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Equivalence of measures and asymptotically
optimal linear prediction for Gaussian random
fields with fractional-order covariance operators
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adavid.bolin@kaust.edu.sa
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We consider two Gaussian measures μ, μ̃ on a separable Hilbert space, with fractional-order covariance operators
A−2β and Ã−2β̃ , respectively, and derive necessary and sufficient conditions on A, Ã and β, β̃ > 0 for I. equivalence
of the measures μ and μ̃, and II. uniform asymptotic optimality of linear predictions for μ based on the misspecified
measure μ̃. These results hold, e.g., for Gaussian processes on compact metric spaces. As an important special
case, we consider the class of generalized Whittle–Matérn Gaussian random fields, where A and Ã are elliptic
second-order differential operators, formulated on a bounded Euclidean domain D ⊂ Rd and augmented with
homogeneous Dirichlet boundary conditions. Our outcomes explain why the predictive performances of stationary
and non-stationary models in spatial statistics often are comparable, and provide a crucial first step in deriving
consistency results for parameter estimation of generalized Whittle–Matérn fields.

Keywords: Gaussian measures; kriging; elliptic differential operators; Whittle–Matérn fields

1. Introduction and preliminaries

1.1. Introduction

Equivalence and orthogonality of Gaussian measures are essential concepts for investigating asymp-
totic properties of Gaussian random fields and stochastic processes. For example, they play a crucial
role when proving consistency of maximum likelihood estimators for covariance parameters under
infill asymptotics [2,34], or asymptotic optimality of linear predictions for random fields based on
misspecified covariance models [30]. However, for the latter equivalence of the Gaussian measures is
not a necessary assumption. This is an immediate consequence of the necessary and sufficient con-
ditions for uniformly asymptotically optimal linear prediction, derived recently in [22] for Gaussian
random fields on compact metric spaces. Both the necessary and sufficient conditions for equivalence
of Gaussian measures as given by the Feldman–Hájek theorem [13, Theorem 2.25] and those for uni-
formly asymptotically optimal linear prediction [22, Assumption 3.3] are formulated in terms of the
covariance operators rather than the covariance functions. Therefore, they may be difficult to verify. To
the best of our knowledge there are not even sufficient conditions for asymptotic optimality available,
which are easily verifiable, except for a few special cases such as stationary random fields on Rd , see
e.g. [28,29].

In the present work we remedy this lack. By means of complex interpolation theory combined with
operator theory for fractional powers of closed operators, we are able to characterize the necessary
and sufficient conditions mentioned above for a wide class of stationary and non-stationary Gaussian
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processes. Specifically, in the first part we consider Gaussian measures on a generic separable Hilbert
space with fractional-order covariance operators and translate the conditions of the Feldman–Hájek
theorem (see Theorem B.1 in Appendix B) and of [22, Assumption 3.3] on the covariance operators
A−2β , Ã−2β̃ to conditions on the non-fractional base operators A, Ã.

Our results are applicable to Gaussian random fields on compact metric spaces. As an important spe-
cial case, we detail our outcomes for the class of generalized Whittle–Matérn Gaussian random fields
[7,12,23]. The Matérn covariance family [26] is highly popular in spatial statistics and machine learn-
ing, see e.g. [19,27]. Given the parameters ν,σ2, κ > 0, which determine the smoothness, the variance,
and the practical correlation range, respectively, the corresponding Matérn covariance function is

�(s, s′) = �0
(
‖s − s′‖

Rd

)
, s, s′ ∈ Rd, where �0(h) := σ2

2ν−1Γ(ν) (κh)νKν(κh). (1.1)

Whittle [33] showed that the stationary solution Z : Rd × Ω→ R to the stochastic partial differential
equation (SPDE for short) (

−Δ + κ2) βZ =W in Rd, (1.2)

has covariance (1.1) with range parameter κ, smoothness ν = 2β − d/2, and variance

σ2 = (4π)−d/2κ−2ν (Γ(ν)/Γ(ν + d/2)
)
. (1.3)

In the SPDE (1.2) Δ is the Laplacian (see Appendix A.1.1), β > d/4, and W is Gaussian white noise.
Motivated by this SPDE representation, Lindgren, Rue and Lindström [23] suggested extensions of

the Matérn model to non-stationary models and to more general spatial domains. This has initiated
an active research area, where spatial models based on SPDEs are proposed and investigated, see e.g.
[4,10,16,21]. Most of the extensions that have been considered are special cases of generalized Whittle–
Matérn Gaussian random fields, which are defined through fractional-order SPDEs of the form(

−∇ · (a∇) + κ2) βZ =W in D, (1.4)

where D ⊂ Rd is a bounded Euclidean domain with boundary ∂D, κ : D → R is a bounded real-
valued function, a : D→ Rd×d is a (sufficiently nice) positive matrix-valued function, and β ∈ (d/4,∞).
The fractional power Lβ of the differential operator L = −∇ · (a∇) + κ2 is understood in the spectral
sense, where first L is augmented with appropriate boundary conditions on ∂D (usually, homogeneous
Dirichlet or Neumann conditions, see Appendix A.3). For this class of models, κ determines the local
correlation ranges, whereas a describes local anisotropies, see e.g. [16]. Whenever κ is constant and a
is the identity matrix, the model (1.4) reduces to the classical Whittle–Matérn model (1.2) on D ⊂ Rd .

Some properties of generalized Whittle–Matérn fields have already been discussed in the literature
[8,9,12,20], but there are still considerably more results available for the original Gaussian Matérn
class on Rd . In particular, Zhang [34] and Anderes [2] investigated parameter estimation for Gaus-
sian Matérn fields on Rd under infill asymptotics. Thereby they showed that two Gaussian measures
μd(0; ν,σ2, κ) and μd(0; ν, σ̃2, κ̃), corresponding to zero-mean Gaussian Matérn fields on Rd with pa-
rameters ν,σ2, κ > 0 and ν, σ̃2, κ̃ > 0, respectively, are equivalent if and only if{

σ2κ2ν = σ̃2 κ̃2ν for d ≤ 3,
κ = κ̃ and σ2 = σ̃2 for d ≥ 5.

Until now, the case d = 4 has remained open. Furthermore, by [30, Theorem 12 in Chapter 4]
μd(0; ν̃, σ̃2, κ̃) provides uniformly asymptotically optimal linear prediction for μd(0; ν,σ2, κ) in any di-
mension d ∈ N if ν = ν̃. Neither equivalence of measures nor asymptotic optimality of linear prediction
have been characterized for generalized Whittle–Matérn fields yet.
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Based on our general results for Gaussian measures with fractional-order covariance operators on a
separable Hilbert space, combined with regularity theory for elliptic second-order partial differential
equations, we are able to fill this gap in the second part of this work. Assuming that the coefficients
a, ã, κ, κ̃ are smooth and that D ⊂ Rd has a smooth boundary ∂D, we consider two Gaussian measures
μd(0; β, a, κ) and μd(0; β̃, ã, κ̃) corresponding to generalized Whittle–Matérn fields (1.4) (using homo-
geneous Dirichlet boundary conditions on ∂D) with parameters (β, a, κ) and (β̃, ã, κ̃), respectively. For
this setting, we prove the following:

I. In dimension d ≤ 3, μd(0; β, a, κ) and μd(0; β̃, ã, κ̃) are equivalent if and only if β = β̃, a = ã
in D, and κ̃2 − κ2 satisfies certain boundary conditions on ∂D. In contrast, for d ≥ 4, the
measures are equivalent if and only if β = β̃ and a = ã, κ2 = κ̃2 in D.

II. In any dimension d ∈ N, the model μd(0; β̃, ã, κ̃) provides uniformly asymptotically optimal
linear prediction for the model μd(0; β, a, κ) if and only if β = β̃, ca = ã in D holds for some
c ∈ (0,∞), and κ̃2 − cκ2 fulfills certain boundary conditions on ∂D.

These results cover the parameter range β ∈ (d/4,∞) \ {k + 1/4 : k ∈ N} and, in particular, also the case
d = 4 for the classical Matérn model (when considered on a bounded domain). Moreover, to the best of
our knowledge these are the first explicit results on equivalence of measures and asymptotic efficiency
of linear predictions for this general class of models. Outcome I. readily implies that, for d ≤ 3, one
cannot estimate all parameters of a generalized Whittle–Matérn field consistently, and it provides a
crucial first step towards showing consistency of maximum likelihood estimates for the parameters β, a.
Result II. explains the comparable predictive performance of non-stationary and stationary models that
has been noted for example in [16].

The outline is as follows: In the next subsection we introduce preliminaries and our notation. Sec-
tion 2 is concerned with the general case of Gaussian measures on Hilbert spaces with fractional-order
covariance operators. These outcomes are applied, in Section 3, to some first examples including the
classical Whittle–Matérn model on a bounded domain D ⊂ Rd and, in Section 4, to derive the re-
sults I., II. for generalized Whittle–Matérn fields. In Section 5 the result II. is verified in two simulation
studies for non-stationary random fields on the unit interval. Section 6 concludes with a discussion,
and the Supplementary Material [6] contains six appendices (Appendix A/B/C/D/E/F) of the article.

1.2. Preliminaries and notation

If not specified otherwise, ( · , · )E denotes the inner product on a Hilbert space E , ‖ · ‖E the induced
norm, IdE the identity on E , and B(E) the Borel σ-algebra on (E, ‖ · ‖E ), that is the smallest σ-
algebra containing all open sets. The scalar field K is either given by the real numbers R or the complex
numbers C. The dual E∗ of E is the space containing all continuous linear functionals f : E →K, and
we call 〈 · , · 〉 : E∗ × E →K, 〈 f ,ψ〉 := f (ψ) the duality pairing between E∗ and E .

The space of all bounded linear operators from (E,( · , · )E ) to a second Hilbert space (F,( · , · )F )
is denoted by L(E; F). It is rendered a Banach space when equipped with the usual operator norm
‖T ‖L(E;F) := supψ∈E\{0}

‖Tψ ‖F
‖ψ ‖E . We call a linear operator T : E → F an isomorphism if T ∈ L(E; F)

and T−1 ∈ L(F; E), i.e., T is bounded and has a bounded inverse. If V is a vector space such that
E,F ⊆ V and if, in addition, IdV |E ∈ L(E; F), then E is continuously embedded in F and we
write (E, ‖ · ‖E ) ↪→ (F, ‖ · ‖F ). The notation (E, ‖ · ‖E ) � (F, ‖ · ‖F ) indicates that (E, ‖ · ‖E ) and
(F, ‖ · ‖F ) are isomorphic, i.e., (E, ‖ · ‖E ) ↪→ (F, ‖ · ‖F ) ↪→ (E, ‖ · ‖E ). Whenever E = F, we ab-
breviate L(E) := L(E; E), and this convention holds also for all other spaces of operators to be in-
troduced. The subspaces K(E; F) ⊆ L(E; F) and L2(E; F) ⊆ L(E; F) contain all compact operators
and Hilbert–Schmidt operators, respectively. Note that T ∈ L(E; F) is compact if and only if it is
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the limit in L(E; F) of finite-rank operators, and L2(E; F) is a Hilbert space with the inner prod-
uct (T,S)L2(E;F) :=

∑
j∈N(Tej,Sej)F , where {ej }j∈N is any orthonormal basis for E . The adjoint

of T ∈ L(E; F) is identified with T∗ ∈ L(F; E) (via the Riesz maps on E and on F). An operator
T ∈ L(E) is said to be orthogonal if TT∗ = T∗T = IdE , self-adjoint if T = T∗, nonnegative definite if
(Tψ,ψ)E ≥ 0 holds for all ψ ∈ E , and positive definite if there exists a constant θ ∈ (0,∞) such that
(Tψ,ψ)E ≥ θ‖ψ‖2

E for all ψ ∈ E . A self-adjoint, nonnegative definite operator T ∈ L(E) has a finite
trace if

∑
j∈N(Tej,ej )E <∞ holds for an (or, equivalently, any) orthonormal basis {ej }j∈N of E .

A (possibly unbounded) linear operator A on E with domain D(A) = {ψ ∈ E : ‖Aψ‖E < ∞} ⊆ E
is denoted by A : D(A) ⊆ E → E . It is closed if its graph G (A) := {(x,Ax) : x ∈D(A)} is closed with
respect to the norm ‖(x,Ax)‖G (A) := ‖x‖E + ‖Ax‖E and densely defined if D(A) is dense in E .

Throughout this article, (Ω,F ,P) is a complete probability space. For a Hilbert space (E,( · , · )E ) and
p ∈ [1,∞), Lp(Ω; E) denotes the space of (equivalence classes of) E-valued, Bochner measurable ran-
dom variables with finite p-th moment, with norm ‖Z ‖p

Lp (Ω;E) :=
∫
Ω
‖Z(ω)‖pE dP(ω). Further, (X,dX)

is a connected, compact metric space of infinite cardinality, equipped with a strictly positive and finite
Borel measure νX , and L2(X, νX) is the Hilbert space of (equivalence classes of) real-valued, Borel
measurable, square-integrable functions on X, with ‖ f ‖2

L2(X,νX)
:=

∫
X | f (x)|

2 dνX(x).
Finally, we write R+ := (0,∞) for the positive part of the real axis, N (or N0) for the set of positive

(respectively, nonnegative) integers, and � · � (or � · �) for the floor (respectively, ceiling) function.

2. Gaussian processes with fractional-order covariance operators
Throughout this section we let (E,( · , · )E ) be a separable Hilbert space over R with dim(E) = ∞.
Furthermore, we assume that μ is a Gaussian measure on E , i.e., for every ψ ∈ E ,

∃mψ ∈ R, σ2
ψ ∈ R+ : ∀B ∈ B(R) μ({φ ∈ E : (ψ,φ)E ∈ B}) = P({ω ∈ Ω : zψ(ω) ∈ B}),

where zψ : Ω→ R is a random variable, which is either Gaussian distributed with mean mψ and vari-
ance σ2

ψ, or concentrated at mψ , i.e., P({ω ∈ Ω : zψ(ω) = mψ}) = 1. Then, there exist a vector m ∈ E
and a bounded linear operator C : E → E such that, for all ψ,ψ′ ∈ E ,

(m,ψ)E =
∫
E
(φ,ψ)E dμ(φ), (Cψ,ψ′)E =

∫
E
(ψ,φ −m)E (φ −m,ψ′)E dμ(φ). (2.1)

The vector m is the mean of the Gaussian measure μ and C is its covariance operator. One can show that
C : E → E is self-adjoint, nonnegative definite, and has a finite trace [5, Theorem 2.3.1]. Moreover, μ is
uniquely determined by its mean m and its covariance operator C, and we therefore write μ = N(m,C).

