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a b s t r a c t 

A novel machine learning algorithm is presented, serving as a data-driven turbulence modeling tool for 

Reynolds Averaged Navier-Stokes (RANS) simulations. This machine learning algorithm, called the Tensor 

Basis Random Forest (TBRF), is used to predict the Reynolds-stress anisotropy tensor, while guaranteeing 

Galilean invariance by making use of a tensor basis. By modifying a random forest algorithm to accept 

such a tensor basis, a robust, easy to implement, and easy to train algorithm is created. The algorithm 

is trained on several flow cases using DNS/LES data, and used to predict the Reynolds stress anisotropy 

tensor for new, unseen flows. The resulting predictions of turbulence anisotropy are used as a turbulence 

model within a custom RANS solver. Stabilization of this solver is necessary, and is achieved by a contin- 

uation method and a modified k -equation. Results are compared to the neural network approach of Ling 

et al. [29]. Results show that the TBRF algorithm is able to accurately predict the anisotropy tensor for 

various flow cases, with realizable predictions close to the DNS/LES reference data. Corresponding mean 

flows for a square duct flow case and a backward facing step flow case show good agreement with DNS 

and experimental data-sets. Overall, these results are seen as a next step towards improved data-driven 

modelling of turbulence. This creates an opportunity to generate custom turbulence closures for specific 

classes of flows, limited only by the availability of LES/DNS data. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The last few years have seen the introduction of supervised

achine learning (ML) algorithms as tools to exploit data for the

urpose of modeling turbulence. RANS models are currently, and

re expected to remain the norm for simulating turbulent flows in

ost industrial applications [46] , because of their computational

ractability, but suffer from poor accuracy and predictive power

n a variety of important flows [9] . While a variety of nonlin-

ar eddy-viscosity models (NLEVMs) and Reynolds-stress transport

RST) models have been developed using traditional techniques,

t is the simplest linear eddy viscosity models such as the k − ε
odel and k − ω models that remain by far the most widely used.

his has motivated some to advocate alternative modelling ap-

roaches that utilize available reference data more fully, and rely

ess on physical reasoning [10] . Supervised machine-learning meth-

ds developed in other fields, are – in the best case – able to distill
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arge data-sets into simple functional relationships. This offers the

ope of substantially improving current RANS models, by building

losures customized for a particular class of flows based on appro-

riate reference LES or DNS data-sets [29,51] . However there exist

ignificant obstacles to realizing these models in practice. 

Firstly, a high sensitivity of the mean-flow to the detailed char-

cter of the turbulence has been reported – even in the case of

hannel flows [49] . This places stringent accuracy requirements on

ny data-derived closure model. Secondly, there exists no unique

ap from local mean-flow quantities to the needed turbulence

tatistics, due to non-local and non-equilibrium physics. Thirdly,

ny closure model should incorporate basic physical constraints,

uch as Galilean invariance: readily achievable in analytically de-

ived models, but difficult when employing ML procedures which

enerate arbitrary functions. Fourthly, a ML model should pro-

uce smooth fields (they must be incorporated into a PDE solver),

et able to capture flows with rapid spatial variations, as in e.g.

oundary-layers. Finally, RANS solvers are notoriously unstable and

ifficult to drive to convergence, even with standard closure mod-

ls. Stabilization of a data-derived model is therefore necessary.

hese challenges are in addition to the standard ML challenges.
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Flow chart of the machine learning framework. 

Fig. 2. Barycentric map (transformation of Lumley triangle), for a turbulent square duct at Re = 3500 . (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 3. Turbulence anisotropy state in the square duct (upper-right quadrant), visualized with the RGB colormap ( Fig. 2 (a)). TBNN = Tensor-Basis Neural-Network; 

TBRF = Tensor-Basis Random-Forest. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Think for example training against large volumes of data with high

dimensionality [6] , and avoiding overfitting, which can be done by

using for example cross-validation methods, or methods specific to

the algorithm used, e.g. randomly dropping connections in neural

networks [48] , or simplifying decision trees by pruning them back

[14] . 

In this paper, a new approach is presented that addresses all

these challenges to some extent, resulting in a closure model that

significantly outperforms a baseline RANS model for a specified

class of flows. The model is closely related to nonlinear eddy-

viscosity models (NLEVMs), of e.g. [39] , in which the normal-

ized Reynolds-stress anisotropy tensor is predicted from the local

mean-flow. We integrate a tensor basis for the anisotropy into a

modified random-forest method, resulting in the Tensor Basis Ran-

dom Forest (TBRF), analogously to the Tensor Basis Neural Net-

work (TBNN) of Ling et al. [29] . Galilean invariance can therefore

be guaranteed; and in comparison to artificial neural networks,

our random forests are easier to implement, easier to train, have
ewer hyperparameters, and have natural techniques for avoiding

verfitting [16] . We introduce a method for stabilizing the RANS

olver, using a combination of a modified k -equation, and relax-

tion against a Boussinesq stress-tensor. With this solver we can

onverge mean-flows to a steady state, with our TBRF closure

odel. 

Many types of approach can be identified in the literature for

mprovements of RANS closure models with data, we only give a

election here. Broadly speaking there are parametric approaches,

hich calibrate or slightly modify existing models as in [7,12] (of-

en with statistical inference); and structural approaches, which

ttempt to relax fundamental modelling assumptions, especially

oussinesq as in [29,52] . In the latter case, uncertainty quantifi-

ation has been used to develop predictive models in the absence

f data, by incorporating stochastic terms intended to capture the

ffect of modelling assumptions, see [13,50,57] . 

With data available, machine-learning has been used to capture

otentially complex relationships between mean-flow and mod-
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Fig. 4. Flow cases used in this work; the mean flow from the reference DNS/LES solutions is shown here. The color represents the velocity magnitude, and streamlines are 

plotted. Clockwise rotating regions of separation are indicated by dashed lines. (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

Fig. 5. Curved backward-facing step, [ b ] i j components from LES, RANS, TBRF, and TBNN. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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Fig. 6. Stress type for the curved backward-facing step, visualized with the RGB colormap ( Fig. 2 (a)): (a) LES from Bentaleb et al. [3] ; (b) RANS k − ω, (c) TBRF, and (d) 

TBNN. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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h  
elling terms. These approaches can largely be divided into those

which solve inverse problems to identify local correction terms

needed to match data, as in [11,36,45] ; and those which apply

machine-learning to directly predict model terms based on local

mean-flow only, see [30] . The machine-learning methods used are

various, Ling et al. [29] use neural networks; Ling and Co-authors

[28,51] use random forests; and Weatheritt and Sandberg [53] uses

gene-expression programming to obtain a concise form of their

model. Despite the popularity of random-forests, existing authors

have not incorporated frame-invariance, or solver stabilization that

we introduce here. These developments are critical for the robust-

ness and practicality of the method. 

This paper is structured as follows. Section 2 will discuss the

methodology for the TBRF framework, which includes underlying

theory, the implementation of the algorithm itself, and the data-

sets used in the framework. Section 3 will discuss the results from

the framework, which include predictions for the anisotropy ten-

sor, flow fields obtained after propagating these predictions into

the flow field, and some proposals for future work with regards to

quantifying uncertainty of the model output. Section 4 will present

the conclusions. 

