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Abstract: In this paper, we study a multi-parameter Liénard polynomial system carrying out
its global bifurcation analysis. To control the global bifurcations of limit cycle in this systems,
it is necessary to know the properties and combine the effects of all its field rotation parameters.
It can be done by means of the development of our bifurcational geometric method based on the
application of a canonical system with field rotation parameters. Using this method, we present
a solution of Hilbert’s Sixteenth Problem on the maximum number of limit cycles and their
distribution for the Liénard polynomial system. We also conduct some numerical experiments
to illustrate the obtained results.
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1. INTRODUCTION

We develop geometric aspects of bifurcation theory for
studying multi-parameter planar polynomial dynamical
systems. It gives a global approach to the qualitative
analysis of such systems and helps to combine all other
approaches, their methods and results. First of all, the
two-isocline method which was developed by N.P. Erugin
is used; see Gaiko (2003). The isocline portrait is the
most natural construction in the corresponding polynomial
equation. It is sufficient to have only two isoclines (of zero
and infinity) to obtain principal information on the origi-
nal system, because these two isoclines are the right-hand
sides of the system. Geometric properties of isoclines (con-
ics, cubics, quartics, etc.) are well-known, and all isocline
portraits can be easily constructed. By means of them,
all topologically different qualitative pictures of integral
curves to within a number of limit cycles and distinguish-
ing center and focus can be obtained. Thus it is possible
to carry out a rough topological classification of the phase
portraits for the polynomial systems. It is the first ap-
plication of Erugin’s method. After studying contact and
rotation properties of isoclines, the simplest (canonical)
systems containing limit cycles can be also constructed.
Two groups of parameters can be distinguished in such
systems: static and dynamic. Static parameters determine
the behavior of the phase trajectories in principle, since
they control the number, position and character of singular
points in a finite part of the plane (finite singularities).
Parameters from the first group determine also a possible
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behavior of separatrices and singular points at infinity (in-
finite singularities) under the variation of the parameters
from the second group. Dynamic parameters are rotation
parameters. They do not change the number, position
and index of finite singularities and involve the vector
field into directional rotation. The rotation parameters
allow to control infinite singularities, the behavior of limit
cycles and separatrices. The cyclicity of singular points and
separatrix cycles, the behavior of semi-stable and other
multiple limit cycles are controlled by these parameters as
well. Therefore, by means of the rotation parameters, it is
possible to control all limit cycle bifurcations and to solve
the most complicated problems of the qualitative theory
of polynomial systems; see Gaiko (2003).

We have already presented a solution of Hilbert’s Sixteenth
Problem in the quadratic case of polynomial systems
proving that for quadratic systems four is really the
maximum number of limit cycles and (3 : 1) is their
only possible distribution. The proof is carried out by
contradiction applying catastrophe theory. On the first
step, the non-existence of four limit cycles surrounding a
singular point is proved. A canonical system containing
three field-rotation parameters is considered and it is
supposed that this system has four limit cycles around the
origin. Thus we get into some three-dimensional domain
of the field rotation parameters being restricted by some
conditions on the rest two parameters corresponding to
definite cases of singular points in the phase plane. This
three-parameter domain of four limit cycles is bounded
by three fold bifurcation surfaces forming a swallow-
tail bifurcation surface of multiplicity-four limit cycles.
Since the corresponding maximal one-parameter family of
multiplicity-four limit cycles generated by a field rotation
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behavior of separatrices and singular points at infinity (in-
finite singularities) under the variation of the parameters
from the second group. Dynamic parameters are rotation
parameters. They do not change the number, position
and index of finite singularities and involve the vector
field into directional rotation. The rotation parameters
allow to control infinite singularities, the behavior of limit
cycles and separatrices. The cyclicity of singular points and
separatrix cycles, the behavior of semi-stable and other
multiple limit cycles are controlled by these parameters as
well. Therefore, by means of the rotation parameters, it is
possible to control all limit cycle bifurcations and to solve
the most complicated problems of the qualitative theory
of polynomial systems; see Gaiko (2003).

We have already presented a solution of Hilbert’s Sixteenth
Problem in the quadratic case of polynomial systems
proving that for quadratic systems four is really the
maximum number of limit cycles and (3 : 1) is their
only possible distribution. The proof is carried out by
contradiction applying catastrophe theory. On the first
step, the non-existence of four limit cycles surrounding a
singular point is proved. A canonical system containing
three field-rotation parameters is considered and it is
supposed that this system has four limit cycles around the
origin. Thus we get into some three-dimensional domain
of the field rotation parameters being restricted by some
conditions on the rest two parameters corresponding to
definite cases of singular points in the phase plane. This
three-parameter domain of four limit cycles is bounded
by three fold bifurcation surfaces forming a swallow-
tail bifurcation surface of multiplicity-four limit cycles.
Since the corresponding maximal one-parameter family of
multiplicity-four limit cycles generated by a field rotation

5th IFAC Conference on Analysis and Control of Chaotic Systems
Eindhoven, The Netherlands, Oct 30 - Nov 1, 2018

