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Abstract 

Cyclic loading tends to affect the strength and stiffness parameters of soils, degrade its structure  and 

results in accumulation of the excess pore water pressure. Such behaviour often leads to premature 

failure of the soils. Over the past few decades, geotechnical research community has developed 

numerous constitutive models to predict the behaviour of soils with variable degrees of success. The 

constitutive models based on the concept of bounding surface plasticity have gained much attention 

owing to the simplicity in describing the development of stiffness. This thesis analyzes the performance 

of bounding surface SANICALY model  in reproducing the stress path and stress-strain behaviour of 

kaolin clay under undrained cyclic loading conditions .  

A driver was developed in MATLAB for the chosen constitutive model to simulate undrained triaxial 

loading conditions. The performance of the driver was verified against the data published from 

literature. Further, sensitivity analysis was carried out on chosen model parameters. This was followed 

by validating the model with the experimental data on kaolin clay. Particularly, model performance was 

examined with varying initial conditions such as change of over-consolidation ratio, change of initial 

anisotropy, variation of initial pressure and strain controlled loading. 

The obtained results from sensitivity analysis have shown to increase the strength and stiffness response 

of the model with increase in model parameters such as the rate of evolution of the anisotropy, bound 

for evolution of the anisotropy and change of initial stress-induced anisotropy. In the context of 

calibrating the model parameters against the experimental data, it was initially noticed that the 

experimental stress path in monotonic loading was not being reproduced by the model with various 

combinations of the initial parameters. Owing to such performance the model was subsequently 

assessed qualitatively. When the model is subjected to different initial loading conditions, certain 

aspects of the experimental behaviour were qualitatively captured by the  model. These include faster 

rate of accumulation of pore water pressure with increase in the amplitude of cyclic loading, reduction 

in the rate of development of strains with increase in OCR values, increase in the hysteretic damping 

with increase in the amplitude of strains. However, with change of OCR there were differences in the 

development of stress path. Also contrasting results were observed with regard to the development of 

the stress-strain response with change of amplitude of cyclic loading and initial pressure. 

Analyzing the model formulations revealed that the chosen model did not take into consideration the 

fabric anisotropy and hence it explains the deviation of the stress path from the experimental stress path 

in monotonic conditions. In the chosen model, during the process of cyclic loading, stagnation in the 

evolution of stress path is observed whenever the plastic volumetric strains stop evolving. It is 

recommended to incorporate plastic deviatoric strains in the evolution of the bounding surface in order 

to stimulate the further development of stress path even when the plastic volumetric strains stop 

evolving. It is also suggested  to validate the model against different clays since this thesis focused only 

on Kaolin clay. 
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Chapter 1 : Introduction 

Soils undergo cyclic loading in various scenarios, for example, traffic loading, earthquakes, wave forces 

on offshore structures, and machine vibrations, to name a few. Compared to static loading conditions, 

the repeated application of  smaller loads for large number of cycles on soil tend to deteriorate the 

structure of the soils and lead to cyclic degradation. This makes the understanding of engineering 

behaviour of soils complex. Hence the behaviour of soils under the influence of cyclic loading 

conditions has gained the attention of the geotechnical community in the past few decades.   

The primary cause of certain catastrophic failures in the past was the inadequate performance of clays 

under cyclic and dynamic loads. Examples of such failures include the September 1985 Mexico 

earthquake (Mendoza and Prince 1986), the landslide in clay soils after the 1964 Niigata earthquake 

(Morimoto et al. 1967), and the large seafloor slide off the Mississippi River delta during the passage 

of hurricane Camille (Bea et al. 1983). Due to the low permeability of clays, earthquake and wave 

loading tend to induce undrained cyclic shear loading. Such loading conditions tend to affect the 

strength and stiffness parameters, degrade the structure of the clay and facilitates the accumulation of 

the excess pore water pressure (Vucetic 1988). The behaviour of clays in particular is the focus of  this 

thesis. Figure 1.1 shows an example of degradation of the strength of soil after it has been subjected to 

cyclic loading followed by monotonic loading (Li et al., 2011). 

 

Figure 1.1 : Strength degradation of soils under the effect of cyclic loading (Li et al., 2011) 

Behaviour of clays in general is also affected by anisotropy. The organization of particles in clay is 

termed as fabric. The orientation and arrangement of these particles depend upon the deposition and 

consequent consolidation of the deposits.  The alignment of particles thus formed due to the 

aforementioned conditions is termed as inherent or fabric anisotropy. Once the soil undergoes plastic 

straining due to the influence of shear loading, the particles again tend to rearrange and induce a change 

in their alignment. This is called plastic strain induced anisotropy (Graham & Houlsby, 1983; 

Anandarajah & Kuganenthira, 1995; Lings et al., 2000; Wheeler et al., 2003; Karstunen & Koskinen, 

2008). 

Soil behaviour is numerically depicted using constitutive models. These models use the stress-strain 

relationships to describe soil behaviour. The ingredients of the constitutive modelling includes the 

definition of a yield surface which acts as the boundary for the development of elastic strains, a flow 
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rule to describe the development of plastic strains, a hardening rule to describe the change in the size of 

the yield surface to the plastic strains.  

The first constitutive models developed to describe the clay behaviour under monotonic loading 

conditions were Cam-Clay model (Roscoe & Schofield, 1963), and modified Cam-Clay model (Roscoe, 

& Burland, 1968). These models work relatively well for monotonic loading conditions but have 

drawbacks in reproducing the behaviour of stress paths of soils under the cyclic loading conditions. 

Researchers developed on such shortcomings by improved definition of the development of shear 

strains inside the yield surface by introducing the concept of multiple surfaces (Mróz, 1967,1978; 

Prévost, 1977) and bounding surfaces (Dafalias & Popov, 1975; Dafalias, 1986; Gajo & Wood, 2001).  

The concept of multiple surfaces have an intrinsic limitation in the definition of stiffness which is 

piecewise linear leading to a wrinkled evolution of stress-path. Bounding surface concept on the other 

hand improved upon such deficiencies by defining a continuous development of stiffness which gives 

a smoother evolution of stress path. The models developed (Liang & Ma 1992; Manzari & Nour 1997; 

Yu et al. 2007) within the scheme of bounding surface concept were able to reproduce the behaviour of 

clays with variable degree of success. However, these models have drawbacks in which the model 

response is either overdamped or elastic strains are developed during unloading phases. Taking these  

into consideration, Seidalinov (2012) enhanced the performance of bounding surface model by revising 

the development (definition) of stiffness with the evolution of the stress path. In this thesis, the model 

developed by Seidalinov (2012) is chosen for analysis. 

The bounding surface SANICLAY (Simple ANIsotropic CLAY plasticity)  model was developed  by 

Seidalinov (2012) to reproduce the cyclic behaviour of clay. This model was validated for three different 

types of clays under cyclic loading conditions. However these validations did not take into consideration 

certain aspects of the clay behaviour such as the initial overconsolidation ratio (OCR), initial anisotropy 

of the clay. The behaviour of the model in these initial conditions is not clearly understood and has not 

been investigated in detail. Thus, there is a need for checking the extension of this model for its robust 

performance on different initial conditions of the clay. In this thesis, the bounding surface SANICLAY 

model developed by Seidalinov (2012) is validated against the experimental results reported in literature 

on Kaolin clay Wichtmann (2018). The Kaolin database Wichtmann (2018) was used to calibrate the 

model constants needed for the bounding surface SANICLAY model.  

1.1 Research questions 

• Can the bounding surface SANICLAY model demonstrate the behaviour of clay with initial 

anisotropy? 

• How effective is the bounding surface SANICLAY model in reproducing the stress-path and 

stress strain response of soils under higher over consolidation ratio’s (OCR) ? 

• Can the model accurately predict the damping behaviour of the clays with different magnitude 

of strains? 

 

1.2 Structure of thesis 

In the context of achieving the aforementioned goals, the sequential approach has been followed.  

Chapter 2 gives the brief review of current state of art from experimental observations and constitutive 

models. 

Chapter 3 discusses the detailed formulations concerning the bounding surface SANICLAY model. 

Chapter 4 conveys the strategy used in implementation of  model in MATLAB, verification of the 

implemented code with the results published in Seidalinov (2012,2013) and performing sensitivity 

analysis on chosen model parameters. 
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Chapter 5 presents the validation of the model against the experimental results from kaolin database 

(Wichtmann 2018). 

Chapter 6 reviews on the results obtained from the validation and gives the conclusions thus obtained. 

Further some recommendations are proposed for future work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

Chapter 2 : Literature review 

Literature review in this thesis is subdivided into two parts. First part concerns a brief review on the 

behaviour of soft clays, specifically under the influence of cyclic loading. The parameters influencing 

their behaviour and the properties being affected due to them. The second part of literature review 

focuses on the general form of constitutive models. Wherein a brief description of elastoplastic models 

is followed by the background theory on bounding surface modelling. 

2.1 Behaviour of clay under cyclic loading 

Clays in their in-situ state are found to be less permeable in nature. This property facilitates an undrained 

behaviour in clays. Undrained behaviour tend to occur when the rate of applied loading is much higher 

than the rate of dissipation of the excess pore water pressure present in the clay. This in turn leads to 

development of pore pressures and necessitates an effective stress analysis. In case of an undrained 

analysis the total volume of the clay remains unchanged which means that the total change in volumetric 

strains is zero. 

Numerous experimental studies have been carried out for studying the behaviour of clay under cyclic 

loading. The studies suggest several  parameters namely: Over Consolidation Ratio (OCR), initial stress, 

Cyclic stress Ratio (CSR), frequency of loading, structure of the clay, anisotropy etc. and their influence 

on strength and stiffness properties of the clays, pore water pressure accumulation, stress path and 

stress-strain response of the clays (Idriss et al., 1978; Wilson & Greenwood; 1974; Andersen et al., 

1980; Hyde & Ward, 1986; Lefebvre & LeBoeuf, 1987; Dobry & Vucetic, 1987; Vucetic & Dobry, 

1988,1991; Ohara & Matsuda, 1988; Azzouz et al., 1989; Yasuhara et al., 1992; Zergoun & Vaid, 1994; 

Hyodo et al., 1994; Zhou and Gong, 2001; Boulanger & Idriss, 2006; Okur & Ansal, 2007; Li et al., 

2011; Mortezaie and Vucetic, 2013). The influencing parameters and properties relevant to the thesis 

are discussed in the following sections.  

2.1.1 Strength and stiffness 

Cyclic loading of clays leads to development and significant accumulation of pore water pressure, 

resulting in degradation of the structure of clay which leads to decrease in the strength and stiffness of 

the clays (Idriss et al., 1978; Lefebvre, G., & LeBoeuf, D. ,1987; Vucetic and Dobry, 1988,1991; 

Kagawa, 1992; Zergoun & Vaid, 1994; Zhou and Gong, 2001, Okur & Ansal, 2007).  

Vucetic & Dobry, (1991) studied about the importance of plasticity index on the behaviour of cyclic 

response of clays. They concluded that degradation of the shear modulus is higher with decrease in the 

plasticity index and that the clay exhibits a linear cyclic stress-strain response at higher plasticity. Also 

as seen from figure below (Figure 2.1, (a)), with the increase in number of loading cycles, degradation 

of shear modulus is increasing. Figure 2.1, (b) reveals the degradation of shear strength of the Broadback 

clay(Lefebvre, G., & LeBoeuf, D., 1987) with increase in the number of loading cycles. 

 

https://ascelibrary.org/doi/full/10.1061/%28ASCE%29GT.1943-5606.0000922
https://ascelibrary.org/doi/full/10.1061/%28ASCE%29GT.1943-5606.0000922
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(a) 

 
(b) 

Figure 2.1 : (a) Stiffness degradation with cyclic shear strain as a function of plasticity index and number of loading cycles. 

( Vucetic & Dobry, 1991), (b) Strength degradation with increase in number is cycles of loading. (Lefebvre & LeBoeuf 

,1987) 

Reduction in strength after cyclic loading is greater in the case of normally consolidated clays than that 

of the over consolidated clays as reported by Hyde & Ward, (1986). The authors pointed out that the 

initially heavily over consolidated clays did not generate considerable changes in pore water pressures 

which thus resulted in less variation of the post cyclic monotonic strength. With the increase in the 

amplitude of cyclic loading, the undrained shear strength reduces (Yashuara et. al., 1992). 

2.1.2 Cyclic softening 

The significant loss of strength and strains in clays under the influence of cyclic loading is called cyclic 

softening (Boulanger & Idriss, 2006). At small strain ranges, Li et al., (2011) reported an increase in 

the degree of strain softening with increase in the amplitude of cyclic stress and number of cycles of 

loading which is accounted to the increasing destructuration and evolution of anisotropy during the 

process of cyclic loading. The reduction of the peak strength depends on the accumulative behaviour 

induced by the cyclic loads. Mortezaie and Vucetic, (2013) reported that the higher rate of softening is 

due to higher reduction of pore water pressure which leads to considerable decrement of the effective 

stress. 

2.1.3 Pore Water Pressure (PWP) and shear strains 

Cyclic loading could lead to clay failure as a result of excess pore pressure and cyclic-induced shear 

strain developments (Andersen et al., 1980; Yasuhara et al., 1992; Zhou and Gong, 2001). In normally 

consolidated clays under undrained cyclic loading conditions, due to the contractive nature of the clays, 

pore water pressure tends to increase (positive value) with the increasing level of shear strain. In the 

case of over consolidated clays, negative PWP builds up at the beginning of the test which tends to 

reverse its sign with the increase in the amount of cyclic straining. The response in over consolidated 

clays is attributed to the greater number of interparticle bonds and repulsive forces present in the clay. 

