

Delft University of Technology

Robotic Packaging Optimization with Reinforcement Learning

Drijver, Eveline; Pérez-Dattari, Rodrigo; Kober, Jens; Santina, Cosimo Della; Ajanovic, Zlatan

DOI
10.1109/CASE56687.2023.10260406
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the IEEE 19th International Conference on Automation Science and Engineering, CASE
2023

Citation (APA)
Drijver, E., Pérez-Dattari, R., Kober, J., Santina, C. D., & Ajanovic, Z. (2023). Robotic Packaging
Optimization with Reinforcement Learning. In Proceedings of the IEEE 19th International Conference on
Automation Science and Engineering, CASE 2023 (IEEE International Conference on Automation Science
and Engineering; Vol. 2023-August). IEEE. https://doi.org/10.1109/CASE56687.2023.10260406
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/CASE56687.2023.10260406
https://doi.org/10.1109/CASE56687.2023.10260406

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Robotic Packaging Optimization with Reinforcement Learning

Eveline Drijver1, Rodrigo Pérez-Dattari1, Jens Kober1, Cosimo Della Santina1 and Zlatan Ajanović1

Abstract— Intelligent manufacturing is becoming increas-
ingly important due to the growing demand for maximizing
productivity and flexibility while minimizing waste and lead
times. This work investigates automated secondary robotic
food packaging solutions that transfer food products from
the conveyor belt into containers. A major problem in these
solutions is varying product supply which can cause drastic
productivity drops. Conventional rule-based approaches, used
to address this issue, are often inadequate, leading to violation
of the industry’s requirements. Reinforcement learning, on
the other hand, has the potential of solving this problem by
learning responsive and predictive policy, based on experience.
However, it is challenging to utilize it in highly complex
control schemes. In this paper, we propose a reinforcement
learning framework, designed to optimize the conveyor belt
speed while minimizing interference with the rest of the control
system. When tested on real-world data, the framework exceeds
the performance requirements (99.8% packed products) and
maintains quality (100% filled boxes). Compared to the existing
solution, our proposed framework improves productivity, has
smoother control, and reduces computation time.

I. INTRODUCTION

With the manufacturing industry aiming towards flexibil-
ity, productivity, quality, and mass customization [1], the
adoption of intelligent manufacturing becomes increasingly
important. This is especially relevant for highly competitive
fields such as the food packaging industry [2]. One of the
primary challenges in the food packaging industry is to en-
hance productivity while simultaneously reducing lead times.
Achieving this objective entails developing standardized
packaging solutions that minimize waste while maximizing
food production rates.

Packaging solutions can be divided into two parts: primary
and secondary. Primary packaging solutions are designed to
handle naked and unpackaged products, such as cookies or
chocolates. In contrast, secondary packaging solutions are
designed to handle already packaged products that require
placement into a secondary container, e.g., a box (see Fig.
1). As a consequence, secondary packaging solutions should
be able to handle uncertainties generated by the upstream
production process, such as variance in the product supply
rate.

Commonly, the problem of varying product supply is ad-
dressed using rule-based engineered solutions. Nevertheless,
depending on the task at hand, these solutions may fall
short when aiming to satisfy specific task requirements. For
instance, in some scenarios it is critical that boxes do not

1Authors are with Cognitive Robotics Department,
Delft University of Technology, 2628 CD Delft,
The Netherlands E.A.Drijver@gmail.com,
{R.J.PerezDattari, J.Kober, C.DellaSantina,
Z.Ajanovic}@tudelft.nl

Fig. 1: An industrial secondary packaging solution where
robots coordinate to pick and place products into packaging
boxes.

leave the machine unfilled, and the speed of the conveyor
belt that transports the packaging boxes must be controlled
to comply with this requirement. Unfortunately, this problem
remains challenging for rule-based methods, since it requires
multiple robots to coordinate when packaging the products,
and handling all the effects that a change in the speed of the
conveyor belt generates is not intuitive. Consequently, these
methods often compromise the performance of the machine,
especially in edge cases, commonly violating requirements
regarding productivity.

