
 
 

Delft University of Technology

A Heuristics-Based Cost Model for Scientific Workflow Scheduling in Cloud

Al-Khannaq, E.N.M.; Lee,  Sai Peck ; Khan, Saif Ur Rehman; Behboodian,  Navid ; Khala,  Osamah Ibrahim
; Verbraeck, A.; van Lint, J.W.C.
DOI
10.32604/cmc.2021.015409
Publication date
2021
Document Version
Final published version
Published in
CMC Computer, Materials and Continua

Citation (APA)
Al-Khannaq, E. N. M., Lee, S. P., Khan, S. U. R., Behboodian, N., Khala, O. I., Verbraeck, A., & van Lint, J.
W. C. (2021). A Heuristics-Based Cost Model for Scientific Workflow Scheduling in Cloud. CMC Computer,
Materials and Continua, 67(3), 3265-3282. https://doi.org/10.32604/cmc.2021.015409

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.32604/cmc.2021.015409
https://doi.org/10.32604/cmc.2021.015409


echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.015409

Article

A Heuristics-Based Cost Model for Scienti�c Work�ow
Scheduling in Cloud

Ehab Nabiel Al-Khanak1,*, Sai Peck Lee2, Saif Ur Rehman Khan3, Navid Behboodian4,
Osamah Ibrahim Khalaf5, Alexander Verbraeck6 and Hans van Lint1

1Department of Transport and Planning, Faculty of Civil Engineering and Geosciences (CiTG),
Delft University of Technology, Delft, Netherlands

2Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
3Department of Computer Science, COMSATS University Islamabad (CUI), Islamabad, Pakistan

4Faculty of Computing and Digital Technology, HELP University, Kuala Lumpur, Malaysia
5Al-Nahrain Nanorenewable Energy Research Centre, Al-Nahrain University, Baghdad, Iraq
6Department Multi-Actor Systems, Faculty of Technology, Policy and Management (TPM),

Delft University of Technology, Delft, Netherlands
*Corresponding Author: Ehab Nabiel Al-Khanak. Email: E.N.M.Al-Khannaq@tudelft.nl

Received: 19 November 2020; Accepted: 10 January 2021

Abstract: Scienti�c Work�ow Applications (SWFAs) can deliver collaborative
tools useful to researchers in executing large and complex scienti�c processes.
Particularly, Scienti�c Work�ow Scheduling (SWFS) accelerates the compu-
tational procedures between the available computational resources and the
dependent work�ow jobs based on the researchers’ requirements. However,
cost optimization is one of the SWFS challenges in handling massive and
complicated tasks and requires determining an approximate (near-optimal)
solution within polynomial computational time. Motivated by this, current
work proposes a novel SWFS cost optimization model effective in solving
this challenge. The proposed model contains three main stages: (i) scienti�c
work�ow application, (ii) targeted computational environment, and (iii) cost
optimization criteria. The model has been used to optimize completion time
(makespan) and overall computational cost of SWFS in cloud computing
for all considered scenarios in this research context. This will ultimately
reduce the cost for service consumers. At the same time, reducing the cost
has a positive impact on the pro�tability of service providers towards uti-
lizing all computational resources to achieve a competitive advantage over
other cloud service providers. To evaluate the effectiveness of this proposed
model, an empirical comparison was conducted by employing three core
types of heuristic approaches, including Single-based (i.e., Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), and Invasive Weed Optimization
(IWO)), Hybrid-based (i.e., Hybrid-based Heuristics Algorithms (HIWO)),
and Hyper-based (i.e., Dynamic Hyper-Heuristic Algorithm (DHHA)). Addi-
tionally, a simulation-based implementation was used for SIPHT SWFA
by considering three different sizes of datasets. The proposed model pro-
vides an ef�cient platform to optimally schedule work�ow tasks by handling
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data-intensiveness and computational-intensiveness of SWFAs. The results
reveal that the proposed cost optimization model attained an optimal Job com-
pletion time (makespan) and total computational cost for small and large sizes
of the considered dataset. In contrast, hybrid and hyper-based approaches
consistently achieved better results for the medium-sized dataset.

