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A B S T R A C T

Next-generation deformable mirrors are envisaged to exhibit low-frequency flexible dynamics and to contain
a large number of spatially distributed actuators due to increasingly stringent performance requirements.
The increasingly complex system characteristics necessitate identifying the flexible dynamic behavior for
design validation and next-generation control. The aim of this paper is to develop a unified approach for
the identification of mechanical systems with a large number of spatially distributed actuators and a limited
number of sensors. A frequency domain-based approach using local modeling techniques is developed. The
modal modeling framework is employed to analyze the design and create outputs that were not measured. The
proposed approach is applied to an experimental deformable mirror case study that illustrates the effectiveness
of the proposed approach.
. Introduction

.1. Background

Adaptive optics (AO) is increasingly important in ground-based
stronomy due to increasingly stringent image quality requirements
1–3]. Wind and thermal variations in the atmosphere cause atmo-
pheric turbulence that in turn leads to wavefront (WF) distortions [4].
daptive optics are employed to recover the incoming wavefront, see
ig. 1. A wavefront sensor (WFS), typically a Shack–Hartmann sensor,
s used to measure the gradient of the wavefront at a finite number
f points [5]. The wavefront is then reconstructed from the gradient
nformation. A deformable mirror is used to compensate for wavefront
istortions by a large number of spatially distributed actuators that
nable the deformation of the performance surface. Due to develop-
ents in astronomy, next-generation deformable mirrors are expected

o increase in complexity for two main reasons [1]. First, the effect of
tmospheric disturbances expressed by wavefront distortions becomes
ore pronounced due to the trend of increasing primary mirror dimen-

ions in ground-based observatories. An increased number of spatially
istributed actuators is required to compensate for this effect. Second,
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increasing imaging quality demands requires the deformable mirror to
be located early in the optical path, hence, next-generation deformable
mirrors will act as the secondary mirror in the telescope, i.e. adaptive
secondary mirrors, which requires an increased deformable mirror
diameter. As a consequence of the increased mirror diameter, future
deformable mirrors predominantly exhibit flexible dynamic behavior
at lower frequencies [6].

The presence of flexible dynamics at low frequencies in next-
generation deformable mirrors impacts the analysis and control of de-
formable mirrors [7,8]. First, for traditional small deformable mirrors,
the flexible dynamic behavior occurs beyond the control bandwidth.
For this reason, the deformable mirror dynamics are assumed to be
static over frequency and that each actuator only has a local influence
on the performance surface. This allows the construction of a so-called
static influence function, which is a frequency-independent map from
the actuator to the surface deformation [9,10]. However, for future
deformable mirror systems, that are expected to be significantly larger,
these assumptions are no longer valid due to the flexible dynamic
behavior at low frequencies. Consequently, the structural dynamics
need to be addressed explicitly in the design and control architecture
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Fig. 1. Schematic overview of an adaptive optics systems integrated into a telescope.

which requires accurate dynamical models of the flexible dynamic
behavior [11,12]. Second, to validate the next-generation designs,
models are required to analyze and provide insight into the mechanical
behavior.

1.2. Problem formulation

The increasingly complex dynamics in next-generation deformable
mirrors necessitate modeling approaches that explicitly target the flex-
ible dynamic behavior. However, traditional modeling approaches for
control of deformable mirrors consider their temporal response to be
static and thus ignore their flexible dynamic behavior [13–16]. If the
deformable mirror system is integrated into a telescope, the large grid
of the wavefront sensor is often used for system identification [9].
However, this approach is not tenable for next-generation deformable
mirrors, as it is desirable to validate their design on component level
before integration, i.e., when the main wavefront sensor is not yet
available. Alternatively, a temporary optical setup with a wavefront
sensor can be considered [17,18]. However, such setups are large,
expensive, and simple wavefront sensors often lack a sufficiently high
bandwidth to capture the flexible dynamic behavior. Thus, an identifi-
cation approach is required for identifying models for design validation
and control design of overactuated systems with a limited number of
temporary position and acceleration sensors. At the same time, the
identification approach should enable accurate modeling with lim-
ited experiment time. Moreover, the models should provide physical
insights into the flexible behavior.

1.3. Literature survey

Several approaches have been pursued to identify the flexible dy-
namic behavior of deformable mirrors including finite-element-based
methods. In [7,19–21], a numerical modal analysis of a deformable mir-
ror is considered for control and analysis. However, numerical studies,
such as Finite Element Method (FEM) simulations, may not be truly
representative of the real system due to the high system complexity.
Additionally, this method does not extend to the situation of integration
into the telescope, as the suspension of the deformable mirror is not
always known in advance.

A first-principles-based modeling approach is used as an alternative
to FEM-based techniques to identify overactuated mechatronic systems
in [22,23]. However, the considered approach heavily relies on single
two-dimensional plate theory, which may not be accurate enough
to capture the complex dynamics of the three-dimensional structure.
In [24–26], a method is proposed to estimate the parameters of a
partial differential equation-based model of the performance surface
of a deformable mirror. However, these approaches only consider the
2

dynamics of the performance surface and therefore miss the fidelity
to describe the dynamics of the entire deformable mirror structure,
e.g., actuator support structure. Consequently, these first-principles-
based approaches do not give insight into the underlying dynam-
ics of the support structure. Additionally, during system integration,
modeling is often time-critical, which motivates an experiment-based
approach for the modeling of generic mechatronic systems, including
deformable mirrors.

Experimental identification approaches tailored to deformable mir-
rors are considered in [9,10]. However, these approaches only consider
the static system behavior at low frequencies and are therefore not
suitable to model the flexible dynamic system behavior.

An experiment-based approach through Frequency Response Func-
tion (FRF) estimates is often used for analysis and control of mecha-
tronic systems, see e.g. [10,27–29]. However, when traditional spectral
analysis is used, a significant amount of measurement time is required,
especially for systems with a large number of actuators. Local para-
metric methods can be used to reduce measurement time and enhance
the quality of FRF estimates [30,31]. Local parametric methods have
been successfully applied to mechatronic systems in several studies,
such as [29,32]. In [33], the Local Rational Method (LRM) is applied
to MIMO systems with a large number of inputs and outputs in a
simulation environment with promising results. A limitation of FRF
estimates is that these become complicated to interpret if the number
of elements inflates by increasing the number of inputs and outputs.
This limits practical insight into the flexible dynamics.

Parametric models are important for control of many mechatronic
applications including, e.g., astronomy, aerospace, and lithography [29,
34,35]. In particular, modal models of these mechanical systems lead to
practically interpretable results that are also useful for control [36,37].
In addition, a method for identifying position-dependent modal models
of mechatronic systems based on frequency response function estimates
is presented in [29]. These results are tailored for motion control of
systems that consist of a single moving body which is not valid for the
class of deformable mirrors that are considered in this paper. Moreover,
the analysis is tailored to the limited number of sensor locations which
limits insight into the underlying flexible dynamics.

Alternatively, the field of structural engineering and modal analysis
often deals with systems with a large number of inputs to analyze a
system through the roving hammer survey. In [38], an identification
approach is proposed tailored to vibration isolation control of flexible
building structures. The method relies on a limited number of sensors
and an impact hammer is used at various locations to excite the system.
The concept of reciprocity allows the interpretation of the additional
excitation locations as fictitious sensors which allows for enhanced
insights into the underlying system dynamics [39–41]. However, for
high-tech applications, including deformable mirror systems, an impact
hammer may damage the system and is therefore not preferred. Alter-
natively, the actuators of a mechanical system can be used to create
additional fictitious sensors. Such an approach is suggested in [42], but
it assumes a rigid actuator support structure, i.e., absolute actuation.
However, the deformable mirrors considered in this paper have two
flexible bodies due to the relative actuation caused by the flexible sup-
port structure, i.e., backplate. As a consequence, the proposed method
is not directly applicable to this class of deformable mirrors.

1.4. Scope and contribution

Although several techniques (as discussed above) are available for
the analysis of mechanical systems in the field of mechatronics, at
present, these tools are not tailored to systems with a large number of
actuators and a limited number of sensors such as deformable mirrors.

The main contributions of this paper are the following.

C1 A frequency response identification approach and its experimen-
tal application on overactuated systems with a limited number
of sensors.
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C2 A unified modal model identification approach through fictitious
sensors for the analysis of overactuated systems with a limited
number of sensors.

C3 A simulation case study to illustrate the proposed tools.
C4 An experimental case study with an experimental deformable

mirror setup including a design analysis using the proposed
tools.