In this context, data-driven methods become appealing,
since they are able to provide robust solutions without
requiring an understanding of all of the specific details of
the system. More specifically, Reinforcement Learning (RL)
allows for finding solutions by trial and error, addressing
even the most challenging edge cases with sufficient training.
This is particularly valuable when the aim is to surpass the
performance of existing suboptimal rule-based engineered
solutions. Moreover, the same framework can be employed
to obtain controllers for different machines and scenarios,
without requiring a re-engineering process, as long as the
problem’s objective remains constant. Nevertheless, although
RL methods have demonstrated success in various simulated
environments, their adoption in real-world applications has
been relatively slow. A significant factor contributing to this
is the limited focus of RL research on practical industry
applications, resulting in a substantial disparity between the
design of current experimental RL setups and the often
ill-defined nature of real-world systems, which require ad-
dressing issues like system delays, safety and performance
constraints [3]. Furthermore, in industrial scenarios, RL may
be utilized to tackle only a subset of a larger problem,
necessitating its coexistence with other control systems while
minimizing interference with them [4].20

23
 IE

EE
 1

9t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
om

at
io

n
Sc

ie
nc

e
an

d
En

gi
ne

er
in

g
(C

AS
E)

 |
 9

79
-8

-3
50

3-
20

69
-5

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CA
SE

56
68

7.
20

23
.1

02
60

40
6

Authorized licensed use limited to: TU Delft Library. Downloaded on October 30,2023 at 15:15:03 UTC from IEEE Xplore. Restrictions apply.

In this work, we aim to investigate the feasibility of RL in
the industry for robotic packaging optimization. We propose
an RL approach designed to optimize the box conveyor
belt speed in order to maximize the performance of the
robotic packaging machine under varying product supply.
With this method, predictive behavior for varying product
supply is learned while satisfying the machine’s performance
constraints. The design encourages smooth control of the
conveyor belt and handles a limited availability of real-
world product supply data properly. For practical reasons, the
method is not validated on a physical machine. Instead, we
employ real-world data (that can be replayed on a simulator)
to validate it, where it obtains a higher performance when
compared to a rule-based method currently used in the
industry.

Our contributions are:
• a method that uses planned delay to enable integration

of RL solution in a highly complex control scheme, with
minimal interference with other controllers.

• a RL framework capable of learning robust behaviors
from limited real-world data.

• a RL solution based on the presented method and
framework for optimizing real robotic solutions in the
food packaging industry.

II. RELATED WORK

Existing research on RL deployment in real-world set-
tings has identified key challenges, such as dealing with
system delays, partial observability, policy inference, and
satisfying safety and performance constraints [3]. However,
current approaches only address a subset of these challenges,
hindering the fast adoption of RL in the real world. While
successful applications of RL in the industry include Google
DeepMind’s data-center projects [5], the robotics packaging
industry lacks similar success stories. Previous research, such
as [6], has explored the feasibility of RL in real-world
settings using physical industrial robotic manipulators. In
this study, we aim to extend RL adoption by evaluating the
feasibility of RL in a real-world robotic problem within an
industrial setting, rather than focusing on physical implemen-
tation in an experimental setup.

Safe RL is a popular research field concerned with ensur-
ing system performance and safety constraints during learn-
ing and deployment [7], [8]. This is particularly important
for the transfer of RL towards industry, where strict safety
and performance requirements must be met. Various methods
have been used to address these requirements. For instance,
[9] is devoted to model-free RL for policy learning using
constrained Markov decision processes. Additionally, Safety
Layers [10] can be used to safely explore Markov decision
processes, while Risk-Averse Robust Adversarial RL [11]
is useful for learning robust risk-aware probabilistic mod-
els. Another approach is Bayesian Controller Fusion [12],
which allows for accelerated safe learning with suboptimal
controllers. However, most research is limited to simulated
or simplistic real-world tasks, without formal guarantees for
hard or probabilistic constraints. In contrast, our work aims

Fig. 2: Components of the robotic packaging process.

to test the feasibility of RL in a complex real-world robotic
problem with strict performance constraints.

III. PROBLEM STATEMENT

First, we introduce the robotic packaging process that
we are optimizing, followed by the specific belt speed
optimization problem that we solve using our RL framework.

A. Robotic Packaging Process

A simplified view of the machine’s internal operation is
shown in Fig. 2, where a vision system (1) detects the
class and location of pre-packaged food products (2) on
the conveyor belt. The packaging process involves multiple
delta robots (3). These robots pick up the packaged products
and place them in a container (4), e.g., boxes or pockets.
The right subfigure depicts a close-up of a delta robot with
a rotational end-effector (5) and vacuum gripper (6). The
packaging solution optimizes the pick-and-place sequence to
maximize the throughput of products per minute.