Copyright © 2018 IFAC 160

Bifurcation Analysis of a Multi-Parameter
Liénard Polynomial System �

Valery Gaiko ∗ Cornelis Vuik ∗∗ Huibert Reijm ∗∗∗

∗ United Institute of Informatics Problems, National Academy of
Sciences of Belarus, Minsk 220012, Belarus

(e-mail: valery.gaiko@gmail.com)
∗∗ Institute of Applied Mathematics, Delft University of Technology,

2600 GA Delft, The Netherlands (e-mail: c.vuik@tudelft.nl)
∗∗∗ Institute of Applied Mathematics, Delft University of Technology,
2600 GA Delft, The Netherlands (e-mail: hugoreijm@yahoo.com)

Abstract: In this paper, we study a multi-parameter Liénard polynomial system carrying out
its global bifurcation analysis. To control the global bifurcations of limit cycle in this systems,
it is necessary to know the properties and combine the effects of all its field rotation parameters.
It can be done by means of the development of our bifurcational geometric method based on the
application of a canonical system with field rotation parameters. Using this method, we present
a solution of Hilbert’s Sixteenth Problem on the maximum number of limit cycles and their
distribution for the Liénard polynomial system. We also conduct some numerical experiments
to illustrate the obtained results.

Keywords: multi-parameter Liénard polynomial system, global bifurcation analysis,
field rotation parameter, limit cycle.

1. INTRODUCTION

We develop geometric aspects of bifurcation theory for
studying multi-parameter planar polynomial dynamical
systems. It gives a global approach to the qualitative
analysis of such systems and helps to combine all other
approaches, their methods and results. First of all, the
two-isocline method which was developed by N.P. Erugin
is used; see Gaiko (2003). The isocline portrait is the
most natural construction in the corresponding polynomial
equation. It is sufficient to have only two isoclines (of zero
and infinity) to obtain principal information on the origi-
nal system, because these two isoclines are the right-hand
sides of the system. Geometric properties of isoclines (con-
ics, cubics, quartics, etc.) are well-known, and all isocline
portraits can be easily constructed. By means of them,
all topologically different qualitative pictures of integral
curves to within a number of limit cycles and distinguish-
ing center and focus can be obtained. Thus it is possible
to carry out a rough topological classification of the phase
portraits for the polynomial systems. It is the first ap-
plication of Erugin’s method. After studying contact and
rotation properties of isoclines, the simplest (canonical)
systems containing limit cycles can be also constructed.
Two groups of parameters can be distinguished in such
systems: static and dynamic. Static parameters determine
the behavior of the phase trajectories in principle, since
they control the number, position and character of singular
points in a finite part of the plane (finite singularities).
Parameters from the first group determine also a possible

� The first author was supported by the Netherlands Organization
for Scientific Research (NWO) and the Institute of Advanced Scien-
tific Studies (IHÉS, France)
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behavior of separatrices and singular points at infinity (in-
finite singularities) under the variation of the parameters
from the second group. Dynamic parameters are rotation
parameters. They do not change the number, position
and index of finite singularities and involve the vector
field into directional rotation. The rotation parameters
allow to control infinite singularities, the behavior of limit
cycles and separatrices. The cyclicity of singular points and
separatrix cycles, the behavior of semi-stable and other
multiple limit cycles are controlled by these parameters as
well. Therefore, by means of the rotation parameters, it is
possible to control all limit cycle bifurcations and to solve
the most complicated problems of the qualitative theory
of polynomial systems; see Gaiko (2003).

We have already presented a solution of Hilbert’s Sixteenth
Problem in the quadratic case of polynomial systems
proving that for quadratic systems four is really the
maximum number of limit cycles and (3 : 1) is their
only possible distribution. The proof is carried out by
contradiction applying catastrophe theory. On the first
step, the non-existence of four limit cycles surrounding a
singular point is proved. A canonical system containing
three field-rotation parameters is considered and it is
supposed that this system has four limit cycles around the
origin. Thus we get into some three-dimensional domain
of the field rotation parameters being restricted by some
conditions on the rest two parameters corresponding to
definite cases of singular points in the phase plane. This
three-parameter domain of four limit cycles is bounded
by three fold bifurcation surfaces forming a swallow-
tail bifurcation surface of multiplicity-four limit cycles.
Since the corresponding maximal one-parameter family of
multiplicity-four limit cycles generated by a field rotation

5th IFAC Conference on Analysis and Control of Chaotic Systems
Eindhoven, The Netherlands, Oct 30 - Nov 1, 2018

Copyright © 2018 IFAC 160



	 Valery Gaiko  et al. / IFAC PapersOnLine 51-33 (2018) 144–149	 145

Bifurcation Analysis of a Multi-Parameter
Liénard Polynomial System �

Valery Gaiko ∗ Cornelis Vuik ∗∗ Huibert Reijm ∗∗∗

∗ United Institute of Informatics Problems, National Academy of
Sciences of Belarus, Minsk 220012, Belarus

(e-mail: valery.gaiko@gmail.com)
∗∗ Institute of Applied Mathematics, Delft University of Technology,

2600 GA Delft, The Netherlands (e-mail: c.vuik@tudelft.nl)
∗∗∗ Institute of Applied Mathematics, Delft University of Technology,
2600 GA Delft, The Netherlands (e-mail: hugoreijm@yahoo.com)

Abstract: In this paper, we study a multi-parameter Liénard polynomial system carrying out
its global bifurcation analysis. To control the global bifurcations of limit cycle in this systems,
it is necessary to know the properties and combine the effects of all its field rotation parameters.
It can be done by means of the development of our bifurcational geometric method based on the
application of a canonical system with field rotation parameters. Using this method, we present
a solution of Hilbert’s Sixteenth Problem on the maximum number of limit cycles and their
distribution for the Liénard polynomial system. We also conduct some numerical experiments
to illustrate the obtained results.

