
E�cient Recurrent Residual Networks Improved by

Feature Transfer

MSc Thesis

written by

Yue Liu

under the supervision of Dr. Silvia-Laura Pintea, Dr. Jan van Gemert,

and Dr. Ildiko Suveg and submitted to the Board of Examiners for the

degree of

Master of Science

at the Delft University of Technology.

Date of the public defense: Members of the Thesis Committee:

August 31, 2017 Prof. Marcel Reinders

Dr. Jan van Gemert

Dr. Julian Urbano Merino

Dr. Silvia-Laura Pintea

Dr. Ildiko Suveg (Bosch)

Dr. Gonzalez Adrlana (Bosch)





Efficient Recurrent Residual Networks Improved by Feature Transfer

Yue Liu
Delft University of Technology
y.liu-33@student.tudelft.nl

Silvia-Laura Pintea
Delft University of Technology

S.L.Pintea@tudelft.nl

Jan van Gemert
Delft University of Technology
J.C.vanGemert@tudelft.nl

Ildiko Suveg
Bosch Security Systems

Ildiko.Suveg@nl.bosch.com

Abstract

Over the past several years, deep and wide neural net-
works have achieved great success in many tasks. However,
in real life applications, because the gains usually come
at a cost in terms of the system resources (e.g., memory,
computation and power consumption), it is impractical to
run top-performing but heavy networks such as VGGNet
and GoogleNet directly on mobile and embedded devices,
like smartphones and cameras. To tackle this problem, we
propose the use of recurrent layers in residual networks
to reduce the redundant information and save the param-
eters. Furthermore, with the help of feature map knowledge
transfer, the performance of Recurrent Residual Networks
(ReResNet) can be improved so as to reach similar accuracy
to some complex state-of-the-art architectures on CIFAR-
10, even with much fewer parameters. In this paper, we
demonstrate the efficiency of ReResNet possibly improved
by Feature Transfer on three datasets, CIFAR-10, Scenes
and MiniPlaces.

1. Introduction
Neural networks have been gaining numerous success

on many disciplines such as computer vision [1, 2] and
speech recognition [3, 4]. To achieve high accuracy on large
quantities of data, the general trend is to construct deeper
and wider networks [1, 5, 6, 7]. However, in practice, top-
performing architectures that require a fairly large number
of parameters like VGGNet and GoogleNet, are not effi-
cient to use on constrained devices in terms of the system
memory storage, computational capability and power con-
sumption.

One big challenge for deep learning in real life appli-
cations is the memory concern. Most of the mobile and
embedded platforms are equipped with small storage, but
deep and wide networks conventionally occupy gigabytes

of memory to store, so devices users may spend a lot of
time installing and updating the applications, which is not
desirable in practice. Moreover, since the models often run
in the order of tens of MBs and the peak memory needs
could reach hundreds of MBs, it is hard to fulfil the run-
time memory requirements [8]. As the secondary effect of
the large memory overhead in most cases, computation that
is required to perform inference, is also shaped by network
architectures [9]. For instance, compared with multi-layer
perceptrons which are more memory-bound, convolutional
neural networks that are widely used in computer vision
and speech recognition are more computation-bound [10].
Although some constrained devices like smartphones have
significant computational power, we still face the challenges
in executing a large amount of computations required by a
heavy network. Additionally, when we extend further from
the computation concern, because of excessive execution
time for each single inference, the high power-consumption
level of large networks makes real life implementations in-
feasible for continuous monitoring [11, 12].

To address the above problems, several approaches to do
model compression that aims to construct simple but effec-
tive neural network architectures have been proposed. One
interesting method, knowledge transfer, which is to train
a light student network to mimic the behavior of a well-
trained heavy teacher network, generates a high level of per-
formance [13, 14, 15, 16, 17]. Thus in this paper, we aim to
come up with a compact model and then make better use of
knowledge transfer to further boost the performance.

Artificial neural networks are originally inspired by the
biological neural networks in human brains. Some stud-
ies have found that recurrent connections exist ubiquitously
in the neocortex [18], visual signals always go through the
same neuron recursively [19, 20], and the recurrent connec-
tions are very important for capturing the context informa-
tion [21]. To incorporate those facts of human brains, we
make use of recurrent residual layers introduced in [22] to



Figure 1: Overall architecture of a ReResNet improved
by feature map knowledge transfer. “BRC” denotes layer
with pipeline “Batch Normalization(BN)-Rectified Linear
Units(ReLU)-Convolution(Conv)”. Layers with the same
color share one set of convolution parameters over time. In
student networks (both with Shared Weights and in Recur-
rent Form), the convolutional layers with no color (shown in
white) operate spatial dimension reduction with a stride of
2. In this example, the teacher network is a general ResNet
that is wider than its student, while the student network is
a recurrent ResNet having three different recurrent resid-
ual blocks in total. Both layers in each block are shared for
three times (see the unfolded version, Student Network with
Shared Weights), so the student only has six different resid-
ual layers (shown in six different colors) which is 3⇥ fewer
than its teacher. Together with the classification loss, two
extra intermediate losses extracted after the first and second
recurrent blocks are added to the final loss function.

tie convolutional weights, and propose a new use of it so
that networks become more compact. We show that the ac-
curacy gap between our recurrent residual network (ReRes-
Net) and its original sequential ResNet [7] is very small, es-
pecially when it is combined with knowledge transfer and
trained with the guidance of feature map representations
from a powerful network.

One example of our proposed method’s overall architec-
ture is shown in Figure 1. We share the weights of all con-
volutions at the same spatial scale, thus making the student
network equivalent to a recurrent network so as to save pa-
rameters. Moreover, by minimizing the total loss that con-
sists of classification loss and two extra intermediate losses,
the student network is able to learn the intermediate rep-
resentations of its teacher and get good accuracy. In our
experiments on CIFAR-10 [23], the results of ReResNet
improved by feature map knowledge transfer are even as
competitive as that of some large state-of-the-art networks.

To summarize, our main contributions are:

• We propose the use of recurrent residual layers to re-
duce the redundant information and save the param-
eters while preserving good accuracy. We show that
with the help of recurrent layers, it is possible to
deepen the network to get better performance by mak-
ing ReResNets recur more times, with almost the same
parameter budget.

• We propose a new teacher-student knowledge trans-
fer pattern with a general ResNet as the teacher and
a ReResNet as the student. We show that adding extra
losses at multiple depths of a ReResNet aids its train-
ing and improves the performance.

• We show that despite the compactness of the model,
our new use of ReResNet that can be improved by Fea-
ture Transfer achieves good performance. We demon-
strate the efficiency of our proposed method on a
widely-used dataset CIFAR-10 for object classifica-
tion [23], a small dataset Scenes for indoor scene clas-
sification [24] and a large dataset MiniPlaces for in-
door and outdoor scenes [25].

