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Magnetic Control of a Simple Pendulum with a

Moving Pivot Point

Panagiota Atzampou, Peter Meijers, Apostolos Tsouvalas, Andrei
Metrikine

Delft University of Technology, Stevinweg 1, 2628CN Delft, the Netherlands

E-mail: P.Atzampou@tudelft.nl

Abstract. The present study introduces a magnetic PD control technique for the case of a
simple pendulum driven by a sinusoidal motion of its pivot. The results attained demonstrate
a good control performance for all the excitation cases of pivot point motion considered. The
motion of the mass of the pendulum is successfully attenuated even when the pivot excitation
is at the natural frequency of the pendulum. Furthermore, a fixed desired position can be
achieved with small error and no saturation of the actuation present at steady-state. The initial
distance between the magnet and the mass that ensures an efficient motion control is derived
analytically and is validated by numerical simulations. The magnetic control method proposed
serves as promising foundation for a non-contact position control technique for offshore wind
turbine installation purposes.

1. Introduction
Offshore Wind Turbines (OWT) are formidable means of energy harvesting and nowadays get
installed by floating heavy lift vessels (operating under dynamic positioning) in ever deeper
waters due to the increase in the energy demands [1]. For the improvement of the overall safety
and efficiency of the installation operations, a plethora of motion compensation and position
control techniques have been tested over the years. These include gripper frames for monopiles
[2] and manually manipulated or active tugger line motion control systems to maintain the
correct position of the hanging load [3]. Motion compensation during installation has also
been introduced indirectly by means of motion control of the crane itself [4], crane cart motion
manipulation [5] and heave compensation [6]. The aforementioned methods require some form
of direct contact between the mechanical equipment and the payload as well as some human
intervention. These requirements amplified by the small error installation tolerances and the
intense offshore environment, highlight the paucity for a contactless position technique for the
OWT installation.

The concept investigated here is based on the magnetic interaction between the hanging
component and an electromagnetic actuator. To design and develop such a technique, a
simplified version of the envisioned system was studied: a simple magnetically controlled
pendulum. The motion control was realized by employing a modified proportional-derivative
(PD) controller, which adjusted the intensity and polarity of the electromagnetic actuator. The
aim of the control was to attenuate the effects of a prescribed pivot point motion and to maintain
a desired fixed position. A numerical model was build and several cases of excitation and initial

https://creativecommons.org/licenses/by/4.0/
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magnet distances were considered. An important indicator for successful motion control was
its efficiency, namely achieving low error and evading the saturation of the actuator. The main
parameters required for high performance control were also identified.

The paper is structured as follows: Section 2 describes concisely the dynamic system and
the control algorithm. In Section 3, the simulation results are demonstrated and a criterion
for defining an efficient initial distance between the magnets is derived analytically for different
disturbance case scenarios. Lastly, the conclusions drawn as well as the motivation for further
study are presented in Section 4.

2. Methodology
2.1. Equation of motion of the magnetically controlled pendulum
The dynamic system consists of a simple pendulum with a mass M connected to a rigid rod
of total mass m and length ℓ rotating around the pivot point. A permanent magnet (PM)
was attached to the center of one side of the cubical mass, while an electromagnet (EM) was
placed opposite to the PM such that the dipole moments of the magnets are aligned on the same
axis. The system is externally excited through the action of the EM and a horizontal prescribed
motion of the pivot point h. The configuration is presented schematically in Figure 1a and
shows the global fixed axes (xG, yG) and the moving with the pivot axes (x, y) of the system
as well as the positive assumed directions for the angular and linear displacements. The free
body diagram of the system is given by Figure 1b and demonstrates the forces acting on the
pendulum mass. Due to the moving point of rotation, the motion of the mass of the pendulum
is characterized by two horizontal displacements; one from the equilibrium position given by u
(the unknown state of the system) and one derived from the global reference system un = u+h.
The initial distance d and the time-variant separation distance s = d− un between the EM and
PM are defined in Fig. 1a. Table 1 demonstrates quantitatively important parameters of the
set-up.

Table 1: Set-up dimensions.

ℓ [m] M [kg] m [kg] Cube Size [mm] PM Size [mm] EM Size [mm]

1.04 0.9382 0.1868 70 x 70 Diameter= 15 Diameter= 65
Thickness= 3 Thickness= 35

For the further study of the dynamic behaviour of the system, the equation of motion (EOM)
of a one degree-of-freedom pendulum is derived. It is assumed that the response of the system
complies with the small angle approximation (namely u = ℓθ applies), and thus it is geometrically
linearized around the equilibrium point. The EOM then reads:(

M +
m

3

)
ü+

(
M +

m

2

) g

ℓ
u = −

(
M +

m

2

)
ḧ+ F +D, (1)

where the gravitational acceleration g is taken to be equal to 9.81m/s2, D pertains to the action
of damping present at the hinge, F is the electromagnetic interaction force between the two
magnets and the dot above a variable denotes a derivative with respect to time. The natural
frequency of the system (fn) is approximately equal to 0.496Hz.
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(b) Free body diagram

Figure 1: Schematics of the studied magnetic pendulum.

