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“From a Bayesian perspective, estimation is less about deducing the values of population parameters
and more about updating, sharpening, and refining our beliefs about the empirical world.”

Rick H. Hoyle



Abstract

Structural equation modeling (SEM) is frequently used in social sciences to analyze relations among
observed and latent variables and test theoretical propositions regarding relations among these latent
variables. Frequentist SEM relies on Maximum Likelihood Estimation, and although this method
works well for many simple situations, its performance is unsatisfactory when dealing with complex
models or small sample sizes. In search of a method that resolves those problems, Bayesian SEM has
been developed recently. These models produce more accurate parameter estimates. The Bayesian
approach to SEM offers the possibility of incorporating prior knowledge into SEM, allowing for model
extension and improvement. In this research, the theory of both frequentist and Bayesian SEM is
described. Subsequently, Bayesian SEM is illustrated with an application in educational sciences. A
method is proposed to specify prior distributions that use correlation estimates found in previous
research to reflect prior information and our confidence in that information. The results obtained
by an informative prior model are analyzed and compared to the results of a noninformative, weakly
informative, and frequentist model. It was found that the informative prior model produces more
accurate estimates than the noninformative and weakly informative prior models, indicating the
correctness of the specified priors.
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1
Introduction

Structural equation modeling (SEM) is a growing family of methods in the field of statistics that can
be used to model and estimate relations between unobserved, or latent variables. In social sciences, it
is common that certain variables cannot be measured in a direct way. Instead, these latent variables
are estimated by multiple observable variables. Examples of latent variables are student motivation
and academic performance, in which case the corresponding observed variables could be answers to
questions relating to motivation and grades for different courses, respectively. SEM can be used to
model the relations between latent variables using observed data and offers a flexible and increasingly
popular approach to hypothesis testing in the social sciences. Although the SEM framework was first
developed in the early 1980s [2], it is still expanding today through new developments. These emerging
capabilities, along with improved software programs for implementation, have caused an enormous
growth in the popularity of SEM. In the past two decades, SEM has become a widely used analysis
method in various fields, such as psychology, sociology, and educational studies [13].
Most commonly used is frequentist SEM, in which the model parameters are estimated by fitting
a maximum likelihood function. Since this method maximizes the likelihood function, it results in
estimates for which the observed data are most probable given the model. Although this estimation
method in SEM works well for many simple situations, its performance is unsatisfactory in dealing
with complex problems that involve complicated model structures or small sample sizes [34].

1.1. Bayesian SEM

Bayesian structural equation modeling (Bayesian SEM, BSEM) has recently gained popularity because
it can potentially resolve some of the difficulties with traditional frequentist SEM.
The primary difference between the frequentist and Bayesian approaches to SEM is that Bayesian
SEM assumes that the unknown parameter vector is a random variable. In contrast, the frequentist
SEM assumes the parameter vector to be a constant. The Bayesian approach offers several advantages,
including the possibility of incorporating prior information based on expert knowledge and previous
research. The prior information can be added to the model via prior distributions for the model
parameters.
The estimation of Bayesian SEM often relies on Markov chain Monte Carlo methods. This approach
resolves several difficulties of the maximum likelihood estimator and improves model outcomes [34].
Previous research has established that, generally, better results are realized using prior distributions
and Markov chain Monte Carlo methods. In particular, Bayesian SEM generates more reliable results
with complicated model structures or moderate sample sizes [13, 17].

To this date, research in many applications tended to focus on Bayesian structural equation models
with a small number of latent variables. Furthermore, previous studies on Bayesian SEM in the field of
psychometrics often lack proper mathematical formulation. This thesis gives an overview of Bayesian
SEM to estimate relations between a large number of latent variables and explores its possibilities.
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2 1. Introduction

1.2. Application in educational science
This thesis provides an introduction to Bayesian SEM as an important alternative to frequentist
approaches to SEM. To illustrate this, Bayesian SEM is used to test hypotheses from research in
educational sciences by analyzing student data collected by PRIME (PRogramme of Innovation in
Mathematics Education, research group at TU Delft). The hypotheses model of the PRIME research
consists of a large number of latent variables. Therefore, the model structure can be categorized
as complicated. Thus, for the PRIME research, the Bayesian approach to SEM is expected to be a
better suited method than the frequentist approach. A comparison between Bayesian en frequentist
SEMwill bemade to investigate if the Bayesian approach is indeed a better fit for the hypothesesmodel.

To improve mathematics education for engineering students at Delft University of Technology,
further insight in the dynamics between academic success, engagement, and teacher behavior is
needed. Therefore, the research question to be answered in the application of Bayesian SEM to the
PRIME research is the following:

What are the relationships between perceived scaffolding and monitoring cues, satisfaction and
frustration of needs for relatedness, autonomy and competence, autonomous- and controlled
motivation, and academic performance?

1.3. Thesis outline
This research starts with an introduction to the concept of latent and observed variables and an
overview of the frequentist approach to SEM in Chapter 2. This chapter is intended to introduce
readers to key ideas and the steps involved in the procedure of SEM. Subsequently, Chapter 3
elaborates on the Bayesian approach to SEM, including information on informative parameter priors,
as well as noninformative andweakly informative priors. In Chapter 4, Bayesian SEMwill be applied to
the hypotheses formulated in the PRIME educational research. A method to specify prior distributions
is proposed, that incorporates previously found correlation estimates to reflect both the prior
information and our confidence in that information. To examine if these priors are correctly specified
and if they improve the model, a comparison is made with a noninformative and a weakly informative
prior model that both use the Bayesian approach. To investigate whether Bayesian SEM has offered
more accurate results than the frequentist approach in the application to student motivation and
performance, this chapter will compare the Bayesian results with results obtained by a frequentist SEM.

Following convention, in this thesis the abbreviation SEM will be used for both the method,
structural equation modeling and the model, a structural equation model.



2
Structural Equation Modeling

The origins of structural equation modeling (SEM) stem from factor analysis and path analysis.
The idea of factor analysis is to identify latent variables (factors) based on the correlation structure
of the observed variables (indicators), where path analysis was designed to examine and compare
relations between variables. The measurement approach (factor analysis) and structural approach
(path analysis) were integrated to create SEM, a more generalized analytical framework that can be
used to estimate relations between latent variables [36].

SEM is widely used in behavioral, educational, psychological, and social research. More recently, the
method is gaining attention in biomedical research [17].

2.1. Observed and latent variables
Observed variables, sometimes called observable, manifest, or measurement variables, are those that
can be measured in a direct way. Examples are test scores, the grade point average, gender, and Likert
items (statement for which a respondent specifies their agreement level). Measurements from these
variables provide observed data that can be used as the basic source of information for the statistical
analysis of a structural equation model [17].

In psychological and educational research, it is common that certain variables cannot be measured
in a direct way. These variables are called latent, or unobserved. Examples of such variables are
student motivation and needs satisfaction. To gain insight in latent constructs, a combination of
several observed variables is needed [17]. Hence, every latent variable is linked to a certain amount of
observed variables through a coefficient called a factor loading that indicates the strength of the link.
For instance, several research-based Likert items should be combined to evaluate student motivation
and needs satisfaction.
We distinguish two types of latent variables: endogenous latent variables and exogenous latent
variables. The former are influenced by other latent variables of the model, whilst the latter are not.
Thus, the causes of exogenous latent variables lie outside the model, but these variables can influence
other (endogenous) latent variables. The two types result from the specification of links between the
latent variables in a SEM.

For practical research in social sciences, it is often necessary to examine the relations between
the latent variables of interest. An example of such research can be found in Chapter 4. This gives
motivation for the development of structural equationmodels: a statisticalmethod that simultaneously
groups highly correlated observed variables into latent variables and assesses relations among latent
variables [17].

3



4 2. Structural Equation Modeling

2.2. Structural equation model

Structural equation modeling can be summarized in five steps: model specification, model
identification, model estimation, model evaluation, and model modification [3, 36]. This section will
elaborate on these five steps, which are summarized in Figure 2.1.

Figure 2.1: Steps in the implementation of a SEM. The arrows visualize the typical process of revisiting steps.

2.2.1. Model specification

The first step refers to correctly specifying and formulating the structural equationmodel for obtaining
the correlation estimates. We will first introduce the variables and notation.

The endogenous latent variables of the model are represented by vector 𝜂, and the exogenous
latent variables by vector 𝜉. The effects of the endogenous latent variables on other endogenous latent
variables are represented by matrix 𝐵. The effects of the exogenous latent variables on the endogenous
latent variables are represented by matrix Γ, and lastly, 𝜁 represents the residual term. It is assumed
that 𝜁 is independent of 𝜂 and 𝜉.

The endogenous and exogenous latent variables are defined by the corresponding observed variables,
denoted 𝑋 and 𝑌, through two systems of linear equations with coefficient matrices Λ𝑦 and Λ𝑥,
respectively. In other words, Λ𝑦 and Λ𝑥 contain the factor loadings. For each latent variable, one of
the factor loadings must be specified as 1, for the purpose of model identification and defining the
scale of the latent variable. The measurement errors are denoted by 𝜖 and 𝛿, it is assumed they are
independent of each other and 𝜂, 𝜉 and 𝜁 [36]. An overview of the definitions of the variable vectors is
given in Table 2.1 and an overview of the definitions of the parameter matrices is given in Table 2.2.

Table 2.1: Definitions of the variable vectors of the structural equation model.

Variable Definition Dimension
𝜂 Endogenous latent variable 𝑚 × 1
𝜉 Exogenous latent variable 𝑛 × 1
𝜁 Residual term in equations 𝑚 × 1
𝜖 Measurement errors of the endogenous factor loadings 𝑝 × 1
𝛿 Measurement errors of the exogenous factor loadings 𝑝 × 1

Note: 𝑚 and 𝑛 correspond to the number of endogenous and exogenous latent variables, respectively. 𝑝 and 𝑞 represent to the
number of observed variables that correspond to the endogenous and exogenous latent variables, respectively.
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Table 2.2: Definitions of the parameter matrices of the structural equation model.

Matrix Definition Dimension
𝐵 Coefficient matrix for relations between endogenous latent variables 𝑚 ×𝑚
Γ Coefficient matrix relating exogenous latent variables to endogenous 𝑚 × 𝑛

latent variables
𝑌 Observed variables corresponding to endogenous latent variables 𝑝 × 1
𝑋 Observed variables corresponding to exogenous latent variables 𝑞 × 1
Λ𝑦 Factor loadings relating to endogenous variables 𝑝 × 𝑚
Λ𝑥 Factor loadings relating to exogenous latent variables 𝑞 × 𝑛

Note: 𝑚 and 𝑛 correspond to the number of endogenous and exogenous latent variables, respectively. 𝑝 and 𝑞 represent to the
number of observed variables that correspond to the endogenous and exogenous latent variables, respectively.

The general structural equation model can be expressed by three basic equations [36]:

Structural model

𝜂 = 𝐵𝜂 + Γ𝜉 + 𝜁 (2.1)

Measurement model

𝑌 = Λ𝑦𝜂 + 𝜖 (2.2)

𝑋 = Λ𝑥𝜉 + 𝛿 (2.3)

These equations are expressed in matrix format. Equation 2.1 represents the structural model which
establishes the relations or structural equations among the latent variables. Equations 2.2 and 2.3 are
measurement equations.

To further illustrate SEM, consider the following example.

Example 2.2.1. Consider a SEM with one exogenous variable, 𝜉, that is defined by observed
variables 𝑥1, 𝑥2, 𝑥3 and 𝑥4, and with two endogenous latent variables, 𝜁1 and 𝜁2. The effects of 𝜉 on 𝜁1
and 𝜁2 are denoted by 𝛾11 and 𝛾12 respectively. Variable 𝜁1 is defined by observed variables 𝑦1 and 𝑦2.
Variable 𝜁2 is influenced by 𝜁1, specified by 𝛽12, and is defined by 𝑦3, 𝑦4 and 𝑦5. For all latent variables,
the first factor loading is taken as 1 for scaling purposes. The other factor loadings are specified by 𝜆’s.

The structural part of the model can be expressed as

[𝜁1𝜁2] = [
0 0
𝛽12 0] [

𝜁1
𝜁2] + [

𝛾11
𝛾21] 𝑋 + [

𝜁1
𝜁2] . (2.4)

The first measurement equation can be expressed as

⎡
⎢
⎢
⎢
⎣

𝑦1
𝑦2
𝑦3
𝑦4
𝑦5

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1 0
𝜆𝑦21 0
0 1
0 𝜆𝑦42
0 𝜆𝑦52

⎤
⎥
⎥
⎥
⎦

[𝜁1𝜁2] +
⎡
⎢
⎢
⎢
⎣

𝜖1
𝜖2
𝜖3
𝜖4
𝜖5

⎤
⎥
⎥
⎥
⎦

, (2.5)

and the second measurement equation as

⎡
⎢
⎢
⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

1
𝜆𝑥21
𝜆𝑥31
𝜆𝑥41

⎤
⎥
⎥
⎦
𝜉 +

⎡
⎢
⎢
⎣

𝛿1
𝛿2
𝛿3
𝛿4

⎤
⎥
⎥
⎦
. (2.6)

A visualization of this example can be found in Figure 2.2.
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x1 x2 x3 x4

y1 y2 y3 y4 y5

ξ

ζ1 ζ2

Figure 2.2: Path diagram of a structural equation model. The circles represent the latent variables and the squares represent the
corresponding observed variables. The dotted lines represent the factor loadings that are specified to be 1, for scaling purposes.