In this section we consider covariance operators of the form C = A−2β , where A is an unbounded
linear operator on E and β ∈ R+. The main objectives of this section are to characterize for two given
Gaussian measures μ := N

(
m,A−2β ) and μ̃ := N

(
m̃, Ã−2β̃ ) the following:

I. equivalence resp. orthogonality of μ and μ̃, see Subsection 2.2, and
II. uniform asymptotic optimality of linear predictions for μ based on the misspecified measure μ̃

when E = L2(X, νX), see Subsection 2.3.

To this end, in Subsection 2.1 we first specify our assumptions on A and state two auxiliary results.

2.1. Hilbert space setting and some auxiliary results

In what follows, we assume that A : D(A) ⊆ E → E is a densely defined, self-adjoint, positive definite
linear operator, which has a compact inverse A−1 ∈ K(E). In this case, A : D(A) ⊆ E → E is closed and
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there exists an orthonormal basis {ej }j∈N for E consisting of eigenvectors of A, with corresponding
positive eigenvalues (λj )j∈N accumulating only at ∞. We assume that they are in non-decreasing order,
0 < λ1 ≤ λ2 ≤ . . ., and repeated according to multiplicity.

For β ∈ [0,∞), the fractional power operator Aβ : D
(
Aβ

)
⊆ E → E can then be defined using the

spectral expansion

Aβψ :=
∑
j∈N

λ
β
j (ψ,ej )E ej, ψ ∈D

(
Aβ

)
⊆ E . (2.2)

Note that, for all r ∈ [0,∞), the domain of the operator Ar/2,

�Hr
A

:=D
(
Ar/2) , D

(
Ar/2) = {

ψ ∈ E : ‖Ar/2ψ‖2
E =

∑
j∈N λ

r
j |(ψ,ej )E |

2 <∞
}
, (2.3)

is itself a separable Hilbert space with respect to the inner product

(φ,ψ)r ,A := (Ar/2φ,Ar/2ψ)E =
∑

j∈N λ
r
j (φ,ej )E (ej,ψ)E,

and the corresponding induced norm ‖ · ‖r ,A. Here, A0 := IdE and �H0
A

:= E . Recall that by definition
the Cameron–Martin space of a Gaussian measure μ = N(m,C) on E (aka. the reproducing kernel
Hilbert space of C) is the image of E under C1/2, endowed with the inner product (C−1/2 · ,C−1/2 · )E ,
cf. [5, p. 44]. It consists of all elements v ∈ E such that the measure μv(B) := μ(B − v) is absolutely
continuous with respect to μ (i.e., μ(B) = 0⇒ μv(B) = 0). In particular, for C = A−2β we obtain that

C1/2(E) = A−β(E) =D
(
Aβ

)
= �H2β

A
, ‖C−1/2 · ‖E = ‖ · ‖2β,A. (2.4)

We let �H−r
A

denote the dual space of �Hr
A

after identification via the inner product on E which is
continuously extended to a duality pairing. This means that for all φ ∈ E ⊆ �H−r

A
, ψ ∈ �Hr

A
⊆ E , we have

that 〈φ,ψ〉 = (φ,ψ)E . It is an immediate consequence of these definitions that, for every r,ϑ ∈ R, the
fractional power operator Aϑ : �Hr

A
→ �Hr−2ϑ

A
is an isomorphism, possibly obtained as a continuous

extension or restriction of Aϑ : D
(
Aϑ

)
= �H2ϑ

A
→ �H0

A
= E . For ease of presentation, we postpone the

technical proofs of the following two auxiliary results, Lemmas 2.1 and 2.2, to Appendix D.

Lemma 2.1. Let A : D(A) ⊆ E → E and Ã : D(Ã) ⊆ E → E be two densely defined, self-adjoint,
positive definite linear operators with compact inverses on E.

(i) Assume that there exists β ∈ R+ such that ÃβA−β : E → E is an isomorphism and addition-
ally A−β Ã2βA−β − IdE ∈ L2(E). Then, for every γ ∈ [−β, β], also the operator ÃγA−γ is an
isomorphism on E and A−γ Ã2γA−γ − IdE ∈ L2(E).

(ii) Assume that there exists β ∈ R+ such that ÃβA−β : E → E is an isomorphism and addition-
ally A−β Ã2βA−β − IdE ∈ K(E). Then, for every γ ∈ [−β, β], also the operator ÃγA−γ is an
isomorphism on E and A−γ Ã2γA−γ − IdE ∈ K(E).

Lemma 2.2. Let A : D(A) ⊆ E → E and Ã : D(Ã) ⊆ E → E be two densely defined, self-adjoint,
positive definite linear operators with compact inverses on E, let β ∈ [1,∞), and define

Nβ := {n ∈ N : n ≤ β} ∪ {β} = {1, . . . , �β�} ∪ {β}. (2.5)

(i) ÃγA−γ is an isomorphism on E and A−γ Ã2γA−γ − IdE ∈ L2(E) for all γ ∈ [−β, β] if and only
if for all η ∈ Nβ there exist an orthogonal operator Uη on E and Sη ∈ L2(E) such that IdE +Sη
is invertible on E and Aη−1 ÃA−η =Uη(IdE +Sη).
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(ii) ÃγA−γ is an isomorphism on E and A−γ Ã2γA−γ − IdE ∈ K(E) for all γ ∈ [−β, β] if and only
if for every η ∈ Nβ there exist an orthogonal operator Wη on E and Kη ∈ K(E) such that
IdE +Kη is invertible on E and Aη−1 ÃA−η =Wη(IdE +Kη).

(iii) The linear operator ÃγA−γ : E → E is an isomorphism for all γ ∈ [−β, β] if and only if
Ã− A ∈ L

( �H2η
A

; �H2(η−1)
A

)
∩ L

( �H2η
Ã

; �H2(η−1)
Ã

)
holds for every η ∈ {1, β}.

2.2. Equivalence and orthogonality

Two probability measures μ, μ̃ on (E,B(E)) are said to be equivalent if, for all Borel sets B ∈ B(E),
μ(B) = 0 holds if and only if μ̃(B) = 0. In contrast, if there exists a Borel set B ∈ B(E) such that
μ(B) = 0 and μ̃(B) = 1, then μ and μ̃ are said to be orthogonal. Two Gaussian measures μ, μ̃ are ei-
ther equivalent or orthogonal [5, Theorem 2.7.2]. As mentioned in the introduction, equivalence and
orthogonality of Gaussian measures are important concepts in statistical theory. For example, a crucial
first step in proving that a parameter θ of a Gaussian process (with corresponding Gaussian measure μ)
can be estimated consistently under infill asymptotics is often to define μ̃ as the Gaussian measure
corresponding to the process with parameter θ̃ � θ and to show that μ and μ̃ are orthogonal, see [34].

The following proposition provides necessary and sufficient conditions for equivalence of two Gaus-
sian measures μ and μ̃ when they have fractional-order covariance operators.

Proposition 2.3. Let A : D(A) ⊆ E → E and Ã : D(Ã) ⊆ E → E be two densely defined, self-adjoint,
positive definite linear operators with compact inverses on E. In addition, let β ∈ [1,∞), β̃ ∈ R+ be
such that A−2β and Ã−2β̃ have finite traces on E, let m,m̃ ∈ E, and define δ := β̃/β ∈ R+. The Gaussian
measures μ = N

(
m,A−2β ) and μ̃ = N

(
m̃, Ã−2β̃ ) are either equivalent or orthogonal. They are equivalent

if and only if the following two conditions are satisfied:

(a) the difference of the means satisfies m − m̃ ∈ �H2β
A

;
(b) for all η ∈ Nβ , where Nβ is defined as in (2.5), there exist an orthogonal operator Uη ∈ L(E)

and Sη ∈ L2(E) such that Aη−1 ÃδA−η =Uη(IdE +Sη) and IdE +Sη is invertible on E.

Condition (b) is in particular satisfied, whenever

Ãδ − A ∈ L2
( �H2η

A
; �H2(η−1)

A

)
∀η ∈ Nβ, and Ãδ − A ∈ L

( �H2δη
Ã

; �H2δ(η−1)
Ã

)
∀η ∈ {1, β}.

Proof. In order to derive the equivalence statement, we apply the Feldman–Hájek theorem, see Theo-
rem B.1 in Appendix B in the Supplementary Material [6]: μ and μ̃ are equivalent if and only if

(i) the Cameron–Martin spaces �H2β
A

and �H2β̃
Ã

(see (2.4)) are norm equivalent Hilbert spaces;

(ii) the difference of the means satisfies m − m̃ ∈ �H2β
A

; and

(iii) the operator A−β Ã2β̃A−β − IdE is a Hilbert–Schmidt operator on E .

It remains to prove that conditions (i) and (iii) are equivalent to condition (b) of the proposition. By
Lemma 2.2(i), applied for the pair of operators A, Ãδ , (b) is equivalent to (Ãδ)γA−γ = ÃδγA−γ being an
isomorphism on E and A−γ(Ãδ)2γA−γ − IdE = A−γ Ã2δγA−γ − IdE ∈ L2(E) for γ ∈ [−β, β]. The choice

γ := β shows that �H2β
A
� �H2β̃

Ã
and A−β Ã2β̃A−β − IdE ∈ L2(E), i.e., (i) and (iii) hold. Conversely, if

(i) and (iii) are satisfied, then by Lemma 2.1(i) we obtain that ÃδγA−γ is an isomorphism on E and
A−γ Ã2δγA−γ − IdE ∈ L2(E) for all γ ∈ [−β, β]. Thus, (b) is satisfied by Lemma 2.2(i).
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Since Aη−1 ÃδA−η − IdE = Aη−1(Ãδ − A)A−η , the condition Ãδ − A ∈ L2
( �H2η

A
; �H2(η−1)

A

)
implies that

Sη := Aη−1 ÃδA−η − IdE ∈ L2(E) for all η ∈ Nβ . Furthermore, if also Ãδ −A is in L
( �H2δη

Ã
; �H2δ(η−1)

Ã

)
=

L
( �H2η

Ãδ
; �H2(η−1)

Ãδ

)
for η ∈ {1, β}, then by Lemma 2.2(iii) (applied for the pair of operators A, Ãδ)

ÃδγA−γ is an isomorphism on E for all γ ∈ [−β, β]. Therefore, IdE +Sη = Aη−1 Ã−δ(η−1) ÃδηA−η is
invertible on E , and (b) holds for the choice Uη = IdE for all η ∈ Nβ .

By applying Proposition 2.3 for the pair of measures μ̂ := N
(
m, Â−2) and μ̃ = N

(
m̃, Ã−2β̃ ) , where

Â := Aβ , we also obtain a corresponding result which includes the case that β ∈ (0,1).

Corollary 2.4. Under the assumptions of Proposition 2.3 on m,m̃,A, Ã, and for β, β̃ ∈ R+ such that
A−2β, Ã−2β̃ have finite traces, the Gaussian measures μ = N

(
m,A−2β ) and μ̃ = N

(
m̃, Ã−2β̃ ) are equiva-

lent if and only if (a) m− m̃ ∈ �H2β
A

and (b) there exist an orthogonal operator U ∈ L(E) and S ∈ L2(E)
such that Ãβ̃A−β =U(IdE +S) and IdE +S is invertible on E.

Remark 2.5. At first glance, condition (b) of Corollary 2.4 seems easier compared to (b) of Propo-
sition 2.3. We note that the advantage of the latter is that, whenever β = β̃, it is formulated solely in
terms of the base operator Ã (and not of powers thereof).

2.3. Uniformly asymptotically optimal linear prediction

Throughout this subsection, we let (X,dX) be a connected, compact metric space with positive, finite
Borel measure νX (see Subsection 1.2) and we consider E = L2(X, νX). Suppose that Z : X ×Ω→ R
is a square-integrable random field with mean m ∈ L2(X, νX) and covariance operator A−2β , where
A : D(A) ⊆ L2(X, νX)→ L2(X, νX) is as described in Subsection 2.1. Let μ = N

(
m,A−2β ) be the Gaus-

sian measure corresponding to Z and define E[ · ] as the expectation under μ. That is, for a random
variable Y : Ω→ L2(X, νX) with distribution μ and a Borel measurable function g : L2(X, νX)→ R, we
have that m = E[Y ] :=

∫
L2(X,νX)

y dμ(y) and, provided that the integral
∫
L2(X,νX)

g(y)dμ(y) exists, we

define E[g(Y )] :=
∫
L2(X,νX)

g(y)dμ(y).
To characterize optimal linear prediction for Z , we introduce the centered process Z0 := Z −m and

the vector space Z0 consisting of all linear combinations of the form α1Z0(x1) + . . . + αK Z0(xK ),
where K ∈ N and αj ∈ R, xj ∈ X for all j ∈ {1, . . . ,K}. We then define the Hilbert space H0 as the
closure of Z0 with respect to the norm ‖ · ‖H0 induced by the L2(Ω,P) inner product,(

K∑
j=1

αjZ0(xj ),
K′∑
k=1

α′
k

Z0(x′
k
)
)
H0

:=
K∑
j=1

K′∑
k=1

αjα
′
k
E
[
Z0(xj )Z0(x′

k
)
]
.