Keywords: multi-parameter Liénard polynomial system, global bifurcation analysis,
field rotation parameter, limit cycle.

1. INTRODUCTION

We develop geometric aspects of bifurcation theory for
studying multi-parameter planar polynomial dynamical
systems. It gives a global approach to the qualitative
analysis of such systems and helps to combine all other
approaches, their methods and results. First of all, the
two-isocline method which was developed by N.P. Erugin
is used; see Gaiko (2003). The isocline portrait is the
most natural construction in the corresponding polynomial
equation. It is sufficient to have only two isoclines (of zero
and infinity) to obtain principal information on the origi-
nal system, because these two isoclines are the right-hand
sides of the system. Geometric properties of isoclines (con-
ics, cubics, quartics, etc.) are well-known, and all isocline
portraits can be easily constructed. By means of them,
all topologically different qualitative pictures of integral
curves to within a number of limit cycles and distinguish-
ing center and focus can be obtained. Thus it is possible
to carry out a rough topological classification of the phase
portraits for the polynomial systems. It is the first ap-
plication of Erugin’s method. After studying contact and
rotation properties of isoclines, the simplest (canonical)
systems containing limit cycles can be also constructed.
Two groups of parameters can be distinguished in such
systems: static and dynamic. Static parameters determine
the behavior of the phase trajectories in principle, since
they control the number, position and character of singular
points in a finite part of the plane (finite singularities).
Parameters from the first group determine also a possible
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behavior of separatrices and singular points at infinity (in-
finite singularities) under the variation of the parameters
from the second group. Dynamic parameters are rotation
parameters. They do not change the number, position
and index of finite singularities and involve the vector
field into directional rotation. The rotation parameters
allow to control infinite singularities, the behavior of limit
cycles and separatrices. The cyclicity of singular points and
separatrix cycles, the behavior of semi-stable and other
multiple limit cycles are controlled by these parameters as
well. Therefore, by means of the rotation parameters, it is
possible to control all limit cycle bifurcations and to solve
the most complicated problems of the qualitative theory
of polynomial systems; see Gaiko (2003).

We have already presented a solution of Hilbert’s Sixteenth
Problem in the quadratic case of polynomial systems
proving that for quadratic systems four is really the
maximum number of limit cycles and (3 : 1) is their
only possible distribution. The proof is carried out by
contradiction applying catastrophe theory. On the first
step, the non-existence of four limit cycles surrounding a
singular point is proved. A canonical system containing
three field-rotation parameters is considered and it is
supposed that this system has four limit cycles around the
origin. Thus we get into some three-dimensional domain
of the field rotation parameters being restricted by some
conditions on the rest two parameters corresponding to
definite cases of singular points in the phase plane. This
three-parameter domain of four limit cycles is bounded
by three fold bifurcation surfaces forming a swallow-
tail bifurcation surface of multiplicity-four limit cycles.
Since the corresponding maximal one-parameter family of
multiplicity-four limit cycles generated by a field rotation
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and index of finite singularities and involve the vector
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cycles and separatrices. The cyclicity of singular points and
separatrix cycles, the behavior of semi-stable and other
multiple limit cycles are controlled by these parameters as
well. Therefore, by means of the rotation parameters, it is
possible to control all limit cycle bifurcations and to solve
the most complicated problems of the qualitative theory
of polynomial systems; see Gaiko (2003).

We have already presented a solution of Hilbert’s Sixteenth
Problem in the quadratic case of polynomial systems
proving that for quadratic systems four is really the
maximum number of limit cycles and (3 : 1) is their
only possible distribution. The proof is carried out by
contradiction applying catastrophe theory. On the first
step, the non-existence of four limit cycles surrounding a
singular point is proved. A canonical system containing
three field-rotation parameters is considered and it is
supposed that this system has four limit cycles around the
origin. Thus we get into some three-dimensional domain
of the field rotation parameters being restricted by some
conditions on the rest two parameters corresponding to
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proving that for quadratic systems four is really the
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step, the non-existence of four limit cycles surrounding a
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is monotonic, it is proved that it cannot be cyclic and
terminates either at the origin or on some separatrix
cycle surrounding the origin. Besides, we know absolutely
precisely the cyclicity of the singular point which is equal
to three and therefore we have got a contradiction with
the termination principle stating that the multiplicity
of limit cycles cannot be higher than the multiplicity
(cyclicity) of the singular point in which they terminate.
Since we know the concrete properties of all three field
rotation parameters in the canonical system and can
control simultaneously bifurcations of limit cycles around
different singular points, we are able to complete the proof
of the theorem; see Gaiko (2003). The same result can be
obtained by purely geometric methods as well; see Gaiko
(2008).