2.2.2. Model identification
Identification is an important consideration when specifying a SEM. The model identification
determines whether it is possible to obtain consistent and unique estimates for the unknown model
parameters from the observed data.
The easiest test for identification is the t-rule [2]. Intuitively, this rule checks whether the amount of
unknown information in themodel is less than or equal to the amount of known information. The t-rule
is given by the following equation:

𝑡 = 2𝑝 + 𝑧 ≤ 1
2(𝑝)(𝑝 + 1), (2.7)

where 𝑝 is the number of observed variables and 𝑧 is the number of relations between latent variables.

To illustrate this rule, we check the model specified in Example 2.2.1 for identification. In the
example, there are 9 observed variables and 3 relations between latent variables. Hence, the t-rule
holds:

𝑡 = 2(9) + 3 = 21 ≤ 45 = 1
2(9)(9 + 1). (2.8)

2.2.3. Model estimation
The idea of SEM estimation is to minimize the difference between the sample covariances and the
covariances predicted by themodel. The key assumption is that if themodel were correct and if we knew
the parameters, the population covariance matrix would be exactly reproduced. Thus, the hypothesis
that is tested by a SEM is

Σ = Σ(𝜃)𝑚 (2.9)

where Σ represents the population covariance matrix, which is the matrix containing the true
covariances between the model parameters. The right part of the equation, Σ(𝜃), represents the model
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implied covariancematrix. The estimatedmodel parameters are the result ofminimizing the difference
between these two matrices. Since we do not know Σ and Σ(𝜃), we minimize

(𝑆 − Σ(�̂�)), (2.10)

where 𝑆 is the sample covariance matrix, which is an estimation of Σ based on the sample data, and
Σ(�̂�) is themodel estimated covariancematrix with �̂� representing the estimatedmodel parameters [2].

Thus, for model estimation, we are interested in those values for 𝜃 that minimize the difference
between what we observe in the sample data and what the SEM implies. In general, this difference is
minimized iteratively by Maximum Likelihood Estimation.

2.2.4. Model evaluation
Another important step in SEM is to conduct an overall model fit test on the basic hypothesis
𝑆 = Σ(�̂�). If the model does not fit the data well, the estimates are not reliable. Therefore, the
overall model fit evaluation should be done before interpreting the parameter estimates. To do
this, many model fit indices have been developed [36]. In this section, we give the most commonly
usedmodel fit indices that are provided in ‘blavaan’, the R package used in this study (see section 4.1.4).

Measures of absolute fit assume that a perfect model has no deviation between the sample covariance
matrix and the model implied covariance matrix. Thus, a measure of absolute fit compares the SEM
with a theoretically perfect model. A low value of the measure of absolute fit implies a small difference
between the covariancematrices, meaning that the SEM is a good fit. We give twomeasures of absolute
fit [3, 36].

Definition 2.2.1. Let𝑁 be the sample size, let 𝑑𝑓 be the degrees of freedom of the model and let 𝜒2 be
the 𝜒2-statistic1 Then, the root mean square error of approximation (RMSEA) is defined by

RMSEA = √ 𝜒2 − 𝑑𝑓
𝑑𝑓(𝑁 − 1) . (2.11)

The RMSEA value ranges from 0 to 1, with smaller values indicating a better model fit. A value in the
range of 0 and 0.05 is considered to indicate a good model fit, a value in the range of 0.05-0.08 a fair
model fit and values above 0.08 a poor fit [36].

Definition 2.2.2. Let 𝑝 be the number of observed variables and let 𝑠 and 𝜎 be the elements
from the sample covariance matrix and the model estimated covariance matrix, respectively. The
standardized root mean squared residual (SRMR) is defined by

SRMR =
√Σ𝑗Σ𝑘 (

𝑠𝑗𝑘
√𝑠𝑗𝑗𝑠𝑘𝑘

− 𝜎𝑗𝑘
√𝜎𝑗𝑗𝜎𝑘𝑘

)
2

𝑝(𝑝 − 1)/2 . (2.12)

The SRMR value ranges from 0 to 1, with smaller values indicating a better model fit. A value in the
range of 0 and 0.08 is considered to indicate a good model fit, a value in the range of 0.08-0.10 an
acceptable model fit and values above 0.10 a poor fit [36].

On the other hand, measures of relative fit compare the SEM to the null-model, which represents the
model where all variables are uncorrelated. A high value of the measure of relative fit implies that the
model is significantly better than the null-model, meaning that the SEM is a good fit. We give two
measures of relative fit [3, 36].

1Or: chi-squared test. Test of overall model fit. The null hypothesis of the chi-square test is 𝐻0 ∶ ∑ = ∑(𝜃) [2].



8 2. Structural Equation Modeling

Definition 2.2.3. Let 𝑑 = 𝜒2 − 𝑑𝑓. Then, the comparative fit index (CFI) is defined as

CFI = 𝑑𝑛𝑢𝑙𝑙 − 𝑑𝑚𝑜𝑑𝑒𝑙
𝑑𝑛𝑢𝑙𝑙

. (2.13)

The CFI value ranges from 0 to 1; a value above 0.9 is considered to indicate a good fit.

Definition 2.2.4. The Tucker-Lewis index (TLI) is defined by

TLI =
𝜒2𝑛𝑢𝑙𝑙
𝑑𝑛𝑢𝑙𝑙

− 𝜒2𝑚𝑜𝑑𝑒𝑙
𝑑𝑚𝑜𝑑𝑒𝑙

𝜒2𝑛𝑢𝑙𝑙
𝑑𝑛𝑢𝑙𝑙

. (2.14)

The TLI value ranges from 0 to 1; a value above 0.9 is considered to indicate a good fit [36].

These measures combined offer acceptable insight in the goodness of fit. Hence, these fit indices are a
good approach to model evaluation.

2.2.5. Model modification
The model specification in the application of SEM is generally based on theory or previous research.
Often, the initial model does not fit the available data well. If the fit is not good, the model outcomes
should be assessed to determine what is specifically wrong with the model specification. After that,
the model specification has to be modified, taking into account identification, and re-tested using the
same data.

Most software programs that can model SEMs offer suggestions of changes in the model structures in
the form of modification indices. In the model modification step, variables or relations should not be
added or removed solely for the purpose of model fit improvement if this does not make sense in the
theoretical context of the application. The goal of SEM is to find a model that fits the data well from a
statistical point of view, while the model parameters have a meaningful interpretation [36].



3
Bayesian Structural Equation Modeling

The structural equation model, as defined in chapter 2, can be categorized as a frequentist approach
because the unknown model parameters are considered to be fixed. Parallel to expansions of the
classical structural equation models, Bayesian structural equation models have been developed[13],
where the model parameters are considered random variables.

Bayesian statistics, and in particular the Bayesian approach to structural equation modeling, has
several advantages compared to its frequentist counterpart [17]. Firstly, prior knowledge and
information can be incorporated into the analysis in order to produce better results. Secondly,
more reliable results are obtained with moderate sample sizes or complex models. Lastly, the
model comparison statistics, such as the Bayes factor and deviance information criterion, offer more
reasonable and flexible tools for model comparison and model checking. Model comparison statistics
can be used for hypothesis testing and for the assessment of the goodness of fit. These advantages
make Bayesian structural equation modeling an attractive method to estimate links between latent
variables.

3.1. Bayesian inference
Statistical inference can be defined as the problem of turning data into knowledge, where knowledge
often is not directly present in the data but rather in models that one uses to interpret data [8]. In
other words, statistical inference is concerned with drawing conclusions from numerical data about
variables that are not directly observed.
There is no universal agreement on the best approach to statistical inference. Two commonly advocated
views are the frequentist approach and the Bayesian approach [28]. To illustrate these different views,
let 𝜃 be a vector of unknown parameters of an arbitrary SEM, and let 𝑌 = (𝑦1, ..., 𝑦𝑛) be the observed
data set with a sample size 𝑛. In a frequentist approach, this vector of variables 𝜃 is not considered
random. It is assumed that there is an unknown true hypothesis about the underlying distribution of 𝜃
and that the observed data 𝑌 is sampled from that distribution. Analyses of the observed data are used
to determine the underlying truth of an experiment. In particular, the probability that a hypothesis is
true, regardless of the data, is not given or taken into account.

However, Bayesian inference models uncertainty by including the probability of the hypotheses
in the model through prior distributions of unknown model parameters. The method depends on a
subjective prior and the likelihood of observed data. In this approach, all unknowns are considered to
be random variables. Thus, in a Bayesian approach, the vector of unknown variables 𝜃 is considered
to be random, with prior distributions and associated prior density functions for every element. The
mean of the estimated posterior distribution is often taken as estimate for the parameters of interest.
Through this prior distribution, the model can be influenced by experiences of experts, thus giving
room for discussion about what priors to specify. For this reason, Bayesian statistics are sometimes
seen as more subjective than the frequentist approach. Nonetheless, the Bayesian approach is well
recognized as an advantageous approach to analyze a wide variety of models [16].

9
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The process of Bayesian inference can be described by the following three steps [11]:

1. Setting up a full probability model: specifying a probability distribution that incorporates
previous beliefs about observable and unobservable variables. The model should be consistent
with knowledge about the underlying theoretical framework and the data collection process.

2. Conditioning on the observed data: calculating and interpreting the appropriate posterior
distribution.

3. Evaluating the model: how well does it fit the data, what are the mean and mode of the resulting
posterior distribution? After analyzing the estimations, one can adjust the model and repeat the
three steps.

3.2. Bayesian structural equation model
To introduce the Bayesian approach to structural equation modeling, we consider an arbitrary SEM
with a vector of unknown parameters 𝜃. This vector thus contains the parameters from Equations (2.1)
to (2.3). We are interested in estimating the parameters of 𝜃.
The posterior distribution of 𝜃 plays a critical role in the Bayesian estimations of themodel parameters.
For that reason, we determine the density function of the posterior distribution of 𝜃, using Bayes’
theorem.

Theorem3.2.1 (Bayes’ theorem). Let (Ω, 𝐹, 𝑃) be a probability space, and𝐴, 𝐵 ∈ 𝐹 such that 𝑝(𝐵) > 0.
Then

𝑝(𝐴|𝐵) = 𝑝(𝐵|𝐴)𝑝(𝐴)
𝑝(𝐵) . (3.1)

Bayes’ theorem follows from the definition of conditional probability, the multiplicative law of
probability, and the law of total probability [27].

To apply Theorem 3.2.1, we first define the posterior distribution of 𝜃.

Definition 3.2.1. Let 𝑀 be an arbitrary SEM with a vector of model parameters 𝜃, and let Y be the
observed data with sample size 𝑛. The posterior distribution of 𝜃𝜃𝜃 is defined as 𝑝(𝜃|𝑌,𝑀), or in short
𝑝(𝜃|𝑌).

By conditioning on the known value of the data 𝑌 and using Bayes’ theorem, we obtain the following
corollary regarding the posterior density:

Corollary 3.2.1.1.

𝑝(𝜃|𝑌) = 𝑝(𝑌|𝜃)𝑝(𝜃)
𝑝(𝑌) . (3.2)

Here, 𝑝(𝑌) does not depend on 𝜃 and, with fixed 𝑌, can be considered to be a constant. Thus, an
equivalent form of (3.2) is given by

𝑝(𝜃|𝑌) ∝ 𝑝(𝑌|𝜃)𝑝(𝜃), or (3.3)

log 𝑝(𝜃|𝑌) ∝ log 𝑝(𝑌|𝜃) + log 𝑝(𝜃). (3.4)

Note that, since 𝜃 is considered random in the Bayesian approach, 𝑝(𝜃), or 𝑝(𝜃|𝑀), can be regarded
as the density function of the prior distribution of 𝜃. The second term, 𝑝(𝑌|𝜃), or 𝑝(𝑌|𝜃,𝑀), is the
likelihood function, because it is the probability density of 𝑌 conditional on the vector 𝜃 [16].

In case of a large sample size, 𝑝(𝑌|𝜃) could become very large and could thus decrease the influence of
the prior distribution. This leads to the following lemma.