The paper is structured as follows: we first present the
related work in Sec. 2; we explain our proposed ReResNet
improved by Feature Transfer in Sec. 3; then in Sec. 4 we
validate our method on CIFAR-10, Scenes and MiniPlaces,
and discuss the questions such as “how can a ReResNet per-
form on a benchmark/small/big dataset?” and “how many
times can a ReResNet recur?”; finally, we conclude our pa-
per in Sec. 5, and attach some visualization results in Ap-
pendix.



2. Related work
2.1. Recurrent neural networks

Recurrent neural networks (RNNs) are naturally used to
process sequential and temporal data such as video [26]
and speech signal [27], but they have seen limited use on
static visual signal processing. To explore RNNs on im-
age data, the idea of sharing weights across convolutional
layers was first studied by Eigen et al. [28]. They showed
that even though no extra parameters are introduced, adding
suitable number of recurrent layers tend to improve the per-
formance (the network was called rCNN for short). Based
on that, Liang et al. [29] introduced a time-folded version
called RCNN, and additionally allowed feed-forward input
to each shared convolutional layer. They showed that al-
though RCNN and rCNN have exactly the same number
of parameters, the former outperforms the latter to some
extent. Feedback Networks proposed by Zamir et al. [30]
applied convolutional LSTM model to enable early predic-
tions. Liao and Poggio [22] achieved good classification
performance when adopting shared weights on ResNets,
which are exactly recurrent networks that form a cycle.
Based on that, we propose the new use of recurrent resid-
ual layers to save the parameters while preserving good ac-
curacy. Compared with ShaResNets recently proposed by
Boulch and Alexandre [31] that only share the adopted spa-
tial relations on ResNets, our paper introduces two variants
that are 2⇥ lighter but still effective by sharing both convo-
lutions in each residual block, and investigates how many
times one ReResNet can recur at most with the same pa-
rameter budget.

2.2. Efficient Networks
To construct simple but effective neural networks, sev-

eral approaches have been proposed in recent literature. The
obtaining of efficient networks can be generally categorized
into either pre-trained architecture compression, or direct
small network construction with knowledge transfer.

Pre-trained architecture compression aims to make
trained models have smaller size by directly reducing their
number of parameters or computations. Speeding up with
Low Rank Expansions proposed by Jaderberg et al. [32]
exploits the existing redundancy between different feature
channels and filters by approximating a learnt full rank filter
as combinations of several rank-1 filters. To produce sparse
weights instead of dense weights, the method Deep Com-
pression proposed by Han et al. [33] is based on a three-
stage pipeline: weight pruning [34, 35, 36], trained quanti-
zation [37] and Huffman coding [38], and it saves the pa-
rameter storage by 35⇥ on AlexNet and 49⇥ on VGG-16
without loss of accuracy. Molchanov et al. [39] further pro-
posed iterative pruning of parameters from deep neural net-
works. Recently, Zhou et al. [40] presented a novel weights

quantization method, called Incremental Network Quanti-
zation(INQ), to convert the parameters from original 32-
bit floating point to 5-bit, 4-bit, 3-bit, and even 2-bit, and
proves to have impressive efficiency on different architec-
tures, such as AlexNet, VGG-16, GoogleNet and ResNet.

Another method to achieve model compression and ac-
celeration is knowledge transfer, which is to directly train
a compact neural network with the help of some complex
models. Bucilu et al. [13] first trained a single neural
network of modest size to mimic a much larger ensem-
ble, so that with fewer parameters, the student model can
reach same accuracy as its ensemble teacher model. Ba
and Caruna [14] then replaced the ensemble teacher net-
work with a deep neural network, and trained a shallow stu-
dent model to mimic logits got from its teacher. For some
tasks where having multiple convolutions is less important
it gave similar accuracy as the state-of-art with the same pa-
rameter budget. Hinton et al. [15] further developed this
approach by considering both soften labels and hard labels
in loss function, and finally it succeeded in training smaller
and/or shallower models that are nearly as accurate as its
teacher model. Then, Romero et al. [16] proposed FitNets
and introduced an intermediate hint from the teacher model,
showing that distilled student model which is deeper but
thinner, could achieve the same or even better accuracy than
its teacher with fewer parameters and computations. Re-
cently, Zagoruyko et al. [17] presented an attention transfer
model to learn less deep student networks better, but unlike
FitNets approach, they did not separate the training process
into two. Instead, they added extra losses to force a student
network to mimic the attention maps of its teacher model.
Our feature map transfer is similar to the attention model,
but rather than the general ResNets, we use ReResNets as
our student models.

3. Method
Recurrent Residual Networks (ReResNets) are based on

Residual Networks (ResNets) [7], for which identity map-
ping shortcuts are inserted into plain convolutional net-
works to solve the problem of gradient vanishing.

In addition to the case where all convolutional layers
have independent weights, we consider ReResNets in which
ResNets are encapsulated into recurrent models by using
tied weights in certain parts of the architecture. Sec.3.1
introduces two variants of such ReResNets. Furthermore,
in Sec.3.2 we describe a feature map knowledge transfer
method that helps speed up the training process and make
small networks perform better.

3.1. Recurrent residual networks

The key module of ReResNet is the recurrent residual
block that is shared at the same spatial scale. The output of



Figure 2: Subnetworks of original ResNet and two ReRes-
Net variants with the same number of layers. “BRC” de-
notes pipeline with “BN-ReLU-Conv”. In original ResNet,
layers without color (shown in white) are not tied over
time, while in two ReResNet variants, layers with the same
color (yellow or blue) share one set of convolution parame-
ters. Subnetworks in dashed boxes are our folded/unfolded
ReResNet units. (a) ReResNet-1: The ReResNet unit is the
same as the original residual block, each with two BRC lay-
ers inside. Both convolutions in each residual block are tied
over time. The first convolution is shared at time t = 1,
t = 3, and t = 5, while the second is shared at time t = 2,
t = 4 and t = 6; (2) ReResNet-2: Break apart the original
residual block of two BRC layers with one identity map-
ping, into two blocks of one BRC layer with two identity
connections in total. Two different residual blocks work to-
gether as one ReResNet unit, and each block has one BRC
layer inside. The first convolution is shared at time t = 1,
t = 2, and t = 3, while the second is shared at time t = 4,
t = 5 and t = 6.

the ith block at time step t is defined as:

yi(t) = fi(yi(t� n);Wi,Wt). (1)

where n simulates the cycle time it takes to go through one
residual block, assuming each convolution takes constant
time 1. Wi denotes the shared parameters of the ith block
and Wt is the time-specific parameters. fi is the residual
function of the ith block, composed of batch normalization
(BN) [41], rectified linear units (ReLU) [42] and convolu-
tional layers (Conv).

