality. In summary, taking away support is risky regardless of the applied 
algorithm, but more so for Germany than for the Netherlands. 

4.4. Model sensitivity for risks, initial capital, and carbon prices 

Sensitivity analyses are performed for risks, carbon prices and the 
initial capital. These parameters are varied in both the auction and 
phase-out scenarios. The differences between these adjusted scenarios 
are then compared to the differences depicted throughout the previous 
two sections. Overall, the model is sensitive to risks. 

First, risk represented by the discount rate, here WACC, differs be
tween investors and changes over time, and thus, it is an important 
parameter to consider for the correct interpretation of our results. An 
adjusted WACC for renewables-investors leads to a parameter sensitivity 
in the Netherlands and Germany (Fig. 11). With higher risks, reaching 
targets becomes harder, i.e., less new renewable capacity is deployed in 
later years. 

Second, initial capital levels of single investors in a country have no 
considerable effects on investments (see Appendix C), even if the 
German renewables-investors’ initial capital is varied by ±25%. To 
avoid potential interaction effects, only the capital of a single investor 
type was adjusted. Finally, carbon prices do not considerably affect 
capacity, even if the baseline increase of €1.50 per year is varied by 
±10% and ±20% (see Appendix C). While higher carbon prices do 
translate into decreased deployment, these effects are less significant. 

5. Discussion and conclusion 

This paper first investigated how the phase-out of support for re
newables in Germany and the Netherlands affects capacity pathways 
and average electricity prices. In a second step, the role of cross-border 
effects following these phase-outs was explored. In conclusion, 
continued support is needed to reach national targets, and policy 
changes in a large country like Germany affect its own energy transition 
and the development in the neighbouring Netherlands, even if Dutch 
policymakers maintain support. Two findings from our simulations and 
their underlying mechanisms support this conclusion. 

First, phasing out support in Germany slows down its deployment of 
new renewables by 61%, while a phase-out in the Netherlands reduces 
new capacity by up to 34%. The reason is that most investors, acting 
according to their financial and technological preferences, will not find 
appealing investment opportunities in the free market if support ends, 

Fig. 11. Model sensitivity of WACCs. The figure shows percentage changes of renewable capacity in scenario 1 if WACCs are 5%, 8%, 12% or 15% and auctions are 
phased out in 2025. Percentages (±SD) are mean averages over 30 model iterations and depict the differences between the auction scenario and the adjusted 
scenarios. Darker colours signify stronger effects, and greyed-out numbers are of low significance. 

Table 6 
Technology assumptions. The bottom four renewable technologies are only 
available for renewables-investors. Column “viable investment” indicates if in
vestors can invest in new capacity of this type after 2015.  

Technology Lifetime Capacity of one 
plant in model 

Minimal 
running hours 

Viable 
investment 

available to incumbent-investors only  
Hard coal 40 y 750 MW 5000 h No 
Lignite 40 y 1000 MW 5000 h No 
Biomass 30 y 500 MW 0 h Yes 
Gas (CCGT) 30 y 775 MW 0 h Yes 
Gas (OCGT) 30 y 150 MW 0 h Yes 
Fuel oil 30 y 50 MW 0 h Yes 
Nuclear 40 y 1000 MW 5000 h No 
Hydro 50 y 250 MW 0 h No  

available to renewables-investors only   
PV 25 y 500 MW 0 h Yes 
Onshore 

wind 
25 y 600 MW 0 h Yes 

Offshore 
wind 

25 y 600 MW 0 h Yes  

Table 7 
Demand and fuel price start values and growth trends per year. Shown are the 
most relevant fuels. Converted to MWh from typical energy units used in the 
model.   

