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Abstract

Despite being relatively novel, generative adversarial networks (GAN) have already been
appropriated for application to several problems within the field of architectural and ur-
ban generative design. However, the preceding GAN based models for building massing
generation make use of only simplified and two dimensional representation of the built
environment.

This work improves upon the existing deep-learning-based methods for generation of
building massings and building group layouts, by fusing high accuracy three-dimensional
building models with site context derived from cadastral and topographic data, sourced
from openly available datasets in the Netherlands. Pix2pixGAN implementation in PyTorch,
trained on existing massing data encoded into images as heightmaps, is used to generate
building massing geometry. Two methods for geometry extraction from heightmaps are in-
troduced, voxelization and vectorization. The goal for the model is to maximize similarity of
morphological traits of configurations generated by the model to the ground truth training
data. The effects of multiple proposed training configurations on the resulting massings gen-
erated by the model are evaluated, together with visual assessment, using their Spacematrix
mappings.

Three distinct models with specific goals are presented - parcel infill model, street block
infill model, and urban fabric infill model. All three models show a capability to learn spatial
traits of existing building configurations and transfer them into new situations not encoun-
tered in the training data, which is confirmed by the distribution of Spacematrix mapping of
the generated results being similar to the distributions of the ground truth data.

The proposed methodology represents a novel approach to generating building massing
configurations by autonomously inferring the rules of their composition from existing urban
areas. The resulting models could be used to provide initial states in optimization-driven
design approaches, or as smart massing suggestion engines, assisting architects and city
planners during the early building design process.
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“The question of whether a computer
can think is no more interesting than the
question of whether a submarine can
swim.”

Edsger W. Dijkstra
1 Introduction

1.1 Motivation

Context The proliferation of reliance on computers for the design and engineering of the
built environment, and the increasing complexity of applying digital tools effectively to the
design process gave rise to a new kind of design and consultancy practices. Companies
where “developers, and computer scientists work along with designers and engineers to offer ...
bespoke digital solutions for architecture and the construction industry” [Carta, 2021].

Under this new design practice paradigm, the increasing speed and reliability of design
performance simulation models makes it trivial and therefore imperative to evaluate designs
based on various technical, environmental, and socio-economic factors already from the
initial stages of the design process [Caetano et al., 2020]. With improved ability to predict
and evaluate the performance of any given design variant, generating and exploring large,
and more importantly diverse, sets of variants becomes the priority goal of the early design
phases.

Problem statement The development of computational design methods within the field
architectural design has already brought to the market a multitude of digital toolkits and
software packages focused on quickly generating variants of residential, office, hospital,
or other building layouts based on a set of user-defined parameters (e.g. TestFit1, Kreo2,
SpaceMaker3). These design toolkits use generative algorithms to offer large amounts of
design options and evaluate them on a broad range of metrics, providing a range of options
in the internal layout of the building.

However, when it comes to generation of building massing, the variety of solutions of-
fered by these tools is much lower. Often just a limited collection of basic building shape
archetypes and configurations is offered, which are then simply conformed to the shape of
the plot. The general site context, such as the surrounding building forms, access routes or
landscape features, are only considered during the evaluation of the variant, not its genera-
tion.

I aim to investigate whether we can build a deep-learning-based model capable of suggesting
more diverse building massing designs, trained on previous design solutions present within
available 3D city models. By defining the geometrical and semantic properties of the desired
massing design and the site context it is within, the challenge I want to tackle with this work
is how to synthesize new design options by inferring the solution from selected buildings
and sites already present within the existing built environment in the Netherlands.

1https://testfit.io/
2https://www.kreo.net/
3https://www.spacemakerai.com/
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1 Introduction

Approach I propose a method based on the picture to picture translating generative adver-
sarial network (Pix2Pix GAN) [Isola et al., 2017]. Pix2Pix GAN, as a type of deep-learning-
based model for image to image translation, has already shown promising performance in
similar applications. It is a neural network framework capable of learning complex rela-
tions between visually represented input (i.e. site plan) and output (i.e. building massing
representation) from paired images within a training dataset.

Although a concept of a generative adversarial network (GAN) [Goodfellow et al., 2014] is
already fairly well established in the field of deep-learning, its application to generation of
architectural and urban designs is still a fairly novel idea. The first experiments of applying
GANs to architecture and built environment related data gained traction with the introduc-
tion of the Pix2Pix GAN architecture in 2017, which allowed for training on picture base
datasets in a way more approachable to designers or artists [Isola et al., 2017].

Previous work While 4 year ago machine learning methods still had yet to make a signifi-
cant impact in the field of architecture and design [Khean et al., 2018], since advanced mod-
els like Pix2Pix GAN became readily available, multiple works in built environment design
related fields explored their potential. The methods based on the Pix2Pix GAN framework
have been applied to the design of residential housing units — their shape, internal struc-
ture, functional zoning, and furniture placement [Chaillou, 2020], or to topological layout of
office buildings [Chang et al., 2021].

In the field of urban design, Pix2Pix GAN has been used to assess environmental perfor-
mance of building groups on a scale of city block from the perspective of sunlight access
and wind flow [Chronis et al., 2020; Mokhtar et al., 2020]. Pix2Pix GANs have been pro-
posed as a support tool for planners, architects or developers by giving them insight about
the possible solutions for building composition of a city, urban blocks and building groups
[Fedorova, 2021; Yao et al., 2021; Tian, 2020].

The previous experiments with utilizing GANs for the purpose of generating building lay-
outs show the potential of these powerful models. However, the work published to this date
is reliant mostly on two dimensional representation of buildings as their footprints. I pro-
pose an improved method for training GAN models on 3D representations of building forms
extracted from a complete 3D model data of Dutch building stock - the 3D BAG dataset [3D
Geoinformation research group, 2021].

Figure 1.1: Sketcherbot uses Pix2Pix GAN trained on hand-sketches of trees and urban
scenes to fill in designers sketches with detail (figure taken from [Alonso, 2017])

2



1.2 Research questions

1.2 Research questions

The main research question for this thesis is:

To what extent can one assist the process of building massing (and by extension the
built environment) design generation by utilizing GAN model trained on existing
building forms represented in Dutch buildin stock?

To explore this question, the following sub-questions are therefore relevant:

• At what scales is such model applicable (eg. single building, building group, street
block)? Is a single general model sufficient, or does one need to train a separate
dedicated model for each scale?

• Is it possible to steer the properties of the generated designs towards certain traits by
curating the data the model learns from? What metrics should one use to measure
these properties? How strong is the correlation between measurable properties of the
designs in the training data and the generated results?

• How important is the level of detail (LoD) of the training data and what aspects of site
context have to be included in the training data for the quality of the results?

Figure 1.2: Concept sketch of the research goals in a nutshell - a building massing design
suggestion engine
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1 Introduction

1.3 Scope and objectives

Scope The scope of my work is focused on training a GAN for generation of building
and building group massing designs utilizing the updated version of 3D Basisregistratie
Adressen en Gebouwen 1 (3D BAG) dataset (released in 2021). This open dataset containins
highly accurate building models of almost all buildings in the Netherlands [3D Geoinfor-
mation research group, 2021]. My proposed GAN is trained using image pairs generated
from the 3D BAG, cadastral data, road network data, topographic maps and other openly
available datasets covering the built environment of the Netherlands.

An existing implementation [Zhu, 2017b] of Pix2Pix GAN [Isola et al., 2017] — implemented
in PyTorch [Paszke et al., 2019] — is the primary GAN model used for the purpose of this
research, with an option of exploring other similar GAN models for the sake of performance
comparison as a possible additional experiment. The focus of this thesis is on exploring the
applicability of existing state-of-the-art GAN frameworks and reimplementing significant
parts of specific GAN architecture from scratch is not a part of this research. Scope of this
work in relation to these existing GAN models is defined instead as finding the possible
combination of training data and training hyperparameters to be used with the existing
GAN implementations to help me explore and answer the posed research questions.

Goals From my review of existing applications of similar methods to related topics, I con-
clude that the current state-of-the-art research on utilizing GAN for generation of building
or building group designs still has some shortcomings. The models are often trained on
simplified building morphology, which omits many details of the general building form and
roof-scape. The GAN methods are applied only on two dimensional representation of the
build environment or lack the methods to convert the output raster imagery image back into
3D geometry. A rigorous study of quantitative and qualitative performance of the generated
designs and how they relate to the training data are missing.

My goal for this thesis is to develop an improved method for training and evaluating GAN
frameworks on the task of generation of building massing designs and compare performance
of various approaches to how one defines the goals of the model and creates the training
datasets. Ultimately I want to be able to discuss the usability of the variants generated by
such models in the practice of design and engineering of the built environment.

1.4 Scientific relevance

By generating building massing suggestions based on rules and features inferred from exist-
ing solutions, instead of the user having to manually define and input these rules themselves
in the form of a fixed algorithm, I hope to extend the possibilities for application of genera-
tive building design tools. The suggestions generated by the model could be used as initial
states for further optimization and exploration. Using GANs to generate a larger and more
diverse set of starting states for optimization algorithms to iterate over has been proposed
as a method for avoiding finding local minima early in the optimization process [Chen et al.,
2019].

13D Register of Buildings and Addresses
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1.4 Scientific relevance

The proposed framework for suggesting building massing solutions is relevant outside of
the domain of computational and generative building design as well. One of popular appli-
cations for picture to picture translating GAN models is using them as a base for suggestive
drawing applications, where sketched input of the human user is completed and filled in
by the generator network. This method has been explored on various drawing types includ-
ing sketches of building elevations (see Figure 1.1) [Alonso, 2017] and floor plans [Swahn,
2019].

In this fashion, a generative model capable of suggesting building massing variations could
assist architects, developers and city planners in design exploration in early architectural
project stages when sketching out initial massing options (SO - schetsontwerp phase of Dutch
construction design documentation process). Urban planners and municipalities could use
the tool to explore and quickly evaluate densification potential of existing urban areas and
use the tool to generate options for building infill scenarios within existing urban struc-
tures.
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2 Theoretical backround

In this chapter I will elaborate upon the theoretical concepts introduced in the Chapter 1
Introduction to ensure basic understanding of the terminology used before I connect them
to the methods proposed for the data collection, processing, training, post processing and
evaluation in next chapters.

Since the work heavily relies on utilizing GAN, in particular the Pix2Pix GAN architecture
and its derivatives, a brief introduction to the principles and theory behind it is provided
to better understand the motivations upon which the further steps of my work are based.
Additionally, I will introduce the concept of level of detail (LoD).

Finally, I will provide an overview of the related works on the topic of architectural and
urban design generation using GAN models and provide my own conclusions on the limi-
tations of existing research.

2.1 Generative adversarial network

GAN, as first described by Goodfellow et al. [2014], is a machine learning framework consist-
ing of two mutually competing convolutional neural networks (CNNs) - generative network
(Generator) and discriminative network (Discriminator). Both networks are trained using a
collection of training data, often based on some real-world dataset.

The goal of the Generator is to synthesize new data samples with similar properties to
the samples in the training dataset. The goal of Discriminator is to identify whether a
data sample is a fake generated by the Generator, or a real-data sample from the training
dataset. This zero-sum game of two competing networks creates a training feedback loop.
As the Generator improves at generating fake outputs, the Discriminator has to improve at
identifying them. I find a metaphor of GAN training as a game between the Generator
as an criminal and Discriminator as a detective investigating the forgery case useful when
explaing this basic principle (see Figure 2.1).

Pix2Pix GAN [Isola et al., 2017] applies this principle to images data and, as a type of a
supervised conditional acgan, it can learn the relationship between pre-organized pairs of
images. Supervised in this case means that the training data has to be preprocessed and
organized into pairs of images and the model tries to estimate the general function that
maps the content of image A to the content of image B.

’Conditional’ in this case means that both Generator and Discriminator have access to the
input A image. Therefore the Discriminator can evaluate not only how real the output
image looks, but also how well it maps from the original input image. Both Generator
and Discriminator as a type of CNNs can achieve a great level of accuracy as their internal
data labeling and transformation can happen at the scale of individual pixels [LeCun et al.,
2015].
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Generator

DiscriminatorTraining dataset
Fake

Real

Loss
Real sample

Generated sample

Figure 2.1: Basic principle of GAN

Pix2Pix GAN can only generate deterministic mapping from picture A to B, meaning that
after training single image input will always yield the same single result. An extension
of the original architecture was proposed and developed as BicycleGAN [Zhu et al., 2017].
The training still requires paired data, but after training, it enables mapping one input to
multiple possible outputs. This is achieved by injecting a z-vector (noise) into the input layer.
By manipulating the z-vector in small increments, it is possible to create gradual transitions
between multiple output mappings (see Figure 2.2).

Figure 2.2: Example of BicycleGAN mapping single evening landscape into multiple daytime
versions [Zhu, 2017a]

In the context of this work, I intend to use Pix2Pix GANs or BicycleGAN to map a set of
site conditions in the input image to building massing plausible on the given site in the
output image. The main objective of the model is to learn the rules guiding the placement
and form of building massings in urban context from the training data and to generate new
configurations based on rules inferred. To utilize these picture to picture translating models
for this purpose, I need to generate training raster images by compressing both the site
information and the building massing into images containing their graphical representation
— similar in principle to architectural site plans (see Figure 2.3).
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Generator

DiscriminatorImage A
Site context Fake

Real

Loss
Real image B
Real massing

Fake image B
Generated massing

Figure 2.3: Proposed GAN model

2.2 Level of detail

One of my the proposed improvements compared to the previous applications of GANs to
generation of building massings, at least the ones covered as part of the literature study
(see next Section 2.3 Evaluation), is to use more detailed three dimensional building models
to generate the training data for the model. When describing the level of accuracy of the
building geometry modelled, I will use the term established withing the field of Geomatics
— level of detail (LoD).