Existing experimental methods for identifying deformable mirrors
ssume static system behavior and are therefore not suitable for de-
ign analysis and control of deformable mirrors that exhibit flexible
ynamics within the control bandwidth [13–16]. Existing identification
ethods that do consider the flexible dynamic behavior are typically

ased on simulation models [22–26]. In sharp contrast, the approach in
his paper is based on experiments. In particular, the approach does not
ely on prior system knowledge, advanced modeling techniques, and it
equires limited experiment time and limited user intervention. Lastly,
n contrast to many results in the literature that consider simulation
ase studies, in this paper, the proposed approach is applied in an
xperimental case study with a deformable mirror.

A frequency domain-based approach is pursued to identify the
lexible dynamic behavior. Compared to a time domain-based ap-
roach, e.g., [38], a frequency domain-based approach is data-efficient,
acilitates practical interpretation, and provides an efficient starting
oint for parametric modeling. Specifically, an approach using the
ocal rational method is developed since it allows for accurate and
ast non-parametric identification. Compared to conventional non-
arametric system identification approaches, e.g., [43], the local para-
etric method requires significantly less experiment time. However, to

he authors’ best knowledge, the local parametric method has not yet
een used in an experimental setting with a large number of inputs and
utputs.

Based on the frequency response function estimate, an approach to
dentify modal models is developed. Compared to existing optimization-
ased approaches, e.g., [29], the approach considered in this paper
s relatively simple and therefore requires less user intervention. Un-
easured outputs are estimated to enhance insight into the underlying

tructural dynamics. The key idea is that the large number of spatially
istributed actuators can be used as fictitious sensors by exploiting
he modal system description. Compared to conventional structural
nalysis approaches, this approach does not require an impact hammer.
lso, the method proposed in this paper extends to the approach in [42]
y generalizing it to overactuated systems, including deformable mirror
ystems, that have a flexible actuator support structure.

.5. Organization of the paper

The paper is organized as follows. In Section 2, the main application
onsidered in this paper and the problem formulation are discussed.
n Section 3, the FRF estimation procedure is introduced. The modal
dentification is described in Section 4. An experimental case study
ith an experimental deformable mirror is presented in Section 5.
onclusions are provided in Section 6.

.6. Notation

The following notation is used throughout. For a matrix 𝐴 ∈ R𝑛×𝑚,
the singular value decomposition is given by 𝐴 = 𝑈𝛴𝑉 ⊤, where 𝑈 is an
𝑚×𝑚 orthogonal matrix, 𝛴 is an 𝑚×𝑛 diagonal matrix with non-negative
real entries, and 𝑉 is an 𝑛 × 𝑛 orthogonal matrix.

The transfer function matrix, denoted by 𝐺(𝑠), represents the rela-
tionship between the input and output signals of a linear multivari-
able system in the frequency domain. The variable 𝑠 is the complex
Laplace variable. For a matrix 𝐴, the transpose and complex conjugate
transpose are denoted by 𝐴⊤ and 𝐴∗ respectively.
3

2. Problem formulation

2.1. Motivation

Stringent requirements regarding image quality have led to the
development of a next-generation deformable mirror design. This paper
is specifically focused on a unique class of deformable mirrors capable
of replacing the secondary mirror, offering a distinct advantage of
improved image quality compared to deformable mirrors positioned
further along the optical path. Distinguished by their larger size and
relatively wide actuator spacing, these deformable mirrors deviate
from conventional designs commonly found in smaller systems such
as those from ALPAO and OKO, where piezoelectric-based or micro-
electromechanical-based deformable mirrors are often used [23,44].
Due to their limited stroke, these piezoelectric actuators are unsuitable
for the class of deformable mirrors considered in this paper.

Traditionally, Lorentz actuators are used in deformable mirrors for
secondary mirror replacement [22]. However, a key drawback is the
significant heat dissipation. Preliminary studies have demonstrated the
potential of reluctance actuators in deformable mirrors [10]. Currently,
such a deformable mirror is in production for the UH88 telescope with
217 actuators and a diameter of 630 mm, see Fig. 2. Also, a deformable
mirror is in development for the EST with 2000 actuators and an
increased diameter of 860 mm [45]. The main benefit of reluctance
actuators over alternative actuation concepts such as e.g. Lorentz ac-
tuators, is the reduced dissipation around the secondary mirror and a
consequent reduction in cooling requirements.

The increased size of these deformable mirrors leads to flexible
dynamics at a lower frequency, within the control bandwidth, pos-
ing challenges for mechatronic design and control. For this reason,
this paper focuses on the analysis and understanding of the flexible
dynamics of the deformable mirror, i.e., the component level of the
adaptive optics system. The key idea is to verify the flexible dynamics
by identifying a suitable model for validation of the design. Ultimately,
the developed model could be employed for control purposes.

A complicating aspect arises from the lack of internal sensors that
measure the deformation of the deformable mirror itself at the compo-
nent level, i.e., when the main wavefront sensor is not yet available.
A temporary optical setup with a wavefront sensor is not considered
since such setups are large, expensive, and simple wavefront sensors
often lack a sufficiently high bandwidth to capture the flexible dy-
namic behavior. For this reason, only a limited number of temporary
position and acceleration sensors are available. Consequently, there is
limited access to sensor data while striving to gain a comprehensive
understanding of the deformable mirror’s flexible dynamics. Hence,
this underlines the importance of identifying a model suitable for
overactuated mechatronic systems with a limited number of sensors,
enabling a complete view of the flexible dynamics.

2.2. System description

Fig. 3 depicts a one-dimensional overview of an overactuated mecha-
tronic system that is representative for the class of deformable mirrors
considered in this paper. The key point is that the system contains
two flexible bodies, i.e., the performance surface and the actuator
backplate, which are connected by flexible elements that are part of
the actuator design [10]. The connection of the backplate to the fixed
world is indicated by two springs.

A complicating aspect is that the actuator backplate has a finite
stiffness. As a consequence, the increasingly large dimensions of next-
generation mechatronic systems result in significant low-frequency flex-
ible dynamics that propagate to the performance surface. This can lead
to problems with control and stability, as well as image quality.

The key functions of the system are the out-of-plane deformation
of the performance surface, 𝑢ps(𝜌, 𝑡) ∶ ps × 𝑇 ↦ R, and the backplate,
𝑢bp(𝜌, 𝑡) ∶ bp × 𝑇 ↦ R, which are modeled as a continuum. The time
domain is denoted by 𝑇 ∈ R. The two-dimensional geometries of the
performance surface and backplate are denoted by the spatial domains
 ⊂ R2 and  ⊂ R2, respectively.
ps bp
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Fig. 2. Deformable mirror of the UH.88 telescope designed by TNO.

Fig. 3. One-dimensional schematic representation of a deformable mirror. The repre-
sentation includes 𝑛𝑎 actuators (×) that are denoted as 𝐹𝑖, 𝑖 ∈ {1,… , 𝑛𝑎}, 𝑛s,bp sensors
on the backplate ( ), and 𝑛s,ps sensors on the performance surface ( ). The geometry
of the performance surface and backplate are denoted by the spatial domains ps and
bp. The performance surface and the backplate are considered to be flexible and their
deformations are denoted by �̃�ps(𝜌, 𝑡) and �̃�bp(𝜌, 𝑡) respectively. The connection of the
backplate to the fixed world is denoted by two springs at the ends of the backplate.

2.3. Problem formulation

Measurement data is obtained at a finite number of spatially dis-
tributed sensor locations with a large number of spatially distributed
actuators

𝑔(𝑡) ∶ 𝑓 (𝑡) ↦ 𝑢(𝑡) (1)

where 𝑔(𝑡) denotes the mechatronic system, 𝑓 (𝑡) ∈ R𝑛a denotes the
actuator forces, and �̄�(𝑡) ∈ R𝑛s,ps+𝑛s,bp the deformation measured at the
sensors. The number of actuators is denoted by 𝑛a and the locations of
the actuators denoted by

𝜌a,𝑖 ⊂
(

bp ∩ ps
)

, 𝑖 = 1,… , 𝑛a. (2)

The geometries of the performance surface and backplate do not nec-
essarily coincide, as illustrated in Fig. 3. For this reason, the actuator
locations are restricted to the intersection of these domains. To facili-
tate transparency of the results, these positions are stacked into a vector

𝜌a =
[

𝜌a,1,… , 𝜌a,𝑛a
]⊤

. (3)

The sensor data is obtained with 𝑛s,ps sensors that measure the defor-
mation of the performance surface

̄ (𝑡) =
[

𝑢 (𝜌 , 𝑡) … 𝑢 (𝜌 , 𝑡)
]⊤

(4)
4

ps ps s,ps,1 ps s,ps,𝑛s,ps
and the locations of these sensors are stacked into a vector

𝜌s,ps,𝑖 ∈ ps, 𝑖 = 1,… , 𝑛s,ps (5)

𝜌s,ps =
[

𝜌s,ps,1,… , 𝜌s,ps,𝑛s,ps
]⊤

. (6)

A limited number 𝑛s,bp of sensors measure the deformation of the
backplate

̄bp(𝑡) =
[

𝑢bp(𝜌s,bp,1, 𝑡) … 𝑢bp(𝜌s,bp,𝑛s,bp , 𝑡)
]⊤

(7)

at the locations that are stacked into a vector

𝜌s,bp,𝑖 ∈ bp, 𝑖 = 1,… , 𝑛s,bp (8)

𝜌s,bp =
[

𝜌s,bp,1,… , 𝜌s,bp,𝑛s,bp
]⊤

. (9)

As a consequence, a limited number of sensors measure the abso-
lute deformation of the performance surface and the backplate. In
sharp contrast, the actuation is relative between the backplate and the
performance surface.