During deployment, the machine needs to satisfy the
following requirements:

• At least 99.8% of the supplied products must be placed
in a box.

• No empty boxes may leave the machine.
• No partly filled boxes may leave the machine.
To test the effectiveness of the packaging machine with

respect to these requirements, we use a simulator of the
machine that simulates realistically system dynamics, delays
and product infeed. For measuring the overall effectiveness
of the machine we use the Overall Equipment Effectiveness
(OEE) industry standard [13], which is widely used in the
manufacturing industry. The OEE metric determines the
effectiveness of the machine as a ratio between actual and
theoretical output [13] and is defined as:

Performance(%)× Quality(%)× Availability(%) = OEE(%).
(1)

We assume an availability, which is the ratio between actual
and planned production time, of 100%, due to limited access
to the factors affecting this index. The performance and
quality are defined as:

Performance = Pp/Ps × 100%, (2)

Quality = Bp/Bs × 100%. (3)

Authorized licensed use limited to: TU Delft Library. Downloaded on October 30,2023 at 15:15:03 UTC from IEEE Xplore. Restrictions apply.

The term Pp, packed products, denotes the number of prod-
ucts that exit the robotic packaging machine enclosed in a
box, and Bp, packed boxes, refers to the boxes that leave
the machine containing the required number of products.
Similarly, terms Ps and Bs denote products and boxes that
enter the machine.

B. System Overview

Fig. 3 depicts a schematic overview of our specific config-
uration. It contains four delta robots (denoted by R1-R4), and
their workspaces depicted by the rectangles below them. The
products and boxes enter the machine at the box and product
detection point and leave the machine at the checkout points,
respectively. Both conveyor belts move in the same direction,
with a constant speed of vP for the conveyor belt with two
product lanes and a controllable speed of vB for the conveyor
belt with boxes. Two delta robots are used for filling each
box, where each robot is responsible for one of the two layers
in that box. The control system of the packaging machine
assigns the robots, with the products in the horizon and the
boxes on the conveyor belt.

C. Belt Speed Optimization Problem

For a constant product inflow and constant product and
box belt speeds, the machine is able to comply with the
requirements stated in Subsection III-A. However, in the case
of varying product inflow and constant belt speeds, the delta
robots may not be able to reach the necessary products when
an empty or partially filled box is about to leave the machine,
which results in a violation of the requirements. This issue
is illustrated by the red box in Fig. 3 and can lead to waste
and critical problems later in the packaging process, such as
during box sealing.

To ensure compliance with the requirements even under
varying product inflow, the box belt speed must be optimized
according to the changing product inflow. To achieve this, we
propose the following constrained minimization problem:

min
vB [k]

N∑
k=1

Pl[vB [k], k] (4a)

s.t.
N∑

k=1

Pl[vB [k], k]/

N∑
k=1

Ps[k] ≤1− 0.998 (4b)√
(vB [k]− vB [k − 1])2/∆k ≤ aB,max (4c)

Ble [vB [k], k] = 0 (4d)
Blp [vB [k], k] = 0 (4e)

Ps[k] > 0 (4f)
vB [k] ∈[vB,min, vB,max] (4g)

where Pl represents the number of lost products, Ble lost
empty boxes, and Blp lost partly filled boxes for each time
step k. We define as lost a product, empty box or partly
filled box when it has passed the checkout point, which is
denoted in Fig. 3. The objective function (4a) minimizes
the number of lost products during an operating time of N
seconds of the machine by optimizing the box belt speed at

Fig. 3: Schematic view of the robotic packaging machine
with one box belt at the top and one product belt with two
lanes at the bottom.

each time step. By definition, this results in a maximization
of placed products per minute, because the product belt
speed, vP , nor the product inflow can be controlled. The first
requirement stated in Section III-A is represented by con-
straint (4b), which limits the maximum allowable percentage
of product loss during machine operation of N seconds
to be lower than 0.2%. The two requirements regarding
the boxes are represented by constraint (4d) and (4e). An
additional constraint is necessary to limit the acceleration
of the box belt, which is denoted by (4c) and calculates
the Euclidean distance between two successive speeds and
divides this by the time step length ∆k. The maximum box
belt acceleration is denoted by aB,max. Solving (4) yields
the box belt speed profile, vB [k], for an operating time of
N seconds of the robotic packaging machine, maximizing
the number of placed products above 99.8% while ensuring
that no empty or partly filled boxes are lost and the box belt
acceleration remains in the feasible range.