Definition To cover the LoDs of building models accurately, one can refer to CityGML 2.0
based classification of LoDs, or in particular the extended classification from Biljecki et al.
[2016] (see Figure 2.4). Under this classification the LoDs are grouped into levels ranging
from 0 to 4, with increasingly complex geometrical primitives used to describe increasingly
complex features of the building. The expanded model adds further sub-levels to each of
the 4 main LoDs. This reflects the fact that within one LoD, as defined by the CityGML
standard, a building model can use the same rules and geometrical primitives while being
modeled with various levels of accuracy, depending on specific implementation.

Based on the CityGML 2.0 standard, the extended definition by Biljecki et al. [2016] and how
the terms are applied in common practice, I can summarize the LoDs as following;

LoD 0.1 – 0.3 Models buildings only as a planar polygonal geometry. In practice, it
describes only the footprint (or the roof edge) of a building

LoD 1.1 – 1.3 Models buildings as extrusion-based prismatic geometry. In prac-
tice, it describes the building as a volume enclosed by a solid geometry obtained by
extruding the footprint(s) by a single height value associated with each footprint.
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LoD 2.1 – 2.3 Models building as complex surface or solid geometry types, with
optional semantic properties attached to geometrical parts. In practice, it describes
the approximation of the external envelope of the building.

LoD 3.1 – 3.3 Uses the same data model as LoD 2. Besides the geometry of the
building’s envelope, it also models other external features of the building, such as
openings, external equipment and various facade features.

LoD 4 Uses the same data model as LoD 2. In theory LoD4 stores not only the
building’s external features, but interior features as well. But is rarely used in practice
and therefore omitted from the extended definition by Biljecki et al. [2016].

LoDs in practice To put things into perspective, one of the more popular datasets to source
information on building geometry from is OpenStreetMap (OSM). OSM is an open source
global geographic dataset that optionally includes height information for the building foot-
prints stored within it. Only a single height value can be associated with each single build-
ing. Therefore one can only talk about OSM data as a source of in bst case LoD 1.1 building
models. In practice this height information is in many cases missing, or it is just inferred
instead of being accurately measured for each building (see Figure 2.5).

While higher LoD 3D city models exist, they created on scale of individual cities, and in
almost all cases at least parital rely on manual modelling of the individual buildings. A
recent improvement in the context of Netherlands in this regard is the 3D BAG dataset [3D
Geoinformation research group, 2021]. 3D BAG is an automatically generated collection of
3D building geometries for almost all buildings in Netherlands, modelled at multiple LoDs
up to LoD 2.2 (see Figure 2.6). Therefore, I will be using 3D BAG as the main source of
building geometry for the purpose of this research.
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Figure 2.4: Improved LOD specification for 3D building models by Biljecki et al. [2016]
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Figure 2.5: Mapbox web-maps use OSM data as source of its LoD 1.1 building models. In
this screenshot, many building heights in center of Amsterdam are missing completely

Figure 2.6: 3D BAG LoD 2.2 building models for the same area of Amsterdam as in fig. X.
visualized in 3D BAG viewer
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2.3 Related work

2.3 Related work

pix2pix GAN

Although the idea of the GAN was already introduced a few years prior by Goodfellow
et al. [2014], the Pix2Pix GAN [Isola et al., 2017] introduced a novel architecture for using
the GAN as a general-purpose model for image-to-image translation problems.

What the use of GAN architecture brought as a novelty into the field of deep-learning based
image translation and generation, is that the model not only learns the general function for
mapping from image A to image B, but also learns how to evaluate the quality of the results
(which was previously a challenge in image generation).

The research demonstrated that this new approach is effective at synthesizing photos from
label maps, reconstructing photorealistic representation of objects from sketches or coloriz-
ing images, among other tasks. Since the release of that paper, numerous artists and design-
ers have tried to create their own experiments with the system, proving its ease of use.

A limitation of using Pix2Pix GAN in practice, similar as with many other architectures
based around types of CNNs, is that it often requires large amounts of data with few
outliers to produce accurate results [LeCun et al., 2015], with recommended dataset sizes
approaching 10,000 image pairs.

Figure 2.7: Results of the pix2pix GAN model applied to several picture to picture mapping
problems [Isola et al., 2017]
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ArchiGAN: a Generative Stack for Apartment Building Design

ArchiGAN [Chaillou, 2020] represents a thorough experiment on the feasibility of using
Pix2Pix GANs for design of residential unit floor plans. The author proposes a stack of
multiple pix2pixGAN, based on the original model [Isola et al., 2017], but implemented in
the TensorFlow framework [Hesse, 2017].

Each layer of this stack of multip Pix2Pix GANs is taking care of a particular step of the
spatial layout design process for a single family home. The output of one GAN then feeds
into another in a sequence: (I) generating footprint shape, (II) generation room program
partition, (III) generatiing furnishing details.

The research is one of the first works showing how a complete generative architectural
design workflow using GANs could look like. Although the model is trained on a very
homogeneous dataset of single family homes found in Boston, USA, the results show the
ability of the model to generate diverse solutions for different inputs.

A limitation of the work is that methods for vectorization of the raster outputs generated
by the Pix2Pix GAN were not covered by the research, therefore integration with of similar
framewroks with common CAD modelling tools used by architects and planners remains a
challenge for future development.

Figure 2.8: Room partition generated by pix2pix based on building’s shape and fenestration
[Chaillou, 2020]
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Generative Adversarial Networks for Pedestrian Wind Flow Approximation

In both Conditional Generative Adversarial Networks for Pedestrian Wind Flow Approx-
imation [Mokhtar et al., 2020] and InFraRed [Chronis et al., 2020] a Pix2Pix GAN (in its
original implementation by Isola [2017]) was trained to predict urban microclimate metrics
around a collection of building massings.

To input the geometry information into the model, the massing is converted into its height-
map representation. The GAN model then learns to map the height-map of the geometry to
the color-map of wind speed values (in case of both works) or solar radiation values (in case
of Chronis et al.) extracted from precomputed simulations using state of the art engines.

Both these works show that the GAN models are able to learn some sort of internal repre-
sentations of environmental phenomena affecting buildings and vise-versa of the ways the
buildings affect their environment. For example, to be able to at least roughly predict the
yearly solar radiation value, the model needs to internalize some representation of yearly
sun paths and combine them with its internal representation of building shape to output
solar radiation values in areas shaded by the building as a product.

It is necessary to state that these models not accurate enough to substitute the standard
simulation models in engineering applications, but — comapred to more complex simulation
engines — they can serve to indicate the expected performance of the building design much
sooner in the design process.

Figure 2.9: Sample of wind speed GAN model predictions together with their relative error
compared to the simulation results [Mokhtar et al., 2020]
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Generative Adversarial Networks for Urban Block Design

In their master thesis 2021, Fedorova explored the application of pix2pix GAN to the design
of urban block configurations based on urban block archetypes collected from multiple cities.
In their approach, no parameters of an urban block typical for a certain city are explicitly
defined. Instead the algorithm learns them implicitly from the existing urban configurations
present in the training data. This approach has then been applied to the multiple cities with
different morphologies in order to evaluate how the model performs in different contexts
and whether it is possible to transfer learned structures between cities.

This method shows the potential of GANs for learning the properties of urban fabric from
the existing context without their explicit definition. However the model model does not
seem to be taking building heights into consideration, working only with the 2D building
footprints. The clarity of the generated shapes could be further refined with more training.

Figure 2.10: Building block designs generated by pix2pix GAN [Fedorova, 2021]

16
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Generative Design Method of Building Group

Generative Design Method of Building Group [Yao et al., 2021] describes a method for the
residential building group footprint layout generation. A Pix2Pix GAN was trained on the
dataset consisting of footprints of residential building groups collected from Shanghai.

The total collected dataset was split into multiple training datasets based on the building
groups density. As a result, networks trained on datasets with higher building density also
created building groups with higher building density in their generated output images.

According to the authors, “the generated results have a certain degree of ambiguity” and addi-
tionally lack the building height information. The authors solved the former problem by
manual vectorization of the output and the later problem using Galapagos software (evolu-
tionary optimization engine) [Rutten, 2013] to dynamically assign building heights to gen-
erated footprints based on optimized solar performance.

This approach of using the output of generative adversarial network as a generator of initial
solution that is further optimized using genetic algorithms shows promise especially in
terms of increasing the diversity of results evolutionary algorithms would be able to generate
if used on their own [Chen et al., 2019].

Figure 2.11: The generated results of the trained pix2pix GANs [Yao et al., 2021].
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Suggestive Site Planning with Conditional GAN and Urban GIS Data

A Pix2Pix GAN based toolkit has been proposed, as a tool “could be utilized both in the context
of site planning but for morphological analysis for the city’s urban fabric.” [Tian, 2020]. A model is
trained on a dataset of building group footprints from the city of Boston.

Interestingly, the use category of each building is encoded as color information. The model
learns to generate the building footprint shapes and assign building use to them based on
the shape of the plot input into the model. The generated raster images are vectorized into
geometrical features representing the building footprints.

From my review it seems that no other information, beyond the plot shape and the buildings
placed on it, is provided in the training data. Therefore it is given that the model is not
capable of reacting to the site context except conforming the generated building footprints
to the boundary of the plot. Building height information is also omitted from the model,
with the building features being extruded to uniform height, controlled manually by the
user.

Figure 2.12: Site planning suggestion for (a) Triangle shape site boundary (b) Quadrangle
shape site boundary (c) Spline shape site boundary [Tian, 2020].
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2.4 Conclusions

2.4 Conclusions

Increased popularity and relative ease of use of open source image-based GAN frameworks
in recent years has motivated architects and urban designers interested in computational
design methods in finding plausible ways to apply them into the design process.

Limitations of existing work Existing reviewed methods for generating layouts of build-
ing groups are applied only to the problem of two-dimensional footprint arrangement and
learn to generate their outputs from input data covering only limited number of site context
aspects (e.g. only the plot shape and surrounding building footprints).

From the literature study, it became evident that existing work done on generating building
or building group massings are applied only to the problem of two-dimensional footprint ar-
rangement and learn to generate their outputs from input data covering only limited number
of site context aspects (e.g. only the plot shape and surrounding building footprints). Most
of the research on using GANs for this purpose was largely done either at the LoD 0.1 (ef-
fectively using the GAN to generate only the building footprints, not massings per se.) or at
LoD 1.1, with the building models sourced form OSM dataset.

I recognized the availability of highly detailed building models as one of the most limiting
factors to the maximum possible fidelity of generated results with similar methods. It is my
assumption this is caused by difficulties in finding high quality data sources that describe
the three-dimensional geometry of buildings together with the urban context in a dataset
sufficiently large to be practical for training GANs.

Potential improvements By using a LoD 1.3 and higher source of building geometry to
train the model, it should be possible to generate not only general footprints and maximum
height of buildings, but also include some details of the roofscape for multi-level roofs. From
LoD 2 and higher, the model can also observe the structure of the roof from buildings, e.g.
with pitched roofs. One of such sources of building geometry is the 3D BAG dataset, which
I will be exploring and using further in this research.

Additionally, my preliminary findings lead to the conclusion that existing models often lack
the framework to accurately compare the similarity between the training and generated data
using metrics more typically used in urban and architectural design. Without this, it is hard
to evaluate the quality of their outputs and their usability in design practice. Therefore I
aim to introduce more rigorous evaluation framework for evaluating the accuracy of the
produced models.
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3 Methodology

In the following chapter I will describe the general methodology, describe the datasets and
methods used to build the training data, together with some information on how the datasets
used are constructed and collected, to clarify any limitations that the choice of these data
sources might have on the results, and explain my motivations behind my methods for
manipulating these datasets.

Finally I will provide an overview of the methods used for building the training datasets,
training the GAN model, pre-processing the output, and reconstructing its 3D representa-
tion, together with metrics and methods for evaluating the generated results.

3.1 3D building models

3D BAG is a fully automatically generated open dataset containing detailed 3D building
models for 10 million buildings in the Netherlands. The dataset can be considered state-
of-the-art, thanks to the building geometry being modeled with high LoD (up to LoD 2.2)
compared to other large building geometry datasets of similar scope. To understand some
of the decisions taken within the methodology of this thesis, some background and details
of the methods and datasets the 3D BAG is based on will be presented first in the next
paragraphs.

The automatic creation of the dataset is possible mostly due to the open availability of
highly accurate elevation data in the Netherlands. The Actueel Hoogtebestand Nederland 3
1 (AHN3) is a high-resolution point-cloud dataset acquired via airborne light detection and
ranging (LiDAR). The latest surveying campaign was carried out during the years 2014 –
2019 and the resulting datasets made publicly available shortly afterwards. The resulting
LiDAR point cloud has an average point density of 8 points per square meter across the
whole country.