The subnetwork structures of two proposed ReResNet
variants are illustrated in Figure 2. Our experiments show
that if we share all parameters in each block including BN
learnable scaling and shifting parameters, there will be a
considerable drop in accuracy in ReResNets. So as in [22],
we only share the weights of convolutional layers Wconv as
Wi, while the rest parameters are all set to time-specific as
Wt in Eq. 1. Details of two variants are shown below:

• ReResNet-1: One residual block that consists of two
BN-ReLU-Conv layers is a ReResNet unit. Each block
has cycle time n = 2 and shared parameters Wi =
{Wconv1,i,Wconv2,i}. The recurrent connection en-
ables both convolutions in each residual block to be
shared alternately over time.

• ReResNet-2: The original residual block with two BN-
ReLU-Conv layers is now broken apart into two differ-
ent residual blocks with only one layer for each. Two
residual blocks work together as one ReResNet unit,
and each block has cycle time n = 1 and shared pa-
rameters Wi = Wconv,i. In contrast with ReResNet-
1, ReResNet-2 shares two convolutions in sequence.
Not until the first block finishes its recurrence does the
second start to be shared, so the first convolution is
common to the first half of the subnetwork, while the
second convolution is tied for the rest.

The unfolded network architectures of ReResNet-1 and
ReResNet-2 show that both networks have the same num-
ber of layers but with different sharing configurations. More
nonlinearity is introduced as the network is deepened, how-
ever, since in most cases convolutions introduce most of the
parameters in the network and they are shared now with re-
current layers, the memory required to store all parameters
of our ReResNets is not increased by much.

Since we use tied convolutional weights, as in [29, 31]
for 8W 2 Wi the gradient back-propagation is adjusted
according to

(
@L

@W
)
ReResNet

=
X

W 02Wi

(
@L

@W 0 )original. (2)

where L is the loss function we aim to optimize. The gra-
dient of a shared weight is the sum of the gradients of all
weights in Wi.



Figure 3: Architecture of feature transfer. The teacher net-
work is wider than the student network with respect to the
number of convolutional filters. F

0

T and F
0

S are mathemat-
ical representations of the feature maps that match each
other’s tensor shape. The student network is trained with
the sum of classification loss and two intermediate losses as
the final loss function, to get correct predictions and achieve
similar intermediate feature representations as the powerful
teacher network.

3.2. Feature map knowledge transfer

In this paper, Feature map knowledge transfer is for fur-
ther improving the performance of a small network ReRes-
Net.

In a convolutional neural network, each convolution can
be regarded as one feature extractor. Early feature maps cor-
respond to low-level features, while with feature maps go-
ing deeper, the network will detect more complex high-level
representations. Based on the assumption that for the same
task, similar networks achieve similar intermediate repre-

sentations in a solution flow, as in [17] we implement fea-
ture map knowledge transfer. The main idea of it is to distill
feature maps from a trained complex teacher network and
then transfer the knowledge to a small student network by
adding multiple intermediate losses to the final loss func-
tion. An ideal student network will not only have correct
predictions but also learn the intermediate outputs. In this
paper, we use “feature transfer’ to refer to the above pro-
cess.

The architecture of feature transfer is shown in Figure 3.
Let F 2 Rh⇥w⇥c be the feature map that is directly ex-
tracted after each residual group, where h, w, and c are
height, width and number of channels respectively. In this
paper, we consider the case of having a wider teacher net-
work with more convolutional filters than the student net-
work. Therefore, to get the intermediate loss functions be-
tween features of two networks, mathematical representa-
tions F

0

T and F
0

S that match each other’s tensor shape are
needed. To construct a mapping function from original
feature maps (FT 2 Rh⇥w⇥m and FS 2 Rh⇥w⇥n) to
the ones that can be used for intermediate loss calculation
(F

0

T 2 Rh⇥w⇥x and F
0

S 2 Rh⇥w⇥x), we discuss two op-
tions:

• 1-channel feature map generation: As proposed in
[17], we add up the squared values across channels to
get F

0

T 2 Rh⇥w⇥1 and F
0

S 2 Rh⇥w⇥1. The mathe-
matical expressions are shown below.

F
0

T =
i=mX

i=1

| FT,i |2 . (3)

F
0

S =
i=nX

i=1

| FS,i |2 . (4)

where i goes over each channel.

• Convolutional regressor: Convolve original feature
maps with filters that have the size of k1⇥ k2⇥m⇥x
and k1⇥ k2⇥n⇥x, where k1⇥ k2 denotes the kernel
shape. m and n are original numbers of channels for
FT 2 Rh⇥w⇥m and FS 2 Rh⇥w⇥n, and x is the con-
sistent number of channel for feature maps to be used
F

0

T 2 Rh⇥w⇥x and F
0

S 2 Rh⇥w⇥x.

Let WT and WS represent the weights of teacher and stu-
dent networks, and Lcls(W ) and Lft(W ) denote the classi-
fication and feature transfer L2 loss function. Like in [17],
the total loss Ltotal(W ) is defined as:

Ltotal(WS) = Lcls(WS) + �Lft(WS). (5)

Lft(WS) =
i=gX

i=1

������
F

0(i)
T (WT )���F
0(i)
T (WT )

���
2

� F
0(i)
S (WS)���F
0(i)
S (WS)

���
2

������
2

.

(6)



where � represents the weight to balance each loss function,
and g calculates how many intermediate L2 losses we have
between the teacher model and the student model (g = 2 in
the example of Figure 3). Due to the fact that teacher and
student networks may have features with different scales,
the normalization of generalized feature map representa-
tions is necessary.

The training process is summarized below in Algo-
rithm 1. After randomly initializing teacher parameters
WT , we first train a powerful teacher network to get trained
W ⇤

T . Then similarly, we randomly initialize student param-
eters WS and get trained W ⇤

S with the sum of classifica-
tion loss and multiple losses at different depths as the loss
function. If convolutional regressor is chosen to match the
shapes of feature representations, the regressor parameters
Wr are trained together with the student parameters WS .
By minimizing the total loss function, we can then leverage
feature knowledge acquired from a teacher network to a stu-
dent network and achieve feature map knowledge transfer.