To solve the constrained minimization problem (4) with
RL, we re-formulate the problem as a Markov Decision
Process (MDP) with penalty functions, with discrete time
steps, k = 0, 1, . . . ∈ Z and time step length ∆k. The
penalty functions encourage constraint satisfaction [7] [14].
Since RL problems are modelled as a maximization problem,
the employed reward is denoted as −Pl[vB [k], k] plus the
penalty functions. The objective of the learning agent is to
obtain the optimal control policy π∗, which is a mapping
from states sk to actions ak, by maximizing the cumulative
reward.

IV. METHODOLOGY

In order to solve this problem with RL, we need to make
multiple important design decisions. To successfully learn
an RL policy, that works well on real packaging machines,
we introduce a framework that takes into account penalty
functions, control delays, observation matching, state rep-
resentation design, sparse and delayed rewards and smooth
control. In the following subsections, we provide details
regarding our approach to addressing each one of these
challenges.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 30,2023 at 15:15:03 UTC from IEEE Xplore. Restrictions apply.

A. State and Action Representation Design

After extensive experimentation, we settle on this action
representation. The action space, denoted by A, is continu-
ous, normalized, and symmetric, and is used to represent the
box belt speed, vB . To ensure that the machine’s allowed
control inputs are adhered to, we subsequently employ one-
dimensional linear interpolation to rescale the actions to fall
within the range of vB,min and vB,max.

Furthermore, we conducted experiments to select features
and history for designing a state that captures all relevant in-
formation for selecting appropriate actions. The final features
are:

• Current box belt speed, vB [k] [m/s],
• Previous box belt speed, vB [k − 1] [m/s],
• Product inflow lane 1 measured at product detection

[products/min],
• Product inflow lane 2 measured at product detection

[products/min],
• Distance of closest unassigned empty box relative to the

checkout point, xbox [m],
• Distance of closest unassigned product relative to

checkout point, xprod1 [m],
• Distance of second closest unassigned product relative

to checkout point, xprod2 [m].
Where each feature is represented by a continuous normal-
ized and symmetric feature space.

To handle partial observability, introduced by the non-
stationarity and stochasticity of the system, 30 time steps
of history are added to each feature, which captures a
complete throughput of products from detection to checkout.
To tackle the increased complexity, resulting from the high-
dimensional continuous state space, neural networks are used
for function approximation in the RL agent.

B. Reward Design

Two simplifications and one potential problem can already
be uncovered for the constrained optimization problem (4).
First, we simplify the optimization problem by removing
constraint (4b) regarding the maximum number of lost prod-
ucts. This constraint is cumulative and forms the lower bound
of the objective function (4a). Therefore, we state that if a
global optimum exists for the optimization problem (4), it
is equal to the global optimum of the same optimization
problem without this cumulative constraint. Therefore, we
can neglect this constraint, which also makes constraint (4f)
redundant. Second, we eliminate the constraint on partly
filled boxes (4e). Specifically, the packaging machine pri-
oritizes the delivery of fully filled boxes, thereby precluding
the intentional departure of partly filled boxes from the ma-
chine. However, if our RL agent interferes with the internal
control scheme, variations in the box belt speed during pick
and place task executions could lead to the unintentional
departure of partly filled boxes.

Since the agent’s actions are continuous, it has the ability
to control the box belt speed with high precision. However,
this could lead to the emergence of multiple (weak) global

optima and an increase in the number of weak local op-
tima; small speed changes that do not impact the return,
but do negatively affect the box belt’s maintenance. While
smooth control is not a strict requirement, it is preferable for
stable training, real-world applicability, and enhanced inter-
pretability of the resulting policy [3]. Therefore, we remove
inequality constraint (4c) from the constrained optimization
problem (4) and add penalty function (5) that penalizes speed
changes with an appropriately small amount ζ, this way
smooth control is encouraged.

p(vB) = −ζ
√
(vB [k]− vB [k − 1])2 (5)

By incorporating the simplifications and the penalty function
for smooth control, the combined reward function becomes:

r =− µprod · Pl[vB [k], k]− µbox ·Ble[vB [k], k],

+ p(vB).
(6)

where µprod denotes the weight for the number of lost
products (4a), µbox denotes the weight for the constraint on
empty boxes (4d) and p(vB) being defined in (5).

