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A B S T R A C T

We present SPAMS: Simple Parameterization for the Motion of Soils, a model to describe the motion of
deformable soils in the Vadose zone, mainly peat and clay, herein called shallow soft soils. The SPAMS model
estimates the reversible and irreversible vertical component of surface displacement to within sub-centimetre
RMSE, using only four parameters: three scaling factors and an integration time. Requiring only meteorological
data as an input, its lightweight nature and simple implementation make it a powerful tool when used as a
first approximation in inverse problems like those encountered in remote sensing. It has been validated against
in-situ data from five test sites in The Netherlands with different Holocene soil strata.
1. Introduction

While it is clear that shallow soil movements are caused primarily
by changes in phreatic groundwater level (Kennedy and Price, 2005;
Camporese et al., 2006), modelling the expected motion of soft soils
such as peat and clay is an ongoing effort and generally involves accu-
rately parameterizing the material and hydrological properties of every
layer within the modelled soil strata. This is of particular importance
in The Netherlands, where much of the coastal plain already lies below
mean sea level and additional subsidence constitutes a significant threat
to the security of the country. Most studies relating soil subsidence
to groundwater focus on the effects of extraction from deep confined
aquifers, and/or on the effects of settlement in an urban context, for
example: (Hsi et al., 1994; Mas-Pla et al., 2013; Peduto et al., 2022).
While modelling unconfined (phreatic) subsurface groundwater is an
ongoing effort in The Netherlands (van Dam and Feddes, 2000; van der
Gaast et al., 2010; De Lange et al., 2014; Erkens, 2021), the relationship
between the shallow groundwater system and the corresponding soil
displacement is not well understood, as so far the focus has been on
studying the effect of phreatic groundwater levels on greenhouse gas
emissions, and because in-situ measurements of the phenomenon with
adequate temporal sampling were not available until recently (van As-
selen et al., 2020). Despite these past efforts, we find there is also a need
to be able to describe and predict the motion of these soils simply, with
as few model parameters as possible. For example, in inverse problems
such as those encountered in remote sensing, one often has only one
observable per location and measurement epoch, rendering any highly
multivariate model too complex for inversion, as the problems are too
unconstrained to be solved without making many assumptions. This
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motivated us to create a model with the following requirements: (1) the
model should depend on as few parameters as possible, (2) all input
data should be readily available, (3) the model should be accurate,
allowing for minor variations caused by higher-order effects which are
not captured, and (4) the model should be validated at all available test
locations. This resulted in a Simple Parameterization for the Motion of
Soils: SPAMS.

2. Model inputs

To simplify the problem, we consider only the two most domi-
nant drivers of soil movement: precipitation and evapotranspiration
(Kennedy and Price, 2005). In previous work (Conroy et al., 2022), we
have shown how the direction of ground motion can be reliably pre-
dicted using a recurrent neural network for use in SAR Interferometry
(InSAR) applications using precipitation, temperature and day of year
as model inputs. The use of evapotranspiration is a refinement which
captures the effects of temperature and seasonality.

The value for evapotranspiration reported by the Royal Dutch Mete-
orological Institute (KNMI) is the so-called ‘‘De Bruin-Makkink’’ refer-
ence evapotranspiration (de Bruin, 1987; Hiemstra and Sluiter, 2011).
This model is applicable to grasslands in The Netherlands, and can be
rescaled to model the effects of other vegetation types (Jacobs and de
Bruin, 1998). A major advantage to the De Bruin-Makkink model is
that only two easily obtainable input values are required: average daily
temperature and daily solar radiant exposure. For more information
about these quantities, the reader is referred to de Bruin (1987).
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3. Model definition

Our goal is to create an empirical model for observed shallow soil
displacement, in first approximation, rather than a complete descrip-
tion of all processes occurring in the shallow subsurface. In SPAMS, the
overall relative soil surface height, 𝐻 , in a given reference system and
elative to a start time 𝑡0, is modelled as a combination of reversible
ex. shrinkage and swell) and irreversible processes (ex. oxidation):
(

𝑥, 𝑃 (𝑡), 𝐸(𝑡)
)

= 𝑅
(

𝑥, 𝑃 (𝑡), 𝐸(𝑡)
)

+ 𝐼
(

𝑥, 𝑃 (𝑡), 𝐸(𝑡)
)

, (1)

where 𝑅 is the reversible component and 𝐼 is the irreversible compo-
nent. 𝑃 and 𝐸 are daily mean precipitation and evapotranspiration in
millimetres as reported by KNMI, respectively. 𝑥 is the set of lithology
dependent parameters which will vary with location. We do not con-
sider irreversible subsidence due to compaction or creep, only model
the behaviour of unloaded soils with respect to changes in phreatic
groundwater level and soil moisture.