The key problem addressed in this paper is the identification of a
model that accurately captures the flexible dynamic behavior of both
the performance surface and the backplate, while having a limited
number of available sensors, i.e., the total number of sensors for
the performance surface and the backplate, denoted as 𝑛s,ps and 𝑛s,bp
respectively, is less than the total number of actuators, denoted as 𝑛𝑎.

However, the number of sensors available does not directly provide
access to an extensive backplate analysis. To overcome this limitation,
an approach is developed that creates fictitious sensor readings. This
is achieved by exploiting the large number of spatially distributed
actuators to estimate the relative motion of the performance surface
with respect to the backplate. Specifically, fictitious sensor readings are
defined as the relative displacement between the performance surface
and the backplate for all actuators located at the vector of positions 𝜌a.
This can be mathematically expressed as

̄a,rel(𝑡) =

⎡

⎢

⎢

⎢

⎣

𝑢ps(𝜌s,ps,1, 𝑡) − 𝑢bp(𝜌s,bp,1, 𝑡)
⋮

𝑢ps(𝜌s,ps,𝑛s,ps , 𝑡) − 𝑢bp(𝜌s,bp,𝑛s,bp , 𝑡)

⎤

⎥

⎥

⎥

⎦

. (10)

2.4. Approach

The identification procedure is tailored to overactuated systems
with a limited number of sensors, which includes deformable mirrors.
The procedure includes the following steps:

1. Frequency response function estimation. The first step is to estimate
the FRFs of the system. The key step is the use of the local
rational method, which is a local modeling method that is able
to accurately estimate the FRFs of systems with a limited amount
of data.

2. Modal model identification. The second step is to identify the
modal model of the system. This is done using the FRFs that were
estimated in the first step. The modal model is a mathematical
representation of the system’s dynamics, and it can be used
for a variety of purposes, such as control design and structural
analysis.

3. Fictitious sensors for overactuated systems. The third step is to
add fictitious sensors to the system. Fictitious sensors are virtual
sensors that are not physically present in the system, but they
can be used to improve the spatial resolution of the modal
model. The fictitious sensors are added to the system in such a
way that they capture the relative dynamics of the backplate in
(10), which is the structure that supports the deformable mirror.

The identification procedure described above is shown to powerful
a tool for the analysis and control of overactuated systems with a
limited number of sensors. The local rational method allows for short
experiment time and accurate estimates, the modal model identification
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allows for modal models that are interpretable and may be used for
control, and the fictitious sensors allow for the analysis of the under-
lying backplate dynamics that can be used to validate the structural
design. The proposed techniques are demonstrated on a deformable
mirror system.

3. Frequency response function estimation

Frequency response measurements are an important first step for
identifying the flexible dynamics of overactuated mechatronic systems.
In this section, the approach for frequency response measurements of
overactuated mechatronic systems is presented. In particular, the local
rational method is introduced. This section constitutes Contribution C1.

3.1. Local rational method

Consider the discrete signal 𝑢(𝑛), 𝑛 = 0, 1,… , 𝑁 − 1. The Discrete
Fourier Transform (DFT) of 𝑢(𝑛) is defined as

𝑈 (𝑘) = 1
√

𝑁

𝑁−1
∑

𝑛=0
𝑢(𝑛) exp

(−𝑖2𝜋𝑘𝑛
𝑁

)

(11)

where 𝑘 denotes the 𝑘th DFT bin. Consider the linear-time-invariant
system in Fig. 4 where 𝑢(𝑛) denotes the input signal, 𝑦(𝑛) denotes the
output signal, and 𝑣(𝑛) denotes the output noise. The output noise 𝑣(𝑛) is
colored noise in the sense that 𝑣(𝑛) = 𝐻(𝜉𝑘)𝑒(𝑛) where 𝐻(𝜉𝑘) is the noise
model and 𝑒(𝑛) is zero-mean Gaussian white noise. The response of the
system in Fig. 4 with respect to the discrete input 𝑢(𝑛) in frequency
domain equals

𝑌 (𝑘) = 𝐺𝑜(𝜉𝑘)𝑈 (𝑘) + 𝑇 (𝜉𝑘) + 𝑉 (𝑘) (12)

where the transient response is denoted by 𝑇 (𝜉𝑘) and the output noise
contribution at the 𝑘th frequency bin is denoted by 𝑉 (𝑘). The vari-
able 𝜉𝑘 denotes the frequency variable evaluated at DFT-bin 𝑘, which
becomes 𝜉𝑘 = 𝑗𝜔𝑘 in the Laplace domain and 𝜉𝑘 = 𝑒𝑗𝜔𝑘 in the Z-domain.

The key mechanism of local modeling approaches is to exploit the
local smoothness of the system by identifying a local model that is valid
only over a small finite frequency range. This model can be used to
provide a non-parametric estimate of 𝐺𝑜 and the transient at the central
DFT-bin 𝑘. To achieve this, a finite frequency window around DFT-bin
𝑘 is considered, denoted by the variable 𝑟 ∈ Z, which can range from
−𝑁𝑊 to 𝑁𝑊 , i.e.

𝑌 (𝑘 + 𝑟) = �̃�𝑘(𝜉𝑘+𝑟)𝑈 (𝑘 + 𝑟) + �̃�𝑘(𝜉𝑘+𝑟) + 𝑉 (𝑘) (13)

where �̃�𝑘(𝜉𝑘+𝑟) and �̃�𝑘(𝜉𝑘+𝑟) denote the 𝑘th local model of the system
and the corresponding transients respectively. The parameter 𝑁𝑊 al-
lows to adjust the finite-frequency range on which the local parametric
models are identified which is determined by the control engineer.

The open-loop setting in (12) is used to determine the frequency
response results throughout this paper since the main application, i.e. a
deformable mirror system, is open-loop stable. It is emphasized that
the open-loop local rational modeling approach in (13) extends the
closed-loop case, see e.g., [30].

3.2. Parameterization & algorithm

The local models �̃�𝑘(𝜉𝑘+𝑟) are parameterized as local rational func-
tions

�̃�𝑘(𝜉𝑘+𝑟) = 𝐷−1
𝑘 (𝑟, 𝜃)𝑁𝑘(𝑟, 𝜃), (14)

�̃�𝑘(𝜉𝑘+𝑟) = 𝐷−1
𝑘 (𝑟, 𝜃)𝑀𝑘(𝑟, 𝜃), (15)

where 𝐷𝑘(𝑟) ∈ C𝑛𝑦×𝑛𝑦 , 𝑁𝑘(𝑟) ∈ C𝑛𝑦×𝑛𝑢 , 𝑀𝑘(𝑟) ∈ C𝑛𝑦×1 and 𝜃 denote the
common denominator matrix, system numerator matrix, the transient
numerator vector, and parameter vector respectively

𝐷𝑘(𝑟, 𝜃) = 𝐼 +
𝑁𝐷
∑

𝐷𝑠(𝑘, 𝜃)𝑟𝑠, (16)
5

𝑠=1
S

Fig. 4. Open-loop setting of a linear time invariant system with input 𝑢, measurement
oise 𝑣, and output 𝑦.