3D BAG combines the AHN3 data with building footprints acquired from Basisregistratie
Adressen en Gebouwen 2 (BAG) and Basisregistratie Grootschalige Topografie 3 (BGT). For
each building a subset of AHN3 points located within its footprint is isolated and a collection
of best fitting planes is matched to this partial point-cloud using a RANSAC algorithm.
Intersection lines of these planes are used to create a planar partition of the original footprint.
Each vertex of the planar partition is then elevated back to corresponding height to form the
final building roof geometry. Vertical walls and ground plane are then simply added based
on the building footprint to form a watertight solid (see Figure 3.1 for graphical explanation
of 3D BAG methodology by one the authors of the algorithm - Peters [2021]).

1Current Elevation Data of Netherlands
2Register of Buildings and Addresses of the Netherlands
3Large Scale Topographic Map of the Netherlands
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This methodology has some implications which have to be considered. Since the geometry is
based on elevation data collected in years 2014 – 2019, any buildings or changes to existing
buildings more recent than 2014 can be potentially missing. The authors of the dataset
additionally try remove potentially problematic building types, such as any buildings that
show overlap with other buildings or major infrastructure, or greenhouses, which often
include erroneous LiDAR scan points in their footprints due to issues the LiDAR scanning
technology has with capturing reflective and transparent glass surfaces.

Figure 3.1: Process of building geometry reconstruction used by 3D BAG [Peters, 2021]

Due to the method used to generate the building geometry by raising vertices of planar
partition, the algorithm is unable to generate any building geometry with overhanging ge-
ometry. A planar partition by definition cannot contain overlaps, therefore it is impossible
for any roof parts to overlap in their ground projection. While this is certainly a limitation to
the geometries 3D BAG algorithm can generate, it is favorable in the context of this research,
since the intent is to translate the building geometry to a raster height-map before it can be
consumed by the Pix2Pix GAN.

In a height-map, only a single height (Z value) is assigned to each pixel and by extension, a
discrete XY coordinate pair. This means that no X,Y coordinate pair can map to more than 1
Z-value. This is usually a limitation, but in this case for the reasons above, it can represent
the 3D BAG geometry fully, without any loss of information, except the loss of information
fidelity caused by discretization of the geometry from vector to raster representation.

The 3D BAG dataset is provided for use in three LoDs - LoD 1.2, LoD 1.3 and LoD2.2
(3D geoinformation research group, 2021). The building features in the first two LoDs are
available through a typical and widely adopted geospatial data transfer API - Web Feature
Service (WFS). This is the case since in LoDs 1.0-1.3, any building geometry can still be
described as a collection of planar shapes in the XY plane with an extrusion (Z-)height
attribute associated with each of them, and therefore is fully transferable through protocol
based around 2D shape data.

Since LoD 2.0 and higher allows for use of non-extrusion-based geometries for building
features, the most detailed LoD available, LoD 2.2 is provided only through fully 3D enabled
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data formats. Namely Wavefront OBJ, OGC Geopackage and TU Delft’s GeoJSON, with
only the later two preserving most of the semantic information associated with the building
geometries. Additionally, the LoD 2.2 data is only available to be requested in larger chunks
of pregenerated tiles (each tile consisting of max. 3500 buildings [Peters, 2021]).

For LoD 1.2 and LoD 1.3 building models, 3D BAG provides multiple height values to be
used for each building or building part. Each provided height corresponds to a certain
percentile of heights of all AHN3 points detected within the footprint. Since the AHN3
points tend to be evenly distributed and located mostly on the roof, one can think of the
range of percentiles as an interval between the lowest and highest heights of the roof. From
experimental research, it seems that LoD 1 models using the 50th percentile of roof heights
as extrusion height have the smallest root mean square error (RMSE) of building volume
compared to the LoD 3 (ground truth) models [Biljecki et al., 2014] (see Figure 3.2). Therefore
the 50th percentile (median) height value is used for generating all LoD 1 models in this
work.

Figure 3.2: RMSE of volume of LoD1 geometry at different roof heights compared to ground
truth [Biljecki et al., 2014]

3.2 Other input datasets

While the 3D BAG dataset provides me with high LoD building massing models, I further
enrich my representation of urban environments the GAN learns from. To be able to fill in
the building massing that appropriately reacts to its site context, the model benefits from
additional information. Such information can be the shape of the plot the building is (or will
be) located on, the main axes of both pedestrian and vehicular circulation in the area, the
types of surfaces on the site, or information on nearby landscape features and greenery.

To acquire these data, I request and merge together data from several additional datasets.
All of them are openly available data provided by the Dutch government via the PDOK
platform [PDOK, 2022].
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Figure 3.3: 3D BAG geometry overlapped over different datasets (left: TOP10NL, right: BRK)

Basisregistratie Adressen en Gebouwen 1 (BAG) The BAG is a centralized, openly avail-
able dataset of all buildings and addresses in the Netherlands. Each municipality is respon-
sible for regularly updating the data as new buildings are registered, built or demolished.To
include additional semantic data about each building in the area of interest, which were
omitted from the 3D BAG dataset, additional data are requested from the BAG dataset via
Web Feature Service (WFS) queries. In particular I’m interested in information about build-
ing construction age (bouwjaar) and its use (gebruiksdoel). BAG also stores information of the
building area (oppervlakte), which can be used together with the construction year and use
information to create database queries and selectively focus the data collection effort only
on areas where buildings with specific properties are found.

TOP10NL The TOP10NL dataset is part of the TOPNL series of topographic maps, pro-
vided by the Topographic Register of the Netherlands. The TOPNL maps are provided at
different scales, with TOP10NL being the most detailed one (1:5000 – 25000). The TOP10NL
can be used in its default form as a simple basemap. Its constituent layers can be requested
by modifying the parameters in the Web Map Service (WMS) requests. I use the TOP10NL
dataset to gather information on land cover (LC LandCoverUnit), natural landscape features
(Terrein vlak) and extent of road (TN RoadTransportNetwork) and highway (Wegdeel vlak) sur-
faces in the area (see Figure 3.4).

Basisregistratie Kadaster 2 (BRK) The BRK dataset is the cadastral map of the Nether-
lands. It contains cadastral parcel boundaries, parcel number and the footprint of the build-
ings within the parcel. In this work, I use the cadastral parcels to define what is the plot
belonging to the building, by creating a join of all cadastral parcels the building overlaps.
Even though the existing cadastral parcellation is often changed to accommodate large new
construction developments, historical parcellation found under current buildings gives a
good indication of the project site boundary available for the massing design at the time the
building was created.

1Register of Buildings and Addresses of the Netherlands
2Cadastral Register of the Netherlands
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Figure 3.4: TOP10NL basemap and the layers extracted

Nationaal Wegen Bestand 1 (NWB) The NWB is a database of all public roads in the
Netherlands that have a street name or road number and is regularly updated by national
government, provinces, municipalities and water boards. In this work I use the NWB to
extract the main axes of pedestrian and vehicular circulation around the site and extract
the borders of separate city blocks out of the urban fabric. While the road surfaces are
already present in the TOP10NL dataset, NWB can be used to extract the corresponding
road centerlines as geometric features using WFS (compared to rasterized representation of
roads available through the TOP10NL WMS).

3.3 Data collection

Resolution

To process the geometrical data and the site information into an image input consumable
by the Pix2Pix GAN model, the features have to converted into a raster representation of
constant resolution. The target resolution for the raster images used in training is decided
on one hand by the architecture of the Generator network used by the GAN, since different
architectures have different limitations on the resolutions they are capable of processing. On
the other hand it is limited by the amount of memory available on the GPU.

For the Generator network two CNN architectures were considered during the course of my
research. U-Net 256 [Ronneberger et al., 2015] requires the images to be at a fixed resolution
of 256 by 256 pixels (or its multiples). Other architecture is ResNet9 [He et al., 2016], which
requires the resolution of the images to be a multiple of 4. Therefore 256 by 256 was settled
upon as a target resolution usable with both Generator models. Using images of higher
resolution is possible, but with increased resolution the number of the model parameters
increases exponentially both for Generator and Discriminator. This would make it not be
possible to load the full model into memory of the consumer-grade GPU.

1National Roads Database of the Netherlands
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Scale

The resolution of 256 by 256 pixels was settled upon as the ideal target for training images
considering both its usability with the chosen GAN architecture and the limitations of the
used hardware. While the resolution has to remain constant, the scale of the images, mean-
ing the size of the geographic area that fits into this frame, remains variable. While a typical
urban site plan will use scale ratio, for example 1:5000, in this work I will use scale measured
in meters per pixel (m/px), as I am dealing with digital data not intended for print. It is
however possible to convert per-pixel scale to scale ratio, assuming a/the canonical pixel
density of a screen of 96PPI. In that case, a pixel resolution of 1px/m would convert to a
scale ratio of 1:3820.

To decide on set of scales to be used for the data collection, I experimented with number
of scales ranging from 0.5m/px to 4m/px, evaluating the amount of site context captured
in a 256 by 256 pixel frame and considering the amount of detail that would be eventually
recoverable from the output of the GAN model (ie. 4m/px model is only able to capture
features larger than 4m in their footprint). Eventually two scales - 1m/px and 2m/px - were
used for most of the training carried out during this research.

Figure 3.5: Scale test samples collected from area of Amsterdam Zuidas
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3.3 Data collection

Massing

In each frame, independent of its scale or content, I am interested in collecting several kinds
of information. My intent is to collect as many data points as possible about each frame and
store them in a local database. Later these data can be selectively retrieved based on the
intended application or setup for a concrete test-case experiment.

The first and probably most important data type is the geometry of all buildings, which I
obtain from the 3D BAG dataset. For all buildings in the frame of interest, their LoD 1.1 and
LoD 1.3 geometry is requested using a WFS query. The geometry is then converted into its
height-map representation.

The height information for each polygon representing a separate building part is encoded
into a 8-bit pixel color value, remapping height values between 0 and 100 meters to 55-
255 values (resulting in 0.5 height difference per pixel value step). The features are then
rendered into a raster using a closest-neighbor interpolation (to avoid interpolation of height
values across building footprint edges). This is effectively equivalent to voxelization of the
geometry, with the voxel dimensions dependent on the image scale (see Figure 3.6).

Figure 3.6: LoD 2.2 prismatic massing of TU Delft Faculty of Architecture with its height-
map representation below it
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Target building and plot

The general strategy for teaching the model to generate appropriate building massings is to
remove a single or multiple buildings from the building geometries present within the frame
and letting the model predict the features of the form of the features removed. A mechanism
for selecting a set of buildings within a frame therefore is necessary. Additionally, if one
wishes to limit the area where the model attempts to insert the missing massing, they should
include an intended boundary for the model to fill in.

Parcel definition One of the strategies I propose to create this boundary, is to use the
cadastral parcel the target building is located on. However, what parcel is the building
located on is not always a clear cut question, since the parcelation rules are highly irregular
(see Figure 3.7). Therefore, I consider the join of any parcels that is overlapping the building
footprint as a the total building associated parcel, which is collected into the dataset.

Figure 3.7: Examples of different parcelation types, top-left: one parcel to many buildings
(top-right: one parcel to one continuous building, bottom: many parcels)

Block definition To test the ability of the GAN to generate massings for larger cohesive
groups of buildings, I decided to include a boundary of a larger urban block, if present
within the frame, as one of the data layers stored for each data sample. To define what
constitutes a block, I make use of the street network features. An urban block in this case is
defined as a continuous area completely encircled by streets.
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3.3 Data collection

I extract the polygons defined by the NWB road network curves (center lines of any named
street or road in the Netherlands) and choose the one closest to the center of the frame as
the “block” of a specific data sample. If no such polygon is found, no block is associated
with the data point.

Properties of each block are stored, to enable further filtering of the blocks with specific traits
to be used for training. Some of the stored properties are the number of buildings contained
within the block, their volume and footprint areas, their functional uses and construction
year(s) and whether the block is located within the central part of the frame (to avoid training
on blocks with site context obscured on one or multiple sides). Finally, the block geometry
is rasterized as a bitmask and stored to a local collection.

Figure 3.8: Example of a single “street block” defined as a continuous area separated from the
surrounding by roads on all sides

Density reduction masks

To test the ability of the GAN model to recognize deficiencies within existing urban fabric
which could be used as potential targets for densification, I decided to generate a series of
density reduction maps. These are boolean masks masking out a progressively increasing
amount of buildings randomly selected from all buildings present within the frame.

The goal is to use these to mask out a varying amount of existing buildings and let the
model learn to identify the areas with gaps in the fabric of the existing build-up area. Based
on the amount of removed building in the datasets the model is learning from, it is expected
to have different thresholds for to which extent it learns to fill the gaps in the fabric. If
a real site without any existing buildings removed is input into a GAN model previously
trained to find the underdeveloped locations in sites with synthetically decreased density, I
expect the model to find new unique locations where the site could be filled in with new
development.
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10% reduction maskComplete massing 25% reduction mask 40% reduction mask

Figure 3.9: Series of density reduction maps

Site context

To provide additional information to the model to infer the building massings and placings
from, I intend to include additional information to the model. I decided to focus on infor-
mation on the land cover, the natural landscape features, the road surfaces and any major
road links in the area. This information can be sourced from the TOP10NL topographic map
model of the Netherlands. The data are requested via WMS as individual layers of the full
map. To store the simplest possible representation of the information, without relying on
the color or texture features of the images, a series of filters is applied to the requested data
before converting them to a black and white representation (see Figure 3.10).