Since any observation or linear predictor of Z can be represented as h = c + h0 for c ∈ R and h0 ∈ H0,
we introduce the Hilbert space H as the direct sum H := R ⊕ H0 equipped with the graph norm
‖h‖2

H = |c |
2 + ‖h0‖2

H0 . Suppose now that we want to predict h ∈ H based on a set of observations
{ynj }nj=1, where ynj = cnj + y0

nj for cnj ∈ R and y0
nj ∈ H

0. Then, the best linear predictor (also known
as kriging predictor, see e.g. [30, Section 1.2] and [22, Section 2]) of h based on these observations is
the H -orthogonal projection of h onto the subspace

Hn := R ⊕H0
n =

{
α0 +

n∑
j=1

αj y
0
nj : α0, . . . ,αn ∈ R

}
, H0

n := span
{
y0
nj

}n
j=1. (2.6)
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That is, the best linear predictor hn ∈ Hn satisfies

(hn − h,gn)H = 0 ∀gn ∈ Hn, and ‖hn − h‖H = infgn ∈Hn
‖gn − h‖H . (2.7)

The question is now what happens if we replace hn with another linear predictor h̃n, which is com-
puted based on an incorrect model. Specifically, let μ̃ = N

(
m̃, Ã−2β̃ ) be a second Gaussian measure

with corresponding expectation operator Ẽ[ · ], and let h̃n be the best linear predictor for the model μ̃.
We are interested in the quality of h̃n compared to hn asymptotically as n →∞. For this purpose, we
assume that the set of observations

{
{ynj }nj=1 : n ∈ N

}
yields μ-consistent kriging prediction, i.e.,

lim
n→∞

E
[
(hn − h)2

]
= lim

n→∞
‖hn − h‖2

H = 0, (2.8)

and we let Sμadm denote the set of all admissible sequences of observations which provide μ-consistent
kriging prediction:

Sμadm :=
{
{Hn}n∈N

�� ∀n ∈ N :Hn is as in (2.6) with dim(H0
n ) = n,

∀h ∈ H : {hn}n∈N defined by (2.7) satisfy (2.8)
}
.

(2.9)

By combining the results of Lemmas 2.1 and 2.2 with [22, Theorem 3.8] we obtain the following result
on uniformly asymptotically optimal linear prediction when misspecifying μ by μ̃.

Proposition 2.6. Let hn and h̃n denote the best linear predictors of h ∈ H based on Hn and the
measures μ = N

(
m,A−2β ) and μ̃ = N

(
m̃, Ã−2β̃ ) , respectively. Here, we assume that m,m̃ ∈ L2(X, νX),

A : D(A) ⊆ L2(X, νX) → L2(X, νX) and Ã : D(Ã) ⊆ L2(X, νX) → L2(X, νX) are densely defined, self-
adjoint, positive definite linear operators with compact inverses on L2(X, νX). In addition, β, β̃ ∈ R+
are such that A−2β and Ã−2β̃ have finite traces on L2(X, νX) and δ := β̃/β.

I. Set H−n :=
{

h ∈ H : E
[
(hn − h)2

]
> 0

}
. Any of the following four asymptotic statements,

lim
n→∞

sup
h∈H−n

E
[
(h̃n − h)2

]
E
[
(hn − h)2

] = 1, lim
n→∞

sup
h∈H−n

Ẽ
[
(hn − h)2

]
Ẽ
[
(h̃n − h)2

] = 1, (2.10)

lim
n→∞

sup
h∈H−n

����� Ẽ
[
(hn − h)2

]
E
[
(hn − h)2

] − c

����� = 0, lim
n→∞

sup
h∈H−n

�����E
[
(h̃n − h)2

]
Ẽ
[
(h̃n − h)2

] − 1
c

����� = 0, (2.11)

holds for all {Hn}n∈N ∈ Sμadm (and in (2.11) for some c ∈ R+) if and only if

(a) the difference of the means satisfies m − m̃ ∈ �H2β
A

;
(b) there exist c ∈ R+, an orthogonal operator W on L2(X, νX), and K ∈ K(L2(X, νX)) such

that c1/2 Ãβ̃A−β =W(IdL2(X,νX)+K) and IdL2(X,νX)+K is invertible.
In this case, the constant c ∈ R+ in condition (b) coincides with that in (2.11).

II. For β ∈ [1,∞), condition (b) is equivalent to requiring that there exists c ∈ R+ such that for all
η ∈ Nβ , where Nβ is defined as in (2.5), there exist an orthogonal operator Wη on L2(X, νX)
and Kη ∈ K(L2(X, νX)) such that c

1
2β Aη−1 ÃδA−η =Wη(IdL2(X,νX)+Kη) and IdL2(X,νX)+Kη

is invertible on L2(X, νX). This is satisfied, whenever the following holds:

∀η ∈ Nβ : c
1

2β Ãδ − A ∈ K
( �H2η

A
; �H2(η−1)

A

)
∩ L

( �H2δη
Ã

; �H2δ(η−1)
Ã

)
.
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Proof. By [22, Theorem 3.8 and Lemma B.1] any of the assertions in (2.10) or (2.11) holds for every
{Hn}n∈N ∈ Sμadm and for some constant c ∈ R+ if and only if

(i) the Cameron–Martin spaces �H2β
A

and �H2β̃
Ã

are norm equivalent Hilbert spaces;

(ii) the difference of the means satisfies m − m̃ ∈ �H2β
A

; and

(iii) A−β Ã2β̃A−β − c−1 IdE = c−1 (A−β (cÃ2β̃ ) A−β − IdE
)

is compact on E .

The proof for II., when β ∈ [1,∞), can then be completed as in the proof of Proposition 2.3, namely by

using Lemma 2.1(ii) and Lemma 2.2(ii)/(iii) for the pair of operators A and c
1

2β Ãδ . Finally, the general
statement I. for β, β̃ ∈ R+ follows similarly as Corollary 2.4.

3. Some explicit choices for the base operators

In this section we illustrate the abstract results of Section 2 by two first examples before discussing their
implications for generalized Whittle–Matérn fields in the next section: In Subsection 3.1 we consider
the case that the base operators A and Ã diagonalize with respect to the same eigenbasis {ej }j∈N for E .
This setting applies to classical Whittle–Matérn fields with constant coefficients, which solve SPDEs of
the form (1.2) on a bounded domain D ⊂ Rd . We subsequently discuss this example in Subsection 3.2.

3.1. Operators with the same eigenbasis

We note that the scope for applications of the following corollary is considerably wider than the classi-
cal Whittle–Matérn class discussed in Subsection 3.2. For instance, it can be used for periodic random
fields on X = [0,1]d as considered by Stein [29], random fields on the sphere X = S2 defined via the
spherical harmonics, see e.g. [18] and [22, Section 6.3], or more generally Gaussian processes on com-
pact Riemannian manifolds defined via the eigenfunctions of the Laplace–Beltrami operator [11].

Corollary 3.1. Let A : D(A) ⊆ E → E and Ã : D(Ã) ⊆ E → E be two densely defined, self-adjoint,
positive definite linear operators with compact inverses on E. In addition, assume that A and Ã diag-
onalize with respect to the same eigenbasis {ej }j∈N for E, i.e., there exist corresponding eigenvalues
R+ � λj, λ̃j →∞ (as j →∞) such that Aej = λjej and Ãej = λ̃jej for all j ∈ N. Let m,m̃ ∈ E, and as-
sume that β,δ ∈ R+ are such that A−2β and Ã−2δβ have finite traces on E. Then, the Gaussian measures
μ = N

(
m,A−2β ) and μ̃ = N

(
m̃, Ã−2δβ ) satisfy the following:

I. The Cameron–Martin spaces for μ and μ̃ are isomorphic, with equivalent norms, if and only
if there exist c−,c+ ∈ R+ such that cj := λ̃δj λ

−1
j ∈ [c−,c+] for all j ∈ N.

II. The measures μ and μ̃ are equivalent if and only if m − m̃ ∈ �H2β
A

and
∑

j∈N(cj − 1)2 <∞.
III. Any of the four assertions in (2.10), (2.11) holds for all {Hn}n∈N ∈ Sμadm and in (2.11) for some

c ∈ R+ if and only if m − m̃ ∈ �H2β
A

and limj→∞ cj = ĉ for some ĉ ∈ R+. Then, c = ĉ−2β .

Proof. Define c− := infj∈N λ̃δj λ
−1
j ∈ [0,∞) and c+ := supj∈N λ̃

δ
j λ

−1
j ∈ (0,∞]. Then, we obtain that

inf
φ∈ �H2β

A

‖φ ‖2δβ, Ã
‖φ ‖2β,A = cβ− and sup

φ∈ �H2β
A

‖φ ‖2δβ, Ã
‖φ ‖2β,A = cβ+ . Therefore, the Cameron–Martin spaces for μ

and μ̃, see (2.4), are isomorphic if and only if c− > 0 and c+ <∞.
Note that (cj )j∈N ⊂ R+ and

∑
j∈N(cj − 1)2 < ∞ imply that 0 < c− ≤ cj ≤ c+ < ∞ for all j ∈ N.

Thus, II. follows from I. and the Feldman–Hájek theorem since by the mean value theorem applied for
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t �→ t2β , we have ‖A−β Ã2δβA−β − IdE ‖2
L2(E)

=
∑

j∈N
(
c2β
j
− 1

) 2
= 4β2 ∑

j∈N ξ
2(2β−1)
j

(cj − 1)2, where
the numbers (ξj)j∈N satisfy that ξj ∈ [min{cj,1},max{cj,1}] ⊆ [min{c−,1},max{c+,1}] for all j ∈ N.

Finally, the assertion III. has already been observed in [22, Corollary 5.1]; there formulated in terms
of the ratio γ̃j/γj → c (as j →∞) of the eigenvalues (γ̃j)j∈N and (γj )j∈N of the covariance operators
C̃ = Ã−2δβ and C = A−2β . Thus, γ̃j/γj = λ̃−2δβ

j λ
2β
j = c−2β

j and the claim follows.

Remark 3.2. Note that for μ = N
(
0,A−2β ) and μ̃ = N

(
0, Ã−2δβ ) the conditions in all parts of Corol-

lary 3.1 are independent of β ∈ R+. This implies that once a property (equivalent Cameron–Martin
spaces, equivalence of measures, or uniformly asymptotically optimal linear prediction) is established
for μ, μ̃ and a fixed β = β0 ∈ R+, it follows also for all other meaningful values of β ∈ R+ so that
A−2β, Ã−2δβ have finite traces. Thus, in the case that A and Ã diagonalize with respect to the same
eigenbasis, besides concluding the corresponding property for β ≤ β0 (by means of Lemma 2.1) one
obtains it also for β > β0. This observation holds even for more general base operators A, Ã. Specif-
ically, if their fractional powers commute, i.e., D(ÃϑAr ) = D(Ar Ãϑ) and ÃϑArψ = Ar Ãϑψ for all
r,ϑ ∈ R and ψ ∈ D(ÃϑAr ), then the operators Aη−1 ÃδA−η , η ∈ Nβ , appearing in the conditions of
Propositions 2.3 and 2.6 simplify to ÃδA−1 and the conditions become independent of β ∈ [1,∞).

3.2. Whittle–Matérn operators with constant coefficients

We now discuss classical Whittle–Matérn fields solving the SPDE (1.2) on a bounded domain. To this
end, let ∅ �D ⊂ Rd be a connected, bounded and open domain, with Lipschitz boundary ∂D. Further,

Lv :=
(
−Δ + κ2) v, v ∈D(L) := H2(D) ∩ H1

0 (D), (3.1)

is the negative Laplacian, shifted by κ2 ∈ [0,∞) and augmented with homogeneous Dirichlet boundary
conditions, see Appendix A.3. By Proposition 4.2 L−2β has a finite trace if and only if β ∈ (d/4,∞).
Recall that for the SPDE (1.2) on Rd this condition corresponds to a positive smoothness parameter
ν = 2β − d/2 ∈ R+. For two classical Whittle–Matérn fields with parameters (β,τ, κ) and (β̃, τ̃, κ̃), where
τ, τ̃ scale the variances of the fields, cf. (5.1), we obtain the following result from Corollary 3.1.

Corollary 3.3. Let d ∈ N, β, β̃ ∈ (d/4,∞), τ, τ̃ ∈ R+, and let L, L̃ be defined as in (3.1) with shift param-
eters κ2 ∈ [0,∞) and κ̃2 ∈ [0,∞), respectively. Assume that m,m̃ ∈ L2(D) and consider the Gaussian
measures μ = N

(
m, τ−2L−2β ) and μ̃ = N

(
m̃, τ̃−2 L̃−2β̃ ) on the Hilbert space L2(D).

I. The Cameron–Martin spaces for μ and μ̃ are isomorphic, with equivalent norms, if and only
if β = β̃.

II. In dimension d ≤ 3, μ and μ̃ are equivalent if and only if β = β̃, τ = τ̃ and m − m̃ ∈ �H2β
L . In

dimension d ≥ 4, μ and μ̃ are equivalent if and only if β = β̃, τ = τ̃, m− m̃ ∈ �H2β
L and κ2 = κ̃2.

III. In every dimension d ∈ N, any of the four assertions in (2.10), (2.11) holds for every sequence
{Hn}n∈N ∈ Sμadm and in (2.11) for some c ∈ R+ if and only if β = β̃ and m − m̃ ∈ �H2β

L .

Proof. Letting (λ̂j )j∈N denote the eigenvalues of the negative Dirichlet Laplacian −Δwith correspond-
ing eigenfunctions {ej }j∈N forming an orthonormal basis of L2(D), we find that {ej }j∈N is also an
eigenbasis for L and for L̃, with eigenvalues λj = λ̂j + κ2 and λ̃j = λ̂j + κ̃2, respectively. The asymp-
totic behavior λ̂j � j2/d , see (4.4), shows that cj := τ̃1/βτ−1/β λ̃δj λ

−1
j ∈ [c−,c+] holds for some c−,c+ ∈ R+

and all j ∈ N if and only if δ = β̃/β = 1; then, limj→∞ cj =
( τ̃
τ

) 1/β so that τ = τ̃ is necessary for μ ∼ μ̃.
Then, (cj − 1)2 �

(
κ̃2 − κ2) 2 j−4/d and all assertions follow from Corollary 3.1.
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4. Generalized Whittle–Matérn fields on Euclidean domains
Throughout this section, let D ⊂ Rd be a nonempty, connected, bounded and open domain with Lips-
chitz continuous boundary ∂D (see Definition A.1 in Appendix A) and closure D =D ∪ ∂D.

