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A Robust Dynamic Planning Method for
Truck-Drone Delivery under Uncertainty

R.C.C. van Ewijk, C.A. Badea, J. Ellerbroek, J.M. Hoekstra
Control and Operations, Faculty of Aerospace Engineering

Delft University of Technology, The Netherlands

Abstract—The use of drones in combination with a delivery
truck can have a significant impact in improving the efficiency of
last-mile delivery. Drones can be dispatched to customers from
the truck, allowing the truck to continue delivering packages
at the same time. This approach gives rise to the widely
researched Traveling Salesman Problem with multiple Drones
(TSP-mD). Numerous heuristic models have been developed to
solve the problem in a near-optimal manner. However, these
optimization strategies do not account for disruptions, which
are common in delivery networks and can negatively impact
their performance. While existing literature usually considers
static models, a more dynamic approach could address these
disruptions by adapting to real-time circumstances. To explore
this, a dynamic method is developed in this paper for solving the
TSP-mD. Its efficiency is compared to an existing static heuristic
model from the literature. The comparison is performed in the
BlueSky Open Air Traffic simulator, in which disruptions are
introduced, such as truck delays and drone speed variations.
Experiments in this environment demonstrate that the existing
algorithm consistently achieves shorter mission completion times
across all uncertainty settings. However, the newly developed
method shows a significant improvement in performance under
uncertain conditions. Therefore, the use of global optimization
for the TSP-mD should be reconsidered.

Keywords—Traveling salesman problem with drones, dynamic,
uncertainty, robustness, vehicle simulation

I. INTRODUCTION

E-Commerce has been evolving rapidly over the past few
decades, driving the need for advancements in last-mile deliv-
ery networks to support this growth. One innovative solution
to enhance the efficiency of last-mile delivery is the use of
drones, which can significantly streamline the process [1].
Drones can autonomously navigate, allowing them to bypass
traditional road networks and traffic, ultimately enabling effi-
cient delivery directly to customers.

The efficiency gains from drone utilization can also lead to
reduced costs in last-mile logistics. Drones have the capacity to
cut delivery costs by more than half compared to conventional
modes of delivery [2]. Their ability to operate independently
makes them particularly effective, even in urban areas [3].

Recognizing the advantages of drones in logistics, several
commercial parties have developed drone technology for
package delivery, such as the Google Wing and Amazon
Prime Air drones, both of which have received approval from
regulatory bodies [4], [5]. Although it has taken a significant
amount of time to develop the technology required for drone
delivery, several players in the market are demonstrating its
viability. Drone delivery is now ready to be scaled [6].

Despite the multitude of upsides, relying exclusively
on drones without incorporating any other vehicles into a
delivery network also has its inherent downsides. Although
drones can bypass road networks, they have limited delivery
range and payload capacity. However, combining drones with
trucks for last-mile delivery can mitigate these weaknesses.
This hybrid approach leverages complementary strengths:
trucks offer higher carrying capacity and extended range,
allowing drones to retrieve packages directly from the truck
instead of returning to the depot for each delivery. This
hybrid approach therefore proves to be more efficient than
traditional truck-only transport. Additionally, a last-mile
delivery network with both trucks and drones would emit the
least CO2 [7].

However, drone technology is not the only aspect that is
required to facilitate truck-drone delivery. Logistics are also
a crucial factor of the problem, especially due to its complex
nature. A significant amount of research has been performed
on the problem, presenting a wide range of formulations.
They are mostly variations of the Traveling Salesman Problem
(TSP) or the Vehicle Routing Problem (VRP), which have
been shown to be nondeterministic polynomial-time (NP)-
complete [8], [9]. Given the intractability of these problems,
considerable effort has gone into developing various heuristic
models. These heuristics provide practical solutions that can
be computed efficiently, as opposed to exact algorithms,
which may take exponential time to find optimal solutions
due to the problem’s NP-complete nature. Approaches such
as genetic algorithms and simulated annealing have been
employed to yield near-optimal solutions while balancing
solution quality and computational efficiency.

Despite this focus on logistical optimization, delivery
networks are inherently subject to uncertainties and are at
risk of being disrupted [10]. Yet, the majority of the research
on truck-drone collaborative delivery does not consider any
uncertainties in their optimization models. According to
Beyer et al., optimization can be viewed as a spectrum [11].
At one end lies the simplification strategy, where assumptions
are made to reduce the problem’s complexity, enabling it
to be solved using conventional optimization techniques.
Excluding uncertainties from the optimization model can be
seen as an example of the simplification strategy on this
spectrum. At the other end of the spectrum are simulation
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optimization techniques, which are often employed when
the mathematical model is not tractable using standard
mathematical procedures. Considering the uncertainties
faced in real-life circumstances, simulation optimization
offers a promising approach to model these complexities,
motivating research that seeks to address and incorporate
these unpredictable elements into optimization models for
more robust solutions.

In this paper, a dynamic method is proposed that aims to
improve the adaptability of the drone-assisted last-mile deliv-
ery concept to uncertainties using simulation optimization. To
enable realistic conditions within the simulation, representative
uncertainties that could be faced in real-life execution of such
missions are incorporated, including basic traffic conditions,
modified flight durations of the drone and expedited and
delayed doorstep deliveries. The method is compared to an
existing heuristic algorithm, which serves as a benchmark rep-
resenting predetermined global optimization algorithms. The
goal of the comparison is to answer the question: what is the
performance difference in terms of efficiency when deploying
a dynamic model instead of a model with a predetermined
strategy for the truck-drone collaborative delivery problem in
a realistic and dynamic environment? To answer this question,
several metrics are established to quantify the efficiency of the
models. This leads to the following sub questions that will
assist in answering the main research question:

• How does the difference in terms of mission completion
time (makespan) between the two models compare when
subjecting it to different levels of uncertainty, and is
there a benefit from using the dynamic method in more
uncertain conditions?

• How do the models compare in terms of the distance that
the drones and truck traverse?

• How is the waiting time at the pickup location of either
the truck or drone affected by increasing the uncertainty?

It is not expected that the dynamic method proposed in
this paper is capable of achieving superior performance in
terms of makespan with respect to the existing heuristic
algorithm. The heuristic algorithms are designed to get close
to an optimal solution, which are difficult to match. However,
under uncertain conditions, it is expected the dynamic method
may prove more advantageous if these variations significantly
disrupt the solutions provided by the existing algorithm.

This paper is outlined as follows: in Section II, the existing
literature is described, along with a detailed explanation of the
reference model. Further detailing of the problem description
and its assumptions are described in Section III. The proposed
dynamic method is thoroughly detailed in Section IV, while
the experimental setup used to obtain the results is outlined
in Section V. Then, the results are presented in Section VI.
A discussion of the experiments and their results are given in
Section VII. Lastly, concluding remarks are given in Section
VIII.

II. LITERATURE REVIEW

This section presents a review of existing literature. The
benchmark, reference algorithm is also explained thoroughly
in this section.

A. Literature Survey

The logistics of a delivery network with a truck and drones
is a relatively new concept, although recently there has
been extensive research on the logistical aspects of delivery
networks that deploy both trucks and drones. Consequently,
this section aims to provide a comprehensive review of the
existing literature, highlighting key contributions and trends.
Additionally, it identifies gaps in the current knowledge and
aims to explain the goal and position of this study within the
literature.

Initial research on the TSP with drones was formulated
with one drone assisting one truck, called the Flying Side-
kick Traveling Salesman Problem (FSTSP) [12]. This led to
numerous studies exploring the topic of cooperative delivery
systems involving a truck and one or more drones. Due to
this diversity, Zhang et al. defined a taxonomy to classify the
different problems, all of which have their own nuances [13].
The Truck Drone Cooperative Delivery Problem (TDCDP)
was divided into 4 distinct subproblems:

1) Mixed delivery: Trucks and drones can both make deliv-
eries. Furthermore, the drones are allowed to dock on the
trucks. An example of this sub-problem is the previously
described FSTSP [12].

2) Drone delivery with truck-assisting: Drones are the only
vehicles that can make deliveries, while trucks have an
assisting role in driving the drones to launching locations.
Drones are allowed to dock on the trucks.

3) Parallel delivery: Trucks and drones independently make
their own deliveries.

4) Truck delivery with drone-assisting: Trucks are the only
vehicles that can make deliveries, while drones have an
assisting role in resupplying the truck with packages.
Drones are allowed to dock on the trucks.

This paper addresses the situation where a truck delivers
packages in cooperation with one or more drones, corre-
sponding to the first mode of the TDCDP. In the case this
formulation consists of a single truck with a single drone, it is
most often called the Traveling Salesman Problem with Drone
(TSP-D). Follow ups on the initial FSTSP paper [12], which
was a variant of the TSP-D, were published shortly after.
For instance, several different formulation methods exist, such
as Integer Programming (IP) [14], Continuous Approximation
(CA) [15], or Mixed Integer Linear Programming (MILP) [16].

A similar, extended problem was also introduced later,
consisting of a delivery network with a single truck and
multiple drones. This is commonly referred to as the
Traveling Salesman Problem with multiple Drones (TSP-
mD), e.g. [17]–[23]. The research also evolved to a delivery
network composed of multiple trucks and multiple drones.
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Some formulations consider trucks with each one drone [24],
[25], while others consider that each truck individually carries
multiple drones [26]–[29].

A key observation, however, is that existing research rarely
considers dynamic real-life circumstances or uncertainties.
The optimizations are based on deterministic inputs in
most research, meaning that no uncertainties or disruptions
are present in the optimization process. This can often
lead to results that are susceptible to deterioration under
unexpected conditions, as the solution has not been optimized
to be robust to uncertainties. The existing research provides
mathematically optimized (and perhaps also optimistic), yet
fragile solutions due to the absence of practical feasibility and
lack of responsiveness. As stated by Marczyk, optimization
often prioritizes ideal conditions at the expense of robustness,
leaving the solutions vulnerable to disruptions [30].

B. Reference Model Selection and Specifications

There are numerous variations in both problem formulations
and solution methods, making it impractical to compare the
entire body of literature to the dynamic method developed in
this paper. Instead, this research focuses on comparing the
performance of a single global, static optimization method
with the local, dynamic method. Rather, it is the general
philosophy of these models that counts in this case. Therefore,
a reference heuristic algorithm is required for the comparison
of the dynamic method. This reference model serves as a
benchmark for the for the dynamic method, by representing
the abundance of heuristic algorithms that are available for
the problem in literature as outlined in Subsection II-A. The
following key aspects are considered for the selection of this
reference model:

1) To limit the simulation’s complexity, it is desired the
problem is formulated with only 1 truck;

2) With the concession of having only 1 truck, it is desired
to have multiple drones on this truck, since this allows
for more complex dynamics between different vehicles;

3) Since this research will focus on realistic conditions, it is
desired that the model has been designed for a real city
graph;

4) As will later be described in Section V, uncertainties are
introduced to the simulation. Due to this unpredictability,
an energy model is likely to drastically increase complex-
ity (e.g. flat batteries due to waiting). Therefore, a range
endurance model is desired.

The sole paper that satisfies all the requirements that have
been posed is a paper by C. C. Murray and R. Raj, named
”The Multiple Flying Sidekicks Traveling Salesman Problem:
Parcel Delivery with Multiple Drones” [18]1. It is important
to note that this paper does not fully represent all the studies
discussed in Section II-A, as some models are based on
significantly different assumptions. In particular, papers with

1https://github.com/optimatorlab/mFSTSP

vastly different formulations, assumptions, or factors like
the use of multiple trucks may show considerably different
responses to the introduction of a dynamic method compared
to the results presented in this study.

In their paper, the authors develop a three-phased iterative
heuristic, capable of producing high quality, near optimal
solutions to the problem. In the first phase of the heuristic,
the set of customers is partitioned into two sets. One set will
be served by the truck, and the other by drones. The lower
limit for the number of customers in the truck customer set is
dependent on the number of drones, and will be incremented
in later iterations. This limit is referred to as the Lower Truck
Limit (LTL). Furthermore, phase I also produces a unique
TSP tour for the truck by considering all customers in the
truck customer set using a Mixed Integer Programming (MIP)
model. Once the truck tour is in place, UAV customers are
added and removed according to a savings metric, with the
intention of reducing the completion time.

The second phase then generates sorties for the set of drone-
assigned customers. These sorties are defined as the launch
and recovery locations for each of the customers in that set.
Furthermore, a specific drone is assigned to each of the sorties.
The valid assignments that can be chosen from follow from the
set P , which contains all customers i and k currently assigned
to the truck’s route. Crucially, this set only selects possible
assignments where the range constraint of the drone is met.
The subset P

′
is defined as the set that only includes the valid

i, j, k (i.e. launch, customer, pickup) location combinations
with consecutive i and k in the truck tour. The goal of the
assignments is to find a sortie for each UAV with minimum
truck and UAV waiting time.

The third and last phase then determines the timing of the
operations for the truck and drones. This ensures that each
operation is performed one by one, without any obstruction of
other operations. This phase uses the results of phase I and
II to determine the start times of each operation. Once all 3
phases are completed, the LTL is incremented by 1 and the
process is repeated. Eventually, the LTL is equal to the number
of customers and the problem becomes equivalent to solving a
TSP. The best solution that was found is then returned, thereby
returning an objective value in terms of missions completion
time (makespan), a truck TSP tour, the drone sorties, and the
timing of each activity. For a more thorough description of
each phase of the algorithm, refer to [18].

This algorithm is used as a benchmark to represent the
existing literature on the TSP-mD problem. The model is
referred to as ’the reference model’ from hereon. To ensure the
correct functioning of the reference model, solutions available
in the public repository are reproduced using the same inputs
originally applied to generate these solutions. Model function-
ing is validated by confirming that the outputs exactly match
the original results.
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III. PROBLEM DESCRIPTION

This section covers the formal description of the Traveling
Salesman Problem with multiple Drones (TSP-mD) that is
considered in this paper. The problem definition is consistent
with the reference model’s formulation [18].

The problem at hand consists of a set of packages
P = {1, 2, ...Np}, where Np is the number of packages.
Furthermore, each of these packages must be delivered by
either one of the homogeneous drones or the truck. Some
packages require to be delivered by the truck, because of
its size, weight, whether a customer’s signature is required,
whether it is an inaccessible apartment, or any other reason
which obstructs a drone from delivering it. The set of UAVs
D = {1, ...M} are all homogeneous and can carry one
package at a time, after which it must return to the truck.
Furthermore, all UAVs have a range constraint, which is
replenished when returning to the truck. The number of drones
is described by M , which is varied between 1 and 4. The
truck is assumed to have infinite carrying capacity and range
in these conditions, and can thus carry all packages as well as
all UAVs simultaneously. Note that the drone characteristics
in this paper are not varied as in the paper of Murray
and Raj [18], but are consistent with the low range, high
speed drone instead. Its specifications can be found in Table I.

The truck is routed by adhering to a graph, which consists
of nodes N = {0, 1, ...c+ 1} and edges E = (i, j) | i, j ∈ N.
Each edge is characterized by a certain geometry and speed
limit, which may not be exceeded. The truck must adhere to
the geometry of these edges and may only traverse edges (i.e.
it does not travel in a Euclidean manner). It is assumed that
the truck always tries to travel at the speed limit imposed by
the graph’s edges, although cornering and slowing down for
operations result in average speeds lower than the speed limit.

