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PISA design model for monopiles for offshore wind turbines:
application to a stiff glacial clay till

BYRON W. BYRNE�, GUY T. HOULSBY�, HARVEY J. BURD�, KENNETH G. GAVIN†, DAVID J. P. IGOE‡,
RICHARD J. JARDINE§, CHRISTOPHER M. MARTIN�, ROSS A. MCADAM�, DAVID M. POTTS§,

DAVID M. G. TABORDA§ and LIDIJA ZDRAVKOVIĆ§

Offshore wind turbines in shallow coastal waters are typically supported on monopile foundations.
Although three-dimensional (3D) finite-element methods are available for the design of monopiles in this
context, much of the routine design work is currently conducted using simplified one-dimensional (1D)
models based on the p–y method. The p–y method was originally developed for the relatively large
embedded length-to-diameter ratio (L/D) piles that are typically employed in offshore oil and gas
structures. Concerns exist, however, that this analysis approachmay not be appropriate for monopileswith
the relatively low values of L/D that are typically adopted for offshore wind turbine structures. This paper
describes a new 1D design model for monopile foundations; the model is specifically formulated
for offshore wind turbine applications, although the general approach could be adopted for other
applications. The model draws on the conventional p–y approach, but extends it to include additional
components of soil reaction that act on the pile. The 1D model is calibrated using a set of bespoke 3D
finite-element analyses of monopile performance, for pile characteristics and loading conditions that span
a predefined design space. The calibrated 1D model provides results that match those obtained from the
3D finite-element calibration analysis, but at a fraction of the computational cost. Moreover, within
the calibration space, the 1D model is capable of delivering high-fidelity computations of monopile
performance that can be used directly for design purposes. This 1D modelling approach is demonstrated
for monopiles installed in a stiff, overconsolidated glacial clay till with a typical North Sea strength and
stiffness profile. Although the current form of the model has been developed for homogeneous soil
and monotonic loading, it forms a basis from which extensions for soil layering and cyclic loading can
be developed. The general approach can be applied to other foundation and soil–structure interaction
problems, in which bespoke calibration of a simplified model can lead to more efficient design.

KEYWORDS: design; limit state design/analysis; numerical modelling; offshore engineering; piles & piling;
soil/structure interaction

INTRODUCTION
Monopile foundations are currently the preferred option for
offshore wind turbine structures in shallow coastal waters.
The design of monopile foundations in this application
requires analysis tools that can deliver reliable predictions of
performance for lateral and moment loading conditions due
to the action of wind, waves and current. Accurate predic-
tions of the stiffness of the foundation are also required to
allow estimates to be made of the natural frequency of the
wind turbine support structure.

Current design procedures typically employ a simplified
one-dimensional (1D) analysis framework – known as the

‘p–y’ method – in which the monopile is modelled as
an embedded beam and the lateral soil response is rep-
resented by ‘p–y’ curves, which are non-linear relationships
between the distributed lateral load acting on the pile and
the local pile lateral displacement. The p–y method was
originally developed for the relatively slender piles used in the
offshore oil and gas industry (e.g. Reese & Matlock, 1956;
Matlock, 1970; Reese et al., 1975). Standard forms of the
p–y method (e.g. as specified in API (2010) and DNV-GL
(2016)), however, are widely regarded as having significant
limitations when applied to piles with the relatively low L/D
ratios of about 6 or less (where L is embedded length andD is
pile diameter) that are typically employed for offshore wind
turbine applications (e.g. Doherty & Gavin, 2011; Byrne
et al., 2017). Particular concerns include

(a) evidence of inconsistencies between design predictions
based on the p–y approach and measured performance
of actual offshore wind turbine structures
(e.g. Kallehave et al., 2012)

(b) lack of clarity in relating the parameters needed to
define the p–y curves to soil data obtained during
routine site investigation (e.g. Jeanjean et al., 2017)

(c) lack of robust extensions of the p–y method to address
cyclic loading effects.

This paper describes a new modelling approach – referred to
as the ‘PISA design model’ – for rapid, high-fidelity design
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calculations for offshore monopile foundations. The model
draws on the traditional p–y method, but extends it to
include additional soil reaction components that have been
identified as significant for piles with relatively low values of
L/D (e.g. Byrne et al., 2015, 2017, 2019a; Schroeder et al.,
2015). Importantly, the model is calibrated against a set of
bespoke three-dimensional (3D) finite-element analyses.
Once the model has been calibrated it can be used to
conduct rapid computations, with results that closely match
those obtained using more detailed, but computationally
costly, 3D finite-element methods. The PISA design model
addresses some of the limitations of the traditional p–y
method when applied to monopile foundations (although the
current model does not incorporate cyclic effects). In
particular, it facilitates accurate predictions for piles with
relatively low values of L/D. Furthermore, the 3D
finite-element procedures, against which the method is
calibrated, have themselves been validated through detailed
comparison with field tests (Byrne et al., 2019b; Zdravković
et al., 2019b). Thus there is an audit trail from field data
through 3D analysis and to the new design method. The
current application of the PISA design model is concerned
with piles embedded in a single soil type, but the approach is
capable of extension to layered soils. Future extensions to
cyclic loading are feasible based on the computed monotonic
backbone curve, but these extensions are beyond the scope of
this paper.
The development of the design model presented here was

the purpose of a recently completed joint industry study –
known as PISA (Byrne et al., 2015, 2017, 2019a; Zdravković
et al., 2015; Burd et al., 2017) – comprising field testing and
ground characterisation (Burd et al., 2019; Byrne et al.,
2019b; McAdam et al., 2019; Zdravković et al., 2019a), 3D
finite-element modelling (Taborda et al., 2019; Zdravković
et al., 2019b) and 1D model development (described here
and in the paper by Burd et al. (2020)). The various aspects
of the PISA research were all based on the conventional
design assumption that the lateral behaviour of monopiles for
wind turbine applications is unaffected by vertical loads
(caused by the weight of the turbine and the support
structure). This is on the basis that vertical loads applied to
monopiles in this application are invariably a small fraction
of the vertical load capacity of the foundation.
Field tests and associated numerical modelling were

conducted at two test sites; one at Cowden (on the north
east coast of England) where the soil consists principally of
an overconsolidated glacial till (Byrne et al., 2019b;
Zdravković et al., 2019b). The other was at Dunkirk in
northern France, where the soil is a dense marine sand
(McAdam et al., 2019; Taborda et al., 2019). The current
paper describes the new modelling framework and provides
an example application for a ‘representative offshore glacial
clay till site’, with ground conditions based closely on those at
the Cowden test site. A companion paper describes a separate
application to ‘representative marine sand’ sites (Burd et al.,
2020).