We have also established some preliminary results on ge-
neralizing our ideas and methods to special planar cubic,
quartic and other polynomial dynamical systems. In Gaiko
et al. (2004), we have constructed a canonical cubic dy-
namical system of Kukles type and have carried out the
global qualitative analysis of its special case corresponding
to a generalized Liénard equation. In Gaiko et al. (2017),
using the Wintner–Perko termination principle of multiple
limit cycles and our bifurcational geometric approach, we
have solved the problem on the maximum number and
distribution of limit cycles in the general Kukles cubic-
linear system. In Botelho et al. (2006), we have established
the global qualitative analysis of centrally symmetric cubic
systems which are used as learning models of planar neural
networks. In Broer et al. (2010), we have carried out the
global bifurcation analysis of a quartic dynamical system
which models the dynamics of the populations of predators
and their prey in a given ecological system. We have also
completed the study of multiple limit cycle bifurcations
in the well-known FitzHugh–Nagumo neuronal model;
see Gaiko (2011). Besides, we have presented a solution
of Smale’s Thirteenth Problem; see Smale (1998), proving
that the Liénard system with a polynomial of degree 2k+1
can have at most k limit cycles; see Gaiko (2012a). Genera-
lizing the obtained results, we have presented a solution of
Hilbert’s Sixteenth Problem on the maximum number of
limit cycles surrounding a singular point for an arbitrary
polynomial system; see Gaiko (2012a).

In Section 2 of this paper, applying a canonical system
with field rotation parameters and using geometric proper-
ties of the spirals filling the interior and exterior domains
of limit cycles, we solve the limit cycle problem for the
general Liénard polynomial system with an arbitrary (but
finite) number of singular points generalizing our previous
results which we obtained in Gaiko (2012b) and Gaiko
(2012c) under some assumptions on the parameters of the
Liénard system. There are many examples in the natural
sciences and technology in which this and related systems
are applied. Such systems are often used to model either
mechanical or electrical, or biomedical systems, and in
the literature, many systems are transformed into Liénard
type to aid in the investigations. They can be used, e. g.,
in certain mechanical systems with damping and restoring
forces, when modeling wind rock phenomena and surge
in jet engines. Such systems can be also used to model
resistor-inductor-capacitor circuits with non-linear circuit
elements. Recently, e. g., a Liénard system has been shown

to describe the operation of an optoelectronics circuit that
uses a resonant tunnelling diode to drive a laser diode to
make an optoelectronic voltage controlled oscillator. There
are also some examples of using Liénard type systems in
ecology and epidemiology. See Gaiko (2012b) and Gaiko
(2012c) for the references. In this paper, we conduct some
numerical experiments to illustrate the obtained results;
see Vuik et al. (2015).

2. LIÉNARD’S POLYNOMIAL SYSTEM

In this Section, we continue studying the Liénard equation

ẍ+ f(x) ẋ+ g(x) = 0 (1)

and the corresponding dynamical system

ẋ = y, ẏ = −g(x)− f(x)y (2)

which we have done in Gaiko (2012b) and Gaiko (2012c).

We suppose that system (2), where g(x) and f(x) are
arbitrary polynomial, has an anti-saddle (a node or a focus,
or a center) at the origin and write it in the form

ẋ = y,

ẏ = −x (1 + a1 x+ . . .+ a2l x
2l)

+y (α0 + α1 x+ . . .+ α2k x
2k).

(3)

Suppose that a21 + . . . + a22l �= 0 in system (3). The finite
singularities of (3) are determined by the algebraic system

x (1 + a1 x+ . . .+ a2l x
2l) = 0, y = 0. (4)

This system always has an anti-saddle at the origin and, in
general, can have at most 2l + 1 finite singularities which
lie on the x-axis and are distributed so that a saddle
(or saddle-node) is followed by a node or a focus, or a
center and vice versa; see Bautin et al. (1990). For studying
the infinite singularities, the methods applied in Bautin
et al. (1990) for Rayleigh’s and van der Pol’s equations
and also Erugin’s two-isocline method developed in Gaiko
(2003) can be used.

Following Gaiko (2003), we will study limit cycle bifurca-
tions of (3) by means of canonical systems containing field
rotation parameters of (3); see Bautin et al. (1990) and
Gaiko (2003).

Theorem 1. The Liénard polynomial system (3) with limit
cycles can be reduced to one of the canonical forms:

ẋ = y,

ẏ = −x (1 + a1x+ . . .+ a2lx
2l)

+ y(α0−β1−. . .−β2k−1+β1x+α2x
2+. . .

+β2k−1x
2k−1+α2kx

2k)

(5)

or

ẋ = y ≡ P (x, y),

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(α0−β1−. . .−β2k−1+β1x+α2x
2+. . .

+β2k−1x
2k−1+α2kx

2k) ≡ Q(x, y),

(6)

where 1 + a1x + . . . + a2lx
2l �= 0, α0, α2, . . . , α2k are

field rotation parameters and β1, β3, . . . , β2k−1 are semi-
rotation parameters.