At the beginning of its mission, the truck spawns at the
depot. At the end of the operations, the truck along with all
the drones returns to the depot. The mission is completed when
the truck has arrived at the depot with all drones present in
the truck, and thus with all operations completed. At each
node, the truck must perform operations sequentially, which
take a predefined amount of time. The exact duration for each
operation can be found in Table II. The truck or drone has to
stop to perform these operations, and thus these operational
durations are added on top of the travel time.

TABLE I. CHARACTERISTICS OF THE DRONES

Characteristic Value

Take-off vspeed [m/s] 15.64
Cruise speed [m/s] 31.29
Landing speed [m/s] 7.82
Cruise altitude [m] 50
Range [m] 9,656

A list of the assumptions of the formulation is given below
for clarity. Note that these assumptions are used by the

algorithm developed by Murray and Raj [18] as well as by
the dynamic method. They are as follows:

• The drones are all homogeneous and have specifications
as shown in Table I;

• There is only 1 truck and M drone(s), which ranges from
1 to 4;

• The drones are only limited by its range, not energy;
• The truck cannot leave the edges of the graph;
• All respective operation durations without any uncertain-

ties are given in Table II;
• A drone cannot be pickup up at the same location where

it has been launched;
• A drone can only carry one package at a time;
• A drone’s range replenishes upon returning to the truck,

and can thus be launched multiple times;
• The truck does not have a range- nor a capacity con-

straint;
• All operations are performed sequentially, i.e. a delivery

cannot be performed at the same time as a launching or
retrieving a drone;

• Some customers can be served by either a drone or the
truck, while others necessarily have to be served by the
truck.

TABLE II. OPERATIONAL TIMES OF THE TRUCK AND DRONES

Operation Time required [s]

Launch time 60
Recovery time 30
Package transfer to customer by drone 60
Package transfer to customer by truck 30

IV. DYNAMIC METHOD

With the purpose of enabling reactions to changes in the
state of the delivery network, a method is developed with the
capability of dynamically resolving changes in its surround-
ings. This dynamic method consists of multiple algorithms,
each assigned a specific task. These include a Population-
based Ant Colony Optimization (PACO) algorithm and a
savings algorithm, which is represented by a MILP model.
This subsection explains how the dynamic method, along with
its integrated algorithms, functions.

A. PACO Algorithm and Dynamic Method Philosophy

The general philosophy of the dynamic method is as
follows: the truck begins its route following a predetermined
TSP tour. Since the TSP in itself is NP-complete, it cannot be
solved within polynomial-time with current exact algorithms
(for further reading, refer to [8]). Therefore, a different,
heuristic optimization method is implemented to solve the
TSP and obtain the predetermined tour. A PACO algorithm
was found to be the best global algorithm in a benchmarking
experiment for TSP algorithms [31], and is therefore used for
this purpose. Specifically, an implementation outlined by [32]
is adhered to. In a PACO algorithm, the pheromone updates
are based on the population of solutions, which distinguishes it
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from regular Ant Colony Optimization (ACO) algorithms [32].

The philosophy of the dynamic method is as follows: The
truck starts delivering according to the TSP determined by the
PACO as if it will handle all deliveries itself. While en route,
it is asserted whether serving the next customer in the TSP
by drone results in predicted cost savings. All constraints of
the problem formulation as described in Section III must still
be respected. If it is predicted that savings can be achieved,
the launch and pickup points for the drone are calculated,
and the drone is deployed. Essentially, this resembles the
greedy choice property where the choice that looks best in
the current problem is made, without considering results from
subproblems [33]. This process continues until all customers
have been served.

B. The Savings Algorithm and MILP Formulation

The cost savings predictions for serving the next customer
by drone are achieved through the savings algorithm. This
algorithm works by assessing the estimated time of arrival
(ETA) at a distant, similar point in the route for both choices.
That is, by taking into account the operations that have to
be performed for each respective choice. This distant point is
referred to as the reference point of the assessment. The main
tradeoff is whether the additional time required for the launch
and retrieval of a drone is sufficiently compensated for by the
shortening of the route of the truck.

An example of this assessment is shown in Figure 1,
where the difference in routes is shown for the choice of
serving the next customer by drone. In Figure 1a, the truck
first takes the shortest path to the customer, as indicated
by the red dot. After serving the customer, the truck
continues on its route, and passes the reference point, as
marked by the blue square, at time Torig. In the altered
case illustrated by Figure 1b, a drone is deployed to serve
the next customer. The truck now launches and retrieves
the drone, which has in the meantime served the customer.
Instead of driving the fastest route to the customer and only
then proceeding, the truck can directly take the shortest path
to the reference point. In this case, the point is passed at Tmod.

To assert whether savings can be made, preliminary
launch- and pickup points are calculated. By determining
these two locations, the impact on the truck’s ETA at the
reference point can be calculated, essentially comparing
Torig to Tmod. To obtain the operation locations, a Mixed
Integer Linear Program (MILP) is formulated, of which the
sets and parameters are formulated later in this section. The
objective of the MILP is primarily to minimize the waiting
time of the truck. The secondary objective of the MILP is to
minimize the total mission time of the drone, which includes
every aspect of its mission profile and also possible waiting
time at the pickup location. Once it has been established
that time savings are predicted by the algorithm, then this
set of launch- and pickup location is used to deploy the drone.

(a) Truck Original Route

(b) Truck and Drone Modified Route
Figure 1. Comparison Between Truck-only vs Truck and Drone Route on the
Buffalo Street Network

MILP Formulation
Sets

• L: Set of potential launch locations
• P: Set of potential pickup locations

Parameters

• ti: Drone travel time from launch location i to the
customer location, ∀i ∈ L

• tk: Drone travel time from the customer location to
pickup location k, ∀k ∈ P

• di: Euclidean distance from launch location i to the
customer location, ∀i ∈ L

• dk: Euclidean distance from the customer location to
pickup location k, ∀k ∈ P

• Ti: Time at which the truck passes launch location i,
∀i ∈ L

• Tk: Time at which the truck passes pickup location k,
∀k ∈ P

• Tik: Truck travel time from launch location i to pickup
location k, ∀i ∈ L, ∀k ∈ P

• R: (Remaining) range of the drone
• M : Big M, large integer number

Decision Variables

• xi: Binary variable that is 1 if the launch location i is
chosen, 0 otherwise, ∀i ∈ L
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• yk: Binary variable that is 1 if the pickup location k is
chosen, 0 otherwise

• zik: Binary variable that is 1 if the trip from launch
location i to customer location j to pickup location k
is chosen, 0 otherwise, ∀i ∈ L

• wt
ik: Auxiliary variable representing the waiting time of

the truck for the trip i → j → k, ∀i ∈ L, ∀k ∈ P
• wd

ik: Auxiliary variable representing the waiting time of
the drone for the trip i → j → k,∀i ∈ L, ∀k ∈ P

Objective Function

Min. W =
∑
i∈L

∑
k∈P

(
wt

ik ·M + (ti + tk) · zik + wd
ik

)
(1)

Constraints

Only one launch location can be chosen:∑
i∈L

xi = 1 (2)

Only one pickup location can be chosen:∑
k∈P

yk = 1 (3)

Linking constraints:

zik ≤ xi ∀i ∈ L,∀k ∈ P (4)

zik ≤ yk ∀i ∈ L,∀k ∈ P (5)

Flow constraint:∑
i∈L

∑
k∈P

zik = 1 ∀i ∈ L,∀k ∈ P (6)

Auxiliary variable Constraints:

wt
ik ≥ ((Ti + ti + tk)− Tk) · zik ∀i ∈ L,∀k ∈ P (7)

wd
ik ≥ (Tk − (Ti + ti + tk)) · zik ∀i ∈ L,∀k ∈ P (8)

Range of drone constraint:

R ≥ di · xi + dk · yk ∀i ∈ L,∀k ∈ P (9)

Unequal launch and retrieval locations:

xi + yk ≤ 1 ∀i ∈ L, i = k (10)

Binary and non-negative constraints:

xi ∈ {0, 1} ∀i ∈ L (11)

yk ∈ {0, 1} ∀k ∈ P (12)

zik ∈ {0, 1} ∀i ∈ L,∀k ∈ P (13)

wt
ik ≥ 0 ∀i ∈ L,∀k ∈ P (14)

wd
ik ≥ 0 ∀i ∈ L,∀k ∈ P (15)

The two objectives of the optimization are captured by
Equation 1. The primary objective of the MILP, which is
the minimization of truck waiting time, is captured by the
first term in the equation, wt

ik ·M . The secondary objective,

minimizing the drone’s mission time, is represented by the
second term, (tij + tjk) · zik + wd

ik. The model’s constraints
are captured by Equations 2-15. Specifically, Equations 2
and 3 ensure that only 1 launch- and pickup location are
selected. Decision variable zik is constrained by Equations 4
and 5, to ensure proper linkage to xi and yk and by Equation
6 to ensure exactly one trip is selected. The waiting time
variables are linked to the selected trip zik by Equations 7
and 8. The range of the drone is constrained by Equation 9,
limiting the allowable flying distance to the customer location
j from launching point i and pickup point k to the drone’s
maximum range. To ensure consistency with the reference
model, an equality between launch and retrieval location must
be prohibited. This is ensured by Equation 10. Binary and
non-negativity constraints are given by Equations 11-15.

The tradeoff between the choice of launching a drone
or not is relatively simple in the case of a single drone.
However, when the truck has more than a single drone at
its disposal, the MILP can be called again for a second
drone. During this process, the pickup location of previous
drones can be changed to another suitable location on the
truck’s route, again determined by the MILP. This allows for
dynamic responses to the new situation. However, to prevent
a loop of changing both the launch and pickup location of
a drone, a launch location is considered fixed and cannot be
changed once it has been calculated for the first time. This
also implies that a drone will be launched from location i
regardless of any changing circumstances.

When the algorithm is called to assess the impact for a
new drone, the impact on previous drone(s) is also taken into
account. If any of the previous drone(s) or the truck have
to be rerouted due to the launching of this new drone, the
effects on the ETA at the distant point are reevaluated. This
might entail that the truck now only has to travel a shorter
distance, because it can skip another customer by delegating
it to a drone. Potential rerouting effects on previous drone(s)
are determined by again running the MILP for the previous
drone(s), this time with the truck’s new route and reduced
range in case the drone is already performing its mission. Since
the pickup location has been fixed the first time the MILP was
called for the previous drone(s), only the pickup location is
determined while the launch location remains fixed.

In the case of any additional truck waiting time, this is
indicated by the outcome of the MILP. This new round of
launching a drone thus also includes a penalization for truck
waiting time caused by rerouting previous drone(s). In the case
that savings are still possible even after reevaluating the pickup
point of previous drone(s), a new drone is launched.

The same logic of recalculating the pickup location is
automated even when not launching a new drone. This ensures
that the truck and drone can coordinate in situations where
an unexpected turn of events has occurred. The frequency of
recalculation is detailed in Subsection IV-C, while the specific
events that can occur are explained in Subsection V-A.
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C. Method Hyperparameters

A total of three hyperparameters are identified for the model.
One of these is the time interval t at which the savings
algorithm is called. Naturally, a higher frequency allows the
model to more actively seek for makespan reductions by
launching a drone, but at the same time it makes the model
slower with regards to computational time. Secondly, a timeout
hyperparameter ttimeout is introduced. This hyperparameter
ensures that the model is not immediately called again after
establishing that no time savings are possible by launching
a new drone. Lastly, the hyperparameter tr is introduced to
specify the time interval at which the algorithm recalculates
the pickup locations for all active drones without spawning a
new drone. These hyperparameters remain constant throughout
the experiments, with their values shown in Table III.

TABLE III. DYNAMIC METHOD HYPERPARAMETER VALUES

Parameter t [s] ttimeout [s] tr [s]

Value 1 60 10

D. Key Differences with Reference Model

Following the definition and functioning of the dynamic
method, several key distinctions from the reference model
emerge. These differences are essential to consider when
interpreting the results, as they assist in explaining variations
between the two models. The key differences and similarities
are discussed in detail in this subsection.

The primary difference between the two is that the dynamic
method does not predetermine the sorties of the UAVs and the
truck and drone customers. As explained in Section II-B, the
reference model exactly schedules which customers are served
by the truck and which are served by the UAV. Furthermore,
the launch and pickup locations are also predetermined. In
the dynamic method, however, none of this is decided in
advance; each sortie is determined en route with the use of
the savings algorithm. The logic for determining the sorties
is similar: the reference model also uses a savings metric to
minimize the truck and drone waiting time.

A similarity exists in the construction of the truck tour: for
both models, a TSP tour is generated beforehand. However,
this is done in different ways. In the reference model, an MIP
(an exact solving method) is used to determine the tour, while
in the dynamic method, a PACO algorithm (a heuristic solving
method) is applied. Furthermore, the truck tour in the dynamic
method contains all customers, since it expects the truck to
solve all customers by truck. As explained before, some of
these customers will in the end be served by a UAV. This thus
also implies that the truck tour is not fixed in this case. For
the reference model, the MIP only includes the customers that
are served by the truck no matter what, resulting in a fixed
truck tour.

V. EXPERIMENTAL SETUP

This section elaborates on the experimental setup within
BlueSky that is used for the comparison of the two models. It
covers the uncertainty implementation, variables, hypotheses,
and the simulation setup of the experiments.

A. Implementation of Uncertainties

One of the aims of this paper is to include uncertainties
in the simulation that could be faced in real life, to enable
a comparison between the two models in these conditions.
Numerous uncertainties exist in a real-life delivery network,
such as traffic conditions (which is also dependent on the time
of day), weather conditions, customer availability, sudden road
closures, and fuel/ battery drainage. It is both infeasible and
undesired to account for all uncertainties that could potentially
be faced. Instead, a set of 3 uncertainty sources have been
drafted to simulate the impact of uncertainties in general.
These uncertainty aspects are:
(a) Truck stops: The aim of this uncertainty source is to

capture e.g. a gas station stop or a traffic light. A truck
stop is simulated by letting the truck come to a complete
stop with a frequency of fstop for a duration of tstop
seconds. During this time, the truck cannot perform any
other operations simultaneously.

(b) Delayed/ expedited deliveries: To reflect the uncertainty
in the delivery process, the deliveries might get de-
layed or expedited. Examples include situations where
the customer is unavailable upon delivery or the driver
takes extra time to locate the customer’s package. A
gamma distribution is used to model this deviation from
the expected delivery time, as shown in Table II. This
distribution type is often used to describe durations of
processes [34], e.g. in [35]. To allow the distribution to
return negative values, the mean of the Gamma distri-
bution is shifted to µdist = µdesired − delay−, where
delay− is the minimum (negative) delay. This represents
the maximum amount of time a delivery can be sped up
by. After generating delivery times from this distribution,
the negative delay is added to it, allowing for some
delivery times to be negative (i.e. expedited deliveries).
The shape parameter used, k = 3, gives the distribution
a moderate peak with a right tail, meaning that while
the majority of deliveries will be centered around the
expected delay (with some expedited deliveries), there
is still a likelihood of a few much longer delays.

(c) Faster/ slower drones: Existing research generally as-
sumes fixed time durations for traveling between two
points, while flight paths of drones can be complex
[36]. For example, factors like temperature are known
to influence the performance of an electric drone [37].
To capture the effect of temperature and other influential
factors such as wind, payload weight, malfunctions, or
obstacle/ collision avoidance, the introduction of drone
speeds lower or higher than the expected speed is desired.
An uncertainty factor is applied on top of the expected
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TABLE IV. UNCERTAINTY PARAMETER VALUES PER LEVEL

Parameter Name Level 1 Level 2 Level 3
fstop[1/s] 1/360 1/240 1/120
tstop[s] 30 30 30

µdesired[s] 10 30 60
delay−[s] -10 -15 -20
pspdmod[%] 20 50 80
vmod[%] ±20 ±30 ±40

cruise speed of the drone, which can be found in Table
I. The probability of a drone having an altered speed is
given by pspdmod, while the magnitude of the change is
given by vmod. If the speed is modified, it has a 50/50
percent chance of being slower or faster.