The reversible component is obtained by considering the balance
between the dominant source and sink of ground water, i.e., precipi-
tation and evapotranspiration, respectively. This balance is sometimes
referred to as the rainfall or water surplus and its integral over time
as the cumulative rainfall/water surplus (Kennedy and Price, 2005;
Yihdego and Webb, 2013). We modify this concept by introducing a
scaling factor between the precipitation and evapotranspiration terms
in order to model the material and hydrological properties of a given
region. Different locations will have different soil stratigraphies, land
use, and land parcel geometries, thus resulting in different responses to
meteorological conditions. This also rescales the reference evapotran-
spiration value to one better suited to the vegetation cover of the area.
Thus, the reversible component is modelled as the scaled difference
between precipitation, 𝑃 (𝑡), and evapotranspiration, 𝐸(𝑡), integrated
over a period of time 𝜏:

𝑅
(

𝑥, 𝑃 (𝑡), 𝐸(𝑡)
)

=
∑

𝜏

[

𝑥𝑃𝑃 (𝑡) − 𝑥𝐸𝐸(𝑡)
]

, (2)

where 𝑥𝑃 and 𝑥𝐸 are unknown relative scaling factors which will differ
per location. These factors reflect the relative effect on soil height each
respective process has, i.e., their relative strengths based on seepage
and infiltration, as well as the scaling from cumulative groundwater
balance to soil surface height. The unknown integration time 𝜏 is also
different for different soils, as the memory/hysteresis of the system will
differ based on material properties and geometry.

The irreversible component of soil subsidence is often modelled and
reported as a constant linear rate (Hoogland et al., 2012; Erkens et al.,
2016). However, we note that this ignores the effect of water in the
system, and the fact that oxidation primarily occurs while there is a
net loss of water in the system. We can make a simple improvement to
this approximation by taking into account when the soil is wetting or
drying. We retain a constant linear rate, but modulate its activity based
on the scaled water surplus of Eq. (2). Thus the irreversible component
is estimated by

𝐼
(

𝑥, 𝑃 (𝑡), 𝐸(𝑡)
)

=
𝑡

∑

−∞
𝑥𝐼 ⋅ 𝑓

(

𝑥, 𝑃 (𝑡), 𝐸(𝑡)
)

, (3)

where 𝑥𝐼 is an unknown constant rate of irreversible subsidence, and

𝑓
(

𝑥, 𝑃 (𝑡), 𝐸(𝑡)
)

=

{

0, for 𝑅
(

𝑥, 𝑃 (𝑡), 𝐸(𝑡)
)

> 0
1, for 𝑅

(

𝑥, 𝑃 (𝑡), 𝐸(𝑡)
)

≤ 0.
(4)

When 𝑅 > 0 (see Eq. (2)), the precipitation term dominates and the
soil is considered to be wetting. When 𝑅 ≤ 0, the evapotranspiration
term dominates and the soil is considered to be drying, and undergoing
oxidation. As-is, the model ignores the effects of compaction below
the Vadose zone; that-is, compaction in the saturated zone caused by
the mass of the water above. This could be included by setting the
zero-term in Eq. (4) to an unknown constant.
2

There are four unknown parameters to estimate for a given location:
the scaling factors 𝑥𝑃 , 𝑥𝐸 , and 𝑥𝐼 , and the integration time 𝜏. While
these parameters are clearly linked with the physical makeup of the
area of study, at this point we simply use them as empirical factors;
additional study is possible to link the parameter values with soil and
hydrological properties, as well as other factors such as parcel size and
shape, land use, or ground water management factors such as freeboard
or ditch water levels.

The parameters are estimated by minimizing the mean squared
error between the model output and a set of training data. In-situ
extensometer measurements from five locations in the Netherlands are
used as the source of the training and testing datasets, available: (NOBV
Consortium, 2023). The extensometers are based in the Pleistocene
layer, and consist of several measurement anchors at different vertical
levels in the above Holocene. Thus they provide continuous measure-
ments of the movement of the Holocene layer. We use the topmost
anchor located at 5 cm depth, which is the shallowest depth at which
an anchor can be reliably fixed. A full description of the system is
provided in van Asselen et al. (2020). The first part of the measurement
time series spanning dates from June 2020–October 2022 is used as the
training set which is used to fit the model parameters. The final year of
the measurement time series, from October 2022–October 2023 is used
as a testing set in order to assess the performance of the model. In a
remote sensing context, the training data may be a sparsely distributed
set of radar observables. The development of such a methodology is
elaborated by Conroy et al. (2023), which shows how the model may
be applied to regions where there are no in-situ data available.