IFAC CHAOS 2018
Eindhoven, The Netherlands, Oct 30 - Nov 1, 2018

161



146	 Valery Gaiko  et al. / IFAC PapersOnLine 51-33 (2018) 144–149

Proof. Let us compare system (3) with (5) and (6). It is
easy to see that system (5) has the only finite singular
point: an anti-saddle at the origin. System (6) has at list
two singular points including an anti-saddle at the origin
and a saddle which, without loss of generality, can be
always putted into the point (1, 0). Instead of the odd
parameters α1, α3, . . . , α2k−1 in system (3), also without
loss of generality, we have introduced new parameters β1,
β3, . . . , β2k−1 into (5) and (6).

We will study now system (6) (system (5) can be studied
absolutely similarly). Let all of the parameters α0, α2, . . . ,
α2k and β1, β3, . . . , β2k−1 vanish in this system,

ẋ = y, ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1), (7)

and consider the corresponding equation

dy

dx
=

x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

y
≡ F (x, y). (8)

Since F (x,−y) = −F (x, y), the direction field of (8) (and
the vector field of (7) as well) is symmetric with respect
to the x-axis. It follows that for arbitrary values of the
parameters b1, . . . , b2l−1 system (7) has centers as anti-
saddles and cannot have limit cycles surrounding these
points. Therefore, we can fix the parameters b1, . . . , b2l−1

in system (6), fixing the position of its finite singularities
on the x-axis.

To prove that the even parameters α0, α2, . . . , α2k rotate
the vector field of (6), let us calculate the following
determinants:

∆α0 = P Q′
α0

−QP ′
α0

= y2 ≥ 0,

∆α2
= P Q′

α2
−QP ′

α2
= x2y2 ≥ 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆α2k
= P Q′

α2k
−QP ′

α2k
= x2ky2 ≥ 0.

By definition of a field rotation parameter; see Bautin et al.
(1990), Gaiko (2003), and Perko (2002), for increasing each
of the parameters α0, α2, . . . , α2k, under the fixed others,
the vector field of system (6) is rotated in the positive
direction (counterclockwise) in the whole phase plane; and,
conversely, for decreasing each of these parameters, the
vector field of (6) is rotated in the negative direction
(clockwise).

Calculating the corresponding determinants for the pa-
rameters β1, β3, . . . , β2k−1, we can see that

∆β1 = P Q′
β1

−QP ′
β1

= (x− 1) y2,

∆β3
= P Q′

β3
−QP ′

β3
= (x3 − 1) y2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆β2k−1
= P Q′

β2k−1
−QP ′

β2k−1
= (x2k−1− 1) y2.

It follows from Bautin et al. (1990) and Gaiko (2003) that,
for increasing each of the parameters β1, β3, . . . , β2k−1,
under the fixed others, the vector field of system (6) is
rotated in the positive direction (counterclockwise) in the
half-plane x > 1 and in the negative direction (clockwise)
in the half-plane x < 1 and vice versa for decreasing each
of these parameters. We will call these parameters as semi-
rotation ones.

Thus, for studying limit cycle bifurcations of (3), it is suffi-
cient to consider the canonical systems (5) and (6) contain-
ing the field rotation parameters α0, α2, . . . , α2k and the
semi-rotation parameters β1, β3, . . . , β2k−1. The theorem
is proved.

By means of the canonical systems (5) and (6), we will
prove the following theorem.

Theorem 2. The Liénard polynomial system (3) can have
at most k+ l+1 limit cycles, k+1 surrounding the origin
and l surrounding one by one the other singularities of (3).

Proof. According to Theorem 1, for the study of limit
cycle bifurcations of system (3), it is sufficient to consider
the canonical systems (5) and (6) containing the field
rotation parameters α0, α2, . . . , α2k and the semi-rotation
parameters β1, β3, . . . , β2k−1. We will work with (6) again
(system (5) can be considered in a similar way).

Vanishing all of the parameters α0, α2, . . . , α2k and β1,
β3, . . . , β2k−1 in (6), we will have system (7) which is
symmetric with respect to the x-axis and has centers as
anti-saddles. Its center domains are bounded by either
separatrix loops or digons of the saddles or saddle-nodes
of (7) lying on the x-axis.

Let us input successively the semi-rotation parameters
β1, β3, . . . , β2k−1 into system (7) beginning with the
parameters at the highest degrees of x and alternating
with their signs. So, begin with the parameter β2k−1 and
let, for definiteness, β2k−1 > 0:

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(−β2k−1 + β2k−1x
2k−1).

(9)

In this case, the vector field of (9) is rotated in the negative
direction (clockwise) in the half-plane x < 1 turning the
center at the origin into a rough stable focus. All of the
other centers lying in the half-plane x > 1 become rough
unstable foci, since the vector field of (9) is rotated in
the positive direction (counterclockwise) in this half-plane;
see Bautin et al. (1990) and Gaiko (2003).

Fix β2k−1 and input the parameter β2k−3 < 0 into (9):

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(−β2k−3 − β2k−1 + β2k−3x
2k−3 + β2k−1x

2k−1).