B. Independent Variables

Throughout the research, a number of variables are varied
to investigate their impact on the dependent variables that are
described in Subsection V-C. The independent variables of the
experiments are the following:

• The number of customers to be served;
• The number of drones at the disposal of the truck;
• The uncertainties.
The number of customers in the experiments is varied

between 10, 25, 50, and 100, while the number of drones
ranges from 1 to 4. To investigate the effects of the uncer-
tainties, different levels of uncertainty are introduced. The
level of uncertainty determines the value of the aforementioned
parameters of uncertainty. A total of 4 different levels are used,
0, 1, 2 and 3, where 0 is the control environment without
any uncertainty. The corresponding parameter values for each
uncertainty level can be found in Table IV.

The inputs of both models expect there to be no uncertainty,
and thus expect: 1) The truck not to stop anywhere except
where there is an operation; 2) Delivery times to be equal to
the ones given in Table II; 3) Drones to fly at their nominal
speed as given in Table I. Only after an event with uncertainty
has taken place, the dynamic method is able to respond to it.
In the case a drone travels at an elevated or a reduced speed,
the dynamic method will still continue to expect the drone
to travel at its designed speed, as shown in Table I, for the
remainder of its trip.

C. Dependent Variables

In Section I, the different metrics for efficiency of the
two methods were outlined. The following metrics were
established: Completion time (makespan), distance traveled
by drone and truck, and waiting time at the pickup location.

The first dependent variable aims to capture the makespan of
both methods. Since it is desired to investigate the difference
between the reference model (RM) and the dynamic method
(DM) in various conditions, the percentage difference between
the two models is to be compared. This percentage difference
is defined as the difference between the makespan of the DM
w.r.t. the RM, as formulated by Equation 16.

∆MS =
MSDM −MSRM

MSRM
· 100% (16)

Where MSDM and MSRM are the makespan of the
dynamic method and the makespan of the reference model,
respectively. Furthermore, ∆MS is the percentage difference
in makespan. The makespan values are a direct measurement
of the amount of time that is required for all customers to be
served.

The variables that are used to quantify the distance traveled
by the drone and truck are more straightforward. Firstly, the
drone distance can be assessed in distance per sortie as well
as the total distance. For the truck, the distance traveled is
normalized per customer that is served, such that the metric
can be compared when changing the number of customers.
All distanced are directly obtained from BlueSky simulation
measurements, and are given in meters.

Lastly, the waiting time requires to be expressed in terms
of a variable. It is defined as the absolute waiting time, i.e.
the waiting time of either the truck or the drone in seconds.

D. Hypotheses

As briefly mentioned in Section I, it is not expected that
the dynamic method is capable of achieving superior perfor-
mance in terms of mission completion time. It is anticipated
that a threshold level of uncertainty exists beyond which
the performance of the representative algorithm significantly
deteriorates, while the dynamic method proves better equipped
to handle such conditions. The hypotheses can be summarized
as follows:

• The hypothesis on mission completion time is that the
relative performance of the models, as measured by
∆MS, will get closer as the uncertainty level increases;

• Furthermore, it is expected that the dynamic method is
better suited to find shorter sorties due to the fact that it
searches in a local manner w.r.t. the global optimization
as performed by the reference model;

• Lastly, the waiting time is also expected to be lower
for the dynamic method, as it is able to dynamically
respond to live conditions, and thus able to avoid long
(unnecessary) waiting times.

E. BlueSky- and Truck Routing Setup

The research gap identified in Section II highlights the need
for an advanced simulation tool for vehicle simulation. In this
study, the BlueSky Open Air Traffic simulator [38] is used
to analyze and simulate the operations of truck and drone-
based delivery systems. Although BlueSky’s primary aim is
not to simulate a truck and drone delivery network, its highly
modular characteristics make it possible to modify its existing
capabilities. Additionally, BlueSky is an open-source tool,
making it an accessible platform for research. The modularity
and accessibility are leveraged in this study to build upon and
expand its functionalities, like many other studies that consider
simulation of air traffic, e.g. [39], [40].
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BlueSky operates with its own scripting language,
TrafScript, which allows complete control of the simulation.
Scenario (.scn) files can be used to chain command sequences
with specific timestamps, enabling customization of scenarios
to meet specific needs—in this case, a TSP-mD simulation.

As stated in Section III, a graph is required to allow the
truck to be routed in the BlueSky simulation. The graphs used
in this paper are obtained from OpenStreetMap [41] data, and
subsequently processed using a separate module2 to account
for missing data. The OSMNx library [42] is used to access
this data. Crucially, the two models use identical graphs, such
that there is no discrepancy between their inputs.

The quickest route between any point A and B on this
graph (these points do not necessarily overlap with nodes
in the graph) is determined by the taxicab-st module3. To
communicate these obtained routes to BlueSky, the roadroute-
lib module4 is used to obtain the corresponding TrafScript
commands.

To enable simulations involving a truck and multiple drones
in BlueSky, extensions to the original functionalities are used,
called plugins. These plugins utilize BlueSky’s modularity
to extend its capabilities. These plugins can be found on
Github5. The new functionalities that have been implemented
in BlueSky mainly allow it to perform operations such as
a delivery, sortie (launch) or rendezvous (pickup). Naturally,
these operations are crucial for simulation of the TSP-mD.

During the simulations, data is logged directly to a .jsonl
file, capturing every activity of the truck and UAVs. This
includes recording each operation and the time of completion,
which is defined as the moment the truck returns to the
depot with all drones on board. To ensure reproducibility,
a seed is set to track the randomness that influences the
simulation. This randomness stems from both the uncertainties
introduced in the simulation and the Population-based Ant
Colony Optimization (PACO) algorithm used by the dynamic
model.

F. Simulation of Reference Model

As mentioned in Subsection II-B, the reference model
outputs a TSP tour of the truck, as well as drone sorties and
their timings. Since these outputs are numerical values in a
.CSV file, a translation between the mathematical model and
the BlueSky simulation must be made. In other words, the
outputs that are obtained by the reference model should be
converted to BlueSky’s TrafScript language. This is done by
a separate module6. To obtain solutions, a timing table for
the truck in which the time between each pair of customers
is used (which is not necessarily symmetric). However, the
timing tables that have been generated by the authors of

2https://github.com/ravenvanewijk/mFSTSP-GraphGen
3https://github.com/ravenvanewijk/taxicab-st
4https://github.com/ravenvanewijk/roadroute-lib
5https://github.com/ravenvanewijk/bluesky-TSP-mD/tree/TDCDP
6https://github.com/ravenvanewijk/mFSTSP-ScenarioGen

the original paper are calculated using a different routing
algorithm than the one used in this paper. Therefore, the
timing tables are recalculated using the taxicab-st module to
ensure equal inputs for the two models.

The reference algorithm has several possible settings and
hyperparameters that require to be specified. These are whether
or not a driver should be present for operations, whether
the driver is required to perform a sortie (i.e. whether these
operations can be performed simultaneously), the endurance
model of the drones (e.g. constrained by energy, range, etc.)
and the cutoff time for the MILP model within the heuristic.
For the experiments, a driver should always be present for
drone operations. Furthermore, as explained in Section III,
the truck is required at the depot, and only 1 operation can be
performed simultaneously. As also discussed before, the drone
is considered to be restricted by a maximum range. Lastly, the
cutoff time is selected to be 5 s, consistent with the assumption
made by the authors of the reference model. Concluding, the
assumptions and settings of the reference model coincide with
the ones used for the dynamic method.

G. Selection of Instances

To ensure the number of customers can be varied and to
allow for thorough comparison between the two models, a set
of test instances is selected. These instances define the location
and number of customers, as well as the city in which they
are situated. The authors of the reference model have already
provided a range of instances for testing, with customer
quantities of 10, 25, 50 and 100. All Buffalo instances are
selected for the experiment, consisting of a total of 40 different
instances, evenly spread across customer counts 10, 25, 50,
and 100. These same instances were used for the experiments
in the paper by Murray and Raj [18].

VI. RESULTS

This section presents the results of the experiments, and
aims to find the difference in efficiency between the reference
model and the dynamic method.

A. Mission Completion Time

First, the mission completion time can be compared
with the variable ∆MS. To visualize the outcomes of this
variable, the measurements are grouped by the number of
drones and number of customers allowing for clearer insights
into individual configurations. The division of measurements
results in a sample size of n = 10 for each group, as
a consequence of the instance selection as explained in
Subsection V-G. In the following figures, the different
uncertainty levels are indicated by the colors green, orange,
blue, and pink for levels 0, 1, 2, and 3 respectively.

The results of the measurement with 10 customers are
shown in Figure 2. A high level of intra-sample variability
can be observed looking at the figure. For example, the
interquartile range (IQR) ranges from approximately -20%
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(a) 1 Drone, 10 Customer Setup (b) 2 Drones, 10 Customer Setup

(c) 3 Drones, 10 Customer Setup (d) 4 Drones, 10 Customer Setup
Figure 2. ∆perc Measurements for 10 Customers with Varying Drone Counts

(a) 1 Drone, 25 Customer Setup (b) 2 Drones, 25 Customer Setup

(c) 3 Drones, 25 Customer Setup (d) 4 Drones, 25 Customer Setup
Figure 3. ∆perc Measurements for 25 Customers with Varying Drone Counts

to +30% for the 2 drones, uncertainty level 3 setup. This
variability is likely due to the fact that, for scenarios
with only 10 customers, a small difference in delivery
strategy can have a significant impact on the total makespan.
Furthermore, the RM outperforms the DM in most cases, but
occasionally, a significantly lower makespan is achieved by
the DM. This can be observed in all uncertainty level 3 setups.

The measurements for customer count 25 are shown in Fig-
ure 3. The amount of times the RM has an inferior makespan
significantly decreases, as negative ∆MS measurements are
only observed in the 2 drone setups, across all uncertainty
levels. The RM in this case also starts to attain some larger
median differences. This is especially noticeable in the setup
with 3 or 4 drones, where the median ∆MS in uncertainty
level 0 is approximately 20% and 23%. For the 10 customer
setups, the corresponding medians are 10% and 12%, which
is significantly lower. This steep increase is a clear sign of
benefits of strategic planning, showcasing that the DM is less
able to leverage the additional drones that it has at its disposal
than the RM. Moreover, the variability is slightly decreased

for this customer count. For the 2 drones, uncertainty level 3
setup, the IQR is now reduced to approximately +0% to +20%,
a significant reduction in bandwidth in comparison with the
similar setup measurement with 10 customers. This bandwidth
reduction can be identified across all setups. The deviations in
delivery strategy thus have a less pronounced effect on the
total makespan difference between the two models.

(a) 1 Drone, 50 Customer Setup (b) 2 Drones, 50 Customer Setup

(c) 3 Drones, 50 Customer Setup (d) 4 Drones, 50 Customer Setup
Figure 4. ∆perc Measurements for 50 Customers with Varying Drone Counts

(a) 1 Drone, 100 Customer Setup (b) 2 Drones, 100 Customer Setup

(c) 3 Drones, 100 Customer Setup (d) 4 Drones, 100 Customer Setup
Figure 5. ∆perc Measurements for 100 Customers with Varying Drone Counts

The measurements for customer count 50 are shown in
Figure 4, where the trend of increasing median ∆MS is
still present. For uncertainty level 0, the medians for 2, 3,
and 4 drones are around 30%. A slight increase in medians
is observed for 100 customers, as shown in Figure 5, with
medians well above 30% in uncertainty setting 0 and drone
counts 1, 2, and 3. This suggests a clear benefit of strategic
pre-planning for scenarios with more customers. A similar
pattern emerges with more drones, though the effect is
less pronounced. The DM’s localized optimization strategy
cannot match the RM’s performance, particularly in conditions
with more customers, and to a lesser extent, with more drones.
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When considering all customer counts, it can be clearly
seen that the DM is outperformed by the RM for most setups.
This is especially true for setups where there is no or low
uncertainty. The median ∆MS ranges from approximately
10% to 34%, for 1 drone, 10 customers, and 4 drones, 100
customers respectively.

Furthermore, there is almost no difference between uncer-
tainty level 0 and level 1. This can be seen in nearly all setups.
An example is the 2 drones, 50 customer setup, where the
median ∆MS is approximately 30% in both cases. This trend
shifts in most cases when level 2 is considered, where the
median is often slightly lower. This can be observed in many
cases, with some exceptions being 1 drone, 50 customers,
and 2 drones, 100 customer setups, where the median ∆MS
remains constant.

However, as uncertainty increases to level 3, a trend
emerges where the DM catches up to the RM and, in
some cases with 10 customers, even results in an improved
makespan. For instance, with 1 and 3 drones, the lower bound
of the IQR is approximately -5% and -7%, respectively.
This trend is in general however less noticeable for these
10 customer setups. This is likely caused by the lack of
circumstances to react to, i.e. the uncertainties in these setups
do not have sufficient time to disrupt the RM significantly.
When more customers are added, the uncertainties can
propagate over time, causing these setups to be more severely
impacted by the level of uncertainty. This can clearly be seen
in e.g. the 2 drone, 50 customers setup, where the median
gradually declines from 30% to 20%. This trend becomes
clearer as the number of customers increases.

To analyze the distribution of ∆MS, Kernel Density Es-
timation (KDE) is applied. A sample of the KDE results is
presented in Figure 6, showing the distribution of percentage
differences for a sample of four distinct setups: 3 drones with
25 customers, 2 drones with 50 customers, 3 drones with 100
customers, and 4 drones with 100 customers.

By evaluating these figures, a hypothesis is proposed sug-
gesting that the data follows a normal distribution. This
assumption is tested using the Shapiro-Wilk test, a statistical
test designed to assess the normality of a dataset. If the p-
value is greater than 0.05, the null hypothesis of normality
is accepted; otherwise, it is rejected, indicating significant
deviations from normality. From this analysis it is concluded
that the p-values are higher than 0.05, and that the samples
thus follow a normal distribution. Subsequently, an Analysis of
Covariance (ANCOVA) is performed for the dependent vari-
able variable ∆MS. By doing so, the effect of the uncertainty
is investigated as a categorical variable, while treating the
number of drones and number of customers as continuous
variables (or covariates). This analysis allows isolating the
individual effects of the independent variables. The results of
this analysis can be found in Table V. Since the uncertainty
should be treated as a categorical variable, the significance for
each uncertainty level is shown.

In this table, the baseline indicates the difference between

(a) KDE of Uncertainty Level 0

(b) KDE of Uncertainty Level 3
Figure 6. Sample of the Kernel Density Estimation (KDE) of Percentage
Differences of the DM w.r.t the RM

Variable p-value Coefficient Std. Error 95% CI

Baseline <0.001 5.0175 0.824 [3.400, 6.634]
Unc. level 1 0.756 0.2204 0.708 [-1.169, 1.610]
Unc. level 2 0.007 -1.9021 0.708 [-3.292, -0.513]
Unc. level 3 <0.001 -8.9394 0.708 [-10.329, -7.550]
No. drones <0.001 2.0332 0.224 [1.594, 2.473]
No. customers <0.001 0.2443 0.007 [0.230, 0.259]

TABLE V. ANCOVA RESULTS OF ∆MS

the two models in their reference conditions. This refers to the
setting with 1 drone, 10 customers, and uncertainty level 0. In
these conditions, the DM is expected to have approximately
5% longer completion times than the RM. The 95% confidence
interval (CI) is also indicated in the table.