Start value Minimum 
growth 

Expected 
growth 

Maximum 
growth 

Demand DE N/A  0.99  1.00  1.05 
Demand NL N/A  0.98  1.02  1.03 
Fuel oil price 56.9 

€/MWh  
0.96  1.01  1.04 

Hard coal 
price 

7.4 
€/MWh  

0.97  1.00  1.04 

Natural gas 
price 

36.3 
€/MWh  

0.95  1.01  1.06  

11 However, the significance of NPV-algorithm results is low, specifically in 
Germany. 12 This can be an issue if balancing capacity from a small market is limited. 
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and thus, require continued support. Investments in onshore wind and 
photovoltaics in the Netherlands are exceptions: these technologies are 
deployed without support but to a lesser extent than under support. The 
primary driver13 of the decline in investment activity following the 
phase-out of support is each investor’s low-income expectation. This 
makes sense because renewables depress prices precisely when they 
produce most: this cannibalisation effect is in line with previous 
research findings [62,63,64]. 

Second, phasing out support in Germany affects average electricity 
prices in both countries. The observed price-increase leads to higher 
activity in the free markets. The advantage is that some investments in 
the Dutch market become more lucrative, notably photovoltaics. How
ever, the increased market activity is insufficient to compensate for the 
reduced amount of tendered capacity if governments underestimate 
future support needs. The primary requirement for these cross-border 
price effects is a sufficiently large power interconnection between the 
two countries. 

5.1. Policy contribution 

Our findings are relevant for Dutch and German policymakers spe
cifically, and more generally, for policymakers in similar countries with 
interconnected markets14. If these countries wish to reach their national 
decarbonisation targets, continued support beyond 2025 is essential for 
most technologies and in most years. In Germany and the Netherlands, 
this particularly applies to photovoltaics and onshore wind, which 
contribute over 80% to their targets. Although the generation cost de
velopments of these technologies suggest cost competitiveness with 
conventional power generation, it may be risky to focus the political 
discourse on this single factor. Other factors that affect income must be 
considered, notably cannibalisation and cross-border effects because 
both depress free market revenues when renewables expand. 
Conversely, a phase-out of support in Germany increases prices, and 
therefore, the market competitiveness of photovoltaics in the 
Netherlands. 

If policymakers from countries like Germany decide to phase out 
support, policymakers from the smaller country, here the Netherlands, 
must consider the side-effects on electricity prices, investment structure 
and deployment. We suggest that governments communicate policy 
changes well in advance to coordinate their reform plans and consider 
both the negative and positive spillover effects. As Germany and the 

Netherlands are interconnected with further states, interactions may 
even be more complex in reality. Therefore, we recommend developing 
a shared European vision for tackling the challenges of support policy 
changes and reducing costly deployment delays. 

5.2. Methodological contribution 

We have developed a new decision algorithm to better consider the 
heterogeneity of agents and match modelled returns to the empirical 
context. The addition of technology and return preferences, as well as 
the mapping of simulated to observed returns alters results and path
ways. Hence, financial and behavioural assumptions in investment al
gorithms strongly influence simulation results, confirming the 
importance of reporting and reflecting on such assumptions in energy 
policy analyses. Our work is particularly relevant for agent-based 
models because their system behaviours and side-effects emerge from 
heterogeneous and myopic decisions [39]. 

While our qualitative result—that it is not feasible to fully phase out 
support in 2025 and reach all targets—was also found with the original 
algorithm, the new algorithm delivers empirically grounded and quan
titatively refined results. Namely, it leads to a larger variation between 
the investors’ portfolios and causes stronger effects following a policy 
change. Although gathering accurate and appropriate preference and 
return data may be time-intensive, there are clear effects on results. 
Hence, these social parameters add additional value to similar studies. 

5.3. Limitations and outlook 

Our study comes with some limitations, leaving opportunities for 
future research. First, auctions are designed without barriers15. This 
assumption allows most (renewables-)investors to participate in all 
auctions and maximises auction subscription. Therefore, our results are 
valid in a context where auctions have a high subscription status. While 
this is fundamental for auctions to work well, not all auctions in Ger
many and the Netherlands have been fully subscribed in the past, e.g., 
onshore wind auctions in Germany due to administrative barriers. 