Lemma 3.2.1. The Bayesian and frequentist approach to SEM are asymptotically equivalent1.
1Asymptotic equivalence occurs when functions eventually become essentially equal. More precisely, we say that two functions

𝑓 and 𝑔 are asymptotically equivalent if lim𝑥→∞
𝑓(𝑥)
𝑔(𝑥) exists and is equal to 1 [11].
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Proof. Let 𝑀 be a structural equation model with an arbitrarily large sample size. The likelihood
function of 𝑀, 𝑝(𝑌|𝜃), depends on the sample size, whereas the density function of the prior
distribution, 𝑝(𝜃), does not. Thus, in the case of large sample size, log𝑝(𝑌|𝜃) becomes very large while
log𝑝(𝜃) does not increase. From Equation 3.4, it follows that the term log𝑝(𝜃) becomes irrelevant
in the equation. Hence, the logarithm of the posterior density function 𝑝(𝜃|𝑌,𝑀) becomes arbitrarily
close to the log-likelihood function log𝑝(𝑌|𝜃,𝑀). In the frequentist approach to SEM, the likelihood
function is maximized to best fit the data, thus resulting in the same results as the log-likelihood
function [17].

It follows that, for large sample sizes, the performances of the Bayesian and frequentist approach to
SEM are similar. However, in the cases of small or moderate sample sizes, prior information about the
parameter vector 𝜃 plays an important role in the Bayesian approach. In general, its performance is
proven to be better, meaning that the goodness of fit of the model is improved [17].

3.3. Prior distributions
The characteristic feature of Bayesian statistics is the input of prior information based on subjective
expert knowledge, previous research, or closely related data. Therefore, in Bayesian SEM, prior
distributions for all model parameters must be specified. We let 𝜃 be the vector of all unknown
model parameters of a SEM. In a Bayesian approach, these model parameters are considered to be
random variables with a prior distribution. These prior distributions of the elements of 𝜃 represent the
distribution of possible parameter values from which the parameters in 𝜃 have been drawn [13, 17].
We can distinguish three types of priors for 𝜃: noninformative, weakly informative, and informative
priors. In general, the issue of choosing prior input should be approached on a problem-by-problem
basis [17].

3.3.1. Noninformative and weakly informative priors
In some cases, sufficient prior information may not be available beyond the data included in the
analysis. In those situations, it is still possible to apply Bayesian inference by using a noninformative
prior. The prior distributions of noninformative priors play aminimal role in the posterior distribution
of 𝜃. In these cases, the accuracy of Bayesian estimates is similar to that of the Maximum Likelihood
estimates obtained by frequentist SEM [17].
However, when using noninformative priors, the Bayesian approach still resolves some of the problems
related to maximum likelihood estimation. For example, it has been shown that in the context of SEM,
the statistical properties of the maximum likelihood approach are not robust to small sample sizes
[17, 34, 38]. In contrast, the sampling-based Bayesian methods depend less on asymptotic theory and
hence have the potential to produce reliable results even with small samples [17, 34].
The limitations of maximum likelihood in parameter estimations for SEM have led researchers to
turn to alternative estimation methods, in particular Bayesian estimation. Since prior distributions
are an important component of Bayesian analysis, ‘default’ priors were constructed. The superior
performance of Bayesian SEM in the case of small sample sizes or complex models motivates the use
of noninformative priors as oppose to frequentist SEM.

Most software packages have default noninformative priors implemented [34], making it very
easy to produce a Bayesian SEM without defining prior distributions. These priors are constructed
in an automatic fashion, since the software has default prior distributions specified for every type of
model parameter. These distributions are chosen such that they are best fit for a variety of SEMs
typically encountered in practice [22].
A common view is that noninformative priors are a good starting point for conducting SEM analysis.
After estimating the model, the results can be analyzed and the SEM could be improved further.
Additionally, by comparing the goodness of fit of the model with noninformative priors and the model
with informative priors, the quality of the prior information can be evaluated. Often, the priors for at
least a part of the model parameters are default priors.
Most commonly used noninformative prior distributions are the uniform distribution over some
sensible range of values or a normal distribution with a large variance [13, 26].
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A special case of noninformative priors are weakly informative priors, suggested by [10] and [17].
If the sample size is large, a portion of the data (one third or less) can be used to produce Bayesian
estimates by conducting a Bayesian SEM using noninformative priors on the smaller sample. With the
remainder data (two thirds or more), one can conduct a Bayesian analysis with the found estimates as
prior input. Then, the second BSEM that is performed on the remaining data, is an informative prior
model. Often, this construction gives more accurate estimates than a noninformative prior model.
Therefore, when there is no prior information available, the weakly approach is sometimes conducted
and compared to the noninformative approach, to compare which method produces more accurate
estimates for the specified model. The weakly informative prior method is not commonly used.

3.3.2. Informative priors
In case there is expert knowledge or previous research, informative prior distributions for model
parameters can be formulated.

Definition 3.3.1. An informative prior is a prior distribution for a model parameter with
hyperparameters (e.g., the mean and variance) that reflect most closely the expected value and the
degree of confidence about the expected value, based on previous research or expert knowledge. A
small variance corresponds to considerable confidence in the prior knowledge, while a large variance
reflects large uncertainty in the parameter value.

The use of informative priors can improve the model estimates, since it brings additional information
to the problem. That is the case, if the prior information is correct. If the priors are not correct,
the estimates will become less accurate. The use of informative priors is advantageous if there is
insufficient information available to solve the model by noninformative Bayesian or frequentist
methods [26], or if there is reliable prior knowledge available.
In a Bayesian SEM, a prior distribution can be chosen for every model parameter with prior
information. This research will focus on prior distributions for the estimates of the correlations
between latent variables.

One type of informative prior is the conjugate prior distribution:

Definition 3.3.2. A conjugate prior distribution yields a posterior distribution that is in the same
distributional family as the prior distribution [11, 13, 17].

To illustrate this, we give the following example [17].

Example 3.3.1. We consider an arbitrary univariate binomial model, with sample size 𝑛. The
likelihood of an observation 𝑦 as a function of 𝜃, is of the form

𝑝(𝑦|𝜃) = (𝑛𝑦)𝜃
𝑦(1 − 𝜃)𝑛−𝑦 . (3.5)

If the prior density is of the same form, it can be seen from 3.3 that the posterior density will also be
of this form. For example, we consider the beta distribution with hyperparameters 𝛼 and 𝛽 as a prior
density for 𝜃:

𝑝(𝜃) ∝ 𝜃𝛼−1(1 − 𝜃)𝛽−1. (3.6)

The posterior density then becomes

𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃) (3.7)

∝ 𝜃𝑦(1 − 𝜃)𝑛−𝑦𝜃𝛼−1(1 − 𝜃)𝛽−1 (3.8)

= 𝜃𝑦+𝛼−1(1 − 𝜃)𝑛−𝑦+𝛽−1, (3.9)

which is a beta distribution with parameters 𝑦 +𝛼 and 𝑛 −𝑦+𝛽. We see that indeed 𝑝(𝜃) and 𝑝(𝜃|𝑦)
are of the same form.

In the case of conjugacy, the posterior distribution is more likely to be analytically simple to solve. It
could be argued that, since numerical simulation methods such as MCMC sampling (Markov chain
Monte Carlo, section 3.4) can work with nonconjugate priors, nonconjugacy is less of a problem [13].
Even so, conjugate prior distributions provide bettermanageable posterior distributions for developing
the MCMC algorithm and are therefore very commonly used [17].
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3.4. Markov chain Monte Carlo methods
The estimation of Bayesian SEM relies on Markov chain Monte Carlo (MCMC) methods, also called
Markov chain simulation methods. The general idea of these methods is that instead of analytically
solving for the posterior distribution, MCMC obtains samples from the posterior distribution [13]. The
methods are particularly useful in Bayesian SEM because of the focus on posterior distributions that
are difficult to work analytically [35].
MCMC methods combine the Markov chain property and the Monte Carlo algorithm.

Definition 3.4.1. AMarkov chain is a sequence of random variables 𝜃1, 𝜃2, ..., in which the current
state 𝜃𝑡 depends only on its direct predecessor 𝜃𝑡−1 [11], i.e.,

𝑃(𝑋𝑛+1 = 𝑥|𝑋1 = 𝑥1, ..., 𝑋𝑛 = 𝑥1) = 𝑃(𝑋𝑛+1 = 𝑥|𝑋𝑛 = 𝑥1). (3.10)

TheMarkov chain property of MCMC is the idea that the random samples are generated in a sequential
process, where each random sample is used as a starting point to generate the next random sample. In
this chain, new samples do not depend on any samples other than the previous one.
If a Markov chain has the property that each state can be reached from every other state, it is called
ergodic. In the case of ergodicity, the chain will asymptotically converge to its invariant distribution
[35]. If the Markov chains that are used in a sampling algorithm are ergodic, it will not be trapped
in some subset of the state space, and hence will asymptotically converge to its unique invariant
distribution [4].

Monte Carlo refers to a broad collection of computation algorithms that can be used to approximate
quantities based on generated random samples. Following this approach, the method can be used
to estimate properties of a distribution by examining random samples from the distribution. This
is advantageous since it is often easier to draw a large random sample of a distribution than to
calculate properties directly from a distribution’s equation. With a sufficiently large sample size, this
approximation can be made as good as required [27, 35].
To illustrate the Monte Carlo method, we consider Buffon’s needle problem, where we are interested in
the probability of a needle of 10 cm crossing a line when it is dropped on a floor with parallel lines that
are 10 cm apart. The exact value of this probability can be obtained analytically as 2 / 𝜋 = 0.63662.
In a Monte Carlo approach, one would drop a needle 1,000 times to estimate the probability. If it
crosses a line 641 times, then theMonte Carlo estimate of the probability would be 641 / 1,000 = 0.641.

Combining ergodic Markov chains and Monte Carlo leads to the MCMC method.

Definition 3.4.2. AMarkov chain Monte Carlomethod for the simulation of a target distribution
𝜋 is any method producing an ergodic Markov chain whose stationary distribution is 𝜋 [33]. In the
case of BSEM, 𝜋 represents the posterior distribution of 𝜃 [35].

MCMC is particularly useful in Bayesian inference because it allows us to estimate mathematical
properties of posterior distributions that are often difficult to work with analytically. In application to
Bayesian SEM, anMCMCmethod can be used to draw specially constructed samples from the posterior
distribution 𝑝(𝜃|𝑌) to estimate the model parameters. This sampling is done iteratively, such that
at each step of the process, we can better estimate the model parameters, since the sample size of
independent draws becomes larger. The prior distribution 𝑝(𝜃) can be taken as a starting point for
the MCMC algorithm [35].

3.4.1. Hamiltonian Monte Carlo
There are various MCMC methods, the basic and most commonly used methods are the Metropolis-
Hastings algorithm and the Gibbs sampler, a special version of that algorithm [11]. A disadvantage
of these methods is that the sequence of samples drawn from the jumping distribution, or proposal
density, is a random walk. This results in the tendency to move slowly around the sample space, rather
thanmoving around quickly as desired [4, 31]. For that reason, in Stan, the probabilistic programming
language that is used in the application to PRIME research, described in chapter 4, the Hamiltonian
Monte Carlo (HMC) method is used [32]. Hence, HMC is the method that is further explained here.
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The approach used in HMC stems from the union of MCMC and molecular dynamics approaches,
originating in the field of physics [7], resulting in terms as ‘momentum’ and ‘position’ for the
variables. Using several ideas from physics, HMC is able to suppress the local random walk behavior
in the Metropolis algorithm. This allows the algorithm to move much more rapidly through the
target distribution, thus resolving some inefficiencies in the Gibbs sampler and Metropolis-Hastings
algorithm. For this reason, the method became more and more used in statistical applications [4].

The goal of sampling with HMC is to draw from the posterior density 𝑝(𝜃|𝑌). HMC introduces
auxiliary momentum variables 𝜙𝑗 for every component 𝜃𝑗 in the target space. In the algorithm, the
jumping distribution for 𝜃 is determined largely by 𝜙, allowing it to move faster through the target
distribution. HMCdraws from a joint density 𝑝(𝜃, 𝜙|𝑌) = 𝑝(𝜙)𝑝(𝜃|𝑌), to compute the posterior density
𝑝(𝜃|𝑌) to a multiplicative constant [11]. In Stan, the momentum distribution 𝑝(𝜙) is a multivariate
normal distribution 𝜙 ∼ 𝑁(0,𝑀), where covariance matrix 𝑀 is specified as the unit metric. As a
starting point for the algorithm, the prior can be used as the vector of initial parameters 𝜃 [32].

Hamiltonian Monte Carlo algorithm

HMC is an iterative method. The four steps of an iteration can be described as follows [11, 32]:

1. Themomentum variable𝜙 is updatedwith a randomdraw from its posterior distribution𝑁(0,𝑀).
2. Both 𝜃 and 𝜙 are updated in 𝐿 steps, scaled by a factor 𝜖, that represents the step size. This

process is called leapfrog integration, because the momentum updates are split into half-steps.
The following steps are repeated 𝐿 times:

(a) The gradient of the log-posterior density of 𝜃 is used to make a half-step of 𝜙:

𝜙 ← 1
2𝜖
𝑑 log𝑝(𝜃|𝑌)

𝑑𝜃 . (3.11)

(b) The momentum vector 𝜙 is used to update the position vector 𝜃:

𝜃 ← 𝜃 + 𝜖𝑀−1𝜙. (3.12)

(c) The gradient of 𝜃 is then again used to half-update 𝜙:

𝜙 ← 1
2𝜖
𝑑 log𝑝(𝜃|𝑌)

𝑑𝜃 . (3.13)

3. The parameter and momentum vectors at the start of the leapfrog process are labeled 𝜃𝑡−1 and
𝜙𝑡−1 and the values after the 𝐿 steps as 𝜃∗ and 𝜙∗. In this step, the accept-reject criterion, 𝑟, is
computed:

𝑟 = 𝑝(𝜃∗|𝑌)𝑝(𝜙∗)
𝑝(𝜃𝑡−1|𝑌)𝑝(𝜙𝑡−1) . (3.14)

4. In the final step, the new value for 𝜃 is either rejected or accepted:

𝜃𝑡 = { 𝜃
∗ with probability min(𝑟, 1)
𝜃𝑡−1 otherwise. (3.15)

As 𝜙 immediately gets updated at the beginning of the next iteration, there is no need to keep
track of it after step 3.

