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Group-IV colour centres in diamond are a promising light-matter interface for quantum
networking devices. We demonstrate multiaxis coherent control of the SnV spin-qubit via an all-
optical stimulated Raman drive between the ground and excited states. © 2022 The Author(s)

Diamond stands out as a particularly promising solid state host for scalable fabrication of quantum light-matter
interfaces [1]. Within diamond, the group-IV colour centres have demonstrated excellent optical properties [2] and
long coherence times at millikelvin temperatures [3]. The negatively charged tin-vacancy center (SnV) is
particularly interesting amongst the group-IV colour centres, as its large spin-orbit coupling offers strong
protection against phonon dephasing and robust cyclicity of its optical transitions toward spin-photon-
entanglement schemes [4]. Conversely, the strong spin-orbit coupling also gives rise to orbital forbidden spin
transitions, which has limited microwave based spin control [4] and may necessitate advanced microwave line
engineering to achieve fast, coherent control of the SnV spin qubit. In this paper, we demonstrate all-optical
multiaxis coherent control of the SnV spin qubit by driving its efficient and coherent optical transitions with
microwave modulated laser fields.
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FIG. 1. Multiaxis coherent spin-qubit control. (a) ||> population (orange circles) as a function of the Raman drive duration T with the pulse
sequence shown at the top. The Raman drive is applied with A/2z = 1.2 GHz and p= 650(70) nW. The black curve is a fit to a two-level
model under a master-equation. Inset: Q=27 as a function of p/(A/2m) with a linear fit to the data (solid curve). Here, A=2xn and p are varied
from 300 to 1200 MHz and 40 to 650 nW, respectively. (b) Pulse sequence (top) with one =2 pulse about x and a second about an axis
rotated by an azimuthal angle ¢ from the x axis. The n/2 pulse duration is determined from Rabi measurements taken with A/2z = 300 MHz
and p = 260(30) nW. Illustrated on the Bloch spheres are trajectories for ¢ = 0 (left), ¢ = n=4 (center), and ¢ = « (right). The ||> population
(orange circles) is plotted as a function of ¢. The solid curve is a cosine function.

We demonstrate the flexibility of the all-optical approach by implementing, optical Rabi driving (Figure 1),
Ramsey interferometry (Figure 2), and dynamical decoupling of the SnV spin qubit (Figure 3).
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FIG. 2. Ramsey interferometry. (a) Ramsey pulse sequence with two 7/2 pulses separated by a delay time 1 (top). The phase of the second pulse
is swept according to ¢=tws, where ws2n = 5 MHz. The color indicates ||> population plotted as a function of T and the two-photon detuning,
3. Dotted white curves provide a guide to the eye for the expected ||> population recovery. (b) Line cut at /2 = —1 MHz indicated by an
arrow in (a), where the ||> population (orange circles) is measured as a function of 7.
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FIG. 3. Dynamical decoupling. (a) Decoupling pulse sequence (top) with two implementations: (left orange panel) Hahn echo, (right purple
panel) CPMG-2. The phase ¢ of the second 7=2 pulse is variable. In both panels, color indicates the ||> population shown as a function of
the total decoupling time t and phase ¢. (b) Visibility a=b obtained from fitting the function a cos(¢)+b to the data shown in (a) at each delay
time 7 plotted as a function of 7. Hahn echo data (orange circles) are fitted to the function v, exp [-(t/T2)"[+Vv., where vy = 0.26(1), v, =
0.013(5), n =3.7(4), and T, = 28.3(6) us (solid orange curve). CPMG-2 data (purple circles) are fitted to the same function with vo=0.11(1),
n=2.1(9), T, = 0.19(2) ms, and V., is fixed to 0 (solid purple curve). CPMG-4 data are plotted (pink circles) and fit to the same function with

vo = 0.044(7), n = 1.2(6), T, = 0.30(8) ms, and v., is fixed to 0 (solid pink curve).

These results confirm the promise of SnV as a competitive next generation light-matter quantum interface and,
combined with transform-limited photons [4] and integration into photonic nanostructures [5], our results make the
SnV a competitive spin-photon building block for quantum networks.
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