Second, the deployment of renewables is not explicitly limited with 
country-specific potentials. Nonetheless, technology potentials are 
indirectly considered through the quantity targets of auctions. These are 
based on actual national targets and have been shown to be physically 
possible by the underlying studies. As our deployment results hardly 
exceed these targets, this omission is very unlikely to affect our findings. 

Third, investments are only possible within an investor’s domicile. 

Fig. 12. Conventional capacity changes. The figure shows percentage changes in conventional capacity following the phase-out of auctions in 2025. Percentages 
(±SD) are mean averages over 30 model iterations and depict the differences between the auction scenario and the 12 phase-out scenarios. Darker colours signify 
stronger effects, and greyed-out numbers are of low significance. 

13 Costs and risks are other potential drivers. However, we keep them constant 
between auction and phase-out scenarios, thus they cannot be drivers of 
differences.  
14 Similar in respect to size and power system as discussed in Section 5.3. 

15 Like pre-qualification criteria, geographical constraints, or societal 
resistance. 
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However, if policies change in different countries at different times, 
investors might shift their activity to other countries, as shown by pre
vious research [6]. Future extensions of agent-based models like EMLab 
should thus add options for cross-border investments and incorporate 
investors’ country preferences. For this, multiple large and independent 
markets outside the home market are needed to provide sufficient in
vestment opportunities and avoid a bias towards the home market. 

Finally, future policy changes may affect our results. Germany and 
the Netherlands could introduce phase-out policies for conventional 
technologies like gas, coal, and oil power, and they may decide to sup
port deploying carbon-neutral flexibility and storage options. Such 
technologies will then affect general electricity prices through the merit 
order. However, our finding—phasing out support increases domestic/ 
cross-border prices—will likely remain valid because both gas- 
powered generation and carbon-neutral flexibility options are expen
sive and increase prices [65,66]. 

While this paper has focused on the case of investors, policy changes 
and the deployment of renewables in Germany and the Netherlands, our 
methodological contribution is valid for any country context if behav
iour and financial data are available. We also expect that our policy 

contribution is valid for other case studies, at least qualitatively16. First, 
the need to continue support in different countries has been recognised 
by other studies [5]. Second, fundamental elements of the electricity 
system are similar in many countries. Although technology and policy 
mixes vary, the effects of renewables on domestic/cross-border prices, 
the increasing technological maturity and the need for stringent targets 
are often similar. Examples of interconnected markets of differing size, 
similar to our case, are Spain & Portugal, France & Belgium or Brazil & 
Bolivia. With the increasing interconnection of electricity grids world
wide, good policy coordination is important for any country to expand 
renewables efficiently and effectively in their energy systems. 

While we suggest keeping most support to reach overarching targets, 
policymakers may rank cost-effectiveness considerations higher than the 
deployment speed, stronger integrate renewables in the market and 

Fig. 13. Origin of renewable capacity in different scenarios. Pref. = with preference-algorithm. Areas depict averages over 30 iterations.  

16 To derive country-specific results using our model, it is simple to adjust 
power plant portfolios, targets, demand and return values (for the decision 
algorithm). Moreover, investment behaviours in countries tend to resemble 
each other (see Section 3.2.3) unless socio-economic factors and risks differ 
strongly from the German context. 
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eventually abandon support completely. Therefore, we also encourage 
researchers and policymakers to explore how support can become more 
market-based or be abandoned without jeopardising cost-effectiveness 
or deployment targets. 
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Appendix A. Technology and trend assumptions 

Technology assumptions including lifetime, capacities, running 
hours and viability for investment are depicted in Table 6. Assumptions 
for demand and fuel price variations are depicted in Table 7. 

Appendix B. Additional results 

As shown in Fig. 12, differences in conventional technologies in the 
phase-out scenarios are negligible and of low significance (all numbers 
are greyed-out numbers due to low significance). Hence, these numbers 
are not reported in the text. Origins of capacity not presented in the main 
text are shown in Fig. 13. 