(a) Free vibration for initial distance d = 50mm (b) Normalized magnetic force against separation s

Figure 2: Non-linear forces.

2.2. Damping Force
In the present work, the effective dissipative force D is described by Coulomb’s friction formula:

D =
Mfr

ℓ
= −µ sign (u̇), (2)

where Mfr is the frictional moment at the hinge equal to Dℓ (Figure 1b), while µ governs the
regime of the kinetic friction and upon experimental calibration was identified as µ = 0.005N.
In Figure 2a, experimental and model data are juxtaposed and the overall fit of the damping
calibration is presented for the case of free vibrations.
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2.3. Electromagnetic Force
The magnetic interaction between the two magnets is described by a representative formula,
which was derived and calibrated using experimental data. The force generated by the EM is

F =
αJ

s3
, (3)

where s denotes the separation distance between the two magnets and it is defined as s = d−un.
In Fig. 3, the magnetic interaction force is plotted against the relative distance s. The voltage
output is defined as J = RI, where I denotes the current in the coil of the magnet, R the
resistance of the circuit, while α is a model constant accounting for the strength of the PM, the
strength and geometry of the EM. After calibration, the value of the constant was determined
to be α = 2.5810× 10−7Nm3/V. In order for the formula to be representative of the non-linear
interaction, some tolerances needed to be respected. These tolerances refer to the margins of
the initial distance and translate to d ∈ [25, 75]mm.

As a result of the self-inductance L of the magnet, the current in the EM will not be
proportional the supplied voltage V (t). To account for this effect, the voltage output of the
EM is modelled as an elementary RL circuit:

J̇ =
1

τ
(V (t)− J), (4)

in which J̇ refers to the derivative of the voltage output with respect to time, while the time
constant (delay) τ was extracted from measurement data and was identified as τ = 0.04 s.

2.4. PD Control
A PD controller in time domain was considered in order to monitor and control the intensity of
the electromagnetic interaction. The basic equation of a PD control variable in time domain is
as follows:

c(t) = Kpe(t) +Kdė(t),with e(t) = δ(t)− un(t) = (δ(t)− h(t))− u(t), (5)

where c(t) represents the control variable, which refers to the voltage input of the electromagnet
V (t), and Kp and Kd represent the proportional and derivative gains of the PD control
respectively. The error term e(t) captures the divergence of the current measured global system’s
output un(t) and the desired position δ(t).

Overall upon geometric linearization, the dynamical system has three main sources of non-
linear behavior. These sources are the distance-dependent nature of the interaction force,
the non-linear damping force as well as the physical saturation of the control system. As
a result, alternative methods and modification for the control need to be considered. A
potential linearization of the force generated by the EM (F ) about the equilibrium would be
unlikely to be fruitful, since such an approximation would significantly decrease the range of
applicability of Equation (3) (the horizontal displacement bandwidth in which the excitation
formula is able to predict the interaction force is reduced significantly). Thus, in order to
work with a consistent linear case without jeopardizing the accuracy and representation of the
electromagnetic interaction, an additional path was included into the control algorithm. This
path, which bears a similarity with the non-linear control techniques of feedback linearization
(§13, [7]) or gain scheduling (§12.5, [7]) was employed for the sole purpose of replacing the current
non-linear controlled force with a linear control output for the PD control. More specifically, the
control output c(t) is multiplied by a correction factor γ, creating a new control output c′(t).

c′(t) = K ′
p(u(t)) e(t) +K ′

d(u(t)) ė(t) (6)
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The modified PD controller has, thus, state dependent gains, i.e. K ′
p(u(t)) = γKp, and

K ′
d(u(t)) = γKd, with γ = s3/α. Hereafter, this modification of the controller will be referred

to as modified PD control. Due to the physical limits of the actuators performance, the new
control output c′(t) bears saturation limits associated with the input voltage capacities.

sat(c′(t)) =

{
−24V if c′(t) < c′

limit−
= −24V

+24V if c′(t) > c′
limit+

= +24V
(7)

Furthermore, the assumption pertaining the delay (Equation (4)) between the voltage and the
current intensity applied on the electromagnet was taken into consideration by including an
additional step into the control loop. The modified PD control loop is presented in the block
diagram in Figure 3.