C. Action Delay and Observation Matching

System delays are fundamental challenges of real-world
RL. They negatively influence both the learning process and
final solution [15], [16]. Delays in RL can be divided into
three categories: action, observation and reward delays [3].

In this work, we mainly deal with action delays. We distin-
guish two types of action delays: control delay and planned
delay. Control delay γ is inevitable, due to the machine’s
internal dynamics, and represents the time interval between
action selection by the RL agent and the actual execution of
that action by the packaging machine. In contrast to control
delay, we intentionally introduce planned delay δ, in order
to minimize the interference between RL control loop and
the machine’s control scheme. To illustrate the problem of
interference, we need to describe internal machine assign-
ment dynamics. Fig. 4 shows the action signal, box belt
speed vB , and the control delay γ and planned delay δ.
Moreover, the scheduling signal of the packaging machine
is displayed. A schedule n is related to pick and place
execution windows. The pick execution window is defined
as the time interval between the moment a product enters
the workspace of the first robot, denoted as C1, and the
moment a product leaves the workspace of the last robot,
denoted as C3. Additionally, the place execution window
is defined as the time interval between the earliest possible
time the first products of schedule n can be placed into a
box, denoted as C2, and the latest possible time the last
products of schedule n can be placed in a box, denoted as
C4/vB . C1, C2 and C3 are constant (future) time instances,
relative to the creation time of the corresponding schedule n,
because they only depend on the constant product belt speed
vP and the fixed configuration of the machine. C4 denotes
the latest possible box position for which the last products
of schedule n can be placed. To get the respective time, C4
is divided by the variable box belt speed vB .

Authorized licensed use limited to: TU Delft Library. Downloaded on October 30,2023 at 15:15:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Overview of the control delay, planned delay and
observation matching.

In our initial experiments, we could observe that the RL
agent learns to apply only minimum actions (keeps constant
belt speed) in order to avoid negative interference with the
rest of the control system. Therefore, we intentionally add the
planned delay δ to the control delay such that the execution
of the action takes only place after the execution window
of all picks of schedule n. In this way, the speed profile
of the box belt is known to the machine during the job
assignment and the RL agent does not interfere with the
control system. As can be seen in Fig. 4, the placement of
products in a box can still happen after the combined control
and planned delay; however, this will only happen for low
product inflow. As stated earlier, the length of the execution
window for a place is not fixed, but dependent on the box belt
speed vB . For low product inflow, the box belt speed must
be low in order to minimize the number of unfilled boxes,
which increases the length of the place execution window.
In contrast, the constant product belt speed is relatively high,
therefore, the delta robots must hold the products for a while
before placing them in a box. Hence, the pick part of the
schedules remains valid and the place part of the schedule
is updated according to the changing box belt speed until a
box enters the workspace of the corresponding delta robot.

The delays introduce a time mismatch between action
execution, received observation and rewards. To simplify the
learning problem, the observation at time k + δ + γ is fed
back to the agent at time k, which is shown in Fig. 4. This
future observation matching method is possible because we
have available future assignments of all the products in the
horizon; therefore, all the information of a schedule created
at the time k, (i.e., the future start and end times), can be
used to construct the observation at time k + δ + γ. This
approach is similar to the concept of Smith predictor [17].

V. EXPERIMENTAL RESULTS

In this section, we describe the experimental setup and
present the experimental validation of the learned policy,

computed with our proposed method, on real-world prod-
uct inflow data and compare its results with a rule-based
engineered baseline solution.

A. Experimental Setup

The learning process is carried out using simulation. Nev-
ertheless, the scenarios encountered in the simulation must be
realistic so that the learned policy can transfer properly to the
real world. To address this, we employ available information
about the machines and their usage to train our agent in a
wide range of scenarios that are encountered in reality. More
specifically, secondary packaging solutions mostly operate
under product inflows per lane between 120 and 135 products
per minute. Therefore, in each training episode, we apply
scenario randomization by randomizing the product inflow
in this range. To ensure the effectiveness of our approach,
we validate our method using real-world data from over
seven different challenging scenarios. This data comprises
information such as product and box detection times, as well
as the start and end times of schedules. Note that this data is
not enough to learn from it using approaches such as offline
RL [18], since it amounts to 75.5 minutes of operational
time. However, it is enough to validate our RL agent on the
scenarios found in reality.