At the beginning of the cycling, these bonds are broken and the repulsive force cause a tendency for 

volume increase and development of negative PWP (Dobry and Vucetic 1987; Vucetic 1988; Ohara 

and Matsuda 1988). 

Wilson & Greenwood, (1975) made observations into the development of recoverable (elastic) and 

irrecoverable (plastic) components of PWP and shear strains with increase in load cycles. They 

attributed the plastic components to the plastic deformation of the soil grain structure which can occur 

due to loss of contact between the soil grains under the influence of stress. One more noteworthy point 

is that the elastic components of PWP and shear strains tend to remain almost constant unlike plastic 

components which tend to increase with the loading cycles. 
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Figure 2.2 : Pore water pressure and strains generated over time  by repeated loading (Wilson & Greenwood, 1975; taken 

from Yang, 2017) 

At a lower frequency of loading, for a given number of cycles of loading, larger development of shear 

strains and pore water pressure was reported (Li et al., 2011; Mortezaie and Vucetic, 2013). Mortezaie 

and Vucetic, (2013) made an interesting observation with regard to the higher frequency of loading 

wherein higher frequency of loading causes larger deformation and smaller pore water pressures which 

is counterintuitive in nature, since smaller pore water pressure implies higher effective stress and a 

stiffer soil. Therefore, this trend indicates that the buildup of cyclic pore water pressure may not be a 

dominant contributor to cyclic degradation normal consolidated clay. One other similar counterintuitive 

feature reported by researchers says that in case of over consolidated clays with higher plasticity, despite 

a decrease in pore water pressure and increase of effective stress with the number of cycles, a significant 

cyclic degradation takes place (Andersen et al. 1980; Vucetic 1988). In terms of cyclic stress ratio, 

experimental observations by  Zhou & Gong, (2001) revealed the degradation of pore water pressure 

and strain with decrease in cyclic stress ratio (Figure 2.3). 

 
(a) 

 
(b) 

Figure 2.3 : (a) pore water pressure and (b) strain accumulation of clays with increase in number of loading cycles for 

varying values of cyclic stress ratio. (Zhou & Gong, 2001) 

2.1.4 Stress path and stress strain response 

The stress-strain response is relatively linear at small cyclic strains which is majorly controlled by the 

maximum value of shear modulus. While at large cyclic strains a significant amount of non-linearity, 

inelasticity, damping and degradation was observed (Dobry and Vucetic, 1987).  

In the case of normally consolidated clays, effective stress reduces due to the generation of positive 

excess pore water pressures. The decrease in the effective stress is faster at the initial cycles of loading, 

https://ascelibrary.org/doi/full/10.1061/%28ASCE%29GT.1943-5606.0000922
https://ascelibrary.org/doi/full/10.1061/%28ASCE%29GT.1943-5606.0000922
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but with the increase in loading cycles, the effective stress path progresses slowly towards the origin. 

Failure occurs when the migrated effective stress path traces a steady loop in the vicinity of the failure 

envelopes. (Azzouz et al., 1989; Hyodo et al., 1994; Zergoun & Vaid, 1994). In the case of 

overconsolidated clays, in the initial cycles of loading, the developed excess pore pressures are negative 

meaning that the effective stress path migrates away from the origin, this effect is more vibrant in case 

of higher OCRs. But with increase in the cycles of loading, the pore water pressure reverses its sign and 

results in the failure of the soil (Azzouz et al., 1989).  

As the cyclic stress ratio (CSR) increases, the failure of the soil occurs at a faster pace which is indicated 

by the number of cycles of loading leading to failure. This condition holds good even for the over 

consolidated clays where with increase in the CSR values, lesser number of cycles of loading were 

required to bring the clay to failure (Azzouz et al., 1989). 

In terms of frequency of loading, Zergoun & Vaid (1994) reported that unreliable pore water pressures 

are measured during high frequency1 of loading. They also stated that reliable measurement of pore 

water pressures is only possible by adapting slow undrained cyclic shear tests. 

 
(a) 

 
(b) 

Figure 2.4 : (a) stress-strain response and (b) stress path comparison of monotonic versus cyclic loading tests for 

Cloverdale clay (Zergoun & Vaid, 1994) 

2.2 Review of the constitutive models 

Constitutive modelling is a numerical way to represent the behavior of soils by linking the change in 

stress to the change in strain. A brief overview of the elasto-plastic models followed by the need and 

development of bounding surface models are outlined in this section. 

2.2.1 Elasto-plastic models 

In soil mechanics generally the total strain increments are subdivided into elastic (recoverable) and 

plastic (irrecoverable) strain increments represented by,  

 

 

 
e p  = +  

 (2.1) 

where   stands for strain, the superscript ‘e’ means elastic and superscript ‘p’ means plastic. Dot above 

the quantities represents increment in the values. 

If the stress-strain curve is able to retrace back the same path during unloading then the response of the 

soil is considered to be elastic. Whereas if the stress-strain curve follows a completely different path 

during unloading then this leads to an elasto-plastic response where irrecoverable plastic strains are 

accumulated within the material. A simple illustration of the aforementioned theory is illustrated in 

Figure 2.5, 

 
1 In their research(Zergoun & Vaid, 1994), strain rate greater than 0.5% per hour are considered as fast cyclic tests.. 
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(a) 

 
(b) 

Figure 2.5 : stress strain behaviour (a) elastic response, (b) elasto-plastic response (Brinkgreve, 2017). 

Elastic relations : The general constitutive relation between the stress and strain increments can be 

represented as follows, 

 

 

 

 
e e

e e

D

C

 

 

=

=
 

 (2.2) 

 

where   is the stress increment, 
e  is the elastic strain increment, De is the elastic stiffness matrix and 

Ce is the elastic compliance matrix. 

Yield function : Yield function is the function of the current stress state (σ) and the internal hardening 

variables (χ). The loci of the stress points from the yield function gives rise to yield surface. In the 

elasto-plastic models, yield surface defines the boundary for the elastic region.  

 

 

( ), 0f   =  

 
 (2.3) 

 

Consistency condition : Consistency condition states that when the stress state is on the yield surface 

and continues to remain on the yield surface, plastic strains are produced. When the stress state is inside 

the yield surface, pure elastic strains are produced. It is impossible for the stress state to lie outside the 

yield surface. 

 

 

 

                            f < 0,              Pure elastic behaviour 

             f = 0 & df < 0,              Unloading from a plastic state (= elastic behaviour) 

             f = 0 & df = 0,              Elasto-plastic behaviour 

 

 (2.4) 

 

A graphical representation of the yield surface is shown in Figure 2.6. 
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Figure 2.6 : Yield surface in the stress space. 

Plastic potential function and flow rule : In order to compute the plastic strains at the current stress 

state on the yield surface, it is assumed that there exists a plastic potential function (Wood, 1991) which 

passes though the current stress state.  

 

 

( ), 0g   =  

 
 (2.5) 

 

Where g is the plastic potential function. 

Flow rule on the other hand is a stress-dilatancy relationship which defines the rate of plastic 

deformations as, 

 

 

,
p

p v

p

q

g
L


 

 


= =


 

 

 (2.6) 

 

where    is the dilatancy of the soil, σ is the current stress state, superscript ‘p’ means plastic, subscript 

‘v’ means volumetric strain, subscript ‘q’ means deviatoric strain and L  is the plastic multiplier or 

loading index. L  is enclosed in Macauley brackets  which render, L L= when 0L 

representing plastic loading and 0L =  when 0L  representing elastic unloading.   

Magnitude of L gives the magnitude of the plastic strains and the gradient of the plastic potential with 

respect to the current stress state gives the direction of the plastic strains. In the definition of the flow 

rule, if the plastic potential is represented by the same function as the yield function, it is called as the 

associated flow rule and when the plastic potential takes a different form than the yield function then it 

is called as the non-associated flow rule. 

 

 

, Associated flow rule

, ssociated flow rule

f g

f g Non a

=

 −
  (2.7) 
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Hardening rule : It links the change in size of the yield surface with the magnitude of the plastic strains, 

i.e., a link between the internal hardening parameter (χ)  and the loading index (L). To achieve this, 

consistency condition is used which takes the form as follows, 

 

 
0

T T
f f

 
 

 
+ =

 
  (2.8) 

 

The internal hardening parameter is a function of the plastic strains. By substituting this idea in equation 

(8) leads to, 

 

 
0

T T

p

f f g
L




   

   
+ =

   
 

 

 (2.9) 

By substituting  equations (2.1),(2.2) and (2.6) into equation (2.9), loading index is obtained as, 

 

 

 

,

T

e
T

p p
e

p

f
D

f g
L K

f g
D K

 
  

 



  = =−
    

+
 

 

 

(2.10) 

 

where Kp is called as the plastic modulus. 

The constitutive equation in (2.2) can be reformulated by substituting the values of the loading index 

and plastic strains as follows, 

 

 

 
T

e e

e

T

e

p

g f
D D

D
f g

D K

  

 

  
 

 = − 
  

+
   

 
 (2.11) 

 

where the elasto-plastic stiffness matrix can be represented as, 

 

 

T

e e

ep e

T

e

p

g f
D D

D D
f g

D K

 

 

 

 = −
 

+
 

 

 

 

(2.12) 

2.2.2 Existing elasto-plastic models and the emergence of bounding surface models 

Before looking at the review of the constitutive models, it is important to reflect on a couple of important 

features of cyclic loading of clays from section 2.1 which are deemed important in the coming 

paragraphs. In the experimental observations reviewed in section 2.1, it was observed that under the 

influence  of cyclic loading, PWP and the axial strains get accumulated with the increasing number of 

loading cycles. It has also been observed (reported) that thus accumulated values can be a combination 

of both elastic (recoverable) and plastic (irrecoverable) components. This plastic PWP leads to 

reduction of the effective volumetric stress with the loading-unloading-reloading cycles. 
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Critical state soil mechanics theory (Roscoe and Poorooshasb, 1963; Roscoe et al., 1963, 1958) is the 

base for the development of most of the constitutive models for soils. It states that plastic strains are 

associated with the reduction of mean effective stress (volumetric stress). Classical elasto-plastic 

models developed in the past such as Cam-Clay model (Roscoe & Schofield 1963), modified Cam-Clay 

model (Roscoe & Burland 1968), Soft-soil model (Brinkgreve & Vermeer 1997), Soft-soil creep model 

(Vermeer & Neher 1999), Hardening soil model (Schanz et al.1999) work relatively well in describing 

most features of the behaviour of clays in the monotonic loading conditions. However, these models 

have a major limitation in capturing the accumulative behaviour of stresses and strains in cyclic loading. 

The response in the unloading and reloading phases are effectively elastic in nature using the 

aforementioned models which implies that there is no evolution of volumetric stress. This results in no 

plastic strains generated during the unloading and reloading phases. 

The necessity to model plastic strains during the course of unloading/reloading cycles led to the 

development of multi surface and bounding surface plasticity models. Multi surface plasticity models 

were first developed for metals based on the kinematic hardening rule (Iwan 1967; Mróz 1967). This 

theory was further extended to soils by  Prévost, (1977). Basic concept behind the multi surface models 

is the enclosure of surfaces with constant stiffness. Any stress state inside the inner most surface renders 

purely elastic strains while the outer most surface acts as the conventional yield surface. In here a 

piecewise linear decrement in stiffness is encountered by the stress path be it loading/ unloading/ 

reloading. During the case of stress reversals there is a sudden increase in the stiffness. Introduction of 

the multiple surfaces with varying stiffness levels permits the development of plastic strains inside the 

yield surface. Figure 2.7 gives an impression of the multi surface concept where f0, f1 … fp represent 

the nested yield surfaces in the stress space with sizes k(0) < k(1)…..< k(p)  defining the fields of constant 

shear modulus. The so defined yield surfaces are allowed to translate and change in size simultaneously 

but are not allowed to cross each other. These models have limitations in the sense that the so defined 

plastic modulus is piecewise linear, the numerical modelling of such models require ample memory to 

store the data pertaining to the sub-yield surfaces.  

 

Figure 2.7 : Multi surface concept in stress space (Prévost 1977). 

Bounding surface models on the other hand were also initially developed for metals based on kinematic 

hardening rule (Dafalias & Popov 1975; Krieg 1975). These models have been extended to soils by 

Dafalias (II,III) (1986). The main component of the bounding surface plasticity is the concept of a 

surface that encompasses all the possible stress states within the stress space. The plastic modulus is 



12 

 

defined based on the distance between the current stress point inside the bounding surface and its 

corresponding image on the bounding surface. Unlike multi surface models as discussed in the previous 

paragraph, bounding surface models adopt a smooth transition of the stiffness with the evolution of the 

stress path.  

 

Figure 2.8 : Bounding surface representation in stress space (Dafalias(II), 1986) 

Figure 2.8 gives a graphical representation of the bounding surface model in the stress space. In terms 

of constitutive relations, basic formulations of the yield surface as defined in section 2.2.1 still hold 

good for the bounding surface except for the change in plastic modulus formulations to account plastic 

strains. Loading surface (f = 0) is enclosed inside the bounding surface (F = 0) and is representative of 

the current stress state ( ). Image stress is calculated with the help of a mapping rule based upon the 

current stress state. The features of BS concept which facilitate the development of plastic strains inside 

the bounding surface are as follows, 

• A well-defined mapping rule to define an image stress ( ) for any stress state inside the BS. 

