

Delft University of Technology

What Do You See? Transforming Fault Injection Target Characterizations

Krček, Marina

DOI
10.1007/978-3-031-22829-2_10
Publication date
2022
Document Version
Final published version
Published in
Security, Privacy, and Applied Cryptography Engineering - 12th International Conference, SPACE 2022,
Proceedings

Citation (APA)
Krček, M. (2022). What Do You See? Transforming Fault Injection Target Characterizations. In L. Batina, S.
Picek, & M. Mondal (Eds.), Security, Privacy, and Applied Cryptography Engineering - 12th International
Conference, SPACE 2022, Proceedings (pp. 165-184). (Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 13783 LNCS).
Springer. https://doi.org/10.1007/978-3-031-22829-2_10
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-22829-2_10
https://doi.org/10.1007/978-3-031-22829-2_10

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

What Do You See? Transforming Fault
Injection Target Characterizations

Marina Krček(B)

Delft University of Technology, Delft, The Netherlands

m.krcek@tudelft.nl

Abstract. In fault injection attacks, the first step is to evaluate the tar-
get behavior for various fault injection parameters. Showing the results
of such a characterization (commonly known as target cartography) is
informative and allows researchers to assess the target’s behavior better.
Additionally, it helps understand the performance of new search meth-
ods or attacks. Thus, publishing obtained results is essential to provide
relevant information for reproducibility and benchmarking, improving
state-of-the-art results and general security. Unfortunately, publishing
the results also allows malicious parties to reverse engineer the informa-
tion and potentially mount an attack easier.

This work discusses how various transformations can be used to
occlude sensitive information but, at the same time, still be useful for
interested researchers. Our results show that even simple 2D transfor-
mations, such as rotation, scaling, and shifting, significantly increase the
effort required to reverse engineer the transformed data but maintain the
interesting data distribution. Consequently, this work provides a method
to allow publishers to share more data in a confidential setting.

Keywords: Fault injection · Target characterization · 2D
Transformations

1 Introduction

Secure hardware devices should be designed to operate with confidential data
so that the information does not leak and cannot be altered by an adversary.
While the algorithms running on such devices might be secure, it has been shown
that various attacks on hardware can be powerful [6,12]. Such attacks do not
attack the algorithms but the weaknesses in the implementation. Those attacks
are called implementation attacks and are commonly divided into side-channel
and fault injection (FI) attacks. While these attacks are powerful, there are still
challenges to improving the attacks to be more efficient.

When considering fault injection, one main challenge is improving the target
characterization. Indeed, to mount a successful fault injection campaign, one
needs to recognize where the fault should be inserted. Due to the many param-
eters that need to be tested, this problem can become a very challenging task.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Batina et al. (Eds.): SPACE 2022, LNCS 13783, pp. 165–184, 2022.
https://doi.org/10.1007/978-3-031-22829-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22829-2_10&domain=pdf
https://doi.org/10.1007/978-3-031-22829-2_10

166 M. Krček

New, more powerful attacks are needed to improve state-of-the-art research and
contribute to the further security and more efficient evaluation of products. Find-
ings should be shared in a reproducible manner to enable this process. There are
cases where the research is done on open public targets, and the results can be
shared entirely without restrictions. However, sometimes the data and the actual
vulnerabilities of the products must be kept secret as sharing them could pose an
economic, privacy, or security threat to target stakeholders. At the same time,
it becomes difficult to reproduce the results or even fairly compare them against
others without providing sufficient details. Thus, there is a need to enable the
community to share the findings publicly without compromising stakeholders.

In this work, we consider sharing data from FI target characterization. We
showcase our proposals on data from several types of fault injection - electro-
magnetic fault injection (EMFI) [19], laser fault injection (LFI) [27], and voltage
glitching [3]. Usually, the results of target characterization are shown in a 2D figure
with specific FI parameters on the x and y axis. For example, x − y location of
the laser or EM probe, or pulse width and intensity of the laser. We propose sev-
eral methods to alter the obtained data from the characterization. Accordingly,
we allow sharing results publicly while hiding the real vulnerabilities so malicious
adversaries cannot directly abuse published information. Publishers can choose
the modifications they desire to perform on the data. In this manner, the results
of the fault injections and attacks can be published and discussed while the data
remains secret. At the same time, transformed data should maintain the original
distribution to remain relevant. We propose to use two known metrics to measure
the similarity and relation to actual data. Our main contributions are:

1. We showcase that it is easy to recover the exact data points from the cartog-
raphy (target characterization) figures.

2. We discuss several possible transformations and their effects. We define spe-
cific 2D transformations to transform data from 2D plots. We also propose
polynomial transformations for transforming more dimensions when not con-
sidering the visual representation of the results.

3. We provide two techniques to evaluate the similarity of the original and trans-
formed data and discuss how difficult it would be to reverse engineer the
transformed data.

2 Background

2.1 Fault Injection and Target Characterization

Fault injection (FI) can be done physically at the hardware level [5]. Additionally,
nowadays, it can also be done on software. However, we focus on fault injection
for introducing faults at the hardware level. The idea is to expose the device to
various harmful conditions and observe the behavior to determine its response.
There are multiple ways to introduce the faults. For example, there are voltage [3]
and clock glitching [2,9], temperature variations [26], optical injections [27], and
electromagnetic radiation [22,25]. These techniques differ in equipment and cost,

Transforming Fault Injection Target Characterizations 167

precision, and the number of parameters necessary to tune for a successful attack.
Once the target is subjected to abnormal conditions (i.e., the external stimuli are
introduced), we observe the effects on the device’s behavior. Specifically, as ana-
lysts, we are interested in at what point the device would fail so that the device
can be designed to be more resilient. That is especially important for security-
critical devices, such as smartcards. Using previously mentioned techniques for
injecting faults, the attacker can change the memory state in a device, cause a
mistake in the computation (intermediate values), or skip instructions. Then, the
attackers can exploit the faulty results to extract information about confidential
data. Examples of these attacks are differential fault analysis (DFA) [4], fault sen-
sitivity analysis (FSA) [15], differential fault intensity analysis (DFIA) [10], and
statistical fault attacks (SFA) [8]. Not all faults can be used to reach the malicious
goal with these attacks. Thus, the attackers must find a way to inject a fault that
can be exploited. Consequently, the fault injection procedure can be divided into
two phases: finding faults and using those faults to achieve some (malicious) goal.
In this work, we need to be familiar with the first step of finding parameters from
the search space that cause faults, i.e., producing the target characterization.