As the RL algorithm, we choose Proximal Policy Opti-
mization (PPO) due to its combination of sample efficiency
and performance [19]. Furthermore, inspired by the work of
[20], [21] and [22] we use a combination of the adaptive
learning rate optimizer Adam and a linear decaying learning
rate schedule. The RL policy is trained in 6827 episodes of
1800 simulated seconds per episode, equivalent to approxi-
mately 142 days of machine operation. The training time is
approximately nine hours using 16 parallelized simulations
on an Intel Core 11th Generation i7-11850H processor with
32GB RAM. Additionally, we conducted a hyperparameter
study to optimize training performance.

B. Validation

We validate the learned policy in realistic scenarios using
real-world product inflow data and compare it with the rule-
based engineered solution. The rule-based solution has been
employed for several years, making it a suitable benchmark
for this research. Due to the limited availability of real-world
product inflow data, we train the RL solution using simulated
randomized scenarios, as discussed earlier and validate its
performance in realistic scenarios with real-world data.

Table I presents several metrics for comparing the RL
solution with the rule-based engineered solution. The metrics
include two indexes of the OEE industry standard metric,
namely performance and quality. Performance measures the
quantity of successfully processed products, while quality
represents the quality of the outgoing boxes in terms of filling
rate.

Table I shows that the RL solution outperforms the
baseline solution in terms of performance, mean box belt
acceleration, and computation time. Specifically, the RL
solution increases performance by 0.63%, resulting in a

Authorized licensed use limited to: TU Delft Library. Downloaded on October 30,2023 at 15:15:03 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Validation of two policies trained with rein-
forcement learning and the rule-based engineered baseline
solution using real-world inflow data

Metrics:
Method

RL

Mean (Std.)
1: Reinforcement 2: Rule-Based

vs.
Learning (ours) Engineered

Baseline
Baseline

Productivity Performancea [%] 99.94 (0.077) 99.31 (0.22) +0.63%
Qualityb [%] 100.00 (0.00) 100.00 (0.00) -

Lost products [prod] 1.28 (1.58) 19.00 (15.64) -93.26%
Control input

Mean ac
B [m/s2]

3.21·10−3 18.55·10−3

-82.70%
(0.25·10−3) (1.07·10−3)

Computationd
9.92 (0.49) 18.02 (0.60) -55.05%

time [ms/s]
Constraintse Performance ≥ 99.8% ×

Empty boxes = 0
Partly filled boxes = 0
ac
B ≤ aB,max ×

a(Number of packed products / total supplied products)*100%.
b(Number of packed boxes / total supplied boxes)*100%
c Box belt acceleration
d Computation time between start and end of single simulation [ms]

/ simulated operating time of machine [s].
e If zero constraint violation is obtained for each of the seven simulations.

93.26% decrease in lost products, decreases mean box belt
acceleration by 82.70%, and decreases computation time by
55.05%, while having zero constraint violations. In contrast,
the baseline solution violates performance and maximum box
belt acceleration constraints in every simulation with real-
world scenarios.

Fig. 5 demonstrates the differences between the RL so-
lution (orange line) and the baseline solution (blue line)
in one scenario. The product inflow rate is shown at the
top of the figure. It can be seen that the baseline solution
exhibits corrective behavior, adjusting box belt speed only
when critical situations occur, eventually resulting in product
loss. This is evident in regions 1, 2, 4, and 5, where the
box belt speed decreases drastically to prevent boxes from
leaving partly or unfilled, causing increased product loss
(dashed line regions 1 and 4). In contrast, the RL solution
shows a smaller and smoother response to variations in
product inflow. It is able to prevent drastic slow-down by
slightly adapting the speed in a predictive fashion, based on
the product inflow and relative box and product locations
on the conveyor belts, before the critical situations even
occur. An instance of the proposed preventive strategy is
demonstrated in the close-up of region 1. As can be seen, the
baseline method exhibits myopic behavior by first increasing
its speed, leading to a drastic speed drop a bit later, ultimately
resulting in product loss (blue dashed line region 1). Thus,
the RL solution completes the scenario with zero product loss
compared to the 30 products lost with the baseline solution.
Furthermore, the RL solution provides speed changes with a
smaller amplitude and lower frequency, resulting in smoother
control (region 5).