And / /f F   =     where /f     and /F     are the gradients of loading and 

bounding surface respectively, for  =  to guarantee that the loading surface never intersects 

the BS. Mapping rule is non invertible such that image stress must not correspond to infinite 

values of stresses inside the bounding surface at the same time. 

• To facilitate the development of plastic strains inside the BS, image stress must lie on the BS 

and the plastic modulus for a given image stress is found through the consistency condition 

0F =  as, 

 

 

T

p

F
K 




=−


 

 

(2.13) 

• Plastic modulus at the current stress state is related to the BS plastic modulus through a 

Euclidian distance: 

 

 
( )( )

1/2

    = − −    
 

(2.14) 
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 such that p pK K  for 0   and p pK K=  for 0 = . 

In the bounding surface framework, various models (Liang & Ma 1992; Manzari & Nour 1997; Yu et 

al. 2007) have been developed and implemented with variable degree of success. These models however 

have drawbacks wherein the response of the models are either overdamped or was developing elastic 

strains during unloading phases as seen in Figure 2.9. 

 
(a) 

 
(b) 

Figure 2.9 : Simulations of undrained cyclic triaxial tests with two different strain increments (Manzari & Nour 1997) 

The bounding surface SANICLAY model developed by Seidalinov (2012) abated few of these 

shortcomings. Seidalinov (2012) identified the reason behind the shortcomings as the way in which the 

projection center2 is defined in the previous models. Previous models either considered the projection 

center to be fixed at the origin or to be moving along the rotational variable3 ‘α’. Seidalinov (2012) 

defined a moving projection center which has a dual way of evolution. Firstly to maintain the relative 

position of projection center with evolving bounding surface, the projection center evolves with the 

stress path. Secondly it gets updated to the present stress state during the load reversals, this kind of 

updating resolves the problem of overdamping in the response of the model. Along with that a new 

damage parameter has been introduced to account for reduction of stiffness to simulate cyclic softening 

behaviour as observed in the experimental observations. 

2.3 Summary 

The first part of this chapter gave an overview of the experimental observations on the behaviour of 

clays under the influence of cyclic loading. Experimental evidence from the literature have shown the 

strength and stiffness degradation of the soils with increase in the number of cycles of loading which 

was accounted to degradation of the structure of the clay and accumulation of pore water pressure. The 

second part of this chapter discussed about the evolution of constitutive models leading to bounding 

surface modelling. Classical elasto-plastic models produced pure elastic stains within the yield surface 

which did not give a realistic representation of the observed experimental data. Bounding surface 

models allowed for the development of elasto-plastic strains within the bounding surface by defining a 

stiffness dependent upon the current stress state. 

 

 
2 Projection center is the point through which the current stress state is projected onto the bounding surface. 
3 will be explained in Chapter 3  
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Chapter 3 : Overview of bounding surface SANICLAY model 

The constitutive equations related to the bounding surface SANICLAY(Simple ANIsotropic CLAY 

plasticity) model have been adopted from Seidalinov (2012). The stress and strain quantities used 

hereafter have the following notations, 

 

 
( ) ( )

1
2 ,

3
a r a rp q   = + = −   (3.1) 

 

 

 
( ) ( )

2
2 ,

3
v a r q a r     = + = −   (3.2) 

 

Where p is the mean stress and q is the deviatoric stress. The subscripts a and r mean axial and radial 

directions, v and q mean the volumetric and the deviatoric components. The following sections detail 

the formulations of the bounding surface SANICLAY model in the triaxial space. 

3.1 Elastic relations 

The total rate of strains is decomposed into the elastic and plastic components as 
e p  = + . The 

calculation of elastic components of strains is based on the isotropic hypoelastic relations as shown in 

equation (3.3). 

 

 
,

3

e e

v p

p q

K G
 = =   (3.3) 

 

K and G in the above equation represent the bulk and the shear moduli4 which are expressed as 
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+ −
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+
  (3.4) 

 

Where e is the void ratio, κ is the slope of unloading-reloading line in the e-ln p space, ν is the 

Poisson’s ratio. 

3.2 Flow rule and plastic potential 

Flow rule defines the volumetric and deviatoric components of strains as follows, 

 

 
,p p

v q

g g
L L

p q
 

 
= =

 
  (3.5) 

 

where p̄ and q̄ are the volumetric and deviatoric components of the image stress on the bounding surface 

which  shall be explained in section 3.3. 

 It is required that the plastic potential which is used for calculation of the plastic strains must 

pass through the image stress and is given by equation (3.6), 

 
4 The formulation for shear modulus is misprinted in Seidalinov (2012) where instead of (1-2ν) in the numerator of the shear modulus 

formulation (1+e) has been printed. 
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 ( ) ( ) ( )
2

2 2 0g q p M p p p = − − − − =   (3.6) 

 

Where M is the critical stress ratio, α represents the rotational hardening to be discussed in subsequent 

sections and pα is the value of p̄ at q̄ = p̄α. The critical stress ratio M = Mc when the image stress ratio 

ɳ̄= q̄ /p̄>=α and M = Me when the image stress ratio ɳ̄= q̄ /p̄<α. For real valued image stresses, M > α. 

Mc  and Me are the critical state ratios in compression and extension respectively. By substituting the 

value of equation (3.6) into equation (3.5), the flow rule is  given by, 

 

 
( ) ( )2 2 , 2p p

v qL p M L p    = − = −   (3.7) 

 

A noteworthy point would be that there will be no increment in plastic volumetric strains when ɳ̄ = M 

and no plastic deviatoric strains produced when ɳ̄ = α. 

3.3 Image stress and bounding surface 

The bounding surface equation is given by: 

 

 ( ) ( ) ( )
2

2 2

0 0F q p N p p p = − − − − =   (3.8) 

 

where p0 is the isotropic or volumetric hardening and controls the size of the bounding surface and α is 

a non-dimensional rotational hardening variable accounting for anisotropy. N is the peak stress ratio on 

the bounding surface and serves as a bound for the evolution of the rotational variable α, it is assumed 

to have the same value in both compression and extension. (p̄,q̄) are the image stresses on the bounding 

surface. For real valued image stresses, N > α. A representation of the bounding surface in triaxial space 

is given in Figure 3.1. 

The loci of the current stresses (p,q) form  a loading surface f =0, which is analogous to the bounding 

surface with the center of the homology as the projection center (PC). Analytical expression of the 

loading surface need not be defined explicitly as all the formulations that follow depend upon the image 

of the current stress on the bounding surface which is explained in the following paragraphs. 

The bounding surface theory postulates that for any stress state (p,q), there exists a unique image stress 

(p̄,q̄) lying on the bounding surface. The image stress is obtained by radially mapping the current stress 

(p,q) from a PC (pc,qc) onto the bounding surface as shown in Figure 3.1. 

For a given PC and the current stress state (p,q), the image stress is defined as, 

 

 
( ) ( ),c c c cp p b p p q q b q q= + − = + −   (3.9) 

 

Where b is the similarity ratio between the loading surface f = 0 and the bounding surface F = 0. The 

value of the similarity ratio is obtained by substituting the equation (3.9) in equation (3.8).  

 

 ( ) ( ) ( )
2

2 2 2

0 0q p N p p p Ab Bb C − − − − = + + =  
 

(3.10) 

 

To simplify the calculations, equation (3.10) is solved in parts as follows, 
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where5, 
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(3.12) 

 

and on the similar grounds, 
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where, 
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(3.14) 

Substituting equations (3.12) and (3.14)into equation (3.10) gives rise to, 
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(3.15) 

 

The value of the similarity ratio is given by the positive root of the above expression which is further 

used for computing the image stress. The value of b varies from one to infinity, where one represents 

that the current stress state is on the bounding surface and infinity represents that the stress state is 

within the elastic nucleus. 

 

 

 
5 The equation for B1 has been misprinted in Seidalinov (2012)  where an additional q has been multiplied to the B1 as opposed to  (3.12). A 

detailed elaboration and explanation of the same has been provided in Appendix I. 



17 

 

 

Figure 3.1 : Bounding surface SANICLAY model in the triaxial space. 

3.4 Evolution of the hardening variables p0 and α 

The evolution of po is given by, 

 

 
0 0p L p=  

 

 

(3.16) 

Where p̄0 is defined to account for the destructuration mechanism as, 

 

 

 

0 0 0i d i dp S p S p= +  

 

(3.17) 

Where p0d is the destructured value of p0 and is given by p0/Si, where Si ≥ 1 is the isotropic structuration 

factor. 

p0d and Si are given by,  
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(3.18) 
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(3.19) 

 

Where λ is the slope of the normal compression line in e- ln p plane, ki is the rate of destructuration. 

Degradation of Si is considered through destructuration plastic strain rate ε̇dp defined as, 
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(3.20) 
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A is a parameter distributing the destructuration between plastic volumetric strain and plastic deviatoric 

strain increments, by default A = 0.5. 

The evolution of the rotational hardening is expressed as, 
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(3.21) 

 

Where e is the void ratio, λ and κ are the slopes of loading and unloading/reloading lines in the e- ln p 

plane, C is a model constant controlling the rate of rotational hardening, x is a model constant 

which regulates the degree of anisotropy that can evolve under a constant stress ratio   and αb is the 

minimum value of (N,M) taken as, 
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(3.22) 

 

For the evolution of the rotational hardening variable, modulus value is the plastic volumetric strain 

because when the stress state lies on the dry side of the critical state line, negative plastic volumetric 

strains will be produced leading to rotation of the plastic potential in the opposite direction as opposed 

to the sign of stress ratio  . In order to have real valued image stresses in equation (3.6), |α| < M , and 

for this purpose the rate of evolution of the rotational hardening is dependent of the stress ratio distance 

(αb – α), where αb is the bounding image on the bounding surface. This term also determines the 

direction of rotation of the bounding surface. The usage of absolute value of x −  is precisely done 

in order to avoid erroneous sign changes of  . 

3.5 Loading index and plastic modulus 

The loading index or the plastic multiplier is obtained by the consistency condition, Ḟ = 0 giving rise 

to, 
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(3.23) 

 

Where Kp is the plastic modulus. the stress reversal is assumed to take place whenever L = 0.The loading 

index L is taken as zero whenever L < 0 instead of the negative value itself in order to update the 

projection center to the point of initiation of shearing preceded by unloading in isotropic consolidation. 

Bounding surface concept requires that the plastic strains are produced inside the bounding surface. For 

this to happen, the plastic modulus must be defined for any stress state within the bounding surface as 

well. Plastic modulus(Kp) inside the bounding surface is related to the bounding surface plastic modulus 

(K̄p) through Euclidean distance δ (between (p̄,q̄) and (p,q)) and r (between (p̄,q̄) and (pc,qc)). When the 

stress state is on the bounding surface the δ is zero implying that Kp = K̄p, and when the stress state is 

within the bounding surface δ is greater than zero rendering Kp > K̄p, thereby producing plastic strains. 

A point to be noted is that when inside the bounding surface, since the plastic modulus increases, the 

amount of plastic strains being produced reduced, i.e higher the δ lesser the amount of plastic strains 

being produced. K̄p is obtained by the use of consistency condition on the bounding surface as, 
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The corresponding plastic modulus Kp
6 for any stress state within the bounding surface is defined as, 
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Where h is the positive hardening function, r/δ = b/(b-1) with 1 ≤ b ≤ ∞ where b is the similarity ratio 

as defined in 3.3, s ≥ 1 is an indirect measure of the size of the elastic nucleus which is also a surface 

homologous to the bounding surface with the center of homology as PC. When the value of s is set to 

∞, the elastic nucleus will coincide with the bounding surface rendering purely elastic strains inside the 

bounding surface. On the contrary, when the value of s is set to 1, the elastic nucleus is shrunk to a 

single point coinciding with the PC. In the present formulations, the value of s is set to 1 and numerically 

there are no pure elastic strains produced. 

3.6 Hardening function and damage parameter 

The shape hardening function h controls the plastic modulus and is assumed to be a decaying function 

of its initial value h0 through the parameter d which is a state variable simulating damage effect, 
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(3.26) 

The damage effect d evolves linearly with the increment in plastic deviatoric strains as follows, 

 

 

p

d qd a =  
 

(3.27) 

Where ad is a model constant which controls the rate of evolution of d.  

3.7 Projection center 

In the context of bounding surface SANICLAY, as per Seidalinov (2012), the PC evolves in a dual way. 

Firstly whenever there is stress reversal the PC gets updated to the point of stress reversal. This update 

of PC is necessary to better predict the plastic strains during the course of cyclic loading.  The point of 

stress reversal is identified by the help of loading index (which is described in the section 3.5). 

Analytically whenever the loading index is less than or equal to zero stress reversal occurs.  

 

 

 

 

 

 

 

 
6 Plastic modulus must always be greater than or equal to zero. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Figure 3.2 : Schematic representation of evolution of projection center with stress reversals. 

A schematic representation of the evolution of the PC with stress reversals is presented in Figure 3.2. 