Numerous parameters must be defined for injecting the faults for all the men-
tioned injection methods. Optimal parameters (parameters that cause the target
to show faulty behavior) can be searched manually or with an exhaustive or ran-
dom search. However, manual testing and a random search are unreliable, as the
optimal solutions can be easily overlooked. On the other hand, the exhaustive
search is usually very time-consuming. There are many proposed alternatives
for finding the optimal set of parameters for different types of fault injection.
For example, methods from evolutionary optimization are utilized to improve
voltage glitching [7,20,21], EMFI [16], and LFI [13]. Other techniques were also
used, e.g., hyperparameter optimization techniques [28] and reinforcement learn-
ing [17]. However, while these methods provide a good approximation of specific
points (regions), the search space for FI is complex. The issue when using such
(intelligent) approaches is that the problem of coverage remains. The obtained
optimal parameters are also specific to the setup and target. Finally, the methods
need adjustments between different FI techniques. Improvements for conducting
target characterization are also proposed in [29]. The methodology is based on
finding a sensitivity curve whose generation is fast and compatible with differ-
ent FI techniques and targets. Additionally, the authors discussed an approach
based on deep learning to predict the complete target characterization based on
limited data from the sensitivity curve.

2.2 Polynomial Functions

A polynomial with a single indeterminate x can be written in the form:

anxn + an−1x
n−1 + · · · + a2x

2 + a1x + a0 =
n∑

k=0

akx
k, (1)

where a0, . . . , an are coefficients of the polynomial, and x is indeterminate and
can be replaced by any value. For example, x can be substituted with the FI

168 M. Krček

parameters we desire to transform. Thus, we consider a function defined by the
polynomial where x is the function’s argument and is referred to as a variable:

f(x) =
n∑

k=0

akx
k. (2)

2.3 Kullback-Leibler Divergence (KLD)

Kullback-Leibler Divergence (KLD) measures how one probability distribution
differs from a second, reference probability distribution [14]. For example, one
can consider two probability distributions, P and Q. P usually represents the
data, the observations, or a measured probability distribution. On the other
hand, distribution Q represents a theory, a model, or an approximation of P .
KL divergence calculates how one distribution differs from another and is not
symmetrical. Calculating the divergence for distributions P and Q would give a
different score from Q and P . KLD is the non-negative measure that equals 0
if and only if P = Q. For discrete probability distributions P and Q defined on
the same probability space, X , KLD is defined as:

DKL(P ‖ Q) =
∑

x∈X
P (x) log

(
P (x)
Q(x)

)
. (3)

2.4 Canonical Correlation Analysis (CCA)

Canonical Correlation Analysis (CCA) is a method of correlating linear rela-
tionships between two multidimensional variables [11]. Proposed by Hotelling in
1936, CCA can be seen as the problem of finding basis vectors for two sets of
variables. The correlations between the projections of the variables onto these
basis vectors are mutually maximized. However, it has been used for measuring
the similarity between different neural network layers [18,23]. CCA is invariant
to linear transformations and can find shared structures across superficially dis-
similar representations. If CCA converges to one, the two compared variables
are highly correlated.

3 Motivation and Application

Let us assume that an Evaluator wants to share target characterization data with
the general public, including interested researchers in academia, evaluation and
certification labs, companies, and malicious parties. The Evaluator can be from
academia, an evaluation lab, or a company. They want to either share that they
successfully found vulnerabilities in a system previously considered secure or
propose new methods for FI target analysis or attack. Sharing all the data helps
the community find countermeasures and solutions for the observed vulnerabili-
ties. Consequently, we improve the security of existing systems. Additionally, it
is crucial for a fair comparison of the new methods. The data can be used for

Transforming Fault Injection Target Characterizations 169

a public database with realistic data that can help to generalize solutions and
benchmark methods and attacks. We can opt for using open public targets, but
often these do not represent realistic scenarios. Therefore, the community tends
to use targets used by the general public to work in a more realistic and rele-
vant setting. The manufacturer can limit the amount of information shared from
such research, which also applies to internal evaluation labs. Sharing data that
directly exposes vulnerabilities to malicious parties can raise public concerns and
economic threats.

To bridge this gap, we propose to use transformations and explore them
in FI analysis. The data in the FI setup is the mentioned target characteri-
zation results, parameter values, and device responses to injections with those
parameters. This data can be accompanied by target and bench setup informa-
tion, parameter intervals, and utilized method. Sharing target information and
parameter intervals with target characterization data directly reveals vulnera-
bilities for exploitation and are usually kept secret. With transformations, we
motivate to share data at this level as it enables reproducibility and fair com-
parison. If data is transformed, the attacker cannot directly abuse reported data
and speed up the attack process. They will still have to search the parameter
space.

In our examples, we consider using brute force for reversing the transforma-
tions, as we assume that the authors provide all information on the transforma-
tions they applied and fault injection data. However, in a realistic scenario, we
expect the author to report that the data is transformed. Still, we do not deem
it necessary to report which specific transformations were used as long as data
distribution remains close to the original.