Appendix C. Results of sensitivity analyses 

Fig. 14 and Fig. 15 show sensitivity analyses for the initial capital and 
carbon prices, respectively. Both figures depict differences to the un
adjusted scenario results in Section 4.2 (these are not differences to the 
auction scenarios). In both figures, all numbers are greyed-out numbers 
due to low significance. 

Fig. 14. Sensitivity of renewables-investors’ initial capital if it is (a) high (€30 billion) or (b) low (€18 billion). Percentages (±SDs) depict the average differences of 
sensitivity scenarios to the main scenario results (with €24 billion initial capital). Darker colours signify stronger effects, and greyed-out numbers are of low 
significance. 

Fig. 15. Sensitivity of carbon prices. The figure shows percentage changes of renewable capacity in scenario 1 if carbon prices vary upwards and downwards by 10 or 
20 percentage points and auctions are phased out in 2025. Percentages (±SD) are mean averages over 30 model iterations and depict the differences between the 
auction scenario and the adjusted scenarios. Darker colours signify stronger effects, and greyed-out numbers are of low significance. 

M. Melliger and E. Chappin                                                                                                                                                                                                                  



Applied Energy 305 (2022) 117959

14

References 

[1] European Commission. 2050 long-term strategy. European Commission Website; 
2016. https://ec.europa.eu/clima/policies/strategies/2050_en [accessed March 
31, 2021]. 

[2] Zappa W, Junginger M, van den Broek M. Is a 100% renewable European power 
system feasible by 2050? Appl Energy 2019;233–234:1027–50. https://doi.org/ 
10.1016/j.apenergy.2018.08.109. 

[3] European Commission. EU energy in figures - statistical pocketbook 2019; 2019. 
doi: 10.2833/197947. 

[4] European Commission. Communication from the Commission - Guidelines on State 
aid for environmental protection and energy 2014-2020. vol. 2014/C 200/01. 
Brussels: Official Journal of the European Union; 2014. 

[5] Held A, Ragwitz M, del Rio P, Resch G, Klessmann C, Hassel A, et al. Do Almost 
Mature Renewable Energy Technologies Still Need Dedicated Support Towards 
2030? Eeep 2019;8(2):1–18. https://doi.org/10.5547/2160-5890.8.2.ahel. 

[6] Melliger M, Lilliestam J. Effects of coordinating support policy changes on 
renewable power investor choices in Europe. Energy Policy 2021;148:111993. 
https://doi.org/10.1016/j.enpol.2020.111993. 

[7] Keles D, Dehler-Holland J, Densing M, Panos E, Hack F. Cross-border effects in 
interconnected electricity markets - an analysis of the Swiss electricity prices. 
Energy Econ 2020;90:104802. https://doi.org/10.1016/j.eneco.2020.104802. 

[8] Haas R, Panzer C, Resch G, Ragwitz M, Reece G, Held A. A historical review of 
promotion strategies for electricity from renewable energy sources in EU countries. 
Renew Sustain Energy Rev 2011;15(2):1003–34. https://doi.org/10.1016/j. 
rser.2010.11.015. 

[9] IRENA. Renewable power generation costs in 2019 2020:1–144. 
[10] Polzin F, Egli F, Steffen B, Schmidt TS. How do policies mobilise private finance for 

renewable energy? - A systematic review with an investor perspective. Appl Energy 
2019;236:1249–68. https://doi.org/10.1016/j.apenergy.2018.11.098. 

[11] Frondel M, Ritter N, Schmidt CM, Vance C. Economic impacts from the promotion 
of renewable energy technologies: The German experience. Energy Policy 2010;38 
(8):4048–56. https://doi.org/10.1016/j.enpol.2010.03.029. 

[12] Jägemann C. Analyse der Ineffizienz technologie- und regionenspezifischer 
Fördermechanismen für erneuerbare Energien am Beispiel Deutschland. 
Z Energiewirtsch 2014;38:235–53. https://doi.org/10.1007/s12398-014-0139-7. 