The purpose of this section is to generalize the results obtained in Corollary 3.3 for classical Whittle–
Matérn fields to the class of generalized Whittle–Matérn fields (1.4) on D, where κ and a are functions
describing spatially varying correlation ranges and anisotropies, respectively. The difficulty of this
generalization lies in the fact that the covariance operators of two generalized Whittle–Matérn fields
do not necessarily have the same eigenfunctions. For this reason, more sophisticated arguments and
tools from spectral theory and PDE theory are needed. We refer to Appendix A for an overview of
several important results from PDE theory and all relevant function spaces, such as the Lebesgue
spaces Lp(D), Lp(∂D), p ≥ 1, the spaces of smooth functions C∞(D) and C∞

c (D), the (fractional-
order) Sobolev spaces Hr (D) for r ∈ R+, and the subspace H1

0 (D) ⊂ H1(D).

4.1. Setting and summary of the main results

In order to properly define the class of generalized Whittle–Matérn fields (1.4), we consider for β ∈ R+
the fractional-order SPDE

LβZ =W, P-almost surely, (4.1)

where W denotes Gaussian white noise on the Hilbert space L2(D), and Lβ is a (possibly fractional)
power of an elliptic differential operator L which determines the covariance structure of the random
field Z : D × Ω→ R. Specifically, we assume that L : D(L) ⊆ L2(D) ∩ H1

0 (D) → L2(D) is a linear,
symmetric, second-order differential operator in divergence form with homogeneous Dirichlet bound-
ary conditions (see Appendix A.3 in the Supplementary Material [6]), formally given by

Lv = −∇ · (a∇v) + κ2v, v ∈D(L) ⊆ L2(D) ∩ H1
0 (D). (4.2)

Here, we suppose that a and κ in (4.2) and the spatial domain D ⊂ Rd satisfy the following conditions.

Assumption 4.1.

I. a : D→ Rd×d is symmetric and uniformly positive definite, i.e.,

∃a0 > 0 : ∀ξ ∈ Rd : ess infs∈D ξ�a(s)ξ ≥ a0‖ξ‖2
Rd
.

In addition, a = (a jk)dj ,k=1 is smooth, a jk ∈ C∞(D) for all j, k ∈ {1, . . . ,d}.
II. κ : D→ R is smooth, κ ∈ C∞(D).

III. D ⊂ Rd has a smooth boundary ∂D of class C∞, see Definition A.1 in Appendix A.

Provided that Assumptions 4.1.I–II are satisfied, the differential operator L in (4.2) is strongly elliptic
and induces a symmetric, continuous and coercive bilinear form on H1

0 (D),

aL : H1
0 (D) × H1

0 (D)→ R, aL(u,v) := (a∇u,∇v)L2(D) + (κ
2u,v)L2(D). (4.3)

The domain of the operator L : D(L) ⊂ L2(D) → L2(D) is given by D(L) = H2(D) ∩ H1
0 (D) and, in

particular, we find that L is densely defined and self-adjoint. Furthermore, the Rellich–Kondrachov
compactness theorem [1, Theorem 6.3] implies that L−1 : L2(D) → H1

0 (D) ⊂ L2(D) is compact
on L2(D), see Appendix A.3 for more details.
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For this reason, there exists a countable system of eigenfunctions {ej }j∈N of L which can be chosen
as an orthonormal basis for L2(D). We assume that the corresponding positive eigenvalues (λj )j∈N
are in non-decreasing order, 0 < λ1 ≤ λ2 ≤ . . ., and repeated according to multiplicity. The fractional
power operator Lβ in the SPDE (4.1) is then defined in the spectral sense as in (2.2), with A := L and
E := L2(D). Weyl’s law [14, Theorem 6.3.1] states that the eigenvalues (λj )j∈N ⊂ R+ of the strongly
elliptic second-order differential operator L satisfy the spectral asymptotics

∃cλ,Cλ ∈ R+ : cλ j2/d ≤ λj ≤ Cλ j2/d ∀ j ∈ N. (4.4)

Existence and uniqueness of the solution Z to (4.1) thus follow from [9, Proposition 2.3, Remark 2.4]
or [12, Lemma 3]. We recapitulate this result in the next proposition.

Proposition 4.2. For D ⊂ Rd , d ∈ N, let the differential operator L be as in (4.2), and suppose that a
and κ satisfy Assumptions 4.1.I–II. Then, the SPDE (4.1) has a unique solution Z ∈ Lp(Ω; L2(D)) for
any p ∈ [1,∞)—or, in other words, the probability distribution of Z in (4.1) defines a Gaussian measure
on the Hilbert space L2(D)—if and only if β ∈ (d/4,∞).

In the case that the parameters in (4.1) and (4.2) are given by the triple

(β, a, κ) ∈ R+ ×C∞(D)d×d ×C∞(D),

we say that Z solves the SPDE (4.1) for (β, a, κ). By Proposition 4.2 the probability distribution of
the zero-mean generalized Whittle–Matérn field Z : D ×Ω→ R solving (4.1) for the parameter triple
(β, a, κ) defines a Gaussian measure μd(0; β, a, κ) on L2(D) if and only if β ∈ (d/4,∞). In this case, for
every Borel set B ∈ B(L2(D)), it is given by

μd(0; β, a, κ)(B) = P({ω ∈ Ω : Z( · ,ω) ∈ B, Z solves (4.1)}).

Thus, it has mean zero and trace-class covariance operator C = L−2β ∈ L(L2(D)), cf. (2.1),

(Cψ,ψ′)L2(D)=
∫
L2(D)

(ψ,φ)L2(D)(φ,ψ′)L2(D) dμ(φ)

=
∫
Ω
(ψ,Z( · ,ω))L2(D)(Z( · ,ω),ψ′)L2(D) dP(ω) =

(
L−2βψ,ψ′

)
L2(D).

In summary, for β ∈ (d/4,∞), the Whittle–Matérn field Z : D ×Ω→ R in (4.1) induces a Gaussian
measure on L2(D) given by μd(0; β, a, κ) = N

(
0,L−2β ) , see (2.1). More generally, we consider for an

arbitrary mean value function m ∈ L2(D):

μd(m; β, a, κ) := N
(
m,L−2β ) . (4.5)

The goal of this section is to identify the following:

(a) the Cameron–Martin space for the Gaussian measure μd(m; β, a, κ), as well as necessary
and sufficient conditions for the Cameron–Martin spaces of two measures μd(m; β, a, κ) and
μd(m̃; β̃, ã, κ̃) to be isomorphic and norm equivalent;

(b) necessary and sufficient conditions for two measures μd(m; β, a, κ) and μd(m̃; β̃, ã, κ̃) to be
equivalent (respectively, orthogonal); and

(c) necessary and sufficient conditions for μd(m̃; β̃, ã, κ̃) to provide uniformly asymptotically opti-
mal linear prediction in the case that μd(m; β, a, κ) is the correct model.

These questions are addressed in Subsections 4.2, 4.3 and 4.4. We will see that the necessary and
sufficient conditions mentioned in (a), (b) and (c) above all include the requirement that β = β̃.
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Table 1. Necessary and sufficient conditions for (a) isomorphic, norm equivalent Cameron–Martin spaces of the
measures μ := μd(0; β, a, κ) and μ̃ := μd(0; β̃, ã, κ̃), (b) equivalence of measures μ ∼ μ̃, and (c) uniformly asymptot-
ically optimal linear prediction when misspecifying μ by μ̃. Here, δa(s) := ã(s) − a(s), δc,κ2 (s) := κ̃2(s) − cκ2(s),
δκ2 (s) := δ1,κ2 (s), n is the outward pointing normal on ∂D, and “b.c.” stands for “boundary conditions”.

Interval for β, assuming that β � {k + 1/4 : k ∈ N}

Conditions for (d/4,5/4) (5/4,9/4) (9/4,13/4) (13/4,∞)

Isomorphic
β = β̃

β = β̃ β = β̃

Cameron–Martin spaces + b.c. on δa + b.c. on δa and δκ2

Asymptotically optimal β = β̃, ca = ã β = β̃, ca = ã, β = β̃, ca = ã
linear prediction for some c ∈ (0,∞)

(
a∇δc,κ2

) ��
∂D · n = 0 + b.c. on δc,κ2

Equivalence of measures β = β̃, a = ã β = β̃, a = ã, β = β̃, a = ã
in dimension d ≤ 3

(
a∇δκ2

) ��
∂D · n = 0 + b.c. on δκ2

Equivalence of measures
β = β̃, a = ã, κ2 = κ̃2

in dimension d ≥ 4

Depending on the value of β ∈ (d/4,∞), it is solely the behavior of δa := ã − a and δκ2 := κ̃2 − κ2 at
the boundary ∂D that matters for (a), see Theorem 4.7. Finally, for (b) and (c) also conditions on a, ã
and κ2, κ̃2 inside the domain D ⊂ Rd are imposed which for (b), equivalence of measures, additionally
depend on the dimension d ∈ N, see Theorems 4.11 and 4.13. We summarize the main outcomes of
these theorems in Table 1.

4.2. Cameron–Martin spaces

We first characterize the function spaces which in the context of Whittle–Matérn fields act as Cameron–
Martin spaces. The next result is a generalization of [31, Lemma 3.1] (where L = −Δ and r ∈ N0).

Lemma 4.3. Suppose that Assumptions 4.1.I–III are satisfied and let �Hr
L be defined according to (2.3)

with E = L2(D) and L as in (4.2). Then, for every r ∈ R+, the space �Hr
L is a subspace of Hr (D) and( �Hr

L, ‖ · ‖r ,L
)
↪→

(
Hr (D), ‖ · ‖Hr (D)

)
. Furthermore, for every r ∈ R+ \E, where

E := {2k + 1/2 : k ∈ N0}, (4.6)

we have the identification

�Hr
L =

{
v ∈ Hr (D) :

(
κ2 − ∇ · (a∇)

) j
v = 0 in L2(∂D) ∀ j ∈ N0 with j ≤

⌊ 2r−1
4

⌋ }
, (4.7)

and on the space �Hr
L the norm ‖ · ‖r ,L is equivalent to the Sobolev norm ‖ · ‖Hr (D).

Remark 4.4. The coefficients a, κ of the second-order differential operator L in (4.2) enter the char-
acterization (4.7) of the Hilbert space �Hr

L (that is, the domain of the operator Lr/2) only for r > 5/2.
In this case, it is solely the behavior of a and κ at the boundary ∂D that determines �Hr

L . If r ∈ E be-
longs to the exception set, then the norm ‖ · ‖r ,L generates a strictly finer topology than the Sobolev
norm ‖ · ‖Hr (D), cf. [24, Theorem 11.7 in Chapter 1]. We discuss this further in Section 6.
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Proof of Lemma 4.3. We recall that by the divergence theorem, Theorem A.5 in Appendix A, we have

(v1,(κ2 − ∇ · (a∇))v2)L2(D) − ((κ
2 − ∇ · (a∇))v1,v2)L2(D)

=

∫
∂D

[
v2(a∇v1 · n) − v1(a∇v2 · n)

]
dS ∀v1,v2 ∈ H2(D),

(4.8)

where dS is the (d − 1)-dimensional surface measure on ∂D and n : ∂D→ Rd is the outward pointing
unit normal vector field, see also Subsection A.1.2 and Remark A.2 in Appendix A.

Step 1: ⊇ in (4.7). First, we consider the case r ∈ (0,2], r � 1/2, in (4.7). The equivalence( �Hr
L, ‖ · ‖r ,L

)
�
(
Hr (D) ∩ H1

0 (D), ‖ · ‖Hr (D)
)
, r ∈ [1,2], (4.9)

can be shown in a similar manner as [12, Lemma 2]. Moreover, since �H0
L = L2(D) and �H1

L = H1
0 (D), it

follows from [17, Theorem 8.1] that( �Hr
L, ‖ · ‖r ,L

)
�
(
{v ∈ Hr (D) : v = 0 in L2(∂D)}, ‖ · ‖Hr (D)

)
, r ∈ (1/2,1), (4.10)( �Hr

L, ‖ · ‖r ,L
)
�
(
Hr (D), ‖ · ‖Hr (D)

)
, r ∈ (0,1/2), (4.11)

see also [24, Theorems 11.5 and 11.6 in Chapter 1].
Now let r = 2k + r0 for some k ∈ N and r0 ∈ (0,1/2), and assume in addition that v ∈ Hr (D) is such

that (κ2−∇ · (a∇))jv = 0 in L2(∂D) for all j ∈ {0,1, . . . , k −1}. Then, by using the boundary conditions
of v and of the eigenfunctions {ej }j∈N in (4.8), we obtain that

‖v‖2
r ,L =

∑
j∈N

λ
2k+r0
j

(v,ej )2L2(D) =
∑
j∈N

λ
r0
j

(
v,(κ2 − ∇ · (a∇))kej

) 2
L2(D)

=
∑
j∈N

λ
r0
j

(
(κ2 − ∇ · (a∇))kv,ej

) 2
L2(D) =

��(κ2 − ∇ · (a∇))kv
��2
r0 ,L

.
(4.12)

By the identification (4.11), there exist constants C′,C ∈ R+, independent of v, such that��(κ2 − ∇ · (a∇))kv
��2
r0 ,L

≤ C ′��(κ2 − ∇ · (a∇))kv
��2
Hr0 (D) ≤ C‖v‖2

H2k+r0 (D), (4.13)

where we used the regularity of κ ∈ C∞(D), a ∈ C∞(D)d×d in the last step. This shows that v ∈ �Hr
L

and ‖v‖r ,L ≤ C‖v‖Hr (D), where the constant C ∈ R+ is independent of v.
Assume now that r = 2k + r0 for some k ∈ N and r0 ∈ (1/2,2], and let v ∈ Hr (D) be such

that (κ2 − ∇ · (a∇))jv = 0 in L2(∂D) for all j ∈ {0,1, . . . , k}. Then, as in (4.12), we obtain that
‖v‖2

r ,L =
��(κ2 − ∇ · (a∇))kv

��2
r0 ,L

. Since by assumption also the trace of (κ2 − ∇ · (a∇))kv vanishes in
L2(∂D), we conclude by the equivalences in (4.9) and (4.10) that the estimates in (4.13) also hold in
this case, with C ′,C ∈ R+ independent of v.