(10)

Then the vector field of (10) is rotated in the opposite
directions in each of the half-planes x < 1 and x > 1.
Under decreasing β2k−3, when β2k−3 = −β2k−1, the
focus at the origin becomes nonrough (weak), changes
the character of its stability and generates a stable limit
cycle. All of the other foci in the half-plane x > 1 will
also generate unstable limit cycles for some values of
β2k−3 after changing the character of their stability. Under
further decreasing β2k−3, all of the limit cycles will expand
disappearing on separatrix cycles of (10); see Bautin et al.
(1990) and Gaiko (2003).

Denote the limit cycle surrounding the origin by Γ0,
the domain outside the cycle by D01, the domain inside
the cycle by D02 and consider logical possibilities of
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Proof. Let us compare system (3) with (5) and (6). It is
easy to see that system (5) has the only finite singular
point: an anti-saddle at the origin. System (6) has at list
two singular points including an anti-saddle at the origin
and a saddle which, without loss of generality, can be
always putted into the point (1, 0). Instead of the odd
parameters α1, α3, . . . , α2k−1 in system (3), also without
loss of generality, we have introduced new parameters β1,
β3, . . . , β2k−1 into (5) and (6).

We will study now system (6) (system (5) can be studied
absolutely similarly). Let all of the parameters α0, α2, . . . ,
α2k and β1, β3, . . . , β2k−1 vanish in this system,

ẋ = y, ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1), (7)

and consider the corresponding equation

dy

dx
=

x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

y
≡ F (x, y). (8)

Since F (x,−y) = −F (x, y), the direction field of (8) (and
the vector field of (7) as well) is symmetric with respect
to the x-axis. It follows that for arbitrary values of the
parameters b1, . . . , b2l−1 system (7) has centers as anti-
saddles and cannot have limit cycles surrounding these
points. Therefore, we can fix the parameters b1, . . . , b2l−1

in system (6), fixing the position of its finite singularities
on the x-axis.

To prove that the even parameters α0, α2, . . . , α2k rotate
the vector field of (6), let us calculate the following
determinants:

∆α0 = P Q′
α0

−QP ′
α0

= y2 ≥ 0,

∆α2
= P Q′

α2
−QP ′

α2
= x2y2 ≥ 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆α2k
= P Q′

α2k
−QP ′

α2k
= x2ky2 ≥ 0.

By definition of a field rotation parameter; see Bautin et al.
(1990), Gaiko (2003), and Perko (2002), for increasing each
of the parameters α0, α2, . . . , α2k, under the fixed others,
the vector field of system (6) is rotated in the positive
direction (counterclockwise) in the whole phase plane; and,
conversely, for decreasing each of these parameters, the
vector field of (6) is rotated in the negative direction
(clockwise).

Calculating the corresponding determinants for the pa-
rameters β1, β3, . . . , β2k−1, we can see that

∆β1 = P Q′
β1

−QP ′
β1

= (x− 1) y2,

∆β3
= P Q′

β3
−QP ′

β3
= (x3 − 1) y2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆β2k−1
= P Q′

β2k−1
−QP ′

β2k−1
= (x2k−1− 1) y2.

It follows from Bautin et al. (1990) and Gaiko (2003) that,
for increasing each of the parameters β1, β3, . . . , β2k−1,
under the fixed others, the vector field of system (6) is
rotated in the positive direction (counterclockwise) in the
half-plane x > 1 and in the negative direction (clockwise)
in the half-plane x < 1 and vice versa for decreasing each
of these parameters. We will call these parameters as semi-
rotation ones.

Thus, for studying limit cycle bifurcations of (3), it is suffi-
cient to consider the canonical systems (5) and (6) contain-
ing the field rotation parameters α0, α2, . . . , α2k and the
semi-rotation parameters β1, β3, . . . , β2k−1. The theorem
is proved.

By means of the canonical systems (5) and (6), we will
prove the following theorem.

Theorem 2. The Liénard polynomial system (3) can have
at most k+ l+1 limit cycles, k+1 surrounding the origin
and l surrounding one by one the other singularities of (3).

Proof. According to Theorem 1, for the study of limit
cycle bifurcations of system (3), it is sufficient to consider
the canonical systems (5) and (6) containing the field
rotation parameters α0, α2, . . . , α2k and the semi-rotation
parameters β1, β3, . . . , β2k−1. We will work with (6) again
(system (5) can be considered in a similar way).

Vanishing all of the parameters α0, α2, . . . , α2k and β1,
β3, . . . , β2k−1 in (6), we will have system (7) which is
symmetric with respect to the x-axis and has centers as
anti-saddles. Its center domains are bounded by either
separatrix loops or digons of the saddles or saddle-nodes
of (7) lying on the x-axis.

Let us input successively the semi-rotation parameters
β1, β3, . . . , β2k−1 into system (7) beginning with the
parameters at the highest degrees of x and alternating
with their signs. So, begin with the parameter β2k−1 and
let, for definiteness, β2k−1 > 0:

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(−β2k−1 + β2k−1x
2k−1).