Keywords: Scienti�c work�ow scheduling; empirical comparison; cost
optimization model; heuristic approach; cloud computing

1 Introduction

Effective management of Scienti�c Work�ow Scheduling (SWFS) processes in a cloud envi-
ronment remains a challenging task when dealing with large and complex Scienti�c Work�ow
Applications (SWFAs). The SWFA is the �rst stage of the Scienti�c Work�ow Scheduling (SWFS)
process and requires users (i.e., scientists) to specify the nature of their data. In other words,
the SWFA receives user preferences regarding the task execution order that is carried out in
the computational environment stage. Users’ preferences include the precedence constraints of
tasks, job completion time, and Total Computational Cost (TCC). A number of inputs are also
required from users to successfully perform SWFS. These main inputs are inter-dependent tasks
(e.g., programs) associated with their input data (e.g., images), along with the scripts, catalogs, and
Application Program Interface (API) written using various programming languages to represent
the dependencies of the submitted work�ow tasks. The expected outcome of SWFS (from the
users’ view) is the statistical and analytical data obtained from executing the work�ow tasks.
Thus, SWFAs present several advantages to users, such as simplifying the process for scientists
to reuse similar work�ows. Ultimately, SWFAs provide scientists with a supportive (i.e., easy-to-
use) environment in which to track and virtually share obtained optimization results. The second
major stage of the SWFS process is the Work�ow Management System (WfMS) stage. Generally,
IT staff manually execute the work�ow tasks, which requires prior knowledge about two core
elements: (i) available resources and (ii) estimated starting time of each work�ow task [1–3].
However, manual task execution introduces many challenges, including longer processing time,
staff unavailability, impact on quality due to limitations in staff skills, and high probability
of failure.

To overcome the above-mentioned challenges, this paper aims to propose a cost optimization
model for SWFS that mainly focuses on managing the execution processes of the given dependent
work�ow tasks (also referred to as precedence constraints) of SWFAs. The model then schedules
the submitted tasks onto the targeted shared computational resources, that is, Virtual Machines
(VMs). At the same time, this model addresses optimizing the job completion time and TCC.
The model contains three main components: (i) scienti�c work�ow application (type and size
of SWFA), (ii) targeted computational environment (number of VMs), and (iii) cost optimiza-
tion criteria. The model is bene�cial in mapping and scheduling processes of work�ow tasks
by considering the scheduling stages along with completion time and total computational cost
parameters. Generally speaking, to propose a cost-optimal solution for a given SWFS problem,
the completion time (makespan) and total computational cost of work�ow tasks need to be
simultaneously minimized as much as possible.

Current reports on cost optimization tasks of SWFS used a number of approaches, including
ones that are heuristic and meta-heuristic based. Yet, these contemporary SWFS approaches lack
in providing an empirical evaluation primarily based on the variants of heuristic approaches.
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Thus, to comprehensively develop and evaluate the performance of any cost optimization
approach of SWFS in a cloud computing environment, three types of heuristic approaches,
Single-based, Hybrid-based, and Hyper-based, have been considered in this research context.
The evaluation for the proposed approach is conducted through a Work�owSim simulator. The
simulation-based environment easily determines different scenarios (e.g., size of a given SWFA
and number of available VMs) to allow for a full investigation of the performance of the
proposed model.

The major contributions of this research work are:

• A proposed novel cost optimization model that contains three main stages: (i) scienti�c
work�ow application, (ii) targeted computational environment, and (iii) cost optimization
criteria and that classi�es the cost parameters into the categories of pre-scheduling, during
scheduling, and post-scheduling.
• An empirical comparison based on the different types of heuristic approaches, Single-

based, Hybrid-based, and Hyper-based, that considers a number of VMs and various sizes
of SWFA.
• An extensive review and analysis of the existing approaches based on several perspectives,

including the types of existing experimental cloud environments, number of computational
resources, types of computational resources, types of SWFAs, and the average size of the
considered SWFA datasets.

This paper is structured as follows: Section 2 provides related works. Section 3 presents
the proposed cost optimization model of SWFS as well as it describes the conducted empirical
comparison based on the considered heuristic approaches. After that Section 4 explicitly discusses
the results and evaluation using a simulation-based experimentation environment. Finally, the
conclusion and future work is outlined in Section 5.

2 Related Work

In order to assess the quality of the proposed model (i.e., cost optimization of SWFS in a
cloud environment), relevant studies were reviewed to identify parameter values for each de�ned
attribute and to construct a comparative table. The main identi�ed attributes were the tool
environment, environment type, number and type of computational resources, and size and type
of SWFA tasks. Note that the Amazon instance speci�cation is regarded as the standard [4] in
this research context. Prior work has used various types of computational resources (i.e., VMs,
and supercomputers), depending on the selected computational and tool environments.