Step 2: ⊆ in (4.7). For the reverse inclusion we show that a) for all r ∈ R+ and all v ∈ �Hr
L ,

we have that v ∈ Hr (D) with ‖v‖Hr (D) ≤ C‖v‖r ,L , and b) in the case that r � E, see (4.6), ev-
ery v ∈ �Hr

L also satisfies the boundary conditions in (4.7). For a) we first prove the regularity result( �Hr
L, ‖ · ‖r ,L

)
↪→

(
Hr (D), ‖ · ‖Hr (D)

)
for all integers r ∈ {{2k − 1,2k} : k ∈ N}, via induction with

respect to k ∈ N. The cases r ∈ {1,2} (i.e., k = 1) are part of (4.9).
For the induction step k −1→ k, let k ≥ 2 and v ∈ �H2k−1

L =D
(
Lk−1/2) . Then, there exists ψ ∈ L2(D)

such that v = L−(k−1/2)ψ and ṽ := L−(k−3/2)ψ satisfies ṽ ∈D
(
Lk−3/2) = �H2k−3

L . Thus, Lv = ṽ ∈ H2k−3(D)
follows from the induction hypothesis, and there exists a constant C′ ∈ R+, which is independent of
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v ∈ �H2k−1
L , such that ‖Lv‖H2k−3(D) ≤ C ′‖Lv‖2k−3,L = C ′‖v‖2k−1,L . As v ∈ �H2k−1

L ⊂ D(L), this regu-
larity of Lv ∈ H2k−3(D) implies by Theorem A.6 that v ∈ H2k−1(D),

‖v‖H2k−1(D) ≤ Ĉ
(
‖Lv‖H2k−3(D) + ‖v‖H2k−2(D)

)
≤ Ĉ

(
C′‖v‖2k−1,L +C ′′‖v‖2k−2,L

)
≤ C‖v‖2k−1,L,

where all constants are independent of v. In this step, we also used that by the induction hypothesis( �H2k−2
L , ‖ · ‖2k−2,L

)
↪→

(
H2k−2(D), ‖ · ‖H2k−2(D)

)
holds. Suppose now that v ∈ �H2k

L =D
(
Lk

)
. Then,

similarly as above, we obtain from the induction hypothesis that Lv ∈ H2k−2(D) with norm bounded
by ‖Lv‖H2k−2(D) ≤ C ′‖v‖2k ,L and, again by Theorem A.6, the regularity v ∈ H2k (D) follows, with

‖v‖H2k (D) ≤ Ĉ
(
‖Lv‖H2k−2(D) + ‖v‖H2k−1(D)

)
≤ C‖v‖2k ,L .

By means of complexification and interpolation arguments (see Lemma F.3 in the Supplementary
Material [6], [32, Theorem 1 in Section 4.3.1] and [25, Theorem 2.6]) we subsequently obtain the
continuous embedding

( �Hr
L, ‖ · ‖r ,L

)
↪→

(
Hr (D), ‖ · ‖Hr (D)

)
for the whole range r ∈ R+.

Step 2b) Finally, it can also be shown via induction with respect to k ∈ N0 that

∀r ∈ (2k,2k + 1/2), ∀v ∈ �Hr
L :

(
κ2 − ∇ · (a∇)

) j
v = 0 in L2(∂D), 0 ≤ j ≤ k − 1,

∀r ∈ (2k + 1/2,2k + 2], ∀v ∈ �Hr
L :

(
κ2 − ∇ · (a∇)

) j
v = 0 in L2(∂D), 0 ≤ j ≤ k .

Specifically, the case k = 0 is part of (4.9), (4.10) and (4.11). For the induction step k − 1 → k,
let k ∈ N, and v1 ∈ �Hr1

L , v2 ∈ �Hr2
L , where r1 ∈ (2k,2k + 1/2) and r2 ∈ (2k + 1/2,2k + 2]. As we

have already proven, Sobolev regularity follows: v1 ∈ Hr1(D) and v2 ∈ Hr2(D). Since r1 > 2k and
r2 > 2k + 1/2, the trace theorem, Theorem A.3 in Appendix A, guarantees that the traces are well-
defined, (κ2 − ∇ · (a∇))j1v1 ∈ L2(∂D) and (κ2 − ∇ · (a∇))j2v2 ∈ L2(∂D) for all j1 ∈ {0,1, . . . , k − 1}
and j2 ∈ {0,1, . . . , k}, respectively. Furthermore, the induction hypothesis implies that Lv1 ∈ �Hr1−2

L
and

Lv2 ∈ �Hr2−2
L satisfy the boundary conditions

(κ2 − ∇ · (a∇))j1v1 = (κ2 − ∇ · (a∇))j1−1(Lv1) = 0 in L2(∂D), 1 ≤ j1 ≤ k − 1,

(κ2 − ∇ · (a∇))j2v2 = (κ2 − ∇ · (a∇))j2−1(Lv2) = 0 in L2(∂D), 1 ≤ j2 ≤ k .

Since v1,v2 ∈ �H2
L = H2(D) ∩ H1

0 (D), we obtain that also v1 = v2 = 0 in L2(∂D).

Now we are ready to characterize the Cameron–Martin space for μd(m; β, a, κ) in (4.5).

Proposition 4.5. Let d ∈ N, β ∈ (d/4,∞), m ∈ L2(D) and suppose Assumptions 4.1.I–III. Then, the
Cameron–Martin space of the Gaussian measure μd(m; β, a, κ) in (4.5) with covariance operator
C = L−2β is given by C1/2(L2(D)) = �H2β

L , cf. (2.3), and it is continuously embedded in H2β(D).
In the case that 2β � E, with E as given in (4.6), it can be identified as in (4.7) and there exist

constants c0,c1,c∗0,c
∗
1 > 0, depending on β, a, κ,D, such that

c0‖v‖2
H2β (D) ≤

(
C−1/2v,C−1/2v

)
L2(D) ≤ c1‖v‖2

H2β (D) ∀v ∈ �H2β
L = C

1/2(L2(D)), (4.14)

c∗0‖v‖
2
H−2β (D) ≤

(
C1/2v,C1/2v

)
L2(D) ≤ c∗1‖v‖

2
H−2β (D) ∀v ∈ �H−2β

L = C−1/2(L2(D)). (4.15)
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Proof. That the Cameron–Martin space is given by �H2β
L has already been observed in (2.4). Further-

more, whenever 2β �E = {2k + 1/2 : k ∈ N0}, we obtain (4.14) from Lemma 4.3 which also implies the
norm equivalence (4.15) on �H−2β

L as this is the dual space of �H2β
L .

Remark 4.6. Proposition 4.5 shows that under Assumptions 4.1.I–III the Cameron–Martin space for
the Gaussian measure μd(m; β, a, κ) in (4.5) with β ∈ (d/4,∞) is

C1/2(L2(D)) = �H2β
L ↪→ H2β(D) ↪→C0(D),

where the last relation is one of the Sobolev embeddings, see e.g. [32, Theorem 4.6.1.(e)]. In particular,
the random field Z : D × Ω→ R which solves the SPDE (4.1) for (β, a, κ) is continuous (P-almost
surely and in Lp-sense for any p ∈ [1,∞)) and its covariance kernel � is continuous on D ×D.

An important consequence of Proposition 4.5 and Lemma 2.2(iii) is the following result on equiva-
lence of Cameron–Martin spaces for Gaussian measures defined as in (4.5) with different parameters.

Theorem 4.7. Suppose Assumption 4.1.III and that each of the parameter tuples (a, κ), (ã, κ̃) fulfills
Assumptions 4.1.I–II. Let β ∈ R+ be such that 2β � E, with E as in (4.6), and let L, L̃ be defined as in
(4.2) with coefficients a, κ and ã, κ̃, respectively. Then, for all γ ∈ [−β, β], the operator L̃γL−γ is an
isomorphism on L2(D) (and, thus, �H2γ

L ,
�H2γ
L̃

are norm equivalent spaces) if and only if, for all j ∈ N0

with j ≤ �β − 5/4�, the following hold:

∀v ∈ �H2β
L :

(
κ2 − ∇ · (a∇)

) j (
δκ2 − ∇ · (δa∇)

)
v = 0 in L2(∂D),

∀̃v ∈ �H2β
L̃

:
(
κ̃2 − ∇ · (ã∇)

) j (
δκ2 − ∇ · (δa∇)

)
ṽ = 0 in L2(∂D).

(4.16)

Here, we set δκ2 (s) := κ̃2(s) − κ2(s) and δa(s) := ã(s) − a(s) for all s ∈ D.
Furthermore, the Cameron–Martin spaces of two Gaussian measures μd(0; β, a, κ), μd(0; β̃, ã, κ̃),

defined according to (4.5) with β, β̃ ∈ (d/4,∞), where d ∈ N and 2β �E, are isomorphic with equivalent
norms if and only if β = β̃ and (4.16) holds for all j ∈ N0 with j ≤ �β − 5/4�.

Proof. In order to derive the first assertion, we distinguish two cases, Case I: β ∈ (0,1), β � 1/4 and
Case II: β ∈ [1,∞), 2β �E.

In Case I, β ∈ (0,1), β � 1/4, there are no conditions imposed in (4.16) and we obtain the relation( �H2β
L , ‖ · ‖2β,L

)
�

( �H2β
L̃
, ‖ · ‖2β,L̃

)
from one of the identifications in (4.9), (4.10) or (4.11). Conse-

quently, L̃βL−β is an isomorphism on L2(D) and by complexification and interpolation, see Lemma F.3
in Appendix F, the same is true for L̃γL−γ and all γ ∈ [−β, β].

Case II: For β ∈ [1,∞), Lemma 2.2(iii) shows that L̃γL−γ is an isomorphism on L2(D) for every
γ ∈ [−β, β] if and only if L̃ − L ∈ L

( �H2η
L ; �H2(η−1)

L

)
∩ L

( �H2η
L̃

; �H2(η−1)
L̃

)
holds for η ∈ {1, β}. The claim

then follows from identifying �H2β−2
L and �H2β−2

L̃
according to (4.7) in Lemma 4.3, combined with the

regularity (L̃ − L)v ∈ H2η−2(D) which holds for all v ∈ �H2η
L ∪ �H2η

L̃
⊆ H2η(D) and every η ∈ {1, β},

since κ, κ̃ ∈ C∞(D) and a, ã ∈ C∞(D)d×d are smooth.

We now prove the second claim. By Proposition 4.5 the Cameron–Martin spaces are �H2β
L and �H2β̃

L̃
. If

we identify the Hilbert space L2(D) with the space �2 of square-summable sequences, Weyl’s law (4.4)
(applied for L and L̃) shows that �H2β

L can be identified with
{
(cj )j∈N :

{
j2β/dcj

}
j∈N ∈ �

2} ⊂ �2 and



1492 D. Bolin and K. Kirchner

�H2β̃
L̃

with
{
(c̃j )j∈N :

{
j2β̃/d c̃j

}
j∈N ∈ �

2} ⊂ �2. For this reason, �H2β
L and �H2β̃

L̃
can be isomorphic only if

β = β̃. In the case that β = β̃ and 2β � E, sufficiency and necessity of the conditions (4.16) for �H2β
L and

�H2β̃
L̃
= �H2β

L̃
to be isomorphic follow from the first part of this theorem.

We end this subsection with a discussion of the conditions (4.16). In what follows, we suppose that
the assumptions of Theorem 4.7 on the coefficients of L, L̃ and on the domain D ⊂ Rd are satisfied.
Firstly, we note that for β ∈ (0,5/4) no boundary conditions on δκ2 or δa are imposed and the spaces
�H2β
L and �H2β

L̃
are isomorphic, independently of the choice of κ, κ̃, a, ã. Next, consider the case that

β ∈ (5/4,9/4). Then, the conditions (4.16) say that(
δκ2 − ∇ · (δa∇)

)
v =

(
κ̃2 − ∇ · (ã∇)

)
v −

(
κ2 − ∇ · (a∇)

)
v = 0 in L2(∂D)

has to hold for every v ∈ �H2β
L ∪ �H2β

L̃
. By (4.7), for all β ∈ (5/4,∞), every v ∈ �H2β

L ∪ �H2β
L̃

satisfies the
boundary condition v = 0 in L2(∂D). Therefore, in this case (4.16) simplifies to the requirement that
∇ · (δa∇v) = 0 in L2(∂D) for all v ∈ �H2β

L ∪ �H2β
L̃

. In particular, note that no assumptions are imposed

on κ, κ̃. Finally, we consider the case that ca = ã for some c ∈ R+ and β ∈ (9/4,13/4). Since �H2β
L � �H2β

L̃

holds if and only if �H2β
cL
� �H2β

L̃
, we thus need that for all v ∈ �H2β

L
= �H2β

cL
and ṽ ∈ �H2β

L̃
:

(
κ2 − ∇ · (a∇)

) (
δc,κ2v

)
= 0 in L2(∂D) and

(
κ̃2 − c∇ · (a∇)

) (
δc,κ2 ṽ

)
= 0 in L2(∂D), (4.17)

where δc,κ2 (s) := κ̃2(s) − cκ2(s). Since (κ2 − ∇ · (a∇))v = v = 0 in L2(∂D), this gives

0 =
(
κ2 − ∇ · (a∇)

) (
δc,κ2v

)
= δc,κ2

(
κ2 − ∇ · (a∇)

)
v − 2(a∇v) · ∇δc,κ2 − v∇ · (a∇δc,κ2 )

= −2(a∇v) · ∇δc,κ2 in L2(∂D),

for all v ∈ �H2β
L and, similarly, (a∇ṽ) · ∇δc,κ2 = 0 in L2(∂D) follows for all ṽ ∈ �H2β

L̃
. The traces of v, ṽ

vanish in L2(∂D) and ∂D is smooth. Therefore, also the traces of all tangential components of ∇v,∇ṽ
vanish and ∇v = ∂v

∂n n, ∇ṽ = ∂ṽ
∂n n with equality in L2

(
∂D;Rd

)
, where n is the outward pointing unit

normal on ∂D, see Remark A.2 in Appendix A. For β ∈ (9/4,13/4) and r ∈ (3/2,2), �H2β
L ,

�H2β
L̃

are dense in

Hr (D)∩H1
0 (D) and the trace map v �→

{
∂ j v
∂n j : j = 0,1

}
of Hr (D)→ Hr−1/2(∂D)×Hr−3/2(∂D) is sur-

jective, see Theorem A.3 in Appendix A. Since also Hr−3/2(∂D) is dense in L2(∂D), the requirement
(4.17) simplifies to the following condition on δc,κ2 = κ̃2 − cκ2:

∀v ∈ �H2β
L : (a∇v) · ∇δc,κ2 = ∂v

∂n (an) · ∇δc,κ2 = 0 in L2(∂D)

⇐⇒ (a∇δc,κ2 ) · n = 0 on ∂D . (4.18)

4.3. Equivalence and orthogonality of Whittle–Matérn measures

The main outcomes of this section are necessary and sufficient conditions on the parameters involved
for two Gaussian measures μd(m; β, a, κ) and μd(m̃; β̃, ã, κ̃), defined according to (4.5), to be equivalent,
see Theorem 4.11. In order to derive this result, we first formulate three lemmas which will guarantee
sufficiency (Lemma 4.8) and necessity (Lemmas 4.9 and 4.10) of the conditions.
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Lemma 4.8. Let d ∈ {1,2,3} and let β ∈ (d/4,∞) be such that 2β � E, with E as given in (4.6). In addi-
tion, suppose Assumption 4.1.III and let the operators L and L̃ be defined as in (4.2) with coefficients
a, κ and a, κ̃, respectively, where a fulfills Assumption 4.1.I and κ, κ̃ are such that Assumption 4.1.II is
satisfied and (4.16) holds for all j ∈ N0 with j ≤ �β− 5/4�. Then, the operator L̃βL−β is an isomorphism
on L2(D) and L−β L̃2βL−β − IdL2(D) is Hilbert–Schmidt on L2(D).