Algorithm 1 Feature map knowledge transfer
Input: WT , WS , Wr, �
Output: W ⇤

S

1: W ⇤
T  argminWT

Lcls(WT )
2: if 1-channel feature map generation then
3: W ⇤

S  argminWS
(Lcls(WS) + �Lft(WS ;WT

⇤))
4: else if convolutional regressor then
5: W ⇤

S  argminWS
(Lcls(WS) + �Lft(WS ,Wr;W ⇤

T ))
6: end if

4. Experimental evaluation
We experiment on three datasets CIFAR-10 [23],

Scenes [24] and MiniPlaces [25]. To evaluate our meth-
ods, we compare ReResNets with their sequential ResNets
counterparts, and show the gains we get from Feature Map
Knowledge Transfer.

4.1. Experiments on CIFAR-10
4.1.1 Implementation

CIFAR-10 consists of a set of small 32⇥32 RGB images
from 10 different object classes, and it is divided into 50,000
training and 10,000 test images. We prepare the dataset by
subtracting the mean and normalize its scale to [�1, 1] along
each channel. For data augmentation, as in [7] we pad 4
pixels on each side, take random 32⇥32 crops and then do
random horizontal flips.

The model was trained from scratch. We use a weight
decay of 0.0001 and momentum of 0.9. The weights are
initialized as in [43]. Experiments were run for 80,000 iter-
ations with batch size 128. The learning rate started with 0.1
and was then divided by 10 at 40,000 iterations and 60,000

name output size operation type
conv1 32⇥ 32

⇥
3⇥ 3, 16

⇤
, stride 1

group1 32⇥ 32


3⇥ 3, 16⇥ k
3⇥ 3, 16⇥ k

�
⇥ 3N

transition1 16⇥ 16
⇥
3⇥ 3, 32⇥ k

⇤
, stride 2

group2 16⇥ 16


3⇥ 3, 32⇥ k
3⇥ 3, 32⇥ k

�
⇥ 3N

transition2 8⇥ 8
⇥
3⇥ 3, 64⇥ k

⇤
, stride 2

group3 8⇥ 8


3⇥ 3, 64⇥ k
3⇥ 3, 64⇥ k

�
⇥ 3N

avg-pool 1⇥ 1
⇥
8⇥ 8

⇤
, stride 1

Table 1: Structure of our ResNet(3N-k)/ReResNet-x(3N-k)
on CIFAR-10. Network depth and width are determined by
factors N and k respectively. “3⇥3” denotes 3⇥3 convolu-
tions with batch normalization and rectified linear units.

iterations. We use softmax and cross-entropy loss for clas-
sification.

The general architecture of our ResNet/ReResNet on
CIFAR-10 is shown in Table 1. It is composed of an ini-
tial convolution, 3 residual groups of width 16⇥ k, 32⇥ k,
and 64 ⇥ k (each with 3N blocks inside), and 2 transition
convolutions of width 32 ⇥ k and 64 ⇥ k with strides 2 to
perform downsampling. Then it goes through an average
pooling layer and a final classification layer. In this paper,
we refer to this network as “ResNet(3N-k)/ReResNet-x(3N-
k)” by following “ResNet(d-w)/ReResNet-x(d-w)”, where
x indicates the type of recurrent as discussed in Section 3.1,
while d and w are the depth and width factors. Each resid-
ual group has d blocks and we apply [16⇥k, 32⇥k, 64⇥k]
filters to convolutional layers in each residual block.

4.1.2 ReResNet performance on CIFAR-10

On CIFAR-10, we experiment with two variants of
ReResNets. The teacher network ResNet(3-2) has the ac-
curacy of 93.28% and it is 2⇥ wider than its students for
both cases of having 3 or 6 blocks per residual group.

The quantitative evaluation of our proposed ReResNet
together with its feature map transfer can be found in Ta-
ble 2. Sharing the weights of convolutional layers in ReRes-
Nets helps reduce the size of network significantly. Espe-
cially when we add 1-channel feature map transfer, there is
no huge accuracy gap between each ReResNet and its orig-
inal sequential ResNet counterpart. To our understanding,
the weights of residual blocks in each group are somehow



network name params no FT FT gains
ResNet(3-1) 316K 91.05% 91.50% 0.45%

ReResNet-1(3-1) 122K 89.81% 90.29% 0.48%

ReResNet-2(3-1) 122K 89.25% 89.90% 0.64%

ResNet(6-1) 607K 92.00% 92.45% 0.45%

ReResNet-1(6-1) 124K 89.99% 90.49% 0.50%

ReResNet-2(6-1) 124K 89.00% 89.82% 0.82%

Table 2: Test accuracy on CIFAR-10. “Feature Transfer” is
denoted as “FT” for short, and it is conducted with the op-
tion “1-channel feature map generation”. In this set of ex-
periments, for feature transfer, knowledge is distilled from
a teacher network ResNet(3-2) with accuracy 93.28%.

Figure 4: Test accuracy of ResNet(3-1) and ResNet(6-1)
without/with two feature transfer options, 1-channel feature
map generation and convolutional regressor, on CIFAR-10.

Figure 5: Illustration of ReResNet-3(r). r denotes the recur-
ring times. In this example r is set to be 2.

similar, and the same parts of each block share similar op-
erations, so the ReResNet makes better use of the trainable
parameters when compared to its sequential ResNet coun-
terpart.

We also plot test accuracy of ResNet(3-1) and ResNet(6-
1) that are trained independently, and those adopt the dis-
tilled knowledge from ResNet(3-2), in Figure 4. It illus-
trates that feature map knowledge transfer speeds up the
convergence greatly, and can improve the accuracy in the
end. The feature transfer option “1-channel feature map
generation” outperforms “convolutional regressor”. We ar-
gue that this is likely because to calculate intermediate loss,
the latter option introduces extra parameters Wr that will
not contribute to final classification.

4.1.3 How many times can a ReResNet recur?

To investigate how many times a ReResNet can recur
at most, we introduce a new type of ReResNet with only
one residual block with one BRC layer inside as a ReRes-
Net unit (see Figure 5 for its illustration). We refer to
it as ReResNet-3(r), where r represents how many times
we recur. We compare the test accuracy of ReResNet-1,
ReResNet-2 and ReResNet-3 with different recurring times
(see Table 3). It shows that having recurrent loops to grow
the network depth leads to better performance without any
significant increase in model size. This is because adding
extra recurrent layers introduces more nonlinearity, and it
increases the network capacity to learn more complex func-
tions. However, it is worth noting that recurring too many
times will make the networks suffer from overfitting.



network name params accuracy
ReResNet-1(1-1) 121K 89.44%

ReResNet-1(3-1) 122K 89.81%

ReResNet-1(6-1) 124K 89.99%

ReResNet-2(1-1) 121K 88.98%

ReResNet-2(3-1) 122K 89.25%

ReResNet-2(6-1) 124K 89.00%

ReResNet-3(1) 73K 86.95%

ReResNet-3(2) 73K 88.17%

ReResNet-3(3) 73K 88.33%

ReResNet-3(4) 74K 88.39%

ReResNet-3(5) 74K 88.24%

ReResNet-3(6) 74K 87.95%

ReResNet-3(12) 75K 88.03%

Table 3: Comparison of test accuracy with different recur-
ring times on CIFAR-10.