These iterations are repeated until approximate convergence.2

2Convergence is monitored by estimating the factor by which the scale of the current distribution for each scalar estimandmight
be reduced if the simulations were continued in the limit 𝑛 → ∞. The potential scale reduction, denoted �̂�, declines to 1 as
𝑛 → ∞. A high potential scale reduction indicates that proceeding with further simulations may improve our inference about
the target distribution. Approximate convergence is reached if �̂� is near 1 and the effective sample size is large enough for all
quantities of interest [11].
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3.5. Bayesian model evaluation and comparison
One of the main goals of SEMs is the evaluation of hypotheses about the relations among observed
variables and latent variables. Hence, model evaluation and hypotheses testing are important topics of
interest in the field of (Bayesian) structural equation modeling. The Bayesian approach to SEM offers
various model evaluation and comparison statistics, that will be discussed in this section.

3.5.1. Model evaluation statistics
There are several Bayesian methods to assess the goodness of fit of a SEM. The method that is most
commonly used is posterior predictive model checking (PPMC) [11, 17, 19]. This method is based
on the following principle: if the model fits, replicated data generated under the estimated model
should look similar to the observed data. PPMC investigates discrepancies between generated data
under the posterior predictive distribution and the observed data through a discrepancy function [11].
When MCMC estimation is used to estimate model parameters, the PPMC discrepancy function can
be specified to assess the differences between the observed data and and the expected values based on
the model estimation, for every iteration of the Markov chain [9].

In the R package ‘blavaan’ (Section 4.1.4), the method ppmc() allows users to conduct a posterior
predictive model check to assess the global and local fit of a SEM using any discrepancy function that
is available in the frequentist ‘lavaan’ package [29]. This includes the RMSEA, SRMR, CFI and TLI
values that are discussed in Section 2.2.4. Therefore, these are the fit indices that will be used in the
PRIME application in Chapter 4.
As described in [22], PPMC analysis in ‘blavaan’ becomes less reliable in cases of highly informative
priors. Since the most important model in our application contains informative priors, we can not
draw very strong conclusions from the results of the posterior predictive model checks. In future
versions of ‘blavaan’, prior-predictive model checking may be implemented, This could resolve the
problems relating to informative priors [22].

3.5.2. Model comparison statistics
The issue of hypothesis testing can be considered as model comparison, because a hypothesis can
be represented via a specific SEM. Model comparison statistics are therefore an important part of
the analysis of a SEM. The current state of the art Bayesian model fit measurement methods are not
completely satisfying, because different methods fail in various examples [11]. In this section, we give
three model comparison methods, that are most recommended by [9] and [22] as they give reasonable
results in the applications of SEM. These measures can be used to compare models that use the (exact)
same observed data [11].

The first comparison statistic we consider is the Bayes factor.

Definition 3.5.1. The Bayes factor for comparing two structural equation models 𝑀1 and 𝑀0 is
defined as

𝐵10 =
𝑝(𝑌|𝑀1)
𝑝(𝑌|𝑀0)

. (3.16)

The Bayes factor is a summary of evidence provided by the data in favor of 𝑀1 as opposed to 𝑀0, or in
favor of 𝑀0 as opposed to 𝑀1 [11, 17]. In Table 3.1, we give the interpretation of the log-Bayes factor,
since that is the factor that is approximated in model comparison functions of the ‘blavaan’ package.

Table 3.1: Interpretation of the log-Bayes factor [17].

log B10 Evidence againstM0
< 0 Negative (supports𝑀0)
0 to 2 Not worth more than a bare mention
2 to 6 Positive (supports𝑀1)
6 to 10 Strong
> 10 Decisive
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Since the Bayes factor is sensitive to the choice of prior distributions, it can be used to compare
different sets of priors. As the log-Bayes factor increases from 0, we gain increasing support for the
prior odds of𝑀1, as opposed to𝑀0 [22].

The second comparison statistic we will discuss is the Watabe-Akaike (or ‘widely applicable’)
information criterion (WAIC). This measure seeks to characterize a model’s predictive accuracy
through analysis of log-likelihoods associated with individual observations. The method estimates
the model’s expected log pointwise predictive density, which is a measure of predictive accuracy, and
then adds a correction for effective number of parameters to adjust for overfitting. [11, 22]. Lower
values of WAIC imply higher predictive accuracy, but a WAIC value of a model only has meaning in
comparison to another model. There is not a conventional interpretation of the difference in WAIC, as
this depends on the statistical model, the true distribution, the prior distribution, the Markov chain
Monte Carlo method, and the experimental fluctuation [11, 37]. In general, a larger difference implies
a stronger model preference.

Definition 3.5.2. TheWatabe-Akaike information criterion (WAIC) is defined as

WAIC = −2lppd+ 2efpWAIC, (3.17)

where the first term relates to log-likelihoods of the observed data and the second term involves an
effective number of parameters.

The first term, the log pointwise predictive density (lppd) of the observed data, is estimated
via

lppd =
𝑛

∑
𝑖=1

log(1𝑆

𝑆

∑
𝑠=1
𝑓(𝑦𝑖|𝜃𝑠)) , (3.18)

where 𝑆 is the number of posterior draws and 𝑓(𝑦𝑖|𝜃𝑠) is the density of observation 𝑖 with respect to
the parameters sampled at iteration 𝑠.

The second term, the effective number of parameters, is estimated via

efpWAIC =
𝑛

∑
𝑖=1

var𝑠(log 𝑓(𝑦𝑖|𝜃𝑠)), (3.19)

where we compute a separate variance for each observation 𝑖 across the 𝑆 posterior draws [22].

The third and last comparison statistic we consider, is the leave-one-out cross-validation statistic
(LOO). The LOOmeasure estimates the predictive density of each individual observation from a cross-
validation standpoint. Cross-validation means analyzing the predictive density when taking out one
observation at a time and using the remaining observations to update the prior [22]. Similar to WAIC,
lower values of the LOO measure imply higher predictive accuracy, but this only has meaning in
comparison to another model. In general, a larger difference implies a stronger model preference [11].

Definition 3.5.3. The leave-one-out measure (LOO) is defined by

LOO = −2
𝑛

∑
𝑖=1

log(
∑𝑆𝑠=1𝑤𝑠𝑖 𝑓(𝑦𝑖|𝜃𝑠)

∑𝑆𝑖=1𝑤𝑠𝑖
) , (3.20)

where the 𝑤𝑠𝑖 are importance sampling weights based on the relative magnitude of individual 𝑖’s
density function across the 𝑆 posterior samples [22].
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Application to PRIME research

In this chapter, Bayesian structural equation modeling will be applied to educational research to
illustrate the use of BSEM. The method will be applied to test hypotheses on links between latent
variables. Furthermore, a comparison with frequentist SEM will be made.

The PRogramme of Innovation in Mathematics Education (PRIME) is part of the Interfaculty
Teaching from the department of Applied Mathematics at TU Delft, responsible for redesigning
mathematics courses for engineers. The goals of PRIME are the following [5]:

1. Academic success: to improve study results.

2. Transfer: to improve the connection between mathematics and engineering.

3. Engagement: to increase students’ active participation in class and motivation for the topic.

To improve mathematics education in line with these goals, further insight in the dynamics between
academic success and engagement is needed. In a recent study, data has been collected to investigate
the relations between academic success, engagement and teacher behavior. As these quantities are
latent variables that form a complex model, Bayesian SEM is a suitable approach for estimating the
links between the latent variables.

4.1. Methodology

4.1.1. Research question
The research question to be answered is the following:

What are the relationships between perceived scaffolding and monitoring cues, satisfaction and
frustration of needs for relatedness, autonomy and competence, autonomous- and controlled
motivation, and academic performance?

For clarity, the psychological terms used in the research question are defined as follows [1]. For every
concept, we give a relating statement from the survey.

Perceived
scaffolding and
monitoring cues

Teacher behavior in relation to scaffolding1and monitoring of student’s progress,
as perceived by the student.
“The lecturer encourages me to reflect on how I can improve on my assignments”

Relatedness The student’s feeling of relation and connection with others.
“I feel that the fellow students and lecturers I care about also care about me.”

1The alignment of instruction in support of learning, i.e. in support of students managing their own learning process [5].

17
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Autonomy The student’s tendency to regulate their behavior.
“I feel a sense of choice and freedom in the things I undertake.”

Competence The student’s feeling of effectiveness in reaching valuable and useful results.
“I feel confident that I can do things well.”

Autonomous
motivation

The student’s tendency to perform behavioral and psychological activities without
any external controls and dependencies.
“I am studying because I want to learn new things.”

Controlled
motivation

The student’s tendency to perform behavioral and psychological activities with
external controls and dependencies.
“I am studying because that’s what others (parents, friends, etc.) expect me to do.”

Academic
performance

The student’s performance expressed with a 10-point scale grade system.

4.1.2. Hypotheses
Several hypotheses were formulated for the research question. For clarity, a path diagram of the
hypotheses can be found in Figure 4.1.

1. Perceived teacher scaffolding and monitoring cues are positively related to competence- and
relatedness satisfaction and negatively related to competence- and relatedness frustration.

2. Competence-, autonomy- and relatedness satisfaction are positively related to autonomous
motivation and negatively related to controlled motivation.

3. Competence-, autonomy- and relatedness frustration are positively related to controlled
motivation. Autonomy frustration is negatively related to autonomousmotivation. Competence-
and relatedness frustration are negatively, but less strongly, related to autonomous motivation.

4. Autonomous motivation is positively related to academic performance. Controlled motivation
is negatively related to academic performance.

4.1.3. Research participants and data collection
The data has been collected in previous research of the PRIME group. The research population is
comprised of 220 first year Computer Science students that followed Calculus, one of the PRIME
mathematics courses. To measure academic performance, the final grade for the studied course was
used. This includes resit grades, because the research interest lies in student performance for an entire
course. To measure all other latent variables of the research question, a questionnaire was distributed
among the students. Participants were asked to indicate on a Likert scale whether they agreed with the
statements (1 = strongly disagree, 5 = strongly agree). In this questionnaire, 30 questions were related
to perceived scaffolding and monitoring cues, 24 questions were related to competence, relatedness,
and autonomy, and 16 questions were related to autonomous- and controlled motivation. Of the
questions relating to perceived scaffolding and monitoring cues, 16 questions were omitted because
they had a low factor loading, meaning that the observed variables did not fit the latent variable they
were linked to [25]. Thus, the total number of observed variables is 55.

4.1.4. Implementation software: R package ‘blavaan’
To implement a Bayesian SEM, several software programs are available. Programs that are often used
are WinBUGS, Mplus, and various packages within the R software environment. In this study, the R
package ‘blavaan’ [21, 23] is used because it is open source, thus offering a wide range of possibilities
for extensions in further research. Additionally, the software is easy to use for researchers with R
experience. The package ‘blavaan’ models Bayesian SEMs via Stan [32], a probabilistic programming
language for Bayesian inference with HMC sampling, and summarizes the results. It is an extension of
the package lavaan, which models frequentist SEMs.



4.2. Choosing informative prior distributions 19

Figure 4.1: Path diagram corresponding to hypotheses.

4.2. Choosing informative prior distributions
In this study, previous psychological studies on the relations between perceived scaffolding and
monitoring cues, basic psychological needs, motivation, and academic performance, were analyzed.
Since there is information from previous research available, we have formulated informative priors.
In ‘blavaan’, the prior() modifier can be used to specify a prior distribution for a correlation.
This is carried out by specifying a covariance parameter in the model syntax. As a result of some
technical limitations of the package, the priors for correlations between latent variables should be beta
distributions with support on (0, 1), which are then automatically converted to beta distributions with
support on (–1, 1) [21]. In the Stan approach, the covariance matrix is consequently decomposed into
standard deviations and correlations. The parameter matrix Θ is written as

Θ = 𝐷Θ𝑅Θ𝐷Θ, (4.1)

where 𝐷Θ is the diagonal matrix of standard deviations and 𝑅Θ is a correlation matrix. The prior
distributions are placed individually on the free correlation parameters in the correlation matrix [23].