𝑁𝑘(𝑟, 𝜃) =
𝑁𝑁
∑

𝑠=0
𝑁𝑠(𝑘, 𝜃)𝑟𝑠, (17)

𝑘(𝑟, 𝜃) =
𝑁𝑀
∑

𝑠=0
𝑀𝑠(𝑘, 𝜃)𝑟𝑠. (18)

he order of 𝐷𝑘(𝑟), 𝑁𝑘(𝑟) and 𝑀𝑘(𝑟) is denoted by 𝑁𝐷, 𝑁𝑁 and 𝑁𝑀
espectively, see [31] for a detailed overview of parameterizations. The
ull polynomial parameterization form is considered in this paper as it
ncompasses a sufficiently rich class of systems with a limited number
f parameters. This enables the selection of a small frequency window
arameter 𝑁𝑊 while maintaining a sufficient degree of averaging.
he parameterization includes the local polynomial method case by
electing 𝑁𝐷 = 0. The model parameters in (16), (17) and (18) can
e determined through dedicated algorithms [31].

The multivariable LRM is determined by solving the following linear
east-squares problem for all 𝑘

̂(𝑘) = argmin
𝜃

𝑁𝑊
∑

𝑟=−𝑁𝑊

‖

‖

‖

𝐷𝑘(𝑟, 𝜃)𝑌 (𝑘 + 𝑟)

− 𝑁𝑘(𝑟, 𝜃)𝑈 (𝑘 + 𝑟) −𝑀𝑘(𝑟, 𝜃)
‖

‖

‖

2

2
.

(19)

he optimization method, which resembles the Levy method, is com-
utationally efficient and accurate [31,46]. The possible estimation
ias can be removed by invoking an iterative version of (19) which
ntroduces an additional computational cost with typically limited
mprovement in estimation quality [31].

. Identification and fictitious sensors of overactuated mecha-
ronic systems

In this section, a unified approach is developed for identifying and
nalyzing modal models of mechatronic systems with a large number
f spatially distributed actuators. First, a unified approach is developed
or identifying modal models. Second, a method for creating fictitious
ensors and conditions for creating fictitious sensors are presented. This
ection constitutes Contribution C2.

.1. Modeling overactuated mechatronic systems

The spatio-temporal behavior is defined by partial differential equa-
ions which are typically formulated using space–time-separated basis
unctions [41,47]
[

𝑢ps(𝜌, 𝑡)
𝑢bp(𝜌, 𝑡)

]

=
𝑛𝑚
∑

𝑘=1
𝑤𝑘(𝜌)𝑞𝑘(𝑡). (20)

he temporal contribution is determined by the generalized coordinates
𝑘(𝑡) and the spatial contribution is determined by the vector 𝑤𝑘(𝜌). The
umber of basis functions is determined by the parameter 𝑛𝑚. Analytical
olutions are not available in general and only exist for specific cases.
or this reason, the solution often is limited to the nodal description
f finite element method-based models that use a finite set of points in
pace.

Measurements are obtained based on 𝑛a spatially distributed actua-
ors. Since the actuators are connected to two surfaces, i.e., the back-
late and the performance surface, a total of 2𝑛a nodes are considered.

pecifically, given the separation of space and time (20), the dynamics
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can be formulated in the nodal coordinates 𝑞(𝑡) =
[

𝑞⊤ps(𝑡) 𝑞⊤bp(𝑡)
]⊤

that
ontain the nodes of the performance surface 𝑞ps(𝑡) and the backplate
bp(𝑡) at the vector of actuator locations 𝜌a. This leads to a coupled set
f second-order ordinary differential equations

𝑞 +𝐷�̇� +𝐾𝑞 = 𝑄𝑓 (𝑡) (21)

here the mass matrix 𝑀 ∈ R2𝑛a×2𝑛a is positive definite, 𝐷 ∈ R2𝑛a×2𝑛a

enotes the damping matrix, 𝐾 ∈ R2𝑛a×2𝑛a denotes the stiffness matrix,
∈ R2𝑛a×𝑛a denotes the input matrix, and 𝑓 (𝑡) ∈ R𝑛a denotes the

nput function at actuation locations 𝜌a. Since the actuators are located
etween the performance surface and the backplate, the input matrix
s partitioned as 𝑄 =

[

𝐼 −𝐼
]⊤.

The modal parameters are obtained by solving the undamped gen-
ralized eigenvalue problem

𝐾 − 𝜔2
𝑘𝑀

]

�̄�𝑘 = 0. (22)

he eigenvalues, 𝜔2
𝑘, are the squared undamped eigenfrequencies and

he eigenvector �̄�𝑘, which describes the 𝑘th mode shape vector, denotes
he combination of the 𝑘th performance surface and backplate mode
hape

̄𝑘 =
[

�̄�ps,𝑘(𝜌a)⊤, �̄�bp,𝑘(𝜌a)⊤
]⊤ (23)

here the mode shape �̄�𝑘 is mass normalized, i.e.

̄⊤
𝑘𝑀�̄�𝑘 = 1. (24)

hroughout this paper, the scalar function 𝜙ps,𝑘(𝜌) ∶ ps ↦ R and
bp,𝑘(𝜌) ∶ bp ↦ R are the 𝑘th mass-normalized mode shape functions
f the performance surface and the backplate respectively, which
epend on the spatial variable 𝜌. To improve conciseness of the results,

these functions are vectorized as �̄�ps,𝑘(𝜌a) and �̄�bp,𝑘(𝜌a) by evaluating
the scalar functions 𝜙ps,𝑘(𝜌) and 𝜙bp,𝑘(𝜌) at the individual elements of
the vector of actuator positions 𝜌a that are defined in (3).

The coupled set of differential equations (21) can be decoupled
by introducing the coordinate transformation to modal coordinates,
i.e., 𝑞 = 𝛷𝜂, where 𝛷 =

[

�̄�1,… , �̄�𝑛m

]

. Substituting the coordinate
transformation and left multiplying (21) with 𝛷⊤ leads to

𝐼�̈� +𝐷𝑚�̇� +𝐾𝑚𝜂 =
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

�̄�ps,1(𝜌a)⊤

⋮
�̄�ps,𝑛𝑚 (𝜌a)

⊤

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

�̄�bp,1(𝜌a)⊤

⋮
�̄�bp,𝑛𝑚 (𝜌a)

⊤

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

𝑓 (𝑡), (25)

[

𝑢ps(𝜌, 𝑡)
𝑢bp(𝜌, 𝑡)

]

=
𝑛𝑚
∑

𝑘=1

[

𝜙ps,𝑘(𝜌)
𝜙bp,𝑘(𝜌)

]

𝜂𝑘(𝑡) (26)

where 𝐷𝑚 = 𝛷⊤𝐷𝛷 = diag
(

𝑑𝑚,1,… , 𝑑𝑚,𝑛m
)

, 𝐾𝑚 = 𝛷⊤𝐾𝛷 = diag
(

𝜔2
1,… , 𝜔2

𝑛m

)

, and 𝜂𝑘(𝑡) are the modal coordinates. The deformation
function (26) shows that the system is position dependent through the
mode shape functions. Here, modal damping is considered which leads
to the decoupled set of differential equations (25) and which is known
to be representative of many lightly-damped systems in practice. Notice
that due to the relative actuation, the input vector distributes the forces
through a relative mode shape matrix in (25) that describes the mode
shape of the performance surface with respect to the backplate.

4.2. Identifying modal models

To identify the deformable mirror, measurement data is obtained
at a finite number of spatially distributed sensors. Specifically, 𝑛ps
sensors on the performance surface which locations are defined in the
vector 𝜌s,ps and 𝑛s,bp sensors that measure the position of the backplate
which locations are defined by the vector 𝜌s,bp. Consequently, instead
of the position-dependent function in (26), a spatially sampled system
is measured
[

�̄�ps(𝑡)
]

=
𝑛𝑚
∑

[

�̄�ps,𝑘(𝜌s,ps)
̄

]

𝜂𝑘(𝑡). (27)
6

�̄�bp(𝑡) 𝑘=1 𝜙bp,𝑘(𝜌s,bp)
To improve the conciseness of the results, the deformation functions
are vectorized as �̄�ps(𝑡) and �̄�bp(𝑡) by evaluating the scalar position-
dependent deformation functions 𝑢ps(𝜌, 𝑡) and 𝑢bp(𝜌, 𝑡) at the individual
lements of the vector of actuator positions 𝜌s,ps and 𝜌s,bp, which are

defined in (6) and (9), respectively.
The application of the modal expansion theorem allows the refor-

mulation of the system of equations in (25) and (27) to a summation
of modal contributions

𝐺(𝑠) ∈ R(𝑛s,ps+𝑛s,bp)×𝑛a ∶ 𝐹 (𝑠) ↦ 𝑈 (𝑠) (28)

𝐺(𝑠) =
𝑛𝑚
∑

𝑘=1

𝑅𝑘

𝑠2 + 𝑑𝑚,𝑘𝑠 + 𝜔2
𝑘

(29)

here 𝑅𝑘 denotes the rank-one modal participation matrix that is based
n the sampled mode shape vectors and that is defined as

𝑘 =
[

𝑣ps,𝑘
𝑣bp,𝑘

]

𝑤⊤
𝑘 (30)

[

𝑣ps,𝑘
𝑣bp,𝑘

]

=
[

�̄�ps,𝑘(𝜌s,ps)
�̄�bp,𝑘(𝜌s,bp)

]

𝑤𝑘 =
[

�̄�ps,𝑘(𝜌a) − �̄�bp,𝑘(𝜌a)
]

. (31)

he modal participation matrix gives access to both a relative and
bsolute mode shape.