Where blue dot represents the projection center, pink arrow represents the direction of stress path, the 

red ellipse represents the bounding surface, x-axis represents mean effective stress/isotropic stress and 

y-axis represents the deviatoric stress. For the purpose of explanation, a case of stress controlled loading 

in triaxial setup is considered where axial stress increment is given as the input. In addition the gradient 

of bounding surface (F) with respect to the image stress is needed for better understanding the concept 

which is as follows, 
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(3.28) 

 

Interpretation of the figures is as follows, 

• PC at the start of loading is taken at origin as a default (Point ‘O’). When the soil element is 

isotropically consolidated (only in the case of isotropic consolidation volumetric stress 

increment is given as input), the stress path of the soil follows the isotropic stress axis as seen 

in (b) in Figure 3.2, but the PC still stays at the origin ‘O’, since during the isotropic 

consolidation loading as per equations (3.23) and (3.28), loading index is always greater than 

zero.  
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• When the soil  is isotropically unloaded from point ‘A’ ((c) in Figure 3.2), the projection of the 

current stress onto the bounding surface ideally points towards the origin as a result of which 

the gradient of bounding surface (F) with respect to the current stress state becomes zero. This 

indeed results in zero loading index, as a result of this the PC gets updated to the point ‘A’. 

From here it is quite evident that during the process of isotropic unloading the loading index 

always remains zero and hence PC follows the stress point on the isotropic stress axis.  

• Now, if the soil element is sheared from point ‘B’ ((e) in Figure 3.2), the projection of the 

current stress onto the bounding surface points towards point ‘C’. So the gradient of F with 

respect to the current stress becomes positive, also the stress increments are positive leading to 

a positive loading index. At this moment, PC gets updated to point ‘B’. A point to be noted is 

that point ‘B’ is also representative of an over-consolidated state, so whenever a soil element is 

sheared from an over-consolidated state originating at the isotropic stress axis, the PC must be 

updated to the that point on the isotropic stress axis (in here the point is ‘B’). 

• During the process of loading from point ‘B’ to point ‘C’, loading index continues to remain 

positive and PC stays at point B (at point B, PC evolves slightly only to remain inside the BS 

which will be explained later in this section). When the load increment is reversed at point ‘C’ 

((g) in Figure 3.2), for a momentary instance the image stress is at point ‘C’ which leads to 

positive values for gradient of F with respect to the current stress state, but the stress increment 

is negative leading to a negative loading index, thereby the PC gets updated to point ‘C’. During 

the process of unloading (point C to the isotropic stress axis) and reloading (isotropic stress 

axis to the point D), the image stress is pointed towards point ‘D’7  which ideally means a 

negative stress ratio ɳ, this results in negative value of gradient of F with respect to deviatoric 

component of image stress. Also during the process of unloading-reloading from ‘C’ to ‘D’, 

since the input deviatoric stress increment is negative, the loading index becomes positive 

which means the PC continues to stay at point ‘C’.  

Similar procedure is followed for updating the PC at point ‘D’ as well. For the illustration purpose, 

points ‘C’ and ‘D’ are shown on the bounding surface but even if there is some kind of stress reversal 

occurring between point ‘B’ and ‘C’ or ‘C’ and ‘D’, PC will be updated accordingly. 

Secondly, this updated PC evolves with the changing stress levels be it loading, unloading or reloading. 

The concept behind this evolution is to guarantee a unique image stress by positioning the PC always 

within the bounding surface. If the PC is kept fixed until the next point of stress reversal there is a high 

possibility of PC to fall outside the bounding surface when the latter expands, contracts or rotates with 

the alteration of the stress state. 

The evolution of the PC with respect to alteration of the stress state depends upon the isotropic 

hardening p0 and the rotational hardening α. The evolvement of PC with respect to p0 is given by, 
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(3.29) 

On the other hand to account for the rotation of the bounding surface with respect to α, the distance 

along the q-axis is affected in such a way that a proportionality is maintained between the distance of 

PC from the α-axis as shown  in Figure 3.3. By doing so p0 and pc will remain unchanged. 

 
7 Point to be noted is that throughout the process of unloading-reloading the image stress does not stay at point ‘D’ but might stay near its 

vicinity depending upon the amount of stress or strain increment given 
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Figure 3.3 : Updating projection center with respect to rotational variable α 

The proportionality of the distance of PC from α-axis to that of bounding surface is represented by X, 
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(3.30) 

Where qα = αpc and the denominator of the equation is obtained by equation F = 0, 
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(3.31) 

On the basis of which the corresponding change of PC with respect to α is given by, 
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(3.32) 

By combining equations (3.29) and (3.32), the total effect of change in PC with regard to both isotropic 

and rotational hardening is given by, 
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(3.33) 

3.8 Summary 

This chapter has presented the formulation of bounding surface SANICLAY model in triaxial space. 

Importance must be given in the way the stiffness is defined which depends upon the distance between 

the current stress point and its corresponding image on the bounding surface. Also the projection center 

which acts as center of homology for the bounding surface and the loading surface (which represents 

the current stress state) tends to evolve in dual ways. Firstly whenever there is stress reversal the PC 

gets updated to the point of stress reversal. This update of PC is necessary to better predict the plastic 

strains during the course of cyclic loading.  Secondly, this updated PC evolves with the changing stress 

levels be it loading, unloading or reloading. The concept behind this evolution is to guarantee a unique 

image stress by positioning the PC always within the bounding surface. 
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Chapter 4 : Implementation and verification of model  

4.1 Implementation of the model in MATLAB 

This section deals with the implementation of the bounding surface SANICLAY model in MATLAB. 

In this thesis, computations are focused on simulation of undrained triaxial monotonic and undrained 

triaxial cyclic loading conditions. With the help of constraints provided  by Bardet, (1991) an explicit 

stress controlled technique has been employed to numerically implement the bounding surface 

SANICLAY model in MATLAB. 

4.1.1 General procedure for integration of the constitutive model 

The mixed constraints as suggested by Bardet, (1991) for the case of undrained triaxial loading leads 

to,  
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Where Dep is an elastoplastic stiffness matrix or the tangent stiffness matrix. In equation (4.1) the 

deviatoric stress increment q̇ (in triaxial space it is also called as the axial stress increment) is given as 

input. The volumetric strain ε̇v  is zero since the simulated test is undrained. By imposing the 

aforementioned conditions and rearranging the above equation, the volumetric stress increment and 

deviatoric strain increment can be computed by, 
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Primarily the elastoplastic stiffness matrix is computed in case of the plastic loading conditions as the 

tangent to the current values of stress. To know if the current values of the stresses correspond to loading 

or unloading conditions a trial stress is computed with the elastic stiffness matrix (De) as follows, 
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  (4.3) 

 

If the scalar product between the trial stress increment and the normal to the yield8 surface is positive, 

then the trial stress increment corresponds to plastic loading. Otherwise, it is found to be elastic 

unloading which can be mathematically represented as, 

 

 
  (4.4) 

 
8 Here the terminology “yield surface” has been used but in case of bounding surface models, this yield surface is replaced by the bounding 

surface which shall be explained in the next section. 
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If the trail stress results in unloading condition, then the computed stress itself will be the final stress 

and the integration proceeds into the next substep. Otherwise, the increment in stress and strain, as in 

equation (4.2), have to be recomputed based on the elasto-plastic stiffness matrix as follows, 
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 (4.5) 

where f is the yield surface, g is the plastic potential and Kp is the plastic modulus defined as, 
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where χ represents the hardening variables in the constitutive model. 

Provided that the increments of total stress and total strain quantities are evaluated by now, the elastic 

strain increments can be computed as, 
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 (4.7) 

 

In equation (4.7), the stress quantities thus used must be the true stress quantities finalized after checking 

the loading conditions based on equation (4.4). Since the elastic strains are known, plastic strains can 

now be computed by subtracting the elastic strains from the total strains as 
p e  = − . On another 

note, the fact that the volumetric strain is zero does not necessarily mean that both elastic and plastic 

volumetric strains are also zero. However, they would be of equal magnitude despite having opposite 

signs.  

4.1.2 Incorporation of bounding surface Saniclay features into the integration 

procedure 

This section deals with the changes need to be made in order to implement the integration technique 

employed in section 4.1.1 for a bounding surface model. As mentioned earlier, for any stress state on 

or inside the bounding surface, there exists a unique image stress lying on the bounding surface (section 

3.3). So, ideally the loading or unloading condition is checked based on the equation of bounding 

surface comprising of the image stresses and is represented in the following way, 

   (4.8) 
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Since the plastic modulus is always positive or equal to zero, in a way the scalar multiplier in equation 

(4.8) resembles the loading index in section 3.5 and can be rightly used in the case of bounding surface 

to find the stress reversal. Whenever there is an unloading condition as per equation (4.8) a stress 

reversal is detected. At the instance of stress reversal, the projection center gets updated to the point of 

stress reversal. In addition, the image stress must also be updated to the opposite side of the bounding 

surface at this instance. Failure to implement this step, will result in inadequate calculations of  

bounding surface’s gradients, plastic potential etc. These inadequacies will mean that the scalar 

multiplier will always point at the unloading conditions or there might also be a possibility that the 

plastic modulus is calculated wrongly. The way of updating the image stress9 at the instance of stress 

reversal is given by, 
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For the chosen specific cyclic loading condition, the volumetric image stress remains unchanged in both 

loading and unloading conditions. However, the deviatoric image stress must change its direction in 

accordance with the change of the projection center in the triaxial plane.  

Another change in implementation, as opposed to the method followed in section 4.1.1, is the way 

plastic modulus is defined for bounding surface. The plastic modulus is the sum of the plastic modulus 

calculated on the bounding surface plus the distance dependent modulus value between the current 

stress point and the image point. So, in this case first the computations of the plastic modulus are made 

on the bounding surface and then the additive term corresponding to the distance between the stress 

point and the image point is computed. 

A skeletal diagram for the flow of code is presented in Figure 4.1. 

 
9 Note that the way of updating the image stress presented in this thesis is applicable only for a specific case of cyclic loading condition. 
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Figure 4.1 : Flow of code in MATLAB for the implementation of bounding surface SANICLAY model. 
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4.2 Verification and sensitivity analysis of the implementation 

Prior to verifying the implementation of the code. Sensitivity of the integration is checked by varying 

the timestep of the stress increment in the range of 10-2 to 10-5. With a stress increment of the order of 

10-3 the values of the plots obtained have shown a reasonable match with that of the results obtained 

from a stress increment of the order of 10-5. Considering that the time taken with a lower stress 

increment (10-5) is really high compared to that with higher time increment (10-3), a stress increment 

value of the order of 10-3 has been chosen for the computations here after. 

4.2.1 Verification of the model  

To check if the implemented code is working and rightly in order, simulations have been run and 

compared with the results from Seidalinov (2012,2013). The pertaining model constants and initial 

conditions used to run the simulations are presented in Table 4.1 and Table 4.2. 

Table 4.1 : model constants used for running the verification analysis. 

Category Model constant Symbol value Units 

Elasticity Swelling index κ 0.03 - 

Poisson’s ratio ν 0.2 - 

Critical state Compression index λ 0.15 - 

Critical state ratio in triaxial 

compression 

Mc 1 - 

Critical state ratio in triaxial 

extension 

Me 1 - 

Bounding surface Peak stress ratio on bounding 

surface / Shape of bounding surface 

N 1 - 

Initial hardening parameter h0 varied (kPa)-2 

Rate of damage evolution ad varied - 

Rotational 

hardening 

Rate of evolution of anisotropy C 5 - 

Saturation limit of anisotropy x 1.7 - 

Destructuration Rate of destructuration ki 0 - 
 

Table 4.2 : initial conditions use for running the verification analysis. 

Model variable Symbol Value Units 

Initial void ratio e 0.7 - 

Initial size of the bounding surface  P0 200 kPa 

Initial orientation of the bounding surface α 0 - 

Initial isotropic structuration factor Si 1 - 

Initial damage parameter d 0 - 

 

All the simulations in this chapter use the same set of data provided in the aforementioned tables, if 

there is any change with respect to the parameters or constants used, it will be mentioned explicitly. 

4.2.1.1 Verification for the monotonic tests 

In the case of monotonic loading, undrained triaxial simulations have been carried out at two different 

over consolidation ratios (OCR), 1.5 and 3 respectively. The stress path and the stress-strain responses 

have been plot and the obtained results were verified against the digitized values of the plots in 

Seidalinov (2012) by using “webplotdigitizer”10. Thus obtained results have been tabulated below the 

respective figures11. In the process of carrying out simulations, sensitivity analysis is also performed on 

 
10 An online tool to digitize the graphs and images, WebPlotDigitizer (2019) 
11 The plots have been normalized using p0,in which is the initial size of the bounding surface. 
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‘h0’ by keeping ad = 0. When ad = 0, ‘h’ becomes a constant (equation (3.26) and (3.27)) throughout the 

loading path. A point to be noted is that the influence of ‘h’ comes into picture only when the stress 

state is inside the bounding surface, since when the stress state is on the bounding surface, the similarity 

ratio will become unity and the term containing ‘h’ in equation (3.25) will vanish altogether as the 

denominator will tend to infinity. 

 
(a) 

 
(b) 

Figure 4.2 : Normalized stress path a) results from Seidalinov (2012); b) results from computations for varying h0 values 

and OCR = 1.5. 

Table 4.3 : Comparison of digitized values vs computational values for varying h0 values and OCR = 1.5. 

s.no q/ p0,in  p/ p0,in 

(Seidalinov 2012) 

p/ p0,in 

(computations) 

% difference 

1 0.0 0.667 0.667 0.00 

2 0.484 0.631 0.629 0.32 

3 0.495 0.571 0.572 -0.18 

4 0.559 0.559 0.556 0.54 

 

 
(a) 

 
(b) 

Figure 4.3 : Normalized stress-strain curve a) results from Seidalinov (2012); b) results from computations for varying h0 

values and OCR = 1.5. 