One difficulty lies in quantifying expert knowledge into well-founded priors; Literature often
suggests a problem-to-problem approach. In this study, previous psychological studies, along with the
opinion of a psychology researcher, have been used as prior information.
We use the correlation estimates from previous studies with the number of significance figures that
was reported in the studies. If different research results were similar, meaning that the difference
between all correlations is less than 0.15, we used the average of those correlations. We keep all
significance figures that result from this computation, to ensure that the beta distributions are as
precise as possible. If the difference between one correlation and the (average of the) other relation(s)
is more than 0.15, we chose the correlations that align most with the hypotheses and discarded the
rest. In these decisions, also the p-values of the correlations have been taken into account. A lower
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p-value represents a more significant correlation estimate, meaning that the probability of the results
being the outcome of random chance is lower [11]. This approach was constructed in collaboration
with a psychology researcher.
For every correlation, we have computed a beta distribution supported on (–1, 1) with a mean that
reflects the outcome of previous research because we have taken the averages of previously found
correlations. For simplicity, the variance of the beta distribution is set at 0.01 for all relations. This
is a commonly used variance for a prior distribution that reflects relatively high confidence in the
prior knowledge [13, 24]. Thus, the beta prior distributions corresponding to the specified mean
and variance reflect the correlation we expect based on previous psychological studies and expert
knowledge.

To compute the beta distributions, we analytically scale the mean and variance of the beta distribution
supported on (–1, 1) to correspond with a beta distribution supported on (0, 1). The reason for this
is that ‘blavaan’ only accepts beta distributions that are supported on (0,1), but we need positive and
negative values to reflect the positive and negative correlations.
To scale the variables, we use the following property of the general beta distribution:

Theorem4.2.1. Suppose that 𝑍 has the standard beta distributionwith left parameter 𝑎 ∈ (0,∞) and
right parameter 𝑏 ∈ (0,∞). For 𝑐 ∈ ℝ and 𝑑 ∈ (0, ∞), the random variable 𝑋 = 𝑐 + 𝑑𝑍 has the beta
distribution with left parameter 𝑎, right parameter 𝑏, location parameter 𝑐 and scale parameter 𝑑.
The mean and variance of 𝑋 are [30]:

𝔼(𝑋) = 𝑐 + 𝑑 𝑎
𝑎 + 𝑏 (4.2)

Var(𝑋) = 𝑑2 𝑎𝑏
(𝑎 + 𝑏)2(𝑎 + 𝑏 + 1) . (4.3)

We see that to convert the scaled distribution supported on (–1, 1) to the standard beta distribution
supported on (0, 1), we must have location parameter 𝑐 = 1

2 and scale parameter 𝑑 = 1
2 . With

Equations 4.2 and 4.3, we can update the mean and variance. If we then solve for 𝑎 and 𝑏 from the
expressions for the mean and variance of the standard beta distributions [30]:

𝔼(𝑋) = 𝑎
𝑎 + 𝑏 , (4.4)

Var(𝑋) = 𝑎𝑏
(𝑎 + 𝑏)2(𝑎 + 𝑏 + 1) , (4.5)

we obtain the values for 𝑎 and 𝑏 that correspond to the required beta distribution that will be used as a
prior. If we let 𝜇 be the expected value for 𝑋 and 𝜎2 the variance of 𝑋, we have

𝑎 = (1 − 𝜇𝜎2 )𝜇2, (4.6)

𝑏 = 𝑎 (1𝜇 − 1) . (4.7)

In our case, 𝜇 is the average of the correlations found in previous research, and 𝜎2 = 0.01. After
the beta distribution corresponding to the specified 𝑎 and 𝑏 is given as input for prior(), function
bsem() automatically converts this beta distribution into a beta distribution supported on (–1, 1).

We have thus specified how to properly work with themeans and variances, and will continue to specify
the mean estimates that have been used in the model. The mean estimates and corresponding prior
distributions can be found in Table 4.1.
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4.2.1. Relation between perceived scaffolding and monitoring cues and needs
satisfaction and -frustration

The links between the latent variable perceived scaffolding andmonitoring cues and needs satisfaction
and -frustration (combination of competence, autonomy and relatedness) are estimated by using [12]
and [18]. In both studies, there is no distinction between the needs for competence and relatedness.
Therefore, we have used the same estimates for the correlations with competence- and relatedness
satisfaction and -frustration.
In [12], the relations between perceived autonomy supported teaching and student needs satisfaction
and -frustration were studied. The correlations with the needs satisfaction and -frustration were .61
and –.26. In [18], the relations between perceived need support in teacher behavior and student needs
satisfaction and -frustration were studied. These correlations were .64 and –.28. Since the results of
both studies are very close, we have taken the average of the correlations as estimates for the prior
distributions.

4.2.2. Relation between needs satisfaction and motivation
The relations between need satisfaction and autonomous- and controlled motivation have been
estimated by using [1], [12], [14] and [18]. In [1], [12] and [18], the authors did not distinguish
between different psychological needs. Therefore, we have used these results multiple times to
compute the means for competence-, autonomy- and relatedness satisfaction. The correlations
between needs satisfaction and autonomous motivation that these studies found, are .60, .70 and
.59, respectively. For the relation between competence satisfaction and autonomous motivation, and
autonomy satisfaction and autonomous motivation, [14] found the values –.274 and .461. Since both
values differ more than .15 compared to the average of the previously mentioned values, we have
discarded these correlations and have taken the average of .60, .70 and .59. For the relation between
relatedness satisfaction and autonomous motivation, [14] found a value of .608. This is in line with
the previously mentioned values, so we have taken the average of .60, .608, .70 and .59.

For the correlations between needs satisfaction and controlled motivation, we have used [12],
[14] and [18]. The correlations between needs satisfaction and controlled motivation that [12]
and [18] found, are –.02 and .29. For the relation between competence satisfaction and controlled
motivation, and relatedness satisfaction and controlled motivation, [14] found the values –.452 and
–.457. These values are more in line with our hypotheses and have lower p-values than the values
mentioned previously. Therefore, these values are taken as mean estimates.
For the relation between autonomy satisfaction and controlled motivation, [14] found a value of .241.
This is not in line with our hypothesis, but the value is similar to the result of [18] and both estimates
have acceptable p-values. Therefore, we have taken the average of .241 and .29 for the mean estimate.

4.2.3. Relation between needs frustration and motivation
The relations between need frustration and autonomous- and controlled motivation are estimated by
using [12] and [18]. The correlations between needs frustration and autonomousmotivation that these
studies found, are –.37 and –.25. We have taken the average of both values for the mean estimate.
The correlations that these studies found for the relation between needs frustration and controlled
motivation are .48 and .07. Because the former value is more in line with our hypothesis and has a
significantly p-value, we have used only this value for the mean estimate.

4.2.4. Relation between motivation and academic performance
The relations between autonomous- and controlled motivation and academic performance are
estimated by using [1], [15] and [20]. For the relation between autonomous motivation and academic
performance, we have taken the average of the values that [1] and [15] found, which are .19 and .18.
For the estimate of the correlation between controlled motivation and academic performance, we
have used [15] and [20]. The resulting correlations of these studies are –.08 and –.12. We have taken
the average of these values for the estimate of the mean.

All mean estimates and corresponding prior distributions can be found in Table 4.1.
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Table 4.1: Prior distributions for the informative prior model. For every hypothesized relation, the average of correlations found
in previous research was taken as a mean for a beta distribution with variance 0.01.

Prior Causal direction
Previous
correlations

Mean
estimate Prior distribution

1
2

Perceived scaffolding and
monitoring cues
⟶ Competence satisfaction
⟶ Relatedness satisfaction

.61 (p ≤ .001)

.64 (p < .01) .625 B(48.69922, 11.23828)

3
4

Perceived scaffolding and
monitoring cues
⟶ Competence frustration
⟶ Relatedness frustration

–.26 (p ≤ .001)
–.28 (p < .01) –.27 B(33.47415, 58.23585)

5
Competence satisfaction
⟶ Autonomous motivation

.60 (p = .001)
–.274* (p = .000)
.70 (p ≤ .001)
.59 (p < .01)

.63 B(48.33765, 10.97235)

6
Autonomy satisfaction
⟶ Autonomous motivation

.60 (p = .001)

.461* (p = .009)

.70 (p ≤ .001)

.59 (p < .01)
.63 B(48.33765, 10.97235)

7
Relatedness satisfaction
⟶ Autonomous motivation

.60 (p = .001)

.608 (p = .000)

.70 (p ≤ .001)

.59 (p < .01)
.6245 B(48.73498, 11.265)

8
Competence satisfaction
⟶ Controlled motivation

–.02* (p > .05)
–.452 (p = .000)
.29* (p < .01)

–.452 B(21.52807, 57.04153)

9
Autonomy satisfaction
⟶ Controlled motivation

–.02* (p > .05)
.241 (p = .014)
.29 (p < .01)

.2655 B(58.18198, 33.769)

10
Relatedness satisfaction
⟶ Controlled motivation

–.02* (p > .05)
–.457 (p = .000)
.29* (p < .01)

–.457 B(21.20825, 56.90685)

11
12
13

Competence, autonomy and
relatedness frustration
⟶ Autonomous motivation

–.37 (p ≤ .001)
–.25 (p < .01) –.31 B(30.83955, 58.55045)

14
15
16

Competence, autonomy and
relatedness frustration
⟶ Controlled motivation

.48 (p ≤ .001)

.07* (p > .05) .48 B(56.2104, 19.7496)

17
Autonomous motivation
⟶ Academic performance

.19 (p = .003)

.18 (p < .01) .185 B(56.62967, 38.94783)

18
Controlled motivation
⟶ Academic performance

–.08 (p ≥ .01)
–.12 (p < .05) –.10 B(44.1,53.9)

*Note: these values were discarded in the computation of the corresponding mean estimate, because they differ more than 0.15
with the other values.
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4.3. Implementation of the informative prior model

To specify the informative prior model, we have used the R package ‘blavaan’ (see section 4.1.4). The
syntax of this package is shown in Table 4.2.

Table 4.2: ‘blavaan’ and ‘lavaan’ model syntax [29].

Formula type Operator Meaning
latent variable definition =∼ is measured by
regression ∼ is regressed on
(residual) (co)variance ∼∼ is correlated with

We define the measurement part of the model by linking the latent variables to the observed variables.
One of the endogenous latent variables, academic performance, is defined by the final grade of the
studied course. The other endogenous latent variables are defined by questions from a survey (see
Section 4.1.3), for example variables SM1 andNeeds1 contain answers to the corresponding questions.
The only exogenous latent variable, perceived scaffolding and monitoring cues (SMC), is also defined
by items from a survey. These definitions reflect the relations that are of interest in this educational
research. For every latent variable, the factor loading of the first observed variable is automatically
set to 1 by the function bsem() in ‘blavaan’, for scaling purposes. In the structural part of the model,
the relations between latent variables as given in Section 4.1.2 are defined. The measurement and the
structural parts of the model in R code can be seen below.

1 #measurement part
2

3 SMC =~ SM1 + SM3 + SM4 + SM11 + SM12 + SM13 + SM14 + SM15 + SM16 + SM18 + SM19
4 + SM20 + SM21 + SM26
5 autonomy_satisfaction =~ Needs1 + Needs7 + Needs13 + Needs19
6 autonomy_frustration =~ Needs2 + Needs8 + Needs14 + Needs2
7 competence_satisfaction =~ Needs5 + Needs11 + Needs17 + Needs23
8 competence_frustration =~ Needs6 + Needs12 + Needs18 + Needs24
9 relatedness_satisfaction =~ Needs3 + Needs9 + Needs15 + Needs21
10 relatedness_frustration =~ Needs4 + Needs10 + Needs16 + Needs22
11 autonomous_motivation =~ Motivation2 + Motivation4 + Motivation7 + Motivation8
12 + Motivation11 + Motivation13 + Motivation15 + Motivation16
13 controlled_motivation =~ Motivation1 + Motivation3 + Motivation5 + Motivation6
14 + Motivation9 + Motivation10 + Motivation12 + Motivation14
15 academic_performance =~ Grade
16

17 #structural part
18

19 relatedness_satisfaction ~ SMC
20 relatedness_frustration ~ SMC
21 competence_satisfaction ~ SMC
22 competence_frustration ~ SMC
23 autonomous_motivation ~ competence_satisfaction + competence_frustration
24 + autonomy_satisfaction + autonomy_frustration + relatedness_satisfaction
25 + relatedness_frustration
26 controlled_motivation ~ competence_satisfaction + competence_frustration
27 + autonomy_satisfaction + autonomy_frustration + relatedness_satisfaction
28 + relatedness_frustration
29 academic_performance ~ autonomous_motivation + controlled_motivation

To specify the priors, we have used the ‘blavaan’ function prior() and the prior distributions as
defined in Section 4.2. The prior specification of themodel in R code can be found in Appendix A.1, and
the used function to compute the beta distribution in Appendix C. For illustration, the beta distribution
that corresponds to the first prior, that has a mean of .625, is visualized in Figure 4.2.
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Figure 4.2: Beta distribution corresponding to the first prior, that has a mean of .625.