Figure 3.10: Site context map layers sourced from TOP10NL, converted to greyscale repre-
sentation.
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3.3 Data collection

Data scrapping method

After deciding on the scale, the next challenge is how to iterate through the available datasets
step by step to export the data points for the GAN model to eventually learn from. The first
proposed approach is similar to the XYZ map tiling method, the same approach that web
map providers such as OSM or Microsoft have adopted for breaking large map datasets into
smaller more manageable map tiles [Garcı́a et al., 2012]. For a chosen area of interest, the
algorithm divides the location into a set of tiles of set size (ie. 256 by 256 meter) and then
iterates through the tile grid, requesting and collecting data for each tile. In each tile, the
building closest to the tile center is then considered the target building (see Figure 3.11).

However, after several iterations of building training datasets using the above-mentioned
XYZ map tile methods, some disadvantages were identified. First of all, I observed that if I
use an XYZ tiling of a bounding rectangle of larger urbanized area, not all parts are equally
densely built up, with many tiles containing very few buildings if any at all - essentially
creating a wasted data point not usable for training. Second, the method is fairly ineffi-
cient, since in one tile multiple buildings of interest may lie, but only one can be captured
as the target building per tile and, by definition of the XYZ tiling, the same area cannot
be contained within any other tile. This means that plenty of usable building data will be
skipped. Finally, this method does not allow for specifically targeting certain types of build-
ings, which is useful for quickly building up a specific dataset. Instead, it gathers a random
collection of building types roughly corresponding to the building type distribution in the
tiled area area.

1. Pick a tile of interest 2. Find a building closest to 
the center

3. Find all parcels building 
overlaps

Figure 3.11: Algorithm to find a target building and a parcel within the tile.

To solve these issues, I eventually decided to use a different data collection strategy, uti-
lizing the information on individual buildings available in the BAG. By means of XML-
encoded filters included in the database request, one can search the BAG database for spe-
cific kinds of buildings, either in the area of interest defined by a bounding box, or in the
whole dataset (see Figure 3.12). The maximum number of features returned via WFS request
to BAG database is 1000, but by using pagination parameters it is possible to quickly scan
the database for larger amounts of buildings.

Once the properties of buildings to be added to the local database are defined, the data
collection pipeline iterates through the features returned by the BAG WFS service. The
frame of interest, sized depending on the scale, is centered on the mid-point of the building
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<Filter>
  <And>
    <PropertyIsEqualTo>
        <PropertyName>gebruiksdoel</PropertyName>
        <Literal>woonfunctie</Literal>
    </PropertyIsEqualTo>
    <PropertyIsGreaterThan>
        <PropertyName>oppervlakte_max</PropertyName>
        <Literal>200</Literal>
    </PropertyIsGreaterThan>
  </And>
</Filter>

Figure 3.12: Example of a simple XML Filter used return all residential buildings with foot-
print larger than 200m2

of interest, defined as a center of each building’s bounding rectangle. Therefore, all the
above-mentioned image-based data layers are collected by requesting the geometry features
and raster map layers with this generated frame of interest used as a boundary. The images
are then converted to a single-channel (black and white) representation before being stored
(see Figure 3.10). This is done to make eventual image manipulation and data merging easier
when manipulating the raster layers into the representations used for the GAN training.

Additionally, I compute and collect a number of additional statistics that can be used later
to filter the collected data when creating tailored training datasets. See Table 3.1 for an
overview of the collected variables. These variables represent an elementary but complete
enough set for us to derive a number of spatial statistics per target parcel, block or the
complete area of interest (I will expand on these in Section 3.6 Evaluation on page 41).
This is then particularly useful when building training datasets targeting specific types of
building configurations.

Variable Collected for

BAG Pand ID main building
Coordinates (EPSG:28992) main building
Area main building, parcel, block
Area of buildings contained within parcel, block, frame
Footprint perimeter length main building
Volume main building
Count of buildings within parcel, block, frame
Volume of buildings contained within parcel, block, frame
Building age statistics main building, parcel, block, frame
Building use statistics main building, parcel, block, frame
Proportion contained within frame main building, parcel, block
Proportion contained within subframe main building, parcel, block

Table 3.1: Overview of main variables collected per collected data point
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3.4 Training data

3.4 Training data

With the data collection pipeline established , one is able to generate a large number of data
points for which multiple layers of rasterized spatial data can be retrieved. These include;
information on building forms in the area captured, stored in its height-map representation
at multiple LoDs, information on the axis of pedestrian and vehicular network in the area,
and information on the natural features land cover and the extents of street surfaces (see
Figure 3.13).

I also collect a number of rasterized binary masks, encoding different areas of interest in
the frame, which can serve as targets for the GAN model to fill in; collections of buildings
in the frame, single parcel extents or single city block as defined by street network (see
Figure 3.8).

Figure 3.13: All raster data layers extracted per data point; starting from top row - 3D BAG
height-map, natural landscape features, land cover, block footprint, target building footprint, target
parcel footprint, street axes, major road links, all road surfaces, set of 3 density reductions (10-40%)
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Additionally, a set of both numerical and semantic properties associated with each collection
of rasterized spatial data are stored. This data are derived before the rasterization from its
original feature representations captured within the frame of interest. This includes infor-
mation like built-up area, gross floor area (GFA), volume statistics, building age statistics or
building use information. Most of these statistics are stored multiple times, per each target
feature mask available as a raster.

Collected statistics are used when building training datasets are targeted at specific type
configurations or buildings with specific properties. For each data point a number of spatial
indicators [Berghauser Pont and Haupt, 2009] can be derived, defining the characteristics of
each area of interest (AoI) - e.g. a cadastral plot, a street block, or their surroundings.

These include the floor space index (FSI) (see Equation 3.1) and describing the general in-
tensity of use in the AoI;

FSI =
GFA of all building in AoI

Total area of AoI
(3.1)

ground space index (GSI) (see Equation 3.2) describing the density of built up areas in the
AoI;

GSI =
Total footprint area in AoI

Total area of AoI
(3.2)

or open space ratio (OSR) (see Equation 3.3) describing the intensity of use of open space in
the AoI;

OSR =
Total non-built-up area in AoI

GFA of all building in AoI
(3.3)

For example, if one wishes to build a GAN model trained on specific types of densely built
residential blocks built between 1970 and today, one can introduce a series of query filters
when retrieving data points from my local database to retrieve all matching samples.

1. FSI in image frame ≥ 0.3

2. FSI inside street block ≥ 0.9

3. mean construction year inside street block ≥ 1970

4. use inside street block contains ‘*woonfunctie*’ ?

Using such queries I can swiftly design and implement experiments to train the GAN model
on various datasets, controlling the type of site contexts and building typologies present
within them, and observe how the generated solutions output by the model differ depending
on the kinds of samples the model was trained on.
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3.4 Training data

FSI

GSI

OSR

Figure 3.14: FSI, GSI, OSR (redrawn from [Berghauser Pont and Haupt, 2009])

With the data of interest selected, the next step is composing the structure of the image pairs
the model will train on. One image pair represents an example of the desired mapping from
image A to image B that one intends for the model to learn. The Generator tries to find a
general function that maps the contents of each image A in the training dataset to an image
as similar as possible to its corresponding image B. In parallel, the discriminator learns to
classify whether an observed image pair contains a real image B from the training dataset,
or a fake image B generated by the Generator.

Thereafter, I will summarize my method for composing these image pairs for the purpose of
training GAN models capable of generating new building massing designs within existing
site context as follows; Image A contains the geometry of the buildings in the frame, with
a subset of buildings within the area of interest removed. Instead, this removed subset is
contained in the image B, since it is the goal of the model to find a function that can generate
this target subset of building geometries. Additionally, I include additional information in
image A, that I expect the model can benefit from when inferring the form of the missing
massings.

The standard implementation of Pix2Pix GAN architecture uses 3-channel RGB images with
8-bit color depth to train the model. I make use of these channels to separate various primary
data layers - geometry, site content, and area of interest (see Figure 3.16 RGB encoding).
This makes later data retrieval easier and reduces ambiguity in areas where the data layers
overlap, potentially improving the learned mapping of the GAN. Using this framework I can
then experiment with which data layers I use to compose each channel (see Figure 3.15).

35



3 Methodology

BAG3D BAG BRK NWB
IM

AG
E 

A

IM
AG

E 
B

SI
TE

 C
O

N
TE

XT

G
EO

M
ET

RY

A
O

I

TA
R

G
ET

EX
TR

AC
TE

D
 L

AY
ER

S
B&

W
 F

IL
TE

R

R
AS

TE
R

IZ
E

FEATURE PROCESSING 
PIPELINE

EX
TR

AC
T 

FE
AT

U
R

ES

TO
P1

0N
L

TRAINING 
IMAGE PAIR

Figure 3.15: Overview of a pipeline for composing spatial data into specific training image
pairs
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SITE 
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Figure 3.16: Proposed encoding of different data layers into separate RGB channels

3.5 Geometry extraction

The last step of the massing generation pipeline deals with the extraction of the massing
geometry suggested by the GAN network from the output images. The building geometries
are converted into a height-map before being used as training data for the network. There-
fore, one needs a method to retrieve the resulting 3D geometry from the height-maps the
model learned to generate.

It is good to note that due to the limitations of the methods used to create the 3D BAG
dataset, which acts as the primary source of building geometry data for this work, the
original building geometries contain no overhangs. This means the amount of information
lost during the translation between 3D geometry and its height-map representation is limited
only by the resolution of the height-map.

Considered approaches Multiple methods can be considered to reconstruct the geometries.
First is voxelization, a method where a number of voxels, based on the pixel’s value, is
constructed above each pixel of the height-map. Voxels, equivalent to pixels in 2D space,
represent values in discrete 3D space. The output layer of the GAN framework is a two-
dimensional array with the third dimension encoded in each field. Therefore using voxeliza-
tion effectively reconstructs the representation that the GAN model is outputting without
any additional bias.

The second method to be considered is vectorization based on the 3Dfier algorithm [Ledoux
et al., 2021]. This is the same method used to generate the 3D BAG’s LoD 1.1 geometry.
Footprint of each building is extruded to a single height, defined as a percentile of all heights
found within the footprint. Using the 3Dfier method has the advantage of generating simple
geometries with identical data-model to the original geometrical data used.

On the other hand, the 3Dfier method requires a vectorization of the building’s footprint as
a feature to be generated. Reliable vectorization of raster images and in particular outputs
of GAN networks is still an open problem [Dong et al., 2021], as it generates features that
are often too complex to be practical.
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A) B)

Figure 3.17: Methods of extracting 3D geometry from 2.5D height-maps; A: voxelization; B:
3Dfier method

Simplification of the vectorized features is possible, but inherently introduces some bias to
the output generated by the GAN model. Additionally, using the 3Dfier bases approach
requires using a single height value for the whole building footprint, effectively omitting
any height differences the GAN model generated. Essentially this corresponds to reducing
the LoD of the output to LoD 1.1.

Voxelization For the above-mentioned reasons, the voxelization of the output height-maps
as the primary method to evaluate the 3D geometry generated by the model. The vectoriza-
tion of the geometry based on the 3Dfier method is used only for visualization purposes.

The voxelization of the height-maps begins by converting the GAN output to its true gray-
scale representation by averaging the RGB channel values to avoid influence of any color
noise introduced by the GAN. Optionally, the image is downscaled from 256x256 pixels to
128x128 pixels as part of preprocessing pipeline to lower the amount of voxels generated and
improve computation speed on large datasets. Finally a raster smoothing filter is applied if
noise is still present within the height-map generated.

The image is deconstructed into an array of height values. Since I originally mapped a
range of building heights from 0–100 meters to RGB values (55,55,55) to (255,255,255), a
single integer step in gray scale value corresponds to a height difference of 0.5 m. The
dimension of voxels in the X and Y axis depends on the scale of the original image.
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3.5 Geometry extraction

Figure 3.18: Results of voxelization of a ground truth building feature rasterized using bilin-
ear interpolation (left) and nearest-neighbor interpolation (right)

Raster interpolation It is good to note here that during implementation I discovered the
importance of taking into account the image rasterization methods used to generate the
raster images in the training dataset in the first place. Most of the modern rasterization
libraries use by default some sort of edge smoothing algorithm to avoid “staircase” effects
created when pixelating non-orthogonal edges (also known as aliasing in the field of com-
puter graphics).

Popular interpolation methods are e.g. bicubic or bilinear interpolation, which introduce a
gradient of ‘in-between’ values around the edges of the shape. In my case, these interpo-
lated values are undesirable, since they introduce building heights not present in the real
dataset into the picture and ‘smoothen’ out the building edges. Instead, nearest-neighbor
interpolation is preferred when rasterizing the building features (see Figure 3.18).

Vectorization For extracting the LoD 1.1 building geometries using the approach based on
the 3Dfier method, the outline of the shapes present in the raster output is extracted using
the Potrace algorithm [Selinger, 2003] and, optionally, the complexity of the generated shapes
is reduced using the Ramer–Douglas–Peucker polyline approximation [Ramer, 1972]. The value
of the pixels contained within each shape is remapped to their original height values and the
50th percentile of heights contained within each footprint is computed. Since one can think
of the height-map as a representation comparable to a point cloud, this method is basically
equivalent to the implementation of the method used to generate LoD 1.1 3D BAG data.