Tab. 1 provides a mapping between the extracted attributes and the relevant parameters and
presents the obtained comparative results from the chosen approaches. It is evident that the
majority of the researchers have focused on a simulation-based environment rather than the real-
world environment. This is mainly due to the wide availability of the standard dataset supporting
the simulation-based environment. A signi�cant number of SWFS approaches, supporting cost
optimization, have used a larger size of computational resources. Additionally, the four main types
of SWFA that have been used are Montage, CyberShake, Inspiral, and SIPHT.
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Table 1: Qualitative comparison results of cost optimisation SWFS approaches

Ref. Title of the proposed
approach

Name and type of
approach

Type and number
of resources

Type of SWFA No. of tasks

[5] A market-oriented
hierarchical scheduling
strategy in cloud work�ow
systems

SwinDeW-C based on
Hadoop—Real-world
experiment (empirical
study, single-based
heuristic)

t2.medium,
t2.large (30)

Montage,
CyberShake,
Epigenomics, LIGO
and SIPHT

Small-medium

[6] Deadline-constrained
work�ow scheduling
algorithms for infrastructure
as a service cloud

Developed tool in
Java—Simulator
(Single-based heuristic)

t2.small,
t2.medium,
t2.large, S3 (9)

Montage,
CyberShake,
Epigenomics, LIGO
and SIPHT

Small-
Medium-Large

[7] Compatibility of hybrid
process scheduler in green it
clouds computing
environment

CloudSim—Simulator
(open source,
Hybrid-based heuristic)

t2.micro, t2.small,
t2.medium,
t2.large (9)

Montage,
CyberShake,
Epigenomics, LIGO
and SIPHT

Small

[8] On work�ow scheduling for
end-to-end performance
optimization in distributed
network environments.

Fair-share scheduling
policy in
C++—Simulator, and
real-world experiment
(single-based heuristic)

t2.medium (6) Weather research
and forecasting
(WRF)

Small-medium-
large

[9] Ant colony
optimization-based service
�ow scheduling with various
QoS requirements in cloud
computing

Developed tool in
Java—Simulator
(single-based heuristic)

t2.medium (10) Montage,
CyberShake,
Epigenomics, LIGO
and SIPHT

Small-medium-
large

[10] Work�ow scheduling for
SaaS/PaaS cloud providers
considering two SLA levels.

Java and IBM ILOG
CPLEX
Optimizer—Real-world
experiment (single-based
heuristic)

M3.2 extra-large
(4)

Montage fork-join
DAG

Small

[11] Work�ow scheduling to
minimize data movement
using multi-constraint graph
partitioning

Pwrake work�ow system,
InTrigger
Kore—Real-world
experiment (Empirical
study, Single-based
heuristic)

M4.extra-large,
M4.10 extra-large
(8)

Montage 2MASS Large

[12] HCOC: A cost optimization
algorithm for work�ow
scheduling in hybrid clouds

Amazon Elastic Compute
Cloud—Real-world
experiment (Empirical
study, Hybrid-based
heuristic)

t2.small, t2.large,
M4.extra-large (3)

Montage, AIRSN,
CSTEM, LIGO-1
and LIGO-2,
Chimera-1,

Small-medium

[13] Towards a cost model for
scheduling scienti�c
work�ows activities in Cloud

SciCumulus—Developed
tool in Java (single-based
heuristic)

M4.extra-large (8) DNA sequences Small-medium

Most of the considered SWFAs have different types of task dependencies. The main types
are pipeline, data distribution and redistribution, process, and data aggregation. Hence, it is
important to accurately measure the data-intensiveness and computational-intensiveness related to
the performance of the various SWFS approaches. To achieve this, there is a high demand to
compare various sizes of SWFA tasks. For more reviews in the area of SWFS, please refer to the
previously conducted work of the authors [14–17].
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3 Proposed Cost Optimization Model of SWFS

To propose a cost-optimal solution for a given SWFS problem, the completion time
(makespan) and total computational cost of work�ow tasks need to be simultaneously minimized
as much as possible. Therefore, there is a need to apply a Pareto-optimal solution method,
which considers many solutions in the feasible region rather than focusing on just one. Based
on the nature of the optimization problem, there are two main types of objectives: minimizing
or maximizing the optimization problem [18–27]. In this research context, minimizing the com-
pletion time of the submitted work�ow tasks and the overall execution cost has been considered
as an optimization problem and is applied to the given work�ow tasks for different work�ow
scenarios [28–31].