An analysis of the uncertainty levels is also presented.
As previously noted, this variable should not be treated as
continuous and is instead interpreted as a categorical vari-
able. Therefore, separate analyses are provided for each of
the three uncertainty levels. For the first level, no statistical
significance is found, with a p-value of 0.756. This suggests
that transitioning from uncertainty level 0 to level 1 does
not have a significant impact on ∆MS. However, for the
second uncertainty level, a coefficient of -1.9021 is observed
with a p-value of 0.007, which is statistically significant. This
indicates that switching from uncertainty level 0 to level 2 has
a significant effect on the difference between the models. The
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same conclusion can be drawn for the third uncertainty level,
where a p-value of <0.001 is observed. The coefficient in this
case is -8.9394, implying a nearly 9 percentage point decrease
in ∆MS when moving from uncertainty level 0 to level 3.

In addition to the analysis of uncertainty, the effects of
the number of drones and the number of customers are also
examined. Both variables have a significant impact on ∆MS,
with a p-value of <0.001. Specifically, increasing the number
of drones by one results in a 2.0332 increase in ∆MS.
Similarly, increasing the number of customers by one leads
to a 0.2443 increase in ∆MS. It is important to note that
this increment refers to a single additional customer, even
though the experiments are conducted with 10, 25, 50, or
100 customers. Nonetheless, both a larger number of drones
and a greater number of customers contribute to an increased
difference between the two models, favoring the RM.

Concluding, the RM has superior performance in nearly all
conditions. Furthermore, w.r.t. the baseline, i.e. uncertainty
level 0, 10 customers, and 1 drone, increasing either the
number of customers as well as the number of drones benefits
the RM. However, switching to uncertainty levels 2 or 3
improves the relative performance of the DM w.r.t the RM,
with a more notable difference in the third uncertainty level.

B. Distance Traveled

In this subsection, the distance traveled by each drone is
analyzed. This can be viewed as a metric of efficiency, since it
assesses the ability of the model to provide convenient launch
and retrieval points with minimal traveling distance.

Since each drone must take off and land exactly twice,
only the horizontal distance traveled is considered. This
horizontal distance is likely to be influenced by the distance
between each customer; therefore, the results are grouped by
customer counts of 10, 25, 50, and 100. Since the uncertainty
level only affects the drone distances in the case of the DM,
it is omitted from the analysis, and remains fixed at baseline
level 0. The resulting visual can be observed in Figure 7. The
drone’s range is also indicated in this figure.

Upon analysis, it becomes evident that the reference model
(RM) fails to consistently adhere to the drone’s range con-
straint, a critical issue given the importance of this constraint
in the problem. To investigate the cause of these violations,
it must be recalled that the functionality of the repository
was previously checked, with the model outputs successfully
replicating those originally present in the repository. Subse-
quently, examples of violations of the range constraint are
identified and verified by comparing the distances traveled
by the drone in the simulation with the Euclidean distances
provided in the input data table. This comparison reveals that
the simulation distances closely match the input distances,
often with discrepancies within 1 meter. Therefore, the issue
can be attributed to the RM selecting infeasible itineraries.
To further narrow down the cause of the issue, the set P ′ is
examined to determine if the itineraries violating the range

Figure 7. Distance Traveled per Drone for each Customer Count under
Uncertainty Level 0

constraint are present. Such itineraries are not included in P ′,
yet they do appear in the final solution.

The crucial conclusion can thus be drawn that the RM
does not respect the range of the drones in all cases, and in
some extreme cases even traverses distances of more than 2.5
times the range of the drone. At the same time, it can also
be observed that the DM in some cases exceeds the drone’s
range. This is likely caused by the fact that the models input
parameters are given in euclidean distances. However, when
rerouting the drone with a change of heading, the drones
traverse a larger distance than the euclidean distance.

Furthermore, the distance traveled by a drone is lowest when
only 10 customers are considered. This result is unexpected,
as a lower customer density per km2 leads to greater dis-
tances between customers, resulting in longer drone travel
distances. However, in the 10-customer case, the customers are
concentrated in the city center rather than spread across the
larger agglomerate, offsetting the effects of the lower customer
count and creating a customer density comparable to the 100-
customer scenario. Therefore, the distances traveled by drone
are also lower.

To avoid incorrect interpretations of this anomaly, the 10-
customer case is omitted from further analysis. The remaining
customer counts are analyzed through an ANCOVA, of which
the results are shown in Table VI.

Variable p-value Coefficient Std. Error

Model <0.001 -3597.7432 77.218
No. customers <0.001 -35.1886 1.260

TABLE VI. ANCOVA OF DISTANCE TRAVELED PER DRONE

As expected, the number of customers plays a significant
role in distance traveled per drone, with a coefficient of
-35.2. Furthermore, it becomes apparent that the model has
a significant impact on the drone distance traveled with a
p-value of <0.001, and a coefficient of -3598. The DM
thus accomplishes significantly lower drone sorties. This can
be attributed to the fact that the DM only considers local
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Figure 8. Total Distance Traveled by Drones for the 50 Customer Setup

improvements to the makespan instead of considering the
broader picture. Its inability to serve other customers by
drone than the next customer in the TSP tour means that it
will not often consider customers that are located far away
from the current truck position. Conversely, the RM considers
a global optimization, in which all options are assessed,
including distant customers. This leads to drone trips that are
in general longer than the ones generated by the DM.

Further analysis of the distance traveled can be conducted
by examining the total distance covered per drone. For the
DM, this distance varies with each uncertainty level. In
contrast, for the RM, the distance remains constant, as no
deviations from the original plan are possible. The sum of
distances covered by drones is shown in Figure 8. Note
that the data for the RM is only shown for 1 uncertainty
level, since the distance flown by drones is constant w.r.t.
the uncertainty level. The figure exhibits the results only
for 50 customers, since other customer counts follow a
similar pattern. It can be observed that the drones cover most
distance in the RM, across all uncertainty level measurements
of the DM. It can also be noted that the drone distance
increases as the uncertainty increases for the DM. This is
likely linked with the DM finding more alternatives to serve a
customer by drone, leading to a higher drone deployment level.

Lastly, the distance traveled by the truck is analyzed. It
is considered a metric for the algorithm’s efficiency since the
truck is likely to consume most energy in the process. For this
analysis, a similar approach to the one used for the distance
flown by each drone is applied, focusing solely on the base
uncertainty case. This is also done because of the fact that the
RM’s truck travel distances are not affected by the uncertainty
level. Moreover, the distances that are traveled by the truck
are normalized by the customer count. This way, the distance
traveled per customer can be compared. The results of this
analysis are shown in Figure 9.

Clearly, the truck traverses a longer distance for the DM
than for the RM. The different philosophies of the two algo-
rithms are again emphasized here: because the RM strategi-
cally plans its route beforehand, it can ensure a quick route that

Figure 9. Distribution of Distance Traveled per Customer by the Truck

ensures no unnecessary distance is covered. However, since
the DM does not account for this and does not specifically
consider smarter routes in the long run, it often results in
excessive driving. The assumption of fixed launching locations
likely contributes significantly to these outcomes—by fixing
the launch points, the truck may be forced into suboptimal
routes. Adjusting the launch locations for certain drones could
reduce the distance traveled and prevent this inefficiency.

Furthermore, the distance traveled by the truck per customer
is lowest in the 10-customer case, for the same customer
density-based reasons as explained for the drone distances.

A similar ANCOVA is performed as for the distance traveled
by drone, again leaving out the 10-customer case. Results of
this analysis are shown in Table VII.

Variable p-value Coefficient Std. Error

Model <0.001 545.8519 64.508
No. customers <0.001 -4.5946 0.944

TABLE VII. ANCOVA OF DISTANCE TRAVELED PER DRONE

The analysis confirms the model has a significant impact
with a p-value of <0.001 and a coefficient of 546, indicating
that the DM has a longer truck distance per customer than
the RM. Furthermore, the number of customers is also statis-
tically significant, as expected, with a p-value of <0.001. Its
coefficient is -4.6, indicating the truck distance per customer
is reduced by 4.6 m per customer.

C. Vehicle Waiting Time at Pickup Point

This section is concluded with an analysis of the waiting
time of the truck and drones at their pick up points. This
comparison is conducted to evaluate the efficiency of the two
models in selecting a pickup point that minimizes waiting
time. The analysis is conducted for each uncertainty level,
and is grouped for all customer and drone setups. This
ensures a large data pool of pickup point waiting time data.
The distribution of waiting times is shown in Figure 10. Note
that the figure is limited to show outliers up until 1000s, in
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order to preserve its readability.

Furthermore, an ANCOVA is performed on the waiting
times as well, including interaction terms between the model
(DM and RM) and the uncertainty level. The results are
shown in Table VIII. The RM is taken as a baseline again in
the analysis.

Figure 10. Waiting Time of the Truck or Drone at Pickup Point Combined
for all Setups

The figure and table highlight key insights from both mod-
els. Even in the base uncertainty case, the difference in waiting
time between the models is substantial. In the table, this is
indicated by this coefficient of changing the model, which is
-92.7. This means that without uncertainty, the waiting time
of the DM is -92.7 s lower than for the RM.

As uncertainty increases, the DM shows only a minor rise in
waiting time, whereas the RM experiences a more pronounced
increase. The interaction terms confirm this observation, all
having p-values of <0.001. The coefficients range from -
43.7 to -166 as uncertainty increases, indicating the difference
increases between the two models as uncertainty increases
which is especially prominent for uncertainty level 3. It is
very likely that this increase can be linked to the deterioration
of the RM in the 3rd uncertainty level, which was highlighted
in Subsection VI-A.

Although the differences between the two models are
significant, it should be recalled that the DM is allowed to
change its pickup point, while the RM is not allowed to do so.

On its own, the uncertainty also has a significant impact on
both models, as expected. This is indicated by the p-values
of <0.001 and coefficients ranging from 50 to 194, meaning
that the waiting time are expected to increase 194s going
from uncertainty level 0 to level 3.

Although the median waiting time of the DM is lower across
all uncertainty levels, there are an unusual amount of outliers
present in all cases. The explanations of this can be found in
cases where the pickup point of the drone is being recalculated.
If the situation occurs where the truck expects a waiting time

Variable p-value Coefficient Std. Error

Baseline <0.001 147.8749 2.581
Model <0.001 -92.7451 3.884
Unc. Level 1 <0.001 50.0467 3.651
Unc. Level 2 <0.001 74.9891 3.651
Unc. Level 3 <0.001 193.6588 3.651
Unc. Level 1 * Model <0.001 -43.7052 5.361
Unc. Level 2 * Model <0.001 -63.8101 5.226
Unc. Level 3 * Model <0.001 -166.1052 5.133

TABLE VIII. ANCOVA OF WAITING TIMES

at the current pickup location, the drone is expected to divert
to a more distant point in the truck route. However, when the
drone is already close to its range limit, some distant point in
the route are not feasible. Therefore, alternative points later on
in the route are considered as a possibility, which can be closer
to the drone’s current location depending on the trajectory of
the truck. Since truck waiting time is heavily penalized by the
MILP, the drone will decide to go to this alternative point, in
favor of the pickup point where the truck would have to wait.
This situation can occur even without uncertainty, as the MILP
is susceptible to small amounts of expected truck waiting time,
which is avoided at all costs.

VII. DISCUSSION

This section provides a detailed discussion of the
methodology that is employed and the results that are
presented. These aspects should be carefully considered when
interpreting the findings of the paper.

A. Dynamic Method Design Choices and Limitations

The dynamic method has many factors that influence its
performance, as well as some design choices that can be
a limiting factor to the performance of the model. This
subsection discusses these aspects that have to be taken
into account when considering the dynamic method that is
presented in this paper.

One limitation of the dynamic method is that it is dependent
on the results of the TSP tour that is generated prior to the
simulation. This is still a static part of the algorithm and
can currently not be changed in accordance with en-route
circumstances. A truly dynamic model would also incorporate
dynamic routing of the TSP, and would not be tied to a
predetermined tour. In the case of possible road closures,
last-minute changes in customers and packages, and other
influences, a fully dynamic model is preferred.

Furthermore, the results highlight that the distance that the
truck traverses using the dynamic method differs significantly
from the distance traveled in the representative paper. The
likely cause of this observation is fixing the launching lo-
cations: another element of the dynamic method that is not
truly dynamic. While the general philosophy of the algorithm
is being able to adapt to changing environments, there still
exist a variety of conditions it cannot react to.

14



One way to address the issue of having fixed launching
locations is by considering an optimization of launch- and
pickup locations of multiple drones at once. In the proposed
algorithm, the optimization using the MILP is done for one
drone at a time. When more drones are available, this can
result in situations where the truck is visiting launching
locations of previously determined drones that could have
been moved to a new location. Therefore, in the current
algorithm, changing the launch location might sometimes
be desirable in situations where it is currently prohibited.
A significant improvement can be made by considering
optimization for multiple drones simultaneously, such that a
change of launch location is less likely to be needed.

Furthermore, the dynamic method has 3 hyperparameters,
as mentioned previously. These hyperparameters have a signif-
icant impact on the models performance. For example, intro-
ducing intervals at which the algorithm scans for makespan
improvement—i.e. as launching a new drone or rerouting
another one—drastically speeds up the model. However, this
approach also deteriorates its performance. It can cause the
model to ’miss’ certain moments where an improvement can
be made, but where there is no calculation iteration running.
The current hyperparameters are balanced between these two
factors. However, the algorithm is still susceptible to changes
in its parameters.

Additionally, as uncertainty increases, both models exhibit
longer simulation durations, providing the dynamic method
with more time to identify potential savings. This relationship
indicates that uncertainties affect the relative significance of
the hyperparameters, particularly ts and ttimeout, leading the
dynamic method to search for time savings over a longer
period of time, especially after events such as truck stops.
Such dynamics may enhance the performance of the dynamic
method under higher uncertainty conditions.

Even without uncertainty, the hyperparameters remain cru-
cial in determining the overall efficiency and effectiveness of
the algorithm. In real-world applications, a trade-off would
need to be established between computational intensity and
model performance, which is contingent upon the hardware
used.

Another aspect that must be considered in terms of hardware
is the communication between the truck and drone(s). The
truck requires communicating with all drones every tr seconds.
It was assumed that the communication between the drone and
truck is permanently established and does not face a loss of
signal. In reality, this might not be feasible.

B. General Limitations

Throughout the analysis, assumptions and other factors
of the methodology have influenced the obtained results.
Although a significant difference can be observed in
the robustness of the dynamic method compared to the
representative paper, the results require further investigation
to verify its validity. Some noteworthy topics and takeaways

can be reflected upon, and are highlighted in this subsection.

First of all, the time estimations are an important factor
of the determination of the route and timing of operations
for both models. Although both models use the same ETA
estimation using the speed limits of the graph, this estimation
is a simplification of a more complex calculation. It can
be expected that an enhancement of these estimations could
improve the performance of both models.

Closely linked to this are the truck dynamics. In this case,
BlueSky, originally designed as an air traffic simulator, has
been adapted for vehicle simulation. While the truck model
has been simplified, efforts have been made to minimize
the limitations inherent to this approach. It is important to
acknowledge that, despite these efforts, certain aspects of truck
dynamics, such as cornering behavior, may not fully align with
real-world performance.