Set Point

𝛿(𝑡)

+

-

Modified PD Control

𝐾𝑝 𝑒(𝑡)

𝑒(𝑡) 𝐾𝑑  
𝑒̇(𝑡) 𝑐(𝑡) 𝑢௡(𝑡)

Feedback Signal

Output+

+

Actuator
(RL Circuit)

Dynamic 
System𝐽(𝑡)

𝑐’ ∉ [-24 V, 24 V]
Condition:

𝑐’(𝑡)

No

Yes Saturation

𝑐’𝑙𝑖𝑚𝑖𝑡

Σ Σ 𝛾
𝐾௣

ᇱ (𝑢 𝑡 ) 𝑒(𝑡)

𝐾ௗ
ᇱ (𝑢 𝑡 ) 𝑒̇(𝑡)

+

+

Σ

Figure 3: Block diagram for the modified PD control.

The updated EOM incorporated with the modified PD control is given as follows.

(
M +

m

3

)
ü+

(
M +

m

2

) g

ℓ
u = −

(
M +

m

2

)
ḧ+ c sign (u̇) +

αJ

s3
, (8a)

J̇ =
1

τ
(c′(t)− J), (8b)

c′(t) =
[
K ′

p(δ − un) +K ′
d(δ̇ − u̇n)

]c′
limit+

c′
limit−

(8c)

3. Results
3.1. Derivation of the critical initial distance
Due to the physical limits of the actuator and the tolerances introduced by the electromagnetic
interaction (effective initial distance range without undesired sticking behaviour), a certain
criterion can be set to predict the critical initial distance dc to achieve an effective non-saturated
controlled response. This critical distance could serve as a conservative criterion for high
controllability (low error in the steady-state response and no saturation). Any initial distance
value higher than dc would result in a degree of saturation for the controller.

For simplification, the damping force and the self-impedance of the EM are omitted in the
derivation of the critical dc. After the aforementioned assumptions and the modified control
output were applied, the EOM of the controlled system is given by(

M +
m

3

)
ü+

(
M +

m

2

) g

ℓ
u = −

(
M +

m

2

)
ḧ+Kp (δ − h− u) +Kd (δ̇ − ḣ− u̇). (9)
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Equation (9) is a linear ordinary differential equation, which can be rewritten more concisely as

Mt ü+Kt u = B ḧ+Kp (δ − h− u) +Kd (δ̇ − ḣ− u̇). (10)

With this expression, the modified control output is given by the following expression,

c′ = γ
[
Kp (δ − h− u) +Kd (δ̇ − ḣ− u̇)

]
= γ [Mt ü+Kt u−B ḧ], (11)

with γ = (d− un)
3/α. In the following, the motion of the pivot point is prescribed and equal to

a harmonic sinusoidal motion with amplitude A and frequency ω, namely h = A sin (ωt).
For this work, the desired motion δ is not a function of time but rather a constant desired

position for the mass of the pendulum in the global reference frame. Hence, higher order
derivatives of the desired motion are zero. Moreover, in order to define a criterion for effective
control, two conditions need to be met. First, for the error of the control, e ≈ 0 should apply,
and, consequently, the steady state response of the pendulum can be approximated as u ≈ δ−h.
After substitution of the first condition to Equation (11) and further simplifications one obtains

c′ = γ [Mtω
2A−KtA+Bω2A] sin(ωt) + γ Ktδ, (12)

with γ = (d − δ)3/α. Second, there is a condition for effective control that pertains to the
saturation and the limits of the control signal. Saturation occurs when the amplitude of the c′

is equal to climit± . As the amplitude of a pure sinusoidal signal is given by the factor in front of
the sin function, this condition, if applied to Equation (12), yields

climit± =
(d− δ)3

α

[
Mtω

2
cA−KtA+Bω2

cA+Ktδ
]
, (13)

where ωc refers to the critical frequency above which the controller saturates partially or fully.
Solving for the ratio of the critical frequency over the natural frequency of the system (ωc/ωn)
gives the following closed form expression:

ωc

ωn
=

√√√√ climit±
γAKt

+ 1− δ
A

1 + B
Mt

. (14)

In Equation (14), 1 + B/Mt is always a negative number as the coefficient B < 0. Thus, a
physically-admissible critical frequency can only exist when

climit±

γAKt
+ 1− δ

A
< 0 −→ climit± <

(d− δ)3

α
Kt(δ −A). (15)

For the special case where the desired position is δ = 0, a condition can be obtained for the
critical initial distance d,

d < 3

√
α ∥climit−∥

KtA
= dc, (16)

where ∥climit−∥ signifies the absolute value of the physical limit of the electromagnet.
Equation (16) can be graphically presented in Figure 4 for different excitation amplitudes and
frequencies.