2. Methods 

When performing Reynolds-averaging of the incompressible

Navier-Stokes equations, the complete effect of the unresolved tur-

bulent fluctuations on the mean-flow is contained in a single term,

∇ · τ (where [ τ] i j := u ′ 
i 
u ′ 

j 
is the Reynolds-stress tensor), which

modifies the Navier-Stokes momentum equation [42] . To obtain a

turbulence closure in this setting, it is sufficient to specify τ in

terms of mean-flow quantities ū etc. The methodological goal of

this work is to use plentiful DNS/LES data to estimate a nonlinear

eddy-viscosity model (NLEVM) of the general form 

τ � h (∇ ̄u , . . . ) , 

where h (·) is a function of mean-flow quantities only. This prob-

lem can be cast as a standard supervised machine learning task

[35] . However we demand additionally that h is invariant to the

choice of Galilean coordinate frame, and that the training process

is computationally cheap and robust. The first is achieved with

an integrity basis ( Section 2.3 ), and the second by using a mod-

ified random forest ( Section 2.5 ). The model for τ thus obtained

is used within a RANS solver to predict the mean-flow; this pro-

cedure requires solver stabilization (described in Section 2.7 ). Fi-

nally, training and validation cases with DNS/LES data are listed in

Section 3.1 . 
.1. Outline of framework for data-driven turbulence modeling 

Our framework consists of a training phase and a prediction

hase, see Fig. 1 . In the training phase, high-fidelity DNS/LES

ata is collected for a number of test-cases. The data should

deally contain full first- and second-order single-point statistics

ighly resolved in the spatial domain, from which the normalized

nisotropy tensor, b , is computed, see Section 2.2 . These same test-

ases are simulated with RANS using the k − ω closure model, and

nput features are derived from the mean-flow solution at every

ode of the spatial mesh. The machine learning algorithm is then

rained to approximate the DNS ground-truth anisotropy tensor,

rom the RANS inputs over the full solution fields of all training-

ases simultaneously. 

As we use a greedy algorithm to train the decision-trees, the

raining cost for a data-set of size N is O(N log 
2 

N) , so there is

o practical restriction on the number of cases which can be used

n training (indeed a much more severe limitation has proven to

e the availability of high-quality DNS/LES data). However, we do

ot expect the map from the mean-flow to unresolved turbulence

tatistics to be unique, even for a very limited class of flows. So,

n order to capture this non-uniqueness and to prevent overfitting,

ultiple decision-trees are trained across random subsets of the

ata. 

In the prediction phase, for a previously unseen flow case, the

nisotropy tensor is estimated using the mean of the random for-

st predictions, with input from a baseline RANS mean-field. An

pdated mean-field is obtained by solving a modified RANS sys-

em with the momentum equation supplemented by the predicted

nisotropy. 

We want to stress that this is a corrective approach, with a sin-

le ML prediction providing an updated solution, similar to that

racticed in [28,55] . In other words, it is not a replacement for a

standard’ turbulence model, where the Reynolds stress is assumed

o be a specific function of the mean flow properties, which is then

teratively solved until convergence is achieved. Such an iterative

pproach would in theory also be conceivable, in which ML predic-

ions of b and modified RANS form a closed loop. In this case the

L should be trained on the DNS mean-field, not the RANS field.

owever such ambitious approaches are currently untested, it is

nclear under what conditions the coupled system will converge,

nd whether the converged solution will resemble ground-truth.

his is however an important topic for further research. 

Adding to this point, it should be stressed that the approach

ere is only tested for steady RANS flow cases. It is untested for



M.L.A. Kaandorp and R.P. Dwight / Computers and Fluids 202 (2020) 104497 5 

Fig. 7. Barycentric map data at three sections (see Fig. 6 a) for the curved backward-facing step. Comparing LES [3] , RANS k − ω simulation, TBRF, and TBNN. 

Fig. 8. Barycentric map data at five sections for the backward-facing step. Comparing LES [25] , RANS k − ω, TBRF, and TBNN. 
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nsteady flows such as present in low-pressure turbines, see e.g.

1] . 

The ground truth for b coming from high-quality DNS/LES data

ill still contain some error due to e.g. dicretization errors, er-

ors due to a finite averaging time, and possibly model errors. The

rrors in the ground truth are assumed to be small here (com-

ared to the model errors of the machine learning algorithms), and

herefore not taken in account. Supervised machine learning meth-

ds exist which theoretically could be able to capture uncertainties

n the ground truth (see e.g. Gaussian process regression [41] ) 

.2. Reynolds stress and realizability constraints 

First we briefly review some basic properties of the Reynolds

tresses, relevant for constructing a meaningful ML model. Firstly

can be intrinsically divided into isotropic and anisotropic (devia-

oric) parts: 

= 

2 

k I + a , (1) 

3 
here a is the Reynolds stress anisotropy tensor, k := 

1 
2 trace ( τ)

s the turbulent kinetic energy, and I is the identity. It is the

nisotropic part of the Reynolds stresses which is important:

nly this part is effective in transporting momentum, while the

sotropic stresses can be simply absorbed into a modified pressure

erm [40] . The non-dimensional Reynolds stress anisotropy tensor,

 , is defined as: 

 := 

τ

2 k 
− 1 

3 

I , (2) 

nd this is the quantity which we attempt to predict with ma-

hine learning. In the remainder of this paper “anisotropy tensor”

ill refer to b . To model b , eddy-viscosity closure models typically

ake the intrinsic assumption that b is function of local mean-

ow quantities only. Linear eddy-viscosity models such as k − ε
nd k − ω [23,54] , go on to make the specific, Boussinesq assump-

ion that b � 

1 
2 νt (∇ ̄u + ∇ ̄u 

T ) = νt ̂  S for some scalar eddy viscosity

t ( x ) , which remains to be specified. Both the intrinsic and spe-

ific assumptions introduce modelling error. We aim to estimate
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Fig. 9. Square duct, [ b ] i j components from DNS, RANS, TBRF, and TBNN. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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and reduce the error in the latter with LES databases and machine-

learning. 

The properties of τ and b lead to physical constraints on mod-

els and means of visualization. A matrix A is positive semi-definite

if (and only if) x T A x ≥ 0 , ∀ x ∈ R 

N . Since the outer product of any

vector u 

′ with itself ( u 

′ 
�u 

′ ) is positive semi-definite; and since the

Reynolds stress is an arithmetic average of such tensors, it is also

positive semi-definite. As trivial consequences, all eigenvalues of τ
are real and positive, and 

ταα ≥ 0 ∀ α ∈ { 1 , 2 , 3 } , det ( τ) ≥ 0 , τ 2 
αβ ≤ ταατββ ∀ α 
 = β. 

(3)

These properties of τ have implications for b . Let the eigenvalues

of τ be φi , and those of b be λi , then 

λi = 

φi 

2 k 
− 1 

3 

, (4)

and both the eigenvalues and diagonal components of b are in the

interval [ − 1 
3 , 

2 
3 ] . Furthermore using the Cauchy-Schwarz inequal-

ity in (3) the off-diagonal components of b are in [ − 1 , 1 ] . Since
2 2 
race ( b ) = 0 only two independent invariants of the anisotropy

ensor exist, e.g.: II := [ b ] i j [ b ] ji and III := [ b ] i j [ b ] in [ b ] jn . Therefore

n the II-III plane all realizable states of turbulence anisotropy

an be plotted, which are further restricted to a triangular do-

ain corresponding to the constraints on b just mentioned. This

eads to the well-known “Lumley triangle” of Lumley and Co-

uthors [31,32] which captures the anisotropic state of turbulence.

he lesser known barycentric map was introduced in [2] , and is a

ransformation of the Lumley triangle into barycentric coordinates,

nd will be used for the purposes of visualization and comparison

n this paper, see Fig. 2 . 

These triangles highlight three limiting states of turbulence

nisotropy: 1-component turbulence (restricted to a line, one

igenvalue of b is non-zero), 2-component turbulence (restricted

o a plane, two eigenvalues of b are non-zero), and 3-component

urbulence (isotropic turbulence, three eigenvalues are non-zero).

ig. 2 shows these, along with invariants for a square-duct flow

imulated with DNS from Pinelli et al. [38] , and a k − ω RANS

imulation. For any 2d linear eddy-viscosity RANS simulation, the

redicted anisotropy invariants will lie entirely along the line
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Fig. 10. In-plane mean velocity profiles at two sections of the square duct. Comparing: DNS, and the mean velocity fields obtained by propagating the DNS anistropy, and 

the TBRF-predicted anisotropy (labeled b ij,DNS and b ij,TBRF respectively). Also shown are two non-linear eddy-viscosity models. 
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ndicated as “plane strain”. This illustrates the inability of linear

ddy-viscosity models to adequately represent anisotropy. 