More significant limitations arise from the lack of essential
driving conditions, including stopping at intersections, traffic
lights, lane changes, and traffic flow. These factors can
significantly influence travel times and, consequently, might
harm the model’s ability to (pre-)plan effectively. While an
effort has been made with the truck stopping uncertainty,
there is still a significant simplification factor present within
this model. Integrating real traffic simulations would improve
the ability of the model to produce realistic results, as done
in e.g. [43].

Another computational limitation can be found in the
uncertainties. The uncertainties introduced in the simulation
are simplified and are modeled to induce deviations from the
nominal conditions. The choice of the uncertainty sources is
arbitrary, and might have a significant impact on the results.
As became evident in the Section VI, the difference between
uncertainty settings 2 and 3 is significant. The framework of
the uncertainties likely has an impact on this outcome.

There are further limitations of the models’ ability to
effectively capture the real-world that must be acknowledged.
In both models, it is assumed that the drone can fly from any
location to any other arbitrary destination within its range.
This neglects any buildings, no fly zones and other obstacles
in its way. Neither model takes this factor into account. While
this does not directly impact the performance of the models,
it does harm their real-world applicability.

Another simplification is found in the endurance model
used. Due to the complexities that an energy constraint would
introduce, it is assumed that the drones are limited by a
range constraint. While this approach simplifies scenarios,
it is important to note that, in practice, the endurance of a
drone is often the limiting factor for its range. Most energy
consumed by a delivery drone is used to counteract gravity
while hovering, which is the primary mechanism for lift.
Consequently, the time a drone spends in the air remains
relatively constant, whether it is hovering or flying. Although
using a range constraint is more practical for model input, a
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better representation of a drone’s endurance is necessary for
more accurate modeling.

The air traffic conditions are also highly simplified in some
cases. The model neglects any other air traffic that might be
encountered during the delivery process. Furthermore, separa-
tion between drones at launch- and pickup locations is also
not accounted for, which might be problematic when drones
attempt to hover at the pickup location. These aspects might
slow down the drones during their mission to the customer,
or might cause delays at launch- and pickup locations when a
large number of operations are performed at the same location.

C. Implications of the Results

While significant differences can be observed between the
reference model and the dynamic method, the results should
be interpreted carefully. In its core, the dynamic method is an
algorithm with one basic rule: launch a drone whenever time
savings are predicted. This limited the results it is capable
of producing, which can likely be improved by enhancing the
algorithm’s philosophy and structure. Nevertheless, it provides
an entry point for research on dynamically tackling this
problem.

It is essential to recognize this fundamentally straightfor-
ward nature, whereas the reference model is intricate and
highly detailed. The logic of the dynamic method is basic
on a greedy algorithm [33], in which a local improvement is
accepted no matter what, disregarding the global consequences
of that choice. It is therefore noteworthy that this relatively
basic, naive algorithm manages to get relatively close to the
performances achieved by the reference model when disrup-
tions are introduced to the simulation.

This observation raises the question whether it is advisable
to continue using strategic, centrally optimized models.
Ultimately, what is the value of employing such a model
if its theoretical performance is never realized in practice,
especially when a dynamic model can potentially match its
effectiveness by adapting to real-time conditions without
the need for pre-planning? To answer this question, the
potential of dynamic methods designed for these applications
should be further discovered. If a more sophisticated
model can match or even outperform a strategically planned
model, it would be advisable to deploy these dynamic models.

At the same time, the advanced models of existing research
such as [18] and [21] should not be disregarded in this
comparison. It is evident that the strategic planning is still
rewarded with a significantly shorter truck route and lower
mission completion times. In the base case, the dynamic
method is outperformed by the reference model, partly since
the truck obtains a more efficient route. The dynamic method
causes the model to allocate significantly longer routes to
the truck, which are often unnecessary. This highlights the
effectiveness of strategic pre-planning.

Therefore, a possible way forward for these strategic models
would be to integrate dynamic and strategic planning within
a greater delivery management module. Developing a robust

scheduling approach for the strategic tour is also a feasible
option. However, the costs associated with implementing such
a robust plan need to be carefully examined. In the end,
uncertainties will remain unpredictable in both effect and
magnitude, and accounting for them beforehand poses an
interesting question.

VIII. CONCLUSION AND FUTURE RESEARCH

The aim of this paper is to investigate the potential
efficiency benefits of a dynamic method for solving the
Traveling Salesman Problem with drones. The dynamic
method’s objective is to enable real-time decision-making
in the face of uncertainty. This algorithm is compared to an
existing model from the literature, evaluating performance
based on key efficiency metrics. These tests are conducted
using BlueSky, under varying levels of uncertainty and with
different numbers of drones and customers.

The results indicate that, in terms of mission completion
time, the dynamic method is outperformed by the existing
model across all uncertainty levels, drone counts, and
customer configurations. However, the performance gap
narrows as uncertainty increases, suggesting that the dynamic
method is more robust in unpredictable scenarios. Next to
this, the median distance covered by a drone is significantly
shorter for the dynamic method. Conversely, the distance
covered by the truck is found to be significantly longer.
This indicates that the dynamic method is able to efficiently
deploy drones for package delivery, but this comes at the
cost of a longer truck route. Further benefits of the dynamic
method are found in the decreased truck or drone waiting
time at the pickup location. Although there are efficiency
gains attainable with a dynamic method, in its current form
the strategic pre-planning algorithms remain superior.

While the dynamic approach is less effective overall than
the current pre-planning algorithms, it is less affected by un-
certainties when they are increased. The topic holds significant
potential for future research with numerous opportunities for
further exploration. One possible research direction should
focus on enhancing the dynamic method, e.g. by considering
multiple drones in the MILP simultaneously or tuning the
hyperparameters. Potentially, it could be combined with (sim-
plified) pre-planning algorithms to increase its flexibility, while
retaining the advantages of pre-planning. Additional realism
should also be incorporated in the simulation by including
aspects such as collision avoidance with other air traffic, sep-
aration at the launch- and pickup points, avoidance of obstacles
and no fly zones. Furthermore, more advanced sources of un-
certainty with smaller increments should be further developed.
An analysis of dominant uncertainty sources should also be
made to investigate which exact sources significantly impact
the models’ performance.
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[32] S. Oliveira, M. S. Hussin, T. Stützle, A. Roli, and M. Dorigo, “A detailed
analysis of the population-based ant colony optimization algorithm for
the tsp and the qap,” pp. 13–14, 07 2011.

[33] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.

[34] A. Ranjbari, C. Diehl, G. Dalla Chiara, and A. Goodchild,
“Do parcel lockers reduce delivery times? evidence from the
field,” Transportation Research Part E: Logistics and Transportation
Review, vol. 172, p. 103070, 2023. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1366554523000583
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1
General Introduction

During the digital age, e-commerce has taken a significant role for retailers. This can be attributed to
advancements that are made in technology, logistics, payments and trust in e-commerce, and is fueled
by a generation of consumers who want greater convenience [1]. According to a report of Boston Con-
sulting Group (BCG), e-commerce will account for 41% of the retail sales in 2027 [2]. Consequently, this
increasing demand must be matched by delivery and fulfillment networks capable of accommodating it.
As a response to this growing demand for online retailing, Amazon completed its first commercial drone
delivery in 2016 [3], after CEO Jeff Bezos assured the public ”As soon as Amazon can work out the regu-
lations and figure out how to prevent your packages from being dropped on your head from above, there
will be a fleet of shipping drones taking the sky” in 2013 [4].

The need for enhanced delivery options is further backed up by a report of leading consulting firm
KPMG, who found that 43% of consumers cited this as top factor for deciding where to buy. Furthermore,
according to Ragunatha et al. [5], the usage of drones can cut more than half the delivery costs when
compared to other vehicles. Because of this, Amazon is not the only one trying to enter the drone delivery
market, with also Google, Walmart, UPS and DHL having the same intentions [6, 7, 8, 9]. The use of
drones in deliveries has also been approved by the Federal Aviation Administration (FAA), with Google’s
company Wing receiving the first approval in 2019, and Amazon also receiving approval shortly after [10,
11]. Amazon now even announced its new Prime Air drone that can deliver packages of up to five pounds,
and is equipped with ’sense and avoid’ technology that can be used to avoid obstacles such as people
and property [12].

As pointed out by Agatz et al. [13], drone only delivery also puts forward some inherent downsides. The
size of the drone limits the payload the drone is able to carry, and because it is battery powered it also has
a limited range. The former also implies the drone would have to return to the depot every time a delivery
has been completed, which is an inefficient process. Trucks on the other hand have high carrying capacity
and also have a large service range. Similarly, however, truck only delivery has some downsides as well,
for instance the environmental footprint and the constraints of a road network. Therefore, truck- or drone-
only delivery networks have inherent downsides, linked to the nature of the system. Combining a truck and
drone delivery network solves a large portion of these downsides, utilizing the complementary strengths of
trucks and drones. The advantages and disadvantages of the delivery network are summarized in Table
1.1.

The potential for drones to work alongside trucks initiated research into both the technical as well as
the operational aspects of this type of delivery network. In terms of this operational research, Murray and
Chu [14] first investigated the use of cooperative delivery with trucks and drones. Since then, numerous
mathematical models have been developed, exploring a broad spectrum of possibilities of truck-drone
collaboration in delivery networks. The models presented in these papers are mostly variations of the
Traveling Salesman Problem (TSP) or the Vehicle Routing Problem (VRP), which has been shown to
be nondeterministic polynomial-time (NP)-complete [15, 16]. This means both problems belong to the
NP and NP-hard class. NP, NP-hard, and NP-complete are all complexity classes used to classify the
computational problems according to their time- and memory intensity. Solutions to the NP-complete
problems can be easily verified, but they cannot be solved in polynomial time, since the solving time
required explodes for larger instances [17]. Due to this nature of the problem, many of these papers
employ heuristic algorithms to find near-optimal solutions within acceptable time.
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Table 1.1: Advantages and disadvantages of delivery types

Delivery Type Advantages Disadvantages
Truck Only + High carrying capacity - High operating costs

+ Easy delivery: No need to ascend
and descend

- High environmental footprint

+ Large operating range - Constrained by roads and road
traffic

Drone Only + Low operating costs - Low carrying capacity
+ Low environmental footprint - Slower delivery: Need to ascend

and descend
+ No road constraints - Limited operating range

Truck and Drone + High carrying capacity - Additional procedures
+ Large operating range
+ Limited road constraints
+ Limited environmental footprint

This project revolves around a simulation of a delivery network with a truck and drones. Within a
simulation uncertainties can be introduced in a simulation, allowing for more representative real-world
conditions to be mimicked. This is a crucial contribution to make the optimization of such problems more
realistic and robust. Furthermore, in terms of technological maturity, a proof of concept in a simulated
environment contributes to further development of the technology. This is commonly referred to as Tech-
nology Readiness Level (TRL) [18]. This project concerns a simulation of the truck-drone delivery network,
in which for instance separation between drones and delays of operations or traffic jams can be investi-
gated. These aspects are overlooked by current studies, where the aim is primarily on efficient routing in
a static environment rather than on proposing a dynamic and feasible algorithm. The aim of this research
is to accelerate the technology that facilitates truck drone delivery and to make it more employable in a
real-world scenario.

The approach involves simulating the solutions of an existing heuristic model from literature. Further-
more, a novel, dynamic algorithm will be developed as well, which will be compared to the existing model
in the simulation in various conditions. These conditions also include uncertainties, which are used to
more closely capture the environment that can be expected during real-life operations. The simulations
are conducted in BlueSky [19], an open-source air traffic simulator developed to make research more
comparable. This makes it a suitable tool for the project, as it can also serve as a foundation for further
analysis and research.

This report is structured as follows: Chapter 2 thoroughly discusses the existing literature on truck-
drone network operations. This chapter is concluded with identifying the gap in existing research. This
research gap is subsequently addressed in Chapter 3. The planning for the project is presented in Chapter
4. The code structure that is used for the research is explained in more detail in Chapter 5. Lastly, some
additional results can be found in Chapter 6.



2
Literature Review

This chapter is a review of the research that has been conducted on existing literature is formulated. First,
the existing literature is analyzed in Section 2.1. Conclusions are subsequently drawn from this analysis
in Section 2.2

2.1. Analysis of Existing Literature
This section elaborates on the existing literature that has been reviewed. It is further divided into 3 distinct
subsections: firstly, the existing literature on the Traveling Salesman Problem with drones is discussed in
Subsection 2.1.1. Then, reviewed literature regarding conflict avoidance and collision free path planning
is discussed in Subsection 2.1.2. Lastly, literature regarding the Traveling Salesman Problem without any
drones, but with dynamically changing conditions is discussed in Subsection 2.1.3.

2.1.1. Truck and Drone Delivery
This subsection consists of a literature review on the truck and drone (T&D) cooperative delivery problem
(TDCDP). In such a problem, delivery trucks and drones (also commonly called Unmanned Aerial Vehicles
or UAVs) work in tandem to deliver packages. The problem was formally introduced in 2015 by a paper
by Murray and Chu [14], where a single T&D cooperate to deliver a set of packages. The problem was
formulated as a Mixed Integer Linear Program (MILP) problem and referred to as the Flying Sidekick
Traveling Salesman Problem (FSTSP). Another distinct version of the TDCDP was formulated, called
the parallel drone scheduling TSP (PDSTSP), where trucks and drones deliver packages independently.
Following the initial article, research on the TDCDP has rapidly evolved. Murray and Chu’s work [14] and
the bright outlook of truck drone delivery as highlighted in Chapter 1 sparked a wave of diverse studies
exploring numerous aspects of this problem. This has significantly broadened the scope of investigation
in the field. This diversity gave rise to the need of a clear taxonomy of the TDCDP, which was provided by
a paper of Zhang et al. [20]. Importantly, Zhang divided the problem into 4 sub-problems [20], to which
this paper will also adhere to1:

1. Mixed delivery: Trucks and drones both make a delivery. Furthermore, the drones are allowed to
dock on the trucks. An example of this sub-problem is the previously described FSTSP [14].

2. Drone delivery with truck-assisting: Drones are the only vehicles that can make deliveries, while
trucks have an assisting role in driving the drones to launching locations. Drones are allowed to
dock on the trucks.

3. Parallel delivery: Trucks and drones independently make their own deliveries. The previously men-
tioned PDSTSP formulation [14] is an example of such a sub-problem.

4. Truck delivery with drone-assisting: Trucks are the only vehicles that can make deliveries, while
drones have an assisting role in resupplying the truck with packages. Drones are allowed to dock
on the trucks.

The scope of this literature review is limited to the modes where drones are allowed to dock on trucks,
and are also allowed to make their own deliveries. This entails a focus on both 1. mixed delivery and 2.

1The order of the sub-problems was altered for clarity
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truck delivery with drone-assisting, from hereon referred to as mode 1 and mode 2. When considering
mode 1 and 2 delivery, several researchers have modified and extended the first formulation. In case the
problem has a single truck and a single drone, it is most often called Traveling Salesman Problem with
Drone (TSP-D). For example, Agatz et al. [13] later formulated the problem as an Integer Programming
(IP) problem and proposed a route first-cluster second heuristics with dynamic programming. Carlsson
and Song [21] used continuous approximation (CA) to formulate the problem, while Bouman et al. [22]
formulated the problem as a MILP, and used dynamic programming to obtain exact solutions. Later, Bai
et al. [23] considered the mode 2 TDCDP where drones can deliver multiple heterogeneous packages
to customers on a real-world graph, while also allowing for launching locations that are not a customer
location. This problem was named the Capacity-Constrained Heterogeneous Delivery Problem (CCHDP).