THE PISA DESIGN MODEL
Model framework
The PISA design model is concerned with computing the

performance of a monopile foundation for the loading
conditions shown in Fig. 1. A monotonic lateral load H is
applied at a height h above the seabed level (referred to in this
paper as ‘ground level’). The PISA model provides a means
of determining the resulting displacements of the pile as well
as the distribution of bending moment and shear force in the
pile. The distance h, referred to as ‘load eccentricity’, is
chosen to provide an appropriate representation of the

environmental loads. Vertical loading applied to the foun-
dation (e.g. due to the weight of the turbine, rotor and tower)
is assumed to be small compared to the axial pile capacity,
and is neglected in the current model.
The loading configuration in Fig. 1 applies a lateral load

HG¼H and a moment MG¼Hh to the monopile at ground
level, as indicated in Fig. 2. Four separate soil reaction
components are assumed to act on the pile at the soil–pile
interface, as illustrated in Fig. 2(a). These are: (a) distributed
lateral loads; (b) vertical shear tractions; (c) a horizontal
force at the pile base; and (d ) a moment at the pile base. The
vertical shear tractions arise partly as a consequence of
vertical displacements of the pile perimeter caused by local
rotation of the pile cross-section and partly due to vertical
relative movements of active and passive soil wedges that
develop near the ground surface as soil failure conditions are
approached (see, e.g. Jeanjean et al. (2017)). The shear
tractions combine to form a distributed moment along the
pile; any net vertical load applied to the pile by the tractions
is neglected. In the PISA design model implementation
illustrated in Fig. 2(b), the monopile is represented as an
embedded beam; a distributed lateral load p and a dis-
tributed moment m are assumed to act on the pile along its
length, with the distributed moment providing a means of
incorporating the moment associated with the vertical shear
tractions induced at the soil–pile interface. Additionally, a
horizontal force HB and a moment MB act on the pile base.
The PISA design model is formulated in a 1D

finite-element framework in which the pile is represented as
a line mesh of beam finite elements. The soil is modelled with
a separate set of finite elements, with displacement interp-
olation functions that are identical to those employed in the
elements representing the pile. Each embedded pile element
has a soil element associated with it, attached to its two
nodes. These procedures ensure compatibility of displace-
ment and rotation of the pile and the soil along the length of
each embedded pile element. Each of the soil reaction
components is related in the model to the local lateral
displacement or rotation (i.e. adopting a ‘Winkler’ approach)

L

h

D

Seabed level
(ground level) 

Embedded
monopile 

Transition piece
and tower 

H

Fig. 1. Geometry for the monopile design problem
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by a calibrated parametric function referred to as a ‘soil
reaction curve’. The soil reaction curves have a similar role to
the p–y curves in a conventional p–y analysis, but the PISA
model is extended to include a representation of additional
soil reaction components. These extensions follow previous
work by Davidson (1982), Lam & Martin (1986) and Lam
(2013) for the design of drilled shafts, principally for onshore
applications.

It is acknowledged that the Winkler assumption (soil
reactions depend solely on the local displacement and
rotation) is an oversimplification of the actual response of
the soil body, as it does not represent the spatial coupling that
occurs within the soil. The Winkler assumption has, however,
a long track record of satisfactory application to soil–
structure interaction problems, and has the advantage that
it allows highly efficient computational techniques to be
employed. The efficacy of adopting the Winkler approach is
demonstrated later in this paper by the fidelity that it achieves
in reproducing the more complex 3D analyses. Versteijlen
et al. (2018) employ a simplified monopile model for elastic
soil behaviour, in which spatial coupling within the soil is
included. Extension of these ideas to incorporate non-linear
pile behaviour would not be straightforward.

A four-parameter function is used as the basis for each of
the soil reaction curves. The curves are calibrated directly
from a set of bespoke 3D finite-element calibration analyses,
tailored to a particular offshore site and range of monopile
dimensions and loading eccentricities of interest. This
calibration process ensures that the 1D model is able to
provide a close representation of the performance of the
monopile, as computed with the more detailed 3D analyses,
for arbitrary pile dimensions and loading eccentricities
within the calibration space.

1D finite-element formulation
Timoshenko beam theory is used to model the behaviour

of the embedded pile; providing an approximate means of
including the effect of shear deformations in the pile within
the analysis. Gupta & Basu (2018) demonstrate that,
although for many cases the effect of using the more accurate
Timoshenko theory rather than Euler–Bernoulli theory is
small, for piles of low L/D ratio and a low ratio of pile to soil
stiffness, the effects of using the more accurate theory can
result in a significant increase in pile head displacement, and
especially of pile head rotation (see e.g. their Fig. 6). The use
of Timoshenko beam theory in the current model, therefore,
provides assurance that shear effects are captured in any cases
where they might be significant.
The assumed displacement field in the pile is indicated in

Fig. 3(a). The axial and lateral displacements are

w y; zð Þ ¼ yψ zð Þ v y; zð Þ ¼ v0ðzÞ ð1Þ

where y is distance from the neutral axis (assumed to coincide
with the centroid of the pile cross-section); ψ is the rotation of
the pile cross-section; and v0(z) is the lateral displacement of
the neutral axis. The rotation ψ is defined to be clockwise
positive, Fig. 3(b), consistent with a positive rotation about a
right-handed x-axis implied by the coordinate directions in
Fig. 3(a). The corresponding strains are

εzz ¼ @w
@z

¼ y
dψ
dz

; γyz ¼
@w
@y

þ @v
@z

¼ ψ þ θ ð2Þ

where θ¼ (∂v/∂z)¼ (dv0/dz) is the (anticlockwise
positive) rotation of the pile neutral axis. The bending
moment in the pile, Mint, and the shear force, Vint,

MG

HG

Tower

Ground level

M
on

op
ile Distributed

lateral load

Vertical shear
tractions at soil–

pile interface

Horizontal force and
moment at pile base

(a)

MG

HG

z,w
y,v

Distributed
lateral load
p(z,v) 

Distributed
moment
m(z,ψ)  

Base
horizontal

force HB(vB) 

Base moment
MB(ψB)

(b)

Timoshenko
beam

elements 

L

Nominal
centre of
rotation

D

Fig. 2. PISA design model: (a) idealisation of the soil reaction components acting on the pile; (b) 1D finite-element implementation of the model
showing the soil reactions acting on the pile. Note that the reactions are depicted in (a) as acting in the expected direction. In (b) the reactions are
shown in directions that are consistent with the coordinate directions shown (p and HB reacting positive v and vB; m and MB reacting positive
(clockwise) ψ and ψB)
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(illustrated in Fig. 3(c)) are

Mint ¼
ð
cross-section

Eεzzy dA ¼ EI
dψ
dz

ð3Þ

Vint ¼ GAκ ψ þ dv0
dz

� �
ð4Þ

where E is the Young’s modulus of the pile material; I is
second moment of area of the pile cross-section; G is the
shear modulus; A is the pile cross-section area; and κ is a
shear factor. The shear factor employed in the current model
is determined as the ratio of the average shear stress acting on
the cross-section and the shear stress at the neutral axis for a
thin-walled tube, determined using conventional beam
theory; this approach gives κ¼ 0·5. An alternative analysis,
Cowper (1966), gives the shear factor as

κ ¼ 2ð1þ νÞ
4þ 3ν

ð5Þ

where ν is the Poisson ratio of the beam material; ν¼ 0·3
in the current work. The shear factor determined from
equation (5) is 0·53, similar to the value κ¼ 0·5 employed in
the current model.
For equilibrium configurations of the model in Fig. 2(a),

for arbitrary virtual lateral displacements and rotations δv
and δψ, the internal virtual work, δWI, is equal to the
external virtual work, δWE