Furthermore, the proposed model has classi�ed the cost parameters into three categories:
(i) pre-scheduling, (ii) during the scheduling, and (iii) post-scheduling. At the Pre-Scheduling stage,
the main responsibility of the scheduler is to check whether the given SWFS tasks are schedulable,
based on a set of attributes. During the Scheduling stage, it is of vital importance to check the
ready time parameter. Notice that the ready time is the time by which all of the data required by
the tasks have reached the scheduled virtual machine (VM), that is, the computational site. Finally,
at the Post-Scheduling stage, once all of the given tasks have been scheduled on the available
virtual machines, the time between the startTime and endTime can be computed, grounded on the
allocated time frame for task execution.

In the subsequent sections, the details of each element of the proposed model are provided.

3.1 Scienti�c Work�ow Applications
SWFAs are regarded as data and computationally intensive work�ow applications, which

broadly speaking, process, and execute data �ows collectively with task execution. They consist
of a couple of tasks required to successfully accomplish a speci�c work�ow. The aspects of these
tasks can be any executable elements (e.g., load sets, document sets, data, and programs) with
distinct structural dependencies, such as process, pipeline, records distribution, facts aggregation,
and data redistribution. SWFAs include a number of input scripts, such as scienti�c software
along with their structured data. Notice that the input scripts are used to generate, analyze, and
visualize the obtained results (Fig. 1). Moreover, SWFAs have to deal with large size of work�ow
tasks (e.g., earthquake prediction, biomedical applications, and astrophysics applications).

The output of SWFAs presents interactive tools that assist service consumers to better execute
the given work�ows. Moreover, it also supports in visualizing the obtained results in a legitimate
time. Also, of note is that SWFAs streamline the execution procedures for scientists, which is
useful in reusing identical work�ows. Furthermore, SWFAs present a highly usable environment
for tuning and sharing outcomes in a virtual environment. Conversely, a high level of dependency
between the work�ow duties remains a distinct mission of SWFAs. This mainly occurs because
of the task’s precedence related limitations. Thus, SWFAs need extra computational resources to
effectively determine an optimum SWFS solution for large statistics and complex tasks. Due to the
complex nature of SWFAs, a structural illustration is required to simplify the submitted work�ow
tasks. Hence, it is essential to operate the modeling for the submitted jobs, along with their
precedence constraints, using preferred notations. In the literature, numerous variants of structural
illustration strategies have been adopted to represent the tasks’ dependency on an SWFA. One of
the popular strategies is a Direct Acyclic Graph (DAG), as it can handle highly complex SWFA
tasks. In essence, the DAG highlights the work�ow’s estimated execution cost, keeping in view
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available resources and remaining solely grounded on the historical statistics of the WfMS. It also
shows the verbal exchange between the estimated resources.

Figure 1: Cost optimization model of SWFS

3.2 Targeted Computational Environment
Mapping is required between the submitted set of tasks and the available set of homo-

geneous/heterogeneous computational resources that help in successfully executing the work�ow
tasks using a cloud-computing requirement. Generally, the computational resources are regarded
as a set of available Virtual Machines (VMs) in the cloud computing context.

3.3 Cost Optimization Criteria
In order to recommend a cost-optimal solution for the SWFS problem, the completion

time (makespan) and the total computational fee of work�ow tasks have been regarded to be
minimized. The cost optimization of SWFS can be accomplished by means statically and simul-
taneously minimizing the execution time and execution cost. Thus, there is a need to apply a
Pareto-optimal method. The underlying concept of the Pareto-optimal approach is to think about
many options in the possible area rather than focusing on a single solution. Based on the nature



CMC, 2021, vol.67, no.3 3271

of the optimization problem, there are two kinds of objectives, which are minimizing or maxi-
mizing the optimization problem. In this research, minimizing the completion time (makespan) of
the submitted work�ow tasks and total execution cost of work�ow tasks has been viewed as an
optimization problem. As shown in Fig. 2, the cost parameters of the proposed model have been
classi�ed into three categories: pre-scheduling, during scheduling, and post-scheduling.

Figure 2: The considered cost-optimization parameters

3.3.1 Pre-Scheduling Stage
The scheduler in this stage initially focuses on determining whether the given SWFS tasks

are schedulable or not. Suppose, if the given tasks are schedulable, then the scheduler performs
a selection grounded on a set of parameters. The parameters are (i) types of in-hand processors,
(ii) available processors, (iii) busy processors, (iv) title of the computational site, and (v) estimated
tasks execution time. To conduct optimal scheduling, the scheduler performs the crucial decisions
based on the historical data and the available computational resources. Thus, there is a need to
keep the historical data, which is necessary to estimate the feasible execution time.