4.3.1. Model identification and estimation
For model identification, we check the t-rule, as defined in Equation 2.7. In the model, we have 55
observed variables (Section 4.1.3) and 18 relations (Section 4.1.2), hence 𝑝 = 55 and 𝑧 = 18. We see
that the model passes the t-test:

𝑡 = 2(55) + (18) = 128 ≤ 1540 = 1
2(55)(55 + 1), (4.8)

Since the model is identified, we can let ‘blavaan’ fit the model. A path diagram of the estimated links
with the computed estimates can be seen in Figure 4.3. Before we can interpret and report these results,
we have to evaluate the model to see if the fit is acceptable.

4.3.2. Model evaluation
The occurrence of standardized relation estimates greater than one, as is the case for the relation
between perceived scaffolding and monitoring cues and competence satisfaction, and between
competence frustration and controlled motivation (Figure 4.3), raises questions concerning the
legitimacy of those estimates. However, it was demonstrated in [6] that these can legitimately occur.
Here, it must first be noted that ‘blavaan’ uses standardized regression coefficients as estimates for the
correlation coefficients. Standardized regression coefficients are analogous to correlation coefficients,
but instead of correlations they are in fact rates of change. Consequently, they are not numerically
bounded by ±1 [6]. Furthermore, in [6], it is strongly advised not to modify models simply to reduce
the presence of standardized coefficients greater than one, to prevent the biasing effects of such model
modifications. Therefore, we interpret the estimates greater than one as very strong correlations. In
addition, these estimates may indicate that the latent variables are specified in a too dependent way.
Further analysis of the correlation estimates greater than 1 is outside the scope of this study.

To evaluate the goodness of fit of the model, we assess the fit indices as described in Section 3.5. To
evaluate the prior input, we also estimate the noninformative prior model, which is the same model,
without the priors, and assess its goodness of fit. Note that the model specification is equal for both the
informative prior model and the noninformative model. The goodness of fit indices of the informative
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Figure 4.3: Path diagram corresponding to the informative prior model. The standardized relation estimates are shown on the
edges. For simplicity, the diagram shows the latent variables without the observed variables.

prior model and the noninformative prior model can be found in Tables 4.3 and 4.4.
We see that, for the informative prior model, the RMSEA, SRMR,WAIC and LOO values are lower, and
the CFI and TLI values are higher. This means that all fit measures indicate that the estimates of the
informative prior model are more accurate, suggesting that the priors have indeed improved the model
fit. However, the log-Bayes factor of the informative priormodel compared to the noninformative prior
model is –278.060, thus the Bayes factor strongly favors the noninformative prior model. Although
the fit indices show conflicting preferences, the majority of the fit indices favor the informative prior
model. Hence, we conclude that the priors have improved the model fit.

Upon further analysis of the fit indices, we see that the RMSEA value is 0.072, suggesting a fair
model fit. The SRMR value, however, is 0.125, which is above the limit of acceptable model fit of 0.10
and thus suggests a poor fit. The CFI and TLI measures also suggest poor model fit: both values, 0.714
and 0.695, are below the lower limit of 0.9 that shows a good fit. Note that the WAIC and LOO indices
are comparison indices, and do not indicate objective model fit.
The SRMR, CFI and TLI indices indicate that the model needs further improvement. Since ‘blavaan’
does not yet contain the functionality of giving modification indices, as is available in its frequentist
counterpart ‘lavaan’, we decided not to proceed with the analysis of the informative prior model.

Table 4.3: Values of the fit indices of the informative prior
model.

Fit index Value
RMSEA 0.072
SRMR 0.123
CFI 0.713
TLI 0.693
WAIC 27453.275
LOO 27450.187

Table 4.4: Values of the fit indices of the noninformative prior
model.

Fit index Value
RMSEA 0.075
SRMR 0.132
CFI 0.687
TLI 0.670
WAIC 27575.458
LOO 27575.944
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4.4. Implementation of the weakly informative prior model
If there is no prior information available, and the sample is large enough, one can formulate a weakly
informative prior model (Section 3.3.1). In this approach, part of the sample is used to specify priors.
The rest of the sample is used as input for the observed variables. We will apply this method to the
PRIME research for illustration and comparison purposes.
We use one third of the (unordered) PRIME data as input for a Bayesian SEM with noninformative
priors. Note that the model specification and identification is the same as the noninformative prior
model of Section 4.3. The estimated model that we use for the priors can be found in Figure 4.4.
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Figure 4.4: Path diagram corresponding to the noninformative prior model, using one third of the sample. The standardized
relation estimates are shown on the edges. For simplicity, the diagram shows the latent variables without the observed variables.

The parameter estimates that result from this model, are taken asmean for the beta prior distributions,
following the same approach as given in Section 4.2. The variance of the beta distributions will again be
0.01 for all priors. The computed weakly informative prior distributions can be found in Table 4.6. We
update the model with the weakly informative priors and run the model using the remaining two thirds
of the sample. We cannot directly compare the weakly informative prior model through the WAIC and
LOO measures or the Bayes factor, because the sample sizes differ.
The fit indices of the informative priormodel and theweakly informative priormodel, given in Table 4.5
and Table 4.6, indicate that the fit of the weakly informative model is less good. This is as expected
since the informative priors add new data to the model. If this new information is correct, the Bayesian
inference improves since it can use more data [26]. Since the estimates are less reliable than the ones
we found previously, they are not given here. The R code of the weakly informative approach can be
found in Appendix A.3.2.

Table 4.5: Values of the fit indices of the informative prior
model.

Fit index Value
RMSEA 0.072
SRMR 0.123
CFI 0.713
TLI 0.693

Table 4.6: Values of the fit indices of the weakly informative
prior model.

Fit index Value
RMSEA 0.085
SRMR 0.130
CFI 0.635
TLI 0.610
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Table 4.7: Prior distributions for the weakly informative prior model. For every hypothesized relation, the correlation that was
found in estimating a noninformative prior model using one third of the sample was taken as a mean for a beta distribution with
variance 0.01.

Prior Causal direction Mean estimate Prior distribution

1

Perceived scaffolding and
monitoring cues
⟶ Competence satisfaction

–.05 B(46.90625, 51.84375)

2

Perceived scaffolding and
monitoring cues
⟶ Relatedness satisfaction

.24 B(57.8088, 35.431)

3

Perceived scaffolding and
monitoring cues
⟶ Competence frustration

–.04 B(47.4432, 51.3968)

4

Perceived scaffolding and
monitoring cues
⟶ Relatedness frustration

.01 B(49.98995, 49.00005)

5
Competence satisfaction
⟶ Autonomous motivation .12 B(54.6336, 42.9264)

6
Autonomy satisfaction
⟶ Autonomous motivation .75 B(37.40625, 5.34375)

7
Relatedness satisfaction
⟶ Autonomous motivation .11 B(54.27345, 43.51655)

8
Competence satisfaction
⟶ Controlled motivation –.19 B(38.63295, 56.75705)

9
Autonomy satisfaction
⟶ Controlled motivation .49 B(55.86755, 19.122451)

10
Relatedness satisfaction
⟶ Controlled motivation –.03 B(47.97135, 50.93865)

11
Competence frustration
⟶ Autonomous motivation .27 B(58.23585, 33.47415)

12
Autonomy frustration
⟶ Autonomous motivation .05 B(51.84375, 46.90625)

13
Relatedness frustration
⟶ Autonomous motivation –.01 B(49.00005, 49.98995)

14
Competence frustration
⟶ Controlled motivation –.24 B(57.8088, 35.4312)

15
Autonomy frustration
⟶ Controlled motivation .38 B(58.3464 , 26.2136)

16
Relatedness frustration
⟶ Controlled motivation .10 B(53.9, 44.1)

17
Autonomous motivation
⟶ Academic performance .06 B(52.2792, 46.3608)

18
Controlled motivation
⟶ Academic performance .16 B(55.9352, 40.5048)
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4.5. Comparison to the frequentist approach
To investigate whether Bayesian SEM offers more reliable estimates in the PRIME application, we have
also conducted a frequentist model analysis using the same model setup and sample. Note that, since
the model specification is the same as the previously specified models, the frequentist model remains
identified. To model the frequentist SEM, we have used R package ‘lavaan’. The model correlation
estimates can be found in Figure 4.5, and the fit indices can be found in Table 4.9. For comparison, we
give the fit indices of the Bayesian approach of the informative prior model in Table 4.8. The R code
for the frequentist model can be found in Appendix A.4.
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Figure 4.5: Path diagram corresponding to the frequentist prior model. The standardized relation estimates are shown on the
edges. For simplicity, the diagram shows the latent variables without the observed variables.

Table 4.8: Values of the fit indices of the informative prior
model.

Fit index Value
RMSEA 0.072
SRMR 0.123
CFI 0.713
TLI 0.693

Table 4.9: Values of the fit indices of the frequentist model.

Fit index Value
RMSEA 0.071
SRMR 0.120
CFI 0.719
TLI 0.703

We see that, unexpectedly, the frequentist SEM gives slightly more accurate parameter estimates
according to the model evaluation measures. The frequentist RMSEA and SRMR values are lower and
the CFI and TLI values are higher, indicating a better fit, although the differences are very small. This
is not in line with previous research [17]. An explanation can be found in inadequacies in the goodness
of fit indices. Further analysis is needed to fully account for the discovered performance differences
between the Bayesian and frequentist approach to SEM.
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4.6. Results
Although some of the fit indices indicate that the estimates obtained through the Bayesian informative
prior approach are not reliable, we have seen that the informative priors have improved the
noninformative model. We will therefore report and interpret the estimated correlations for the
hypothesized relations thatwere obtainedwith the informative priormodel. The estimates can be found
in Figure 4.6 and Table 4.10. They are discussed further in Section 4.6.1.
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Figure 4.6: Path diagram corresponding to the informative prior model. The relation estimates are shown on the edges. For
simplicity, the diagram shows the latent variables without the observed variables.

4.6.1. Interpretation of the estimates
To answer the research question formulated in Section 4.1.1, we will look at the hypotheses model and
check whether the BSEM correlation estimates align with the hypotheses or not.

1. Perceived teacher scaffolding and monitoring cues are positively related to competence- and
relatedness satisfaction and negatively related to competence- and relatedness frustration.

We see that perceived scaffolding andmonitoring cues is indeed positively related to competence- and
relatedness satisfaction and negatively to relatedness frustration. In particular, the relation between
perceived scaffolding and monitoring cues and competence satisfaction was found to be very strong.
However, the relation with competence frustration was found to be positive, where a negative relation
was expected. Thus, not all results are in line with the first hypothesis.

2. Competence-, autonomy- and relatedness satisfaction are positively related to autonomous
motivation and negatively related to controlled motivation.

For the second hypothesis, not all results are in line with the expected relations. Competence- and
autonomy satisfaction are indeed positively related to autonomous motivation, although the found
link between autonomy satisfaction and autonomous motivation is very weak. The relations between
competence- and relatedness satisfaction and controlled motivation are negative, as expected.
However, for relatedness satisfaction and autonomous motivation, a relation was not detected.
Furthermore, autonomy satisfaction is in fact quite strongly positively related to autonomous
motivation, while a negative relation was expected.
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Table 4.10: Standardized relation estimates of the informative priormodel for all links investigated, alongside themean estimates
that were used to formulate the prior distributions.

Prior Relation
Mean
estimate

Standardized
relation estimate

1 CS ∼ SMC .625 .36
2 RS ∼ SMC .625 .59
3 CF ∼ SMC –.27 –.07
4 RF ∼ SMC –.27 –.78
5 AM ∼ CS .63 .60
6 AM ∼ AS .63 –.76
7 AM ∼ RS .6245 .20
8 CM ∼ CS –.452 .10
9 CM ∼ AS .2655 .19
10 CM ∼ RS –.457 –.88
11 AM ∼ CF –.31 –.08
12 AM ∼ AF –.31 –.19
13 AM ∼ RF –.31 .85
14 CM ∼ CF .48 .10
15 CM ∼ AF .48 .00
16 CM ∼ RF .48 –.21
17 ACP ∼ AM .185 .05
18 ACP ∼ CM –.10 .19

3. Competence-, autonomy- and relatedness frustration are positively related to controlled
motivation. Autonomy frustration is negatively related to autonomousmotivation. Competence-
and relatedness frustration are negatively, but less strongly, related to autonomous motivation.

For the third hypothesis, we also see that not all results are in line with the expected relations. For
autonomy- and relatedness frustration and autonomous motivation, we indeed found positive, yet
not very strong relations. The relation between autonomy satisfaction and controlled motivation was
found to be positive, as hypothesized.
However, for competence frustration and autonomous motivation, we found a weakly positive relation
where a negative one was expected. The relation between competence frustration and controlled
motivation was found to be very strongly negative, and the relation between relatedness frustration
and controlled motivation weakly negative, where two positive relations were expected. This is not in
line with the third hypothesis.

4. Autonomous motivation is positively related to academic performance. Controlled motivation
is negatively related to academic performance.