δWE ¼ δWI ð6Þ

The external virtual work is

δWE ¼ HGδvG þMGδψG ð7Þ
where δvG is the virtual displacement of the pile at ground
level and δψG is the virtual cross-section rotation of the pile at
ground level. The internal virtual work is

where δvB and δψB are virtual displacement and cross-section
rotation, respectively, at the base of the pile. In this equation,
the soil reactions (p, m, HB, MB) are considered as internal
force resultants, determined in the model by specified
functions of the local displacement and rotation.
The Galerkin form of equation (8) is obtained by discre-

tising the pile using a line mesh of two-noded, five-degrees-
of-freedom Timoshenko beam elements, based on the
formulation in the book by Astley (1992). The soil is repres-
ented by a line mesh of two-noded, five-degrees-of-freedom
elements using displacement and rotation interpolation
procedures that are consistent with those employed for the
beam elements. The pile and soil meshes share the same
nodal degrees of freedom. An overview of the finite-element
formulation is provided below.
The lateral displacement within each pile element is

determined by the interpolation

v ¼ N1V1 þN2Θ1 þN3V2 þN4Θ2 ð9Þ

where Ni are the conventional set of Hermite cubic
interpolation functions, and Vj, Θj are the nodal values of
lateral displacement and pile neutral axis rotation,

z,w

Pile cross-
section

y,v

N
eu

tra
l a

xi
s

D

Mint

Mint

Vint

Vint

(a) (b) (c)

Cross-section
rotation, ψ 

Cross-section
rotation, ψ,

(clockwise positive)

Neutral axis rotation, θ,
(anticlockwise positive) 

Fig. 3. Deformations and internal forces in the pile: (a) adopted coordinate directions and assumed rotation of the pile cross-section; (b)
diagrammatic representation of a short length of deforming pile; (c) internal forces, shown in directions consistent with equations (3) and (4)

δWI ¼
ðL
0

Mint
dδψ
dz

þ Vintδγyz þ pðz; vÞδvþmðz;ψÞδψ
� �

dzþHBδvB þMBδψB

¼
ðL
0

EI
dψ
dz

dδψ
dz

þ GAκ
dv
dz

þ ψ

� �
dδv
dz

þ δψ

� �
þpðz; vÞδvþmðz;ψÞδψ

� �
dz

þHBδvB þMBδψB

ð8Þ
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respectively. The shear strain is assumed constant, γyz¼ γ0,
within each element. The neutral axis rotation at each node
is Θj¼ γ0�Ψj, where Ψj are the nodal values of the
cross-section rotation (considered to be continuous at
the element nodes). The lateral displacement is therefore

v ¼ N1V1 �N2Ψ1 þ N2 þN4ð Þγ0 þN3V2 �N4Ψ2 ð10Þ
where γ0 is treated as an additional element degree of
freedom. The detailed formulation of the finite-element
equations for the beam element proceeds on the basis of
standard approaches (Astley, 1992).

The formulation employed for the soil elements adopts the
displacement interpolation in equation (10). The local
displacement and rotation in each soil element is

v ¼ BU ð11Þ
where v ¼ ð v ψ ÞT is the local displacement/rotation vector,
U ¼ ðV1 Ψ1 γ0 V2 Ψ2 ÞT is a vector containing the
element displacement degrees of freedom and

B ¼ N1

�N ′1

�N2

N ′2

N2 þN4ð Þ
�ðN ′2 þN ′4 � 1Þ

N3

�N ′3

�N4

N ′4

� �
ð12Þ

where N′i denotes a shape function derivative with respect
to z. The internal force vector f and the tangent stiffness
matrix k for the element are

f ¼
ð
element

BTp dz k ¼
ð
element

BTDB dz ð13Þ

where p is a vector of force resultants p ¼ ð p m ÞT and the
constitutive matrix, D, is

D ¼
dp
dv

0

0
dm
dψ

2
664

3
775 ð14Þ

The integrals in equation (13) are evaluated over each
element using Gauss integration with four Gauss points per
element.

Finite-element equations for the pile, the soil and separate
lumped models at the pile base forHB andMB are assembled
in the conventional manner; the resulting non-linear
finite-element equations are solved by Newton–Raphson.

This model formulation requires two parameters to define
the behaviour of the pile (EI, GAκ). The conventional
thin-walled approximation is employed for the second
moment of area, I, and cross-section area A. Additional
parameters are required to define the soil reaction curves, as
described below. In any practical application of the model,
choices need to be made on the number of embedded
pile elements (and associated soil elements) to employ in the

analysis. A discussion of this issue is provided later in
the paper in connection with the observed convergence
characteristics of the model.

3D FINITE-ELEMENT CALIBRATION ANALYSES
Specification of the calibration analyses
Calibration analyses have been conducted for the idealised

problem geometry shown in Fig. 1. The piles (referred to as
the ‘calibration set’) employed in the calibration include pile
diameters, D, of 5 m, 7·5 m and 10 m, and values of L/D of
2 and 6. The load eccentricity, h, for an offshore monopile
depends on whether the loading is dominated by wind or
wave action; in the current calibration set the normalised
eccentricity h/D is assumed to be between 5 (wave-dominated
loading) and 15 (wind-dominated loading). The calibration
set is specified in Table 1. 3D finite-element analyses of the
performance of each of these calibration pile configurations
were conducted using the finite-element software ICFEP
(Potts & Zdravković, 1999, 2001) using the same constitutive
model and procedures that had been validated against field
test data; see Byrne et al. (2019b) and Zdravković et al.
(2019b).
Most of the piles in the calibration set have a pile wall

thickness, t¼D/110; this ratio provides wall thickness values
that are regarded as being typical for realistic monopiles. Two
additional calibration calculations with thicker pile walls
(pile C3 with t¼D/80 and pile C7 with t¼D/60) were
included in the calibration set; these cases were intended to
explore the influence of pile wall thickness on the computed
soil–pile interface reactions, and therefore to assess whether
variations in D/t need to be included in the calibration
process.

Initial ground conditions
The ground conditions for the calibration analyses are

based on the Cowden test site that was employed for the
PISA field tests (Byrne et al., 2017; Zdravković et al., 2019a,
2019b). The ground conditions at this site consist of a deep
layer (depth about 40 m) of overconsolidated glacial till.
A range of historical data for the site (e.g. Powell & Butcher,
2003) were supplemented by additional triaxial and in situ
data collected during the PISA project to characterise the soil
conditions at the site (Zdravković et al., 2019a). This site is
affected by an under-drained pore water pressure profile
(Zdravković et al., 2015, 2019a), which is unrepresentative of
offshore conditions. A separate ground model for a repre-
sentative offshore glacial clay till site was therefore developed
for the calibration analyses. This was based on the soil
parameters determined for the Cowden test site (Zdravković
et al., 2019a, 2019b), but with the vertical effective stress

Table 1. Pile geometry and loading eccentricities employed in the 3D finite-element calibration analyses

Pile reference D: m h: m h/D L: m L/D t: mm D/t

C1 10 50 5 20 2 91 110
C2 10 150 15 20 2 91 110
C3 10 50 5 20 2 125 80
C4 10 50 5 60 6 91 110
C5 10 150 15 60 6 91 110
C6 5 25 5 10 2 45 110
C7 5 25 5 10 2 83 60
C8 5 25 5 30 6 45 110
C9 5 75 15 30 6 45 110
C10 7·5 37·5 5 15 2 68 110
C11 7·5 37·5 5 45 6 68 110
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determined using a bulk unit weight, γ =21·19 kN/m3

(Zdravković et al., 2019a), and hydrostatic pore water
pressure from the ground surface. The (relatively small)
adjustments to the effective stresses, as a consequence of
adopting a hydrostatic pore pressure variation, imply small
changes to the profiles of in situ undrained triaxial com-
pression shear strength, su, and small-strain shear modulus,
G0. Profiles of su, G0 (G0¼ 1100p′ is employed, based on the
calibration in the paper by Zdravković et al. (2019b), where p′
is the mean effective stress), the coefficient of earth pressure
at rest, K0, and the overconsolidation ratio employed in the
ground model for the representative offshore glacial till site,
which are consistent with the selected soil constitutive model
(see Table 2 and Zdravković et al. (2019b)), are plotted in

Fig. 4. Below 50 m the profile of su continues linearly at the
same gradient.