Table 4.4 : Comparison of digitized values vs computational values for varying h0 values and OCR = 1.5. 

s.no q/p0,in  εa(%) 

(Seidalinov 2012) 

εa(%) 

(computations) 

% difference 

1 2 0.381 0.382 -0.26 

2 2 0.508 0.507 0.20 

3 6 0.514 0.515 -0.19 

4 6 0.558 0.556 0.36 

5 10 0.543 0.545 -0.37 

6 10 0.558 0.556 0.36 
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(a) 

 
(b) 

Figure 4.4 : Normalized stress path a) results from Seidalinov (2012); b) results from computations for varying h0 values 

and OCR = 3. 

Table 4.5 : Comparison of digitized values vs computational values for varying h0 values and OCR = 3. 

s.no q/ p0,in p/ p0,in 

(Seidalinov 2012) 

p/ p0,in 

(computations) 

% difference 

1 0 0.333 0.333 0.00 

2 0.339 0.342 0.341 0.29 

3 0.397 0.396 0.394 0.51 

4 0.498 0.498 0.496 0.40 

 

 
(a) 

 
(b) 

Figure 4.5 : Normalized stress-strain curve a) results from Seidalinov (2012); b) results from computations for varying h0 

values and OCR = 3. 

Table 4.6 : Comparison of digitized values vs computational values for varying h0 values and OCR = 3. 

s.no q/ p0,in  εa(%) 

(Seidalinov 2012) 

εa(%) 

(computations) 

% difference 

1 2 0.323 0.324 -0.31 

2 2 0.44 0.436 0.91 

3 6 0.46 0.453 1.52 

4 6 0.50 0.495 1.00 

5 10 0.489 0.482 1.43 

6 10 0.50 0.496 0.80 

 

Interpretation of the results reveal a contractive response when OCR = 1.5 and a dilative response when 

OCR = 3. When the OCR = 3, image stress will lie above the critical state line leading to a stress ratio 



30 

 

greater than critical stress ratio thereby the value of rate of plastic volumetric strains as per equation 

(3.7) will be negative which leads to increase in the volumetric stress which explains the dilative 

response. Similarly when the OCR = 1.5, image stress will  lie below the critical state line leading to 

contractive behaviour.  The stiffer response with increase in ‘h0’ values can be explained from the plastic 

modulus (Kp) formulation in equation (3.25) where higher values of ‘h’ lead to higher Kp and lower 

loading index (L) which means lower plastic strains and higher stiffness. 

As seen from Figure 4.2 to Figure 4.5, qualitatively there has been a good match between the results  

for both the stress path and stress-strain curves. It is quite evident from Table 4.3 to Table 4.6 that 

quantitatively as well the results show a good match wherein the percentage difference in the compared 

results varied from -0.5% to 1.5 %. 

4.2.1.2 Verification for the cyclic tests 

To verify the present code for cyclic loading, the results showing the influence of the model parameters 

h0 and ad have been taken from Seidalinov (2013) and the similar test have been simulated. Test 

conditions include six cycles of undrained triaxial loading under a cyclic stress ratio (csr) of 0.35 starting 

from normally consolidated state. Simulations have been performed with three different combinations 

of h0 and ad, interpretation of the results is as follows, 

• h0 = ∞ and ad = 0 : By taking the value of h0 = ∞, whenever the stress point is inside the bounding 

surface, as per equation (3.25), Kp will tend to infinity which renders a zero loading index and 

thereby no plastic strains are generated. This implies that the bounding surface in this  particular 

situation behaves like a yield surface meaning that plastic strains are produced only the yield surface 

and inside the yield surface only elastic strains are produced. Hence this explains the reason behind 

the stress path and stress-strain response retracing back the same path during unloading/reloading 

parts of the cyclic loading. 

•  h0 = 100 and ad = 0 : Here since h0 is taken as a finite value and ad is taken as zero. The value of ‘h’ 

remains constant throughout the process of cyclic loading. Since h0 is a finite value, plastic modulus 

will be a positive value inside the bounding surface which leads to generation of plastic strains. 

This in turn leads to evolution of stress path , i.e., in this particular case the reduction of the 

volumetric stress indicative of a contractive behaviour. A point to be noted would be that the stress 

path stagnates at (p/σc) ≈ 0.6 (OCR ≈ 2), this can be explained by the fact that when (p/σc) ≈ 0.6 the 

image stress projected by the projection center onto the bounding surface lies on the critical state 

line. When this situation occurs, M = ɳ, i.e., the rate of increase in plastic volumetric strains will be 

almost equal to zero (equation (3.7)) implying there is no further development of volumetric stress. 

It also means that there is only development of plastic deviatoric strains which explains the partial 

evolution of the stress-strain response compared to the previous case. This can be resolved using a 

value of  ad > 0. 

• h0 = 100 and ad = 40 : In this case, by assigning a positive finite value to ad, there is no major change 

in the generated stress-path. But the stress-strain response evolves.  This evolution is due to the 

dependence of ‘h’ on the damage parameter ad. Introduction of the damage parameter leads to 

evolution of the damage effect d (equation (3.27)) with the rate of plastic deviatoric strain, this leads 

to reduction in the value of h throughout the process of cyclic loading. This changing value of h 

effects the plastic modulus and hence results in evolution of the stress-strain curves. A point to be 

noted here is that the rate of change of plastic volumetric strains is almost zero when (p/σc) ≈ 0.6, 

the whole evolution of axial strains from this point is completely due to the build-up of plastic 

deviatoric strains.  
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(a) 

 
(b) 

Figure 4.6 : Normalized stress path a) results from Seidalinov (2013); b) results from computations for  h0 = inf and ad = 0. 

Table 4.7 : Comparison of digitized values vs computational values for varying h0 = inf and ad = 0. 

s.no q/σc  p/σc 

(Seidalinov 2013) 

p/σc 

(computations) 

% difference 

1 0.35 0.906 0.906 0.00 

2 0.35 0.883 0.883 0.00 

3 -0.3 0.906 0.906 0.00 

4 -0.35 0.882 0.883 -0.11 

 

 
(a) 

 
(b) 

Figure 4.7 : Normalized stress-strain curves a) results from Seidalinov (2013); b) results from computations for  h0 = inf and 

ad = 0. 

Table 4.8 : Comparison of digitized values vs computational values for varying h0 = inf and ad = 0. 

s.no q/σc  εa(%) 

(Seidalinov 2013) 

εa(%) 

(computations) 

% difference 

1 0.35 0.373 0.374 -0.27 

2 0.35 -0.277 -0.273 1.44 
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(a) 

 
(b) 

Figure 4.8 : Normalized stress path a) results from Seidalinov (2013); b) results from computations for  h0 = 100 and ad = 0. 

Table 4.9 : Comparison of digitized values vs computational values for varying h0 = 100 and ad = 0. 

s.no q/σc  p/σc 

(Seidalinov 2013) 

p/σc 

(computations) 

% difference 

1 0.35 0.904 0.906 -0.22 

2 0.35 0.635 0.636 -0.16 

3 0.35 0.579 0.582 -0.52 

4 -0.35 0.786 0.788 -0.25 

5 -0.35 0.579 0.579 0.00 

 

 
(a) 

 
(b) 

Figure 4.9 : Normalized stress-strain curves a) results from Seidalinov (2013); b) results from computations for  h0 = 100 

and ad = 0. 

Table 4.10 : Comparison of digitized values vs computational values for varying h0 = 100 and ad = 0. 

s.no q/σc  εa(%) 

(Seidalinov 2013) 

εa(%) 

(computations) 

% difference 

1 0.35 0.362 0.374 -3.31 

2 0.35 0.696 0.684 1.72 

3 -0.35 -0.631 -0.649 -2.85 

4 -0.35 -0.797 -0.791 0.75 
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(a) 

 
(b) 

Figure 4.10 : Normalized stress path a) results from Seidalinov (2013); b) results from computations for  h0 = 100 and ad = 

40. 

Table 4.11 : Comparison of digitized values vs computational values for varying h0 = 100 and ad = 40. 

s.no q/σc  p/σc 

(Seidalinov 2013) 

p/σc 

(computations) 

% difference 

1 0.35 0.907 0.906 0.11 

2 0.35 0.614 0.611 0.49 

3 0.35 0.569 0.575 -1.05 

4 -0.35 0.781 0.783 -0.26 

5 -0.35 0.573 0.575 -0.35 

 

 
(a) 

 
(b) 

Figure 4.11 : Normalized stress-strain curves a) results from Seidalinov (2013); b) results from computations for  h0 = 100 

and ad = 40. 

Table 4.12 : Comparison of digitized values vs computational values for varying h0 =100 and ad = 40. 

s.no q/σc  εa(%) 

(Seidalinov 2013) 

εa(%) 

(computations) 

% difference 

1 0.35 0.377 0.374 0.80 

2 0.35 2.521 2.536 -0.60 

3 -0.35 -0.672 -0.687 -2.23 

4 -0.35 -3.085 -3.095 -0.32 

 

As seen from Figure 4.6to Figure 4.11, qualitatively there has been a good match between the results  

for both the stress path and stress-strain curves. It is quite evident from Table 4.7 to Table 4.12 that 

quantitatively as well the results show a good match wherein the percentage difference in the compared 

results varied from -3.5% to 2 %. 
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4.2.2 Sensitivity analysis of the model parameters 

Bounding surface SANICLAY model is an extension of the modified Cam-Clay model. Taking this 

into account, sensitivity analysis is carried out only on parameters which are an addition to Cam-clay 

model, i.e., model constants such as Poisson’s ratio, compression and swelling index, the critical state 

ratio’s in compression and extension are kept constant. Model parameters tabulated in Table 4.1 along 

with  h0 = 100 and ad =40 have been chosen for the subsequent analysis. Any changes in the specific 

parameters to carry out the sensitivity analysis are discussed in the corresponding subsections. 

4.2.2.1 Analysis on the saturation limit of anisotropy ‘x’ 

The saturation limit ‘x’ of the anisotropy has been varied from 1 to 1000 to check the sensitivity 

analysis. Though the values recorded in Seidalinov (2012) for different sets of clay were lying between 

1 and 2, the sensitivity of the model response was almost ineffective for this range of data. So in order 

to check the sensitivity an attempt has been made by taking larger values of ‘x’. 

 
(a) 

 
(b) 

Figure 4.12 : (a) Stress path and (b) stress-strain response with varying values of 'x'. 
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Marginal change in the values of stress path and stress-strain response was observed with an increase 

in value of ‘x’. It can be inferred from section 3.4 (equation (3.21)) that ‘α’ tends towards / x  for a 

constant stress ratio( ) loading, which means the effect of change in values of ‘x’ can be better 

understood under k0 loading conditions. Since the code implemented in section 4.1 takes into 

consideration only isotropic loading conditions, sensitivity analysis thus performed might not show 

significant effect of variation in ‘x’. 

4.2.2.2 Analysis on ‘N’ for the evolution of rotational hardening ‘α’ 

Parameter N serves as a bound for the evolution of the rotation hardening variable ‘α’ and the smaller 

the value of N compared to Mc the more undrained softening the model predicts during compression. 

Papadimitriou AG et al., (2005) suggested the limits for N as Mc > N ≥ Me to predict softening only in 

compression and not in extension. However, in the present analysis the values of N have also be taken 

to be greater than Mc to check the model performance. In the plots that follows the parameter ζ 

represents the ratio of Mc/N. 

 
(a) 

 
(b) 

Figure 4.13 : (a) stress-path12, (b) stress-strain response of the model for undrained triaxial monotonic loading with varying  

values of ζ. 

 
12 The black line in the figure is indicative of the critical state line. 
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It can be observed from Figure 4.13 that with increase in the value of ζ, the ultimate strength of the clay 

tends to increase. It can also be concluded that for a given value of shear stress, higher accumulation of 

pore water pressure is observed with reduction of ζ leading to faster reduction in effective volumetric 

stress. From part (a) of the figure it can be interpreted that the stress path tends to cease on the critical 

state line, this means that the volumetric strain stops developing. Strains developed over and above 4% 

axial strains (part (b) of the above figure) are completely due to the development of plastic deviatoric 

strains. In terms of stiffness, as the value of ζ increases, the model predicts stiffer response of clay. 

Seidalinov (2013) performed cyclic loading simulations with a cyclic stress ratio of 0.35 using the data 

provided in Table 4.1, in order to have consistency in the results produced, the cyclic stress ratio was 

chosen as 0.35 which eliminates the option of using lower values of N such as 0.5 which resulted in a 

maximum cyclic stress ratio close to 0.3. As discussed earlier in section 2.1.3, cyclic loading leads to 

accumulation of pore water pressures and strains. By taking into account the obtained monotonic results 

in Figure 4.13 and foreseeing a slower rate of evolution of stress path with higher values of ζ, ζ values 

have been varied from 0.7 to 1.0 which lie well between the limits suggested by Papadimitriou AG et 

al., (2005).  