Additionally, we expected the policy to oscillate to some
degree because lower product inflows require also lower box
inflow, leading to lower box belt speeds, and vice versa. As
seen from the product inflow data presented in Fig. 5, there
are oscillations to some extent, and this is indeed reflected

Fig. 5: Fragment of real-world inflow validation data with
corresponding speed plots and the number of lost products
for the cases listed in Table I.

in the RL policy. Specifically, we observe that the decrease
in box belt speed matches the decrease in product inflow,
marked as regions 1, 2 and 3 in Fig. 5. Notably, the learned
policy generalizes well to out-of-distribution product inflows,
since it was trained for inflows between 120 and 135 products
per minute per lane, and the policy properly addresses edge-
case scenarios where the inflow drops to 115.

In addition, the mean computation time is decreased by
55.05% compared to the baseline solution, as demonstrated
in Table I. It is also notable that the standard deviation of the
computation time is significantly lower for the RL solution
compared to the baseline solution, as it computes the policy
more consistently.

Thus, the validation study conducted using real-world
product inflow data shows that our proposed framework
effectively learns appropriate box belt speed policy for a
simulated robotic packaging machine in realistic scenarios.
This is achieved without any violation of performance,
quality, or acceleration constraints, as evident from Method
1 in Table I. Furthermore, we can state that the proposed
scenario randomization method generalizes well to realistic
scenarios.

VI. CONCLUSIONS

In this work, we investigate the feasibility of RL in the
robotic industry by solving a complex robotic optimization
problem from the food packaging industry. We propose a
method that uses a planned delay to enable the integration
of RL with minimal interference in complex control schemes.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 30,2023 at 15:15:03 UTC from IEEE Xplore. Restrictions apply.

We demonstrated that the proposed framework achieves zero
constraint violations in all simulations based on real-world
product inflow data.

Contrary to the rule-based baseline, the proposed frame-
work complies with all the given requirements set by the
industry. In the validation study, performance surpasses the
required 99.8%, the quality maintains at 100% and the
accelerations are kept in the feasible range. This means that
99.8% of the supplied products are packed in a box, and no
boxes leave the machine empty or partially filled. Compared
to the rule-based baseline, our proposed solution improves
performance by 0.63%, resulting in a decrease in product
loss of 93.26%, while also decreasing the mean acceleration
and computation time by 82.70% and 55.05%, respectively.

We conclude that the framework is able to deal with
control delays, sparse delayed rewards and policy inference
in the complex interdependent control scheme of the packag-
ing machine. With the proposed method, predictive behavior
for varying product supply is learned while satisfying the
machine’s performance and quality constraints. The design
encourages smooth control of the conveyor belt, reducing
maintenance and increasing the interpretability of learned
policy. Additionally, it requires fewer time-demanding deci-
sions during the operating time of the machine. Moreover, it
handles the limited availability of real-world product inflow
data well by using solely simulated product inflow data and
scenario randomization for training.

Future work should investigate how the learned policy
computed with the proposed framework can be transferred
to a physical robotic packaging machine. While this research
has partially bridged this gap by using scenario randomiza-
tion and real-world product inflow data, further efforts are
necessary to address the remaining aspects of this gap. For
instance, it would be ideal to have more real-world product
inflow data to use a combination of scenario randomization
and real-world data in the training process, as done in
[23]. Novel situations that are hard to capture with scenario
randomization solely for reasonable training times, such as
product inflow stops or machine startup issues, are then
added to the training data set. On the other hand, collecting
enough real data from the machine takes time.

ACKNOWLEDGMENT

This research is conducted in collaboration with BluePrint
Automation. They provided access to the packaging ma-
chine’s simulator, data and practical information regarding
the food packaging industry. Their cooperation is hereby
gratefully acknowledged. This research is partially funded by
the Netherlands Organization for Scientific Research project
Cognitive Robots for Flexible Agro-Food Technology, grant
P17-01 and the European Research Council Starting Grant
TERI, project reference #804907.

REFERENCES

[1] M. Ghobakhloo, “The future of manufacturing industry: A strategic
roadmap toward Industry 4.0,” J. Manufacturing Technology Manage-
ment, vol. 29, no. 6, pp. 910–936, 2018.

[2] J. Wyrwa and A. Barska, “Innovations in the food packaging market:
Active packaging,” European Food Research and Technology, vol. 243,
pp. 1681–1692, 2017.

[3] G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li, C. Paduraru,
S. Gowal, and T. Hester, “Challenges of real-world reinforcement
learning: Definitions, benchmarks and analysis,” Machine Learning,
vol. 110, no. 9, pp. 2419–2468, 2021.