Finite-element meshes and boundary conditions
The finite-element meshes exploit symmetry; so that only

one half of the problem needs to be discretised. An example
mesh, for pile C4, is shown in Fig. 5. In this case 10 530
20-noded hexahedral displacement-based isoparametric
solid elements are used to model the ground. The soil–pile
interface is represented by 360 16-noded zero-thickness
interface elements (Day & Potts, 1994), and the pile itself is
modelled using 600 eight-noded shell elements (Schroeder
et al., 2007). In the axial direction, each pile is discretised

Table 2. Summary of model parameters for Cowden till (from Zdravković et al., 2019b). Equation numbers relate to equations in the paper by
Zdravković et al. (2019b)

Component Parameters

Strength (Van Eekelen, 1980), equation (3) X¼ 0·548, Y¼ 0·698, Z¼ 0·100
Non-linear Hvorslev surface – shape (Tsiampousi et al., 2013), equation (1) α¼ 0·25, n¼ 0·40
Non-linear Hvorslev surface – plastic potential (Tsiampousi et al., 2013), equation (2) β¼ 0·20, m¼ 1·00
Virgin consolidation line ν1¼ 2·20, λ¼ 0·115
Non-linear elasticity – swelling behaviour κ¼ 0·021
Non-linear elasticity – small-strain shear modulus (Taborda et al., 2016), equation (4) G0

*¼ 110 MPa, p′ref¼ 100·0 kPa
Non-linear elasticity – shear stiffness degradation (Taborda et al., 2016), equation (4) a¼ 9·78� 10�5, b¼ 0·987, RG,min¼ 0·05
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with 30 rows of elements below the ground level and 20 rows
of elements above. (The extension of the pile above ground
level provides a convenient means of applying the desired
moment MG to the monopile. The deformations induced in
the above-ground extension, however, do not have any
significance for the calibration study.) Similar meshes were
employed for the other calibration piles.

The nodes on the base of the mesh are fixed.
Displacements normal to the vertical cylindrical boundary
are prescribed to be zero, and appropriate symmetry
conditions are applied to the nodes on the plane of symmetry.
The lateral load at the pile top (i.e. at z¼�h) is applied in a
displacement controlled manner, such that the increments of
displacement in the y-direction are applied uniformly around
the pile perimeter. The lateral load, H, on the pile is
determined from the computed reactions. The numerical
calculations were conducted incrementally with an appro-
priate number of increments to ensure sufficient resolution
for calibration purposes.

Constitutive models
An extended generalised version of the non-linear elasto-

plastic modified Cam Clay model was adopted for the soil
(see Zdravković et al. (2019b)). The model utilises a Hvorslev
surface on the dry side (Potts & Zdravković, 1999;
Tsiampousi et al., 2013). The general Van Eekelen (1980)
expression for strength variation in the deviatoric plane was
employed. The non-linear degradation of shear modulus
with strain and its dependence on stress level (Fig. 6) were
simulated with the Taborda et al. (2016) small-strain model.
The particular stiffness degradation employed in the analyses
was determined from the site investigation data at the
Cowden site (Zdravković et al., 2019a, 2019b). Undrained
conditions were enforced in the analyses by prescribing a
large value for the bulk modulus of the pore fluid
(Naylor, 1974; Potts & Zdravković, 1999); the developed
1D model therefore applies only to undrained loading
conditions.

The soil–pile interface was represented by an elasto-plastic
Tresca model with a tensile capacity equal to the local

hydrostatic pressure; this ensures that the appropriate hydro-
static pressure acts on the pile when gap formation occurs.
As the pile is loaded, the horizontal total stress reduces on the
active face; if it reaches the tensile capacity then a gap will
start to form (from the surface downwards in the current
analyses). Consequently, at the start of the analysis there is
full bonding between the pile and the soil. However, as the
lateral load increases, and a gap starts to open, then
de-bonding progresses down the pile. In the current calcu-
lations the phreatic surface was located at ground level. The
shear and normal stiffness employed in the interface model
were both set to 1·0� 105 kN/m3. The shear strength in
compression of the interface was set to the local value of
undrained soil shear strength, approximating a fully rough
interface. The monopile was modelled as an elastic material
(representing steel), with Young’s modulus E=200 GPa and
Poisson ratio ν=0·3. The pile wall thickness (Table 1) is
specified as an additional constitutive parameter. The 1D
model presented below inherently accounts for this assumed
constitutive behaviour. Variations of the 1D model could be
developed that explore the sensitivity of the design model to
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these assumptions, but that would require a separate suite of
3D finite-element calibration calculations.

Analysis procedures
The piles were ‘wished in place’ in the 3D calibration

analyses, to avoid introducing uncertainties into the analyses
around how installation effects can be realistically quantified.
This analysis approach reflects that laterally loaded piles
mobilise a relatively large volume of soil around the pile,
which extends well beyond any interface zone disturbed
during installation. This contrasts with axially loaded piles
for which the performance of the pile depends strongly on the
soil–pile interface conditions and installation effects may be
significant. The appropriateness of the wished in place
assumption is further reinforced by the excellent agreement
between the numerical predictions and field measurements of
the PISA test piles at both the Cowden (Zdravković et al.,
2019b) and Dunkirk (Taborda et al., 2019) test sites.
The 3D finite-element calibration analyses were all taken

to a ground-level pile displacement of at least vG¼D/10; this
value of displacement was considered to correspond to the
ultimate limit state of the pile. To ensure that the analyses had
converged sufficiently tightly at a local level for model
calibration purposes, an equilibrium check was performed on
the numerical results. To conduct this check, the nodal forces
acting on the pile and soil plug at the boundary with the
surrounding soil were used to compute the overall force
acting on the pile. These reactions were compared with the
force implied by the applied loading. Numerical solutions
were only accepted if these boundary checks were satisfactory
(maximum overall force discrepancies of less than 5% were
considered acceptable); in other cases the finite-element
analyses were repeated using a tighter convergence tolerance.

NUMERICAL SOIL REACTION CURVES
The soil reaction curves were initially determined by

extracting numerical data on the soil reactions from the 3D
finite-element results at each loading increment. Local lateral
displacements and cross-section rotations of the pile were
determined from the computed displacements of the relevant
shell element nodes by averaging over the cross-section
(for displacement) and by least-squares fitting of the
vertical displacements (for rotation). The local distributed
lateral load was determined by integrating the y-component
of the computed normal and shear tractions at the external
soil–pile interface. The local distributed moments were
computed from

m ¼ 1
4

ð2π
0

tzD2 cos ϕ dϕ ð15Þ

where tz are the computed vertical tractions (defined positive
upwards acting on the pile) and ϕ is defined in Fig. 7.
The base horizontal force and moment were determined from
the computed nodal forces at the base of the shell elements
used to represent the pile and the computed nodal forces
acting on the nodes at the base of the soil plug.
The soil reaction data determined in this way were

normalised using the dimensionless groups listed in
Table 3. The local soil strength and stiffness data used in
this normalisation process were calculated at the average
depth of each element. This normalisation process is a key
part of the procedure, as it allows the soil reaction curves to
be computed within the 1D model for local values of su and
G0. The soil reaction data normalised in this way are referred
to as ‘numerical soil reaction curves’.