One further method of visualization we will use is the Red-

reen-Blue (RGB) map, in which each anisotropic state is assigned

 color and the flow domain is colored accordingly, in a kind

f generalized contour plot [50] . Fig. 2 (a) presents this colormap,

nd in Fig. 3 the colormap is applied to the square-duct with

NS and RANS data (the same data used for Fig. 2 (b-c)). The

NS data shows 1-component turbulence close to the wall, and

-component near the centreline of the duct, whereas the RANS

imulation only represents turbulence near the 3-component limit.

lso in this figure (c) and (d), machine-learning predictions of the

ame invarients are plotted, to be discussed later in Section 3 . 

.3. Invariance of tensor-valued functions 

The Navier-Stokes equations are Galilean invariant, i.e. un-

hanged by choice of inertial frame. It is a physical requirement

hat any model for the anisotropy tensor also be frame invari-

nt, and thereby satisfy the simple requirement that the functional

odel should not depend on the choice of coordinate system. In

act this proves to be a critical requirement for the success of our

achine-learning strategy, see Section 3 . Let Q ∈ R 

3 ×3 be an arbi-

rary real orthogonal transformation; then a scalar-valued function

f : R 

3 ×3 → R , with tensor argument S ∈ R 

3 ×3 is frame invariant if

nd only if: 

f ( S ) = f ( QSQ 

T ) , ∀ Q , S . (5)

imilarly a tensor-valued function h : R 

3 ×3 → R 

3 ×3 is frame invari-

nt if and only if (e.g. [47] ): 

 h ( S ) Q 

T = h ( QSQ 

T ) ∀ Q , S . (6)

ne means of finding a h satisfying (6) , is to start with a scalar

unction h : R → R , and specify that h is a natural generaliza-

ion of h . See Higham [17] for several standard definitions for h

iven h (e.g. in terms of power-series). Under all these defini-

ions, not only do we have h ( X S X 

−1 ) = X h ( S ) X 

−1 for any invert-

ble matrix X (implying frame invariance by setting X ≡ Q ); but

lso other properties such as h ( S T ) = h ( S ) T and λ = eigval { S } ⇒
 ( λ) = eigval { h ( S ) } . 
In addition we assume that h has a power-series representa-

ion 

 ( S ) = 

∞ ∑ 

i =0 

a (i ) ( λ) S i , λ = eigval { S } , a (i ) : R 

3 → R , 

or some scalar-valued functions a ( i ) whose arguments are the in-

ariants of S . We reduce this infinite sum to a finite sum with the

ollowing trick: by the Cayley–Hamilton theorem, every matrix sat-

sfies its own characteristic equation q ( S ) = 0 . However q is a poly-

omial of degree 3 (in 3d), whose coefficients are functions only of

he invariants of S . Hence using q we can recurrsively express pow-

rs S 3 and higher in terms of I , S and S 2 . As a result there must

xist an equivalent expression for h : 

 ( S ) = 

2 ∑ 

i =0 

˜ a (i ) ( λ) S i , 

or some different scalar-valued functions ˜ a (i ) : R 

3 → R . 

In our application we seek a function from multiple tensors to

he anisotropy tensor b , meaning a generalization of the above is

equired. The result remains – under the above assumptions – that

he most general h can be written in terms of a finite tensor-basis

nown as the integrity basis . 

In particular when deriving nonlinear eddy-viscosity models, it

s sometimes assumed that the Reynolds stresses are a function of

he local, normalized, mean rates of strain S and rotation R . I.e.

 := b ( S , R ) , where 

 = 

1 

2 

k 

ε

(∇ u + ∇ u 

T 
)
, R = 

1 

2 

k 

ε

(∇ u − ∇ u 

T 
)
. (7) 

n this case [39] there are 10 integrity basis tensors T (m ) , making

he most general expression for b : 

 = h ( S , R ) = 

10 ∑ 

m =1 

T (m ) ( S , R ) g (m ) (θ1 , . . . , θ5 ) , (8)
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Fig. 11. Comparison of the streamlines for the backward facing step as given by ( a ) the RANS k − ω simulation, ( b ) the propagated flow field using b ij ,TBRF , and ( c ) DNS, 

adapted from Le et al. [26] . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Skin-friction coefficient for the backward facing step. Experimental data from Jovic and Driver [18] ; DNS data from Le and Moin [25] . 
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where g ( m ) are scalar functions of the invariants θ i . The basis ten-

sors derived from S and R are [39] : 

T (1) = S T (6) = R 

2 S + S R 

2 − 2 
3 

I · trace ( S R 

2 ) 

T (2) = S R − R S T (7) = R S R 

2 − R 

2 S R 

T (3) = S 2 − 1 
3 

I · trace ( S 2 ) T (8) = S R S 2 − S 2 R S 

T (4) = R 

2 − 1 
3 

I · trace ( R 

2 ) T (9) = R 

2 S 2 + S 2 R 

2 − 2 
3 

I · trace ( S 2 R 

2 ) 

T (5) = R S 2 − S 2 R T (10) = R S 2 R 

2 − R 

2 S 2 R 

with invariants 

θ1 = trace ( S 2 ) θ2 = trace ( R 

2 ) θ3 = trace ( S 3 ) 

θ4 = trace ( R 

2 S ) θ5 = trace ( R 

2 S 2 ) . 

In [51] this approach is extended to derive a set of 47 invari-

ants based on ∇ ̄u , ∇k , and ∇p . This is the system we use in the

following; the full feature-set will be shown in Section 2.6 . 
.4. Tensor basis neural network (TBNN) 

In [28] an artificial neural network was used to represent h .

y careful choice of the network topology the idea of the ten-

or basis is encoded into the network. The network contains a 5-

ode input layer receiving the 5 scalar invariants derived from S

nd R . These inputs then go through a densely connected feed-

orward network with 10 hidden layers. Additionally, the network

ontains an extra input layer consisting of the 10 base tensors

 

(m ) . The output of the feed-forward network (representing the

 

( m ) functions) is merged with this extra input layer, reproducing

8) . Thereby the tensor-basis form of h and Galilean invariance is

chieved. 

In this work TBNN is used as a competing method for com-

arison. The implementation was obtained from the authors of

29] : it is written in python using the lasagne library for build-
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F  

s  
ng and training the neural network (source code available at

ithub.com/tbnn/tbnn). The same settings as there were used to

id a fair comparison. A leaky ReLU activation function was used.

he number of hidden layers and nodes-per-layer were optimized

n [29] , and those values were used here. The TBNN is trained

sing the Adam algorithm [21] , with the learning rate ( 2 . 5 × 10 −5 ),

he learning-rate decay, and the mini-batch size (10 0 0) again

ased on Ling et al. [29] . 

Neural networks in general are challenging to train, and this

as no exception. To avoid overfitting, the data was randomly

artitioned into training (80%) and validation (20%) sets. Early-

topping was used, which terminates training when the training

rror reduces, but the validation error starts consistently increas-

ng. Since the validation error as a function of the epoch has a

oisy behaviour, a moving average of five samples was taken to de-

ermine when early-stopping should be activated. Initial network

eights were randomly chosen, and the TBNN was trained five

imes from which the network was selected which performed best

n the validation set. 