[4] G. Papoudakis, F. Christianos, A. Rahman, and S. V. Albrecht, “Deal-
ing with non-stationarity in multi-agent deep reinforcement learning,”
arXiv preprint arXiv:1906.04737, 2019.

[5] T. Moriyama, G. De Magistris, M. Tatsubori, T.-H. Pham, A. Mu-
nawar, and R. Tachibana, “Reinforcement learning testbed for power-
consumption optimization,” in Methods and Applications for Modeling
and Simulation of Complex Systems. AsiaSim 2018. Springer, 2018,
pp. 45–59.

[6] Y. P. Pane, S. P. Nageshrao, J. Kober, and R. Babuška, “Reinforcement
learning based compensation methods for robot manipulators,” Engi-
neering Applications of Artificial Intelligence, vol. 78, pp. 236–247,
2019.

[7] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati,
and A. P. Schoellig, “Safe learning in robotics: From learning-based
control to safe reinforcement learning,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 5, pp. 411–444, 2022.

[8] J. Garcıa and F. Fernández, “A comprehensive survey on safe rein-
forcement learning,” J. Machine Learning Research, vol. 16, no. 1,
pp. 1437–1480, 2015.

[9] Y. Liu, A. Halev, and X. Liu, “Policy learning with constraints in
model-free reinforcement learning: A survey,” in 30th Int. Joint Conf.
Artificial Intelligence (IJCAI), 2021.

[10] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and
Y. Tassa, “Safe exploration in continuous action spaces,” arXiv
preprint arXiv:1801.08757, 2018.

[11] X. Pan, D. Seita, Y. Gao, and J. Canny, “Risk averse robust adversarial
reinforcement learning,” in IEE Int. Conf. Robotics and Automation
(ICRA), 2019, pp. 8522–8528.

[12] K. Rana, V. Dasagi, J. Haviland, B. Talbot, M. Milford, and
N. Sünderhauf, “Bayesian controller fusion: Leveraging control pri-
ors in deep reinforcement learning for robotics,” arXiv preprint
arXiv:2107.09822, 2021.

[13] OEE Industry Standard, “OEE – overall equipment effectiveness:
The OEE industry standard,” 2011, accessed Feb. 10, 2023. [Online].
Available: https://www.oeeindustrystandard.org/v2011/

[14] R. M. Freund, “Penalty and barrier methods for constrained optimiza-
tion,” Lecture Notes, Massachusetts Institute of Technology, 2004.

[15] Y. Bouteiller, S. Ramstedt, G. Beltrame, C. Pal, and J. Binas, “Re-
inforcement learning with random delays,” in Int. Conf. Learning
Representations (ICLR), 2021.

[16] E. Schuitema, L. Buşoniu, R. Babuška, and P. Jonker, “Control delay in
reinforcement learning for real-time dynamic systems: A memoryless
approach,” in IEEE/RSJ Int. Conf. Intelligent Robots and Systems
(IROS), 2010, pp. 3226–3231.

[17] O. J. Smith, “Closer control of loops with dead time,” Chemical
Engineering Progress, vol. 53, pp. 217–219, 1957.

[18] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” arXiv
preprint arXiv:2005.01643, 2020.

[19] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[20] Z. Liu, Z. Shen, S. Li, K. Helwegen, D. Huang, and K.-T. Cheng,
“How do Adam and training strategies help BNNs optimization,” in
Int. Conf. Machine Learning (ICML), 2021, pp. 6936–6946.

[21] D. Hendrycks and K. Gimpel, “Bridging nonlinearities and stochas-
tic regularizers with Gaussian error linear units,” arXiv preprint
arXiv:1606.08415, 2016.

[22] R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing, H. Zhang,
Y. Lan, L. Wang, and T. Liu, “On layer normalization in the trans-
former architecture,” in Int. Conf. Machine Learning (ICML), 2020,
pp. 10 524–10 533.

[23] K. Kang, S. Belkhale, G. Kahn, P. Abbeel, and S. Levine, “Generaliza-
tion through simulation: Integrating simulated and real data into deep
reinforcement learning for vision-based autonomous flight,” in IEEE
Int. Conf. Robotics and Automation (ICRA), 2019, pp. 6008–6014.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 30,2023 at 15:15:03 UTC from IEEE Xplore. Restrictions apply.