To check the robustness of the procedures used to compute
the numerical soil reaction curves, and to assess the potential
performance of a 1D model based on the PISA modelling
approach, check calculations were conducted for all of the
calibration piles using a form of the 1D model, referred to as
1D (numerical), in which the numerical soil reaction curves
are incorporated directly. In these calculations, the numerical
soil reaction curves at the depth location of each Gauss point
in the 1D model were determined by interpolation; local
values of soil strength and stiffness were then used to
compute the local soil reactions.
Comparisons of the relationships between the lateral load,

H, and the ground-level pile displacement, vG, computed
using the 3D and 1D models are facilitated by an accuracy
measure referred to as the ‘accuracy metric’, η, which is
defined below, based on the nomenclature in Fig. 8.

η ¼ Aref � Adiff

Aref
ð16Þ

An accuracy metric of η¼ 1·0 indicates a perfect match
between the 1D and 3D models. Two separate sets of η have
been determined. To assess the accuracy of the 1D model for
pile displacements up to an assumed limit state of vG¼D/10,
values of the accuracy metric, ηult, were determined for
0, vG,D/10. To obtain a separate indication of the small
displacement performance of the 1D model (e.g. relevant
for computing the natural frequencies of a wind turbine
support structure) a small displacement accuracy metric, ηsd,
was determined for 0, vG,D/10 000. The values of η
determined from this process, for all of the calibration piles,

Table 3. Dimensionless groups for soil reaction curves

Normalised variable Non-dimensional form

Distributed load, p̄
p

suD

Lateral displacement, v̄
vG0

Dsu

Distributed moment, m̄
m

suD2

Pile cross-section rotation, ψ̄
ψG0

su

Base horizontal force, H̄
HB

suD2

Base moment, M̄
MB

suD3

Rotation, ψ

Pile

dz
The vertical shear

traction tz varies around
the pile perimeter,

causing a distributed
moment m  

φ Loading direction

Fig. 7. Vertical shear tractions developed on an elemental length of
pile at the soil–pile interface. The angle ϕ is defined relative to the
loading direction as shown
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are 0·90� ηult� 0·99 (mean= 0·95) and 0·95� ηsd� 0·99
(mean=0·97); these results indicate a close match with the
calibration data, providing confidence in the robustness of
the modelling approach. Example comparisons between the
H–vG performance determined from the 3D calibration
data and the 1D (numerical) model are indicated in Fig. 9
(for pile C4) and Fig. 10 (for pile C1).

A further exercise has been conducted to investigate the
significance of the individual soil reaction components on
the performance of the 1D model. Two forms of the model
have been considered; ‘case P’ (which incorporates only the
distributed lateral load, p) and ‘case P+H and M’ (in which
the base reactions, HB and MB, are included together with
the distributed lateral load; the distributed moment is
omitted). Results for case P for piles C4 and C1 are plotted
in Figs 9 and 10. These data indicate that for pile C4 (which is
relatively long, L/D¼ 6) the 3D calibration data are matched
closely by the case P model (Fig. 9). The loss of performance
of the 1D model caused by omitting the distributed moment
and the base force and moment terms, for this particular
case, appears small. For pile C1 (which is relatively short,
L/D¼ 2), however, considerable loss of accuracy is apparent
in the case P model (Fig. 10). Also plotted on Figs 9 and 10
are the results for case P+H and M. For the long pile (C4)
there is no significant loss of fidelity when the distributed
moment term is omitted from the model (case P+H and M).
For the short pile (C1), however, the omission of the

distributed moment does cause a discernible loss of accuracy.
These observations support the underlying assumption of the
PISAmodel in Fig. 2, that a complete set of four soil reaction
components is required for a realistic 1D model for the
behaviour of relatively short, large diameter monopiles, such
as pile C1.
Although the 1D (numerical) model is successful in

reproducing the 3D calibration data, it does not have any
predictive capability. However, by developing and calibrating
general analytical expressions for the soil reaction curves, it is
possible to formulate a form of the 1D model, referred to as
‘1D (parametric)’ that can be applied to any pile and loading
geometry within the calibration space. The development of
the 1D (parametric) model is described below.

PARAMETRIC SOIL REACTION CURVES
Functional form
The 1D (parametric) model is based on the use of the

following conic function to represent the soil reaction curves

� n
ȳ
ȳu

� x̄
x̄u

� �2

þ 1� nð Þ ȳ
ȳu

� x̄k
ȳu

� �
ȳ
ȳu

� 1
� �

¼ 0 ð17Þ

where x̄ is a normalised displacement (or rotation) variable
and ȳ is the corresponding normalised load (or moment)
variable as listed in Table 3. This function requires the
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Fig. 8. Accuracy metrics: (a) ultimate response; (b) small displacement response
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specification of four separate parameters: ultimate displace-
ment, x̄u, ultimate load, ȳu, initial stiffness, k, and the
curvature parameter, n, where 0� n� 1 and x̄u . ȳu=k.
The general form of the function is plotted in Fig. 11(a).
For the extreme cases of n=0 and n¼ 1, the function reduces
to a bilinear form, as illustrated in Fig. 11(b). The choice
of this particular function is not essential for the methods
described here. The function was chosen because it
allows fitting of (a) initial stiffness, (b) an ultimate load,
(c) a displacement at which ultimate load is reached and
(d) a curvature parameter which determines the sharpness of
the transition from high initial stiffness to softer non-linear
response. A number of other functions have been proposed in
the literature with similar characteristics, and in principle the
fitting exercise described below could be carried out using an
alternative kernel function to fit each curve.
The normalised soil reactions can be determined explicitly

from the normalised displacements by

ȳ ¼ ȳu
2c

�bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p ; x̄ � x̄u

ȳ ¼ ȳu; x̄ . x̄u

ð18Þ

where,

a ¼ 1� 2n ð19Þ

b ¼ 2n
x̄
x̄u

� 1� nð Þ 1þ x̄k
ȳu

� �
ð20Þ

c ¼ x̄k
ȳu

1� nð Þ � n
x̄2

x̄2u
ð21Þ

Parameters to fit the soil reaction curves are determined
using a two-stage process. A ‘first-stage calibration’ is
conducted based on the numerical soil reaction curves
determined from the 3D finite-element calibration analyses.
These parameters are considered to vary with depth accord-
ing to functions referred to as ‘depth variation functions’.
Then, a ‘second-stage optimisation’ process is conducted
in which small changes are made to the depth variation
parameters to improve the fit between the 1D model and the
calibration data for the pile head performance. These
processes are described below, with Table 4 reporting the
depth variation parameters for both the first-stage cali-
bration and after the second-stage optimisation.

First-stage calibration
Distributed lateral load curves. As the lateral load reaction
on the pile contributes the largest term to the overall pile
response (see case P in Fig. 10), this is the most important
load component to model accurately. Parameters for the
normalised distributed lateral load response were determined
from the numerical soil reactions as follows.