.5. Tensor basis random forest (TBRF) 

Decision trees base their predictions on a series of if-then tests

n the input. Random forests consist of collections of decision trees

ith some randomized component differentiating trees. Multiple

ecision tree algorithms exist, of which the CART (Classification

nd Regression Tree) algorithm serves as the starting point for the

ensor Basis Decision Tree (TBDT), which is used in the Tensor Ba-

is Random Forest (TBRF). A brief overview of the TBRF algorithm

s presented here, for a more technical overview the reader is re-

erred to the appendix. 

In the training phase of the CART decision tree, the feature

pace is recursively split into two bins. In each bin a constant value

s used to approximate the training data. Given p features let the

raining data consist of X ∈ R 

p×N point locations in feature-space,

nd corresponding y ∈ R 

N scalar output values. Each split is aligned

ith an input feature, and therefore the location of the split is

ompletely specified by a splitting feature index j ∈ { 1 , . . . , p} ⊂ N ,

nd value s . The two bins in which the data is split are denoted

 L ⊂ R (left) and R R ⊂ R (right), and are given by 

 L ( j, s ) = { X | [ X ] j ≤ s } R R ( j, s ) = { X | [ X ] j > s } . (9)

For the TBDT, constant values are chosen for the tensor ba-

is coefficients g ( m ) (see (8) ) in each bin, which will be denoted

y g (m ) 
L 

and g (m ) 
R 

for R L and R R respectively. The values are cho-

en such that the mismatch with respect to the reference DNS/LES

nisotropy tensor b is minimized. The cost function can be defined

s: 

 = 

∑ 

x i ∈ R L ( j,s ) 

∥∥∥∥∥
10 ∑ 

m =1 

T (m ) 
i 

g (m ) 
L 

− b i 

∥∥∥∥∥
2 

F 

+ 

∑ 

x i ∈ R R ( j,s ) 

∥∥∥∥∥
10 ∑ 

m =1 

T (m ) 
i 

g (m ) 
R 

− b i 

∥∥∥∥∥
2 

F 

, 

(10) 

here the Frobenius norm is used to calculate the difference be-

ween the reference DNS/LES anisotropy tensor, and the tensor

esulting from the tensor basis. It can be shown by setting the

erivative of J with respect to g ( m ) in each bin to zero, the opti-

um value for the 10 tensor basis coefficients in each bin is found

sing 

 = 

( 

N ∑ 

i =1 

ˆ T 
T 

i 
ˆ T i 

) −1 ( 

N ∑ 

i =1 

ˆ T 
T 

i 
ˆ b i 

) 

. (11) 
ere ˆ T i and 

ˆ b i are matrices containing the flattened basis tensors

nd reference DNS/LES anisotropy tensors: 

ˆ 
 i = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

[ T (1) 
i 

] 11 [ T (2) 
i 

] 11 · · · [ T (10) 
i 

] 11 

[ T (1) 
i 

] 12 [ T (2) 
i 

] 12 · · · [ T (10) 
i 

] 12 

. . . 
. . . 

. . . 
. . . 

[ T (1) 
i 

] 33 [ T (2) 
i 

] 33 · · · [ T (10) 
i 

] 33 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, ˆ b i = 

⎡ 

⎢ ⎢ ⎣ 

[ b i ] 11 

[ b i ] 12 

. . . 
[ b i ] 33 

⎤ 

⎥ ⎥ ⎦ 

. 

(12) 

In other words, during the training of the TBDT, each split in

he tree is made by solving two least squares problems for g ( m ) ,

or each j , and each value s , and selecting the combination which

inimizes J . The outer minimization is solved by brute-force over

eatures j , and one-dimensional optimization is used over s . The

rent 1d-optimization algorithm is used, offering a good trade-off

etween speed and robustness (by falling back on the golden sec-

ion search in the worst case) [4] . When the number of samples

n a bin falls below a threshold, we switch to brute-force search

or s . This threshold was set to 150 samples to limit the training

ime of the decision trees, a sensitivity study showed no signifi-

ant influence of the threshold on the performance of the TBRF al-

orithm. The splitting of the TBDT branches is terminated at either

 specified maximum branching depth, or at a minimum number

f samples per bin. Due to the redundancy of the tensor-basis for

ny given sample i ∈ { 1 , . . . , N} , (11) can become ill-posed, espe-

ially towards the leaves of the tree, when only a few samples re-

ain in a bin. Therefore some L 2 -regularization is added to J with

oefficient � ∈ R 

+ , c.f. ridge regression, see the appendix for more

etails. 

In the tensor basis random forest, multiple tensor basis deci-

ion trees trained on a collection of bagged data sets are averaged.

agging implies data is repeatedly randomly drawn (with replace-

ent) from the full data-set. Bagging is expected to work well

hen combining a number of high-variance, low-bias estimators,

uch as the decision tree. By averaging many noisy, but unbiased

odels, the variance of the prediction is reduced [16] . The vari-

nce of the predictions will be reduced most effectively if the er-

ors in the component models are as far as possible uncorrelated.

his is encouraged by introducing some additional randomness in

he individual trees: at each split, not all features, but a randomly

elected subset of the available features is used for splitting. The

pecific parameters used in our computations will be stated in

ection 3 . 

Instead of taking the mean over all the tensor basis decision

rees, it proved to be more successful to take the median of the

rees in the random forest (as for example investigated in [43] ),

ince this removed sensitivity to outliers in the predictions, see

he appendix for a comparison. Since the random forest is a piece-

ise constant approximation of b , and derivatives of b are needed

n the N-S equation, the predictions from the TBRF are smoothed

patially with a Gaussian filter, before they are propagated through

he solver to obtain a flow field (see Section 2.7 ). The TBRF algo-

ithm has no explicit spatial correlation in the predictions since

hese are based on local features of the flow, so filtering the pre-

ictions will introduce some spatial correlation. The filter standard

eviation was set to 3 cell lengths, as this sufficiently smooths the

redictions while maintaining all important features of the pre-

icted tensor (see the appendix for more details). This filter width

s an ad hoc choice, and can possibly be adjusted more specifically

or numerical stability in future work by looking at e.g. required

ondition numbers for the solver (see e.g. [56] ). 

Several benefits can be identified in using the TBRF algorithm.

irst of all, the available data can be divided into a training data-

et and validation data-set in a natural manner. Since random sam-
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Table 1 

Features used for the machine learning algorithms, obtained from Wang et al. [51] and Wu et al. [55] . For features with an ∗

all cyclic permutations of labels of anti-symmetric tensors need to be taken in account. For FS1 and FS2 the trace of the tensor 

quantities is taken. Features marked with † are rotationally invariant but not Galilean invariant. 

Set Features Normalization Comment 

FS1 S 2 , S 3 , R 2 , R 2 S , R 2 S 2 , 

R 2 S R S 2 
– Invariant set based on S and R 

FS2 A k 
2 
, A k 

2 S , A k 
2 S 2 , 

A k 
2 S A k S 

2 
, R A k , R A k S , 

R A k S 
2 
, R 2 A k S 

∗
, R 2 A k S 

2 ∗
, 

R 2 S A k S 
2 ∗

– Added invariants when including ∇k 

FS3 1 
2 
(‖ R ‖ 2 − ‖ S ‖ 2 ) ‖ S ‖ 2 Ratio of excess rotation rate to strain rate 