The aim is to identify a parametric modal model �̂�(𝜃, 𝑠) which
s defined by the modal form in (29). The parameterization is fully
efined by the parameter vector

= vec
{

𝑑𝑚, �̄�𝑚, 𝑅1,… , 𝑅𝑛𝑚

}

. (32)

ere, the eigenfrequencies, the damping constants, and the modal
articipation matrices are denoted as �̄�𝑚 =

[

𝜔𝑚,1,… , 𝜔𝑚,𝑛𝑚

]

, 𝑑𝑚 =
[

𝑑𝑚,1,… , 𝑑𝑚,𝑛𝑚
]

, and 𝑅1,… , 𝑅𝑛𝑚 respectively.
The global parameters consisting of the damping ratio 𝑑𝑚,𝑖 and

the resonance frequency 𝜔𝑘 are estimated first. The parameters are
estimated by estimating locally a second-order model to the elements
of the frequency response estimate that is optimal in the least-squares
sense. The values are averaged to obtain an accurate estimate of the
global system parameters.

The second step involves the estimation of the modal participation
matrix 𝑅𝑘 in (35). Noting that at the resonance frequency, the response
of (29) is approximately

𝐺(𝑗𝜔𝑘) ≈
−𝑗𝑅𝑘
𝑑𝑚,𝑘𝜔𝑘

. (33)

Based on the frequency response estimate and the estimate of the global
system parameters, the modal participation matrix is estimated, i.e.,

�̃�𝑘 ≈ 𝑑𝑚,𝑘𝜔𝑘ℑ
{

𝐺(𝑗𝜔𝑘)
}

. (34)

This peak-picking method generally works well in practice [41]. The
rank-one property of the modal participation matrix is enforced from
the singular value decomposition, i.e., �̃�𝑘 = 𝑈𝑘𝛴𝑘𝑉 ⊤

𝑘 , such that

𝑅𝑘 =
[

𝑈𝑘
]1 [𝛴𝑘

]1
1
[

𝑉𝑘
]1⊤ . (35)

The 𝑖th column and the 𝑗th row of the matrix, e.g., 𝑉𝑘, are denoted by
[

𝑉𝑘
]𝑖 and

[

𝑉𝑘
]

𝑗 , respectively. The method described by (34) generally
works well with a sufficiently high resolution of the frequency response
estimate. The obtained local parametric models can be interpolated, see
e.g., [48], to improve the estimate of the modal participation matrix.
Alternatively, an optimization-based approach can be pursued which
could further improve the estimation [29,49].

4.3. Fictitious sensors for analysis of overactuated mechatronic systems

A crucial step for the analysis of the modal model is the conversion
of the modal participation matrix to a set of absolute and relative
mass-normalized mode shape vectors in (30).

An important observation is that every rank-one matrix can be
converted to a dyadic product of two vectors.
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Theorem 1. If 𝑅𝑘 ∈ R(𝑛s,ps+𝑛s,bp)×𝑛a is a rank-one matrix, then 𝑅𝑘 can be
ecomposed into

𝑘 =
[

�̃�ps,𝑘
�̃�bp,𝑘

]

�̃�⊤
𝑘 , (36)

ith �̃�ps,𝑘 ∈ R𝑛s,ps , �̃�bp,𝑘 ∈ R𝑛s,bp and �̃�𝑘 ∈ R𝑛a .

roof. The proof follows from the definition of the matrix rank, see
.g., [50, Section 3.115] and [51, Section 3.6]. □

Thus, every modal participation matrix, e.g., (35), is decomposed
nto a product of mode shape vectors. The key issue is that the de-
omposition is non-unique. For instance

[

𝛼�̃�⊤ps,𝑘, 𝛼�̃�
⊤
bp,𝑘

]⊤ 1
𝛼 �̃�

⊤
𝑘 with any

nonzero 𝛼 ∈ R is a solution. Thus, the mode shape vector is unique
up to a scaling constant [52]. The following result provides a sufficient
design requirement for finding a unique decomposition of the modal
participation matrix into mass-normalized mode shape vectors.

Theorem 2. Let 𝑅𝑘 be a rank-one modal participation matrix of a
system according to (28) with 𝑛𝑎 actuators, 𝑛ps,𝑎 sensors on the performance
urface, and 𝑛bp,𝑎 sensors on the backplate. If there exists at least one
ollocated sensor-actuator triplet, i.e., 𝜌s,ps,𝑖 = 𝜌s,bp,𝑗 = 𝜌a,𝑘 with 𝑖, 𝑗, 𝑘 ∈ N,
then the decomposition in (31) can be uniquely determined.

A proof of Theorem 2 is provided in Appendix. Essentially, Theo-
rem 2 enables the extraction of mass-normalized mode shape vectors
by a design requirement, i.e., at least one collocated sensor-actuator
triplet should be present. The triplet must consist of a sensor on the
backplate, a sensor on the reflective surface, and an actuator that are
all collocated. This enables a qualitative comparison of both the relative
and absolute mode shape vectors.

The key drawback of conventional modeling techniques is that these
techniques fully rely on the sensor data. The key idea in this paper is
that in the modal description, e.g. Eq. (29), the mode shape vectors are
encountered twice. Specifically, the mode shape vector is sampled at
the sensor and actuator locations. To enhance the physical insight into
deformable mirror systems, the relative mode shape vector sampled by
actuators is employed. This provides additional information about the
relative system dynamics, i.e., the behavior of the performance surface
with respect to the backplate. Moreover, since deformable mirrors are
equipped with a large number of spatially distributed actuators, the
spatial density of the modal description is increased significantly. The
relative system dynamics are estimated as

�̂�rel(𝑠) =
𝑛𝑚
∑

𝑘=1

𝑅rel,𝑘

𝑠2 + 𝑑𝑚,𝑘𝑠 +𝑤2
𝑘

, (37)

𝑅rel,𝑘 = �̃�𝑘�̃�
⊤
𝑘 . (38)

Interestingly, (37) provides the fictitious sensors in (10) and enables
to analyze the relative system behavior without having sensors that
measure the relative system dynamics. Interchanging the role of sensors
and actuators underlying Theorem 2 is known as the Betti–Maxwell
theorem, see e.g., [39,40,42].

5. Simulation case study

In this section, a simple simulation case study is discussed which
intends to illustrate the unified approach presented in Sections 3.1
and 4. The case study encompasses all steps from frequency response
function identification to the formulation of a modal model and the
prediction of fictitious sensors. The system description and the aim
of the case study are discussed first. Second, the unified approach
presented in Sections 3.1 and 4 is executed. Lastly, the quality of the
obtained results is analyzed. This section constitutes Contribution C3.
7

Fig. 5. Freebody diagram of the system considered in the simulation case study. The
system is a rigid-body approximation of a deformable mirror. The performance surface
and the backplate have a mass 𝑚1 and 𝑚2 respectively. The system is equipped with
two actuators 𝑓1 and 𝑓2, two sensors 𝑢1 and 𝑢2 on the performance surface and one
sensor on the backplate 𝑢3. The aim of the case study is to predict the behavior of the
fictitious sensors 𝑢𝑟2 and 𝑢4.

5.1. System description & aim

The free body diagram of the system considered in the simulation
case study is depicted in Fig. 5. The system is a rigid-body simplification
of the one-dimensional deformable mirror representation in Fig. 3. In
this model, the backplate 𝑚2 is heavy in relation to the performance
surface 𝑚2 and therefore 𝑚2 > 𝑚1. The actuators deform the mirror
but have only a marginal effect on the support structure, hence, 𝑘2 >
𝑘1. It is emphasized that in this simulation the performance surface
and backplate are modeled as rigid bodies. Hence, the system can be
described by four degrees of freedom, representing the translation and
rotation of each body.