It is important to devise a mechanism for assigning every computational challenge to each of
the available virtual computational devices for each estimated cost weight. Motivated by this, the
scheduler uses a computational cost matrix (w) having facets t× where VM is employed to focus
on a given challenge (ti) and assign to the suitable virtual computing device (VMk) based on the
estimated cost weight (wi, j). Notice that the average computational cost is labeled to each of the
submitted work�ow tasks at the pre-scheduling stage. Eq. (1) describes the average computational
cost for a given work�ow task ti:

wi =

VM∑
j=1

wi, j/VMj (1)

Likewise, a communication cost matrix (∝) of size VM× is used, where VM refers to the
stored data transfer charges between the virtual machines (datai, j). A VM-dimensional vector (L)
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holds the communication startup charges between the VMs. The communication cost (c) of an
edge (i, j) represents the data switch charge from a source task ti (arranged on VMm) to a mission
task tj (arranged on VMn) and is formally de�ned as in Eq. (2):

ci, j =Lm+
datai, j

∝m, n
(2)

Suppose there is a scenario in which the scheduler maps (schedules) both tasks, say ti and tj,
onto the same VM. In this situation, the communication cost (ci, j) becomes zero. This is mainly
because the inter-process communication cost of the VM is negligible, and this cost is generally
ignored. The communication cost of an edge (i, j) is represented in Eq. (3) [14–17]:

c′i, j =L′m+
datai, j

∝′m, n
(3)

where L′ and ∝′ denotes the communication startup time and the standard transfer charge
between the VMs located at a particular host site, respectively. Notice that the researchers have
considered the obtained average value to support the decision process of the employed heuristic.

Based on the historical information, and to correctly begin the scheduling processes, it is
integral to re�ect on the Earliest Start Time (EST) and Earliest Finish Time (EFT) of the
execution processes. The EST is described as the earliest time to provoke the challenge execution
on the available VM. However, it remains a dif�cult task to determine the EST, especially in a
heterogeneous environment. This is mainly due to the fact that a task computational time of a
speci�c cloud differs inside each available VM. On the other hand, a challenge requires a speci�c
amount of time; thus, it cannot be scheduled before the EST and must be �nished on the EFT.
The formal representation of EST for each of the unscheduled work�ows tasks is given as follows
in Eqs. (4) and (5) [14–17]:

EST
(
tentry

)
= 0 (4)

Note that the start of the work�ow is indicated by the task tentry.

EST (ti)=maxtp∈ti Parents
{
EST

(
tp
)
+MET

(
tp
)
+TT

(
ep, i

)}
(5)

where ti refers to a work�ow Task, MET (ti) is the Minimal Execution Time for an available
computational Resource rjεR that requires the minimal Execution Time ET

(
ti, rj

)
from all of the

available computational resources.

ET and TT respectively represent the estimated Execution Time and Transfer Time of a
work�ow task ti. In contrast, tp refers to the parent task, while ep, i denotes the connection (known
as an edge) between the father node and a task ti in the DAG.

EFT refers to the Earliest Finish Time, during which the earliest computation of every
unscheduled task ti can be �nished. Hence, it is essential to compute the EST and MET, and
next determine the EFT for each of the unscheduled SWFS tasks before assigning to the available
computational resource. The EFT computational process is formally denoted using Eq. (6) [14–17]:

EFT (ti)=EST (ti)+MET (ti) (6)
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3.3.2 During Scheduling Stage
It is important to check the ready time parameter in this scheduling stage. The ready time is

the time by which all the data needed by the tasks have reached (after the parent(s) node has/have
been executed) the scheduled virtual machine (computational site).

In comparison to EST, ready time is the earliest time required for the �rst work�ow task to
be accomplished. The �rst task (assignment) is solely selected based on the parent work�ow tasks.
The ready time is formally calculated using Eq. (7):

readyTime(ti)=maxtj∈pi endTime
(
tj
)

(7)

where ti refers to an individual task having the set of parents (father or mother) work�ow tasks pi,
and endTime

(
tj
)

represents the deadline in order to stop the task execution tj.