 
(a) 

 
(b) 

Figure 4.14 : (a) stress-path , (b) stress-strain response of the model for six cycles of undrained triaxial cyclic loading with 

varying  values of ζ. 
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It is a known concept that under the influence of identical cyclic loading conditions, material with higher 

strength undergoes lesser degradation in strength than the material with lower strength. The stress path 

response of the model reaffirms the statement said earlier, where with decrease in ζ (leads to decrease 

in strength) leads to faster rate of migration of stress path towards the origin. As per literature, 

accumulation of plastic strains and pore water pressures are directly related (section 2.1.3) but analyzing 

the results from Figure 4.14, with the decrease in value of ζ, though a higher accumulation of pore water 

pressure (higher pore water pressure implies lesser volumetric stress) is observed, the developed shear 

strains are lesser. 

An attempt was made to understand such behaviour from definition of loading index and bounding 

surface plastic modulus in equations (3.23) and (3.24) respectively, which when elaborated gives the 

following, 
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 (4.11) 

It is evident form the above equations that the reduction in the value of ‘N’ leads to decrease in the 

value of loading index and plastic modulus. The development of the loading index and plastic modulus 

were plotted against the normalized volumetric stress in Figure 4.15. By visual inspection it can be 

observed that the values of loading index during final cycles of loading tend to decrease when ζ  is 

changing from 1 to 0.8. Again with further decrease of ζ from0.8 to 0.7, the loading index values tend 

to increase. A clear increasing or decreasing trend in the loading index is not observed to give a 

conclusive explanation of development of shear strains as seen in part (b) of Figure 4.14. On the other 

hand, the peak values of the plastic modulus in part (b) of Figure 4.15 are representative of the stress 

reversals occurring during the process of cyclic loading. That is, whenever there is a stress reversal, 

there is a sudden increase in the plastic modulus values which tend to gradually reduce during the 

evolution of the stress path until there is a next stress reversal. At this stage, even the plot on plastic 

modulus variation cannot give a conclusive evidence to explain the variation in the development of 

shear strains as seen in part (b) of Figure 4.14. 
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(a) 

 
(b) 

Figure 4.15 : (a) loading index and (b) plastic modulus development  with variation of ζ. 

4.2.2.3 Analysis on the rate of evolution of anisotropy ‘C’ 

As per Dafalias YF et al., (2006) the value of C generally lies between 3 and 20. By choosing the range 

of C suggested by Dafalias YF et al., (2006), the change in response of the model in terms of stress-

path was very minimal and difficult to interpret the effect of C. In order to understand the influence of 

C on the model, values ranging between 0 and 100 were chosen. A point to be noted is that when C = 

0, during the process of loading/unloading, the orientation of the bounding surface remains fixed with 

respect to the origin which implies that the model is in effect not able to simulate the stress-induced 

anisotropy. 
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(a) 

 
(b) 

Figure 4.16 : (a) stress-path , (b) stress-strain response of the model for undrained triaxial monotonic loading with varying  

values of C. 

It can be observed that the increase of C has a similar effect as that of increase in N, where with increase 

of C, the strength and stiffness of the clay increases. This can be understood from the fact that when C 

increases, the rate of rotation of the bounding surface increases (equation (3.21)) which in turn leads to 

increase in the plastic modulus thereby increasing the stiffness of the clay. By analyzing this one step 

further, it can be understood that the model tends to underestimate the strength of the clay without any 

rotational hardening (C = 0). 
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(a) 

 
(b) 

Figure 4.17 : (a) stress-path , (b) stress-strain response of the model for six cycles of undrained triaxial cyclic loading with 

varying  values of C. 

Under the influence of cyclic loading, with increase in the value of C, the rate of migration of the stress 

path towards origin decreases and also results in lower rate of generation of strains which complies with 

the literature reviewed in section 2.1.3 that the rate of accumulation of plastic strains and pore water 

pressures are directly related. 

4.2.2.4 Analysis with variation of the shear modulus formulation 

For checking the influence of shear modulus on the  response of the model, undrained monotonic and 

cyclic (in this case 10 cycles of loading) triaxial tests were simulated. Constant shear modulus values 

ranging from 1000 kPa to 25000 kPa have been employed and the obtained results are shown in the 

figure below. The red dotted line indicates the response of the model with the formulation of  shear 

modulus as per equation (3.4) which is based as per classical elasticity theory with constant Poisson’s 

ratio.  
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(a)  

 
(b)  

Figure 4.18 :Shear modulus degradation curves with the shear strain levels, (a)  monotonic loading, (b) cyclic loading with 

10 cycles of applied load. 

The rate of degradation of shear modulus with shear strain decreases with increase in the initial value 

of the shear modulus. This observation is in accordance with the literature reviewed in section 2.1.1, 

which points out that cyclic loading induces pore pressure in clays leading to degradation of the soil 

structure and thereby leading to faster degradation of the shear modulus with shear strain. For the 

present case the value of the shear modulus (equation (3.4)) used as per classical elasticity theory lies 

between 5000 and 1000 kPa. It is quite evident from the above graphs that the rate of degradation of 

the shear modulus is much higher under the influence of cyclic loading than the monotonic as shown 

with the arrows at 1% shear strain values. 

4.2.2.5 Analysis with changing the initial orientation of the bounding surface ‘α’ 

Performing the sensitivity analysis on ‘α’ means having an initial stress-induced anisotropy in the clay. 

Sensitivity analysis is performed on ‘α’ with the initial preconsolidation pressure (p0) of 200 kPa. In 

order to have consistency in comparison of the results, the initial stress point is chosen at (133.33,0) 

which represents an over consolidation ratio of 1.5 such that even with initial rotation of the bounding 

surface, the chosen stress point lies on or inside the bounding surface. 
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(a) 

 
(b) 

Figure 4.19 : Sensitivity analysis on initial value of ‘α’ for undrained monotonic loading, (a) stress-path, (b) stress-strain 

response of the model. 

Increasing the value of ‘α’ from ‘-0.5’ to ‘0.5’ leads to decrease in ultimate strength of the clay. Though 

the initial OCR is chosen to be 1.5, there is a gradual change of material response from a decrease in 

the volumetric stress to an increase in the volumetric stress. This is suggestive of the material response 

changing from a contractive to a dilative state. The special case when ‘α’ is equal to 0.33, the stress 

path is a constant volumetric stress curve which happens because the image stress projected onto the 

bounding surface lies on the critical state line and no further volumetric strains are produced in this 

case, thereby the bounding surface too stops evolving. In terms of stiffness response, from part (b) of 

Figure 4.19 it is evident that the stiffness of the clay increases with increase in ‘α’. The respective 

rotation of the bounding surface with evolution of stress path is presented in Appendix-IV. 

4.3 Summary 

This chapter presented the procedure for implementing the constitutive model in MATLAB. Thus 

implemented code has been verified against the computational results presented in Seidalinov 

(2012,2013). Subjected to isotropic consolidation, sensitivity analysis was performed on the specific 

model constants pertaining to rotational hardening of the bounding surface. It was found that increasing 
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the value of the parameters such as bound for evolution of anisotropy (N), rate of evolution of anisotropy 

(C), initial orientation of the bounding surface (α0) tend to increase the strength and stiffness response 

of the model. Particularly by increasing the initial orientation of the bounding, the response of the model 

gradually changed from contractive to a dilative state. Furthermore, when comparing the sensitivity 

analysis by increasing the shear modulus, the model fairly justified the concept of higher rate of 

degradation of shear modulus with increase of shear strains. Along the similar lines, the model also 

predicted higher degradation of shear modulus in the case of cyclic loading as compared to monotonic 

loading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 

 

Chapter 5 : Validation of the model with experimental results on kaolin 

clay 

This chapter discusses the validation of the model with the experimental results  for kaolin clay database 

from Wichtmann (2018). Firstly the calibration of the model parameters is carried out following the 

stepwise procedures suggested by Seidalinov (2012). Since the kaolin samples used in the testing 

procedures have been reconstituted, the parameters affecting the structuration have been set to the 

destructured values i.e initial isotropic structuration factor (Si) is set to ‘1’ and the rate of destructuration 

‘ki’ is set to ‘0’. Other model parameters and their respective determination has been sequentially 

described below. 

Compression index (λ) and swelling index (κ) : From the oedometer test provided in Wichtmann 

(2018), λ and κ have been found to be 0.223 and 0.045 respectively. 

 
Figure 5.1 : Void ratio versus axial stress graph showcasing the compression and swelling index. 

Poisson’s ratio (ν) : Calibration of ν is generally based upon K0-consolidation test followed by K0-

unloading stress path. In the present case due to the lack of such experimental data, ν = 0.33 has been 

taken from Tafili & Triantafyllidis (2018) which used the data from Wichtmann (2018) in their research. 

Critical state ratio in compression (Mc) and extension (Me) : Monotonic undrained triaxial 

compression and extension tests are needed to find the values of Mc and Me. Since the data for undrained 

triaxial extension test is not available, the figures showing the failure lines in monotonic compression 

and extension test have been used as a reference to find the critical state ratios. To do that, the data has 

been digitalized using WebPlotDigitizer (2019) and the corresponding value of Mc and Me have been 

found to be 1.0 and 0.73 respectively.  

 

Figure 5.2 : Critical state values in compression and extension by fitting the curve based on digitized values of data from  

Wichtmann (2018). 
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The critical state friction angle in compression ( c ) shall be used for the calibration of ‘x’, which is 

found to be 25.370 as per equation (5.1). 
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Peak stress ratio on bounding surface (N) : Calibration of  N would require the availability of 

undrained triaxial extension test on K0-consolidated clay, but such data is not available. So N is 

calibrated along with the rotational hardening parameter ‘C’ below. 

Saturation limit of anisotropy (x) : Calibration of x13 is based on the formulation provided by Dafalias 

et al., (2006), for the case of K0-loading path as follows, 
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Where, ( ) ( )
0 0 03 1 / 1 2k K K = − +  and K0 is the earth pressure coefficient at rest obtained from Jacky’s 

equation as ( )0 1 sinK = − .   here is the ratio of total strain rate obtained by dividing the total 

volumetric strain rate to the total deviatoric strain rate as /v q  = .  The value of   is 3/2 for  K0-

loading path. By substituting the values of λ = 0.223, κ = 0.045, ν  = 0.33, Mc = 1.0, φ = φc = 25.370, 

the value 
0k is found to be 0.6 and that of x14 from equation (5.2) is 1.6. 

Rate of evolution of anisotropy (C) : Calibration of C is usually based on the undrained triaxial 

extension test on K0-consolidated clay, in the absence of which undrained triaxial compression test on 

isotropically consolidated clay is used. Prior presence of other parameters is required for the calibration 

of C. Since it was already discussed that N has to be calibrated in tandem with C, the dual calibration 

of C and N together is shown in Figure 5.3.  A point to be noted is that the range of C is between 3-20 

as per Dafalias et al., (2006). In case of N, the lesser the value of N compared to Mc the higher the 

amount of softening reproduced by the model. In order that softening is only produced during 

compression but not in extension, Papadimitriou et al., (2005) suggested the limits for N as Mc > N ≥ 

Me. In the data sets provided in Seidalinov (2012), the value of N was chosen to be lesser than Mc and 

Me when there is lack of experimental data to calibrate ‘N’.  

 
13 There is a misprint in the formulation of ‘x’ in Seidalinov (2012) 
14 This constant x is an increasing function of K0 



46 

 

 

(a) Stress-path with N = 0.75. 

 

(b) Stress-strain response with N = 0.75. 
Figure 5.3 : Calibration of N and C parameters based on the data from Wichtmann (2018). 

Based on the knowledge of sensitivity analysis performed on C and N parameters in section 4.2.2, N 

parameter has been varied from 1.0 to 0.6 and C parameter has been varied from 5-150 to check for the 

model performance in reproducing the experimental results. An overview of the obtained stress-path 

and stress-strain response with different values of C and N are presented in Appendix-II. It has been 

observed that the model was not able to reproduce the experimental stress path. Instead, the stiffness 

response of the model is comparatively higher than that of the experimentally observed results. After 

looking at various permutations and combinations of C and N, C = 5-15 and N = 0.75 gave a reasonable 

match of the results qualitatively as seen from Figure 5.3. By considering these values, a further attempt 

to calibrate the parameter was done by changing the initial stress-induced anisotropy (α0) within the 

model. 
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(a) Stress-path with N = 0.75 and C = 5. 

 
 

(b) Stress-strain response with N = 0.75 and C = 5. 
Figure 5.4 : Calibration of the initial stress-induced anisotropy in the model. 

Even by changing the initial stress-induced anisotropy, a comprehensible match of the experimental 

results was not reproduced by the model. Yet, it can be observed from Figure 5.4 that with N = 0.75, C 

= 5 and α0 = -0.3, there was a reasonable match on the stress path till a deviatoric stress level of 75 kPa 

and a comparable stress-strain response till an axial strain level of 3%. With a higher value of initial 

stress-induced anisotropy, the model resulted in a much softer response. Similarly, with a lower value 

of initial stress-induced anisotropy, model gave a stiffer response. So based on the analysis thus 

performed, the aforementioned parameters are chosen for further analysis. 