A major extension of the problem was introduced by Ferrandez et al. [24], who first formulated the
TDCDP with multiple drones. They used the K-Means clustering algorithm to determine the launching
locations of the drones and used a genetic algorithm to acquire solutions. Chang et al. [25] also took
the the clustering approach for the truck multi-drone problem, but assumed only the drones can make
deliveries. Several other papers used other heuristic approaches, for instance Murray and Raj [26], Luo
et al. [27] and Tu et al. [28], who all considered that drone launching locations coincided with customer
locations. Contrary to this approach, Young Jeong and Lee [29], Poikonen and Golden [30], Salama and
Srinivas [31] and Mahmoudi and Eshghi [32] all considered the launch and retrieval (L&R) locations of
the drones to be flexible and independent of customer locations. Leon-Blanco et al. [33] took a unique
approach and used an agent-based formulation instead of an integer programming formulation, where
agents represent points to be visited by vehicles, evolving within a grid according to set rules.

The problem was also extended to routing multiple trucks and multiple drones. In the formulations
of Tong et al. [34] and Das et al. [35], each truck carries a single drone while serving customers, while
Kitjacharoenchai et al. [36], Tamke and Buscher [37], Kloster et al. [38] and Kitjacharoenchai et al. [39]
(this time with drones carrying multiple packages) all considered trucks carrying multiple drones.

To comprehensively represent the nuances present in the existing literature, an organized database
was constructed of a sample of the available literature on the TDCDP and displayed by Table 2.1. The
nuances that are present between the papers can be observed from the table, showing that no two papers
are entirely alike across all criteria.

Some differences can be found in solving methods, where most of the research employs some kind
of integer programming formulation, but some have other approaches such as CA or an agent-based
formulation. Due to the NP-hard nature of the problem as discussed in Chapter 1, most of the papers use
heuristics to efficiently solve the problem, while some use exact approaches such as commercial solvers.

Evenmore diversity can be foundwhen considering themore specific characteristics of themodel, such
as whether or not heterogeneous drones are being used. This is done by Salama et al. [31] and Murray
et al. [26], accommodating for the expansion of fleet with a variety of drones. The same classification
can be made for the packages, and whether they are assumed to be heterogeneous or homogeneous.
Bai et al. [23] assume heterogeneous packages since the drone can carry packages within its loading
capacity. Other authors, like Murray et al [26] assume heterogeneous packages because of its influence
on the endurance, and the capacity of the heterogeneous drones.

In terms of endurance, 4 different approaches can be identified that are used within the sample of
existing literature:

1. None: An approach where drones are assumed to have infinite endurance, mainly used in papers
purely intending to discover routing patterns independent of the range.

2. Distance: In this approach the drones have a maximum range they can cover from the truck and
back.

3. Time: This approach is similar to the distance endurance, but now expressed in flying time. This
usually gives a slightly more detailed representation of the drone’s endurance than distance metric.

4. Energy: The energy approach is the most detailed one, where the drone has a certain energy level
which starts draining based on for instance the flying time, weight of the drone, weight of the package,
and distance covered.



Table 2.1: Classification of a sample of existing literature on the TDCDP mixed delivery (mode 1) and drone delivery with truck assisting (mode 2)
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Bouman et al. (2017) [22] TSP-D MILP Exact 1 1 No No No None None Euclidean No Yes T&D
Lin (2011)10 [40] VRPPDTW2 MIP Exact, Heuristic 1 1 No No Yes None None City map No Yes T&D
Murray et al. (2015) [14] FSTSP MILP Exact, Heuristic 1 1 No No No Time None Euclidean No Yes T&D,TO
Ha et al. (2018) [41] TSP-D MILP Exact, Heuristic 1 1 No No No Time None Euclidean No Yes T&D
Agatz et al. (2015) [13] TSP-D IP Exact, Heuristic 1 1 No No No None None Euclidean No Yes T&D
Carlsson et al. (2017) [21] Horse Flies1 CA Heuristic 1 1 No No No None None Euclidean Yes Yes DO
Bai et al. (2023) [23] CCHDP3 MILP Heuristic 1 1 No Yes Yes Distance None City map Yes Yes DO
Young Jeong et al. (2023) [29] DRP-T MILP Exact, Heuristic 1 M No No Yes Time None City map Yes Yes DO
Young Jeong et al. (2021) [42] DRP-T MILP Exact 1 M No No Yes Time Retrieval waiting City map Yes Yes DO
Poikonen et al. (2020) [30] k-MVDRP4 IP Exact, Heuristic 1 M No Yes Yes Energy Assumed FCS11 Euclidean Yes Yes T&D
Leon-Blanco et al. (2022) [33] TmDTL5 Agent-based ABM 1 M No No Yes Time None Euclidean No Yes T&D
Salama et al. (2022) [31] CTDRSP-FL6 MILP Heuristic 1 M Yes No No Time Coupled L&R Euclidean Yes Yes T&D,TO
Luo et al. (2022) [27] MTSP-MD7 MILP Exact, Heuristic 1 M No Yes Yes Energy Assumed FCS11 Euclidean No Yes T&D,TO
Mahmoudi et al. (2022) [32] EM-TSPDs8 MILP Exact, Heuristic 1 M No Yes Yes Energy Retrieval waiting Euclidean Yes Yes DO,T&D,TO
Ferrandez et al. (2016) [24] Clustered TSP1 MILP Heuristic 1 M No No No None None Euclidean Yes No T&D
Chang et al. (2018) [25] Clustered TSP1 NLP Heuristic 1 M No No No Distance None Euclidean Yes No DO
Tu et al. (2018) [28] TSP-mD MILP Heuristic 1 M No No No Distance Retrieval waiting Euclidean No Yes T&D
Murray et al. (2020) [26] mFSTSP MILP Exact, Heuristic 1 M Yes Yes No Energy Coupled L&R12 City map No Yes T&D,TO
Das et al. (2021) [35] MOO TSP-mD1 MIP Heuristic M 1 No No No Time None Euclidean No Yes T&D
Tong et al. (2022) [34] TSP-D MINLP Heuristic M 1 No No No Time Retrieval waiting Euclidean No Yes T&D
Tamke et al. (2021) [37] VRPD MILP Exact M M No No No Distance None Euclidean No Yes T&D
Kloster et al. (2023) [38] mTSP-DS9 MILP Exact, Matheuristic M M No No No Energy None Euclidean Yes Yes T&D
Kitjacharoenchai et al. (2019) [36] mTSPD MIP Exact, Heuristic M M No No No None None City map No Yes T&D
Kitjacharoenchai et al. (2020) [39] 2EVRPD MIP Exact, Heuristic M M No Yes Yes Distance 1 OP13 per node Euclidean No Yes T&D

1No official name present in article
2Vehicle Routing Problem with Pickup and Delivery Time Windows
3Capacity-Constrained Heterogeneous Delivery Problem
4k-Multi-visit Drone Routing Problem
5Truck-multi-Drone Team Logistics Problem
6Collaborative Truck–Drone Routing and Scheduling Problem with Flexible Launch and Recovery Locations
7Multi-visit Traveling Salesman Problem with Multi-Drones
8Energy-constrained Traveling Salesman Problem - Drones
9multiple Traveling Salesman Problem with Drone Stations

10Although this formulation considers foot couriers instead of drones, the approach is very similar
11Flight Control System (FCS)
12Launch and Retrieval (L&R)
13Operation (OP)
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When considering real-life operations, it is crucial to ensure separation between drones as to avoid
potential collisions. While most papers focus on the routing and disregard the separation between the
drones, a few do address this challenge. Themost detailed variants can be found in papers by Salama and
Srinivas [31] and Murray et al. [26], where the launch and retrieval operations are coupled and explicitly
time-separated. Some other solutions are also possible, such as the model presented by Kitjaroenchai
et al. [39]. In this specific model it is assumed that only a single operation is possible for each node to
ensure separation between drones. Papers by Young Jeong and Lee [42], Mahmoudi and Eshghi [32],
Tu et al. [28] and Tong et al. [34] consider a waiting time for the drone at the rendezvous location, but do
not actively consider separation between drones.

Additional differentiation among the studies can be made on whether a city map is utilized to test
the model, and if drones are permitted to launch from locations other than customer sites. For example,
Mahmoudi and Eshghi [32] mentioned that ”If customer locations are considered the only possible nodes
for drone launch and retrieval, some drone-eligible customers may not be within the flight range of a
drone”. Salama and Srinivas [31] also demonstrated this exact importance, by showing that a substantial
improvement in delivery efficiency can be achieved through the use of flexible launch and retrieval sites.

Furthermore, some papers like Ferrandez et al. [24] and Chang et al. [25] do not consider that the
truck is moving while the drone is out making a delivery, i.e. there is no mismatch between the launch and
retrieval locations of the drones that are launched from the truck. The main reason for not considering
this aspect is because of the emphasis on the clustering aspect of the deliveries.

Lastly, the delivery types can be used to distinguish the papers. This is closely related to the delivery
modes (recall that mode 1 signifiesmixed delivery andmode 2 signifies drone delivery with truck-assisting).
This specification shows the ’customer types’ of the model, where T&D indicates there exist nodes that
can be services by either a truck or a drone. Some models also allow truck only (TO) nodes to exist, and
others limit customers to only being able to be serviced by drones (DO). The model is not necessarily
limited to one type of node. When multiple classifications are present in this column, it indicates that both
types of customers are present in the model. When only DO deliveries are considered in the model, it
suggests that it is a mode 2 delivery model. If either TO or T&D deliveries are present as well, then it is a
mode 1 delivery model.

2.1.2. Collision avoidance and Airspace Simulation
Other studies consider path planning to avoid intrusions and collisions, which is a practical, real-life aspect
of the routing process. These are absolutely crucial, since there are inherent uncertainties in the drone’s
motion and environment. An example is the a paper by Wen [43], in which dynamic threats avoidance
is modeled as a pursuit-evasion game. Primatesta et al. [44] take a two phase approach, generating a
tentative static risk free route, and subsequently adjusting this route on-line with a dynamic risk map. A
similar, dynamic, software-in-the-loop approach is taken in a study by Selvam et al. [45]. All of these
studies use a simulated environment to verify the algorithms. Other papers, for instance one by Wan et
al. [46], use a MILP formulation to develop a safe navigation environment, but do not create a simulated
environment of the proposed system. Bahabry et al. [47] also formulate the collision free path planning
problem as a MILP, but the results are in this case simulated using geographical data of Manhattan, New
York City.

A comparison between multiple conflict resolution methods is performed by Ribeiro et al. [48], testing
several common centralized and decentralized methods, e.g. the Modified Voltage Potential (MVP) [49],
in the BlueSky air traffic simulator [19]. Research on organizing the drone airspace structure with fast-
time simulations have been conducted by Sunil et al. [50], finding that vertical segmentation based on
travel direction maximizes the airspace capacity. Sunil et al. [51] also put forward three-dimensional
conflict count models, computing the instantaneous conflict counts in terms of traffic demand and other
parameters. A useful taxonomy is also provided on intrinsic safety of an airspace, while also highlighting
the difference between an intrusion (or loss of separation) and a conflict. When considering real world
applicability, these two concepts are aspects that must be considered.

2.1.3. Dynamic Traveling Salesman Problem Models
Although none of the research described in Subsection 2.1.1 contains dynamic conditions and uncertain-
ties, there are several studies that do consider such an environment. In Chapter 1, the interest in algo-
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rithms that do not assume complete predictability was highlighted. To find papers that account for dynamic
conditions rather than entirely deterministic inputs, the regular Traveling Salesman Problem (TSP) is ex-
amined. For instance, one paper addresses a scenario where customer request locations may change
over time, considered by e.g. Zhang et al. [52]. A strategy is proposed where the decisions of the
salesman are continuously revisited after a delivery is completed. This approach also ensures that traffic
conditions are taken into account, since the weights between the customers can be changed every time
a customer is serviced. The inclusion of weights that can be changed throughout the analysis is referred
to as weight shifting. A deep reinforcement learning algorithm is proposed to tackle this problem. Simi-
lar weight shifting conditions are considered by Mavrovouniotis et al. [53], where a memetic Ant Colony
Optimization (ACO) algorithm is proposed to efficiently tackle the dynamic TSP. Stochastic elements are
further introduced into the problem by considering uncertain package release dates of packages at the
depot, formulated by Archetti et al. [54]. Packages must be picked up at the depot before they can be
delivered, and the time when a package can be picked up is not known beforehand.

2.2. Conclusions of Literature Analysis
A key observation that can be made based on Section 2.1 is that none of the existing papers consider a
dynamic environment, in which real-life uncertainties are included. The algorithms in literature assume
complete predictability of the conditions during the delivery process, such as delivery times and travel
times. The existing TDCDP literature solely focuses on the routing aspect of the trucks and drones under
deterministic, known inputs and disregards practical feasibility and applicability of such solutions. For
instance, what happens when the truck gets caught in a traffic jam, or when one of the deliveries takes a
longer time than expected? Since all optimization algorithms are pre-planned solutions, no deviation from
this route is not accounted for.

The conclusion that can be drawn from the analysis of TDCDP literature is that the models that solve
the problem have become very powerful. Even though it is a NP-complete problem, as discussed in
Chapter 1, heuristic algorithms are capable of finding near optimal solutions in every distinct variation
of problem. However, because there is no feedback on status of the network (i.e. position of the truck,
updates on deliveries, situation of road traffic, etc.), the difference between a real-world execution of
the optimized solution may perform worse than calculated beforehand. This is especially feasible when
uncertainty aspects are introduced to the optimization problem. The existing literature thus provides a
mathematically optimized, yet relatively low-fidelity solution due to the absence of practical feasibility and
implementability. The only instance where uncertainties are introduced, and thus where the algorithm also
dynamically accounts for these cases is for the Traveling Salesman Problem without any drones.

Furthermore, it becomes clear that although there have been numerous studies into airspace and air
traffic simulation, no simulations have been performed of a truck-drone delivery network, and there have
also been no previous studies on collision avoidance considering this type of airspace occupation. Numer-
ous studies have developed mathematical models for the routing of trucks and drones. Similarly, several
studies have been published on collision avoidance and airspace structure, also considering simulations
of airspace. However, no papers are present in literature that consider a simulated variant of the TDCDP,
ensuring a both efficient and safe airspace.



3
Research Outline

In this chapter, the approach of filling the research gap that was identified in Chapter 2 is described. The
research objective and questions are first stated in Section 3.1. The requirements and selection of the
existing paper from literature are discussed in Section 3.2. The hypotheses to the research questions are
formulated in Section 3.3.

3.1. Research Objective and Questions
From the literature review, it became clear that there is is an abundance of mathematical models that
aim to efficiently solve the combined delivery routing problem of a truck and drone with deterministic.
Furthermore, the importance of dynamic routing under realistic conditions and simulation of airspace was
highlighted. From the observations that were made in that chapter, the objective of this research is to
address that specific gap. This gap is visualized in Figure 3.1. More specifically, existing truck drone
routing literature will be used to compare a novel, dynamic model in under disruptions and uncertainties.
The comparison will be made in a simulated environment designed to represent real-world conditions as
closely as possible.

Figure 3.1: Visual representation of the research gap as identified in the literature review

The objective that is tied to this visualization is formulated in the Research Objective box.
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The research objective is to construct a novel and dynamic model for the Traveling Salesman
Problem with multiple Drones (TSP-mD) and to compare its performance in terms of efficiency
(e.g. completion time, drone waiting time, delays due to traffic or delivery duration deviation) to
an existing model in a dynamic environment. This will be achieved by running a vehicle simula-
tion in the Bluesky environment.