4 Proposed Transformations

We consider transformations for altering and hiding results from fault injections.
Multiple parameters define the injection during target characterization with any
type of FI. For example, in LFI, the parameters can be x, y, delay, pulse width,
and intensity. Usually, the results of target characterization are published in a
2D plot with two selected FI parameters on the x and y-axis [13,16,21]. We aim
to hide the real vulnerabilities of the target with transformations, but we want
to keep the transformed data relevant for publication. We propose 2D transfor-
mations on the interesting (vulnerable) points to keep their relative positions
(shape they create), but we scale, rotate, and translate the shape.

Since we change only the interesting points, depending on the data, replacing
the interesting data with a non-interesting class or randomizing non-interesting
points over the whole region will be necessary. We consider both cases in the
experiments and explain the choices. Another issue to consider when apply-
ing transformations is the possible assumptions that could exist between two
parameters that are displayed. Thus, we adjust the transformations so that the
resulting transformed data still conforms to the assumptions. For example, ana-
lysts expect normal behavior from the device with low absolute values for glitch

170 M. Krček

voltage and length in voltage glitching. Contrary, with high values, we expect the
device to reset or stop communication. Interesting responses are usually found
between the two regions, and described relative positioning should be kept in
transformed data. In our experiments, we use voltage glitching to showcase the
changes in the transformations.

These transformations are only used for the selected two parameters shown as
the target cartography in a 2D graph. However, we mentioned that all FI types
have multiple parameters to set, so if we want to transform all of them and use
more than two dimensions, then we propose to use polynomial transformations.
These transformations keep the fault class distribution but randomize the data.
Therefore, these are unsuitable for cases where we visually must keep the relative
position of the classes as in the described voltage glitching case.

In the FI campaign, usually, an interval is defined for each of the parameters
with a corresponding step. The step size usually corresponds to the physical
properties of the setup. Consequently, we cannot use any value from the interval
but only those allowed according to the step size. For the proposed transfor-
mations, to ensure we use the specific values, we transform the index of the
parameter value instead of the value itself. The code is publicly available1.

4.1 2D Transformations

Every point in the 2D plot is defined with the x and y coordinates. Note that any
two parameters of any FI technique can be set on the x and y-axis. This can be
intensity and pulse width in LFI or EMFI, or x and y location of the laser spot
or EM probe on the target. As mentioned, we will rotate, scale, and translate
our interesting area (shape) over the target area. We perform rotation with
expressions xt = x cos θ − y sin θ and yt = x sin θ + y cos θ. Here, θ is the angle of
the rotation. While rotation can be done around any specified point, this formula
and what we use in our transformations rotate points around the coordinate
system’s (0, 0) point. We allow scaling to a minimum of 20% of the entire range
for x and y, so the area does not become overly small. For the maximum, we can
scale the interesting set of parameters to the entire area. However, we do not
necessarily scale equally on both axes, so we can also get the stretching effect.
The percentage for the minimum size can be adjusted depending on the real
results. To perform the scaling and shifting, we select the starting points (lower
bounds) for x and y. The upper bound is then defined with the lower bound and
interval size. This way, depending on the lower bound, we have the shift, and
depending on the interval, we have scaling.

As mentioned, we need to adjust the transformations for the cases where
we must conform to the assumptions we described. Firstly, we limit the angles
for the rotation of the interesting area. Secondly, instead of scale and shift, we
stretch over both axes and cause a more dense area on other parts. We show this
in our experiments with the voltage glitching results, and the reasons are more
apparent when we can see the effects visually in the plotted results.

1 The code is available at https://github.com/marinakrcek/transformations FI.

https://github.com/marinakrcek/transformations_FI

Transforming Fault Injection Target Characterizations 171

4.2 Polynomial Transformations

The explained 2D transformations are used only on two FI parameters shown
in a 2D graph within the publication. However, if we want to consider altering
the data using all the parameters, then we propose polynomial transformations.
We consider these transformations to randomize the non-interesting points or
interesting points to lose shape but keep the distribution of fault classes.

We can transform each parameter using a polynomial with different coeffi-
cients. We refer to these transformations as local transformations. These are used
to break the relative positioning of the points. We can also run a global transfor-
mation that simultaneously transforms all data using the same coefficients for
the whole set of parameter combinations. These are used to shift and scale the
points. During transformations, the values may get out of bounds, so we have
three options for resolving those situations. First, we can clip the values, mean-
ing that if the transformed index is out of bounds, we clip it to a lower or higher
bound depending on which is closer. Another option is the modulo operation
(remainder of a division), where if the value is out of bounds, we will calculate
a modulo with the number of possible values. Lastly, we have scale, where the
values are scaled to the original parameter interval. While modulo and clip can
be done immediately after transforming each parameter combination, scaling
is done after we transform all the data. This way, we obtain the transformed
intervals for the parameters used to scale to the original intervals.

To define the polynomial, the user sets the degree of the polynomial, and
the coefficients are selected uniformly at random from user-defined intervals or
expressions to define the interval. We can also define a specific polynomial func-
tion that controls the output of the transformation, but as we want to randomize
the data, we keep the coefficients random. We report the coefficient intervals we
used in the presented experimental results. We have a coefficient a0 not multi-
plied by the variable x, allowing larger values for this coefficient. We limit the
possible values by a maximum of 20% of the allowed values of the parameter.
Thus, there is a different interval for the coefficient for each parameter. For
global transformation, we use a parameter with the least possible values. For
the next coefficient, a1, we set the allowed interval to [−2, 2). The issue is that
the changes will be small with the small indexes, even if the number of allowed
values for that parameter is large. We, therefore, allow negative coefficients, as
we can still have larger changes depending on the chosen way of handling the
out-of-scope values. Other coefficients are defined to achieve lower coefficients for
higher polynomial coefficients with the expression 0.5(degree−2−i), where degree
is the defined polynomial degree. We add the term −2 as intervals for coefficients
a1 and a0 are already defined. i is the counter from degree − 2 to zero. These
coefficients must get smaller as x has larger exponents because, in our case, x is
an index, a positive value that can get rather large as the exponents get larger.