These combined methods ensure that the building geometries used for the training can be
well represented in the rasterized format and that, after the model is trained, the geometries
can be recovered again from the GAN models output.

Recovering the 3D geometry is crucial for visually evaluating the height differentiation of
the resulting massing geometries, since most humans struggle with reading height-map
encoded information reliably. Additionally, it is useful for results analysis, since I can apply
the same methods used to evaluate the 3D spatial features in the training dataset to the
features generated by the network.
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Figure 3.19: Results of geometry extraction pipeline vizualized on LoD 2.2 model of TU Delft,
Faculty of Architecture [from top to bottom: 1. Original 3D BAG model; 2. Reconstructed
geometry using the voxelization method; 3. Reconstructed geometry using the 3dfier inspired
vectorization method; 4. Height-map representation of the geometry]

40



3.6 Evaluation

3.6 Evaluation

To evaluate the quality of the generated output, I need to define a similarity metric between
the training data and the generated results. In field of deep-learning, such similarity metric
is commonly referred to as loss function. Defining a universal loss metric for pairs of images
(or image encoded geometry data in our case) is still a difficult and open problem in the
field.

Traditional error metrics such as RMSE do not work well for image similarity evaluation,
since they “do not assess joint statistics of the result, and therefore do not measure the very structure
that structured losses aim to capture” [Isola, 2017].

GAN Loss In the GAN models, the inclusion of the Discriminator network partially circum-
vents this problem, thanks to Discriminator effectively learning its own loss function when
training to classify between generated and ground truth data. The Discriminator driven loss
function is referred to as GAN loss. But since the GAN loss characteristics are a direct result
of the training, one needs to adopt additional evaluation metrics to evaluate the training
results holistically [Zhu, 2017b].

One approach is to evaluate the results based on a perceptual visual similarity, which can be
done using perceptual studies with real human testers such as Amazon Mechanical Turk, or
CNN based image similarity models such as Fréchet Inception Distance [Heusel et al., 2017].
The second, recommended, evaluation approach is to evaluate the model directly in the
context of its final application it is intended for [Isola, 2017].

Objectives My goals for evaluation of the model’s output in the context of its application
are;

• Evaluating and quantifying the spatial characteristics of the building massings gener-
ated by the model

• Proving or disapproving the hypothesis that if the model trained on buildings with
certain traits, these traits will be maintained in the generated output

Spacematrix Spacematrix method [Pont and Haupt, 2007] is a framework for embedding
urban morphological typologies into two-dimensional space, based on quantifiable variables
describing the urban form, such as density, compactness, amount of open space or building
heights. These variables are represented by a combination of 3 metrics, already introduced
in the previous chapter - FSI, GSI, OSR, (see Equation 3.1, Equation 3.2, Equation 3.3) and
additionally Levels (L), describing the mean number or floor levels in an urban area.

The Spacematrix embeddings are shown to correlate well with general recognized classifica-
tions of building layout typology [Berghauser Pont and Haupt, 2009] (see Figure 3.20) and
can be used as a quantitative method for classification of the urban morphology of existing
urban structures [Ye and Van Nes, 2014].
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Figure 3.20: Urban morphological types mapped as their Spacematrix encodings (image
from Pont and Haupt [2007] The relation between urban form and density)
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Conclusions To evaluate and describe the traits of building massings present both in the
training data and massings generated by the GAN model, the Spacematrix embeddings of
both the ground truth and generated data are computed and compared. The goal is for the
trait from training data to be replicated in the generated data.

Since the chosen evaluated metrics depend both on the building massing itself, and its
relation to the site context, this way such evaluation can validate or disprove the hypothesis
that the model is able to react to the site context and generates solutions that respect the
massing’s general site relations to the surrounding buildings.

Strong correlation between the Spacematrix variables for the training and generated data
would mean the model is able to infer the spatial properties of buildings it was exposed to.
Therefore the massings model generates should be steerable towards certain morphological
characteristics by curating the input designs it is trained on.
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3.7 Flowchart

Figure below contains a diagrammatic overview of the proposed methodological frame-
work.
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Figure 3.21: Flowchart diagram of the proposed methodology
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In this chapter I will further elaborate on the implementation details on the above described
methodology, introduce any new findings or learning I made while implementing the meth-
ods and developing this research work, and present the overview and a description of the
various experiments I designed and executed using my methodological framework.

4.1 Tools used

GAN The GAN model is implemented in Python using PyTorch library, a deep-learning
framework allowing for GPU accelerated training [Paszke et al., 2019]. The code for the
Pix2Pix GAN model is mostly based on the implementation developed as part of the Cy-
cleGAN/Pix2Pix project by Zhu [2017b]. I also experimented with using BicycleGAN [Zhu
et al., 2017], a derivative model adding the option for one-to-many input-to-output map-
ping to the original Pix2Pix implementation, using the implementation provided by [Zhu,
2017a].

Feature processing The data retrieval, feature pre-processing and geometry reconstruction
was implemented in Grasshopper, a visual programming extension for Rhinoceros 3D model-
ing software. Most of the nodes were developed during the course of this research as my own
custom scripts written in IronPython. These include the methods for querying databases via
WMS and WFS, and parsing the GeoJSON and CityJSON responses into Rhinoceros 3D geom-
etry types. The rasterization of spatial features and raster postprocessing was implemented
using the Bitmap+ [Mans, 2021a] and Graphic+ [Mans, 2021b] libraries for Grasshopper.

Data processing The processed data were collected in CSV files, which were linked to
a structured collection of PNG files containing raster data layers associated with each data
point. The collected training data exploration and filtering tools were implemented as Python
Notebooks, using Pandas library for tabular data processing and Pillow library for image ma-
nipulation.

Hardware As a point of reference for computation time mentioned in the following sec-
tions, all data processing and GAN training has been run on a Windows PC with following
configuration.

1. CPU: Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz (4 cores)

2. GPU: NVIDIA GeForce GTX 1050 Ti MaxQ (4GB VRAM)

3. RAM: 16 GB
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Remote databases

Local database

Preprocess features

Extract generated features

Prepare training dataset

Train a model

Figure 4.1: Overview of software stack used at different steps of the process

The code and scripts developed during the course of this project are available on Github at
https://github.com/ondrej-vesely/massingGAN.

4.2 Data collection

APIs and formats Data on current building stock in the Netherlands were collected from
multiple open data sources using multiple standards and protocols (please refer to Sec-
tion 3.1 3D building models and Section 3.2 Other input datasets for overview of used
datasets). While the 3D BAG geometry could be downloaded from the 3D BAG APIs us-
ing i.e. CityJSON [Ledoux et al., 2019] or OBJ encoded tiles of ca. 3500 buildings, to make
the process of retrieving the LoD 2.2 building models faster, I store the building geome-
tries inside a local copy of the 3D BAG PostgreSQL database instance and retrieve them as
GeoJSON encoded features via local SQL queries. The LoD 1.2–1.3 3D BAG is requested
GeoJSON encoded features via WFS from 3D BAG servers directly. A WFS is used as well
for retrieving data openly available in a feature (vector) format, such as cadastral plot or
street network geometry. Additionally, WMS are used to retrieve data available only in the
map (raster) format, such as topographical maps. I implemented the methods required to
query and parse such data in the software without the native capability to do so (i.e. in
Rhinoceros 3D).

Local database and filtering As a primary key for storing collected data points in the
database I use the BAG Pand number, an unique identifier assigned to every building object
in the Netherlands. When adding data points to the local database, I begin with querying
the BAG database for features matching the desired properties. This is done using XML
encoded filter queries, based on the Open Geospatial Consortium (OGC) Filter standard,
which can be passed to the BAG service as part of the WFS request in the Filter parameter.
The OGC Filter standard allows use of numerical or lexical comparison operators on the
feature property fields and spatial operators on the feature associated geometries to select
the kind of features to be returned.

The BAG service returns features based on their order in the database, with the database
itself being ordered in ascending order of the BAG identifiers. Since the lower BAG numbers
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are usually assigned to the buildings in the northern parts of the Netherlands, one can notice
a bias in the number of data points collected increasing towards the north (see Figure 4.2).
This is indeed the case, since I often collected data only for a part of the returned BAG
feature lists, unintentionally collecting northerly data points and omitting the more south-
ern regions. This bias can however be eliminated when creating the final training dataset
by specifying the spatial extents of specific areas from which I intend to sample the data
points.

Results During the course of the research, I collected data for 67,576 unique BAG features,
with some of them being collected multiple times at different scales. On average, I stored 12
raster maps and 30 additional statistics per data point (see Figure 4.3). I was able to scrape
around 500 data points per hour, with slight variations depending on the size of the area
of interest. That corresponds to approximately 135 hours of data collecting time to build the
final dataset.

4.3 Training and postprocessing

GAN architecture During the course of the research, I experimented with two specific
open-source implementations of the image translating GAN frameworks - Pix2Pix GAN
[Zhu, 2017b] and BicycleGAN [Zhu, 2017a]. I was interested in training BicycleGAN on the
same training data and comparing the results to my pix2pix implementation. BicycleGAN is
a GAN model partially derived from the original Pix2Pix GAN code. Its goal is to allow for
mapping single input to multiple outputs, instead of the deterministic one-to-one mapping
generated by Pix2Pix GAN. It achieves this by injecting a latent code (random z-vector) into
the generator.

While I managed to get BicycleGAN behave as expected during training on the example
datasets provided by the framework’s authors, for my own datasets I observed almost no
changes to the generated outputs while traversing the latent space (see Figure 4.4). I there-
fore postponed further research into this model, but plan to revisit this architecture at a later
date as a potential topic for future research.

Generator architecture I experimented with different CNN architectures used as the gen-
erator network in the Pix2Pix GAN model, the U-Net 256 [Ronneberger et al., 2015] and
ResNet-9block [Hesse, 2017]. When comparing the result obtained using the two Generator
architectures, I found that while ResNet in some cases generates more regular and ”orthog-
onal” layouts compated to U-Net (see Figure 4.5, row [a]), in other cases the ResNet model
’collapses’ and tends to fill the whole plot with a single massing lacking any defintion (see
Figure 4.5, row [b]).

While I haven not analyzed the reasons for this behaviour further, these findings due not
align with the findings of a similar research project — GANMapper by Wu and Biljecki
[2022] — where the two generator architectures are compared in more detail and a conclu-
sion is reached that ResNet is clearly superior for use on geographical data. Therefore more
research is needed to trully evaluate which Generator architecture performs better. For the
purspose of this thesis I decided to use U-Net 256, since is the architecture that Pix2Pix GAN
by Isola et al. [2017] was originally implemented with.
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Figure 4.2: Plot of locations of 67,576 data points collected during the course of the research.

48



4.3 Training and postprocessing

Figure 4.3: Database entry for a typical data point
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mapping A mapping B

Figure 4.4: Results of the experiment with using BicycleGAN

Input Output U-Net Output ResNet Ground truth

a)

b)

Figure 4.5: Comparison of results obtained with different Pix2Pix GAN Generator CNN
architectures
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without denoising after denoising

Figure 4.6: The example of the effect of the adaptive smoothing filter on height-map noise
removal

unfiltered heightmap traced features (Potrace) feature simplification

Figure 4.7: Example of the vector feature reconstruction pipeline used on one of the samples

Noise removal To remove some remaining noise present in the generated images, I de-
cided to use an AdaptiveSmoothing image filter from Accord.NET computer vision and image
processing library. The filter is based on a method presented by Matalas et al. [1997] and
aims to remove image noise while trying to preserve any edges detected (see Figure 4.6).
This filter is only implemented as part of the output processing pipeline used before the
generated output is voxelized or vectorized, and is not included in the images presenting
the examples of the the raw height-maps generated by the GAN model in the GAN output
figures in this work. Additionally, any height-map accuracy calculations and statistics are
calculated without this filter applied.

Vectorization For the 3Dfier process, the feature contours are traced with a Potrace algo-
rithm [Selinger, 2003], used in Grasshopper via the Bitmap+ image processing package. I
further simplify the generated feature polygons using the Ramer–Douglas–Peucker polyline
approximation [Ramer, 1972], with a tolerance value of 1.0 m. This number has been found
to be effective at removing redundant vertices from the image tracing algorithms output in
most of the cases encountered during experimentation.
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Training times As a general size of training datasets and training time, I aimed at generat-
ing at least 1000 training images per experiment, if possible, and letting the model train for
200 epochs (epoch is a measurement of how many times the model has visited each training
sample during its training). On the used hardware, such training with RGB image pairs at
256x256 resolution completes in under 11 hours. With larger datasets, I observed that one
can proportionally lower the amount of epochs the model trains for to get reasonable results,
although letting the training for the full 200 epochs can be still beneficial.

Inference times After the trained model is loaded into memory, the inference time for
generating a single output for a given input image on the GPU is around 100ms. This means
the time required for generation of an output is within the necessary speeds for real-time
application without a user experiencing significant latency. The current bottleneck in my
implementation is the geometry extraction pipeline, which takes around 0.5-1.0 seconds for
each 256x256 pixel image - both for the voxelization and the 3Dfier extrusion method. I
believe this part could be optimized for much higher computation speeds - although this is
currently outside the scope of this research.