Research Objective

In order to successfully achieve this objective, a set of Research Questions is developed. The main
research question is presented above.

What are the efficiency gains of introducing a dynamic TSP-mD model when compared to an
existing TSP-mD model from literature in a dynamic and realistic environment?

Main Research Question

To answer this question is a step by stepmanner, 3 sub research questions have also been established.
The first two of these assist with setting up the comparison of the two models, while the last sub question
focuses on breaking down the ’efficiency gains’ term in the main research question. This means that the
first two questions are less directly related to answering the research question, but offer a more compre-
hensive breakdown of the project plan that is presented in Chapter 4. The first one of these assisting sub
questions addresses the selection of a model from literature, and also touch upon the assumptions and
adaptations that are required. It is shown below.

Model selection, specifications and reformulation:
(a) What criteria and selection process can be employed to identify the most suitable existing

TDCDP model from literature for adaptation?
(b) What procedure can be employed for effectively simulate the existing model in a Air

Traffic Management (ATM) simulation?

Sub Research Question 1

The second sub research question is also an assisting question, and aims to put the performance of
the model into perspective by introducing a novel, real-time algorithm. It is:

How can a novel real-time algorithm be designed and implemented to solve the truck and
drone cooperative delivery problem (TDCDP) mixed delivery?

Sub Research Question 2

The last sub research question dives into measuring the performance of a TDCDP model, required to
offer an even ground for comparison. It is formulated as follows:

a) How does the difference in terms of mission completion time (makespan) between the
two models compare when subjecting it to different levels of uncertainty, and is there a
benefit from using the dynamic algorithm in more uncertain conditions?

b) How do the the models compare in terms of the distance that the drones and truck
traverse?

c) How is the waiting time at the pickup location of either the truck or drone affected by
increasing the uncertainty?

Sub Research Question 3
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3.2. Model Selection
A representative paper is to be selected in order to address this set of research questions. When consid-
ering the literature review as explained in Chapter 2, a few notable aspects can be highlighted:

1. First of all, it had to be decided whether a mode 1 or a mode 2 delivery network is to be considered.
Of the two options, mode 1 is considered the most general delivery network in urban areas, which
is the focus of the research;

2. Furthermore, because of the complexity of the problem, it is desired the problem is formulated with
only 1 truck;

3. With the concession of having only 1 truck, it is desired to have multiple drones on this truck, to
address crucial sequencing and timing aspects of such a delivery network;

4. Since this research will focus on realistic conditions, it is desired that the model has been tested on
a real city graph;

5. These realistic conditions also imply the use of a realistic endurance model. Therefore, only papers
that consider energy endurance are desired, since this is the most complex variant.

Using Table 2.1, it can be concluded only one paper meets all these requirements. The name of this
article is ”The multiple flying sidekicks traveling salesman problem: Parcel delivery with multiple drones”
(2020), by Chase C. Murray and Ritwik Raj [26]. This paper will be used as a representative article from
literature during this research.

3.3. Hypotheses
When considering the existing TDCDP, they are often complex and able to solve the problem near op-
timally. However, as previously discussed, none of the papers include put forward a robust model that
is able to respond to disruption and uncertainties. Therefore, the models can actually only handle deter-
ministic inputs without any deviations from these values, and cannot respond to en-route conditions. A
simulation will be used to validate the model’s effectiveness in this conditions. Unexpected conditions
could deteriorate the performance of the model, for example delayed delivery times or wind.

It is expected that the model’s performance is significantly harmed by these conditions. This could be
caused by the need of having to adapt to these altered, uncertain conditions. Even though the existing
models are very complex, they are a simple representation of the conditions one would face in real life.
The dissimilarity between the two cases—realistic versus simplistic conditions—is expected to significantly
impact performance to such an extent that the complexity of the model might be excessive. Therefore,
it is also expected that a much simpler, but dynamic model can get a more or less equal performance
when being benchmarked against an existing model in terms of mission completion time. Furthermore, it
is expected that the distance traveled by the vehicles will increase slightly, but that the waiting time will
significantly be reduced at the same time.



4
Project Plan

This chapter concerns the project plan that will be employed throughout the thesis. This plan is constructed
to meet the required deadlines in time, and to timely answer the research questions and fulfill the research
objective that have been stated in Chapter 3. The methodology for answering the research questions and
the sub question is first discussed in Section 4.1, along with the expected results that should follow from
this methodology in Section 4.2. The planning for the project that is be adhered to is outlined in Section
4.3. Lastly, the execution of the planning in retrospect is discussed in Section 4.4.

4.1. Methodology
The backbone of the methodology is the Bluesky simulation environment. The existing Truck Drone Col-
laborative Delivery Problem (TDCDP) model will be tested and simulated in this environment. The perfor-
mance of the model will be derived from the simulation results.

While Bluesky is an advanced air traffic simulation tool, it does not yet support the TDCDP. However,
since Bluesky is a modular tool, plugins can be used to extend its capabilities. Essentially, multiple plugins
can be created to support the TDCDP simulation, thereby extending its use cases to also include the
TDCDP scenario.

As outlined in Section 3.2, the article that will be used to simulate the existing model is the 2020 paper
by Murray and Raj [26]. Conveniently, their model is available on Github1. Solutions of existing problems
are available as well on the same Github repository. These solutions will serve as the basis of comparison
in this research. They are performed in Seattle (a large city) and Buffalo (a smaller city), and solutions
to the problems are provided as .CSV files. Several different other parameters are taken into account as
well, such as number of drones, specifications of the drones, and number of customers.

A crucial part of the project is to correctly simulate the solutions that are provided by this paper. For
this purpose, a scenario converter will be developed to convert these .CSV solution files to .SCN BlueSky
scenario files. The aim is to provide a fully automated converted, such that the entire process is done by
the converter, and such that these solutions can be directly simulated. To achieve this, the custom plugins
will be used to enable the functionalities of delivery, and launching and retrieving drones.

A novel online algorithm will be developed to solve the same instances as the existing model by Murray
and Raj [26]. The inputs (i.e. customer locations, number of drones, drone specs, etc.) will be taken from
the solutions of the existing article such there is no discrepancy between these. The results of both models
will later be compared to each other, to enable measuring the performance in terms of the self-established
metrics. Possible takeaways from this comparison will also be used to further improve the novel model.
After completing the development of the two algorithms, the comparison is conducted using metrics that
have been defined prior to the comparison. These metrics assess the safety (e.g. drone separation) and
efficiency (e.g. flight time and computational intensity) of the algorithms in a simulated real-world setting
within the ATM Bluesky environment. Following this evaluation, the two models are compared to highlight
their respective strengths and limitations, providing insights into their practical applicability and overall
performance.

1https://github.com/optimatorlab/mFSTSP
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A visual representation of the entire pipeline described in this section can be found in Figure 4.1. The
instances are already generated by the existing paper, and are being fed to the novel algorithm, For the
existing algorithm, the back module is used to convert the solution file to a Bluesky scenario (.scn) file.
This is then fed to the Bluesky simulation itself.

Figure 4.1: Workflow pipeline used to test the algorithms in Bluesky

4.2. Expected Results
The methodology explained in Section 4.1 is expected to deliver a simulation of the heuristic model de-
scribed by Murray et al. [26] in Bluesky, based on the solutions provided by this model. Furthermore, the
performance of this model compared to the novel algorithm is also an expected result, generated by a
complete, simulated head-to-head comparison. The comparisons will be made under different conditions,
for instance the benchmark where no unexpected conditions occur. To introduce dynamic conditions,
traffic jams will be introduced as well as delays in delivery, or potentially deliveries that are completed
quicker than expected. The results of these distinct scenarios are expected to serve as a basis to perform
a quantitative analysis on. Finally, it is expected one of the two models performs better than the other
such that the hypothesis stated in Chapter 3 can be accepted or rejected.

4.3. Planning
To ensure timely delivery of all deliverables, and to ensure fulfillment of the research objective and an-
swering of research questions, the planning was divided into work packages. These work packages can
be found in Table 4.1. Work package 0 is about getting started with the thesis, which has already been
completed. The main deliverable for the first ’official’ work package is this document, serving as the re-
search proposal. The activities for this work package also entailed an extensive literature review, which
resulted in Chapter 2. Furthermore, this planning was drafted and preliminary testing was performed.

The second work packages revolves around setting up the Bluesky workflow and pipeline. This con-
sists of extending the vanilla version of Bluesky with custom plugins as described in Section 4.1. Further-
more, the front and back modules are created as part of this work package, as also described in Section
4.1 and depicted in Figure 4.1.

Work package 3 dives into the existing heuristic model’s solution. In this workpackage, conversion
from the .csv files to .scn files will be setup. This allows simulation in the Bluesky environment.

To compare the engine to another model, work package 4 constructs a novel model that can solve
the problem. In this work package, the specifications of the algorithm are identified, and the algorithm is
implemented and tested.

Work packages 5 is centered around comparing the 2 models, and identifying and incorporating po-
tential modifications that can improve the existing model even more. Afterwards, the performance of the
two models is again compared, if any modifications have been made.

The last work package, work package 6 is focused on writing the thesis report and preparing the thesis
defense to successfully wrap-up the thesis.
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AGantt chart is also detailed of this project and can be found in Figure 4.2, containing all work packages
that have been described in Table 4.1. It should be noted that while the sub-work packages have their
own tasks, these are not included in the Gantt chart to maintain clarity.

4.4. Reflection on Planning
This section is included as a to reflect on the planning that has been drafted at an earlier stage of the
thesis. The planning was last revisited in the end of May 2024, approximately a week before the midterm.
Overall, the planning that was drafted was closely following, resulting in a tight but well-controlled trajectory.
Although the intermediate planning was sometimes refined slightly, the deliverable dates were barely
changed. the initial green light meeting was approximated to take place on the 4th of November 2024,
which is now scheduled for the 5th of November 2024. This indicates that in general the planning was
successfully completed.
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Table 4.1: Work package breakdown

WP ID Work Package Name Description
WP 0 Thesis startup Start thesis, organize documents, etc.
WP 1 Literature Review and Research Pro-

posal
Reviewing existing literature and establishing the
thesis Research Proposal

WP 1.1 Read articles and article selection Reading relevant articles on the TDCDP, simulation
of air traffic, etc. and selecting relevant articles

WP 1.2 Draft Research proposal Creating this document and presenting it
WP 1.3 Draft the planning Creating the planning outline over the entire thesis

duration
WP 1.4 Start testing Start performing small scale Bluesky tests to get fa-

miliar with the functionalities.
WP 2 Setting up Bluesky workflow Establishing the front and back module
WP 2.1 Develop problem generating module Develop the problem generating module (front mod-

ule), generating random instances to be tested with
WP 2.2 Set up scenario converter Develop the engine solution to Bluesky scenario

converter (back module), generating scenario files
based on the solution of the engine

WP 3 Simulate existing model solutions Simulate the solutions of the existing model in
Bluesky

WP 3.1 Retrieve and process osmnx graph Get the graph in osmnx and prepare it for usage
WP 3.2 Setup truck routing Set up correct routing of the truck on the graph
WP 3.3 Setup drone routing Setup euclidean routing of the drones
WP 3.4 Setup translation to Bluesky scn file Convert all routes to Bluesky scenario
WP 3.5 Verify Bluesky compatibility Check whether scenario is correctly functioning in

Bluesky
WP 3.6 Set up KPI measuring Setup extraction of KPIs during the simulation

WP 4 Design and implement novel algo-
rithm

Designing and implementation of the novel algorithm
to be compared with heuristic model

WP 4.1 Determine algorithm specifications Determine what the model’s algorithms rules are go-
ing to be and develop pseudo code

WP 4.2 Implement algorithm Code and implement the algorithm
WP 4.3 Testing the code implementation Ensure proper functioning of the code, bug fixing

where necessary

WP 5 Model comparison and improve-
ment

Head-to-head comparison of the two models in
terms of the same predefined metrics

WP 5.1 Set up batch simulation testing Determining format of simulation testing, e.g. Monte
Carlo simulations

WP 5.2 Process results of testing Collecting and processing results that are obtained
from the batch simulation tests

WP 5.3 Performance comparison and potential
improvements

Comparison based on the results and optional reit-
eration of the models

WP 6 Thesis wrap-up Final stage of thesis, wrap-up consisting of report
writing and thesis preparation

WP 6.1 Write thesis report Writing of thesis report document
WP 6.2 Prepare green light review Preparation of the green light meeting
WP 6.3 Prepare thesis defense Prepare defense presentation
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5
Code Structure

To manage the diverse coding topics covered in the project, individual repositories are established to
ensure a clear separation of code. Given this intricate structure, this chapter is dedicated to discussing
the code organization and functionality. Firstly, the architecture is visualized in Section 5.1. Afterwards,
the important factors of individual repositories are highlighted. These explanations start with the graph
generation in Section 5.2 followed up by the simulation of the reference paper in Section 5.3.1. Then,
the repositories that are used to route the truck are explained in Section 5.4. The end goal, which is the
simulation in Bluesky, is explained in Section 5.5. Lastly, a collection of all links to the repositories that
were used is given in Section 5.6.

5.1. Code Architecture
This section regards the structure of the project’s code. Since several repositories were used for the study,
an outline of the collaboration between the different repositories is given in Figure 5.1. Important functions
are also outlined in the figure.

5.2. Graph Generation
The graph data in this paper is obtained from OpenStreetMap [55], and the OSMNx library is used to access
this data [56]. While a significant amount of data is contained within the graph, some modifications and
additions require to be made to the graph. To ensure that this happens in a consistent manner and that
the same graph data is used consistently throughout the paper, a separate repository was developed,
called GraphGen.

First of all, the graph geometry that is provided by OSMNx is highly detailed. When translating this data to
Bluesky, the number of waypoints becomes excessive and unmanageable. Therefore, the graph is simpli-
fied before usage. By visually inspecting the graph in QGIS, a setting is obtained which ensures a detailed
geometry of edges in the graph, but also ensures that the amount of waypoints that are required is limited.

Next to the simplification, some missing data must also be inserted. Some edges of the OSMNx graph
do not have a speed attribute, which is required for the truck routing in Bluesky. The procedure of filling
these gaps is done as follows:

• The edge data that is present is processed. For each ’highway type’, the most common speed is
stored.

• The edges that have missing speed limits are now processed by highway type. Each edge inherits
the most common speed limit for its type.

• Edges that still do not have a speed limit after the previous steps are given the most common speed
in the graph in general.

With all speed limits defined for the edges, the traversal time can now be calculated by dividing the
length of each edge by its respective speed limit.
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Figure 5.1: Code Structure of the Project
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By generating the graphs that are used in the experiments with this graph generation module, consis-
tency of the data and routing is ensured.

5.3. Simulation of Reference Paper
To capture the solutions of the reference paper in a simulation, a careful procedure is followed to ensure
that it is accurately reflect it. Firstly, this consists of ensuring that the inputs of the model are consistent
with the inputs that are provided to the dynamic algorithm. The method that is used for this is outlined in
Subsection 5.3.1. Once it has been assured that the inputs are consistent, the algorithm is called, resulting
in a set of solution files. The routine that is consequently followed to translate the solutions to a Bluesky
.scn file is explained in Subsection 5.3.2.