(a) A single value of ultimate displacement, v̄pu ¼ 200, was
selected, manually, at which the reactions for all depths
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Fig. 10. Comparison of load–ground-level displacement response determined from the 3D calibration analyses and the corresponding results
obtained using the 1D model employing the numerical soil reaction curves. Analysis C1 (D=10 m, L=20 m). Case P refers to the case where the
distributed lateral soil reactions only are included in the 1D model. Case P+H and M refers to the addition of base soil reactions: (a) ultimate
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are judged to have reached their approximate ultimate
values.

(b) The initial stiffness kp was selected by least-squares
fitting the linear expression p̄ ¼ kpv̄ to the numerical
data in the small displacement region of 0 , v̄ , 10.

(c) The ultimate response, p̄u, and curvature, np, were
determined by minimising the proportional least-square
error between the numerical data and the parametric
expressions.

Comparisons between the numerical and parametric soil
reaction curves for pile C4 determined in this way are plotted
in Fig. 12(a).

The parameters kp, np and p̄u are plotted as a function of
normalised depth z/D in Fig. 13 for all of the piles in the
calibration set. These data do not indicate any systematic
influence of pile wall thickness (i.e. the results for piles
C3 and C7 are consistent with the other data). A similar
insensitivity to pile wall thickness is observed in the other soil
reaction components. This has the desirable implication that
variations in pile wall thickness may not be required for
future calibration exercises.

A best-fit line, representing the depth variation function
(shown as ‘First stage’ in Fig. 13) is determined for the initial
stiffness, kp (Fig. 13(a)), and curvature parameter, np
(Fig. 13(b)), using weighted least-squares regression (where
the weighting factors are proportional to the number of data
points at each discrete depth). The normalisation adopted for

the initial stiffness parameter kp typically leads to unrealis-
tically large values when the shear modulus tends to zero
near the ground surface; the fitting of the linear depth
variation function for kp was therefore only conducted for
z/D. 0·2.
Data on p̄u for all of the calibration piles are plotted in

Fig. 13(c). The regions of poor fit around normalised depths
of z/D=1·4 and z/D=4·4 occur near the pile rotation point
(for values of L/D of 2 and 6, respectively), where the lateral
displacement developed in the calibration analysis appears to
be too small to mobilise the ultimate lateral capacity. Apart
from these local anomalies, the data indicate a general
tendency for p̄u to increase with depth, from avalue of about
3 at the soil surface to about 10 at z/D¼ 6. This tendency is
consistent with the numerical solutions, based on a surface
wedge mechanism, in the paper by Murff & Hamilton
(1993). For long piles and relatively large depths, the soil is
expected to fail in a flow-around mechanism, implying p̄u ¼
11�94 for a rough pile (Randolph & Houlsby, 1984; Martin &
Randolph, 2006), which is consistent with the current
modelling approach. The data in Fig. 13(c) suggest that, in
all the cases considered here, the piles are too short to
mobilise this flow mechanism.
Following Murff & Hamilton (1993) the depth variation

function for the ultimate resistance p̄u is selected as

p̄u ¼ N1 �N2 exp
�ξz
D

� �
ð22Þ

Table 4. Soil reaction curve parameters for Cowden till, calibrated within the parameter space set out in Table 1

Soil reaction component Parameter Depth variation functions
First-stage calibration

Depth variation functions
Second-stage calibration

Distributed lateral load, p Ultimate displacement, v̄pu 200·0 241·4

Initial stiffness, kp 8�123� 1�103 z
D

10�60� 1�650 z
D

Curvature, np 0�9225� 0�04834 z
D

0�9390� 0�03345 z
D

Ultimate reaction, p̄u 10·21� 7·215e[�0·3332(z/D)] 10·70� 7·101e[�0·3085(z/D)]

Distributed moment, m Ultimate rotation, ψ̄mu Given by m̄u=km Given by m̄u=km

Initial stiffness, km 0�9710� 0�1144 z
D

1�420� 0�09643 z
D

Curvature, nm 0·0 0·0

Ultimate moment, m̄u 0�3840� 0�04246 z
D

0�2899� 0�04775 z
D

Base horizontal force, HB Ultimate displacement, v̄Hu 300 235·7

Initial stiffness, kH 2�564� 0�3167 L
D

2�717� 0�3575 L
D

Curvature, nH 0�7396� 0�02658 L
D

0�8793� 0�03150 L
D

Ultimate reaction, H̄Bu 0�6019þ 0�06669 L
D

0�4038þ 0�04812 L
D

Base moment, MB Ultimate rotation, ψ̄Mu 200 173·1

Initial stiffness, kM 0�1970� 0�002680 L
D

0�2146� 0�002132 L
D

Curvature, nM 1�006� 0�1616 L
D

1�079� 0�1087 L
D

Ultimate reaction, M̄Bu 0�6504� 0�07843 L
D

0�8192� 0�08588 L
D

The soil reaction curve parameters are specified in the table to a precision of four significant figures; parameters with this precision were
adopted in the 1D model computations described in the current paper. This relatively precise form of the data, selected to be suitable for
numerical computations, should not be interpreted as being indicative of the perceived accuracy of the parameters. For a general consideration
of the trends and characteristics of the soil reaction curves, employing the data at a lower level of precision (e.g. two significant figures) might
be more appropriate.
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where N1, N2 and ξ are parameters determined from
the numerical data by non-linear regression. The PISA
derived variation, specified in Table 4, broadly follows
that given by Murff & Hamilton (1993), despite dif-
ferent calculation methods being applied (see Byrne et al.

(2017)). Further recent work exploring the variation of
the parameters in the equation (22) expression for
different clays has been completed by Zhang et al. (2016),
with further recommendations given in the paper by
Jeanjean et al. (2017).
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Distributed moment curves. Figure 12(b) shows an example
set of numerical distributed moment soil reaction curves, for
pile C4. These data indicate an initial peak followed
by softening. A bilinear form of the parametric curve is
adopted in this case by selecting nm=0 and ensuring that
ψ̄mu . m̄u=km; the resulting parametric curves are shown in
Fig. 12(b). This approach implicitly removes the peak
response. However, the peak response occurs over a relatively
small range of normalised rotation, and at values of rotation
that vary along the pile; as a consequence, this simple bilinear
model has been found to be broadly satisfactory for
modelling the overall behaviour of the pile. The ultimate
moment m̄u is determined at each depth by taking the mean
of the values that satisfy m̄ . 0�9m̄final, where m̄final is the
value of m̄ at large displacements. A linear depth variation
function is employed for m̄u. The initial stiffness parameter
km is determined using a least-squares fit to the values in the
region m̄ , m̄u=10.

Figure 14 shows variations of the initial stiffness
parameter, km, and the ultimate moment parameter, mu. In
a similar way to the parameter kp, the initial stiffness
parameter km can lead to unrealistically large values near
the ground surface. A linear depth variation function is

adopted for km – indicated as ‘First stage’ in Fig. 14. This
function is only fitted to the numerical data z/D. 0·2.
A linear variation is fitted to mu, although there is more
scatter in the abstracted reaction curve data for this
parameter.

Base force and moment curves. The base horizontal force
soil reaction curves extracted from all of the piles in the
calibration set are shown in Fig. 15(a). The parameter v̄Hu is
assumed to be independent of pile L/D. The parameters
kH; nH; H̄Bu (determined at L/D¼ 2 and L/D¼ 6) are fit to a
depth variation function that varies linearly with L/D.
Data on the base moment soil reaction curves, together

with the best-fit parameterised curves for the first-stage
calibration, are shown in Fig. 15(b).