3.3.3 Post-Scheduling Stage
Generally, a work�ow task ti scheduled on a particular VM VMk does have the same esti-

mated and actual start and end time. In other words, the EST and EFT of a task execution are
generally equal to the actual begin and �nish time respectively. The allotted time frame is the
amount of time between the start time and end time that is permissible for task execution on a
virtual machine. However, the overall work�ow completion time needs to include a set of serial
and parallel constraints that may occur during the start and end time.

Once the submitted tasks are scheduled, the start time of the parent task will be used as a
deadline for different dependent tasks. At this point, the scheduling algorithm considers two main
possibilities for the work�ow task. The �rst scenario presumes that the work�ow start time is the
EST that is known prior to its scheduling. The second scenario assumes that the actual start time
can only be calculated once the tasks are scheduled on a virtual machine. The actual �nish time
represents the time that has been used to whole the execution of the submitted work�ow task. In
other words, after all the tasks are scheduled, the scheduling size (completion time) is represented
as the actual end time of the exit texit. If there are a couple of exit tasks, the completion time of
the scheduling (makespan) is considered the most real-time of the exit task.

3.4 Empirical Comparison Based on the Heuristic Approaches
The traditional population-based meta-heuristic approaches have shown good performance

for the optimization problem, having a large search space. This is because the traditional meta-
heuristics do not exhaustively search the scheduling problem space. They use different underlying
strategies to �nd the desired solution based on de�ned �tness criteria. Therefore, population-based
(e.g., random-guided) methods take less computational effort than single-based ones and can often
�nd good solutions. However, each type of approach has some strengths and limitations, which
affect the scheduling operation of SWFS.

In contrast, the hybrid meta-heuristic uses the best features of two or more traditional meta-
heuristics in each iteration to provide a better optimal solution compared to the traditional
heuristics. However, in some cases, and due to the complexity of the hybrid method, a longer
convergence time may be needed at each iteration process than with the traditional meta-heuristics.
Furthermore, hybrid approaches could require a longer scheduling time.

In this research, an empirical comparison has been conducted based on three types of
heuristic approaches, Single-based, Hybrid-based, and Hyper-based, to evaluate the effectiveness
of the proposed cost optimization model.
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3.4.1 Single-Based Heuristics Algorithms
After conducting an extensive literature review, the authors have considered three well-known

single-optimization-based (population-oriented) heuristic techniques: (i) Genetic Algorithm (GA),
(ii) Particle Swarm Optimization (PSO), and (iii) Invasive Weed Optimization (IWO) [14–17]. The
underlying working mechanism of each of these considered heuristic techniques is presented in
this section.

3.4.2 Hybrid-Based Heuristics Algorithms (HIWO)
In total, �ve core phases of HIWO have been proposed: (i) initialization, (ii) reproduction

(duplication), (iii) mutation, (iv) spatial dispersal, and (v) competitive exclusion. Algorithm-3
presents the core phases of HIWO.

Initialization Phase:

This phase accepts the main inputs of population size and the problem size. As previously
discussed, the population size and problem size refer to the set of schedulable work�ow tasks and
set of VMs respectively. In this research context, each weed represents a scheduling solution, which
is encoded using a pair of one-dimensional strings. Each string represents an ordered task listing
to be scheduled using an available VM. So, a population of initial weeds represents one single
scheduling effort from the random positions covering a one-dimensional large problem space.

Reproduction Phase:

This phase aims at computing the attained �tness price that is attained completion time,
grounded on the �tness function of the generated weeds. Each of the generated weeds is regarded
as a single solution. So, the HIWO works on the sub-simulation (i.e., local solution) in order to
�nd the minimal value with respect to the completed cost and time.

Mutation Operation Phase:

This stage aims at enhancing the colony range by arti�cially improving (and replacing) a
single weed with the best solution, which is regarded as NewSeeds in this research context. This
operation helps in avoiding premature convergence and the probability of skipping the global-
optimum cost for multi-dimensional problems. Importantly, the mutation operation assists in
speeding up the searching operation, crucial to �nding the best solution.

Spatial Distribution Phase:

This stage focuses on randomly dispensing the generated NewSeeds (regarded as children) over
d-dimensional problem search space grounded on the conventional random numbers’ distribution.
It is important to minimize the iterations range during the searching process based on the initial
price (σinitial) to a �nal price (σ�nal). For this purpose, this phase uses the standard deviation (σ )
of the random feature. The calculation process for each time step is represented as:

where itermax and σiter respectively represent the maximum allowed iterations range and stan-
dard deviation of the existing time step. Notice that the non-linear modulation index represented
as n is normally set to 2.