We see that autonomous motivation is positively related to academic performance, as expected,
but the relation we found is not very strong. Controlled motivation and academic performance are
positively related, where a negative relation was expected.

In conclusion, some, but not all of the relation estimates correspond to our hypotheses. Further
psychological interpretation of the estimates is outside the scope of this study.



5
Conclusion

In this research, several statistical models for estimating relations between latent variables have been
considered. We have given an overview of the statistical method of structural equation modeling, as
well as the Bayesian approach to structural equation modeling. To illustrate the use of these methods
and compare the methods, various variations of Bayesian and frequentist SEM were applied to a study
in educational sciences.

The first method for estimating links between latent variables we discussed is frequentist structural
equation modeling, which consists of five steps. We saw that the specification of a SEM consists of
two parts: the relations among latent variables are defined in the structural model, and the latent
variables are linked to the observed variables in the measurement model. For model identification,
there is an identification condition that must be met in order to obtain reliable results. The model
estimation is done by the Maximum Likelihood fitting function that minimizes the difference between
the sample covariance matrix and the model estimated covariance matrix. After that, the model can be
evaluated by measures of absolute or relative fit. If the model fit is unsatisfactory, one can modify the
model to improve themodel fit. These are the five steps that summarize the process of frequentist SEM.

The second method for estimating links between latent variables that was considered is Bayesian
structural equation modeling. This method resolves some of the problems relating to Maximum
Likelihood Estimation and is more accurate in the case of small samples or complex model structures.
The characteristic feature of Bayesian analysis is the input of prior information. We saw that, if no
prior information is available, we can perform Bayesian estimations using noninformative or weakly
informative prior distributions. In cases where there is subjective expert knowledge, previous research
or closely related data, one can formulate informative prior distributions. We saw that it is best to use
conjugate prior distributions, because they provide better manageable posterior distributions for the
MCMC algorithm, on which the estimation of Bayesian SEM relies. MCMC draws samples from the
posterior distribution to estimate the model parameters. The implementation software used in this
research makes use of Hamiltonian Monte Carlo, a MCMC method that resolves some disadvantages
of the more commonly used Metropolis-Hastings algorithm and the Gibbs Sampler.

To illustrate the use of Bayesian structural equation modeling, we applied the method to a study
in educational science to estimate relations among latent variables such as motivation and needs
satisfaction. We used previous psychology research to choose prior distributions, in order to specify an
informative prior model. Because of limitations in the used R package, we specified Beta distributions,
with a mean that is the average of the previously found correlations and a variance of 0.01, to reflect
rather high confidence in the priors.
The model evaluation indices suggest that the model does not fit the data well. In comparison to the
noninformative prior model, the fit measures indicate that the informative prior model is a better fit
to the data than the noninformative prior model. However, the Bayes factor shows a strong preference
for the noninformative prior model as opposed to the informative prior model. Although the model
evaluation and comparison statistics show conflicting results, most fit indices are in favor of the
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informative model. Hence, we conclude that the priors are a good addition to the model, but that the
hypothesized relations do not represent the data. The conjecture is that the number of latent variables
that are specified in the model is too large for accurate estimations.
To illustrate the use of weakly informative priors, we applied this method to the same educational
research model. We saw that, as would be expected, the fit indices of the weakly informative prior
model imply that the model fit is less good than the fit of the informative prior model, again advocating
the correctness of the informative priors.
In comparison to frequentist SEM, we saw that the model evaluation measures marginally favor
frequentist SEM as opposed to the Bayesian model in terms of model accuracy. This is an unexpected
result; an explanation could be found in inadequacies of the goodness of fit indices. Further analysis
is needed to account for the discovered performance difference in this application.



6
Discussion

Structural equation modeling and Bayesian analysis are both substantially broad and well-known
subjects, and this research investigates the recently developed combination of these two subjects. In
this chapter, some of the complications and limitations of the subjects addressed in this thesis will be
discussed. In addition, we will formulate some recommendations for future research.

6.1. Limitations of implementation software
The R package that is used in this research, ‘blavaan’, has some limitations as it is still in development.
One of these limitations is that the prior distributions for the relations between latent variables are
currently limited to Beta distributions, for computational reasons. Therefore, we have not investigated
other options for prior distributions. For future research, in using different implementation software
or as ‘blavaan’ further develops, it is recommended to examine different distributions to specify the
priors more accurately.
In evaluating the informative prior model of our application, themodel evaluation statistics indicated a
poor model fit of the hypothesized relations to the data. However, a poor fit does not necessarily mean
that the defined relation model was incorrect. That is, models with a poor model fit, but that are based
on a solid theoretical framework, can generally be improved by analyzing the modification indices and
re-specifying the model accordingly. However, this function is not yet available in ‘blavaan’.
If these functionalities are not added within considerate time, we recommend looking into the
commercial softwareMplus, as it offers these and a number of other possibilities formodel specification
and evaluation.

Furthermore, in this research, we have used the standardized regression coefficients that ‘blavaan’
gives to estimate relation estimates. In ‘blavaan’ documentation, it is not entirely clear if that is indeed
the correct interpretation of those coefficients. The ‘blavaan’ model output also gives standardized
covariance coefficients, and some of the standardized regression coefficients we found are larger than
one. Future research is recommended to look at the appropriate interpretation of the coefficients in
the ‘blavaan’ output.

6.2. Model evaluation and comparison statistics
To test the measure of fit of the models, we used several model evaluation and comparison statistics.
However, there are a number of situations in which these measures do not function appropriately.
One of these situations is the case of highly informative prior distributions. Additionally, there exists
a lot of controversy about measures of fit in general. There is no conventional approach as to which
information criteria or fit indices provide the most reliable evaluation, as its performance is dependent
on the statistical model, the true distribution, the prior distribution and the MCMC method, and
possible experimental fluctuations. Themodel evaluation part of SEM is a subject that requires further
research.
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Furthermore, since hypotheses were tested through informative priors, it is recommended to
estimate the model with different priors, to further evaluate the effect of the priors in general. Even
though the priors in our application improved the accuracy according to the fit measures, a sensitivity
analysis for the prior effects is recommended to confirm that the priors do not point the results in a
desired (and biased) direction.

6.3. Hypothesized relations in PRIME
We concluded that the current specified informative prior model does not represent the observed data.
Therefore, the correlation estimates that we foundmay not be reliable. An improvement in the accuracy
of themodel fit could be realized by altering the hypothesized relationmodel, or by reducing the number
of latent variables tomake themodel less complex. We conjecture that amodel that involves fewer latent
variables could improve the model fit. For both suggestions, insight in the psychological concepts that
are researched in the application is essential. These approaches are not further investigated in this
thesis since it is out of scope.
Another approach to improving the model is to add mediator variables to account for a possible
mediation effect, also known as the indirect effect. A latent variable could influence another latent
variable indirectly, through an intermediate variable. These effects are not taken into account in this
thesis, but could be added to make the model estimates more reliable.

In addition, through hierarchical and multisample data, the structural equation model could be
further specified [17]. Often in substantive studies, as is in our application, the data is drawn
from a number of different groups (clusters) with a known hierarchical structure. The PRIME data
that is available for this research contained the following groups: gender, age, country of highest
education, mathematics high school performance and lecturer. As individuals within a group share
certain common influential factors, the random observations are correlated. The assumption of
independent observed variables is in fact incorrect. Further research to combine models that analyze
subpopulations, such as Latent Profile Analysis, and multisample SEM, could increase the accuracy of
the results.

6.4. Comparison Bayesian and frequentist SEM
Unexpectedly, the results of the frequentist SEM appeared to be more accurate than the results of the
Bayesian SEM, according to the fit indices used. We have already mentioned flaws in the evaluation
statistics and suggested improvements for the (Bayesian) model specification. It is possible that
after these alterations, the Bayesian approach indeed functions better than the frequentist approach,
as would be expected based on literature. However, to explain the currently found differences in
performance remains a subject where future research is needed.

6.5. Automated SEM strategies
Although the field of Bayesian structural equation modeling is still in development and has a lot of
improvement potential, an alternative approach is offered by automated structural equationmodeling.
Following the trend of developing and applying automated strategies for the analysis of data sets,
such as data mining and machine learning, research on automated SEM is currently exploring
algorithms that (automatically) examine models that have some missing paths or parameters involved
in unnecessarily restrictive constraints [13]. The combination of the Bayesian and automated approach
to SEM could be a very interesting subject for future research.
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R code: Model implementation

A.1. Informative prior model

1 library(blavaan)
2 library(readxl)
3

4 Data <- read_excel(”Data corrected.xlsx”)
5

6 model_ip<-’
7         
8  #measurement part
9         
10  SMC =~ SM1 + SM3 + SM4 + SM11 + SM12 + SM13 + SM14 + SM15 + SM16 + SM18 + SM19
11         + SM20 + SM21 + SM26
12         
13  autonomy_satisfaction  =~ Needs1 + Needs7 + Needs13 + Needs19
14  autonomy_frustration =~ Needs2 + Needs8 + Needs14 + Needs2
15  competence_satisfaction =~ Needs5 + Needs11 + Needs17 + Needs23
16  competence_frustration =~ Needs6 + Needs12 + Needs18 + Needs24
17  relatedness_satisfaction =~ Needs3 + Needs9 + Needs15 + Needs21
18  relatedness_frustration =~ Needs4 + Needs10 + Needs16 + Needs22
19         
20  autonomous_motivation =~ Motivation2 + Motivation4 + Motivation7 + Motivation8
21         + Motivation11 + Motivation13 + Motivation15 + Motivation16
22  controlled_motivation =~ Motivation1 + Motivation3 + Motivation5 + Motivation6
23         + Motivation9 + Motivation10 + Motivation12 + Motivation14
24         
25  academic_performance =~ Grade
26

27  #structural part
28         
29  relatedness_satisfaction ~ SMC
30  relatedness_frustration ~ SMC
31  competence_satisfaction ~ SMC
32  competence_frustration ~ SMC
33         
34  autonomous_motivation ~ competence_satisfaction + competence_frustration
35         + autonomy_satisfaction + autonomy_frustration + relatedness_satisfaction
36         + relatedness_frustration
37  controlled_motivation ~ competence_satisfaction + competence_frustration
38         + autonomy_satisfaction + autonomy_frustration + relatedness_satisfaction
39         + relatedness_frustration
40         
41  academic_performance ~ autonomous_motivation + controlled_motivation
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42

43  #priors
44         
45  SMC ~~ prior(”beta(48.69922,11.23828)”) * competence_satisfaction #1
46  SMC ~~ prior(”beta(48.69922,11.23828)”) * relatedness_satisfaction #2
47  SMC ~~ prior(”beta(33.47415,58.23585)”) * competence_frustration #3
48  SMC ~~ prior(”beta(33.47415,58.23585)”) * relatedness_frustration #4
49

50  competence_satisfaction ~~
51         prior(”beta(48.33765,10.97235)”) * autonomous_motivation #5
52  autonomy_satisfaction ~~
53         prior(”beta(48.33765,10.97235)”) * autonomous_motivation #6
54  relatedness_satisfaction ~~
55         prior(”beta(48.73498,11.265)”) * autonomous_motivation #7
56  competence_satisfaction ~~
57         prior(”beta(21.52807,57.04153)”) * controlled_motivation #8
58  autonomy_satisfaction ~~
59         prior(”beta(58.18198,33.769)”) * controlled_motivation #9
60  relatedness_satisfaction ~~
61         prior(”beta(21.20825,56.90685)”) * controlled_motivation #10
62         
63  competence_frustration ~~
64         prior(”beta(30.83955,58.55045)”) * autonomous_motivation #11
65  autonomy_frustration ~~
66         prior(”beta(30.83955,58.55045)”) * autonomous_motivation #12
67  relatedness_frustration ~~
68         prior(”beta(30.83955,58.55045”) * autonomous_motivation #13
69  competence_frustration ~~
70         prior(”beta(56.2104,19.7496)”) * controlled_motivation #14
71  autonomy_frustration ~~
72         prior(”beta(56.2104,19.7496)”) * controlled_motivation #15
73  relatedness_frustration ~~
74         prior(”beta(56.2104,19.7496)”) * controlled_motivation #16
75         
76  autonomous_motivation
77         ~~ prior(”beta(56.62967,38.94783)”) * academic_performance #17
78  controlled_motivation ~~ prior(”beta(44.1,53.9)”) * academic_performance #18
79  ’
80

81 fit_ip<-bsem(model_ip, data=Data)