52



4.4 Experiments

4.4 Experiments

In this part I will introduce several selected experiments I implemented using the developed
methodology, and will present an overview of results for each of them. The selected experi-
ments differ in the kind of information the model receives in the input training images and
what information it learns to fill in from the desired output images, and the kinds of urban
situations and morphologies captured in the training data.

The goal of these experiments is to compare the performance of the model in various appli-
cations and help answer the research questions of at what scales, levels of detail and kinds
of context the proposed model is applicable.

By querying the local database built during the data collection process, all collected spatial
data can be selectively retrieved based on its scalar and semantic properties, which allowed
me to design a diverse set of test cases to validate my methodology on.
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Figure 4.8: Conceptual overview of the data experimentation framework
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4.4.1 Single residential building generator

In this initial experiment, I wanted to establish a baseline for further tests. I focused on
minimizing the problem space and reducing the number of variables. Therefore I decided
to focus on the smallest and most granular scale captured in the database: a single massing
of a building using its parcel as an area of interest for the model to fill in.

The input images included only the spatial information on the parcel where the buildings
should stand on, the surrounding building massings, and the street network in the area.

To capture as many data points in the training dataset as possible, I aimed to define the
target building as a well represented feature in the collected data. The selection criteria is
designed to target single mid-size residential buildings, defined as follows;

1. Only residential use (‘woonfunctie’)

2. Built between 1980 – 2010

3. GFA between 200 and 400m2

I found around 27,674 data samples fulfilling the criterion above, with 150 samples removed
from this number as evaluation samples that the model does not have access to during
training. The training was stopped after 25 epochs. With such a large dataset the training
took around 1h 20mins per epoch. Longer training with a similar dataset might be done at
a later date to test if the results can further improve. See Figure 4.10 on the next page for an
overview of typical results.
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Figure 4.9: The composition of the training input images for Single residential building
generator
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Input Output Ground truth

Figure 4.10: Examples of generated outputs for validation samples from Single residential
building generator

55



4 Implementation and experiments

4.4.2 Residential street block generator

The purpose of the second experiment is to test whether I could replicate the results of the
first case study on a scale of large building configurations. As target data I chose the same
kind of building typology, a residential mid-sized house, but this time in a situation where
the buildings form into a distinct street block. Selection criteria are defined as follows;

1. Only residential use (‘woonfunctie’)

2. ≥ 16% of the whole frame covered by buildings

3. Block built between 1990 – 2010

4. Block buildings have surface between 200 – 1000m2 (‘oppervlakte’)

The model receives all the information that I used in the previous experiment, but this time
I added further site-context in the form of land-cover, natural landscape feature data, and
road extents data. And, crucially, in the input image’s blue channel used for encoding the
area of interest I replace the parcel boundary with the boundary of one of the street blocks
detected.

I generated exactly 1,000 data samples fulfilling the requirements described which were
rasterized into 256x256 images at scale of 1 m/px, with again around 5% of additional data
points added as evaluation samples. The model was trained for 200 epochs. See Figure 4.12
for an overview of typical results.
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Figure 4.11: The composition of the training input images for Residential street block gener-
ator
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Input Output Ground truth

Figure 4.12: Examples of generated outputs for validation samples from Residential street
block generator
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4.4.3 Bloemkoolwijk street block generator

With the third experiment I planned to explore the diversity in morphological typology
the model is able to generate, based on which kind of specific archetypes it is trained on. I
decided to train only on examples of specific late-20th–century types of residential neighbor-
hoods, familiarly known as Bloemkoolwijken in Dutch, or “cauliflower” districts in English.
These neighborhoods, built mainly between 1970–1990, have a distinct structure to their
street network which gives them their name.

I defined the target data as residential building street blocks similar to the previous generic
residential building dataset, with the exception of spatially limiting the area from which data
are retrieved to extents of typical Bloemkoolwijken - Kronenburg in Arnhem, Peelo in Assen and
Holy-Noord in Vlaardingen (see Figure 4.13). Same as in the previous experiment, I generated
exactly 1000 training data points, with additional 50 reserved for evaluation. The selection
criteria are:

1. Within AoI (see above)

2. Block contains residential use (‘woonfunctie’)

3. Area encompassed within the block ≥ 2000m2

4. FSI inside the block ≥ 1

In Figure 4.14 you can see results generated by both the Bloemkoolwijk model and the generic
residential model applied to the sites never seen before by either of the models, but matching
the training data in density and type of use.

Figure 4.13: Spatial extents of areas explored in Bloemkoolwijk street block generator
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Input Bloemkoolwijk model Generic model

Figure 4.14: Examples of generated outputs for validation samples from Bloemkoolwijk
street block generator
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4.4.4 Urban fabric densification

The purpose of the fourth experiment is to evaluate the model’s ability to identify patterns
in urban fabric and to fill the existing gaps, with a goal of training a model capable of
proposing changes to density of an area by a given ratio. I have defined as target data for
generation of training data samples as dense urban centers, defined as;

1. Containing buildings with GFA between 500 – 1000m2

2. Containing buildings built between 1990 – 2010

3. One of the uses must be office (‘kantoorfunctie’)

4. FSI of whole area ≥ 0.5

I mask a certain amount of buildings within the area using the density reduction masks
generated during feature preprocessing. As already mentioned in chapter XX, the density
reduction mask is a binary mask of a randomly selected subset of all buildings, with the
subset having reduced FSI-measured density compared to the original layout - with the
density reduced to 90, 75 and 60% of value. In the results below, I used the 75% density
reduction mask.

Other than the existing massing, the model also receives the land cover, street surface, nat-
ural landscape features and street axis data as part of the input raster data. See Figure 4.16
for an overview of representative results for this model.

Real situation

Input

Output

‘Hide’ a certain amount of 
buildings from existing urban 

areas in the training data

Generator learns to fill in the 
building features that are 

missing

Figure 4.15: Visual overview of the concepts behind the Urban fabric densification
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Input Output Ground truth

Figure 4.16: Examples of generated outputs for validation samples from Urban fabric densi-
fication
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4.4.5 Study on scale

In the fifth experiment I wanted to focus on a more spatially intensive building typology
than in the previous test block generation experiments, to test how the model copes with
larger building scales. I chose large office park blocks as a target context. The goal of this
experiment is to compare how the model behaves with lower feature resolution. The target
sites are defined as any block with the following selection criteria;

1. Containing building with surface ≥ 1000m2

2. Containing building built between 1990 – 2014

3. One of uses is office (‘kantoorfunctie’)

4. Total area encompassed within the block ≥ 4000m2

5. FSI inside the block ≥ 1.0

Both models are trained on exactly identical 1000 data samples with raster maps exported
at resolution of 256x256pixed, the only difference consisting in the scale of the data capture,
with lower scale version at 512x512m (2m/pix) and higher scale at 256x256m (1m/px) (see
Figure 4.17).See Figure 4.18 for an overview of representative results, with the results for
both scales included above each other, first for 2m/px scale, followed by 1/px scale.

Input Ground truth Output

25
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51

2x
51

2 
m

Figure 4.17: Same locations generated at two scales for the purpose of Urban fabric densifi-
cation
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Input Output Ground truth

Figure 4.18: Examples of generated outputs for validation samples from Urban fabric densi-
fication
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4.4.6 Study on level of detail

In the sixth experiment I aim to evaluate the importance of the level of detail of the building
3D geometries used in the training and as the models input data. The type of situations the
models were trained on were identical to the residential street blocks used in Residential
street block generator on page 56, but in this instance, each data point is generated at all 3
different LoD available through the 3D BAG service - LoD 1.2, LoD 1.3 and LoD 2.2.

The goal of this experiment is to help answer the question of what LoD of 3D building
geometry is necessary to replicate the results presented in this work and thus, in what
contexts can such models be applied.

To ensure the comparability of the results, the three models were using the identical training
data sets of 1000 images, each image containing the exact same location and information,
with only difference being the LoD of the building massing height-map. All three models
were trained for 200 epochs. However, it should be noted that training of a Pix2Pix GAN is a
non-deterministic process due to the random initialization of the network weights at the start
of each training. Therefore, even when comparing two Pix2Pix GAN trained for an identical
number of epochs on fully identical datasets, one can expect at least slight differences in the
outputs of such two models.

In Figure 4.19 you can see the overview of the differences between the three LoDs and in
Figure 4.20 an overview of representative results for each model is provided.

LoD 1.2 LoD 1.3 LoD 2.2

0m

50m

EMPTY

Figure 4.19: Height-maps for the same location (TU Delft, Faculty of Architecture) generated
at different LoDs (color grading exaggerated for clarity - in the real training data, white
corresponds to 100m height)
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5 Results

In this chapter I will summarize my observations and interpretations of the results from
the experiments conducted and conclude some general findings about results generated
using my implementation of the proposed methodology. The findings mentioned in the
Section 5.1 - Visual analysis are based on my intial visual analysis of the generated results
and interpretation of the behaviour of the models based on the experience with methods
gained during the experiments. More detailed statistical analysis of the results is included in
the next Section 5.2 - Similarity statistics, where I apply statistical methods to the generated
outputs to quantify the similarity of the generated outputs to the training data.

5.1 Visual analysis

Single residential building generator The model trained for generation of a single massing
on a single parcel (page 54) was trained on the highest amount of training samples of all
models trained during this research, which is probably the reason why can one obsere better
definition in the shapes generated by the model compared to the other experiments. The
model seems to be capable of generating properly sized massing for the context they are in
and properly keeps setbacks from other buildings.

One limitation of the results generated bt this model is that — since the target building
in the training data was located in the center of the frame — the model learned to always
predict the generated volume in the center of the frame as well. This reduces the diversity of
the results. The model has less freedom over the placement of the building massing inside
the boundaries of the plot. On the other hand, this can be used to actually steer the model
towards placing massing at a specific position, which can be seen as a useful feature.

Although it is hard to argue as to why the model generated these specifying massing in each
case, the results look convincing and exchangeable for ground truth at first observation.
Even when the generated height structure is noisy, in general the model manages to match
the heights of neighboring buildings quite well. I will elaborate upon this point in the next
Section 5.2 - Similarity statistics, when analyzing the height distributions of the massings
generated by the model.

Residential street block generator The second experiment (page 56) was focused on ex-
tending the typology from the previous experiment to full street blocks. The street block
in this case is defined as any area border from each side by a named street or road, al-
though a criterion on a minimum density of such block was placed on the data extracted for
the training dataset. The resulting model trained on only 1000 data samples (without any
data augmentation) seems to be capable of generating realistically looking building arrange-
ments, respecting the boundaries of the site and the scale of surrounding buildings.
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Input Output (2x zoom) Ground truth (2x zoom)

Site Voxelized output Vectorized output

Figure 5.1: Massing generated for a single parcel from validation dataset for Single residen-
tial building generator

Figure 5.2: Rendering of voxelized result from Single residential building generator
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The model also seems to be able of observing massing patterns present on the site and
replicating them (see Figure 5.4). However, I could definitely observe that the model has
a tendency to generate free standing buildings, even in situation when a the surrounding
blocks on the site all have linear facades with low porosity (see Figure 5.3).

The tendency to generate a specific typology can be considered as a limitation of this model
if one wishes to create a universal model capabable of replicating street block style of an
urban area. At the same time this property can be beneficial in case one desires to generate
repeatable results with constant block style. With a collection of similar models, with each
one reliably generating trained typology independent of the context, one could use these
models almost like a library of solutions, ready to be plugged into any context.

Input Output Ground truth

Figure 5.3: Height-map generated for a residential street block from Residential street block
generator

Bloemkoolwijk street block generator The third experiment (page 58) was focused on com-
paring the results of a model trained on residential housing typology of Dutch Bloemkoel-
wijken, to a model trained on the generic uncurated residential neighborhood samples. The
results show that the model is at least to a certain extent able to extract specific morpholog-
ical traits out of existing urban configurations and apply them to new situations.

The model couldn’t capture the most defining feature of Bloemkoolwijken, which is their
sprawling tree-like street network, since the street patterns are already defined in the input
data. But, instead, it learned another morphological trait one can observe when studying
these neighborhoods, which is the very linear form of row houses built along the streets.
The forms generated by the model trained on these neighborhoods are, at least by my visual
evaluation, indeed distinctly more linear than for the generic model, with less setback and
gaps between buildings.

When testing both generic and ‘cauliflower’ models on site never seen before in the training
data, both models preserved their traits which were observed during training This tendency
to generate linear forms becomes especially evident when comparing the results with the
results generated for the same sites using the ‘generic’ residential block model (see Fig-
ure 5.5).
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1. Area of
interest

2. Voxelized
output

3. Vectorized
output

Figure 5.4: Rendering of the results from Residential street block generator
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1. Area of
interest

2. Generic
residential

model

3. Bloemkool-
wijk model

Figure 5.5: Rendering of the results from Bloemkoolwijk street block generator compared to
the results of the model from Residential street block generator using an identical input
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Urban fabric densification The fourth experiment (page 60) represents a method for train-
ing the model to autonomously identify gaps in existing urban fabrics and generate built
volumes that could potentially fill them. If the model trains on synthetically “reduced”
urban structures and learns to fill them in a way that resembles the original fabric, I hypoth-
esized the model would be able to find real gaps in the urban areas, even in datasets that
had no existing building intentionally removed.