Competitive Exclusion Phase:

This phase mainly aims at excluding an unwanted plant based on the attained bad (low)
�tness. This economical mechanism permits searching for a good (�tter) �ower in order to intimate
the additional seeds, and this continues until the de�ned stooping standard has been met. Finally,
the plant with good time and cost (compared to others) is picked and yields as a better solution.
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3.4.3 Hyper-Based Heuristics Algorithms
In the current research work, the authors have employed a Dynamic Hyper-Heuristic

Algorithm (DHHA) regarded as a hyper-heuristic technique, motivated from their prior work.
Complete details on the DHHA approach can be found in our previous work [14–17].

4 Evaluation and Discussion

The evaluation of any approach using the simulation environment allows researchers to
compare application con�gurations under controlled conditions. Several types of simulation tools
have been utilized by researchers to evaluate the cost optimization of SWFS approaches in
cloud computing (e.g., CloudSim [32], and EMUSIM [33]). However, only Work�owSim [34] is
considered the standard work�ow execution model. It is an open-access programming tool for
developing and simulating WfMS implemented in a parallel and distributed environment and
contains a work�ow mapper, work�ow engine, work�ow scheduler, clustering engine, provenance
collector, and work�ow partitioner.

The extensive evaluation in the current study was conducted through Work�owSim by set-
ting it up on an eclipse editor. The data collected from executing the actual SWFA was used
to generate synthetic work�ows resembling those used by real-world scienti�c applications. The
simulation-based environment helped in clearly understanding the scheduling process. At the same
time, it determined different scenarios (i.e., the number of VMs and size of SWFA) to fully
investigate the performance of the proposed model.

Using the simulation experimentation environment, the proposed cost optimization model was
evaluated using SWFA datasets (i.e., SIPHT). For each of these SWFAs, three dataset sizes were
considered to evaluate the data intensiveness and computational intensiveness of the proposed
approach. Different types of statistical analysis were conducted for the collected results. The
details of the evaluation are provided in the remainder of this section.

4.1 Scienti�c Work�ow Applications
As already de�ned, SWFAs consist of multiple tasks necessary to accomplish the given work-

�ow. Note that the main elements of the tasks are some of the executable instances, such as data,
programs, load sets, and reports sets. The other correlation in a scienti�c work�ow application is
the relationship between the tasks/jobs and their data dependencies. There are �ve main types of
these relationships: Process, pipeline, data distribution, data aggregation, and data redistribution.

Additionally, in the clustering stage of Work�owSim, the tasks with the same type of process
can be represented as a job. In this way, similar tasks can be executed one time instead of
repeating the same execution several times. Tab. 2 represents the settings (i.e., application size
and the number of considered tasks) of the SWFAs used for the extensive assessment of the
proposed approach.

SIPHT-search for sRNAs Work�ow Application: The bioinformatics project at Harvard Uni-
versity is conducting a wide search for small untranslated Ribonucleic Acids (sRNAs) that regulate
several processes, such as secretion or virulence in bacteria. The SIPHT work�ow is composed of
small (30), medium (100), and large (1000) tasks.
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4.2 Experimentation Setting
For running the simulation experiments, a PC with the following speci�cations was used: oper-

ating system: Windows 10 Pro (64 bit); processor: Intel(R) Core (TM) i7-3770 CPU@3.40 GHz;
and memory (RAM): 12.0 GB. As Work�owSim is programmed using Java, Eclipse, an integrated
development environment, was used to run the Work�owSim codes and to implement the pro-
posed approach. The code for Work�owSim (Version 1.0) is directly imported from the GitHub
website [34]. After performing the necessary modi�cations to the directories of code, existing
provided examples of the simulator were successfully run.

It is worth noting that the prices of VM are based on the EC2 pricing list. In this
research, the type of available computational resources (i.e., VMs) has been selected based on
the comprehensive study of the existing approaches discussed in Section 2 and based on the
Work�owSim, where the considered VM instance is equivalent to t2.small instance of the Amazon
EC2 website [4].

4.3 Discussion and Results
In order to substantially analyze the collected data from experimentation, four kinds of

widely used descriptive statistical analysis were performed: minimum, maximum, standard devia-
tion (S.D), and average. The total required time to �nish executing the submitted work�ow tasks
is calculated as the completion time. Moreover, due to the static submitting criteria, the total
computational cost is calculated by multiplying the task completion time with the number of
considered virtual machines together with the cost of each virtual machine. In this section, the
descriptive statistical analysis of the experimental results is presented and discussed for each of
the considered SWFAs (i.e., SIPHT-search for sRNAs SWFAs).