We noticed that the polynomial of degree 1 is sufficient, and larger polyno-
mial degrees do not change the data in any other different pattern than visible
with the polynomial of degree 1. The difference is that the changes are more
significant, which is quite prominent with clipping, as more points get clipped

172 M. Krček

to maximum or minimum values for the parameters. We tested several other
combinations of the coefficient intervals and expressions with smaller and larger
values. Our search is not exhaustive, but we noticed similar behavior with larger
coefficients as with larger polynomial degrees. Also, the benefit of using the
global transformation after the local one is that the data is not spread over the
whole parameter 2D space but usually occupies a smaller region of a rectangular
or oval shape.

5 Utilized Data Examples

To allow evaluation of the proposed transformations, we need relevant examples
of target characterizations. We do not use real confidential data because we
cannot show the original data and its transformed data. Instead, we use published
work and one simulated example.

First, we use an example from [16] with a graph of Electromagnetic FI
(EMFI) showing x-y locations on the target and corresponding fault classes. The
authors use RESET, NORMAL, CHANGING, and SUCCESS fault classes. Since
we investigate different examples, we use the fault class names MUTE, PASS,
CHANGING, and FAIL, which correspond to the mentioned fault classes. As
we did not have the original data, we extracted it from the pixels of the image.
Similarly, attackers could obtain results from published figures to get precise
data points. Note that the attacker can take the interval and search only in that
area, which is more efficient than mounting a complete characterization. How-
ever, extracting from the pixels is more specific and speeds up an attack. With
transformations, we want to prevent this. Additionally, we show another example
that corresponds well with possible LFI or EMFI campaign results, showing x-y
locations on the target in the 2D plots. For this example, we also show 3D plots
with intensity on the z-axis. The third example is somewhat different, where
glitch voltage and length are on the x and y-axis. The data is obtained in the
same manner as for the EMFI data example from [21]. This example represents
parameters for which analysts have some assumptions. Specifically, in this case,
the assumption is that we expect normal behavior from the device (PASS) with
a low values combination of those parameters. Contrary, with high values for
that combination of parameters, one would expect the device to reset or stop
communication (MUTE). The interesting FAIL responses are usually situated
on a border between the two regions which analysts try to find during character-
ization. Another example of such parameters would be laser intensity and pulse
width for LFI.

Reverse Engineering Data Points from Figures. There are online tools,
such as Webplotdigitizer2 [24] or PlotDigitizer3 [1], where one can upload an
image, and after aligning the x and y axes, it is possible to extract the information

2 https://automeris.io/WebPlotDigitizer/.
3 https://plotdigitizer.com/.

https://automeris.io/WebPlotDigitizer/
https://plotdigitizer.com/

Transforming Fault Injection Target Characterizations 173

about certain points from the plot. However, we used Python Imaging Library
to read the pixels as it was easier to save the data for later transformations.
Each pixel defined with its location has an RGB (Red Green Blue) code - an
array with three values for determining the color. From the legend, we can learn
the color of each fault class in the plot. From the range information on each
axis, we can scale the data from pixels to the actual scope of the parameters. In
this manner, we obtain the parameter values from the image and the device’s
response per parameter combination.

6 Experimental Results

6.1 Electromagnetic Fault Injection (EMFI) Case

Transformations. We start with the EMFI case, where the authors pre-
sented information about the device, its size, used intervals, and the obtained
results [16]. The results from the original paper are presented in Fig. 1a. As previ-
ously explained, we extracted the data from pixels in the image, and the result is
visible in Fig. 1b. As mentioned, we recommend polynomial transformations for
randomizing the data, and they are specifically useful for more than two dimen-
sions when we do not care about visual results. Nevertheless, we first show results
using polynomial transformations to showcase their issue when using them for
the visual representation of the results. Transformed data is visible in Fig. 2. We
transform the interesting points while the non-interesting (PASS) remain the
same. In Fig. 2a, we show a polynomial of degree 1 with the clip method for val-
ues out of bounds. Here, the original interesting area is visible as an empty area
as we did not replace the points, neither we alter the rest of the non-interesting
points. The clip method is noticeable in the edges of the rectangular shape. In
the setting without global transformation, the values are on the borders of the
plot. The global transformation translated and scaled the interesting area after
local transformations. With larger polynomial degrees (2 and 3), more values

(a) Original plot from [16]. (b) Extracted data from Figure 1a.

Fig. 1. Original cartography from [16] and extracted data from the image.

174 M. Krček

(a) Polynomial of degree 1 with clip
method and global transformation.

(b) Polynomial of degree 1 with scale
method and global transformation.

Fig. 2. Polynomial transformations on cartography shown in Fig. 1.

are clipped and end in the image’s corners. Next, we show the results with the
scale method in Fig. 2b, which rounds the interesting points around the central
point in the image. Also, we replace the interesting points in the original data
with a non-interesting class as we want to cover the empty space in the plot
that indicates where the interesting points were located. The difference between
results with and without global transformations is the translation of the central
point and scaling. The points converge more to the central point with a higher
polynomial degree and larger coefficients. We also tested the modulo method
with the same example. The transformation results with modulo are that the
data is fully randomized over the whole area if global transformation is not used.
Similarly, global transformation can shift and scale the area, and the interest-
ing area can become a smaller rectangular shape. The resulting shapes of the
interesting area are very different from the original data. Still, if we do not con-
sider the visual shapes, we can use the transformations on more dimensions for
statistical analysis.

We now show two different 2D transformations on the extracted data
from [16]. First, we have the transformation results shown in Fig. 3a we refer
to as transformation T1. The issue with the result of T1 is the overlap with
the interesting area in the original cartography. An example without such an
overlap is preferred and visible in Fig. 3b as transformation T2. Non-interesting
points replace the original interesting area as before. Transformation preserves
the shape from the original cartography, but it is rotated, scaled, and moved to
another region. Thus, the attacker could focus on the area shown in the figure
and miss the actual interesting area. Finally, the actual values of x and y on
corresponding axes are hidden by normalizing the data. Without knowing the
parameter intervals, we do not know if the whole target was tested or only a
specific smaller part.