4.1.4 Comparison with state-of-the-art methods.

We compare ReResNet improved by feature transfer
with state-of-the-art methods on CIFAR-10 (see Table 4).
ReResNet+FT can be as light as ⇠120K parameters, but
achieve much better results than Circulant cNN [44] with
similar network size. Compared with big networks like
NIN [45], DSN [46], Highway [47, 48], FitNet [16], Max-
out [49] and Prob maxout [50], our proposed method is
significantly more efficient. And we also believe that the
performance can be further improved by utilizing a better
teacher network for feature transfer.

4.2. Experiments on Scenes
4.2.1 Implementation

Scenes is a very challenging dataset for indoor scene
classification. It consists of 67 categories, and there are 101
to 738 RGB images per category. By following the stan-
dard protocol as in [24], we use 80/20 images per category
for training and testing.

As in [51], we resize images to 224⇥224 pixels. Since

network name params accuracy
Circulant cNN [44] 120K 84.29%

ResNet [7] 270K 91.25%

ResNet [7] 460K 92.49%

NIN [45] 970K 91.19%

DSN [46] 970K 92.03%

Highway [47, 48] 1.25M 91.20%

FitNet [16] 2.5M 91.61%

Maxout [49] >5M 90.62%

Prob maxout [50] >5M 90.61%

ReResNet-1(3-1)+FT 122K 90.29%

ReResNet-1(6-1)+FT 124K 90.49%

ReResNet-2(3-1)+FT 219K 91.10%

ReResNet-2(6-1)+FT 366K 91.82%

Table 4: Comparison of test accuracy with state-of-the-art
methods on CIFAR-10. FT is implemented with 1-channel
feature map generation.

the dataset is very small, we conduct transfer learning by
extracting features from the last residual group of a pre-
trained ResNet-50 [7] on ImageNet [52] and then train a
small ResNet/ReResNet on top of that. ResNet-50 uses
“bottleneck” design. For each residual block, it has a stack
of three convolutional layers (1 ⇥ 1, 3 ⇥ 3, 1 ⇥ 1 convolu-
tions) instead of two (3⇥3, 3⇥3 convolutions). The overall
architecture of our ResNet/ReResNet on Scenes is shown in
Table 5.

The weight decay was set to 0.00001 and momentum
was 0.9. We ran experiments for 10,000 iterations with
batch size 128. The learning rates were 0.01 for the first
2,000 iterations and 0.001 for the rest. Same weights
initialization and loss function were used as CIFAR-10.
Here, the network on Scenes is referred to as “ResNet(3-
k)/ReResNet-x(3-k)”.



name output size operation type
conv1⇤ 112⇥ 112 [7⇥ 7, 64]

max-pool⇤ 56⇥ 56 [3⇥ 3], stride 2

group1⇤ 56⇥ 56

2

4
1⇥ 1, 64
3⇥ 3, 64
1⇥ 1, 256

3

5⇥ 3

group2⇤ 28⇥ 28

2

4
1⇥ 1, 128
3⇥ 3, 128
1⇥ 1, 512

3

5⇥ 4

group3⇤ 14⇥ 14

2

4
1⇥ 1, 256
3⇥ 3, 256
1⇥ 1, 1024

3

5⇥ 6

group4⇤ 7⇥ 7

2

4
1⇥ 1, 512
3⇥ 3, 512
1⇥ 1, 2048

3

5⇥ 3

transition1 7⇥ 7 [3⇥ 3, 64⇥ k], stride 1

group1 7⇥ 7


3⇥ 3, 64⇥ k
3⇥ 3, 64⇥ k

�
⇥ 3

transition2 7⇥ 7 [3⇥ 3, 128⇥ k], stride 1

group2 7⇥ 7


3⇥ 3, 128⇥ k
3⇥ 3, 128⇥ k

�
⇥ 3

avg-pool 1⇥ 1
⇥
7⇥ 7

⇤
, stride 1

Table 5: Structure of our ResNet(3-k)/ReResNet-x(3-k) on
Scenes. The upper part with ⇤ signs in name corresponds to
operations of ResNet-50 pre-trained on ImageNet, while the
bottom shows the architecture of our transfer learning small
ResNet/ReResNet. Network depth factor is always 3, which
means at the same spatial scale, each residual group is made
up of three residual blocks, and the width is determined by
factor k.

4.2.2 ReResNet performance on a small dataset

Results on Scenes are shown in Table 6. The teacher
network ResNet(3-4) with accuracy 71.8% is 2⇥ wider
than ResNet(3-2)/ReResNet-1(3-2)/ReResNet-2(3-2) and
4⇥ wider than ReResNet-1(3-1)/ReResNet-1(6-1). For
ResNet(3-2) we try 6 feature transfer losses (each after per
residual block) instead of two which is shown in Figure 3.
We see by adding more losses, the test accuracy goes up,
from 70.51% to 71.42%.

network name params no FT FT gains

ResNet(3-2) 7.10M 69.61% 70.51%(2)
71.42%(6)

0.90%(2)
1.81%(6)

ReResNet-1(3-2) 4.15M 67.62% 68.73% 1.11%

ReResNet-2(3-2) 4.15M 69.25% 70.43% 1.18%

ReResNet-1(3-1) 2.37M 65.22% 67.53% 2.31%

ReResNet-1(6-1) 3.48M 62.83% 66.05% 3.22%

Table 6: Test accuracy on Scenes. “Feature Transfer” is de-
noted as “FT” for short, and it is conducted with the option
“1-channel feature map generation”. The values in brack-
ets for FT indicate how many losses we add in Lft. In this
experiment, for feature transfer, knowledge is distilled from
teacher networks ResNet(3-4) with accuracy 71.80%.

Figure 6: Test accuracy got after the first 1,000 iterations of
ReResNet-1(3-1) and ReResNet-2(3-1) on CIFAR-10.