Proof. Firstly, we note that by Theorem 4.7 the operator L̃γL−γ is an isomorphism on L2(D) for all
γ ∈ [−β, β]. To prove the Hilbert–Schmidt property of L−β L̃2βL−β − IdL2(D), we distinguish between
Case I: β ∈ (d/4,1) and Case II: β ∈ [1,∞), 2β �E.

Case I: For β ∈ (d/4,1), we first observe the identity

L̃2β − L2β = 1
2
(
L̃β + Lβ

) (
L̃β − Lβ

)
+ 1

2
(
L̃β − Lβ

) (
L̃β + Lβ

)
= 1

2
(
L̃β + Lβ

) (
L̃β − Lβ

)
+ 1

2

[ (
L̃β + Lβ

) (
L̃β − Lβ

) ] ∗
.

Since for S ∈ L2(E) we have S∗ ∈ L2(E) with ‖S∗‖L2(E) = ‖S‖L2(E), we estimate��L−β
(
L̃2β − L2β ) L−β

��
L2(L2(D)) ≤

��L−β
(
L̃β + Lβ

) (
L̃β − Lβ

)
L−β

��
L2(L2(D))

≤
(��L−β L̃β

��
L(L2(D)) + 1

) ��( L̃β − Lβ
)

L−β
��
L2(L2(D)).

By the isomorphism property of L̃βL−β , the operator L−β L̃β is bounded on L2(D). Furthermore, since
(L̃ − L)ψ = δκ2ψ and δκ2 := κ̃2 − κ2 ∈ C∞(D), we find that L̃ − L ∈ L(L2(D)). Thus, by Lemma C.1
and Remark C.2 in the Supplementary Material [6], also L̃β − Lβ ∈ L(L2(D)), and��( L̃β − Lβ

)
L−β

��
L2(L2(D)) ≤

��L̃β − Lβ
��
L(L2(D))

��L−β
��
L2(L2(D)) <∞.

Here, the Hilbert–Schmidt property of L−β ∈ L2(L2(D)) for β ∈ (d/4,1) follows from the spectral
asymptotics (4.4) of the operator L since, for any ε ∈ R+,��L−(d/4+ε)

��2
L2(L2(D)) =

∑
j∈N

λ
−d/2−2ε
j ≤ c−

d/2−2ε
λ

∑
j∈N

j−1−(4ε)/d <∞. (4.19)

Case II: Let Nβ be as in (2.5) and η ∈ Nβ . Pick ε0 ∈ (0,1/2) such that 2η − d/2 − ε0 � E holds for
all η ∈ Nβ . Then, by Lemma 4.3, on �H2η−d/2−ε0

L the norm ‖ · ‖2η−d/2−ε0 ,L is equivalent to the Sobolev

norm ‖ · ‖H2η−d/2−ε0 (D). Furthermore, �H2η
L is dense in �H2η−d/2−ε0

L and for any fixed ψ ∈ �H2η−d/2−ε0
L ,

δ ∈ R+ there exists vδ ∈ �H2η
L such that ‖ψ − vδ ‖2η−d/2−ε0 ,L < δ. As (4.16) is assumed, for every η ∈ Nβ

and all j ∈ N0 with j ≤ �η − 5/4�, we have
(
κ2 −∇ · (a∇)

) j (
δκ2v

)
= 0 in L2(∂D) for all v ∈ �H2η

L
. Since

1− ε0 ∈ (1/2,1), by the trace theorem, Theorem A.3 in Appendix A, there are C,Ĉ,C ′∈ R+ independent
of δ,vδ and ψ such that, for all j ∈ N0 with j ≤ �η − 5/4�,��(κ2 − ∇ · (a∇)

) j (
δκ2ψ

) ��
L2(∂D) =

��(κ2 − ∇ · (a∇)
) j (

δκ2 (ψ − vδ)
) ��

L2(∂D)

≤ C
��(κ2 − ∇ · (a∇)

) j (
δκ2 (ψ − vδ)

) ��
H1−ε0 (D) ≤ Ĉ ‖ψ − vδ ‖H2 j+1−ε0 (D)

≤ Ĉ ‖ψ − vδ ‖H2η−3/2−ε0 (D) ≤ Ĉ ‖ψ − vδ ‖H2η−d/2−ε0 (D) ≤ C ′‖ψ − vδ ‖2η−d/2−ε0,L < δ.
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As ψ ∈ �H2η−d/2−ε0
L

and δ ∈ R+ were arbitrary, we conclude that for every η ∈ Nβ and all j ∈ N0 with
j ≤ �η − 5/4�, the following behavior on the boundary is satisfied:

∀ψ ∈ �H2η−d/2−ε0
L :

(
κ2 − ∇ · (a∇)

) j (
δκ2ψ

)
= 0 in L2(∂D). (4.20)

Furthermore, we have d/2 + ε0 ∈ (1/2,2). Therefore, the regularity of δκ2 ∈ C∞(D) and (4.20) imply
using the identification (4.7) for �H2(η−1)

L that B := L̃ − L ∈ L
( �H2η−d/2−ε0

L , �H2(η−1)
L

)
holds for every

η ∈ Nβ . This statement is equivalent to Lη−1BL−η+d/4+ε0/2 ∈ L(L2(D)) and we conclude that the oper-
ator Sη := Lη−1 L̃L−η − IdL2(D) = Lη−1(L̃ − L)L−η is Hilbert–Schmidt on L2(D), since

‖Lη−1(L̃ − L)L−η ‖L2(L2(D)) =
��Lη−1BL−η+d/4+ε0/2L−d/4−ε0/2

��
L2(L2(D))

≤
��Lη−1BL−η+d/4+ε0/2

��
L(L2(D))

��L−d/4−ε0/2
��
L2(L2(D)) <∞

follows for all η ∈ Nβ by recalling (4.19). We thus obtain the Hilbert–Schmidt property of the operator
L−β L̃2βL−β − IdL2(D) from Lemma 2.2(i), using Uη = IdL2(D) for all η ∈ Nβ .

Lemma 4.9. Let c ∈ R+, d ∈ N, and suppose Assumption 4.1.III. Let L and L̃ be defined as in (4.2)
with coefficients a, κ and ã, κ̃, respectively, where a, ã fulfill Assumption 4.1.I and κ, κ̃ satisfy Assump-
tion 4.1.II. If ca � ã, then the operator L−1/4 L̃1/2L−1/4 − c1/2 IdL2(D) is not compact on L2(D).

For ease of presentation, the proof is postponed to Appendix E in the Supplementary Material [6].

Lemma 4.10. Let d ∈ N, d ≥ 4, and suppose Assumption 4.1.III. Let the operators L and L̃ be defined
as in (4.2) with coefficients a, κ and a, κ̃, respectively, where a fulfills Assumption 4.1.I and κ, κ̃ satisfy
Assumption 4.1.II. If κ2 � κ̃2, then L−1/2 L̃L−1/2 − IdL2(D) is not Hilbert–Schmidt on L2(D).

Proof. As in Theorem 4.7, we define δκ2 ∈ C∞(D) by δκ2(s) := κ̃2(s) − κ2(s), s ∈ D. Furthermore, we
set δ+(s) :=max{δκ2 (s),0} and δ−(s) := −min{δκ2 (s),0}, s ∈ D.

Step 1: We first prove the claim for the case that either δ+(s) ≥ δ0 ∈ R+ holds for all s ∈ D or
δ−(s) ≥ δ0 ∈ R+ holds for all s ∈ D. Then, δ−1

κ2 (s) := 1/δκ2(s) is well-defined, δ−1
κ2 ∈ C∞(D), and the

multiplier Mδ
κ2 : L2(D) → L2(D), v �→ δκ2v, is an isomorphism with M−1

δ
κ2
= Mδ−1

κ2
. Moreover, for

every v ∈ H1
0 (D), we have that δκ2v = δ−1

κ2 v = 0 in L2(∂D) as well as ∇(δκ2v) = v∇δκ2 + δκ2∇v
and ∇

(
δ−1
κ2 v

)
= v∇δ−1

κ2 + δ
−1
κ2 ∇v in L2(D). Combining these observations with the identification( �H1

L, ‖ · ‖1,L
)
�

(
H1

0 (D), ‖ · ‖H1(D)
)
, see (4.7), shows that Mδ

κ2 ,Mδ−1
κ2
∈ L

( �H1
L

)
. Since the oper-

ators Mδ
κ2 ,Mδ−1

κ2
are self-adjoint on L2(D), also Mδ

κ2 ,Mδ−1
κ2
∈ L

( �H−1
L

)
follows. We conclude that

L−1/2 Mδ
κ2 L1/2 is bounded on L2(D) and has a bounded inverse, L−1/2 Mδ−1

κ2
L1/2 ∈ L(L2(D)). Thus,

��L−1/2(L̃ − L)L−1/2��
L2(L2(D)) =

��L−1/2Mδ
κ2 L1/2L−1��

L2(L2(D))

≥
��L−1/2Mδ−1

κ2
L1/2��−1

L(L2(D))
��L−1��

L2(L2(D)).

The asymptotic behavior (4.4) implies that
��L−1

��2
L2(L2(D)) =

∑
j∈N λ

−2
j ≥ C−2

λ

∑
j∈N j−1 =∞ for d ≥ 4

and, hence, L−1/2 L̃L−1/2 − IdL2(D) = L−1/2(L̃ − L)L−1/2 � L2(L2(D)).
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Step 2a: Suppose now that ∅ � D0 � D is an open ball D0 := B(s0,r0) with center s0 ∈ D
and radius r0 ∈ R+ such that δ+(s) ≥ δ0 ∈ R+ for all s ∈ D0. Then, the self-adjoint compact op-
erator L−1/2Mδ

κ2 L−1/2 ∈ K(L2(D)) has infinitely many positive eigenvalues μ+1 ≥ μ+2 ≥ . . . > 0 that

are bounded from below by those of the compact operator L−
1/2

0 Mδ
κ2 |D0

L−
1/2

0 ∈ K(L2(D0)), where
L0 : D(L0) ⊂ L2(D0) → L2(D0) is defined as in (4.2) with respect to the spatial domain D0 �D and
the coefficients a |D0

and κ |D0
. This follows from the min-max theorem, see e.g. [15, Theorem X.4.3],

showing that the eigenvalues μ̃+1 ≥ μ̃+2 ≥ . . . > 0 of the positive operator L−
1/2

0 Mδ
κ2 |D0

L−
1/2

0 satisfy

0 < μ̃+n = max
U0⊂L2(D0),
dim(U0)=n

min
w0∈U0\{0}

(L−1/2
0 Mδ

κ2 |D0
L−

1/2
0 w0,w0)L2(D0)

(w0,w0)L2(D0)

= max
V0⊂H1

0 (D0),
dim(V0)=n

min
v0∈V0\{0}

(Mδ
κ2 |D0

v0,v0)L2(D0)

〈L0v0,v0〉
,

where we also used that �H1
L0
� H1

0 (D0). If v0 : D→ R denotes the zero extension of v0 : D0 → R, then
v0 ∈ H1

0 (D) holds if and only if v0 ∈ H1
0 (D0), cf. [1, Theorem 5.29]. Consequently, if we define the

closed subspace V0 :=
{
v ∈ H1

0 (D)
��∃v0 ∈ H1

0 (D0) such that v = v0
}
⊂ H1

0 (D) � �H1
L , we find

0 < μ̃+n = max
V ⊂V0,

dim(V )=n

min
v∈V\{0}

(Mδ
κ2 v,v)L2(D)

〈Lv,v〉 ≤ max
V ⊂H1

0 (D),
dim(V )=n

min
v∈V\{0}

(Mδ
κ2 v,v)L2(D)

(L1/2v,L1/2v)L2(D)

= max
U⊂L2(D),
dim(U)=n

min
w∈U\{0}

(L−1/2Mδ
κ2 L−1/2w,w)L2(D)

(w,w)L2(D)
= μ+n .

We conclude that, if δκ2 (s) = δ+(s) ≥ δ0 > 0 for all s ∈ D0, then L−1/2 Mδ
κ2 L−1/2 ∈ K(L2(D)) has in-

finitely many positive eigenvalues {μ+n}n∈N satisfying μ+n ≥ μ̃+n , where { μ̃+n}n∈N are the positive eigen-
values of L−

1/2
0 Mδ

κ2 |D0
L−

1/2
0 .

Step 2b: Suppose next that ∅ � D0 � D is an open ball D0 := B(s0,r0) with center s0 ∈ D and
radius r0 ∈ R+ such that δ−(s) ≥ δ0 ∈ R+ for all s ∈ D0. Then, as in Step 2a we find that the operator
L−1/2 M−δ

κ2 L−1/2 ∈ K(L2(D)) has infinitely many positive eigenvalues {μ−n}n∈N bounded from below

by those of L−
1/2

0 M−δ
κ2 |D0

L−
1/2

0 denoted by { μ̃−n}n∈N.