Transforming Fault Injection Target Characterizations 175

(a) T1: Angle of rotation is 165 x is in
the interval [0.01, 0.99], and y in [0.28,
0.99].

(b) T2: Angle of rotation is 310 x is in
the interval [0.05, 0.32], and y in [0.55,
0.93].

Fig. 3. 2D transformations on cartography shown in Fig. 1.

Note that x-y target characterizations can end in different unique shapes.
Therefore, one can consider that knowing the shape can still help the attackers
make more efficient attacks. So, depending on the wanted level of security, we can
change the shape with local polynomial transformations or with more specific
transformations for different shapes.

Reversing Transformed Data. Now, we discuss how an attacker could find
the correct transformation presented in a certain work. We consider that the
attacker knows what transformations are used, and we also assume that the
attacker knows the intervals for the parameters. We investigate how many pos-
sible transformations there are and how long it would take to reach the original
cartography with a brute-force approach.

Since we use rotations on the interesting area, we have 360 possible rota-
tions. For scale and shift, the number of possibilities depends on the number of
possible values of the parameters for the x and y axes. The number of possible
transformations is calculated with the following formula for each parameter:

n(n + 1)
2

, n = �0.8 · nb values� + 1. (4)

nb values is the number of possible values for a specific parameter. As previously
explained, we select the interval size and the lower bound to define the shift and
scaling. The possibilities for the interval size are between 20% of the possible
values and all possible values. Depending on the selected size, there are more
or fewer possibilities to set the lower bound of the new interval. For example, if
we uniformly at random select that the size of the interval is 20% of all possible
values for that parameter, then the number of possibilities for the lower bound
is the highest - 80% of the total number of possible values for the parameter. If,
on the other hand, the selected size is all the possible values of the parameter,
then there is only one possibility for choosing the lower bound. In the end, we
have a sum of options calculated with the expression above.

176 M. Krček

In the case of EMFI cartography, with 481 possible values for both x and y,
we have 74 691 possibilities for each, which in combination gives ≈ 5.58 × 109

options. With rotations, we have ≈ 2.01 × 1012 possible transformations in this
setting. If it takes 1 ms to test one possible transformation, it will take around
63 years to test all combinations. Therefore, if we consider the attack setting as
described, it would take too long for the attacker to test all transformations and
find the correct one in a reasonable time.

6.2 Simulated Case

We test the transformations on another example of a specific shape found with
a fault injection campaign. We consider it to represent the x-y cartography of
the EMFI or LFI campaign. The example does not correspond to any target or
real cartography but is a good example as it highlights possible issues with the
current transformations.

Transformation. We refer to the cartography presented in Fig. 4a as the orig-
inal cartography, and we transform the data shown in that plot. We initially
transform the data in the same way as in the previous example, and the result is
visible in Fig. 4b. We replace the originally interesting area with a non-interesting
area. However, since the area has a specific shape and many interesting points
when replaced by a non-interesting fault class, we still see where the previous
location was. In the following transformation in Fig. 4c, we do not replace the
interesting area with a non-interesting fault class. Additionally, the interesting
area is far from the original, interesting area, which is the desired result. How-
ever, we still notice that the non-interesting points are denser in the area close
to the originally interesting area, which could help attackers find the real vulner-
abilities. Since polynomial transformations are good for randomizing the data,
we perform the local polynomial transformation of degree 1 with the modulo
method, but only for the non-interesting fault class. We selected modulo as it
was shown in our previous experiments that it had the best ability to spread
the points over the entire target area. The result is a plot in Fig. 4d, where we
see that the points are randomized over the whole target area, and there are
no particularly dense areas to attract attention. In this transformation, the new
interesting area is again not close to the actual interesting area hiding the real
vulnerable locations. Here, we do not disclose the coefficients of the polynomials
as they are selected uniformly at random from previously described intervals for
each non-interesting x-y combination.

Reversing Transformed Data. In this setting, we have 32 896 interval com-
binations for x, and 61 075 for y, which equals ≈ 2.01 × 109 combinations in
total. Again, we add the rotations and reach ≈ 7.23 × 1011 combinations. In
this case, we would need 22.94 years to test all transformation combinations if
testing one transformation takes 1 ms. While we need less time to test all the
transformations, it is still unreasonable to consider brute force.

Transforming Fault Injection Target Characterizations 177

(a) Simulated cartography.

(b) x is
in the interval [0, 0.97], and y in [0.01,
0.95].

(c) x is in
the interval [0.14, 0.56], and y in [0.08,
0.28].

(d)

T1: Angle of rotation is ,

T2: Angle of rotation is ,
T3: Angle of rotation is , x is

in the interval [0.17, 0.99], and y in
[0.01, 1]. The polynomial transforma-
tion is used for non-interesting points.

Fig. 4. Simulated cartography with its transformations.

3D Plot. Additionally, we show that we can transform data for figures that
display three different parameters in a 3D plot. We use transformed data shown
in a 2D plot in Fig. 4c and add the intensity to the z-axis. Figure 5a shows the
data in 3D with the original intensity values without showing the non-interesting
points for better visibility of the interesting area. As with other parameters, we
also normalize the data for the z-axis. Hiding the actual intensity values by
normalizing them could be enough. If we do not specify the range we used and
disclose the information about the bench and the laser, it would be hard for an
attacker to reverse the intensity values. However, we can randomize the intensity
as well. Figure 5b shows the transformation of intensity in a way that for every
point, a new random intensity was selected. On the other hand, in Fig. 5c, we
map all possible values of the intensity to another intensity value. Then, the
original intensity value gets replaced by the preselected random intensity value
for every point. The values of the intensity can repeat in this setting. Thus, we
add another option where we create unique mappings and use those to alter the
intensity values. This transformation is visible in Fig. 5d.