The system considered in the simulation case study is equipped with
two actuators that are positioned between the two rigid bodies, i.e. rela-
tive actuation. To illustrate the effectiveness of the proposed approach,
a setting with limited sensing capabilities is created. Specifically, two
position sensors measure the position of the performance surface, and
only one sensor measures the displacement of the backplate. The
backplate sensor 𝑢3 is collocated with the actuator 𝑓1 and performance
surface sensor 𝑢1. The aim of the case study is to predict the behavior of
the unmeasured sensor 𝑢4 through the fictitious sensor output 𝑢𝑟2 using
the tools presented in the paper.

5.2. Procedure

The aim of this section is to identify the full system behavior

𝐺f =
[

𝐺∗
ps 𝐺∗

bp

]∗
(39)

=
[

𝑓1 𝑓2
]⊤

↦
[

𝑢1 𝑢2 𝑢3 𝑢4
]⊤ (40)

while having access to a subsystem with three sensors, i.e.

𝐺s =
[

𝐺∗
ps 𝐺∗

bp,s

]∗
(41)

=
[

𝑓1 𝑓2
]⊤

↦
[

𝑢1 𝑢2 𝑢3
]⊤ (42)

This is achieved by applying the method proposed in Section 4. In
particular, this is achieved by first estimating the relative system behav-
ior through the fictitious sensors in (37). Based on the relative system
behavior, the full response in (39) is recovered.

5.2.1. Step 1: Frequency response measurement
The frequency domain-based procedure presented in Section 3.1 is

pursued to identify a non-parametric model of 𝐺s Since the system is
stable, open-loop experiments are performed. Two white Gaussian noise
signals are injected into the inputs. The identified element-wise Bode
magnitude plot of the resulting frequency response function estimate

of the 𝐺s and the true full system 𝐺f is depicted in Fig. 7.
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Fig. 6. Element-wise Bode magnitude plot of the true system 𝐺f ( ), the parametric
modal model of the subsystem �̂�f ( ), and estimated full system �̂�f ( ). It is
emphasized that �̂�f is estimated using the non-parametric estimate of the subsystem 𝐺s
only and the full system 𝐺f is only visualized for validation purposes. Thus, the behavior
t 𝑢4 is estimated through the use of a fictitious sensor introduced in Section 4.3.

Fig. 7. Schematic overview of the four modes of the system, i.e., the two rotational
odes, and two translational modes. These modes are based on the modal model of the

ull system 𝐺f. It is emphasized that the full modal behavior of the system is recovered
hrough the use of fictitious sensors introduced in Section 4.3.

.2.2. Step 2: Modal model identification
This subsection aims to identify a parametric modal model of 𝐺s.

Modal models are estimated of the form

�̂�s =
[

�̂�∗
ps �̂�∗

bp,s

]∗
(43)

=
4
∑

𝑘=1

�̂�𝑘

𝑠2 + 𝑑𝑚,𝑘𝑠 + 𝜔2
𝑘

. (44)

Since the system has four degrees of freedom, four modes are consid-
ered. To identify the modal model in Eq. (43), the algorithm introduced
8

p

in Section 4 is applied. The element-wise Bode magnitude plot of the
modal model is depicted in Fig. 6. The Bode plot reveals that the modal
model accurately fits the frequency response measurement. However,
the analysis of the modal model in the current form, (43), provides
limited information about the dynamic behavior of the backplate.

5.2.3. Step 3: Fictitious sensors: Relative system behavior
The key step in the reconstruction of the full system 𝐺f using

he modal model of the subsystem 𝐺s is to estimate the relative sys-
em behavior through the fictitious sensors that are introduced in
ection 4.3.

The first sensor 𝑢1 is collocated with actuator 𝑓1 and sensor 𝑢3.
onsequently, Theorem 2 holds and the modal participation matrix
𝑘 in (43) is uniquely decomposed into mass-normalized mode shape
ectors

𝑘 =
[

�̃�ps,𝑘
�̃�bp,𝑘

]

�̃�⊤
𝑘 , (45)

ith �̃�ps,𝑘 ∈ R2, �̃�bp,𝑘 ∈ R1 and �̃�𝑘 ∈ R2. The relative system behavior
s estimated by exploiting the relative mode shape vector �̃�𝑘

̂ rel = �̂�bp − �̂�ps (46)

=
4
∑

𝑘=1
�̃�𝑘

1
𝑠2 + 𝑑𝑚,𝑘𝑠 +𝑤2

𝑘

�̃�⊤
𝑘 . (47)

Essentially, �̂�r describes the displacement of the performance surface
with respect to the backplate. The full system behavior of the backplate
is recovered by combining the relative system behavior in (46) with the
absolute system behavior of the performance surface in (43), i.e.,

�̂�bp = �̂�ps + �̂�rel (48)

Combining the modal model of the backplate in (48) with the identified
modal model of the performance surface in (43) leads to the modal
model of the full system

�̂�f =
[

�̂�∗
ps �̂�∗

bp

]∗
(49)

The resulting element-wise Bode magnitude plot is depicted in Fig. 6.

5.3. Results

When analyzing the frequency response estimate of 𝐺s in Fig. 6,
he analysis of the dynamic behavior of the backplate is limited to a
emporal analysis in view of the physical sensors only. Consequently,
he dynamic behavior of the backplate is unclear. In sharp contrast, the
pproach proposed in this paper allows identifying the full response 𝐺f
y exploiting the modal framework. In particular, the approach allows
nalyzing the full behavior of the backplate through the application of
ictitious sensors in (37). In addition, this method enables analyzing
he modal behavior through visualization of the mode shape vectors
n Fig. 7. It is emphasized that this example is a simplification of the
eformable mirror and is intended to illustrate the advantage of the
roposed approach.

. Experimental case study

In this section, the results so far are illustrated in an experimental
ase study. The case study includes a deformable mirror setup, see
ig. 8. The case study encompasses all steps from frequency response
unction identification to the formulation of a modal model and the
nalysis of mechanical modes. The experimental setup is explained
irst. Second, the frequency response estimation procedure is discussed.
hird, fictitious sensors are constructed by exploiting the modal mod-
ling framework. Lastly, the obtained results are analyzed by using
he outputs of the fictitious sensors, and several design suggestions are

rovided. This section constitutes Contribution C4.
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Fig. 8. Experimental test setup including the DM1 deformable mirror which is designed
by TNO [10]. a⃝ performance surface, b⃝ backplate, c⃝ actuator, d⃝ sensor bracket,
e⃝ capacitive sensor, and f⃝ testbench.

Fig. 9. Schematic top view of the deformable mirror setup indicating the positions
of the actuators and sensors. The actuator locations 𝜌a (+ ) are connected to the
performance surface and the backplate. The capacitive sensors ( ) which are located
at 𝜌s,ps measure the position of the performance surface, and the acceleration sensors
( ) are connected to the backplate and are located at 𝜌s,bp.

6.1. Setup

In this case study, a prototype deformable mirror system is used
which is considered representative for future deformable mirrors. The
prototype is depicted in Fig. 8. The prototype deformable mirror has
a mirror diameter of 150 mm. The deformable mirror contains 52
operational actuators that enable the deformation of the performance
surface. These actuators are connected to a backplate that is circular
and has a specific inner geometry of milled parts, see Fig. 9.

A host/target computer setup is used to conduct the experiments.
The host computer is a windows computer with Matlab/Simulink which
is used to compile C-code which is forwarded to the target computer.
The target computer runs on real-time Linux. Experiments are con-
ducted with a sampling frequency of 4 kHz. The deformable mirror
is has hybrid reluctance actuators, see [10] for details. The actuation
signal is generated with a 16-bit DAC with 64 channels with dedicated
amplifiers that are located on the back of the deformable mirror,
see [10] for details. The deformation of the deformable mirror is
measured with a temporary sensor setup consisting of six sensors that
9

are used to measure the deformation of the performance surface and
three sensors that are connected to the actuator backplate. The sensors
that measure the deformation of the performance surface are Lion
Precision Capacitive Sensors C5 with CPL290 read out electronics with
a 16-bit ADC and a resulting resolution of 3.8 nm. The sensors on the
backplate are B&K 4508 accelerometers.

The setup is mounted on a rigid and heavy test bench, see Fig. 8. The
capacitive sensors that measure the deformation of the performance
surface are mounted to a movable aluminum bracket. The sensor
bracket is relocated four times to enhance the spatial resolution in the
analysis. For calibration and validation purposes, the sensor bracket
is relocated such that there is some overlap in the resulting sensor
locations. For this reason, the deformation of the performance surface
is measured on 18 unique positions, see Fig. 9.