By analyzing the experimental stress path of the kaolin clay it can be deduced that right from the onset 

of loading, there is coupling between volumetric and deviatoric strains. So reproducing such behaviour 

could be only be possible by having the dependence of stress path on both the volumetric and deviatoric 

strains right from the commencement of the loading. The possible physical meaning behind such 

behaviour is the presence of anisotropy in the kaolin clay. Such intrinsic anisotropy of the kaolin clay 

due to its geological history is termed as inherent or fabric anisotropy (Graham & Houlsby, 1983; 

Anandarajah & Kuganenthira, 1995). 
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In the present model formulations, at the beginning of the loading the stress path is governed by the 

isotropic elastic stiffness matrix as seen in equation  (4.3). In order for the model to reproduce the 

experimental stress path results as seen in part (a) of Figure 5.3 and Figure 5.4, this elastic stiffness 

matrix must be modified. The modified elastic stiffness matrix in order to account for the fabric 

anisotropy as suggested by Graham & Houlsby, (1983)  is as follows, 
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 (5.3) 

 

Compared to the isotropic stiffness matrix as seen in equation  (4.3), K*,G*, J are the modifications 

introduced to account for anisotropic behaviour. By incorporating such fabric anisotropy in the elastic 

stiffness matrix, Tafili & Triantafyllidis (2018) were able to successfully reproduce the behaviour of 

kaolin clay (Wichtmann 2018) under monotonic loading conditions. 

Initial hardening parameter (h0) : The ‘h0’ parameter is calibrated based on the initial cycles of 

loading. So for this purpose, first three cycles of undrained cyclic triaxial tests with a cyclic shear stress 

of 70 kPa, pre consolidation pressure of 200 kPa has been simulated.  

 
Figure 5.5 : Development of stress path with an initial stress-induced anisotropy(α0 = -0.3) and h0 = 100. 

It can be observed from Figure 5.5 that, when the increment of stress is directed towards the critical 

state line in extension (Me), there is nominal change in the development of volumetric stress. On the 

contrary there is considerable development of stress path when the stress path is directed towards the 

critical state line in compression (Mc). To interpret such response of the model, a closer look at the 

evolution of the bounding surface and the definition of the stiffness is required. Firstly due to an initial 

stress-induced anisotropy in the model, the bounding surface is tilted towards the Me line. During the 

first quarter cycle of loading the bounding surface mildly rotates owing to the evolution laws as seen 

from section 3.4. Due to this reason even at the end of the first quarter cycle of loading the bounding 

surface is still titled towards the Me line. To explain the development of the stress-path, it is important 

to look at the definition of stiffness in the model (section 3.5) which is related to the Euclidian distance 

between current stress point and the image point. Since the bounding surface is titled towards the Me 

line, when the stress increment is directed towards the Me line (second and third quarter cycles of 

loading), the Euclidian distance is relatively small leading to lesser development of strains and stresses. 
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On the contrary when the stress increment is directed towards the Mc line (fourth and fifth quarter cycles 

of loading), the Euclidian distance is relatively big leading to higher development of strains and stresses. 

Such response of the model continues for the subsequent cycles of loading which do not reproduce the 

experimental behaviour of the kaolin clay qualitatively. 

In order to avoid such improper development of stress-path and stress-strain response, it was decided 

to set the initial value of stress-induced anisotropy to zero and subsequently C = 10 and N = 0.75 were 

chosen for further analysis based on the results matched at the critical state as seen in Figure 5.3. By 

doing so, for the present analysis it is taken into consideration that the model seems to over-predict 

volumetric stress for major part of the stress-path traversed. 

A trial and error method has been followed to arrive at a ‘h0’ value of 100.  

 
Figure 5.6 : Calibration of h0 value by using  experimental data for the first three cycles of  undrained cyclic triaxial loading 

The stress path from the experimental results are inclined towards the critical state line in compression 

which has a comparatively higher value (Mc = 1.0) than the critical state value in extension (Mc = 0.73). 

From Figure 5.6 it can be observed that only on the extension side of the stress space, the results are a 

close match whereas the results on the compression side of the stress space have been highly 

compromised while calibrating the value of ‘h0’. Reason for this compromise is attributed to the way of 

calibration of ‘C’ and ‘N’ parameters in which a major compromise on the stress development in 

observed. 

Rate of damage evolution (ad) : Once the ‘h0’ parameter is calibrated, ‘ad’ parameter can be calibrated 

in a similar trial and error procedure but this time using a stress-strain response. 
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(a) ad = 0 

 
(b) ad = 5 

 
(c) ad = 10 

 
(d) ad = 20 

Figure 5.7 : Calibration of ad parameter based on experimental data for undrained cyclic triaxial loading 

Clearly the results obtained from Figure 5.7 do not show any kind of qualitative match with the 

experimental stress-strain response. Moreover with the increase of ‘ad’ parameter, the stress-strain 

response tends to favor the negative axial strain direction (extension side). So for the computations 

hereafter, the value of ‘ad’ is chosen to be 5 based on the proximity of the peak values of numerical and 

experimental results on the negative axial strain direction.   

A bias in the development of plastic strains towards the extension side of the model is observed. This 

might be because of the way in which the stiffness is defined in the model. The soil stiffness in the 

model is related to the distance between the current stress state and the image stress on the bounding 

surface. Since the critical stress ratio in extension (Me) is smaller than the critical stress ratio in 

compression (Mc), under the same stress level there is unbalance between the strains generated in 

compression and extension. This is the reason behind accumulation of strains on the extension side. 

One other reason for the higher accumulation of the plastic strains in the extension side is because once 

the plastic volumetric strains stop accumulating, the rotation of the bounding surface stops. Thus 

stopped bounding surface is not exactly symmetric with respect to the volumetric stress axis but might 

be skewed on either side which means that there is some constant stress-induced anisotropy present in 

the model. For this reason the development of the shear strains can tend to be biased. 

The ratio of Mc/ Me in the present data set is close to 1.37, but in all the data sets provided in Seidalinov 

(2012), the ratio of the critical state lines in compression to extension were close to unity. This can 

explain the reason why there has not been any significant bias in the stress-strain response reported by 

Seidalinov (2012). This can mean that a change is the flow rule might help in better prediction of the 

stress strain response. 

Based on the calibration of the parameters, the finalized parameters for the kaolin clay from the database 

provided by  Wichtmann (2018) are listed out in Table 5.1. 
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Table 5.1 : model parameters for reconstituted kaolin clay (Wichtmann 2018) 

Category Model constant Symbol value 

Elasticity Swelling index κ 0.045 

Poisson’s ratio ν 0.33 

Critical state Compression index λ 0.223 

Critical state ratio in triaxial compression Mc 1 

Critical state ratio in triaxial extension Me 0.73 

Bounding surface Peak stress ratio on bounding surface N 0.75 

Initial hardening parameter h0 100 

Rate of damage evolution ad 5 

Rotational 

hardening 

Rate of evolution of anisotropy C 10 

Saturation limit of anisotropy x 1.6 

Destructuration Rate of destructuration ki 0 

 

With the obtained parameters, the model is validated for the cyclic loading of kaolin clay under the 

influence of stress amplitude, initial pressure, over consolidation ratio (OCR) and strain controlled 

loading. In section 4.2.1.2, stagnation of the stress path with increase in number of loading  cycles is 

observed (OCR ≈ 2), taking this into account, validation has been carried out on limited number of 

cycles of loading which will be specified in the respective sections below.  

5.1 Stress cycles – Variation of amplitude of loading 

Wichtmann T, (2018) performed the undrained cyclic triaxial tests with an initial mean pressure of 200 

kPa and stress amplitudes varying between 30-70 kPa. In the present analysis, stress amplitudes of 50,60 

and 70 kPa have been chosen wherein the number of cycles for failure in these cases did not exceed 35. 

In order to capture the behaviour of the kaolin clay in the initial cycles of loading and also foreseeing 

that  the stress path in the model will stagnated after a certain number of cycles, 10 cycles of loading15 

was chosen  to be appropriate for validating the results. 

 

 

 

 

 

 

 
15 In case of 70 kPa stress amplitude, data was available for only 7 cycles of loading.  
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(a) qampl = 50 kPa 

 
(b) qampl = 50 kPa 

 
(c) qampl = 60 kPa 

 
(d) qampl = 60 kPa 

 
(e) qampl = 70 kPa 

 
(f) qampl = 70 kPa 

Figure 5.8 : Comparison of model and experimental results for varying cyclic stress amplitude (csa). (a-b) csa = 50 kPa, (c-

d) csa = 60 kPa, (e-f) csa = 70 kPa. 

The experimental stress-paths from Figure 5.8 parts (a), (c) and (e) suggests that with increase in stress 

amplitude, there is faster accumulation of pore water pressure leading to rapid decrease in the 

volumetric stress and thereby leading to early failure of the kaolin clay with lesser number of loading 

cycles. In terms of strain development as seen from parts (b), (d) and (f) of Figure 5.8, when the stress 

levels in the clay reached the critical state lines, higher axial strains start accumulating. 

The model can qualitatively capture the faster accumulation of the pore water pressure and development 

of volumetric stress with increase in the stress amplitude. But due to the limitation of the model, stress 

path freezes close to 100 kPa volumetric stress and the failure state is not reached.  

Freezing of the stress path at an OCR ≈ 2 was touched upon in section 4.2. It is well understood by 

Seidalinov (2012) that the cause of such stagnation is the non-development of plastic volumetric strains. 
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This further prevents the evolution of the bounding surface. Analyzing it a step further, it can be 

understood that even though the plastic volumetric strains stop evolving, the plastic deviatoric strains 

continue to evolve. Researchers in the past (Wheeler et al., 2003; Karstunen & Koskinen, 2008) have 

attributed the development of anisotropy not only on plastic volumetric strains, but also on plastic 

deviatoric strains. If the evolution of bounding surface is dependent on both the plastic volumetric and 

plastic deviatoric strains, there might be a possibility for evolution of the bounding surface even when 

the plastic volumetric strains stop evolving. This can in turn lead to further development of the stress 

path. 

Model performance is further evaluated by plotting the strain contour diagrams. For this purpose, double 

amplitude shear stain has been chosen as a base for plotting the results. Reason being, when the clay 

material is subjected to one full cycle of loading, double amplitude shear strain represents the complete 

behaviour of the response of the clay whereas choosing single amplitude shear strain might lead to 

missing out on important features of clay behaviour. 

 
(a) Experimental results 

 
(b) Numerical results 

Figure 5.9 : Strain contour diagrams for a) experimental observations (Wichtmann 2018), b) numerical results 

Based on the aforementioned explanation, double amplitude shear strain contour diagrams have been 

generated for the present analysis. As seen from Figure 5.9, part (a) shows the resulting plot from the 

experimental data provided by Wichtmann (2018) where the strain values in the contour diagrams 

ranged from 3-14 % and have seen a convergence close to 30-35 cycles of loading. In the case of model 

performance, since 10 cycles of loading were not sufficient to plot and check the results, only for the 

purpose of plotting strain contour diagrams, the simulations have been run for close to 80 cycles of 

loading. Thus obtained results are plot in part (b) of the above figure, it can be seen that the values of 

shear strain ranged from 1.5-2.5 % and apparently the strain contour diagrams did not converge even at 

70 cycles of loading. Such outcome by the model represents the inadequacy in development of strains. 

5.2 Stress cycles - Variation of the initial pressure 

Wichtmann 2018 performed the experimentation on different initial pressures varying from 50-300 kPa, 

with a cyclic stress ratio of 0.2. In the present analysis computations have been carried out for initial 

pressures of 75, 125 and 150 kPa with the cyclic stress amplitude of 15, 25 and 30 kPa respectively for 

which the maximum cycles of loading for failure is around 140. For other initial mean pressures around 

400-1000 cycles of loading were required to reach the failure. Since the chosen constitutive model has 

a limitation in the development of stress path, choosing the case where lower number of cycles of 

loading are required to reach failure will give a better prospective to understand the model behaviour. 

Considering the model performance, computations have been carried out for the first 20 cycles of 

loading.  
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(a) P0 = 75 kPa & qampl = 15 kPa 

 
(b) P0 = 75 kPa & qampl = 15 kPa 

 
(c) P0 = 125 kPa & qampl = 25 kPa 

 
(d) P0 = 125 kPa & qampl = 25 kPa 

 
(e) P0 = 150 kPa & qampl = 30 kPa 

 
(f) P0 = 150 kPa & qampl = 30 kPa 

Figure 5.10 : Comparison of model and experimental results for varying initial pressure (p0). (a-b) p0 = 75 kPa, (c-d) p0 = 

125 kPa, (e-f) p0 = 150 kPa. 

The experimental results when plotted in their entirety till they reach the failure (Appendix-III) show 

that the development of the shear strains is relatively spread across either sides of the zero strain axis. 

Particularly during the final cycles of loading when the stress path of kaolin clay reaches closer to the 

critical state lines, due to occurrence of dilation, higher values of the shear strains are developed. But 

when only the initial 20 cycles of loading is considered as in the present case, predominantly negative 

strains are developed. 

The model predicts a much faster degradation of the of the stress path with decrease in the initial mean 

pressure as seen in part (a) of the above figure. Due to the nature of the model, though it predicts the 

accumulation of the negative strains, an overestimation of  these values is quite evident seen from Figure 

5.10 part (b), (d)  and (f). 
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5.3 Stress cycles - Variation of OCR 

Experimental analysis carried out by Wichtmann (2018) considered three distinct OCR’s namely 1.5, 

2.0 and 2.5. These simulations have been carried out with an initial pressure of 100 kPa and cyclic stress 

ratio of 0.3. In order to have a consistency in comparison of the results, experiments with normally 

consolidated sample starting from initial pressure of 100 kPa and cyclic stress ratio of 0.216 was chosen. 

Simulations have been carried out for first 20 cycles of loading.  