Recurrent loop for ReResNet-1(3-2) and ReResNet-2(3-
2) degrades the performance of ReResNet(3-2), but fea-
ture transfer introduces some improvements. The gains
are about 1.0%. Unlike our observation on CIFAR-10,
ReResNet-2 works better than ReResNet-1 with the same
number of parameters. To our understanding, this is be-
cause sharing both convolutions alternatively in each resid-
ual block is more likely to confuse the optimization process
on a small dataset. This can be verified by another experi-
ment on CIFAR-10, where we just ran for 1,000 iterations
with a batch size 128. The test accuracy plot (Figure 6)
shows that when the network doesn’t see a lot of training
samples, the network is not robust to any possible confusion
caused by ReResNet-1. Therefore, in this case, ReResNet-2
classifies the images better.

Interestingly, wider ReResNet-1(3-2) leads to better
performance than thinner ReResNet-1(3-1), but deeper



name outpuht size operation type
conv1 56⇥ 56

⇥
7⇥ 7, 32

⇤
, stride 2

group1 56⇥ 56


3⇥ 3, 32
3⇥ 3, 32

�
⇥ 3

transition1 28⇥ 28
⇥
3⇥ 3, 64

⇤
, stride 2

group2 28⇥ 28


3⇥ 3, 64
3⇥ 3, 64

�
⇥ 4

transition2 14⇥ 14
⇥
3⇥ 3, 128

⇤
, stride 2

group3 14⇥ 14


3⇥ 3, 128
3⇥ 3, 128

�
⇥ 6

transition3 7⇥ 7
⇥
3⇥ 3, 256

⇤
, stride 2

group4 7⇥ 7


3⇥ 3, 256
3⇥ 3, 256

�
⇥ 3

avg-pool 1⇥ 1
⇥
7⇥ 7

⇤
, stride 1

fully-connected 1⇥ 1 1000d-fc

Table 7: Structure of our ResNet/ReResNet-x on Mini-
Places.

network name params top-1 top-5
ResNet 6.07M 47.54% 76.82%

ReResNet-1 1.98M 47.56% 77.42%

Table 8: Test accuracy on MiniPlaces.

ReResNet-1(6-1) causes an accuracy drop on shallower
ReResNet-1(3-1). We believe this also has something to
do with the size of dataset. Because of the gradient van-
ishing problem, deep networks are more difficult to train,
but transferring extra knowledge to guide the optimization
helps ease the training and improve the performance. From
the results of ReResNet-1(3-1) and ReResNet-1(6-1) we see
the deeper the network is, the larger gains we could get from
feature transfer.

4.3. Experiments on MiniPlaces
4.3.1 Implementation

MiniPlaces is also for scene classification, but unlike
Scenes, it has both indoor and outdoor scene images. As
a subset of MIT Places2 dataset [25], it consists of RGB
images from 100 categories. The training set has 100,000
images and test set has 10,000 images. Initially each image

has a size of 128⇥128, but when we feed images into the
network we take a random crop of 112⇥112. The mean/std
normalization is the same as that of CIFAR-10.

Inspired by ResNet-34 trained on ImageNet, we build a
ResNet for MiniPlaces. See Table 7 for detailed architec-
ture. Networks were run for 200,000 iterations with a batch
size 256. We start with learning rate 0.1, and it was divided
by 10 at 69,000 and 160,000 iterations. The network was
trained from scratch, with weight decay 0.00001 and mo-
mentum 0.9. For this larger dataset, we did not have time
to tune the hyperparameters, so we use it only to verify the
efficiency of ReResNet-1.

4.3.2 ReResNet performance on a big dataset

Table 8 represents the top-1 and top-5 accuracy of our
ReResNet-1 compared with its sequential ResNet counter-
part on MiniPlaces. Because larger networks are more
likely to have redundant parameters, the performance can
benefit from enabling the weights to be better used. In this
case, sharing weights so that it becomes recurrent makes
more sense. So we see the accuracy of ReResNet-1 is even
better than its counterpart, with 67% fewer parameters. We
assume that as the dataset becomes larger and the network
goes more complicated, sharing ResNet weights will be-
come more efficient.

5. Conclusion
In this paper, we propose two sharing configurations for

ReResNets that make better use of trainable parameters, to
greatly reduce the network size without degrading the per-
formance too much. When we combine it with feature map
knowledge transfer by adding extra intermediate losses, we
see the possibility to aid better training and compensate the
slight performance decrease caused by the parameter re-
duction. Adding more recurrent layers may increase the
network capacity to achieve better accuracy, but there is
a critical value for recurring times at which the networks
start to suffer from overfitting and have performance degra-
dation. Over three datasets, CIFAR-10, Scenes and Mini-
Places, with fewer parameters ReResNet improved by Fea-
ture Transfer performs well. On CIFAR-10, when ReRes-
Net is trained with the guidance from a powerful network,
the architecture can be extremely light with⇠120K parame-
ters, but the results are as competitive as that of other much
heavier state-of-the-art architectures. We hope these find-
ings will help efficient networks to be embedded in more
real life scenarios.

One limitation of our method is that our sharing con-
figurations are too restrictive. We use tied convolutional
weights without considering forget gates to control the in-
formation passing. Moreover, it is worth trying multiple
paths as in [2, 46, 29] by adding feed-forward inputs to



the recurrent inputs, to see if shorter paths will help gra-
dient back-propagation during training so as to facilitate the
learning process, which could be another future work.
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A. Visualizations of Feature maps on CIFAR-10 and Scenes

Figure 7: Visualizations of 1-channel feature map on CIFAR-10 and Scenes. Feature maps are got after 1st and 2nd residual
groups. On CIFAR-10, we train our ResNet from scratch. The visualizations show that early feature maps have higher
activations around the whole object, while latter feature maps focus on higher-level features like the automobile wheels and
horse face. On Scenes, we use a pre-trained ResNet50 on ImageNet to extract features right before the last layer, and then
add 2 ResNet groups to do transfer learning. Since pre-trained model is used to do object classification on ImageNet, feature
maps after the second group of our added ResNet blocks are more background-focused than the feature maps after the first
group after transfer learning.



B. Visualizations of Feature Transfer on Scenes

Figure 8: Visualizations of 1-channel feature map transfer on Scenes. The heavier network is the teacher model with 23.64M
parameters (accuracy 71.80%), and the lighter one is the student model with 7.10M parameters (accuracy 69.61% and 70.51%
after FT). From visualizations, we see feature transfer helps the student’s feature maps to become more similar to those of
the teacher network.



C. Supplementary Information about Knowledge Transfer
The key idea behind Knowledge Transfer is to train a compact neural network to approximate the function learned by

another neural network which is more complex. Here, since the smaller model is learned from the bigger one, the former is
called ”student model”, while the latter one is its ”teacher model”. In this section, we will explain some existing knowledge
transfer methods that are used for model compression.

• Ensemble Compression is used to train a single neural network of modest size to mimic a much larger ensemble, so that
with fewer parameters, the student model can reach same accuracy as its ensemble teacher model [13].