(9)

In this case, the vector field of (9) is rotated in the negative
direction (clockwise) in the half-plane x < 1 turning the
center at the origin into a rough stable focus. All of the
other centers lying in the half-plane x > 1 become rough
unstable foci, since the vector field of (9) is rotated in
the positive direction (counterclockwise) in this half-plane;
see Bautin et al. (1990) and Gaiko (2003).

Fix β2k−1 and input the parameter β2k−3 < 0 into (9):

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(−β2k−3 − β2k−1 + β2k−3x
2k−3 + β2k−1x

2k−1).

(10)

Then the vector field of (10) is rotated in the opposite
directions in each of the half-planes x < 1 and x > 1.
Under decreasing β2k−3, when β2k−3 = −β2k−1, the
focus at the origin becomes nonrough (weak), changes
the character of its stability and generates a stable limit
cycle. All of the other foci in the half-plane x > 1 will
also generate unstable limit cycles for some values of
β2k−3 after changing the character of their stability. Under
further decreasing β2k−3, all of the limit cycles will expand
disappearing on separatrix cycles of (10); see Bautin et al.
(1990) and Gaiko (2003).

Denote the limit cycle surrounding the origin by Γ0,
the domain outside the cycle by D01, the domain inside
the cycle by D02 and consider logical possibilities of
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the appearance of other (semi-stable) limit cycles from
a “trajectory concentration” surrounding this singular
point. It is clear that, under decreasing the parameter
β2k−3, a semi-stable limit cycle cannot appear in the
domain D02, since the focus spirals filling this domain will
untwist and the distance between their coils will increase
because of the vector field rotation; see Gaiko (2003).

By contradiction, we can also prove that a semi-stable limit
cycle cannot appear in the domainD01. Suppose it appears
in this domain for some values of the parameters β∗

2k−1 > 0
and β∗

2k−3 < 0. Return to system (7) and change the
inputting order for the semi-rotation parameters. Input
first the parameter β2k−3 < 0:

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(−β2k−3 + β2k−3x
2k−3).

(11)

Fix it under β2k−3 = β∗
2k−3. The vector field of (11) is

rotated counterclockwise and the origin turns into a rough
unstable focus. Inputting the parameter β2k−1 > 0 into
(11), we get again system (10) the vector field of which is
rotated clockwise. Under this rotation, a stable limit cycle
Γ0 will appear from a separatrix cycle for some value of
β2k−1. This cycle will contract, the outside spirals winding
onto the cycle will untwist and the distance between their
coils will increase under increasing β2k−1 to the value
β∗
2k−1. It follows that there are no values of β∗

2k−3 < 0
and β∗

2k−1 > 0 for which a semi-stable limit cycle could
appear in the domain D01.

This contradiction proves the uniqueness of a limit cycle
surrounding the origin in system (10) for any values of the
parameters β2k−3 and β2k−1 of different signs. Obviously,
if these parameters have the same sign, system (10) has
no limit cycles surrounding the origin at all. On the same
reason, this system cannot have more than l limit cycles
surrounding the other singularities (foci or nodes) of (10)
one by one.

It is clear that inputting the other semi-rotation parame-
ters β2k−5, . . . , β1 into system (10) will not give us more
limit cycles, since all of these parameters are rough with
respect to the origin and the other anti-saddles lying in
the half-plane x > 1. Therefore, the maximum number of
limit cycles for the system

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(−β1 − . . .− β2k−3 − β2k−1 + β1x+ . . .

+β2k−3x
2k−3 + β2k−1x

2k−1)

(12)

is equal to l + 1 and they surround the anti-saddles (foci
or nodes) of (12) one by one.

Suppose that β1 + . . .+ β2k−3 + β2k−1 > 0 and input the
last rough parameter α0 > 0 into system (12):

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(α0 − β1 − . . .− β2k−1 + β1x+ . . .+ β2k−1x
2k−1).

(13)

This parameter rotating the vector field of (13) counter-
clockwise in the whole phase plane also will not give us

more limit cycles, but under increasing α0, when α0 = β1+
. . .+β2k−1, we can make the focus at the origin nonrough
(weak), after the disappearance of the limit cycle Γ0 in it.
Fix this value of the parameter α0 (α0 = α∗

0) :

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1).

(14)

Let us input now successively the other field rotation
parameters α2, . . . , α2k into system (14) beginning again
with the parameters at the highest degrees of x and alter-
nating with their signs. So, begin with the parameter α2k

and let α2k < 0:
ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2kx

2k).

(15)

In this case, the vector field of (15) is rotated clockwise
in the whole phase plane and the focus at the origin
changes the character of its stability generating again a
stable limit cycle. The limit cycles surrounding the other
singularities of (15) can also still exist. Denote the limit
cycle surrounding the origin by Γ1, the domain outside
the cycle by D1 and the domain inside the cycle by D2.
The uniqueness of a limit cycle surrounding the origin (and
limit cycles surrounding the other singularities) for system
(15) can be proved by contradiction like we have done
above for (10).

Let system (15) have the unique limit cycle Γ1 surrounding
the origin and l limit cycles surrounding the other anti-
saddles of (15). Fix the parameter α2k < 0 and input the
parameter α2k−2 > 0 into (15):

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2k−2x

2k−2 + α2kx
2k).