The measured positions are relative with respect to the aluminum
bracket. These positions are assumed absolute due to the high stiffness
of the bracket, the rigid and heavy test bench, and the bracket not being
in the force loop. Also, three acceleration sensors are used to measure
the absolute deformation of the backplate. The acceleration sensors
are all non-collocated due to the limited available space, i.e., these
acceleration sensors are positioned beyond the area covered by the
performance surface. The experiments are conducted in an open-loop
setting.

6.2. Frequency response function estimation

In this section, the frequency response function of the experimental
deformable mirror is estimated. The estimation is performed using the
local rational method introduced in Section 3.1.

From the excitation signals, 𝑢, and the noisy outputs, 𝑦, the FRF of
the system, 𝐺𝑜, is determined using the LRM introduced in Section 3.1.
All inputs of the system are simultaneously excited by 𝑛𝑎 = 52 inde-
pendently generated Gaussian white noise signals with zero mean. The
experiment time of a single experiment is 60 s.

The sensor bracket that measures the deformation of the perfor-
mance surface is repositioned four times to enhance the spatial res-
olution of the position measurement. During the last measurement,
five capacitive sensors covered the deformable mirror. Also, a separate
measurement is performed to measure the response of the backplate
with the three acceleration sensors. For this reason, five independent
experiments are conducted, hence, LRM is used five times to construct
the frequency response estimation. The resulting 26 × 52 element-wise
Bode magnitude plot is depicted in Fig. 10, and a subset is depicted in
Fig. 11.

Interestingly, Figs. 10 and 11 reveal first-order roll-off at approxi-
mately 600 Hz in all elements of the Bode magnitude plot. This effect
is caused by relatively high inductance compared to the resistance of
the actuator. Also, the element-wise Bode magnitude plot in Fig. 10
indicates strong collocated and noncollocated behavior. The magnitude
in the collated case is relatively large. In sharp contrast, the magnitude
in the noncollocated case is generally low. However, at resonance
frequencies, a high response can be recognized. This confirms that
flexible dynamics lead to inherently multivariable system dynamics
which confirms the importance of modeling the flexible dynamics for
analysis and control. Also, the element-wise Bode plot reveals that
design analysis and control design directly based on the frequency
response measurement is practically unfeasible due to the large number
of inputs and outputs and the complicated temporal nature of the
dynamics. Therefore, the figure confirms the importance of the develop-
ment of a unified approach for the identification models for mechanical
design analysis and control design, which is the aim of this manuscript.

6.3. Modal models

The aim of this section is to identify a modal model of the exper-
imental deformable mirror based on the frequency response function
estimate. First, the mechanical system behavior is isolated by pre-
processing the data. Second, the modal model is estimated based on
the method introduced in Section 4.
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Fig. 10. 26 × 52 element-wise Bode magnitude plot of the frequency response function estimation of the experimental deformable mirror DM1. The top 3 rows of the Bode
magnitude plot represent the transfer to the acceleration sensors mounted to the backplate. The remaining rows represent the transfer to the capacitive sensors measuring the
absolute displacement of the performance surface. The estimate is made using the local rational method introduced in Section 3.1 with five experiments of 60 s. The figure is
depicted to highlight the high complexity of the system due to the large number of inputs and outputs and the high-order temporal behavior.
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Fig. 11. Element-wise Bode magnitude plot of a 5 × 7 subset of the frequency response
estimation ( ) of the experimental deformable mirror DM1.

.3.1. Pre-processing
An important step to identifying a modal model is to isolate the

odal systems dynamics. First, the acceleration sensor data is inte-
rated twice to mimic position data. Second, the phase effect of the
omputational delay due to the input–output and zero-order hold delay
s compensated for. Third, the frequency response function estima-
ion also contains first-order dynamics of the actuators. The actuator
oll-off may slightly vary between actuators due to manufacturing
olerances. For this reason, the first-order actuator roll-off is removed in
column-wise manner by identifying and subsequently compensating a

irst-order model of the form 𝐺act =
1

1+ 𝑠
𝜔𝑐

. The resulting pre-processed
requency response estimate is depicted in Fig. 12.

.3.2. Modal model identification
A modal model is estimated by the procedure described in Section 4.

he first 𝑛𝑚 = 11 flexible modes are identified. A subset of the resulting
odal model is depicted in Fig. 12.

The modal model is validated by comparing the frequency response
o the experimental data in Fig. 12. First, it can be observed that the
ollocated system behavior is accurately identified. Second, the non-
ollocated sensor-actuator pairs indicate a generally low mechanical
esponse compared to the noise floor. At the resonance frequencies, the
odal model accurately matched the frequency response data. Overall,

he modal model accurately describes the mechanical behavior of the
eformable mirror. The large responses for both the collocated and
oncollocated sensor-actuator pairs indicate that the flexible dynamic
ehavior leads to inherently multivariable behavior which must be
ccounted for in the control architecture. This means that the control
ystem must be designed to take into account the coupling between
he different actuators and sensors. This confirms the necessity of
dentifying the flexible dynamic system behavior of next-generation
eformable mirrors.

.3.3. Fictitious sensors
In Section 4.3, the identified modal participation matrix is decom-

osed into mass-normalized mode shape vectors. These vectors describe
he absolute modal behavior at the sensor locations and the relative
ystem behavior at the actuator locations. However, the sensors on
he backplate are positioned outside of the area covered by the per-
ormance surface, meaning that there is no collocated sensor-actuator
riplet. As a consequence, Theorem 2, which enables to calculation
11

t

Fig. 12. Element-wise Bode magnitude plot of a 5 × 7 subset of the frequency response
estimation ( ) and the modal model ( ).

of mass-normalized mode shape vectors from the modal participation
matrix, cannot be applied. However, the modal participation matrix
can be decomposed into arbitrarily scaled mode shape vectors. These
mode shape vectors can be analyzed to gain insight into the structural
dynamics of the system, but they cannot be qualitatively compared or
combined. This is because the scaling factors are arbitrary and cannot
be determined from the data.

To obtain the mode shape vectors, the procedure in Section 4.2
is applied. For this reason, the mode shape vectors are normalized
with respect to the largest singular value of the modal participation
matrix. It is emphasized that although these mode shape vectors are
not mass-normalized, these can still be useful for design analysis. In
particular, the relative system behavior can still be analyzed without
having relative sensors. Also, the number of actuators is large and thus
the relative mode shape vectors may reveal detailed insights about the
backplate and reflective surface system dynamics.

6.3.4. Mode shape visualization
The mode shape vectors are interpolated to visualize and sub-

sequently analyze the identified mechanical modes. A widely used
interpolation method is the smoothed-thin-plate spline interpolation
approach [53]. From a physical point of view, the thin-plate spline is
based on minimizing the bending energy of a thin elastic plate. For this
reason, the spline might be particularly suitable for modeling the defor-
mation of the performance surface and the backplate as the out-of-plane
dimensions are small compared to the in-plane dimensions.

Given a set of 𝑛𝑑 coordinates (𝑥𝑗 , 𝑦𝑗 ) ∈ R2 and 𝑛𝑑 correspond-
ing mode shape samples 𝑧𝑗 ∈ R. The smoothed thin-plate-spline
interpolating spline 𝑠 is the unique optimum to the cost function

min
𝑠

𝑛𝑑
∑

𝑗=1

|

|

|

𝑠(𝑥𝑗 , 𝑦𝑗 ) − 𝑧𝑗
|

|

|

2
+ 𝜆𝑈 (50)

here

= ∫

∞

−∞ ∫

∞

−∞
𝛥2𝑠(𝑥, 𝑦)𝑑𝑥𝑑𝑦. (51)

he function 𝑈 is generally interpreted as a measure of the bending
nergy of the spline function. The smoothing parameter 𝜆 provides
trade-off between robustness to estimation errors and interpolation

ccuracy. In this paper, the values of the smoothing parameters are de-

ermined using a Leave-One-Out-Cross-Validation (LOOCV) approach,
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i.e., the value of 𝜆 is used which minimizes the LOOCV error [53]. This
interpolation is carried out independently for each mode shape. It is
emphasized that for each mode shape a different smoothing parameter
𝜆 is computed. The resulting mode shape visualizations are shown in
Fig. 13.

6.4. Mode shape analysis

As described in Section 4, the sensors of both the performance sur-
face and the backplate are absolute. Hence, their corresponding mode
shape vectors are absolute. In sharp contrast, the actuation is relative,
hence, the corresponding mode shape vectors describe the mode shape
of the performance surface with respect to the actuator backplate. Note
that the analysis is based on the procedure in Section 4.3 that enables
to analyze the relative system behavior without having sensors that
measure the relative displacement.