• Train Shallow Networks using Deep Networks shows how to train a shallow student model to mimic logits got from its
deep teacher model. For some tasks where having multiple convolutions is less important, it gives similar accuracy as
state-of-the-art networks with the same parameter budget [14].

• Knowledge Distillation incorporates a parameter to control the relative importance of teacher model’s accuracy by
considering hard labels in loss function, as well as a temperature parameter to make soften labels thus passing targets
towards the uniform distribution, and finally it succeeds in training smaller and/or shallower models that are nearly as
accurate as its ensemble teacher model [15, 17].

• FitNet introduces a hint from the teacher model, and shows that distilled student model which is deeper but thinner, can
be more efficient and accurate than its teacher even with low capacity [16, 53, 54].

C.1. Ensemble compression
An ensemble is a collection of networks whose predictions are combined in some way, e.g., bagging, boosting, random

forests, Bayesian averaging and stacking. Many ensemble models have excellent performance, but they are too large and slow
to use, especially for devices with limited memory storage, computational capability and power consumption in practice.

“Ensemble Compression” with knowledge transfer was first researched by Bucilu et al. [13]. Since one big challenge for
deep learning is the lack of large labeled dataset and more training samples usually lead to better predictive performance, they
first use an ensemble to label a large unlabeled dataset and then train a new student neural network on these newly labeled
data to learn the function that is learned by the ensemble teacher model. Although the student models have 1000⇥ fewer
parameters, they are surprisingly as accurate as their ensemble teacher models.

C.2. Train shallow networks using deep networks
Ba and Caruna [14] replaced the ensemble teacher model with a deep neural network, and came up with a new idea: if

shallow networks are able to learn deep networks while preserving good accuracy with the same number of parameters, then
we could say deep network does not really need to be deep. See Figure 9 for the flow chart.

They train deep teacher networks in a conventional way. They use softmax cross-entropy cost function, and logits, the
logarithm probability values before the softmax activation, as the shallow student models’ regression targets. This is to say,
instead of using softmax output

pk =
ezkP
j e

z
j

. (7)

where z is logit value, and pk is the softmax probability computed for each class k, they train student models directly on logit
z, to avoid the information loss while passing through logits to probability space.

While training the shallow network, they minimize the loss function

L(W,�) =
1

2T

X

t

||g(x(t);W,�)� z(t)||2. (8)

where W and � are the weights between the tth input x(t) to the hidden layer, and the hidden layer to the prediction output
g(x(t);W,�)). Weights are updated using standard back-propagation and stochastic gradient descent.

One trick here is that, they insert one linear layer between the input and the hidden layer to speed up the mimic learning.
In order to make the shallow network have the same number of parameters as the deep network, the shallow one has to have
many hidden units, but the training with large weight matrix W to convergence is very slow, which leads to a problem in
practice. If D and H are respectively the dimensions of input and hidden units, both the computation time and memory
space it needs are proportional to O(HD). However, if we introduce one linear layer with k units between the input and



Figure 9: Train one shallow neural network (SNN) using one deep nueral network (DNN) as the teacher: (1) Build a complex
model; (2) Train a simple model to mimic teacher logits; (3) Apply it. Green blocks refer to the ground truth used for training,
and yellow arrows are identical mappings.

the non-linear hidden layer, we can reduce the complexity from O(HD) to O(k(H + D)), which can speed up learning
dramatically. Therefore, now the new loss function is

L(W,�) =
1

2T

X

t

||g(x(t);UV,�)� z(t)||2. (9)

where U and V are the weight matrices separated from a single weight matrix W .
The reason why student models can be more accurate on predicted labels than they trained on original labels is further

discussed by them. Apart from the fact that teacher model may eliminate some label errors, we know new soft labels, the
logits, are more informative than the original hard 0/1 labels, and are a function only of the available input features. Assume
we have three classes: cat, tiger and pig. Then the label of a picture of cat should be [1 0 0], which means each class is totally
independent and has no relations between each other. However, the truth is that the similarity between cat and tiger should be
higher than that of cat and pig, and this information is not available by using simple 0/1 labels. So the method of using soft
labels as regression targets can be seen as a form of regularization which helps avoid overfitting in shallow student models.

The results show that this method works very well on TIMIT speech corpus so that its shallow student model can be as
accurate as state-of-the-art deep models with similar number of parameters as state-of-the art, but much fewer parameters than
its deep teacher model. See Table 9, SNN-MIMIC-8k is trained with model compression to mimic ECNN, and it performs as
well as a DNN with a similar number of parameters.

However, the results on object recognition dataset CIFAR-10 [23] are less convincing since the size of the network has
become 30⇥ larger than the deep model, but the accuracy is still several points less than state-of–the-art networks. Urban et
al. [55] explains the reason, saying that convolution is more important for image classification than it is for TIMIT speech
recognition, so given the same parameter budget, the shallow student model can hardly be as accurate as its deep convolutional
teacher model with fewer convolutions. Furthermore, the paper [55] concludes that for some problems such as CIFAR-10,
although given the same number of parameters, the student model trained with soft targets leads to better accuracy than the
model with original hard targets, there is still a huge gap between the convolutional and non-convolutional student models,
and multiple (at least 3-4) convolutional layers are needed for better performance.



Table 9: Train Shallow Networks using Deep Networks: Comparison of shallow and deep models with phone error rate(PER)
on TIMIT core test set [14].

Figure 10: Knowledge Distillation: (1) Build a complex ensemble of deep networks and get soft labels with high temperature;
(2) Train a simple distilled model on soft labels with the same high temperature and hard labels with temperature 1; (3) Apply
it with temperature 1. Green blocks refer to the ground truth used for training, and yellow arrows are identical mappings.

C.3. Knowledge Distillation

In order to improve deep learning performance, people like to train many different models on the same data and then
average the predictions [56]. However, due to its cumbersome architecture it is not suitable for deployment. Known from
Ensemble Compression, it’s possible to transfer a large ensemble of models to a single small model. Therefore, Hinton
et al. [15] further developed the approach descried in Sec. C.2 using a different compression technique, called Knowledge
Distillation (KD). See Figure 10 for the flow chart.



Figure 11: Knowledge Distillation: Schematics of teacher-student attention transfer for the case when both networks are
residual, and the teacher is deeper [17].