178 M. Krček

(a) Original intensity values.
(b) Intensity values set uniformly at
random for each data point.

(c) Intensity values mapped to inten-
sity values with possible repetition.

(d) Intensity values mapped to unique
intensity values.

Fig. 5. T2 (Fig. 4c) of simulated cartography with transformations for the intensity on
z-axis.

6.3 Voltage Glitching Case

The last use case is based on voltage glitching experiments presented in [21].
The original results are in Fig. 6a. There is glitch voltage on the x-axis, and
on the y-axis is the glitch length. In this case, contrary to x-y locations, there
are generally applicable assumptions for the target’s responses depending on
the glitch voltage/length values we already described. The analysts search for
the boundary between the two regions. Therefore, we want to adhere to the
assumptions by keeping the relations with transformed data but hiding the actual
border between the classes where the device behaves as expected (PASS) and
resets or stops communication (MUTE).

Transforming Fault Injection Target Characterizations 179

(a) Original plot from [21]. (b) Extracted data from Figure 6a.

Fig. 6. Original cartography from [21] and extracted data from the image.

Transformation. First, we extract the data from the original plot (Fig. 6a), and
the result is visible in Fig. 6b. Note that the real parameter values are visible
in the original plot, but we display plots with normalized values. Considering
the assumptions, we care about absolute values, so the value −5 for the glitch
voltage is replaced with 1.

The issue with the transformation we used for x-y characterization is that
the boundary between interesting and non-interesting areas would not align with
the mentioned assumptions. Suppose we can rotate the interesting area with any
of the 360 angles. In that case, we can get a transformation where the border
is not between the regions but at the plot’s far left. On the other hand, if we
rotate all the points, we can get a plot indicating the opposite response of the
target - lowest values lead to MUTE and highest to PASS class. Moreover, it
might be enough for these types of parameters to normalize the data. If we do
not specify the range we used, it would be hard for an attacker to reproduce the
injections. However, we still slightly adjusted the transformations by limiting
the possibilities of previous transformations to conform with the assumptions
for the glitch voltage-length parameters. Firstly, we do not allow all possible
angle rotations but only from [−80◦, 30◦], which we defined using the trial-and-
error approach by visually checking if the assumptions still hold. The parameter
combinations with FAIL fault class stay close to the border with a non-interesting
area and do not invert to the opposite side using defined rotations. Previously,
if we scaled and shifted only the interesting area, we lost the relative positioning
of the MUTE and PASS classes. Instead, we make data points more dense or
sparse by splitting the data below and above certain values on the x and y-
axis. Then, we select new splitting x and y values and scale the data. Scaling is
done so that the points above the first selected value remain above the newly
selected splitting value and analogously for points below the selected values. Let
us assume we selected a value x1 and then x2. In this case, the points below
x1 will be scaled from 0 to x2. The value of x2 can be lower or higher than the
x1. If x2 is lower than x1, the points will be denser; otherwise, the points will
be more stretched as the interval increases. The results of these transformations

180 M. Krček

are visible in Fig. 7. We can see that the relative positions of the different areas
remain in both figures. In the T1 transformation in Fig. 7a, the FAIL points are
close to the original border but rotated so that lower glitch length leads to those
points. In the T2 transformation, the MUTE area is stretched, while the PASS
area is denser since the border is moved to the right. As the data is stretched,
the points become sparse in some areas. The exploration with algorithms is
usually random over the whole search space, so one cannot expect such sparse
testing in specific regions. Thus, we need to consider this for publishing the
results. However, an algorithm used in this example converges to FAIL outcomes.
The sparseness is explained by convergence in the algorithm, also visible in the
original cartography.

(a)
change on x. y moved from 0.36 to 0.44.

(b)
T1: Angle of rotation is No

T2: Angle of rotation is x
moved from 0.67 to 0.31 and y from
0.44 to 0.27.

Fig. 7. Transformations of the glitching example (Fig. 6a).

Reversing Transformed Data. With the described transformations, we have
even fewer possible transformations. The reason is fewer possible values for the
parameters and limited possibilities because the transformations need to conform
to the assumptions. We allow 110 possible rotations, and the splitting points are
between 20% and 80% of all possible voltage or glitch length values. From 100
possible values for voltage, we allow 60, and from 75 possibilities for length, we
have 45. In total, that is 7.29×106 possibilities, and after adding the rotations we
have 8.019 × 108 possible transformations. It will take 9.28 days to try all com-
binations if one takes 1ms. That is much less time to test all combinations than
in the previous examples. However, as already mentioned, hiding the parameter
ranges, in this case, could be enough.

6.4 Evaluating the Effect of Transformations

To evaluate the effect of transformation, we use Kullback-Leibler divergence
(KLD) and Canonical Correlation Analysis (CCA). KLD and CCA evaluate how
similar the transformed data is to the original data. KLD is used to compare the

Transforming Fault Injection Target Characterizations 181

distribution of fault classes and data points between original and transformed
data, while CCA indicates the level of correlation between the two data sets.
Since our transformations use randomness, with CCA, we measure if the trans-
formed data has been randomized to a point where there is almost no correlation
with the original data. While this was more critical for polynomial transforma-
tions, we kept it for the 2D transformations. Note that the implementation of
CCA is taken from the public GitHub repository4 [18,23].