k † 1 
2 ̄

u i ̄u i Turbulence intensity 

min ( 
√ 

k d 
50 ν , 2) – Wall-distance based Reynolds number 

ū k 
∂ p 
∂x k 

† 

√ 

∂ p 
∂x j 

∂ p 
∂x j 

ū i ̄u i Pressure gradient along streamline 

k 
ε

1 

‖ S ‖ Ratio of turbulent time scale to mean strain 

time scale √ 

∂ p 
∂x i 

∂ p 
∂x i 

1 
2 
ρ ∂ 

∂x k 
ū 2 

k 
Ratio of pressure normal stresses to shear 

stresses 

ū i 
∂k 
∂x i 

† | u ′ 
j 
u ′ 

k 
S jk | Ratio of convection to production of TKE 

‖ u ′ 
i 
u ′ 

j 
‖ k Ratio of total to normal Reynolds stresses ∣∣∣ū i ̄u j ∂ ̄u i ∂x j 

∣∣∣ † 

√ 

ū l ̄u l ̄u i 
∂ ̄u i 
∂x j 

ū k 
∂ ̄u k 
∂x j 

Non-orthogonality between velocity and its 

gradient 
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n  
ples are taken from the available data with replacement until the

original size of the data-set is reached, a number of samples will

not be present in the training data-set for each decision tree, called

out-of-bag (OoB) samples. These OoB samples can then be used to

give a validation error, or OoB error. During training of the trees,

this OoB error can be observed to determine when training can

be stopped. Using the OoB error is similar to performing N -fold

cross validation [16] . Using the OoB error allows us to optimize the

number of trees in the forest during training. While hyperparam-

eters of the TBRF were tuned (see Section 3 ), the algorithm is ro-

bust to the choice of hyperparameters. It will work out-of-the-box

without much tuning quite well, see the appendix for more details.

Compared to neural networks, the random forest algorithm is fur-

thermore easy to train, since one does not have to worry about se-

lecting the appropriate optimization algorithm which has its own

set of hyperparameters, and its convergence. 

The TBRF algorithm presented here was implemented in

python, for the source code see [20] . 

2.6. Choice of input features 

Under the modelling assumption that the Reynolds stress ten-

sor can be well approximated using only the mean stress and ro-

tation tensors, S and R , [39] , the 5 invariants of the tensor basis

(8) , namely θ = (θ1 , . . . , θ5 ) are sufficient to describe every possi-

ble tensor function. In the context of machine-learning, this choice

of input features was made in e.g. [29] . However, if we relax this

assumption, then it is reasonable to also use other quantities avail-

able in the mean-flow as inputs, provided they are appropriately

normalized and Galilean invariant. In particular, in the case of the

square duct (see Section 3.1 ) it was observed that due to the sym-

metry of the case there are only two distinct “basis functions” de-

fined by θ, and these are not sufficient to accurately describe the

DNS anisotropy tensor for this case. 

Therefore here we will use the full set of invariants derived

from S , R , and ∇k from Wang et al. [51] . In order to use the turbu-

lent kinetic energy gradient it is first normalized using 
√ 

k /ε, and

then transformed to an antisymmetric tensor: 

A k = −I × ∇k. (13)

Furthermore nine extra scalar features which are more physically

interpretable, such as the wall-distance based Reynolds number are

used, which were obtained from Wu et al. [55] (which were in turn
ased on those presented in [30] ). All features which are used are

resented in Table 1 , where feature set 1 (FS1) is based on S and

 only, feature set 2 (FS2) additionally A k , and feature set 3 (FS3)

re additionally the features from Wu et al. [55] . For the features

n FS3 an normalization factor is included, whereas the tensors in

S1 and FS2 are normalized using k and ε. Note that all features

n FS3 are rotationally invariant, but some (or their normalization

actors) are not Galilean invariant as they include terms depending

n the velocity of the flow – the distinction is marked with a † in

he table. 

.7. Propagation of the predicted anisotropy tensor 

The open source CFD toolbox OpenFOAM was used to calculate

ANS flow fields in this work. The k − ω turbulence closure model

as used, together with the second-order accurate SIMPLE (Semi-

mplicit Method for Pressure Linked Equation) scheme. 

Simply setting the prediction of the anisotropy tensor b ML in

he momentum equation adversely affects the numerical stability

f the solver. As already shown in [56] , treating the Reynolds stress

s an explicit source term in the RANS equations can lead to an ill-

onditioned model. Two main strategies are used here to improve

tability: (a) under-relaxing b ML against the Boussinesq b B := νt ̂S

ith a relaxation parameter γ ∈ [0, 1], and (b) simultaneously

olving a modified k -equation to obtain a turbulence kinetic en-

rgy corresponding to the modified anisotropy. 

In detail, the incompressible Reynolds-averaged Navier-Stokes

quations are 

∂ ̄u 

∂t 
+ ū · ∇ ̄u = ∇ ·

[
−p̄ + ν ˆ S − τ

]
(14)

here ν is the molecular viscosity. The prediction b ML is intro-

uced into the momentum equation, by modelling τ as 

� τML (γ ) := 

2 

3 

k I + 2 k [(1 − γ ) b B + γ b ML ] . (15)

The blending parameter γ starts at 0 and is gradually increased

uring the simulation, i.e. a continuation method, see e.g. [22] . A

inear ramp based on the iteration count n is used: 

n = γmax min 

{ 

1 , 
n 

n max 

} 

, 

here γ max ≥ 0.8 is achieved in all test-cases presented here, and

 max is the iteration count, after which γ is fixed. Sufficient itera-
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ions are performed after this point to achieve solver convergence.

 lower value for γ means that the linear eddy viscosity assump-

ion becomes more dominant, resulting in a more stable solution,

ut impairing the accuracy of the solved mean velocity as already

oted in [56] . Here, γ max was incremented in steps of 0.1 until

he solver became unstable, yielding a value of γmax = 0 . 8 . As this

hoice is ad hoc, further work related to this topic is necessary. 

Furthermore, the turbulent kinetic energy in (15) is obtained by

olving a version of the k − ω k -equation, in which the produc-

ion term is modified to be consistent with the predicted Reynolds

tress in the momentum equation. The standard production term

 = −τ : ∇ ̄u , (16)

s approximated in the k − ω model by replacing τ with its Boussi-

esq approximation [54] . Here we use the model τML from (15) in-

tead, including the blending with γ . 

With these modifications, the solver converges for b -tensors

riginating from DNS, TBNN and TBRF. 

. Results 

We compare predictions of the TBRF algorithm just described,

ith baseline RANS ( k − ω), DNS/LES references (withheld refer-

nce data), and the TBNN algorithm with the same feature sets

s TBRF. Data for training and predicting comes from five flow

ases which will be discussed briefly in Section 3.1 . Predictions of

he anisotropy tensor itself will be presented in Section 3.2 ; corre-

ponding mean-flow predictions are presented in Section 3.3 . 

.1. Flow cases 

Five flow cases are used in the framework to train and test the

achine learning algorithms. For all flow cases DNS data or highly

esolved LES data was available. The mean flows for the reference

NS/LES solutions are presented in Fig. 4 . The flow cases are: 

(a) Periodic hills (PH) : Five Reynolds numbers are available in

the DNS/LES data-set from Breuer et al. [5] , ranging from

Re = 700 to Re = 10595 based on the bulk velocity at the in-

let and the hill height. 

(b) Converging-diverging channel (CD) : The DNS data for

comes from Laval and Marquillie [24] at Re = 12600 based

on the channel half-height and the maximum velocity at the

inlet. 

(c) Curved backward-facing step (CBFS) : The Reynolds num-

ber available is Re = 13700 based on the step height and the

center-channel inlet velocity, with highly resolved LES data

from Bentaleb et al. [3] . 

(d) Backward-facing step (BFS) : Re = 5100 based on the step

height and free stream velocity. The corresponding DNS sim-

ulation can be found in [26] . 

(e) Square duct (SD) : Data-sets at multiple Reynolds numbers

are available from Pinelli et al. [38] , with a total of six-

teen ranging from Re = 1100 to Re = 3500 based on the duct

semi-height and the bulk velocity. 