After adjusting the softmax function described above by introducing “temperature” T , the new softmax output turns into

pk =
ez/TkP
j e

z/T
j

. (10)

where z is logit value, T is called “temperature”, and pk is the softmax probability computed for each class k. In the case of
ensemble compression, the soft targets are set with the arithmetic or geometric mean of all deep teacher networks predictive
distributions in the ensemble. Normally for the standard softmax, the temperature is set to 1. While raising its value, we get
a softer probability distribution over classes, with which we will get more information per training case than hard targets,
and less variance in the gradient between training cases. In that way, we are able to use less training data and much higher
learning rate. For example, if the output of the neural network is [1 2 3], with standard softmax the probability distribution
is [0.09 0.24 0.67] which is closer to one-hot code, and when T = 4 we get [0.25 0.33 0.43] which is softer and better
as a regression target. However, temperature T cannot be extremely large, because if so, three classes tend to have equal
probability, which makes three labels indistinguishable and will definitely lead to bad performance.

The process of the simplest form of knowledge distillation is as follows. We first train a deep teacher ensemble model with
a high temperature in its softmax until it produces suitably soft probability labels, and then use the same high temperature
when training its distilled student model to match the regression targets. When we apply the student model for testing or
inference in practice, we use the temperature of 1.

A more complex and better performing form of distillation is applied when we know the correct labels of the dataset. We
can train the distilled model to produce correct labels by weighted averaging the functions of the cross-entropy with its soft
targets, and the cross-entropy with the correct labels. Thus, it allows its student model to capture not only the information of
true labels, but also the fine structure over all classes, and it makes the teacher penalize the training examples according to its
confidence. The loss function can be written as

LKD = ↵Lsoft + (1� ↵)Lhard. (11)

where ↵ is a regularization that enforces the student model to learn more from its teacher than from the true labels, LKD,
Lsoft and Lhard are respectively the loss functions we finally want with Knowledge Distillation, only with soft labels’
guidance, and only with hard labels’ guidance. Empirically, we know a lower weight applied on hard targets will lead to
better performance.

The result of KD shows that it compresses an ensemble of deep teacher networks into a simple student network of similar
depth, but works significantly better than when it is trained directly from the same training data. One problem here is that,
while increasing the depth of the student network, it still has difficulty in optimizing deep nets.

Based on Knowledge Distillation, Zagoruyko et al. [17] recently proposed a method to improve the performance of a
student convolutional neural network by forcing it to mimic the teacher model’s attention maps. The illustration for the case
when both teacher and student networks are residual and the teacher is deeper is shown in Figure 11. The experiments were
conducted on three teacher-student pairs: WRN-16-2/WRN-16-1 (networks have 16 residual layers and teacher model is 2⇥
wider than the student model), WRN-16-1/WRN-40-1 and WRN-16-2/WRN-40-2 (both networks are of the same width but
teacher model is deeper than its student). WRN is a new introduced Wide Residual Network described in [57]. Apart from
the standard cross entropy with hard targets and soft label loss controlled by parameter temperature T, this new method also



Table 10: Knowledge Distillation: Activation-based attention transfer(AT) with various architectures on CIFAR-10. Error is
computed as median of 5 runs with different seed. F-ActT means full-activation transfer [17].

Figure 12: FitNets: Training a student network using hints [16].

takes the attention map loss into account. For the activation layer pairs that we want to transfer attention maps, we calculate
the distance and sum all values up as the loss function. For networks with different depth as shown in Figure 11, we extract
the attention maps on output activations of each group of residual blocks; for those with same depth we just have the attention
transfer layer after every residual block. The results in Table 10 show that Knowledge Distillation combined with Attention
Transfer is able to give us smaller error rates.

C.4. FitNets: thin and deep networks
Up till then, all previous work tried to train a student neural network of similar width and depth e.g., Knowledge Dis-

tillation, or into shallower but wider ones e.g., shallow networks trained by deep networks. Depth has been verified to be
very important [58], because deep representations are more complex thus being more expressive than shallow networks,
but neither of the methods explained above takes advantage of depth. The paper written by Romero et al. [16] extends the
approach of Knowledge Distillation, and allows the training of thinner and deeper student models. The idea comes from the
guess that making networks deeper allows the model to generalize better, while having thinner models help us reduce the
computational burden a lot.

FitNet compresses teacher models which are shallower and wider into their thinner and deeper student networks. In
order to make it easier to train deep networks and guide the student optimization procedure, FitNets introduces hints from
the teacher model, making a hint/guided layer pair and wanting the guided layer in student model to be able to predict the
corresponding hint layer in its teacher network. The pair is chosen to be the middle layers of both models.

FitNet separates its training process into two, hint-based training(HT) and normal KD training. In HT, since there are
more output units in teacher’s hint layer, they add a regressor to the student’s guided layer to match the shape of both. Apart
from the guided weights, this mapping also needs to be trained by minimizing the following loss function.

LHT (WGuided,WRegression) =
1

2
||uh(x;WHint)� r(vg(x;WGuided);WRegression)||2. (12)

where uh and vg are the function representations up to hint/guided layers with weight matrices WHint and WGuided, and r
is the regression function upon the guided layer in student model with parameters WRegression. This step produces strong
initialization for the first half of the student network. One trick applied here is, instead of fully-connected regressor they use a



Table 11: FitNets: Accuracy/Speed Trade-off on CIFAR-10 [16].

convolutional regressor to reduce the number of parameters and memory consumption. The work flow of hint-based training
is shown in Figure 12(a) and (b).

The second training stage, normal KD training works as follows. First we get pre-trained FitNet parameters WGuided

and WRegression after minimizing the loss function LHT (WGuided,WRegression), then we follow the process of Knowledge
Distillation to minimize LKD as discussed in Sec C.3.

The Table 11 measures FitNets efficiency, showing that FitNet is significantly faster while matching or outperforming its
teacher model, even when having fewer parameters and computations. And that is a very surprising result.

Inspired by FitNets, for a specific pedestrian detection task on Caltech Pedestrian Dataset, Shen et al. [59] uses ResNet-
200 [53] as the teacher model and unmodified ResNet-18, ResNet-18-thin which cuts half of the number of channels for
every layer, and ResNet-18-Small which fixes the channels of every layer at 32 as student models [53]. The result shows that
by introducing hint layer and the confidence of teacher model by adding cross-entropy with correct labels, the student model
performs 8⇥ faster than its teacher with 21⇥ less memory usage, while only observing a drop in log-average error rate of
4.9%.

Additionally, for another Identity Recognition task, Eng et al. [54] slightly adjusts the loss function by adding a particular
loss just for identity recognition, called ”Triplet Embedding Loss”. They use Labeled Faces in the Wild dataset [60], and its
student models are all much smaller than the original teacher FaceNet NN4 Small2 Model [61] which contains around 5M
parameters. As a result, they significantly reduce training time and memory usage with very little loss in training accuracy.