Based on the work�ow tasks (datasets size), the �rst three scenarios are considered the
smallest (30 tasks, with 2, 4, 8 VMs) datasets scenarios, while the last three are the largest (1000
tasks, with 2, 4, 8 VMs).

4.3.1 Completion Time Results
Tab. 2a presents the descriptive statistical analysis for completion time results for the SIPHT

SWFA for all nine considered scenarios. The average completion time values for all of the
approaches are very close for most of the scenarios. This could be due to the SIPHT SWFA
having a lower number of dependencies between their tasks, which gives smaller search space for
the employed Lower-Level Heuristic algorithms to �nd an optimal solution, especially when the
number of VMs is lower (scenarios 1, 4, and 6). However, in scenario 7 the average values for
the completion time of the IWO approach are slightly lower than the DHHA approach, due to
strong dependencies between the tasks of the SIPHT SWFA. This allowed the IWO approach to
�nd the optimal solution with a shorter convergence time.

Fig. 3 depicts the average completion time attained by the various approaches for the Insprial
SWFA and for the considered scenarios. It can be clearly observed from Fig. 3 that GA, HIWO,
and DHHA approaches obtained the lowest average completion time for most of the scenarios.
Interestingly, for scenarios 1 to 7, all approaches attained similar average completion times. In
contrast, Fig. 4 shows the average computational cost ($/hour) for all of the approaches and for
each of the considered scenarios. It is evident that the results for the accumulated computational
cost depend on the average completion values, which are ultimately in�uenced by the sizes of
the datasets of the submitted SWFA as well as the number of available VMs. Furthermore, it
can be observed that the Single-based (GA), Hybrid-based (HIWO) and Hyper-based (DHHA)
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approaches had the lowest total computational cost for all scenarios, and especially for scenarios 8
and 9. Furthermore, the average completion time (in second) of the proposed DHHA approach is
more optimal for all considered scenarios. However, the other considered meta-heuristic algorithms
always attained very similar or closer values to each other, especially for scenarios one to seven.

0
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100

200
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Figure 3: Average completion time
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4.3.2 Total Computational Cost Results
Tab. 2b presents the total computational cost descriptive statistical analysis results for the

SIPHT SWFA. It can be clearly seen that the DHHA approach attained much better results with
regard to total computational cost for most of the considered scenarios. This is mainly because
the hybrid and hyper-heuristic approaches always select the most suitable LLH algorithm on each
iteration, which helps in �nding the most optimal solution. Furthermore, DHHA approach attains
most optimal average total computational cost results for all considered scenarios and especially
scenarios seven, eight and nine, where the number of tasks is high (1000 tasks). This shows
the optimal performance of the proposed CHDHH with different types, complexities, and sizes
of SWFAs.

5 Conclusion

This research work has proposed a novel cost optimization model that contains the three
main stages of scienti�c work�ow application, targeted computational environment, and cost opti-
mization criteria, and the three cost parameters categories of pre-scheduling, during scheduling,
and post-scheduling. An empirical comparison of Single-based, Hybrid-based, and Hyper-based
heuristic approaches has been provided while considering different numbers of VMs and different
sizes of SWFAs.

Statistical analysis has been applied to the collected data by running the heuristic approaches
aimed at supporting the proposed SWFS based cost optimization model in a Work�owSim experi-
mentation environment. SIPHT scienti�c work�ow application with different sizes of datasets was
executed to determine completion time (makespan) and total computational cost. For completion
time results, it is concluded that the Single-based heuristic approaches lack in achieving good
results compared to the Hybrid-based and Hyper-based approaches. This is due to the nature of
the solution proposed by these algorithms, which have limitations in considering a more optimal
solution. In some cases, the S.D. values of these algorithms were equal to zero because there
was no variation to be measured. Besides this, the SIPHT SWFA has a longer completion time
(makespan) compared to the other SWFA for all sizes of datasets. This is because the size of tasks
is large compared to the other SWFAs and the data dependencies (precedence constraints) between
the SIPHT SWFA tasks are more complex than in the other SWFA. For total computational
cost results, similar to the completion time results, the Hybrid-based and Hyper-based approaches
showed lower computational cost than the Single-based approaches. In the future, implementing
the proposed model in the real-world using a hybrid cloud environment would be an interesting
direction in this research domain. Finally, the authors plan to consider other cost parameters such
as the cost of storage and communication cost.
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