[13] Magnus E, Tennbakk B. Time to phase out support to mature renewables? 
Approaches and options. THEMA Consulting Group; 2016. 

[14] Bassi S, Carvalho M, Doda B, Frankhauser S. Credible, effective and publicly 
acceptable policies to decarbonise the European Union. LSE and Grantham 
Research Institute; 2017. 
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[64] López Prol J, Steininger KW, Zilberman D. The cannibalisation effect of wind and 
solar in the California wholesale electricity market. Energy Econ 2020;85: 
104552–615. https://doi.org/10.1016/j.eneco.2019.104552. 

M. Melliger and E. Chappin                                                                                                                                                                                                                  

https://ec.europa.eu/clima/policies/strategies/2050_en
https://doi.org/10.1016/j.apenergy.2018.08.109
https://doi.org/10.1016/j.apenergy.2018.08.109
https://doi.org/10.5547/2160-5890.8.2.ahel
https://doi.org/10.1016/j.enpol.2020.111993
https://doi.org/10.1016/j.eneco.2020.104802
https://doi.org/10.1016/j.rser.2010.11.015
https://doi.org/10.1016/j.rser.2010.11.015
https://doi.org/10.1016/j.apenergy.2018.11.098
https://doi.org/10.1016/j.enpol.2010.03.029
https://doi.org/10.1007/s12398-014-0139-7
http://refhub.elsevier.com/S0306-2619(21)01266-6/h0065
http://refhub.elsevier.com/S0306-2619(21)01266-6/h0065
http://refhub.elsevier.com/S0306-2619(21)01266-6/h0070
http://refhub.elsevier.com/S0306-2619(21)01266-6/h0070
http://refhub.elsevier.com/S0306-2619(21)01266-6/h0070
https://doi.org/10.1007/s10640-017-0169-9
https://doi.org/10.1016/j.enpol.2017.04.005
https://doi.org/10.1038/s41560-018-0277-y
https://doi.org/10.1038/s41560-018-0277-y
https://doi.org/10.1038/s41893-019-0375-2
https://doi.org/10.1016/j.enpol.2019.04.016
https://doi.org/10.1016/j.enpol.2019.04.016
http://refhub.elsevier.com/S0306-2619(21)01266-6/h0100
http://refhub.elsevier.com/S0306-2619(21)01266-6/h0100
https://doi.org/10.1016/j.eneco.2008.01.002
https://doi.org/10.1016/j.eneco.2008.01.002
https://doi.org/10.1080/00036846.2019.1624919
https://doi.org/10.1080/00036846.2019.1624919
https://doi.org/10.1016/j.eneco.2019.05.016
https://doi.org/10.1016/j.joule.2020.07.018
https://doi.org/10.1016/j.enpol.2017.04.034
https://doi.org/10.1016/j.enpol.2017.04.034
https://doi.org/10.1016/j.enpol.2014.03.037
https://doi.org/10.1016/j.erss.2018.10.021
https://doi.org/10.18564/jasss.3629
https://doi.org/10.1016/j.enpol.2013.01.038
https://doi.org/10.1016/j.rser.2017.04.009
https://doi.org/10.1016/j.rser.2014.02.003
https://doi.org/10.1016/j.rser.2014.02.003
https://doi.org/10.1016/j.oneear.2019.12.002
https://doi.org/10.1016/j.oneear.2019.12.002
http://refhub.elsevier.com/S0306-2619(21)01266-6/h0190
http://refhub.elsevier.com/S0306-2619(21)01266-6/h0190
http://refhub.elsevier.com/S0306-2619(21)01266-6/h0190
http://refhub.elsevier.com/S0306-2619(21)01266-6/h0190
https://doi.org/10.1016/j.envsoft.2017.07.009
https://doi.org/10.1016/j.envsoft.2017.07.009
https://doi.org/10.1016/j.apenergy.2016.11.035
https://doi.org/10.1016/j.energy.2018.03.092
https://doi.org/10.1016/j.energy.2018.03.092
https://doi.org/10.1002/wcc.v11.410.1002/wcc.647
https://doi.org/10.1016/j.apenergy.2019.113795
http://refhub.elsevier.com/S0306-2619(21)01266-6/h0220
http://refhub.elsevier.com/S0306-2619(21)01266-6/h0220
http://refhub.elsevier.com/S0306-2619(21)01266-6/h0225
http://refhub.elsevier.com/S0306-2619(21)01266-6/h0225
https://doi.org/10.2307/1828835
https://doi.org/10.1007/BF00133443
https://doi.org/10.1016/j.eneco.2020.104783
http://refhub.elsevier.com/S0306-2619(21)01266-6/h0245
http://refhub.elsevier.com/S0306-2619(21)01266-6/h0245
https://doi.org/10.5281/zenodo.3371375
https://transparency.entsoe.eu/
https://doi.org/10.1016/j.enpol.2020.111863
https://doi.org/10.1016/j.energy.2016.08.060
https://doi.org/10.1016/j.energy.2016.08.060
https://doi.org/10.1080/15567249.2020.1811806
https://doi.org/10.1016/j.eneco.2013.02.004
https://doi.org/10.1016/j.enpol.2016.02.049
https://doi.org/10.1016/j.enpol.2016.02.049
https://doi.org/10.1016/j.eneco.2019.104552