 
(a) OCR = 1.0 

 
(b) OCR = 1.0 

 
(c) OCR = 1.5 

 
(d) OCR = 1.5 

 
(e) OCR = 2.0 

 
(f) OCR = 2.0 

 
16 Data for cyclic loading with initial pressure of 100 kPa and cyclic stress ratio of 0.3 was not available. Hence, the best available data was 

chosen for the comparison purpose. 
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(g) OCR = 2.5 

 
(h) OCR = 2.5 

Figure 5.11 : Comparison of model and experimental results for varying over consolidation ratios (OCR). (a-b) OCR = 1.0, 

(c-d) OCR = 1.5, (e-f) OCR = 2.0, (g-h) OCR = 2.5. 

As reported by Wichtmann (2018), the response initially overconsolidated (OCR > 1) kaolin clay  

during the first cycle of loading is completely dilative thereafter all the stress cycles followed a 

contractive stress-path meaning the evolution of the stress-path is directed towards the origin. For a 

normally consolidated (OCR = 1) kaolin clay shown in part (a) and (b) of the above figure, a complete 

contractive stress path is observed from the initial cycle of loading. Also with increase in OCR, the 

strain development tends to decrease for the chosen cases as seen in above figure. Development of the 

stress-strain for the normally consolidated clay cannot be compared to the higher OCR stress-strain 

responses because of the lower cyclic stress ratio in normally consolidated clay. 

With decrease in OCR, higher relaxation of the stress path is observed from the model which is evident 

from the case of normally consolidated kaolin clay. For OCR equal to 1.5 and 2, the response of the 

model was completely contractive from the first cycle of loading as opposed to the experimental results. 

In the case where OCR is 2.5, model response was a bit different in the sense that only during the first 

quarter cycle of loading the response was contractive as shown in Figure 5.12(blue arrows indicate the 

direction of the stress path during the first cycle of loading), but the consequent cycles of loading have 

shown a completely dilative response where the direction of the stress path evolution is directed away 

from the origin. In terms of strain development, the model was qualitatively able to predict the decrease 

in strain accumulation with the increase in OCR. The reason behind such a stress path development is 

understood to be because of the evolution laws of the model which are dependent on the critical state 

ratios (Mc and Me). It has been reported by Seidalinov (2012) that the stagnation of the stress path occurs 

when the projected image stress lies on the critical state line. So when the initial stress point is at a 

overconsolidated state (in this case OCR = 2.5), the stagnation of the stress path is attracted towards the 

direction where the image stress is more likely to lie on the critical state line. In this case, Me is smaller 

than Mc, thereby when the stress increment is directed towards Mc line the stress path will traverse 

towards origin leading to a compressive behaviour. On the contrary when the stress increment is 

directed towards the Me line, the stress path will traverse away from the origin leading to a dilative 

behaviour.  
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Figure 5.12 : Magnified view of the stress path  for OCR = 2.5 

Elaborating on the explanation given in the previous paragraph, detailed understanding of the 

development of the compressive and dilative stress path can be understood from the Figure 5.13. Here  

an  illustration is shown with Mc less than Me in the stress space. Points ‘A’ and ‘B’ represent the 

intersection of the bounding surface with the critical state lines in compression and extension 

respectively, when the image stress lies on one of these points, the rate of increase in plastic volumetric 

strain will become zero and thus the bounding surface stops evolving. Now considering the point X, 

when the stress increment is directed towards Mc line, the development of the stress path will be 

attracted towards point A, implying a decrease in volumetric stress (compressive behaviour). Similarly 

trend is expected to occur when the stress increment is directed towards Me line . But in the case of 

stress path originating from point Y, when the stress increment is directed towards Me line, the stress 

path will be attracted towards point B, leading to an increase in the volumetric stress (dilative 

behaviour). Finally considering the case of stress path originating from point Z, stress increment 

directed towards both the Mc and Me will produce an increase in the volumetric stress which is 

essentially a dilative behaviour. 

 

 

Figure 5.13 : Model figure for illustration of evolution of stress path with the location of initial stress point. 
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5.4 Strain cycles – Variation of amplitude of strains 

Model performance under the influence of different strain amplitudes of loading is analyzed by taking 

into consideration the experimental observations for three different single amplitude strain namely 1%, 

2% and 5%.  

 
(a) εampl = 1% 

 
(b) εampl = 1% 

 
(c) εampl = 2% 

 
(d) εampl = 2% 

 
(e) εampl = 5% 

 
(f) εampl = 5% 

Figure 5.14 : Comparison of model and experimental results for varying strain amplitudes (εa). (a-b) εa = 1%, (c-d) εa = 2%, 

(e-f) εa = 5% 

Experimental results reveal that with increase in the amplitude of strain, much lower number of loading 

cycles are required to reach the failure. Also when considering the behaviour of the kaolin clay in the 

first 20 cycles of loading as shown in Figure 5.14, the stress path at 5% strain amplitude reached the 

critical state lines faster while the stress-path with that of 1% and 2% strain amplitude lie well away 

from the critical state lines. In terms of strain development, with increase in the amplitude of shear 

strain, the hysteretic damping represented by the area under the hysteresis loop increases. 
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Numerical results show that the model can qualitatively capture the faster accumulation of pore water 

pressure and therefore the relaxation of the stress path with increase in the strain amplitude. A point to 

be noted is that in all the simulated numerical results, the stress path freezes when the OCR ≈ 2 i.e in 

this case when the volumetric stress is 150 kPa. Increasing in the hysteretic damping with increase in 

the amplitude of the shear strain was well captured qualitatively by the model. 

5.5 Summary 

This chapter presents the validation results of the chosen constitutive model against the experimental 

data on the kaolin clay from Wichtmann (2018). During the process of calibrating the model constants 

it was observed that stress path of the normally consolidated kaolin clay under the monotonic loading 

conditions was not reproduced by the model. The reason behind such response of the model has been 

attributed to the non-consideration of fabric anisotropy in the model formulations. Owing to such 

performance the model was assessed qualitatively. When the model is subjected to different initial 

conditions, if not all, certain aspects of the experimental behaviour were qualitatively captured by the 

model. These include faster rate of accumulation of pore water pressure with increase in the amplitude 

of cyclic loading, reduction in the rate of development of strains with increase in OCR values, increase 

in the hysteretic damping with increase in the amplitude of strains. However, with change of OCR there 

were differences in the development of stress path. Also contrasting results were observed with regard 

to the development of the stress-strain response with change of amplitude of cyclic loading and initial 

pressure. 
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Chapter 6 : Conclusions and recommendations 

The research carried out during the course of this study was aimed at investigating the performance of 

bounding surface SANICLAY model on reproducing the behaviour of kaolin clay under different initial 

loading conditions. To realize the aforementioned goals the model has been implemented in MATLAB 

and tested during the course of this study. Following the obtained results and the corresponding 

discussions in previous chapters, conclusions regarding the ability of model in reproducing the 

experimental behaviour are presented here. This is followed by the potential recommendations for 

future research. 

6.1 Conclusions 

A parametric analysis performed on the model constants revealed the sensitivity of model to parameters 

such as bound for evolution of the anisotropy (N), rate of evolution of the anisotropy (C) and initial 

rotation of the bounding surface (α0) when subjected to isotropic consolidation followed by shearing. 

The strength and stiffness response of the model increases with increase of the aforementioned 

parameters. Also the model was able to capture the higher rate of degradation of the shear modulus in 

the case of cyclic loading as compared to monotonic loading. 

Validation of the model against the experimental data on kaolin clay (Wichtmann 2018) gave substantial 

information to comment on the capabilities and limitations of the model. Firstly, calibration of the initial 

model parameters revealed that the experimental curvature of the effective stress path of the kaolin clay 

was not reproduced by the model. Although the combination of different initial parameters along with 

change of initial stress-induced anisotropy of the model was used to attain reasonable fit under the 

monotonic loading conditions, the prediction of the cyclic stress path was compromised to a great 

extent.  

Under the influence different initial conditions, the model was able to qualitatively predict some aspects 

of cyclic behaviour of the kaolin clay. Key findings include the faster rate of accumulation of pore water 

pressure with increase in the amplitude of cyclic loading, development of lower rate of strains with 

increase in the OCR values, capturing of higher hysteretic damping with increase of the amplitude of 

strains. 

The model was able to qualitatively predict the development of stress path for normal consolidated 

clays and lightly overconsolidated clays but for the case of clays with OCR greater then 2.5, contrasting 

development of stress path was observed. An illustration of this can be seen in Figure 5.12 where the 

stress path was predominantly dilative in nature whereas the experimental stress path suggested a 

contractive response as reported by Wichtmann (2018). The reason behind such development is 

attributed to the definition of the rotational hardening law which is dependent on the critical stress ratios 

(Mc and Me).  

Strain development was not accurately captured by the model with change of amplitude of cyclic 

loading and initial pressure. It was observed that higher negative axial strains are generated with 

increase in number of cycles of loading. Such bias in the development of strains is attributed to the 

definition of stiffness in the model which is dependent on the distance between the current stress state 

and its image on the bounding surface. Since the critical state value in extension is smaller than that in 

the compression, lower stiffness is produced when the stress path is directed towards Me line leading to 

generation of higher strains. 
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6.2 Recommendations  

This thesis attempts at validating the bounding surface SANICLAY model with the experimental data 

on kaolin clay (Wichtmann 2018). Though it was not possible to validate the model quantitatively, the 

qualitative results have shown promise in reproducing the behaviour of kaolin unto a reasonable extent 

under specific loading conditions. However, the conclusions listed in this thesis provides opportunities 

for continuation of the research. Recommendations for the future research are presented in this section. 

The present research has shown the limitations of the model in reproducing behaviour of the clays with 

fabric anisotropy. Such behaviour can be reproduced by modifying the elastic stiffness matrix in the 

model along the lines of Graham & Houlsby (1983) by having a dependence of the development of 

stress path on both volumetric and deviatoric strains right from the onset of loading. In other words, 

having a non-zero off diagonal elements in the elastic stiffness matrix as seen in equation (5.3).  

During the process of cyclic loading, when the projected image stress lies on the critical state line, the 

development of the plastic volumetric strains ceases thereby leading to freezing of the both the bounding 

surface and the stress path. Coupling both the plastic volumetric and plastic deviatoric strains for the 

evolution of the bounding surface could be a possible solution for further development of the stress 

path. 

In the scope of research carried out in this thesis, experimental results for one specific clay were used 

to validate the model. Future research can potentially focus on different clay materials to get a greater 

insight into the capabilities of the model. In addition, it is recommended to test the model performance 

in the principle stress space. For example, during the shearing process in direct simple shear test, the 

orientation of the principle stress directions keep changing, so validating the model performance in the 

principle stress space can give a detailed picture of the model performance. 
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Appendices 

Appendix-I 

Derivation of coefficients for computing the similarity ratio 

The bounding surface equation of the Saniclay model is given by, 

 
 

( ) ( ) ( )
2

2 2

0 0F q p N p p p = − − − − =  
(1) 

The corresponding equations of the image stress in terms of the current stress state (p,q), projection 

center (pc,qc) and the similarity ratio b is given by, 

 
 

( )( ) ( ),c c c cp p b p p q q b q q= + − = + −  
(2) 

By substituting equation (2) in equation (1), the similarity ratio can be obtained. 

 
 

( ) ( ) ( )
2

2 2 2

0F q p N p p p Ab Bb C = − − − − = + +  
(3) 

Foreseeing plenty of numerical quantities which might arrive by substituting the images stress equations 

into equation (3), it has been decided to solve the equation in parts to arrive at the solution easily. 

Considering the first part of equation (3), 

 

 

( )
2 2 2

2

2

1 1 1

2q p q p q p

Ab B b C

  − = + −

= + +
 

(4) 

Now substituting equation (2) in equation (4) and sequentially expanding the quadratic equation gives 

the following flow of equations, 
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Which gives the coefficients of ‘b’ in the quadratic equation in (4) as follows, 
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(5) 

Now considering the second part of equation (3), 
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(6) 

Following the similar procedure as in case of the first part of the equation (3) here by substituting 

equation (2) in equation (6) gives rise to, 
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Now the coefficients of ‘b’ in the quadratic equation (6) are given by, 
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Combining equations (4), (5), (6) and (7) and substituting in equation (3) gives the coefficients of the 

quadratic equation containing the similarity ratio ‘b’ as follows, 
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Appendix-II 

 
(a) N = 1.00 

 
(b) N = 0.90 

 
(c) N = 0.85 

 
(d) N = 0.80 

 
(e) N = 0.75 

 
(f) N = 0.70 

 
(g) N = 0.60 

 
(h) N = 0.60 (Higher C values) 

Figure 0.1 : Calibration of N and C parameters based on the stress path data from experiments. 
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(a) N = 1.00 

 
(b) N = 0.90 

 
(c) N = 0.85 

 
(d) N = 0.80 

 
(e)  N = 0.75 

 
(f) N = 0.70 

 
(g) N = 0.60 

 
(h) N = 0.60 (Higher C values) 

Figure 0.2 : Calibration of N and C parameters based on the stress-strain response from experiments (Wichtmann 2018). 
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Appendix-III 

 

 

 
Figure 0.3 : Experimental results with variation of the initial pressure from Wichtmann (2018) 
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Appendix-IV 

 
(a) α0 = 0.25 

 
(b) α0 = -0.25 

 
(c) α0 = 0.5 

 
(d) α0 = -0.5 

 
(e) α0 = 0.0 

 
(f) α0 = 0.33 

Figure 0.4 : Rotation of the bounding surface with evolution of the stress path. (dotted lines are indicative of the initial 

position, green surface is the bounding surface, magenta lines are the rotational hardening lines) 

 