From the results of the experiment, the model seems to indeed behave this way. Even in areas
never seen before in the training data, with already a fairly dense structure, it manages to
find reasonable ways to complete the shapes of the urban forms.

Certainly, some of these interventions would not be possible due to existing infrastructural or
ownership limitations, land encumbrances or other boundary conditions not represented in
the input data. But the model seems to respect the land-use limitations (blue input channel)
and street boundaries (green input channel) and leave these areas empty (see Figure 5.6).

In my opinion such a model could be quite useful as a “smart” infill tool for explorative den-
sification studies. The ability to quickly highlight gaps in current urban areas with potential
for infill could serve as a “quick-scan” tool for municipalities and city planners, helping
them assess the densification potential of various parts of a city fabric (see Figure 5.7).

Input (real situation) Output Combined (densified)

Figure 5.6: Height-map of additional massing added to urban area from Urban fabric densi-
fication
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Figure 5.7: Rendering of the results from Urban fabric densification for different areas from
validation dataset
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Study on scale The fifth experiment (page 62) is centered around testing the influence of
the image scale on the training result. I can conclude from the results that the scale is indeed
an important parameter to consider when creating the training datasets and it can have a
decisive influence on the clarity of the generated shapes.

The results of the model trained at 512x512m frames are clearly less detailed compared to
the 256x256m results. The additional site context visible to the model at higher scales does
not seem to outweigh the reduced amount of information dedicated to the target feature
itself. The 1px/m seems as a good middle ground for a scale to use, although additional
experiments with even more details could yield interesting results.

Noteworthy as well are the results of the model trained on large office blocks from 1990 and
later, with generated forms distinctly different from the previous models (see Figure 5.8).

Figure 5.8: Rendering of one of the results from Study on scale
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Study on level of detail The sixth and last experiment (page 64) aims to evaluate the
importance of the level of detail of the building 3D geometries used in the training. The
three models were trained on identical datasets, with the only difference being the LoD of
the height-maps used to represent the building geometries.

When comparing the height-maps generated by each of the models, it seems that the LoD 1.2
and LoD 1.3 trained models tend to generate buildings with larger footprints compared to
LoD 2.2. This could be caused by the footprint discrepancy between the footprint geometries
provided for different LoDs in the 3D BAG dataset, where in some cases part of the BAG
footprint of a building are omitted in the LoD 2.2 models (see Figure 5.10).

Additionally, one can observe much less noise in the height information generated by the
lower LoD models (especially LoD 1.2) compared to higher LoDs. This results in cleaner
roof geometry, requiring less drastic smoothing of the generate heightmaps to get reasonable
results (see Figure 5.9).

My interpretation of this issue is that since LoD 1.2 models use only single height for the
whole footprint, the GAN model learns to output a single greyscale value for each generated
shape to match the ground truth data. It is my hypothesis that the Generator network trained
on higher LoD models attempts to mimic the complexity of the roofscapes captured in e.g.
LoD 2.2 and tries find a much more complex function allowing for proper roof geometry
generation. This reduces the training bandwith of the Generator for output smoothness
optimization and results in increased noise, especially at lower training data counts. I will
focus on this issue more in depth in the next Section 5.2 Similarity statistics.

LoD 1.2 LoD 1.3 LoD 2.2

Figure 5.9: Height-map of ground truth input height-maps in Study on level of detail
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LoD 1.2

LoD 1.3

LoD 2.2

Figure 5.10: Rendering of the results from Study on level of detail for each of the LoDs the
models were trained on
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Conclusions From the visual evaluation of the generated solutions, both in their raw rep-
resentation and in the three-dimensional representation extracted using voxelization or vec-
torization, I find the footprint shapes generated by the GAN model seem quite convincing
and there seems to be a correlation between the typologies the model was learned on and
the generated results. I have to note here that the model seems to struggle with defining the
height values of the massing. The height-map values are often quite noisy, requiring at least
one iteration of image smoothing to get reasonable results in the z-axis after voxelization.
The LoD 1.1 vectorization of course takes care of this issue, but on the other hand it omits
any height details included inside a single footprint (see Figure 5.11).

This is problematic, since for non-solitary standing buildings, the shape detection struggles
to separate the overall shape into multiple parts. Therefore in densely built areas with little
to no separation between buildings, the vectorization approach is quite destructive with
respect to the information generated by the model. I will further elaborate on the behavior
of the model when generating height information by means of numerical analysis in the
next chapter.

Overall, the results show that the applied methodology framework is quite flexible in allow-
ing one to generate various models tailor for specific building types and scopes. Each of the
models trained in previous experiments generates its own distinct massing typologies. In
the next chapter I will present my analysis on how similar these typologies actually are to
the data the models were trained on.

Voxelization 
*heightmap preprocessed by adaptive smoothing filter 

3Dfier height extrusion
*footprint extruded to 50th percentile of roof height

Figure 5.11: Comparison of the two geometry extraction algorithms applied to the same
output
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5.2 Similarity statistics

The goal for the statistical analysis of the results is to quantify the similarity of the generated
outputs to the training data. This is done to test the hypothesis that if the model trained on
buildings with certain traits, these traits will be repeated in the generated outputs.

Metrics To evaluate the similarity of typological properties of the generated building mass-
ing, I quantify the volumetric properties of the generate massing as comparable quantitative
metrics based on the Spacematrix method [Berghauser Pont and Haupt, 2009] — FSI, GSI,
and OSR (see Section 3.4 Training data and Section 3.6 Evaluation for further explanation of
these metrics).

I compute the similarity of these metrics for the out-of-sample data points (data points
not seen by the models during the training) using root mean square error (RMSE) and
normalized root mean square error (nRMSE). RMSE is a is a standard method to measure
the error of a model in predicting quantitative data, defined as;

RMSE =

√
n

∑
i=1

(xi − yi)2

n
(5.4)

Lower the RMSE, the more accurate is the model to the ground truth data. However, RMSE
is a scale-dependent statistical measure — meaning its value depends on the general scale
of the values in data it is applied to. While this means it can be still used to compare
accuracy of different models applied to the same dataset and variable, it cannot be used to
compare accuracy across different datasets. One can normalize the RMSE to make it scale-
independent. Since there is no single established choice of normalization method, I chose to
normalize using the ground truth mean;

nRMSE =
RMSE

mean(y)
(5.5)

Together, RMSE and nRMSE, can be used to evaluate the ability of the model to match the
typological properties of the generated massings to the ground truth. Both for multiple
models applied to the same dataset (see Table 5.4) or for evaluating accuracy of models
trained of different dataset (Table 5.1, Table 5.2, and Table 5.3).

FSI GSI OSR

Ground truth (mean) 0.532 0.2461 1.65
Output (mean) 0.445 0.2591 1.873
RMSE 0.156 0.0489 1.102
nRMSE 0.293 0.198 0.667

Table 5.1: FSI, GSI, and OSR statistical similarity measures computed for all out-of-sample
massings from Single residential building generator experiment
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5 Results

Figure 5.12: The out-of-sample outputs generated by the Single residential building genera-
tor mapped to Spacematrix (plot template redrawn from [Pont and Haupt, 2007])

Output height

Area of underestimation

Area of overestimation

Ground truth height

Figure 5.13: Comparison of cummulative height distributions for the out-of-sample outputs
generated by the Single residential building generator compared to the ground truth
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FSI GSI OSR

Ground truth (mean) 0.77 0.2926 1.204
Output (mean) 0.53 0.2424 1.721
RMSE 0.456 0.1002 0.827
nRMSE 0.592 0.342 0.686

Table 5.2: FSI, GSI, and OSR statistical similarity measures computed for all out-of-sample
massings from Residential street block generator experiment

FSI GSI OSR

Ground truth (mean) 1.407 0.3383 0.947
Output (mean) 1.181 0.3246 1.081
RMSE 0.799 0.1201 0.666
nRMSE 0.567 0.355 0.703

Table 5.3: FSI, GSI, and OSR statistical similarity measures computed for all out-of-sample
massings from Study on scale experiment

Plots To help visualize the distributions of the typological traits for both generated and
ground truth building massings, I plot each variant from the validation datasets as a data
point on a Spacematrix chart. According to Pont and Haupt [2007], specific areas of Space-
matrix chart can be correlated to specific urban typologies (see Figure 3.20). This means that
in the generated plot, one can observe that further the mapping of a generated volume is
to the ground truth point, the larger the difference between the typology the model gener-
ated at a given location compared to the existing building (see Figure 5.12, Figure 5.15, and
Figure 5.17).

LoD 1.2 LoD 1.3 LoD 2.2

Output heightArea of underestimation Area of overestimation Ground truth height

Figure 5.14: Comparison of cummulative height distributions for the out-of-sample outputs
generated by the models trained with different LoDs from Single residential building
generator compared to the ground truth (LoD 2.2)
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5 Results

Figure 5.15: The out-of-sample outputs generated by the Residential street block generator
mapped to Spacematrix (plot template redrawn from [Pont and Haupt, 2007])

Output height

Area of underestimation

Area of overestimation

Ground truth height

Figure 5.16: Comparison of cummulative height distributions for the out-of-sample outputs
generated by the Residential street block generator compared to the ground truth
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5.2 Similarity statistics

Additionally, I plot the cumulative distributions of heights generated by the model and com-
pare to the ground truth. The heights are measured per pixel of the massing height-map,
which means that the area under the cumulative distribution curve is proportional to the
total volume bound by the building massing. Figure 5.13, Figure 5.16, and Figure 5.18 show
the mean cumulative distribution functions for all out-of-sample cases in their respective ex-
periments. Figure 5.14 compares the height distributions for models trained using different
LoDs of massing height-maps.

Conclusions Even though the error vector between the generated and ground truth ty-
pology in the Spacematrix mappings of typological traits is often substantial, the general
distributions for both the generated and ground truth data are quite similar. The models do
not generate in every case exactly the same typology as the one already built at a given plot,
but the distribution of their generated outputs matches the general distribution of typolo-
gies present in the their training data. This can be interpreted as the model being capable of
learning the general typological traits present in the data and being able to generalize these
learnings to new situations in a way thats does not necessarily match the ground truth.

Out of the three models compared (Single residential building generator, Residential street
block generator, and 256x256m model from Study on scale), the Single residential building
generator shows the highest accuracy in terms of FSI, GSI, and OSR. This can most likely be
attributed to the fact, that the model was trained with the largest dataset — 27,674 compared
to 1,000 for later models.

However, for all models one can observe a tendency to underestimate the total building
volume. This is noticeable in both the FSI and GSI means being lower for generated massings
than ground truth massings and in the height distributions. This corresponds with the
model behavior observed for Residential street block generator in Section 5.1 Visual analysis,
where the model tended to generate free standing building even in areas with much denser
street block structure, but for other models the reasons for these results are less clear.

FSI GSI OSR

Ground truth (mean) 0.716 0.2734 1.291
LoD 1.2 (mean) 0.593 0.2597 1.546
LoD 1.3 (mean) 0.495 0.2296 1.743
LoD 2.2 (mean) 0.516 0.2321 1.797

LoD 1.2 (RMSE) 0.336 0.0698 0.569
LoD 1.3 (RMSE) 0.332 0.0621 0.651
LoD 2.2 (RMSE) 0.364 0.0711 0.788

Table 5.4: FSI, GSI, and OSR statistical similarity measures computed for all out-of-sample
massings from Residential street block generator experiment

Surprisingly, the last experiment shows that the model trained on LoD 1.2 massing data is
most accurate to the ground truth (modeled as LoD 2.2 massings). It achieves the lowest
RMSE and closest mean values for all Spacematrix metrics (FSI, GSI, and OSR) (see Table 5.4)
and has the best fitting height distribution curve (see Figure 5.14). To explain this behavior,
further research is needed.
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Figure 5.17: The out-of-sample outputs generated by the 256x256m model from Study on
scale mapped to Spacematrix (plot template redrawn from [Pont and Haupt, 2007])

Output height

Area of underestimation

Area of overestimation

Ground truth height

Figure 5.18: Comparison of cummulative height distributions for the out-of-sample outputs
generated by the 256x256m model from Residential street block generator compared to
the ground truth
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6 Conclusions

In this final chapter, I will recapitulate the goals and scope of this work and list the chosen
methods of approaching the research problem and their implementations. I will answer the
research questions posed at the start of this report and state the limitations of the chosen
methods. Finally, I will conclude the chapter with a discussion on the reasons behind some
of the choices taken during the course of the development of this thesis and conclude with
an overview of potential future research topics.

6.1 Research overview

My goal for this research was to expand upon existing methods for generation of archi-
tectural and urban massings by utilizing deep-learning models. I found that even though
multiple works on this topic already exist, they make use of only simplified two dimensional
representation of the building geometries and omit most of the site context the buildings de-
signed are to be located in.

To elevate these issues, I proposed a methodology for generating building massings using
Pix2Pix GAN model trained on highly accurate 3D building geometries of the buildings in
the Netherlands obtained in the form of 3D BAG dataset. Additionally, I enriched the data
model using spatial, qualitative, and quantitative information obtained from open datasets
provided by the Dutch geospatial data services [PDOK, 2022].