A.2. Noninformative prior model

1 library(blavaan)
2 library(readxl)
3

4 Data <- read_excel(”Data corrected.xlsx”)
5

6 model_np<-’
7         
8  #measurement part
9         
10  SMC =~ SM1 + SM3 + SM4 + SM11 + SM12 + SM13 + SM14 + SM15 + SM16 + SM18 + SM19
11         + SM20 + SM21 + SM26
12         
13  autonomy_satisfaction  =~ Needs1 + Needs7 + Needs13 + Needs19
14  autonomy_frustration =~ Needs2 + Needs8 + Needs14 + Needs2
15  competence_satisfaction =~ Needs5 + Needs11 + Needs17 + Needs23
16  competence_frustration =~ Needs6 + Needs12 + Needs18 + Needs24
17  relatedness_satisfaction =~ Needs3 + Needs9 + Needs15 + Needs21
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18  relatedness_frustration =~ Needs4 + Needs10 + Needs16 + Needs22
19         
20  autonomous_motivation =~ Motivation2 + Motivation4 + Motivation7 + Motivation8
21         + Motivation11 + Motivation13 + Motivation15 + Motivation16
22  controlled_motivation =~ Motivation1 + Motivation3 + Motivation5 + Motivation6
23         + Motivation9 + Motivation10 + Motivation12 + Motivation14
24         
25  academic_performance =~ Grade
26         
27  #structural part
28         
29  relatedness_satisfaction ~ SMC
30  relatedness_frustration ~ SMC
31  competence_satisfaction ~ SMC
32  competence_frustration ~ SMC
33         
34  autonomous_motivation ~ competence_satisfaction + competence_frustration
35         + autonomy_satisfaction + autonomy_frustration + relatedness_satisfaction
36         + relatedness_frustration
37  controlled_motivation ~ competence_satisfaction + competence_frustration
38         + autonomy_satisfaction + autonomy_frustration + relatedness_satisfaction
39         + relatedness_frustration
40         
41  academic_performance ~ autonomous_motivation + controlled_motivation
42  ’
43

44 fit_np<-bsem(model_np, data=Data)

A.3. Weakly informative prior model

A.3.1. Part 1: Noninformative priors

1 library(blavaan)
2 library(readxl)
3

4 Data <- read_excel(”Data corrected part 1.xlsx”)
5

6 model_wp1<-’
7

8  #define measurement part
9

10  SMC =~ SM1 + SM3 + SM4 + SM11 + SM12 + SM13 + SM14 + SM15 + SM16 + SM18 + SM19
11         + SM20 + SM21 + SM26
12

13  autonomy_satisfaction  =~ Needs1 + Needs7 + Needs13 + Needs19
14  autonomy_frustration =~ Needs2 + Needs8 + Needs14 + Needs2
15  competence_satisfaction =~ Needs5 + Needs11 + Needs17 + Needs23
16  competence_frustration =~ Needs6 + Needs12 + Needs18 + Needs24
17  relatedness_satisfaction =~ Needs3 + Needs9 + Needs15 + Needs21
18  relatedness_frustration =~ Needs4 + Needs10 + Needs16 + Needs22
19

20  autonomous_motivation =~ Motivation2 + Motivation4 + Motivation7 + Motivation8
21         + Motivation11 + Motivation13 + Motivation15 + Motivation16
22  controlled_motivation =~ Motivation1 + Motivation3 + Motivation5 + Motivation6
23         + Motivation9 + Motivation10 + Motivation12 + Motivation14
24

25  academic_performance =~ Grade
26

27  #structural part
28
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29  relatedness_satisfaction ~ SMC
30  relatedness_frustration ~ SMC
31  competence_satisfaction ~ SMC
32  competence_frustration ~ SMC
33

34  autonomous_motivation ~ competence_satisfaction + competence_frustration
35         + autonomy_satisfaction + autonomy_frustration + relatedness_satisfaction
36         + relatedness_frustration
37  controlled_motivation ~ competence_satisfaction + competence_frustration
38         + autonomy_satisfaction + autonomy_frustration + relatedness_satisfaction
39         + relatedness_frustration
40

41  academic_performance ~ autonomous_motivation + controlled_motivation
42  ’
43

44 fit_wp1<-bsem(model_wp1, data=Data)

A.3.2. Part 2: Weakly informative priors

1 library(blavaan)
2 library(readxl)
3

4 Data <- read_excel(”Data corrected part 2.xlsx”)
5

6 model_wp2<-’
7

8  #define measurement part
9

10  SMC =~ SM1 + SM3 + SM4 + SM11 + SM12 + SM13 + SM14 + SM15 + SM16 + SM18 + SM19
11         + SM20 + SM21 + SM26
12

13  autonomy_satisfaction  =~ Needs1 + Needs7 + Needs13 + Needs19
14  autonomy_frustration =~ Needs2 + Needs8 + Needs14 + Needs2
15  competence_satisfaction =~ Needs5 + Needs11 + Needs17 + Needs23
16  competence_frustration =~ Needs6 + Needs12 + Needs18 + Needs24
17  relatedness_satisfaction =~ Needs3 + Needs9 + Needs15 + Needs21
18  relatedness_frustration =~ Needs4 + Needs10 + Needs16 + Needs22
19

20  autonomous_motivation =~ Motivation2 + Motivation4 + Motivation7 + Motivation8
21         + Motivation11 + Motivation13 + Motivation15 + Motivation16
22  controlled_motivation =~ Motivation1 + Motivation3 + Motivation5 + Motivation6
23         + Motivation9 + Motivation10 + Motivation12 + Motivation14
24

25  academic_performance =~ Grade
26

27  #structural part
28

29  relatedness_satisfaction ~ SMC
30  relatedness_frustration ~ SMC
31  competence_satisfaction ~ SMC
32  competence_frustration ~ SMC
33

34  autonomous_motivation ~ competence_satisfaction + competence_frustration
35         + autonomy_satisfaction + autonomy_frustration + relatedness_satisfaction
36         + relatedness_frustration
37  controlled_motivation ~ competence_satisfaction + competence_frustration
38         + autonomy_satisfaction + autonomy_frustration + relatedness_satisfaction
39         + relatedness_frustration
40

41  academic_performance ~ autonomous_motivation + controlled_motivation
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42

43  #priors
44         
45  SMC ~~ prior(”beta(46.90625, 51.84375)”) * competence_satisfaction #1
46  SMC ~~ prior(”beta(57.8088, 35.431)”) * relatedness_satisfaction #2
47  SMC ~~ prior(”beta(47.4432, 51.3968)”) * competence_frustration #3
48  SMC ~~ prior(”beta(49.98995, 49.00005)”) * relatedness_frustration #4
49         
50  competence_satisfaction ~~
51         prior(”beta(54.6336, 42.9264)”) * autonomous_motivation #5
52  autonomy_satisfaction ~~
53         prior(”beta(37.40625, 5.34375)”) * autonomous_motivation #6
54  relatedness_satisfaction ~~
55         prior(”beta(54.27345, 43.51655)”) * autonomous_motivation #7
56  competence_satisfaction ~~
57         prior(”beta(38.63295, 56.75705)”) * controlled_motivation #8
58  autonomy_satisfaction ~~
59         prior(”beta(55.86755, 19.122451)”) * controlled_motivation #9
60  relatedness_satisfaction ~~
61         prior(”beta47.97135, 50.93865)”) * controlled_motivation #10
62         
63  competence_frustration ~~
64         prior(”beta(58.23585, 33.47415)”) * autonomous_motivation #11
65  autonomy_frustration ~~
66         prior(”beta(51.84375, 46.90625)”) * autonomous_motivation #12
67  relatedness_frustration ~~
68         prior(”beta(49.00005, 49.98995)”) * autonomous_motivation #13
69  competence_frustration ~~
70         prior(”beta(57.8088, 35.4312)”) * controlled_motivation #14
71  autonomy_frustration ~~
72         prior(”beta(58.3464 , 26.2136)”) * controlled_motivation #15
73  relatedness_frustration ~~ prior(”beta(53.9, 44.1)”) * controlled_motivation #16
74         
75  autonomous_motivation ~~
76         prior(”beta(52.2792, 46.3608)”) * academic_performance #17
77  controlled_motivation ~~
78         prior(”beta(55.9352, 40.5048)”) * academic_performance #18
79         
80  ’
81

82 fit_wp2<-bsem(model_wp2, data=Data)

A.4. Frequentist model

1 library(lavaan)
2 library(readxl)
3

4

5 my_data <- read_excel(”~/3 Studie/BEP/Prime/R/Data/Data corrected.xlsx”)
6

7 model_fsem<-’
8  #measurement part
9

10  SMC =~ SM1 + SM3 + SM4 + SM11 + SM12 + SM13 + SM14 + SM15 + SM16 + SM18 + SM19
11         + SM20 + SM21 + SM26
12

13  autonomy_satisfaction  =~ Needs1 + Needs7 + Needs13 + Needs19
14  autonomy_frustration =~ Needs2 + Needs8 + Needs14 + Needs2
15  competence_satisfaction =~ Needs5 + Needs11 + Needs17 + Needs23
16  competence_frustration =~ Needs6 + Needs12 + Needs18 + Needs24
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17  relatedness_satisfaction =~ Needs3 + Needs9 + Needs15 + Needs21
18  relatedness_frustration =~ Needs4 + Needs10 + Needs16 + Needs22
19

20  autonomous_motivation =~ Motivation2 + Motivation4 + Motivation7 + Motivation8
21         + Motivation11 + Motivation13 + Motivation15 + Motivation16
22  controlled_motivation =~ Motivation1 + Motivation3 + Motivation5 + Motivation6
23         + Motivation9 + Motivation10 + Motivation12 + Motivation14
24

25  academic_performance =~ Grade
26

27  #structural part
28

29  relatedness_satisfaction ~ SMC
30  relatedness_frustration ~ SMC
31  competence_satisfaction ~ SMC
32  competence_frustration ~ SMC
33

34  autonomous_motivation ~ competence_satisfaction + competence_frustration
35         + autonomy_satisfaction + autonomy_frustration + relatedness_satisfaction
36         + relatedness_frustration
37  controlled_motivation ~ competence_satisfaction + competence_frustration
38         + autonomy_satisfaction + autonomy_frustration + relatedness_satisfaction
39         + relatedness_frustration
40

41  academic_performance ~ autonomous_motivation + controlled_motivation
42  ’
43

44 fit_fsem<-sem(model_fsem, as.data.frame(my_data))



B
R code: Model evaluation and

comparison

B.1. Bayesian analysis

1 library(blavaan)
2

3 # Model evaluation (RMSEA, SRMR, CFI and TLI)
4

5 AFI_ip <- ppmc(fit_ip, fit.measures = c(”rmsea”, ”srmr”, ”cfi”, ”tli”))
6 summary(AFI_ip)
7

8 AFI_np <- ppmc(fit_np, fit.measures = c(”rmsea”, ”srmr”, ”cfi”, ”tli”))
9 summary(AFI_np)
10

11 AFI_wp2 <- ppmc(fit_wp2, fit.measures = c(”rmsea”, ”srmr”, ”cfi”, ”tli”))
12 summary(AFI_wp2)
13

14 # Model comparison (WAIC, LOO and Bayes Factor)
15

16 fitMeasures(fit_ip)
17 fitMeasures(fit_np)
18

19 blavCompare(fit_ip, fit_np)

B.2. Frequentist analysis

1 library(lavaan)
2

3 # Model evaluation (RMSEA, SRMR, CFI and TLI)
4

5 fitMeasures(fit_fsem, fit.measures = c(”rmsea”, ”srmr”, ”cfi”, ”tli”), output =
6 ”matrix”)

B.3. Visualizations

1 library(semPlot)
2

3 m <- rbind(
4 c(0,7,0,0),

41
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5 c(0,6,0,0),
6 c(1,5,9,10),
7 c(0,4,8,0),
8 c(0,3,0,0),
9 c(0,2,0,0))
10

11 semPaths(fit_ip,
12 structural = TRUE,
13 reorder = F,
14 what = ”path”,
15 whatLabels = ”std”,
16 latents = c(”SMC”, ”relatedness_frustration”,”autonomy_frustration”,
17 ”competence_frustration”,”relatedness_satisfaction”, ”autonomy_

satisfaction”,”competence_satisfaction”,
18 ”controlled_motivation”,”autonomous_motivation”,”academic_performance”),
19 nodeLabels = c(”SMC”,”RF”,”AF”,”CF”,”RS”,”AS”,”CS”,”CM”,”AM”,”ACP”),
20 rotation = 2 ,
21 layout = m,
22 residuals = F,
23 intercepts = F,
24 thresholds = F,
25 exoCov = F,
26 edge.label.position = 0.3,
27 color = list(lat = ”lightskyblue”, man = ”lightsteelblue1”)
28 )



C
R code: Beta distributions

1 #displays the (0,1) beta converted to (-1,1)
2

3 beta <- function(a,b) {
4 x <- seq(.00001, .99999, .00001)
5 plot(-1 + 2*x, dbeta(x, a, b), type = ”l”, xlab = ””, ylab = ””,
6 main = paste(”Beta(”,a,”,”,b,”)”))
7 }
8

9 #converts mean and variance to (0,1), calculates a and b, gives beta(a,b)
10

11 prior <- function(mu_in) {
12 sigma2_in = 0.01
13 mu <- 0.5*mu_in + 0.5
14 sigma2 <- 0.25*sigma2_in
15

16 a = mu*(mu*(1-mu)/sigma2 - 1)
17 b = a*(1-mu)/mu
18

19 beta(a,b)
20 cat(”prior(\”beta(”,a, ”,”,b,”)\”)”)
21 }

43
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