Using the notation from the previous KLD definition, we consider the data
from true cartography (target characterization) as the reference probability P
and the probability of the transformed data as Q. We compute how the distri-
bution from the transformed data differs from the true data for fault classes and
utilized parameter values. The probability distribution for KLD is obtained by
finding the frequency of each possible value for parameters in true and trans-
formed data. We calculate KLD for each parameter and show the mean KLD
in Table 1. Similarly, we calculate the KLD for fault class distribution. On the
other hand, since we replace the original interesting area with a non-interesting
fault class in some examples, we effectively add the newly transformed data to
the existing one. For this reason, there is a different number of data points in
the original and transformed data, and to calculate the CCA, we need to have
the same number of data points. In most cases, we only transform the inter-
esting area, so we calculate the CCA only on the interesting points. However,
when possible, we show CCA on all data points, which is visible in the same
Table 1. Occasionally, there could be overlaps and, with that, a possible change
in fault class distribution, but this remains low, as visible by the KLD in all
cases. The difference between the data’s original and transformed distribution of
parameter values remains low in the EMFI example. In the simulated example,
with each transformation, the KLD increased. In T1, the original interesting
area was replaced with non-interesting points. Then in T2, we removed this, and
KLD increased. Lastly, we used polynomials to randomize the PASS fault class,
resulting in a higher KLD because all the points have been modified. However,
the worst situation is in the example with voltage glitching, as KLD is very high.
This example’s number of data points is lower than in other examples. Thus,
many possible points are not tested, so the difference in the value distributions
is high. CCA converges nicely to one, meaning original and transformed data are
highly correlated. However, with the simulated example, when we calculate CCA
for the interesting points, it is below 0.5. For T2, CCA calculated on all data
points is close to 1 as points of the PASS class remain the same. On the other
hand, with T3 transformation, CCA is almost zero because as the PASS is ran-
domized, all data points are different. The issue might be the specific shape and
the number of altered points. Visual inspection still provides the best indication
for publishing, but these metrics offer good insight into the performed modifi-
cations. Metrics show that the transformations keep the fault class distributions
and remain correlated with the original data.

4 https://github.com/google/svcca.

https://github.com/google/svcca

182 M. Krček

Table 1. Kullback-Leibler Divergence (KLD) and Canonical Correlation Analysis
(CCA). By default, CCA is calculated only on data points of interesting fault classes.

EMFI Simulated Voltage glitching

KLD for
classes

KLD for
parameter
values

CCA on
interesting
data

KLD for
classes

KLD for
parameter
values

CCA on
interesting
data

CCA on
all data
points

KLD for
classes

KLD for
parameter
values

CCA on
interesting
data

CCA on
all data
points

T1 0.0039 0.0138 0.9999 0.0069 0.0053 0.4243 / 0.0035 10.679 0.9953 0.9221

T2 0.0186 0.0275 0.9999 0.0045 0.2172 0.2895 0.9355 0.0035 4.6081 0.9851 0.8684

T3 / / / 0.0001 0.3503 0.3738 0.0275 / / / /

7 Conclusion and Future Work

This work provides several techniques for transforming the target characteriza-
tion results to hide sensitive information. Indeed, we show that from a figure (a
typical representation of a characterization experiment), one could easily obtain
the exact data points leading to a fault. We discuss various transformations and
analyze the results for three different scenarios showing that using transforma-
tions significantly hinders the possibility of reverse-engineering the data from
graphs. Additionally, we show that our transformations maintain the correct
information about the data distribution and are highly correlated with the orig-
inal data, making the transformed figures relevant. We show these transforma-
tions provide additional layers of hiding confidential data. We discuss potential
cases where such transformations could be useful, and with that, we try to moti-
vate Evaluators to share more data as it can lead to improved benchmarking
and, consequently, the security of different systems against fault injections.

Proposed transformations are rather simple, which makes them easy to apply.
However, more research should be done to provide guarantees on the effort to
reverse the data. Furthermore, we aim to explore how to make automated trans-
formations. Current experiments still require an expert with knowledge about the
nature of parameters to select appropriate transformations. Building a rule-based
system that can transform the data while maintaining the relevant assumptions
would be interesting.

Acknowledgements. We thank the reviewers for their time and feedback, especially
shepherd Shivam Bhasin.

References

1. PlotDigitizer: Version 2.2 (2022). https://plotdigitizer.com
2. Agoyan, M., Dutertre, J.-M., Naccache, D., Robisson, B., Tria, A.: When clocks fail:

on critical paths and clock faults. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny,
J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 182–193. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12510-2 13

3. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.-P.: Fault attacks on
RSA with CRT: concrete results and practical countermeasures. In: Kaliski, B.S.,
Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 20

https://plotdigitizer.com
https://doi.org/10.1007/978-3-642-12510-2_13
https://doi.org/10.1007/3-540-36400-5_20

Transforming Fault Injection Target Characterizations 183

4. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

5. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

6. Breier, J., Hou, X.: How practical are fault injection attacks, really? Cryptology
ePrint Archive, Paper 2022/301 (2022). https://eprint.iacr.org/2022/301

7. Carpi, R.B., Picek, S., Batina, L., Menarini, F., Jakobovic, D., Golub, M.: Glitch it
if you can: parameter search strategies for successful fault injection. In: Francillon,
A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 236–252. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08302-5 16

8. Fuhr, T., Jaulmes, E., Lomné, V., Thillard, A.: Fault attacks on AES with faulty
ciphertexts only. In: 2013 Workshop on Fault Diagnosis and Tolerance in Cryptog-
raphy, pp. 108–118. IEEE (2013)

9. Fukunaga, T., Takahashi, J.: Practical fault attack on a cryptographic LSI with
iso/iec 18033–3 block ciphers. In: 2009 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), pp. 84–92. IEEE (2009)

10. Ghalaty, N.F., Yuce, B., Taha, M., Schaumont, P.: Differential fault intensity anal-
ysis. In: 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp.
49–58. IEEE (2014)

11. Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an
overview with application to learning methods. Neural Comput. 16(12), 2639–2664
(2004). https://doi.org/10.1162/0899766042321814

12. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (eds.)
Advances in Cryptology – CRYPTO 1999. CRYPTO 1999. LNCS, vol. 1666, pp.
388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 25