The first four aforementioned cases feature flow separation and

ubsequent reattachment. Recirculation bubbles, non-parallel shear

ayers, and mean-flow curvature are all known to pose challenges

or RANS based turbulence models. The square duct flow case is

ymmetric; Fig. 4 (e) only presents the upper right quadrant of the

uct, where the flow in the duct moves out-of-plane. Prandtl’s sec-

ndary motion of the second kind is visible, driven by turbulence

nistropy. As such it is not captured at all by linear eddy-viscosity

odels, which makes them ideal for isolating effects of nonlinear

odelling [37] . For all cases mesh independence studies were per-

ormed for the RANS simulations, and meshes were chosen such
hat discretization error was a small fraction of the turbulence

odelling error. 

.2. Anisotropy tensor predictions 

In this section we examine the quality with which the Reynolds

nisotropy tensor is reproduced by the TBRF. We compare by ex-

mining (a) individual tensor components, and (b) eigenvalues in

he barycentric map. 

Four test-cases are presented in Table 2 , including details of

raining and prediction flows. In this table the names of the flow

ases have been abbreviated, and the number behind the abbrevi-

tion indicates the Reynolds number. The table also presents the

umber of samples used for training, N sample (randomly sampled

rom the total data-set), and the number of usable features present

n the training sets, N feature . From the available features the ones

ith low variance ( < 1 × 10 −4 ) were discarded, as these either did

ot contain any information at all, or were largely spurious. The

tarting feature sets (FS) used are those specified in Table 1 . For

ll cases the k − ω turbulence model was used for the RANS simu-

ations. Hyperparameters of the TBRF were tuned for cases C1, C2,

nd C4 using a validation set consisting of PH2800 and SD3200.

 total of 100 TBDT’s were used to make the predictions. From

he 17 available features 11 were randomly selected for calculating

ach optimal split in the TBDT. The leaf nodes were set to have a

inimum of 9 samples, and the regularization factor � was set to

 × 10 −12 . For case C3 the same setting were used, except that the

rees were fully grown (i.e. each leaf node consists of one sample),

nd all features were used to calculate the optimal split. 

First prediction for the curved backward facing step will be

resented (C1), which is relatively similar to the training cases

or which reliable data was available (periodic hills and the

onverging-diverging channel). Next, results for the backward fac-

ng step will be presented (C2), which features stronger separation

han to the training cases and will therefore feature more extrapo-

ation. Lastly, results for the square duct will be presented. A com-

arison will be made for the case using only features based on S 

nd R as was also done in [29] (C3), and a case where all available

eatures are used (C4). 

.2.1. Curved backward facing step 

For the curved backward facing step (case C1 in Table 2 ),

ig. 5 presents the four non-zero unique components of b , as given

y the LES data, the ( k − ω), and the TBRF and TBNN algorithms.

aking LES as a reference, RANS only gives acceptable predictions

or the [ b ] 12 component. By the Boussinesq assumption, results

ill only be acceptable where the turbulence anisotropy tensor is

ligned with the mean rate of strain tensor, which is empirically

ot a good assumption in the majority of the domain. In contrast,

oth machine learning algorithms give reasonable predictions of

he tensor field in all components, and predictions are relatively

mooth. In particular, features on top of the step the [ b ] 11 compo-

ent is captured qualitatively by the TBRF and TBNN algorithms, as

ell as the [ b ] 33 component after the step. 

More revealing is a plot of the stress types in the domain us-

ng the RGB map, Fig. 6 . The LES data shows 1-component turbu-

ence on top of the step, which is transported into the flow, be-

ond the location at which the shear layer separates. In [3] it is

oted that production of the streamwise fluctuation is strongly in-

reased at the shear-layer separation location, leading to additional

-component turbulence. As this shear layer gains distance from

he wall, the turbulence rapidly evolves towards the 3-component

tate due to the redistribution process. On the curved part of the

tep and the bottom wall, 2-component turbulence can be ob-

erved. In the remainder of the domain, 3-component turbulence
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Table 2 

Data-sets used for training and testing. PH = Periodic Hills; CD = Converging-Diverging channel; 

CBFS = Curved Backward Facing Step; BFS = Backward Facing Step; and SD = Square Duct. 

Case nr. Training Prediction N sample N feature Feature sets 

C1 PH5600, PH10595, CD12600 CBFS13700 21,000 17 FS1, FS2, FS3 

C2 PH5600, PH10595, CD12600 BFS5100 21,000 17 FS1, FS2, FS3 

C3 PH5600, PH10595, CD12600 SD3500 21,000 5 FS1 

C4 PH5600, PH10595, CD12600 SD3500 21,000 17 FS1, FS2, FS3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

RMSE of TBRF and TBNN [ b ] i j predic- 

tions, for the square duct flow case. 

Case TBRF TBNN 

C3 0.0995 0.0871 

C4 0.0521 0.0681 

Table 4 

Backward facing step, reattachment 

point locations. 

Model x reattach [x/h] 

RANS 5.45 

RANS+ b ij ,TBRF 6.32 

DNS [26] 6.28 

Experiment [18] 6.0 ± 0.15 

3

 

F  

F  

T  

c  

t  

b

 

o  

A  

s  

t  

t  

a  

c  

m  

t  

i  

t  

t  

a  

T  

g  

t  

t  

–  

p  

S  

i

3

 

p  

w  

a

dominates, in the interior of the channel, and in the center of the

recirculation region. 

The RANS simulation is only capable of predicting plane-strain

(c.f. Fig. 3 ), and predicts turbulence mainly in the 3-component re-

gion. The effect of the walls on the turbulence anisotropy is com-

pletely missed. In contrast, the TBRF algorithm accurately captures

the turbulent state as given by the LES data: 1-component turbu-

lence can be seen on top of the hill and at the separation loca-

tion, it accurately predicts the 2-component state on the curved

part of the walls and on the bottom wall after the step, and 3-

component turbulence can be observed in the recirculation region.

Some noise is visible however, most notably around x/h = 0 . 0 to

x/h = 1 . 0 away from the wall. The TBNN algorithm captures the

different types of turbulence accurately as well. Close to the wall

on top of the step it captures the 1-component turbulence a bit

less well than the TBRF algorithm, and some spurious patterns are

visible above the step and close to the lower wall around x/h = 6 . 0 .

To better quantify the accuracy of reconstruction, three sec-

tions through the flow domain are plotted in the barycentric map.

These sections are located at x/h = 2 , x/h = 3 , and x/h = 4 , which

which are at the front, middle, and aft part of the separated region.

The first section at x/h = 2 ranges from y/h = 0 . 5 to y/h = 1 . 5 , the

other two sections range from y/h = 0 . 0 to y/h = 1 . 5 . Results are

presented in Fig. 7 . As can be seen both machine learning algo-

rithms reproduce quite closely the LES reference data. They accu-

rately capture the 2-component turbulence close to the wall, and

move towards the 3-component corner when moving away from

the wall. Discrepancies can be seen when moving upwards past

to the wake to the channel center, where the LES data indicates a

move towards axisymmetric expansion, which is less strongly rep-

resented by the ML algorithms. 

3.2.2. Backward facing step 

We consider case C2 (c.f. Table 2 ). From Le and Moin [25] DNS

data is available for five different sections at specified x / h locations

for the Reynolds stresses and velocities ( h is the step-height). Loca-

tions on the barycentric map for these five sections are plotted in

Fig. 8 . The sections range from y/h = −1 (bottom wall) to y/h = 0

(the location of the step). 

Results are similar to those of the CBFS: the machine-learning

algorithms are able to give a qualitatively accurate prediction of

the turbulence character, with some quantitative discrepancies. For

x/h = 4 and x/h = 6 predictions close to the wall are more accurate

for TBRF than TBNN. The situation is reversed for x/h = 10 , 15 , 19 ,

where TBNN slightly outperforms, at the cost of some unrealizable

predictions closest to the wall. In all our studies, we have never

observed unrealizable predictions from TBRF, despite no explicit

realizability constraint being imposed on the method. 