The results generated by the model are evaluated for their similarity to the data the model
was trained on by evaluating the models ability to match typological properties of the
ground truth data. Spacematrix framework and cumulative height distribution analysis is
used for this purpose.

Research sub-question 1

At what scales is such model applicable (eg. single building, building group, street
block)? Is a single general model sufficient, or does one need to train a separate dedicated
model for each scale?

Three different applications of the Pix2Pix GAN at different scopes and scales were pre-
sented — single building generator (see Section 4.4.1), street block generator (see Sec-
tion 4.4.2 and Section 4.4.3) and urban fabric infill generator (see see Section 4.4.4). Each
model targets a specific use case, and while they allow for certain flexibility regarding the
types of environments and sizes of plots they can be applied to, they cannot be used inter-
changeably. Especially since each of them have different sets of goals they were trained to
fulfill — placing a single building on a parcel, filling an open plot with a building block, or
finding locations for possible building infill in existing urban areas.
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Research sub-question 2

Is it possible to steer the properties of the generated designs towards certain traits by
curating the data the model learns from? What metrics should one use to measure these
properties? How strong is the correlation between measurable properties of the designs
in the training data and the generated results?

Pix2Pix GAN models trained during the course of the research show an ability to replicate
the urban typological traits observed in the training datasets. Therefore it is possible to
control the type of massings the models produce by curating the data samples the models
are trained on. This is confirmed by mapping the distributions of the traits in ground truth
and generated massings using the Spacematrix method. While the models do not always
generate the identical typology for a given plot, as in the ground truth data, the general
outputs of the model match the typologies present in the training samples. Models trained
with larger data sets show higher correlation of the measured metrics (FSI, GSI, and OSR)
to the ground truth.

Research sub-question 3

How important is the LoD of the training data and what aspects of site context have to
be included in the training data for the quality of the results?

Counterintuitively, the experiments have shown that, at least for smaller training data sets
( 1,000 samples), the model shows higher ability to match the typological properties of
ground truth building volumes (modeled as LoD 2.2 building geometry) when trained of
LoD 1.2 data, compared to models trained using higher LoD massing models (LoD 1.3 and
LoD 2.2). However, further research is required to understand the reasons for this behavior
and to test whether it is particular to specific training dataset sizes.

Including site context information is critical to ensure the results of the models can be used
in practice, since only sufficient site information can prevent the model from generating
building volumes in areas that are unbuildable due to infrastructural, legal or environmental
limitations. When these limits are included in the input data, such as street space extents,
the models seem to follow these limitations strictly, avoiding potential design conflicts.

Main research question

To what extent can one assist the process of building massing (and by extension
the built environment) design generation by utilizing GAN model trained on exist-
ing building forms represented in Dutch buildin stock?

The resulting models show an ability to infer rules of building massing design from the situ-
ations observed during the training. By curating the datasets that the models are trained on,
it is possible to create models targeting different specific situations encountered in building
design practice. The experiments conducted show that the developed methodology can be
used to generate GAN models with various design goals — whether that goal is generat-
ing design of a single building, a building group, or open ended exploration of possible
densification targets in urban areas.
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6 Conclusions

Reflection on scientific contribution

Generative design Although a similar application of Pix2Pix GAN to generation of build-
ing forms has been explored in multiple previous works (covered as part of the literature
review in Section 2.3), this thesis presents a novel research thanks to training the model on
high fidelity 3D building models combined with multi-layered site context information. The
developed methodology is applied to multiple use cases, applying the model at different
scales and scopes, presenting a unified framework for using GAN models in architectural
and urban design generation.

3D city models The use of large scale 3D city models for the purpose of informing a gen-
erative design framework is a relatively novel use of this type of data, which shows the
potential of such datasets not only for city governance, management, analysis and visualiza-
tion, but for design and exploration of future urban interventions as well.

Quantitative evaluation The evaluation of the results using the Spacematrix framework —
borrowing methods usually applied to analysis of urban fabrics to evaluate the urban typo-
logical traits of generated building massings — connects this work to the field of quantitative
urbanism. Using such metrics provides a better picture of the accuracy and usability of the
results in the field of urban and architectural design, compared to relying on more typical
accuracy measures used in the field of deep learning, such as per pixel error distance.

Implementation From technical perspective, the the most noteworthy contribution are the
IronPython scripts allowing for interfacing with geospatial APIs and formats, such as WFS,
WMS, PostGIS, or GeoJSON, while using the Rhinoceros 3D / Grasshopper 3D CAD platform
which does not natively support working with geospatial data. All code is openly available
on GitHub1 (see Section 4.1).

6.2 Limitations

Building typology I found it quite difficult to selectively define and filter distinct types
of building configurations using openly available datasets. Queries on existing properties
defined in the open datasets provided by the Dutch spatial data infrastructure [PDOK, 2022]
are insufficient for this purpose, since the offered data on building national stock do not
include useful semantic information beyond building use and construction age. The building
typology has to be either inferred from the geometry by proprietary analysis methods, or
manually labeled.

1https://github.com/ondrej-vesely/massingGAN
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6.2 Limitations

Urban planning limitations The model does not take into concern many administrative,
technical or legal limitations that would otherwise restrict the possible massing design in
the area (e.g. land easements, infrastructural corridors, or building massing limitations put
in place in the masterplan). Although for some of them it can probably infer these limita-
tions from the surrounding site context - e.g. the maximum building heights, without their
inclusion, the model can be prone to generating infeasible solutions.

Such data could be added as an additional input layer. The model seems to follow the
restrictive layers already included in input images quite well (e.g. road extents, parcel ex-
tents, block extents). Alternatively, subtracting the parts of massing conflicting with areas
restricted to the building design could be done as a post-processing step.

Clarity of the features The models trained during the course of the research, at least to
some degree, lack the capability to generate straight regular features. The U-Net based Gen-
erator seems to struggle to generate repetitive and orthogonal patterns and define straight
continuous edges. At least in some cases, the ResNet based Generator tested during the de-
velopment has shown improved results in this regard compared to the primarily used U-Net
Generator. However, some of these difficulties with generating clearly defined shapes are
inherent to the nature of Pix2Pix GANs, which “... have difficulty in handling discrete output as
Generator always predicts continuous output” [Isola, 2017].

Discriminator receptive fields The CNN architecture for the Discriminator used in the
pix2pixGAN model is PatchGAN. PatchGAN architecture divides the image generated by
the Generator CNN into multiple 70x70 pixel kernels (called receptive fields) and then clas-
sifies contents of each receptive field as real or fake. Finally it averages the classification
probability for all patches to calculate the probability of the full image being real.

This means that the Discriminator can rate the images as fake or real only based on local
details contained within these 70x70 pixel large fields. Relationships between elements lo-
cated further across from each other within the image frame than the 70 pixels cannot be
fully evaluated and do not influence the classification score output by the Discriminator.

The Generator still consumes the full image representation and generates the results based
on all information present within the image, but is not able to evaluate some of the larger
scale relations between the elements depicted. Since the training of the Generator is ulti-
mately steered by the GAN loss dependent on the Discriminator, this myopic trait of the
Discriminator network can be a limitation to the quality of the results.

Spacematrix method Using Spacematrix as a framework for evaluating the typological traits
of the generated massings has an advantage of mapping the results to metrics established
for quantitative analysis of building forms in the field of urban design. However, it has some
limitations;

Firstly, the framework was originally intended for uses on scales larger than the ones found
in this research. On the scale of a single street block or especially a single parcel, the defini-
tion of what constitutes the measured ‘plot’ influences the resulting metrics quite drastically
(e.g. do measured extents of a single block end at street center line or at street setback
limits)?
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Further, for a given plot, the three metrics (FSI, GSI, and OSR) are essentially all codependent
on only two variables — the total footprint and the total volume of the building massings.
They do not take further details such as the exact footprint shape or the roof geometry into
consideration.

6.3 Discussion

Are the massing designs generated by the model the best possible design solutions?

The goal of this work is not for the generated massings to ‘optimal’ or ‘ideal’ designs,
since defining what constitutes an optimal or ideal design lies well beyond the scope of
this work. Instead the goal is to generate massing designs which are feasible and plausible.
The difficulty still lies in defining what it means for generated design to be plausible. In
the context of this work, I measure the similarity of the design to existing design solutions,
assuming that designs that are proven to be informed by previous solutions are a valid
configuration.

While it can certainly be argued that informing designs only by previous solutions could
lead to repetitiveness and lack of innovation, it is also true that making a new building form
fit into an existing context is one of the important objectives of architectural design, so a
certain degree of familiarity and similarity to existing building forms is certainly desirable.
Ultimately, all designs are in some form a synthesis of concepts present in the precedent
designs. It is still up to building industry professionals to curate which ones are the optimal
synthesis of elements for a specific site and context.

Why is the pix2pix GAN in the given context a good choice? How could we overcome the
limitations of the fixed grid (border size and resolution) that’s necessary for the algorithm?

The necessity to convert the geometrical building features into discrete data in the form
of voxelized geometry (respectively voxelized geometry encoded into a form of heightmap
raster) is indeed a limitation of this method. Ideally the conversion from vector represen-
tation to voxel and back would be completely omitted. However, the necessity to convert
the training data into discrete arrays of fixed size is inherent to the nature of CNNs, which
always operate with the data in the form of tensors (multidimensional arrays).

While some early efforts of converting simple vector geometries into tensors using graph
representations exist, the standard way for dealing with three dimensional geometries when
training GANs is voxelization, which ensures uniform representation of the captured shapes
regardless of the geometrical complexity.

Why not use some even more detailed topographic datasets to inform the site context,
e.g. the BGT (Large-scale Topographic Map of the Netherlands)?

While BGT indeed includes more data, such as detailed shapes of any sidewalks and paved
areas, I believe the more simplified topographic map such as TOP10NL strikes the perfect
balance between detail and ambiguity, when it comes to informing the site context of the
model creating building massings.

This is my assumption, but more detailed topographic information, such as the one in BGT,
is often too closely correlated to the existing building layouts and could ‘give away’ the
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ground truth massing situation to the model, essentially teaching it to just follow the con-
tours of e.g. the existing paved areas. However, addition of some site information from
these datasets, such as the existing vegetation objects, could be an interesting experiment for
future work.

Is the described method only applicable in data rich environments such as the Nether-
lands? Can one train a similar model with the LoD of the building models available in
other countries? What global alternatives are there to 3D BAG?

While the 3D BAG is certainly not the only openly available LoD 2+ building geometry
dataset and many municipalities around the world offer LoD 2+ 3D models of their city ex-
tents, experiments conducted during this research show that the proposed model is capable
of generating results of with similar, or even better accuracy when using only LoD 1.2 build-
ing geometry models. While I am not aware of any other dataset than 3D BAG with LoD 2+
accuracy and detail at the same scale of full national coverage or larger, it could be argued
there are some global datasets with LoD 1.2 coverage, such as OSM. While the quality and
reliability of the information included in these global datasets differs from city to city, since
many of the experiments presented in this work use only circa 1,000 data samples, I deem it
feasible to replicate the results with data sourced from only one (larger) municipality.

Figure 6.2: Rendering of another massing generated by the 256x256m model trained as part
of Study on scale
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6.4 Future work

Evaluation metrics It would be beneficial to the rigorousness of evaluation of the results to
include additional metrics for assessment of similarity of generated massings to the training
data. While quantifying visual similarity of outputs of GAN models to ground truth data
is still an open problem and is best done in real user studies, some methods for measuring
visual similarity between features exist.

In the field of GAN research, the currently most established method is Fréchet Inception
Distance (FID), developed by Heusel et al. [2017]. FID could be used to better evaluate the
similarity of the forms generated by the models — beyond the simplified analysisi with
quantitative metrics of the Spacematrix framework.

Additionally, some secondary metrics evaluating extrinsic behavior of the generated mass-
ings, such as their influence on urban microclimate (e.g. solar radiation, wind speeds), could
be used to evaluate the similarity of the generated forms in the context of their influence on
the built environment.

Software integration Since one of the goals of this thesis is to assess how feasible it is
to use similar GAN based models in architectural and urban design practice, it would be
interesting to demonstrate how such tools can be technically integrated into existing software
commonly used by design professionals.

Since large parts of the methodology have already been implemented in Rhinoceros 3D /
Grasshopper 3D environment, a software package popular by built environment design pro-
fessionals, it would be sensible to explore how the rest of the products of this research could
be integrated into this software environment — in particular, investigate how to container-
ize and deploy the pre-trained models on a target machine and create an API capable of
requesting and retrieving inferred design solutions from the model.

Further experiments The experiments conducted during the course of the research still
left some questions unanswered. Mainly, the question of how the lower LoD of training
data with only simplified geometry can lead to models with higher similarity of generated
geometries to ground truth, compared to models trained on higher LoD data. The next step
necessary to investigate this phenomena would be replicating the experiment with larger
and more diverse training datasets and testing whether this behavior persists.

Additionally, the influence of dataset size could be further explored, since most of the ex-
periments were conducted with around 1,000 training data samples, which is considered a
modest dataset size in the field of GAN research. Finally, it would be interesting to define
more of targeted typological studies, such as the one presented in Section 4.4.3, to see what
other typological features of building configurations can the model capture and replicate.
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