13. Krček, M., Fronte, D., Picek, S.: On the importance of initial solutions selection in
fault injection. In: 2021 Workshop on Fault Detection and Tolerance in Cryptog-
raphy (FDTC), pp. 1–12 (2021). https://doi.org/10.1109/FDTC53659.2021.00011

14. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1),
79–86 (1951)

15. Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault
sensitivity analysis. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 320–334. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15031-9 22

16. Maldini, A., Samwel, N., Picek, S., Batina, L.: Genetic algorithm-based electro-
magnetic fault injection. In: 2018 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pp. 35–42. IEEE (2018)

17. Moradi, M., Oakes, B.J., Saraoglu, M., Morozov, A., Janschek, K., Denil, J.:
Exploring fault parameter space using reinforcement learning-based fault injec-
tion. In: 2020 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W), pp. 102–109. IEEE (2020)

18. Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neu-
ral networks with canonical correlation. In: Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Infor-
mation Processing Systems, vol. 31, pp. 5732–5741. Curran Associates, Inc.
(2018). http://papers.nips.cc/paper/7815-insights-on-representational-similarity-
in-neural-networks-with-canonical-correlation.pdf

https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://eprint.iacr.org/2022/301
https://doi.org/10.1007/978-3-319-08302-5_16
https://doi.org/10.1162/0899766042321814
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1109/FDTC53659.2021.00011
https://doi.org/10.1007/978-3-642-15031-9_22
https://doi.org/10.1007/978-3-642-15031-9_22
http://papers.nips.cc/paper/7815-insights-on-representational-similarity-in-neural-networks-with-canonical-correlation.pdf
http://papers.nips.cc/paper/7815-insights-on-representational-similarity-in-neural-networks-with-canonical-correlation.pdf

184 M. Krček

19. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electromag-
netic fault injection: towards a fault model on a 32-bit microcontroller. In: 2013
Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 77–88. IEEE
(2013)

20. Picek, S., Batina, L., Buzing, P., Jakobovic, D.: Fault injection with a new flavor:
memetic algorithms make a difference. In: Mangard, S., Poschmann, A.Y. (eds.)
COSADE 2014. LNCS, vol. 9064, pp. 159–173. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21476-4 11

21. Picek, S., Batina, L., Jakobović, D., Carpi, R.B.: Evolving genetic algorithms for
fault injection attacks. In: 2014 37th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1106–
1111. IEEE (2014)

22. Quisquater, J.J.: Eddy current for magnetic analysis with active sensor. Proc.
Esmart 2002, 185–194 (2002)

23. Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: singular vector
canonical correlation analysis for deep learning dynamics and interpretability. In:
Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol.
30, pp. 6076–6085. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/
7188-svcca-singular-vector-canonical-correlation-analysis-for-deep-learning-dyna
mics-and-interpretability.pdf

24. Rohatgi, A.: Webplotdigitizer: Version 4.5 (2021). https://automeris.io/
WebPlotDigitizer

25. Schmidt, J.M., Hutter, M.: Optical and EM fault-attacks on CRT-based RSA:
Concrete results.na (2007)

26. Skorobogatov, S.: Low temperature data remanence in static RAM. Technical
report. UCAM-CL-TR-536, University of Cambridge, Computer Laboratory, June
2002. https://doi.org/10.48456/tr-536

27. Picek, S., Batina, L., Buzing, P., Jakobovic, D.: Fault injection with a new flavor:
memetic algorithms make a difference. In: Mangard, S., Poschmann, A.Y. (eds.)
COSADE 2014. LNCS, vol. 9064, pp. 159–173. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21476-4 11

28. Werner, V., Maingault, L., Potet, M.L.: Fast calibration of fault injection equip-
ment with hyperparameter optimization techniques. In: Grosso, V., Pöppelmann,
T. (eds.) Smart Card Research and Advanced Applications. CARDIS 2021. LNCS,
vol. 13173, pp. 121–138. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-97348-3 7

29. Wu, L., Ribera, G., Beringuier-Boher, N., Picek, S.: A fast characterization method
for semi-invasive fault injection attacks. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS,
vol. 12006, pp. 146–170. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-40186-3 8

https://doi.org/10.1007/978-3-319-21476-4_11
https://doi.org/10.1007/978-3-319-21476-4_11
http://papers.nips.cc/paper/7188-svcca-singular-vector-canonical-correlation-analysis-for-deep-learning-dynamics-and-interpretability.pdf
http://papers.nips.cc/paper/7188-svcca-singular-vector-canonical-correlation-analysis-for-deep-learning-dynamics-and-interpretability.pdf
http://papers.nips.cc/paper/7188-svcca-singular-vector-canonical-correlation-analysis-for-deep-learning-dynamics-and-interpretability.pdf
https://automeris.io/WebPlotDigitizer
https://automeris.io/WebPlotDigitizer
https://doi.org/10.48456/tr-536
https://doi.org/10.1007/978-3-319-21476-4_11
https://doi.org/10.1007/978-3-319-21476-4_11
https://doi.org/10.1007/978-3-030-97348-3_7
https://doi.org/10.1007/978-3-030-97348-3_7
https://doi.org/10.1007/978-3-030-40186-3_8
https://doi.org/10.1007/978-3-030-40186-3_8

	What Do You See? Transforming Fault Injection Target Characterizations
	1 Introduction
	2 Background
	2.1 Fault Injection and Target Characterization
	2.2 Polynomial Functions
	2.3 Kullback-Leibler Divergence (KLD)
	2.4 Canonical Correlation Analysis (CCA)

	3 Motivation and Application
	4 Proposed Transformations
	4.1 2D Transformations
	4.2 Polynomial Transformations

	5 Utilized Data Examples
	6 Experimental Results
	6.1 Electromagnetic Fault Injection (EMFI) Case
	6.2 Simulated Case
	6.3 Voltage Glitching Case
	6.4 Evaluating the Effect of Transformations

	7 Conclusion and Future Work
	References