Moving away from the wall into the shear layer TBRF erro-

neously heads too far back towards the two-component boundary

at the sections closest to the step. The reason for this is unclear, at

similar (shear-layer) locations in the training flows, the turbulence

does not exhibit such behaviour. Furthermore TBNN is reasonably

accurate here. Diagnostic tools are needed, and will be a focus of

future research. Nonetheless at the section further from the step,

both ML methods perform well. 
.2.3. Square duct 

The local stress type for the square duct was already shown in

ig. 3 ; individual components of the anisotropy tensor shown in

ig. 9 . In both cases anistropy is visualized for DNS, RANS ( k − ω),

BRF and TBNN predictions. In Fig. 3 ML results are only shown for

ase C4 (17 features); in Fig. 3 additionally case C3 is shown. Note

hat these are challenging cases due to the substantial differences

etween the training and prediction flows. 

As expected, the Boussinesq model yields non-zero predictions

nly for [ b ] 12 and [ b ] 13 – though these are relatively well predicted.

nistropy is confined to the 3-component corner, on the plane-

train line. Examining the predictions of ML, it can generally seen

hat the introduction of extra features has significantly more effect

han the choice of neural-networks versus random-forests. For ex-

mple, looking at [ b ] 11 , the anisotropy of the Reynolds stress is not

aptured close to the walls for C3, whereas it is present in C4. The

agnitude of [ b ] 12 and [ b ] 13 is underpredicted, independently of

he ML method, but improved in case C4 compared to C3. Similarly

n all cases the magnitude of [ b ] 23 is over-predicted by ML, but

he magnitude of the over-prediction is less in case C4. To quan-

ify these observations, the root mean square error (RMSE) of the

nisotropy tensor with respect to the DNS data is given in Table 3 .

he RMSE’s are lower when introducing more features, for both al-

orithms. This can largely be explained by visualizing the shapes of

he input features in case C3. Doing this it can be observed that, of

he 5 features, 3 are approximately scaled versions of the other 2

effectively reducing the input space to two-dimensions. This ex-

lains the difficulty nonlinear eddy-viscosity models based on only

 and R , have in reproducing the magnitude of the secondary flow

n the square duct. 

.3. Anisotropy tensor propagation 

This section presents flow fields obtained by propagating the

redicted anisotropy tensors for the square duct flow and the back-

ard facing step. Predictions for the anisotropy tensor were prop-

gated using the stabilized solver presented in Section 2.7 . 
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Fig. 13. Illustration of the robustness of the TBRF algorithm. 
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.3.1. Square Duct 

Two sections in the square duct will be analyzed with respect

o the in-plane mean velocity magnitude (i.e. indicating the mag-

itude of the secondary flow). Fig. 10 presents the velocity mag-

itude for sections located at y/h = 0 . 5 and y/h = 0 . 8 . DNS from

inelli et al. [38] is used as a reference. In order to verify the

ropagation method in isolation (without predicting anistropy), the

nisotropy tensor obtained directly from DNS ( b ij ,DNS ) is propa-

ated, see the gray lines. This is a “best case scenario” where the

nisotropy tensor is assumed to be perfect (up to statistical conver-

ence of the DNS). The mean-flow field as obtained by propagating

he predictions from the TBRF algorithm ( b ij ,TBRF , see column 5 of

ig. 9 ) is indicated by the red lines. Furthermore, results from the

uadratic eddy viscosity model of Shih et al. [44] , and the cubic

ddy viscosity model of Lien et al. [27] are presented. Since the

inear eddy-viscosity model does not yield any secondary flow at

ll, this result is omitted. 

When examining the results of Fig. 10 , the story is broadly the

ame for y/h = 0 . 5 and y/h = 0 . 8 . Mean-velocity fields obtained us-

ng b ij ,DNS broadly reproduce the DNS mean velocity, both in am-

litude and location of key features, with the best fit near the wall

 z = 1 ), and the worst near the channel centerline ( z = 0 ). Subse-

uently approximating b ij ,DNS by b ij ,TBRF causes additional errors,

ut theses errors are of similar magnitude to the errors already

ade in the propagation. In particular, key features are correct,

nd amplitudes are appropriate. What is also clear however, is that

redictions are still far more accurate than both non-linear eddy-

iscosity models. The model from Shih et al. [44] is able to predict

he location of the peaks of the in-plane flow magnitude quite ac-

urately, but significantly underpredicts the overall magnitude. Pre-

ictions by the cubic eddy-viscosity model from Lien et al. [27] are

ar off overall. 

.3.2. Backward facing step 

Fig. 11 presents streamlines in the flow field for the backward

acing step, with results from k − ω RANS, the propagated veloc-

ty field using the predicted anisotropy tensor from the TBRF algo-

ithm ( b ij ,TBRF ), and DNS data from Le et al. [26] . The size of the

ecirculation region is more correctly predicted for the propagated

elocity field using b ij ,TBRF compared to the baseline RANS simula-

ion. Further away from the wall the solver using b ij ,TBRF does not

ntroduce spurious effects and results are similar to the baseline

ANS simulation. The reattachment point locations ( x reattach ) for all

hree cases are presented in Table 4 . A significant improvement is

hown for the propagated velocity field compared to the baseline

ANS simulation. 

The skin friction coefficients from the RANS simulation and the

ropagated flow field using b ij ,TBRF are compared to experimental

ata from Jovic and Driver [18] in Fig. 12 . The propagated flow field

hows a very close match to the experimental data, and the major-

ty of results fall within the error bounds given by the experiment
 ± 0.0 0 05 c f ). The reattachment point of the propagated flow field

6.32) compares favourably to the experimentally found reattach-

ent point (6.0 ± 0.15). 

. Conclusions 

In this work, a novel random forest algorithm was intro-

uced for RANS turbulence modeling, to model the Reynolds stress

nisotropy tensor. The algorithm was trained using invariant in-

ut features from several RANS ( k − ω) flow fields, and the corre-

ponding responses for the anisotropy tensor from DNS or highly-

esolved LES data. Galilean invariance of the predicted anisotropy

ensor is ensured by making use of a tensor basis, derived in [39] .

he new random forest algorithm is called the Tensor-Basis Ran-

om Forest (TBRF) algorithm, similarly to the Tensor-Basis Neural

etwork from Ling et al. [29] from which it was inspired. Robust

redictions of the Reynolds-Stress anisotropy tensor are obtained

y taking the median of the Tensor-Basis Decision Tree (TBDT) pre-

ictions inside the TBRF. 

Predictions for the Reynolds-stress anisotropy tensor were pre-

ented for the square duct flow case, curved backward-facing step,

nd backward-facing step. Improvement is observed with respect

o the baseline k − ω simulations, and the TBRF algorithm performs

n par with the TBNN algorithm. Compared to TBNN, the TBRF al-

orithm is relatively easy to implement and train (one does not

ave to think about matters such as the optimization algorithm

sed to tune the neural network weights and its convergence); the

ut-of-bag samples from the decision trees allow for a natural way

o quantify the validation error during training and thus selecting

he amount of trees to be used in the random forest. The few re-

aining hyperparameters are quite robust: the TBRF works well

ut-of-the-box even when using standard hyperparameter settings

fully grown trees, using all available features for creating the de-

ision tree splits). 

A custom solver for propagating the anisotropy tensor was in-

roduced, which blends the predictions for the anisotropy tensor

ith a k − ω turbulence model. This solver greatly increases nu-

erical stability of the propagation. Propagations for the square

uct flow case and backward facing step are presented, which

how a close match with respect to corresponding DNS and ex-

erimental data-sets. 