Second-stage optimisation
The effectiveness of the first-stage calibration process is

assessed using the accuracy metric specified in equation (11).
The values of ηult determined using this process were in the
range 0·90–0·98 and ηsd values were in the range 0·77–0·92.
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While this indicates a broadly satisfactory performance, an
improved calibration can be obtained by a ‘second-stage
optimisation’ in which the 1Dmodel parameters are adjusted
by small amounts to minimise the cost function

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXi¼11

i¼1

ð1� ηult;iÞ2
vuut þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXi¼11

i¼1

ð1� ηsd;iÞ2
vuut ð23Þ

where ηult,i and ηsd,i are the accuracy metrics for pile
Ci(i¼ 1:11). This second-stage optimisation process is con-
ducted using standard procedures in Matlab. The final set of
optimised parameters for the 1D model are specified in
Table 4. The depth variation functions, following the
second-stage optimisation, are plotted in Fig. 13 (indicated
‘Second stage’) for three of the distributed lateral load
parameters. The value of the fourth parameter, v̄pu, was
adjusted from its initial value of 200 to 241·4 by the
second-stage optimisation process. The second-stage results
are also plotted on Fig. 14 for the distributed moment
parameters and Fig. 15 for the base shear and moment; it is
apparent that a significant adjustment has been made
through the optimisation process. Values of accuracy
metrics for the individual piles, based on these parameters,
are shown in Fig. 16. These data indicate that the small
displacement metric for all calibration piles is in the range
0·95� ηsd� 0·99; the ultimate displacement metric is in the
range 0·9� ηult� 0·96. These accuracy ranges are similar to
those achieved with the 1D (numerical) model.
An alternative ‘ratio metric’, defined below, has been

found to be useful for quantifying the accuracy of the 1D
model

ρ ¼ H1D

H3D
ð24Þ

where for a particular value of ground level displacement,
H1D is the value of lateral load computed using the 1Dmodel
and H3D is the corresponding value from the 3D model
(as defined in Fig. 8). The ratio metric quantifies the extent to
which the 1D model overestimates – or underestimates – the
3D calibration data at particular values of vG. For complete-
ness, values of the ratio metric are also provided in Fig. 16.
These data indicate no significant overall bias (for the
ultimate load case: mean= 1·03, CoV=5·0%; for the small
displacement case: mean= 1·00, CoV=3·3%), although it is
noted that ρ� 1 for the piles of larger diameter and ρ� 1 for
the piles of smaller diameter.

Convergence and parameter study for the 1D model
Calculations employing the second-stage optimised par-

ameters have been completed with different numbers of
embedded elements for piles C1 and C4, to compute the
applied force at vG¼D/10 and vG¼D/10 000. Computed
force values (Hult at vG¼D/10 andHsd at vG¼D/10 000) are
listed in Table 5, along with the percentage errors relative to
the finest mesh used in each case. The results indicate that
Hult is remarkably tolerant to the employment of a coarse
mesh for both piles. For pile C1, for example, even with only
two embedded elements, the error is less than 1%.
The pattern is slightly different for Hsd. For C4, the error

rises to 7% when the number of embedded elements is
reduced to three. A mesh of 12 embedded elements in this
case is needed to achieve an error of less than 1%. Pile C1,
however, is less sensitive to mesh coarseness: four embedded
elements in this case are sufficient to achieve an error of less
than 1% on Hsd. This behaviour is perhaps due to the fact
that, for C4 (and to a lesser extent C1), the small-strain
behaviour is strongly conditioned by bending deformations
in the pile; this may imply the need for an increased number
of elements to achieve an accurate result. All 1D model
calculations presented in this paper, for comparison with the
3D finite-element calculations, adopt 20 embedded pile
elements.
Additional calculations have been conducted for C1 and

C4, employing the most refined meshes in each case, in which
the value of the shear factor κ is artificially increased to a
large number (1000), to suppress shear deformations in the
pile. This process indicates the extent to which the shear
deformations, incorporated in the 1D model, have an
influence on performance. For pile C1, suppressing the
shear deformations caused an increase of 0·02% and 0·6%,
respectively, to Hult and Hsd. For pile C4, suppressing the
shear deformations caused an increase of 1·5% and 2·9%,
respectively, to Hult and Hsd. The greater sensitivity of C4 to
shear deformations is considered to be due to the greater
compliance of the pile. Overall, these results suggest that the
influence of shear effects in the pile, for the soil conditions
explored here, is relatively small compared with the uncer-
tainties in other aspects of the problem.

PREDICTIVE CAPABILITY OF THE 1D
(PARAMETRIC) MODEL
Once the 1D model has been calibrated, it can be used to

determine the performance of a monopile for arbitrary
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geometric and loading conditions within the calibration
space. To demonstrate the predictive capability of the 1D
model, two design cases within the calibration space
(D1 and D2) were analysed (using the 1D (parametric)
model employing the second-stage parameters in Table 4).
The geometric configurations for these test cases are specified
in Table 6. These same pile configurations were separately
analysed using 3D finite-element analysis.

The H–vG responses computed using the 1D and 3D
models are shown in Fig. 17. The results indicate a close fit
between the 1D and 3D finite-element data over the full
range of applied loading (Fig. 17(a)). In particular, the small
displacement response computed using the 1D model is seen
to be almost identical to the response computed using the 3D
finite-element model (Fig. 17(b)).

Figure 18 shows a comparison between the below-ground
bending moments for the two design cases, computed using
the 1D and 3D models. These data also indicate a close
match.

The close fit that is obtained between the 1D and 3D
finite-element results supports the use of the calibrated 1D
model to conduct pile design calculations within the
calibration space.

DISCUSSION
The PISA 1D design model provides a rapid means of

computing the performance of a monopile foundation within
a pre-determined calibration space. The 1D model is
calibrated for particular soil conditions and for a pre-defined
range of design parameters based on a set of 3D
finite-element analyses. The 1D model provides a rational
means of interpolating between the 3D finite-element
calibration data, employing a Winkler model that is
constrained (by way of the 1D finite-element formulation)
to satisfy the requirements of equilibrium and compatibility,
and the assumptions of Timoshenko beam theory for the
pile. Whereas the analysis of a monopile using 3D

Table 6. Pile configurations for design cases

Analysis reference D: m h: m h/D L: m L/D t: mm D/t

D1 7·5 37·5 5 22·5 3 68 110
D2 8·75 87·5 10 35 4 91 97

Table 5. Convergence study for piles C1 and C4; second-stage soil reaction curve parameters

Number of embedded elements Embedded element size: m Hult: MN Errorult: % Hsd: MN Errorsd: %

C1
200 0·1 12·9636 0·0000 0·7395 0·0000
40 0·5 12·9639 0·0023 0·7396 0·0135
20 1 12·9644 0·0062 0·7396 0·0135
10 2 12·9658 0·0170 0·7399 0·0541
4 5 12·9651 0·0116 0·7420 0·3381
2 10 12·8759 �0·6765 0·7492 1·312