5.3.1. Reference Paper and its Inputs
The inputs for the reference paper consist of a timing table in which the time required to drive from any
customer A to any customer B is given. This time required is calculated by the Taxicab-ST module, which
is explained in more detail in Subsection 5.4.1. The module calculates the quickest route and returns
the corresponding value in seconds. This value is then stored in a .csv file (called tbl_truck_travel_data_
<problemname>). Furthermore, euclidean distances between the customer combinations are also re-
quired. This is used by the reference paper to determined if a drone trip is within its range. These euclidean
distances are calculated with the geopandas geodesic function. These values are also stored in the same
.csv file. With this data present, the algorithm can be called, which generates the corresponding solutions
in a different .csv file. This solution .csv file follows the naming convention tbl_solutions_<drone_type>_
<drone_count>_Heuristic, where the drone type considered is always type 101. This corresponds with
the high speed, low range drone. The .csv file contains some metadata, after which the assignments of
the truck and drones are given. The generation of the truck timing table, as well as the solution files is
performed in the mFSTSP repository. This repository also contains all customer instances that are used for
the experiments. For each customer count (10, 25, 50, and 100), there are a total of 10 scenarios present.
A total of 4 distinct uncertainty settings are used, as is explained in Subsection 5.3.3. Accounting for 4
different drone counts, a total of 640 scenario files of the reference paper are generated.

5.3.2. Translation to Bluesky Scenario
After having obtained the solution .csv files, the assignments that are obtained can be translated to a
scenario file. The module responsible for for this conversion is called ScenarioGen. Each row of the
assignments is analyzed by identifying its contents. Firstly, the truck route is extracted. This is done in the
function construct_truck_route. The truck tour followed from every customer A to B, for which the route
between is generated using the Taxicab-ST module, which is further detailed in Subsection 5.4.1. The
resulting route is then converted to a list of coordinates, along with speed limit for each coordinate and
the estimated time of arrival (ETA). This data later serves as input for the construct_scenario function
of the Roadroute module. After the truck waypoints are identified and added to the scenario file, the truck
deliveries and drone sorties are extracted in get_deliveries and get_sorties respectively. This data
is then converted to scenario format in delivery_scen and sortie_scen. By chaining all the individual
commands to a single scenario file, the completion of the scenario is completed and ready for simulation
in Bluesky. Note that these scenario files make use of plugins that are required for the simulation, which
are described in Section 5.5.

5.3.3. Incorporation of Uncertainties
The uncertainties that are introduced in the simulation must be consistent for both models, i.e. for the
reference paper and for the dynamic algorithm. Therefore, these must be generated in a central location,
where they can be applied to both models. The most convenient way to incorporate them into the simu-
lation was to include them in the scenario file, by directly commanding the truck stop operations, altered
customer service times, and the modified drone speeds. These uncertainties are then incorporated not
only to the scenario file of the reference paper, but also in the scenario of the dynamic algorithm. In total,
4 distinct settings are used to vary the uncertainty. They are:

• 0: Base uncertainty level, without any uncertainty.
• 1: Low uncertainty, for uncertainties that should be very common.
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• 2: Medium uncertainty, for uncertainties that should occur occasionally.
• 3: High uncertainty, with uncertainties that shouldn’t occur often.

The implementation of the uncertainties is relatively straightforward. There are 3 types of uncertainties
that were implemented: truck stopping at a certain frequency, modified drone speed, and modified service
time. Firstly, the alteration of drone speeds is accomplished simply by setting a modified speed for the
drone’s waypoints. Furthermore, the modified service time is realized by modifying the stand still time for
delivery, which is a Bluesky extension as explained in Subsection 5.5.1. Lastly, the truck stopping required
its own operation type. This exact functioning is detailed in the same subsection.

5.4. Truck Routing Modules
Truck routing is a separate module in the coding architecture, since its functioning is complex. The cus-
tomer locations are provided by the instances in the mFSTSP repository are crucially not located directly on
the nodes on the graph, and in fact are also not necessarily positioned along an edge. Also, the dynamic
algorithm might be rerouted at any point in time, which results in its position also being at any position
along an edge. Therefore, advanced routing is needed to determine the quickest route between two points.
This routing is divided into two parts: firstly, the calculation of the quickest route from point A to point B is
explained in Subsection 5.4.1. Then, the conversion to coordinates is explained in Subsection 5.4.2.

5.4.1. Taxicab-ST Shortest Time Routing
To calculate the shortest path between two points, an out of the box method cannot be used. These
methods calculate the shortest path between two nodes, and do not account for the fact that the locations
might not be situated on a node. In this study, the shortest path is therefore constructed by the Taxicab-ST
module. The function shortest_time first calculates the nearest edge of the starting location, and also
selects the point on the edge that is nearest to that edge. The same procedure is then followed for the
destination location. Then, the nearest node that is connected by the edge is selected for both the origin
and destination. These serve as the start and end point of the core of the route, which is still the networkx
function shortest_path. This function requires the start and end node of the route to be parsed, and
returns a sequence of nodes that construct the core of the shortest path. The Dijkstra algorithm is used to
obtain this path. Some example use cases of the Taxicab-ST module are given in Figures 5.2, 5.3, and
5.4, all taken from original Taxicab repository1.

(a) Route Generated by Taxicab-ST (b) Route Generated by OSMNx

Figure 5.2: Difference between the OSMNx Route and Taxicab-ST Route Between Distant Points

The first example, shown in Figure 5.2, demonstrates the use where a route is desired between two
points. A significant amount of unnecessary route is removed, and overall the route is much more realistic.

The second example considers a route between two points on a single edge. Significantly more accu-
racy is required in this case, as the OSMNx routing module returns a route of more than double the size of
the Taxicab-ST module. This example is shown in Figure 5.3

1https://github.com/nathanrooy/taxicab

https://github.com/nathanrooy/taxicab
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(a) Route Generated by Taxicab-ST (b) Route Generated by OSMNx

Figure 5.3: Difference between the OSMNx Route and Taxicab-ST Route on a Single Edge

(a) Route Generated by Taxicab-ST (b) Route Generated by OSMNx

Figure 5.4: Difference between the OSMNx Route and Taxicab-ST Route Between Nearby Points

The last example is illustrated by Figure 5.4. This is an example of a shorter route where the benefits of
the Taxicab-ST module are also evident, since 2 edges are partly selected instead of 2 complete edges.

The algorithm also return the total time required for the route to be completed, which is calculated from
the sum of all individual edge parts as well as the beginning and ending line pieces. These follow directly
from the edge properties explained in Section 5.2. Note that every coordinate requires an estimation of
the time that it takes to be completed, hence it might be the case that there are several estimated times
for the traversal of a single edge.

5.4.2. Conversion from Taxicab to Coordinates
Once the nodes that make up the route, as well as the beginning and ending line pieces have been
obtained, they can be translated to a sequence of coordinates, which is done within the Roadroute reposi-
tory. With the roadroute function, the sequence is constructed mainly from the data of the edges that are
part of the route, while the beginning and ending part are appended to it. Furthermore, the edge travel
speed limits are extracted from the edges, which is another element that is being returned by this function.

Then, the construct_scenario can be called to translate these coordinates into Bluesky TrafScript
addwaypoint commands. For this, the previously generated speed limits are also required. As explained
in Subsection 5.4, this function is directly used to generate the truck route for the scenario generation.
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5.5. Bluesky Simulation and Plugins
In this section, the modifications that are made in the Bluesky repository itself (Bluesky-TSP-mD) are
explained. Since operations are not part of vanilla Bluesky, this is added to the simulation with a plugin.
The procedure to do so is explained in Subsection 5.5.1.

5.5.1. Operation Handling
Bluesky’s primary aim is not to simulate a truck and drone delivery network. Therefore, custom Bluesky
commands must be designed that facilitate convenient simulation of the delivery network. Bluesky’s mod-
ular setup allows to address the specific challenges posed by drone-based delivery systems in urban
environments by adding additional functionalities. These functionalities consist of the operations that are
possible within the delivery network. Every operation (except the truck stops), as well as the completion
of the mission is logged to a separate log file. This allows for traceable performance management of the
operations, which consist of the following:

1. Delivery: A delivery consists of a vehicle stopping at a customer location and remaining there for a
designated amount of time;

2. Sortie: A sortie is the process of stopping at a defined point, and launching a drone at standstill from
that location. This process also takes a certain amount of time, during which the truck must remain
stationary;

3. Rendezvous: The rendezvous functionality represents the retrieval of a drone, performed by the
truck and its driver. It requires the truck and drone to be stationary for a given amount of time. Both
vehicles must remain at the same location during the entire duration

4. Stop: An equal operation as the delivery type, but if this type is selected, the operation will not be
logged. This operation type is required for the truck stopping uncertainty as described in Subsection
5.3.3.

The custom TrafScript commands ADDTDWAYPOINTS and ADDOPERATIONPOINTS were developed to en-
able a solution to perform either 4 of these operations. The former is an extension of the the already
existing TrafScript command ADDWAYPOINTS, but allows the waypoints to be modified such that it contains
an operation. These operations can be added with the latter command. Both of these functions are an
extension of the existing Route implementation, which is replaced with TDRoute which includes these two
new functionalities.

Further modifications of the existing Bluesky functionalities include changes to the autopilot as well as
the activewaypoint implementations. These modifications can be found in the scripts called TDAutopilot
and TDActWp respectively. These plugins are also required to simulate the truck and drone deliveries and
ensure proper functioning of the previously mentioned operation handling and routing of the truck and
drones.

5.6. List of Links to Repositories
This section contains a list of all links to the repositories that were used. They are the following:

• Bluesky-TSP-mD: https://github.com/ravenvanewijk/bluesky-TSP-mD
• Roadroute: https://github.com/ravenvanewijk/roadroute-lib
• Taxicab-ST: https://github.com/ravenvanewijk/taxicab-st
• GraphGen: https://github.com/ravenvanewijk/mFSTSP-GraphGen
• ScenarioGen: https://github.com/ravenvanewijk/mFSTSP-ScenarioGen
• mFSTSP: https://github.com/ravenvanewijk/mFSTSP

https://github.com/ravenvanewijk/bluesky-TSP-mD
https://github.com/ravenvanewijk/roadroute-lib
https://github.com/ravenvanewijk/taxicab-st
https://github.com/ravenvanewijk/mFSTSP-GraphGen
https://github.com/ravenvanewijk/mFSTSP-ScenarioGen
https://github.com/ravenvanewijk/mFSTSP


6
Additional Results

6.1. Mission Completion Time
In the paper, an Analysis of Covariance (ANCOVA) is performed on the Mission Completion Time, to
investigate the impact of uncertainty, dronecount, and customercount on the mission makespan. These
results are elaborated upon in this section, by investigating the individual p-values of different setups of
number of customers and number of drones.

The distribution of the samples of ∆MS are observed to be normally distributed in the paper by us-
ing the Shapiro-Wilk test. Hence, the double sided T-tail test can be used to investigate the relative
performance of the DA w.r.t. the RM when considering a change in uncertainty. For this purpose, the
null hypothesis is formulated to state that there is no difference in the percentage differences in ∆MS
between two uncertainty levels. The percentage differences of groups 1, 2, and 3 are compared to the
control group without uncertainty, i.e. uncertainty level 0. Since the tests for every level consist of 16
post-hoc tests, the significance level is reduced to α = 0.05

16 = 0.003125. This is due to the Bonferroni
correction, as a measure for the multiple comparisons. The p-values results are shown in Tables 6.1, 6.2,
and 6.3 for uncertainty levels 1, 2, and 3 respectively. P-values greater than 0.003125 are colored red,
while values lower than 0.003125 are colored green.

Table 6.1: P-Values of Double Sided T-tail Test for ∆perc of Uncertainty Level 1 Against Level 0

Customer Count 1 Drone 2 Drones 3 Drones 4 Drones

10 0.342 0.768 0.756 0.934
25 0.747 0.899 0.839 0.327
50 0.438 0.815 0.782 0.408
100 0.196 0.845 0.528 0.799

As expected from the distributions of ∆perc, there exists no statistical difference between uncertainty
level 1 and the control uncertainty level 0. This applies to all distinct combinations of drone count and
customer count. It can even be observed that the p-value of 1 drone and 100 customers comes closest
to being significant, where the RM improves when compared to the DA.

Table 6.2: P-Values of Double Sided T-tail Test for ∆perc of Uncertainty Level 2 Against Level 0

Customer Count 1 Drone 2 Drones 3 Drones 4 Drones

10 0.297 0.986 0.852 0.723
25 0.537 0.367 0.281 0.649
50 0.566 0.068 0.579 0.132
100 0.945 0.916 0.969 0.287
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As the uncertainty increases to level 2, there still exist no setup with statistical significance between
the two levels. Thus, the result do not confirm nor deny a statistical difference between the ∆perc. This
can either be attributed to the fact that the sample size is too low to prove any significance, or that there
is no statistical difference between the two levels.

Table 6.3: P-Values of Double Sided T-tail Test for ∆perc of Uncertainty Level 3 Against Level 0

Customer Count 1 Drone 2 Drones 3 Drones 4 Drones

10 0.021 0.496 0.007 0.073
25 0.017 0.058 0.017 0.101
50 0.008 0.000 0.005 0.009
100 0.018 0.014 0.002 0.001

In uncertainty level 3, however, the null hypothesis can be rejected for 3 out of the 16 cases. This
entails that the relative improvement of the DA with respect to the RM is significant in some measured
setups. Crucially, 2 setups with 50 or 100 drones show a p-value lower than 0.05, indicating that there is
a significant difference for these setups. This is likely due to the fact that uncertainties can more easily
propagate in these scenarios, since more customers need to be served which might cause the uncertain-
ties to pile up and the solution quality of the RM to degrade. While this is an interesting observation, it
must be recalled that the DA still has a higher median makespan than the RM in nearly all conditions. This
is especially true for the setups with 50 or 100 customers, where the RM always outperforms the DA.

A noteworthy observation is that the differences become statistically significant only in the highest
uncertainty level, with no gradual progression but rather a sudden shift. One possible explanation for this
observation is that the parameter increments for each level may be too large. Possibly, there is a threshold
value for one or more of the uncertainty parameters beyond which the RM solutions quickly deteriorate,
which could be a value between levels 2 and 3.

6.2. Distance Traveled
Next to the analysis of the impact of the model on every one of the customer counts in one single analysis,
individual tests are performed as well to test whether the difference between the distances traveled per
drone by the RM and the DM are significant for each drone count. It is confirmed from the Kolmogorov-
Smirnov test that the null hypothesis, which assumes that the distributions follow a normal distribution, can
be rejected in all cases. Thus, none of the samples originate from a normal distribution. For this reason,
the Mann-Whitney U test is used to test the null hypothesis: there is no difference between the distance
flown distribution of the RM when compared to the DM. This test is repeated for each customer count, and
therefore a Bonferroni correction has to be applied. Since there are 4 customer counts, 4 post-hoc tests
are performed, and therefore the threshold significance level α should be corrected to α = 0.05

4 = 0.0125.
In every case, the p-value is found to be 0.00, resulting in the conclusion that the null hypothesis can be
rejected in every of the four cases. There thus exists a significant difference between the distance that a
drone travels with the DM when compared to the RM for every customer count.

In addition to the distance flown per drone, the total drone distance for customer counts 10, 25, 50,
and 100 are shown in Figure 6.1.
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(a) Total Distance Flown for Customer Count 10 (b) Total Distance Flown for Customer Count 25

(c) Total Distance Flown for Customer Count 50 (d) Total Distance Flown for Customer Count 100

Figure 6.1: Drone Distances Flown per Uncertainty Level
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