4. Results and discussion

A map of the five test locations is shown in Fig. 1 along with
corresponding publicly available borehole log data from the immediate
vicinity (DINOloket, 2023). The test locations are distributed across
various different parts of the Dutch coastal plain and have different
combinations of clay, peat and sand in the Holocene sequence, thus
providing a representative set of conditions for the region. All locations
are managed grasslands used for agriculture.

The SPAMS model is validated by comparing the output to in-situ
measurement data, i.e., testing data, taken by extensometer readings
from the five test locations, shown in Fig. 1 and Table 1. This demon-
strates that our model is able to reliably approximate the relative soil
displacement at every test location, each with different Holocene soil
stratigraphies and depths. Obviously, potential anthropogenic interven-
tions in the water management would not be covered. While it is clear
that the model is too simple to perfectly capture all the high-frequency
components of the surface motion, the mean seasonal and sub-seasonal
effects are accurately modelled at every location, which is sufficient
for our objectives. The best performance is found at sites (b) and (d),
which display the lowest overall root mean squared error (RMSE), and
the lowest RMSE normalized to the standard deviation of the in-situ
data (RMSE/𝜎) respectively. These sites also have the shortest distance
to their corresponding weather station, so it is likely that they have the
most accurate input data. The worst performance is encountered at site
(a), which exhibits the most complex displacement history, with very
large differences between subsequent years. Nevertheless, the model is
still able to capture the large variations between seasons.

A major benefit to parameterizing the irreversible component sep-
arately from the overall surface displacement is that it allows for an
estimation of when the most significant soil volume loss occurs. For
example, the irreversible component was significantly greater at sites
(a), (b) and (d) in the hot and dry summer of 2022 compared to the
previous wetter and cooler summer of 2021. Thus we can compare the
irreversible rates between years to gain understanding of how climate

stresses on the soil and water system can affect subsidence.
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Table 1
Estimated model parameters and performance.
Location Aldeboarn Assendelft Rouveen Vlist Zegveld
Designation (a) (b) (c) (d) (e)

Distance site-meteo station [km] 17.4 9.8 34.8 7.2 19.4
𝑥𝑃 [m/mm] 1.7 ⋅10−4 1.5 ⋅10−4 6.3 ⋅10−5 8.0 ⋅10−5 9.7 ⋅10−5

𝑥𝐸 [m/mm] 1.3 ⋅10−4 9.2 ⋅10−5 8.2 ⋅10−5 6.4 ⋅10−5 2.7 ⋅10−4

𝑥𝐼 [m/d] −1.0 ⋅10−4 −1.4 ⋅10−4 −2.9 ⋅10−5 −2.0 ⋅10−5 −2.3 ⋅10−5

𝜏 [d] 80 80 54 86 69
Training RMSE [mm] 10.6 8.39 4.18 4.80 6.64
Testing RMSE [mm] 12.2 6.38 6.03 4.51 10.4
Training RMSE/𝜎 [mm/mm] 0.72 0.43 0.40 0.49 0.27
Testing RMSE/𝜎 [mm/mm] 0.83 0.33 0.58 0.46 0.42
Overall 𝑅2 [ ] 0.43 0.84 0.80 0.77 0.90
Fig. 1. Model output (blue: total displacement, red: irreversible component) and in-situ measurements (black) for sites (a) Aldeboarn, (b) Assendelft, (c) Rouveen, (d) Vlist,
(e) Zegveld. Top left: map of The Netherlands annotated with extensometer locations in red, along with corresponding simplified Holocene borehole lithographies.
5. Conclusion

SPAMS is an empirical soil model which makes accurate predictions
in the seasonal and sub-seasonal temporal scale to predict shallow soil
surface movement for various soft soils in The Netherlands. The model
is very simple and is fully described by only four parameters, and
requires only rainfall and evapotranspiration data as inputs. This makes
it well-suited for use as a first approximation in inversion problems such
as studying subsidence based on remote sensing data.

In a parallel publication, we outline how the model may be applied
to other regions where no in-situ data has been collected by means of
radar interferometry techniques (Conroy et al., 2023). In the future,
this model can also be further developed by considering an additional
compaction term which acts on the saturated soils below the Vadose
zone. We plan to develop the long-term applicability of the model by
integrating historical shallow soil displacement observations spanning
decades into a unified wide-area geodetic processing framework.
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