Step 3: Assume that κ2 � κ̃2. Then there exist s0 ∈ D and r0, δ0 ∈ R+ such that B(s0,r0) � D and
such that a) δ+(s) ≥ δ0 or b) δ−(s) ≥ δ0 for all s ∈ D0. By Step 2 the operator L−1/2Mδ

κ2 L−1/2 has in
case a) infinitely many positive eigenvalues {μ+n}n∈N which are bounded from below by { μ̃+n}n∈N, i.e.,
by those of L−

1/2
0 Mδ

κ2 |D0
L−

1/2
0 , and in case b) infinitely many negative eigenvalues {−μ−n}n∈N which

are bounded from above by {−μ̃−n}n∈N, i.e., by those of L−
1/2

0 Mδ
κ2 |D0

L−
1/2

0 . By Step 1 the eigenvalues

of L−
1/2

0 Mδ
κ2 |D0

L−
1/2

0 are not square-summable and by Step 2 neither those of L−1/2 Mδ
κ2 L−1/2 can be,

i.e., L−1/2 Mδ
κ2 L−1/2 � L2(L2(D)).

We now can combine the aforegoing Lemmas 4.8, 4.9 and 4.10 with the general results on Gaussian
measures with fractional-order covariance operators of Section 2 to deduce the following result on
equivalence of Gaussian measures of generalized Whittle–Matérn type.
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Theorem 4.11. Let d ∈ N, β, β̃ ∈ (d/4,∞) be such that 2β �E, with E as in (4.6), and suppose Assump-
tion 4.1.III. Let L and L̃ be defined as in (4.2), with coefficients a, κ and ã, κ̃, respectively, where each of
the tuples (a, κ) and (ã, κ̃) fulfills Assumptions 4.1.I–II. Assume that m,m̃ ∈ L2(D) and let the Gaussian
measures μd(m; β, a, κ) and μd(m̃; β̃, ã, κ̃) be defined according to (4.5).

I. In dimension d ≤ 3, the Gaussian measures μd(m; β, a, κ) and μd(m̃; β̃, ã, κ̃) are equivalent if
and only if β = β̃, m − m̃ ∈ �H2β

L , a = ã, and the boundary conditions (4.16) hold for every
j ∈ N0 with j ≤ �β − 5/4�.

II. In dimension d ≥ 4, the Gaussian measures μd(m; β, a, κ) and μd(m̃; β̃, ã, κ̃) are equivalent if
and only if β = β̃, m − m̃ ∈ �H2β

L , a = ã, and κ2 = κ̃2.

Proof. For the derivation we apply the Feldman–Hájek theorem, see Theorem B.1 in the Supple-
mentary Material [6]. To this end, we let C = L−2β and C̃ = L̃−2β̃ denote the covariance operators
corresponding to μd(m; β, a, κ) and μd(m̃; β̃, ã, κ̃), respectively. By Theorem 4.7 the Cameron–Martin

spaces C(L2(D)) = �H2β
L and C̃(L2(D)) = �H2β̃

L̃
are norm equivalent spaces (and thus condition (i) of

Theorem B.1 is fulfilled) if and only if β = β̃ and (4.16) holds for all j ∈ N0 with j ≤ �β− 5/4�. Next we
note that condition (ii) of Theorem B.1 is equivalent to requiring that m − m̃ ∈ �H2β

L .
Assuming that β = β̃ with 2β � E, we complete the proof by showing that conditions (i) and (iii)

of Theorem B.1 hold simultaneously, i.e., L̃βL−β is an isomorphism on L2(D) and the operator
L−β L̃2βL−β − IdL2(D) is Hilbert–Schmidt on L2(D) I. in dimension d ≤ 3 if and only if a = ã and
(4.16) holds for all j ∈ N0 with j ≤ �β − 5/4�; and II. for d ≥ 4 if and only if a = ã and κ2 = κ̃2.

I. If d ≤ 3, a = ã, and (4.16) holds for all j ∈ N0 with j ≤ �β − 5/4�, then L̃βL−β is an isomor-
phism on L2(D) and L−β L̃2βL−β − IdL2(D) is Hilbert–Schmidt on L2(D) by Lemma 4.8. Conversely,
if L̃βL−β is an isomorphism on L2(D) and L−β L̃2βL−β − IdL2(D) ∈ L2(L2(D)), then by Lemma 2.1(i)
for every γ ∈ [−β, β] also the operator L̃γL−γ is an isomorphism on L2(D) and L−γ L̃2γL−γ − IdL2(D)
is a Hilbert–Schmidt operator on L2(D). Since 2β � E is assumed, by Theorem 4.7 the conditions
(4.16) have to be satisfied for all j ∈ N0 with j ≤ �β − 5/4�. Furthermore, the choice γ = 1/4 shows that
L−1/4 L̃1/2L−1/4 − IdL2(D) is Hilbert–Schmidt and, thus, compact on L2(D). Lemma 4.9 (with c = 1)
therefore implies then that a = ã has to hold.

II. If d ≥ 4, a = ã and κ2 = κ̃2, then L = L̃ so that the isomorphism property of L̃βL−β and the
Hilbert–Schmidt property of L−β L̃2βL−β − IdL2(D) are trivial. Conversely, if L̃βL−β is an isomor-
phism on L2(D) and L−β L̃2βL−β − IdL2(D) ∈ L2(L2(D)) in dimension d ≥ 4, then β > d/4 ≥ 1 and by
Lemma 2.1(i) also the operators L−1/4 L̃1/2L−1/4 − IdL2(D) as well as L−1/2 L̃L−1/2 − IdL2(D) are Hilbert–
Schmidt (and, thus, compact) on L2(D). By Lemma 4.9 a = ã follows and, subsequently, Lemma 4.10
shows that κ2 = κ̃2.

4.4. Uniformly asymptotically optimal linear prediction

In contrast to equivalence of the Gaussian measures μd(m; β, a, κ) and μd(m̃; β̃, ã, κ̃), the necessary and
sufficient conditions for uniformly asymptotically optimal linear prediction (2.10), (2.11) when mis-
specifying μd(m; β, a, κ) by μd(m̃; β̃, ã, κ̃) derived in this subsection will not depend on the dimension d
of the spatial domain D ⊂ Rd . The key to prove this result is the next lemma.
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Lemma 4.12. Let d ∈ N, c ∈ R+, and let β ∈ (d/4,∞) be such that 2β �E, where E is as in (4.6). In ad-
dition, suppose Assumption 4.1.III and let the operators L, L̃ be defined as in (4.2) with coefficients a, κ
and ã, κ̃, respectively, where a fulfills Assumption 4.1.I, ca = ã, and κ, κ̃ are such that Assumption 4.1.II
is satisfied and (4.16) holds for all j ∈ N0 with j ≤ �β− 5/4�. Then, L̃βL−β is an isomorphism on L2(D)
and L−β L̃2βL−β − c2β IdL2(D) ∈ K(L2(D)).

Proof. By Theorem 4.7 L̃γL−γ is an isomorphism on L2(D) for all γ ∈ [−β, β]. To prove compactness
of L−β L̃2βL−β − c2β IdL2(D), similarly as in the proof of Lemma 4.8, we distinguish two cases, namely
between Case I: d ∈ {1,2,3}, β ∈ (d/4,1) and Case II: β ∈ [1,∞).

Case I: If d ∈ {1,2,3} and β ∈ (d/4,1), then we use the identity

L−β L̃2βL−β − c2β IdL2(D) =
1
2 L−β

(
L̃β + cβLβ

) (
L̃β − cβLβ

)
L−β

+ 1
2

[
L−β

(
L̃β + cβLβ

) (
L̃β − cβLβ

)
L−β

] ∗
.

(4.21)

Clearly, L−β L̃β ∈ L(L2(D)) is bounded, since L̃βL−β is an isomorphism. Furthermore, since
(L̃ − cL)ψ = δc,κ2ψ, where δc,κ2 := κ̃2 − cκ2 ∈ C∞(D), we find that L̃ − cL ∈ L(L2(D)). Thus, by
Lemma C.1 and Remark C.2 in Appendix C also L̃β − cβLβ ∈ L(L2(D)) holds. Combining these
observations with (4.21) and L−β ∈ K(L2(D)) shows that L−β L̃2βL−β − c2β IdL2(D) ∈ K(L2(D)).

Case II: Define the operator Lc := cL. Then, also L̃γL−γc is an isomorphism on L2(D) for every
γ ∈ [−β, β]. By Theorem 4.7, for all η ∈ Nβ , where Nβ is as in (2.5), and all j ∈ N0 with j ≤ �η − 5/4�,

∀v ∈ �H2η
Lc
= �H2η

L
:

(
κ2 − ∇ · (a∇)

) j (
δc,κ2v

)
= 0 in L2(∂D).

We pick ε0 ∈ (0,2) such that 2η − ε0 � E for all η ∈ Nβ , and we fix η ∈ Nβ , ψ ∈ �H2η−ε0
L , and δ ∈ R+.

By density of �H2η
L in �H2η−ε0

L , there exists vδ ∈ �H2η
L such that ‖ψ − vδ ‖2η−ε0 ,L < δ. Furthermore, by

Lemma 4.3 on �H2η−ε0
L

the norm ‖ · ‖2η−ε0 ,L is equivalent to the Sobolev norm ‖ · ‖H2η−ε0 (D).
Thus, by the trace theorem, Theorem A.3 in Appendix A, and by noting that 5/2 − ε0 ∈ (1/2,5/2), for

all j ∈ N0 with j ≤ �η − 5/4�, we find that��(κ2 − ∇ · (a∇)
) j (

δc,κ2ψ
) ��

L2(∂D) =
��(κ2 − ∇ · (a∇)

) j (
δc,κ2 (ψ − vδ)

) ��
L2(∂D)

≤ C
��(κ2 − ∇ · (a∇)

) j (
δc,κ2(ψ − vδ)

) ��
H5/2−ε0 (D) ≤ Ĉ‖ψ − vδ ‖H2η−ε0 (D) < C ′δ,

where the constants C,Ĉ,C ′ ∈ R+ are independent of δ,vδ and ψ. Since ψ ∈ �H2η−ε0
L and δ ∈ R+ were

arbitrary, we thus find that, for every η ∈ Nβ and all j ∈ N0 with j ≤ �η − 5/4�,

∀ψ ∈ �H2η−ε0
Lc

= �H2η−ε0
L :

(
κ2 − ∇ · (a∇)

) j (
δc,κ2ψ

)
= 0 in L2(∂D). (4.22)

Since ε0 ∈ (0,2), the identity (4.22) and the regularity of δc,κ2 ∈ C∞(D) imply by identifying
�H2(η−1)
Lc

as in (4.7) that Bc := L̃ − cL ∈ L
( �H2η−ε0

Lc
, �H2(η−1)

Lc

)
and Lη−1

c BcL−η+
ε0/2

c ∈ L(L2(D)). Then,

we find that Kη := Lη−1
c L̃L−ηc − IdL2(D) = Lη−1

c (L̃ − Lc)L−ηc =
(
Lη−1
c BcL−η+

ε0/2
c

)
L−

ε0/2
c ∈ K(L2(D))

for every η ∈ Nβ , because L−
ε0/2

c = c−ε0/2L−ε0/2 is compact on L2(D). Applying Lemma 2.2(ii) (for
Ã := L̃ and A := Lc , using Wη := IdL2(D) for every η ∈ Nβ) finally yields compactness of the operator
L−γ L̃2γL−γ − c2γ IdL2(D) = c2γ (L−γc L̃2γL−γc − IdL2(D)

)
on L2(D) for all γ ∈ [−β, β].
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Theorem 4.13. Let d ∈ N, β, β̃ ∈ (d/4,∞) be such that 2β � E, with E as in (4.6), and let Assump-
tion 4.1.III be satisfied. Suppose that L, L̃ are defined as in (4.2), with coefficients a, κ and ã, κ̃, re-
spectively, where each of the tuples (a, κ) and (ã, κ̃) fulfills Assumptions 4.1.I–II. Let m,m̃ ∈ L2(D) and
the Gaussian measures μd(m; β, a, κ) and μd(m̃; β̃, ã, κ̃) be defined according to (4.5). In addition, let
hn, h̃n denote the best linear predictors of h ∈ H based on Hn and the measures μd(m; β, a, κ) resp.
μd(m̃; β̃, ã, κ̃), see (2.6)–(2.9). Then, any of the four assertions in (2.10), (2.11) holds for some c ∈ R+
and all {Hn}n∈N ∈ Sμadm if and only if β = β̃, m − m̃ ∈ �H2β

L , the boundary conditions (4.16) hold for
every j ∈ N0 with j ≤ �β − 5/4�, and there exists a constant ĉ ∈ R+ such that ĉa = ã.

Proof. By [22, Theorem 3.8 and Lemma B.1] any of the assertions in (2.10), (2.11) holds for some

constant c ∈ R+ and all {Hn}n∈N ∈ Sμadm if and only if (i) �H2β
L and �H2β̃

L̃
are norm equivalent Hilbert

spaces; (ii) m − m̃ ∈ �H2β
L

; and (iii) L−β L̃2βL−β − c−1 IdL2(D) is compact on E .

By Theorem 4.7 �H2β
L and �H2β̃

L̃
are norm equivalent if and only if β = β̃ and (4.16) holds for every

j ∈ N0 with j ≤ �β− 5/4�. Assuming that β = β̃ with 2β �E, sufficiency of (a) the boundary conditions
(4.16) holding for all j ∈ N0 with j ≤ �β − 5/4�, combined with (b) the existence of ĉ ∈ R+ such that
ĉa = ã, for conditions (i) and (iii) is proven in Lemma 4.12 (showing in particular that c−1 = ĉ2β).
Necessity of (a) and (b) follows from Theorem 4.7 and Lemma 4.9.

5. Illustration by simulations

In this section we illustrate the theoretical findings of the previous sections by two different examples
of kriging prediction based on misspecified generalized Whittle–Matérn models (1.4), see also (4.1)
and (4.2), on D := (0,1). We first consider a non-fractional model with β = 1 and discuss the difference
between a misspecification of κ2 and of a. We then consider the role of β when misspecifying κ2.
These examples verify, in particular, that one obtains asymptotic optimality even if κ2 is misspecified
for β < 9/4. In contrast, when β > 9/4, it is the behavior of κ2 at the boundary ∂D = {0,1} of the domain
D = (0,1) that determines whether asymptotic optimality is achieved or not, see Table 1. The results
are implemented in MATLAB using the ppfem package [3] for discretizing the models.