1. The mode at 111 Hz in Fig. 13 reveals that the performance
surface is barely moving compared to the backplate indicated
by the acceleration sensors. The relative mode shape reveals a
tipping motion indicating that the backplate is tipping around
the 𝑌 -axis. As a consequence, from these mode shape vectors
can be concluded that the mode at 111 Hz is dominated by a
rigid-body motion of the backplate.

2. Between 400–600 Hz a significant number of modes can be
observed in Fig. 12. One of these modes, e.g., at 463 Hz, is visu-
alized in Fig. 13. Interestingly, the relative mode shape indicates
complicated system dynamics that coincide with the location of
the beam-based inner geometry of the backplate. Despite the
limited number of sensor locations on the performance surface,
the absolute mode shape of the performance surface reveals that
the complicated deformation pattern seems to propagate to the
performance surface, especially near the sensor locations.
The complicated dynamics originates from the backplate design,
i.e., the bending mode of the strips that support the actuators.
Interestingly, the longest strips start resonating at approximately
400 Hz, and in the subsequent modes, the remaining shorter
strips resonate. These modes complicate the control design as
these are complex in the spatial sense, and there are a lot of these
modes in a short frequency interval. Therefore, the information
revealed by the proposed method could be used to improve the
mechanical design of the deformable mirror backplate such that
less complicated flexible dynamics are obtained.

3. The mode at 1826 Hz in Fig. 13 reveals a flexible mode of the
performance surface. At this frequency, the relatively high mass
of the support structure prevents the backplate from moving
which is confirmed by the absolute mode shape of the back-
plate measured by the acceleration sensors. In sharp contrast,
the mode shape of the performance surface reveals that it is
severely vibrating. This is confirmed by the deformation pattern
of the relative mode shape which coincides with the deformation
pattern of the absolute performance surface mode shape.

6.5. Discussion

The experimental case study demonstrates the effectiveness of the
proposed tools from frequency response estimation to identifying modal
models and analyzing the obtained results. The design analysis reveals
flexible dynamics associated with the geometry of the backplate, which
is complicated both in spatial and temporal sense. This could be taken
into account in future backplate design such that less complicated
flexible dynamics is obtained. Also, the sensors on the backplate are
all located outside the area covered by the performance surface due
to space limitations. Consequently, due to the lack of collocation,
Theorem 2 is not valid and the mode shape vectors cannot be mass
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normalized. Future designs of deformable mirrors could benefit from at
least one location on the actuator backplate that enables the collocation
of at least one backplate sensor with at least one actuator. This ensures
that there is a collocated actuator–sensor triplet which is required in
Theorem 2. This enables the modal participation matrix to be decom-
posed in mass-normalized mode shape vectors which would further
enhance the analysis through qualitative comparison of the mode shape
vectors and the creation of fictitious sensors.

In comparison to previous studies, the proposed approach offers
several advantages. First, existing experimental methods in the liter-
ature that focus on deformable mirrors ignore the temporal system
behavior and therefore focus on the static system behavior [7,19–
21]. In contrast, this paper includes the spatio-temporal nature of
the flexible dynamic behavior. Second, existing identification methods
that do consider the spatio-temporal nature of the flexible dynamic
behavior are typically based on simulations [22–26]. Compared to
these studies, the approach in this paper offers limited user intervention
since it does not rely on prior system knowledge and advanced mod-
eling techniques. Third, compared to other modal model identification
techniques, e.g., that consider a time domain-based parametric identifi-
cation approach, the identification approach is frequency domain based
which is data efficient and interpretable [38,41]. Fourth, compared
to traditional frequency response estimation techniques methods such
as spectral analysis, the local rational method which is used in this
paper requires significantly less experiment time [10,27–29]. Also,
in contrast to existing literature, the local rational method is used
in an experimental case study with a large number of inputs and
outputs. Fifth, compared to existing parametric modal model identi-
fication techniques, e.g., [29], the approach in this paper is relatively
simple and therefore requires less user intervention. Sixth, the large
number of spatially distributed actuators are used as fictitious sensors
by exploiting the modal system description. Compared to conven-
tional structural analysis approaches, this approach does not require
an impact hammer [38,41].

These models are envisioned to be useful in preparation for con-
troller design for deformable mirror systems. A modal decoupling
strategy can be devised that specifically addresses the flexible dynamics
that inherently challenge control efforts. In scenarios where explicit
measurements of the flexible dynamics are unattainable, such as when
the deformable mirror is integrated into a telescope and no explicit
position measurements are available, the modal model could have a
pivotal role. Through the modal model, the flexible dynamics can be
estimated and subsequently addressed by control. Also, the obtained
model provides a good starting point to address the spatio-temporal
nature explicitly through inferential control techniques.

7. Conclusions

This paper presents an identification approach that is tailored to
design validation and control design of overactuated systems with a
limited number of temporary position and acceleration sensors with
limited experiment time and limited user intervention. Moreover, the
models provide physical insights into the flexible dynamic behavior.
The proposed unified approach encompasses the steps from the estima-
tion of a frequency response function to the identification and analysis
of through fictitious sensor. The case study illustrates the effectiveness
of the proposed approach.

Compared to existing work, the method proposed in this paper
does not rely on complicated FEM modeling techniques. Instead, an
experiment-based approach is pursued. Additionally, the proposed
method does not fully rely on the limited number of sensors that are
available to analyze the system. Instead, the proposed method comple-
ments the limited number of sensors with fictitious sensor information,
which employs the mode shape vectors of the actuators, of which a
large number is present. The experimental case study demonstrates the
effectiveness of the proposed approach and reveals a specific design

consideration in the actuator backplate. This information could be
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Fig. 13. Vizualization of three mechanical modes of the experimental deformable
mirror system DM1. The left figures visualize the relative mode shape vectors from
the actuator perspective. The actuators are indicated with a marker (+). The right
figures visualize the absolute mode shape vectors from the sensor perspective. The
capacitive sensors that measure the absolute displacement of the performance surface
are indicated by ( ) and the acceleration sensors ( ) measure the acceleration of
the backplate. The modal contribution is indicated by the colormaps. Notice that the
colormaps are normalized to one.

used to improve the design of deformable mirrors and to enhance the
performance in adaptive optics for ground-based astronomy.

Summarizing, the proposed approach enables analysis through the
visualization of flexible modes and subsequently acts as an enabler
for next-generation motion control of adaptive secondary mirrors for
ground-based astronomy. Current research focuses on using the ob-
tained models for control techniques that specifically target the flexible
dynamic behavior. Through the proposed approach, measurements
could be obtained, the fictitious sensor could be useful for control
by providing insight and estimates of the flexible dynamics. Also, the
obtained models provide a starting point for inferential control.
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Appendix. Proof of Theorem 2

Proof. Let 𝑅𝑘 be a rank-one modal participation matrix and 𝜌s,ps,𝑖 =
𝜌s,bp,𝑗 = 𝜌a,𝑘 for any 𝑖, 𝑗, 𝑙 ∈ N be the collocated positions of the sensor-
actuator triplet. As such, the mass-normalized mode shape vectors are
related through
[

𝑣ps,𝑘
]

𝑖 −
[

𝑣ps,𝑘
]

𝑗 =
[

𝑤𝑘
]

𝑙 . (A.1)

By virtue of Theorem 1, the rank-one modal participation matrix can
be decomposed into a dyadic product of mode shape vectors �̃�ps,𝑘, �̃�bp,𝑘,
and �̃�𝑘 which are unique up to a scaling parameter 𝛽

𝑅𝑘 =
[

𝛽�̃�ps,𝑘
𝛽�̃�bp,𝑘

]

1
𝛽
�̃�⊤

𝑘 . (A.2)

These mode shape vectors are mass-normalized by finding the scaling
parameter 𝛽∗ such that
[

𝑣ps,𝑘
𝑣bp,𝑘

]

=
[

𝛽∗�̃�bp,𝑘
𝛽∗�̃�bp,𝑘

]

𝑤𝑘 = 𝛽∗�̃�𝑘 (A.3)

Substitution of (A.1) in (A.3) and subsequent reformulation leads to the
scaling parameter

𝛽∗ =

√

√

√

√

[

𝑤bp,𝑘
]

𝑖
[

𝑣ps,𝑘
]

𝑗 −
[

𝑣bp,𝑘
]

𝑙

(A.4)

which mass-normalizes any arbitrarily scaled mode shape vectors �̃�ps,𝑘,
�̃� , and �̃� and completes the proof of Theorem 2. □
bp,𝑘 𝑘
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