Applied Energy 305 (2022) 117959

15

[65] Schmidt O, Hawkes A, Gambhir A, Staffell I. The future cost of electrical energy 
storage based on experience rates. Nat Energy 2017;2:964–8. https://doi.org/ 
10.1038/nenergy.2017.110. 

[66] Tong F, Yuan M, Lewis NS, Davis SJ, Caldeira K. Effects of Deep Reductions in 
Energy Storage Costs on Highly Reliable Wind and Solar Electricity Systems. 
Iscience 2020;23(9):101484. https://doi.org/10.1016/j.isci.2020.101484. 

[67] Brown T, Reichenberg L. Decreasing market value of variable renewables can be 
avoided by policy action. Energ Econ 2020;100:105354. https://doi.org/10.1016/ 
j.eneco.2021.105354. 

[68] Jansen M, Staffell I, Kitzing L, Quoilin S, Wiggelinkhuizen E, Bulder B, et al. 
Offshore wind competitiveness in mature markets without subsidy. Nat Energy 
2020;5(8):614–22. https://doi.org/10.1038/s41560-020-0661-2. 

M. Melliger and E. Chappin                                                                                                                                                                                                                  

https://doi.org/10.1038/nenergy.2017.110
https://doi.org/10.1038/nenergy.2017.110
https://doi.org/10.1016/j.isci.2020.101484
https://doi.org/10.1016/j.eneco.2021.105354
https://doi.org/10.1016/j.eneco.2021.105354
https://doi.org/10.1038/s41560-020-0661-2

	Phasing out support schemes for renewables in neighbouring countries: An agent-based model with investment preferences
	1 Introduction
	2 Background
	2.1 The debate about future support
	2.2 Cross-border effects
	2.3 Heterogeneity in agent-based modelling

	3 Method
	3.1 Model
	3.1.1 Base model
	3.1.2 Investment algorithms
	3.1.3 Assigning part-worth utilities and mapping data to models
	3.1.4 Policy module implementations

	3.2 Assumptions and data
	3.2.1 Model
	3.2.2 Countries and demand
	3.2.3 Producers and power plant list
	3.2.4 Technology assumptions and flexibility

	3.3 Scenarios and reporting

	4 Results
	4.1 Continued auction schemes for renewables
	4.2 Phasing out support for renewables
	4.3 Impact of the investment algorithm
	4.4 Model sensitivity for risks, initial capital, and carbon prices

	5 Discussion and conclusion
	5.1 Policy contribution
	5.2 Methodological contribution
	5.3 Limitations and outlook

	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Technology and trend assumptions
	Appendix B Additional results
	Appendix C Results of sensitivity analyses
	References