To facilitate interpreting the parameters, we make a small adjustment to the Whittle–Matérn model
(1.4) by including a constant τ ∈ R+ which scales the variance of the solution:(

−∇ · (a∇) + κ2) β(τZ) =W in D = (0,1). (5.1)

Note that this constant has no effect on the kriging prediction.

5.1. The difference between κ2 and a

Consider (5.1) with β = 1, a ≡ 1, κ2 ≡ 1200, and τ = 1
2 κ

−3/2. These choices result in a process Z with
practical correlation range 0.1 and a variance of approximately 1 at the center of the domain, see (1.3).

We approximate the solution Z : [0,1] × Ω→ R of (5.1) using a finite element method (FEM)
with N = 1000 equally spaced continuous, piecewise linear basis functions {ϕk }Nk=1, aka. “hat func-
tions”. The resulting approximation can be written as Z(s) ≈

∑N
k=1 zkϕk(s), where the distribution of

the weights {zk }Nk=1 is zero-mean multivariate Gaussian with covariance matrix C = L−1ML−1. The
matrix L has elements Ljk = aL(ϕj, ϕk ), where aL( · , · ) denotes the bilinear form induced by L, see
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(4.3) in Subsection 4.1, and M is the mass matrix (aka. Gramian) with elements Mjk = (ϕj, ϕk)L2(D).
For details on the implementation, such as the assembling of the matrices, see [23] or [7].

To evaluate the effect of misspecifying the covariance function, the predictive performance of the
correct model is compared with two misspecified models. For both misspecified models, we use the
correct values of β,τ, and we set

(
κ2(s), a(s)

)
=

{(
1200 f (s)−1,1

)
for model 1,(

1200, f (s)
)

for model 2,
s ∈ D = [0,1]. (5.2)

Here, f (s) = 1+ 1
2 erf

(
δ(s−0.5)√

2

)
is a sigmoid function defined through the error function, and δ ∈ R+ is

a parameter that determines the rate of change of f (s) at s = 0.5. Thus, for the first model the coeffi-
cient κ2, which is constant in the true model, is misspecified by a function, whereas in the second model
this scenario applies to the coefficient a. Note that, for both models, κ2(s) and a(s) attain the correct
values at s = 0.5. The two misspecified models are approximated by means of a FEM approximation
with the same basis functions as used for the true model.

We consider kriging prediction in two different scenarios. In both scenarios, we use

En(h) :=
E
[
(h̃n − h)2

]
E
[
(hn − h)2

] − 1,

as a measure of efficiency of the best linear predictor obtained by a misspecified model. The quantity
En(h) is always nonnegative and should converge to zero if the misspecified model provides asymptot-
ically optimal linear prediction, see Proposition 2.6 and Theorem 4.13.

In the first scenario, we predict integral values of Z . Specifically, for � ∈ N, let I� := (Z,e�)L2(D)
be the integral over the product of the process with e�(s) :=

√
2 sin(�πs), which is the �-th eigenfunc-

tion of the (negative) Dirichlet Laplacian −Δ on D = (0,1). In order to evaluate I� , we use the FEM
approximation I� ≈

∑N
k=1 zk(e�, ϕk )L2(D) and evaluate the integral Φ�k = (e�, ϕk )L2(D) by means of

Gauss–Legendre quadrature. Collecting these elements in a matrix Φ we find that the joint distribu-
tion of (I1, . . . , IN ) is multivariate Gaussian with mean zero and covariance matrix Σ =ΦCΦ�. Given
I1, . . . , In, we then predict h = I� for all � ∈ {n + 1, . . . ,N}. The variance of the error of this predictor
can be obtained as E

[
(hn − h)2

]
= Σ�,� −Σ�,1:nΣ

−1
1:n,1:nΣ

�
�,1:n. Here Σ�,1:n denotes the first n elements

of the �-th row of Σ and Σ1:n,1:n is the n × n sub-matrix corresponding to the n observations. If we
let C̃ denote the covariance matrix for the weights of a model with misspecified parameters and set
Σ̃ =ΦC̃Φ�, we similarly obtain that

E
[
(h̃n − h)2

]
= Σ�,� + Σ̃�,1:nΣ̃

−1
1:n,1:nΣ1:n,1:nΣ̃

−1
1:n,1:nΣ̃

�
�,1:n − 2Σ�,1:nΣ̃

−1
1:n,1:nΣ̃

�
�,1:n.

The left panel of Figure 1 shows

Emax
I ,n :=max

{
E�I ,n : n + 1 ≤ � ≤ N

}
, E�I ,n := En(I�), � ∈ {n + 1, . . . ,N}, (5.3)

as a function of n for both misspecified models, where we consider values for n up to 500, so that
the maximum in (5.3) is taken over at least 500 elements for each n. This error is computed for three
different values of δ, namely δ ∈ {1,10,100}, where a larger value of δ intuitively should cause a bigger
error for the misspecified model. We can clearly see that model 2 does not provide asymptotically
optimal linear prediction in this scenario, but model 1 does. This holds for each of the three different
values of δ, and is in line with our theoretical findings: Theorem 4.13 (see also Table 1) shows that only
the model with misspecified κ2 should provide asymptotically optimal linear prediction.
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Figure 1. The results for model 1 (black) and model 2 (red) for the first example (5.2) with integral observations
(left) and point observations (right). Solid lines correspond to δ = 1, dashed to δ = 10, and dotted to δ = 100.

As a second scenario, we let h = Z(s0) with s0 = 0.5 and compute predictions of h based on observa-
tions of Z(s) at n locations s1, s2, . . . inD = (0,1) chosen as s2j = s0+ jδo and s2j−1 = s0 − jδo for j ∈ N.
Here δo ∈ (0,1/2) is a constant that determines the distance between the observations. The only differ-
ence in the calculations in this case is that the matrix Φ now contains the elements Φ�k = ϕk(s�−1).
We again compute predictions based on both misspecified models and use En(Z(s0)) to measure the
accuracy. The right panel of Figure 1 shows the results as functions of n for the two different mod-
els and the three different values of δ. We can now see that model 2 has a larger error compared to
model 1. However, also the error of model 2 seem to converge to zero in this case, although at a worse
rate compared to model 1.

We recall that Theorem 4.13 in Subsection 4.4 specifies necessary and sufficient conditions for uni-
form asymptotic optimality of linear prediction based on misspecified Whittle–Matérn models. Here,
uniformity means that the supremum of En(h) taken over all h ∈ H−n = {h ∈ H : E[(hn − h)2] > 0}
should converge to zero as n→∞, see (2.10). In particular, the outcomes of the second example, where
one specific h ∈ H is fixed, do not contradict the results of Subsection 4.4. Interestingly, they sug-
gest, however, that the conditions of Theorem 4.13 and of [22, Assumption 3.3] are not necessary for
asymptotically optimal linear prediction when predicting the random field at a single location.

5.2. The effect of the smoothness parameter

We again consider the Whittle–Matérn model (5.1) on D = (0,1), this time for a ≡ 1 and β ∈ {1,2,3}.
For the approximation of the solution Z , we use a finite element discretization with N = 2000 equally
spaced hat functions as basis functions. For β = 2 and β = 3 we follow the iterative approach of [23]
and [7]. That is, we replace the matrix L (corresponding to the operator L for β = 1) by LM−1L when
β = 2 and by LM−1LM−1L when β = 3 (corresponding to the operators L2 and L3, respectively).

As a baseline model, we consider (5.1) with a ≡ 1, τ = (4π)−1/4κ1/2−2β(Γ(2β − 1/2)/Γ(2β))1/2, and
κ2 ≡ 100(4β − 1), so that the model has practical correlation range 0.2 and variance close to 1 at the
center of the domain, cf. (1.3). For β ∈ {1,2,3}, we consider two different models of the form (5.1),
where we keep a ≡ 1 and the constant τ fixed to their correct values but misspecify κ2 by

κ2(s) = 100(4β − 1) ·
{

1 − 1.5s2 + s3 for model 1,
1 + s − 1.5s3 for model 2,

s ∈ D = [0,1], (5.4)
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Figure 2. Left: the results for model 1 (black) and model 2 (red) in the second example (5.4), with β = 1 (solid),
β = 2 (dashed), and β = 3 (dotted). Right: κ2 for the two models in (5.4) when β = 1.

see the right panel of Figure 2. In both cases, κ2(s) takes the correct value at s = 0 and half of the
correct value at s = 1. The main difference between the two models is that the derivative of κ2 vanishes
on the boundary for model 1, but not for model 2. Because of this, model 1 induces the same bound-
ary conditions as the baseline model, whereas model 2 changes the boundary condition when β = 3,
cf. (4.7) and Theorem 4.7. From the results of Subsections 4.1 and 4.4 we know that the behavior of
κ2 for the two alternative models implies that model 1 will provide uniformly asymptotically optimal
linear prediction for all values of β ∈ {1,2,3} whereas model 2 only will do so for β = 1 and β = 2 (see
Table 1, where c = 1 and δc,κ2 has a derivative that does not vanish at the boundary s ∈ {0,1}).

To investigate this, we again consider predicting the integral values I� = (Z,e�)L2(D). Given observa-
tions of I1, . . . , In we predict h = I� for � ∈ {n+ 1, . . . ,N} and compute Emax

I ,n as the largest error among
these predictions, see (5.3). Figure 2 shows Emax

I ,n as a function of n for both misspecified models in
the three cases β ∈ {1,2,3}. The figure verifies that both misspecified models provide asymptotically
optimal predictions when β ∈ {1,2} but, for β = 3, only the predictions based on model 1 behave
asymptotically optimal.

6. Discussion

In the general setting of Gaussian measures with fractional-order covariance operators on separable
Hilbert spaces, we have derived necessary and sufficient conditions for I. equivalence of Gaussian
measures in Proposition 2.3, and II. uniform asymptotic optimality of linear (kriging) prediction based
on misspecified Gaussian measures in Proposition 2.6. These conditions are formulated in terms of the
non-fractional base operators, and are therefore in many situations simpler to verify than those for I. as
given by the Feldman–Hájek theorem and those for II. as stated in [22, Assumption 3.3]. As a first
explicit example, we have applied these results to classical Whittle–Matérn fields, see Corollary 3.3.

In the second part of the manuscript, we adopted the general results to derive necessary and suf-
ficient conditions for I. and II. in terms of the (possibly function-valued) parameters of generalized
Whittle–Matérn fields on bounded Euclidean domains, see (4.1), (4.2) and (4.5). The outcomes of The-
orems 4.7, 4.11 and 4.13 cover the whole range of admissible fractional orders β ∈ (d/4,∞) except for
the cases 2β ∈ E, i.e., β ∈ {k + 1/4 : k ∈ N}, see also Table 1. For ease of presentation, we refrained
from detailing the results for 2β ∈ E and we will now briefly comment on this situation. In the case
that r ∈ E belongs to the discrete exception set (4.6), on �Hr

L the Sobolev norm ‖ · ‖Hr (D) will not be
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equivalent to the norm ‖ · ‖r ,L = ‖Lr/2 · ‖L2(D) defined through the fractional power operator Lr/2, as
the topology on �Hr

L is strictly finer than that on Hr (D). It is well-known (see e.g. [24, Theorem 11.7 in
Chapter 1]) that, for instance, for r = 1/2 the norm ‖ · ‖1/2,L is equivalent to the norm

‖v‖
H

1/2
00 (D) :=

(
‖v‖2

H1/2(D) + ‖ρ
−1/2v‖2

L2(D)
) 1/2

,

where ρ ∈ C∞(D) is a function which is positive in the interior D and for which the limit
lims→s0

ρ(s)
dist(s,∂D) exists and is not zero for all s0 ∈ ∂D, where dist(s, ∂D) denotes the distance of

s to the boundary ∂D. For example, in the case that β = 5/4 and 2β = 5/2 ∈ E, we therefore expect
the Cameron–Martin spaces of the Gaussian Whittle–Matérn measures μ(0; β, a, κ) and μ(0; β, a, κ̃),
see (4.5), to be isomorphic with equivalent norms for any choice of the coefficients κ, κ̃ ∈ C∞(D) since
δκ2 = κ̃2 − κ2 ∈ C∞(D) and ρ−1/2δκ2v ∈ L2(D) for all v ∈ �H5/2

L ∪ �H5/2
L̃
⊂ H

1/2
00 (D). For β = 9/4, we expect

this to hold if and only if

(
κ2 − ∇ · (a∇)

) (
δκ2v

)
∈ H

1/2
00 (D) and

(
κ̃2 − ∇ · (a∇)

) (
δκ2 ṽ

)
∈ H

1/2
00 (D),

for every v ∈ �H9/2
L and all ṽ ∈ �H9/2

L̃
. Similarly, as in (4.17) and (4.18) this results in the condition

ρ−1/2(a∇δκ2) · ∇v ∈ L2(D) for all v ∈ �H9/2
L ∪ �H9/2

L̃
. This means that a∇δκ2 has to satisfy a certain decay

behavior towards to the boundary ∂D. Analogous conditions can also be derived for β ∈ {13/4,17/4, . . .}
and for the case that a � ã. Furthermore, although we have addressed only Gaussian measures in this
work, the results for II. extend to non-Gaussian processes, since the kriging predictor solely depends
on the first two moments of the process.

As a natural extension of the results of this work, generalized Whittle–Matérn fields on manifolds or
surfaces can be considered in future work. This extension is of relevance for practical applications in
statistics, where for instance models on the sphere often play an important role. In fact, for a smooth
surface M without boundary, such as the sphere, the transition from the abstract results of Section 2
to Whittle–Matérn fields on M should be more straightforward compared to the arguments used in
Section 4 for bounded Euclidean domains. This is suggested by the fact that on a smooth surface M
(and for smooth coefficients a, κ) the space �Hr

L is isomorphic to the Sobolev space Hr (M), and not to
a proper subspace thereof (4.7) containing only functions which satisfy certain boundary conditions.
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