By calculating the dc, one practically defines the optimum value for d for the static case of
ω = 0 rad/s and the maximum initial distance between the magnets without saturation. Figure 4
shows that the control is effective for an extensive range of excitation frequencies, in which the
determining parameter is the initial distance. More specifically, for the range relevant for the
application (ω/ωn ∈ [0, 4]) and for low frequencies, this critical distance is almost constant or
exhibits a small reduction of the order of approximately 5mm, as shown in the inset in Figure 4.
This figure can serve as indicator for a proper choice of d for successful control depending on
the amplitude of the pivot motion.
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Figure 4: Critical distance d for the desired position δ = 0. Saturation occurs in the area above
the respective lines.

3.2. Times series of controlled motion
For a fixed desired position, δ = 0, the time traces of the controlled motion as well as the
respective control output are presented in Figure 5 for cases of excitation with amplitude
A = 5mm and different frequency ratios (ω/ωn) for three initial distances d.

Overall, the controller succeeds in attenuating the externally-imposed motion caused by the
pivot point and maintain the desired position regardless the excitation frequency. However,
during the first few seconds of the response (during the transient), a large error is observed. As
a result, the actuator operates at its limits in order to mitigate the motion. It is noted that
the greater the initial distance, the longer the duration of and the higher the initial overshoot
in the transient. Nevertheless, this part of the response is, from a broader perspective, short
in duration (in the order of few seconds). Moreover, the values in error and saturation are
considered acceptable to initiate an efficient control in this study. Therefore, the focus will be
placed on the behaviour of the controlled system after the transient response is eliminated. In
the steady state, a small fluctuation of the error is observed in all presented cases and the level
of saturation depends on the initial distance. As shown in Figure 4, for amplitude A = 5mm
and for the the range of ω/ωn ∈ [0.6, 2.0], the control is successful without saturating for
d < 50mm, which confirmed the validity of the criterion in Equation (14). There is a small
tolerance for the critical value, where the control of the system can still be efficient despite
being fully saturated. This is evident for the case of d = 50mm in Figure 5, validating that the
prediction of Equation (16) is rather conservative, as expected with respect to the assumptions
made (absence of damping and EM self-inductance).

Figure 6 compares the controlled and uncontrolled response of the system to assess the overall
efficiency of the motion compensation technique. The uncontrolled response corresponds to the
motion of the system due to the applied pivot point excitation in absence of an electromagnet.
By comparing this response to the controlled one, it is evident that significant motion mitigation
is achieved even for this high value of excitation amplitude. As established from Figure 4, for the
amplitude of A = 10mm, the initial distance of d = 50mm provides an insufficient controllability.
This specific case demonstrates exemplary behaviour of the system when the controller is fully
saturated i.e. the control output is a square wave with an absolute amplitude equal to the
capacity of the magnet. When the system is excited with its natural frequency (Figure 6b), the
controller is able to prevent the system from exhibiting resonance and suppresses instability for
d < 50mm.
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(a) ω/ωn = 0.6 (b) ω/ωn = 1.0

(c) ω/ωn = 1.5 (d) ω/ωn = 2.0

Figure 5: Displacement and control output time series of controlled motion for a harmonic
excitation with A = 5mm and desired position δ = 0 for different initial separation distances d.

4. Conclusion
In this study, a contactless motion control technique was developed for the case of a magnetic
simple pendulum with a moving pivot point. The technique was based on the magnetic
interaction between two magnets, a permanent magnet and an electromagnetic actuator. The
system was excited by an external harmonic motion of the pivot point and a desired position
was imposed through a modified PD controller. The desired position was a fixed point in the
global frame of reference. The results from the numerical simulation demonstrated that the
controller is successful. However, the importance of a proper choice of the initial distance is
highlighted. An expression for the critical initial distance is derived to ensure high performance
of the controller for a single amplitude and a range of frequencies of excitation. High control
performance corresponds to low deviation from the desired position and absence of saturation
of the actuator. For a certain low range of frequency ratios (ω/ωn < 4), the critical distance
has an almost constant value. In terms of motion attenuation, the comparison of the controlled
and uncontrolled response shows that the motion compensation is effective even at resonance.

In short, the contactless controller succeeds in maintaining a desired fixed position while
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(a) ω/ωn = 0.6 (b) ω/ωn = 1.0

Figure 6: Comparison of the motion between the controlled and uncontrolled response for
different initial distances d and a harmonic excitation amplitude A = 10mm.

mitigating the motion of the magnetic pendulum imposed by external pivot disturbance. The
findings of this work underline the potential for the further advancement of this contactless
motion control technique, and the eventual design of a more intricate multi-degree control
algorithm for offshore applications.
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