C4
120 0·5 104·0325 0·0000 0·9105 0·000
60 1 104·0331 0·0006 0·9106 0·011
24 2·5 104·037 0·0043 0·9111 0·066
12 5 104·0244 �0·0078 0·9132 0·297
6 10 104·2063 0·1671 0·9225 1·318
4 15 103·2956 �0·7083 0·9385 3·075
3 20 104·2368 0·1964 0·9743 7·007
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finite-element analysis invariably requires substantial com-
putational resources, the 1D model can be computed using a
standard desktop computer with run times of the order of
seconds. Such reduced order, or ‘surrogate’, modelling is well
established in other areas of engineering and holds promise
for application in geotechnical engineering, as demonstrated
here for monopile foundations. Clearly the fidelity that
can be achieved with the PISA design model is limited by the
quality of the 3D finite-element analyses employed in the
calibration process.
The PISA design model, in the form presented here,

employs a four-parameter conic function to represent soil
reaction curves. In the first-stage calibration, the function is
calibrated to provide a direct approximation of the numerical
soil reaction curves, as abstracted from the 3D finite-element
analyses. The fidelity of the 1Dmodel (i.e. the extent towhich
it mimics the 3D finite-element model) is limited by the
following factors

(a) imperfect fitting of the numerical soil reaction curves by
the conic function

(b) the use of unique, simple functions in the 1D model to
represent the depth variation of the conic function
parameters, whereas the values of these parameters
determined from the 3D calibration analyses exhibit
considerable scatter and often complex variations
with depth

(c) the Winkler approach employed in the 1D model
necessarily neglects various soil–pile interaction
mechanisms (e.g. spatial coupling within the soil) that
develop in the 3D calibration analyses.

The 1D model employing the first-stage calibration data
was found in many cases to provide a close representation
of the pile head response as determined by the 3D
finite-element calibration analyses. The fidelity of the
model, however, is fundamentally limited by the three
factors outlined above. The second-stage optimisation
process therefore improves the fidelity of the pile head
performance computed using the 1D model, by adjustment
of the depth variation parameters. The parameters deter-
mined from the second-stage optimisation do not necessarily

provide an improved representation of the local soil–pile
behaviour, and in some pile locations this may be less good.
Instead, the second-stage optimisation is regarded as an
expedient to compensate for the limitations of the Winkler
framework by limited adjustment of the model parameters.
The data in Fig. 16 indicate that the 1D model employing the
second-stage optimised parameters provides high-fidelity
representations of the 3D finite-element results.
The second-stage optimised form of the PISA design

model is considered to be appropriate for practical design
predictions of the pile head performance and the bending
moments in the embedded monopile. The model should be
employed in its entirety – that is, forms of the model in which
selected soil reaction curve components are excluded from
the analysis are not recommended. Calibration data obtained
from the first-stage calibration process provide an alternative
option for the design model. These datawill tend to provide a
closer representation of the local soil–pile behaviour as
computed using 3D finite-element analysis, but the fidelity
of the computed pile head behaviour is typically lower,
especially for the small displacement response, than if the
second-stage parameters are employed. For all applications
of the PISA design model it is recommended that final
designs, or at least a selection of them, are confirmed by
independent 3D finite-element analysis.
It is important to note that the 1D model calibration

parameters presented in Table 4 relate to the particular
profiles of undrained shear strength and shear modulus
employed in the calibration process. The limitations of the
Winkler modelling approach mean that these parameters do
not provide a general representation for arbitrary strength
and stiffness profiles. Although the model is unlikely to be
sensitive to small variations in these profiles (although this
has not been systematically investigated), depth profiles of
strength and/or stiffness that differ significantly from those
considered here will require separate calibration. Similarly,
soils formed from other types of clay geological units, or
cases where the soil–pile interface behaviour is considered to
differ from the assumptions employed in the current analysis,
may also require a separate calibration process.
The PISA model can be used in two separate modes. For

initial design studies, previously determined calibration data
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(such as those presented in Table 4) could be used; this
approach is referred to as the ‘rule-based method’. Although
these parameters relate to a single soil type (glacial till) and
for a single profile of soil strength and stiffness, it is expected
that a database of appropriate parameters for different soil
types will be assembled in due course. Initial work in this
direction is described in the paper by Byrne et al. (2019a).
For detailed design calculations, it is anticipated that site-
specific model parameters will be determined by way of a
bespoke 3D finite-element calibration process; this approach
is referred to as a ‘numerical-based method’. The numerical-
based approach has the capability of providing high-fidelity
representations of the underlying 3D calibration models, as
demonstrated in the current work. The reliability of the
model is principally limited by the quality of the 3D model
and the in situ and/or laboratory test data that are used to
calibrate it. Further details on how these analysis procedures
might be embedded within a general design framework are
given in the papers by Byrne et al. (2017, 2019a).

Although developed for offshore wind turbine monopile
foundations, the PISA modelling concept is capable of being
generalised to other foundation design and soil–structure
interaction problems. For example, it could be employed in
developing site-specific p–y relationships for more flexible
(large L/D) jacket piles, or to develop six-degrees-of-freedom
models for suction caisson foundations. In either case,
simpler, computationally efficient calculation methods
could be calibrated against advanced 3D computations that
capture non-linear effects through suitable constitutive
models and soil characterisation. The model calibration
processes could focus specifically on aspects of behaviour
that are most relevant for design, such as initial stiffness,
ultimate capacity, or the foundation response for both small
and large displacements (as considered in this paper).

CONCLUSIONS
The paper demonstrates an approach in which a simplified

computational model of an embedded monopile foundation
(based on a 1D finite-element approach) is calibrated using
data from more complex 3D finite-element analysis. For
design applications the calibration analyses are required to
span the likely range of pile embedded lengths, diameters and
load eccentricities. For a representative offshore glacial till
site, the 1D model is shown in the current paper to provide a
close representation of the 3D calibration data; this confirms
the validity of the modelling assumptions and calibration
procedures.

The predictive capabilities of the model are demonstrated,
by way of a set of design calculations based on pile
geometries within the calibration space but not included in
the calibration data. These example calculations indicate a
close match between the 1D model and an equivalent 3D
finite-element analysis.
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NOTATION
D pile diameter
G0 small-strain soil shear modulus
H lateral load applied to pile

H1D lateral load applied to pile, computed with the 1D model
H3D lateral load applied to pile, computed with the 3D model
HB horizontal force at pile base
HG lateral load applied to pile at ground level
Hsd lateral load applied to pile at a ground-level displacement of

vG¼D/10 000
Hult lateral load applied to pile at a ground-level displacement of

vG¼D/10
h load eccentricity
k initial stiffness of parametric soil reaction curve
L pile embedded length

MB moment at pile base
MG moment applied to pile at ground level
m distributed moment acting on monopile
n curvature parameter for parametric soil reaction curve
p distributed lateral load acting on pile
su undrained shear strength of soil
t pile wall thickness
v lateral pile displacement

vB lateral pile displacement at pile base
vG ground-level lateral pile displacement
x̄u ultimate displacement for parametric soil reaction curve
ȳu ultimate load for parametric soil reaction curve
z depth coordinate along the pile
η accuracy metric

ηsd small displacement accuracy metric (ground-level pile
displacements up to D/10 000)

ηult ultimate displacement accuracy metric (ground-level pile
displacements up to D/10)

ρ ratio metric
ψ rotation of the pile cross-section

ψB rotation of the pile cross-section at the pile base

REFERENCES
API (American Petroleum Institute) (2010). RP 2A-WSD –

recommended practice for planning, designing and constructing
fixed offshore platforms. Washington, DC, USA: American
Petroleum Institute.

Astley, R. J. (1992). Finite elements in solids and structures: an
introduction. London, UK: Chapman Hall.

Burd, H. J., Byrne, B. W., McAdam, R. A., Houlsby, G. T.,
Martin, C. M., Beuckelaers, W. J. A. P., Zdravković, L.,
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