A possibility for future work might be using the TBRF for quan-

ifying uncertainty of the predictions as well. For every location in

he flow domain the trees in the random forest can be analyzed for

heir variance, which would make it possible to use an anisotropy

igenvalue perturbation methodology to quantify uncertainty such

s proposed in [13] . In order to achieve meaningful bounds for un-

ertainty of the predictions, one could look at e.g. Bayesian Addi-

ive Regression Trees [8] , or jackknife/infinitesimal jackknife meth-

ds [15] , or modify the random forest algorithm itself for meaning-

ul uncertainty bounds, see e.g. [33,34] . It was observed, that often
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the individual decision trees show a high variance of the predic-

tion, when the prediction itself is relatively poor [19] . 

Future work should further investigate the performance of the

TBRF algorithm and the relaxation solver on more complex flow

cases. Only a number of idealized canonical flow cases were con-

sidered here, it would be interesting to see how well the algorithm

does in for example highly detached flows, how well the algorithm

is able to extrapolate to higher Reynolds numbers, and whether it

could be used for unsteady RANS flows as well. 
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Appendix. TBRF implementation details 

Decision trees base their predictions on a series of if-then tests

on the input. Random forests consist of collections of decision trees

with some randomized component differentiating trees. Multiple

decision tree algorithms exist, of which the CART (Classification

And Regression Tree) algorithm is used as a starting point here. 

As mentioned in Section 2.5 , the feature space is recursively

split into two bins, R R and R L . The splitting is performed greedily,

with each split selected to minimize the mismatch between the re-

sponse y , and the best constant approximation of the response in

both bins. Specifically for each split we solve [16] : 

min 

j,s 

[ 

min 

c L ∈ R 

∑ 

x i ∈ R L ( j,s ) 

( y i − c L ) 
2 + min 

c R ∈ R 

∑ 

x i ∈ R R ( j,s ) 

( y i − c R ) 
2 

] 

, (17)

where y i denotes the response at X i . Finding constants c L , c R ∈ R

amounts to averaging y within R L and R R respectively, effectively

minimizing the variance in both bins. Starting from the full data-

set the same method is then applied to R L and R R in a recursive

fashion. The procedure is terminated either at a specified maxi-

mum branching depth, or a minimum number of samples per bin. 

The new TBDT algorithm is comparable with the CART decision

tree algorithm, but instead of approximating the response with

constant values c L and c R , the algorithm finds a constant value for

each of the tensor basis coefficients g ( m ) in (8) , chosen to minimize

the mismatch between this expression and the anisotropy tensor

from DNS. Specifically we solve 

min 

j,s 

⎡ 

⎣ min 

g (m ) 
L 

∈ R 10 

∑ 

x i ∈ R L ( j,s ) 

∥∥∥∥∥
10 ∑ 

m =1 

T (m ) 
i 

g (m ) 
L 

− b i 

∥∥∥∥∥
2 

F 
+ min 

g (m ) 
R 

∈ R 10 

∑ 

x i ∈ R R ( j,s ) 

∥∥∥∥∥
10 ∑ 

m =1 

T (m ) 
i 

g (m ) 
R 

− b i 

∥∥∥∥∥
2 

F 

⎤ 

⎦ , (18)

here i indexes the samples, b i is the DNS/LES anisotropy tensor,

nd g (m ) 
L 

and g (m ) 
R 

are the tensor basis coefficients in the left and

ight bins respectively. The norm used is the Frobenius norm: 

 A ‖ F := 

√ ∑ 

i, j 

[ A ] 2 
i j 

= 

√ 

tr ( A 

T A ) , (19)

here A can be an arbitrary second-order tensor. This norm is cho-

en for its invariance to unitary transformations – in particular ro-

ations. Now finding g (m ) 
L 

and g (m ) 
R 

amounts to solving two least-

quares problems. This must be repeated for every j and for every

ptimization iteration of s . As for CART, (18) is repeated for each

in, until a stopping criterion is reached. 

Explicitly, by flattening the tensor at each point, and defining:

ˆ 
 i = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

[ T (1) 
i 

] 11 [ T (2) 
i 

] 11 · · · [ T (10) 
i 

] 11 

[ T (1) 
i 

] 12 [ T (2) 
i 

] 12 · · · [ T (10) 
i 

] 12 

. . . 
. . . 

. . . 
. . . 

[ T (1) 
i 

] 33 [ T (2) 
i 

] 33 · · · [ T (10) 
i 

] 33 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, ˆ b i = 

⎡ 

⎢ ⎢ ⎣ 

[ b i ] 11 

[ b i ] 12 

. . . 
[ b i ] 33 

⎤ 

⎥ ⎥ ⎦ 

, 

(20)

each of the minimization problems over g becomes min g J where

 = 

N ∑ 

i =1 

‖ ̂

 T i g − ˆ b i ‖ 

2 , (21)

ith solution 

 = 

( 

N ∑ 

i =1 

ˆ T 
T 

i 
ˆ T i 

) −1 ( 

N ∑ 

i =1 

ˆ T 
T 

i 
ˆ b i 

) 

. (22)

hich can be solved separately for R L and R R to obtain g (m ) 
L 

and

 

(m ) 
R 

. The overall cost of this algorithm (as for CART) is domainated

y sorting the data-values with respect to coordinate j . This cost is

(N log N) in the number of data-values, leading to an overall cost

f O(N log 
2 

N) . Unlike training neural networks, this procedure is

ast, robust, easy to implement, and independent of any starting

uess. 

Due to the redundancy of the tensor-basis for any given sam-

le i ∈ { 1 , . . . , N} , this problem can become ill-posed, especially to-

ards the leaves of the tree, when only a few samples remain in a

in. Therefore some L 2 -regularization is added to J with coefficient

∈ R 

+ , c.f. ridge regression. To summarize, (22) is modified to 

 = 

( 

N ∑ 

i =1 

ˆ T 
T 

i 
ˆ T i + �I 

) −1 ( 

N ∑ 

i =1 

ˆ T 
T 

i 
ˆ b i 

) 

. (23)

n practice it was observed that by taking the median of all deci-

ion trees instead of the mean (see Section 2.5 ), this already pro-

ides a lot of robustness, and that � can be set to a very low value

n general. The value of � in the random forest was tuned using

alidation data-sets, see Section 3.2 . 

One important difference of the TBRF over the standard random

orest is the fact that it effectively does not directly predict the fi-

al outcome, but the coefficients g , which multiply the basis ten-

ors T . Unlike the standard random forest, this means that the val-

es for the final predictions do not have to lie in-between the val-

es of the points used for training. Decision trees are well known

o be sensitive to small changes in the data, and this manifested

uring testing as highly irregular and inconsistent predictions in

mall regions of the spatial domain. For a sample TBDT prediction
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f two components of the anisotropy tensor for the curved back-

ard facing step (further introduced in Section 3.1 ), where these

nconsistencies are clearly visible, see the first column in Fig. 13 .

oth pruning and regularization were applied to reduce these in-

onsistencies. While regularization fixed the problem to some ex-

ent, it worsened predictions in certain regions of the flow, since

his did not allow the coefficients g to vary sufficiently. Instead, it

roved to be more successful to take the median of the trees in the

andom forest instead of the mean (as for example investigated in

43] ), since this removed sensitivity to outliers in the predictions.

 comparison between taking the mean and median is presented

n column 2 and 3 of Fig. 13 . Column 4 presents the results after

pplying the Gaussian smoothing as described in Section 2.5 . As

escribed in Section 2.5 , the TBRF algorithm will work out-of-the-

ox without much tuning quite well, as demonstrated in column

 of Fig. 13 . Predictions are shown for a TBRF with standard set-

ings (fully grown decision trees, using all features for creating the

plits), and a arbitrarily low regularization factor of � = 1 × 10 −15 .

s can be seen the anisotropy predictions are quite insensitive

o the set of hyperparameters when comparing to the predictions

rom the tuned TBRF in column 3. 
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