(16)

Then the vector field of (16) is rotated in the opposite
direction (counterclockwise) and the focus at the origin
immediately changes the character of its stability (since
its degree of nonroughness decreases and the sign of the
field rotation parameter at the lower degree of x changes)
generating the second (unstable) limit cycle Γ2. The limit
cycles surrounding the other singularities of (16) can
only disappear in the corresponding foci (because of their
roughness) under increasing the parameter α2k−2. Under
further increasing α2k−2, the limit cycle Γ2 will join with Γ1
forming a semi-stable limit cycle, Γ12, which will disappear
in a “trajectory concentration” surrounding the origin.
Can another semi-stable limit cycle appear around the
origin in addition to Γ12? It is clear that such a limit cycle
cannot appear either in the domain D1 bounded on the
inside by the cycle Γ1 or in the domain D3 bounded by the
origin and Γ2 because of the increasing distance between
the spiral coils filling these domains under increasing the
parameter.

To prove the impossibility of the appearance of a semi-
stable limit cycle in the domain D2 bounded by the cycles
Γ1 and Γ2 (before their joining), suppose the contrary,
i. e., that for some values of these parameters, α∗

2k < 0
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and α∗
2k−2 > 0, such a semi-stable cycle exists. Return to

system (14) again and input first the parameter α2k−2 > 0:

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2k−2x

2k−2).

(17)

This parameter rotates the vector field of (17) counter-
clockwise preserving the origin as a nonrough stable focus.

Fix this parameter under α2k−2 = α∗
2k−2 and input the

parameter α2k < 0 into (17) getting again system (16).
Since, by our assumption, this system has two limit cycles
surrounding the origin for α2k > α∗

2k, there exists some
value of the parameter, α12

2k (α12
2k < α∗

2k < 0), for which
a semi-stable limit cycle, Γ12, appears in system (16) and
then splits into a stable cycle Γ1 and an unstable cycle
Γ2 under further decreasing α2k. The formed domain D2

bounded by the limit cycles Γ1, Γ2 and filled by the spirals
will enlarge since, on the properties of a field rotation
parameter, the interior unstable limit cycle Γ2 will contract
and the exterior stable limit cycle Γ1 will expand under
decreasing α2k. The distance between the spirals of the
domain D2 will naturally increase, which will prevent the
appearance of a semi-stable limit cycle in this domain for
α2k < α12

2k.

Thus, there are no such values of the parameters, α∗
2k < 0

and α∗
2k−2 > 0, for which system (16) would have an

additional semi-stable limit cycle surrounding the origin.
Obviously, there are no other values of the parameters α2k

and α2k−2 for which system (16) would have more than two
limit cycles surrounding this singular point. On the same
reason, additional semi-stable limit cycles cannot appear
around the other singularities (foci or nodes) of (16).
Therefore, l + 2 is the maximum number of limit cycles
in system (16).

Suppose that system (16) has two limit cycles, Γ1 and
Γ2, surrounding the origin and l limit cycles surrounding
the other antisaddles of (16) (this is always possible if
−α2k � α2k−2 > 0). Fix the parameters α2k, α2k−2

and consider a more general system inputting the third
parameter, α2k−4 < 0, into (16):

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2k−4x

2k−4

+α2k−2x
2k−2 + α2kx

2k).

(18)

For decreasing α2k−4, the vector field of (18) will be
rotated clockwise and the focus at the origin will im-
mediately change the character of its stability generating
a third (stable) limit cycle, Γ3. With further decreasing
α2k−4, Γ3 will join with Γ2 forming a semi-stable limit
cycle, Γ23, which will disappear in a “trajectory concen-
tration” surrounding the origin; the cycle Γ1 will expand
disappearing on a separatrix cycle of (18).

Let system (18) have three limit cycles surrounding the
origin: Γ1, Γ2, Γ3. Could an additional semi-stable limit
cycle appear with decreasing α2k−4 after splitting of which
system (18) would have five limit cycles around the origin?
It is clear that such a limit cycle cannot appear either in
the domain D2 bounded by the cycles Γ1 and Γ2 or in

the domain D4 bounded by the origin and Γ3 because
of the increasing distance between the spiral coils filling
these domains after decreasing α2k−4. Consider two other
domains: D1 bounded on the inside by the cycle Γ1 and
D3 bounded by the cycles Γ2 and Γ3. As before, we will
prove the impossibility of the appearance of a semi-stable
limit cycle in these domains by contradiction.

Suppose that for some set of values of the parameters
α∗
2k < 0, α∗

2k−2 > 0 and α∗
2k−4 < 0 such a semi-stable

cycle exists. Return to system (14) again inputting first
the parameters α2k−2 > 0 and α2k−4 < 0:

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2k−4x

2k−4 + α2kx
2k).

(19)

Fix the parameter α2k−2 under the value α∗
2k−2. With

decreasing α2k−4, a separatrix cycle formed around the
origin will generate a stable limit cycle Γ1. Fix α2k−4 under
the value α∗

2k−4 and input the parameter α2k > 0 into (19)
getting system (18).

Since, by our assumption, (18) has three limit cycles for
α2k > α∗

2k, there exists some value of the parameter α23
2k

(α23
2k < α∗

2k < 0) for which a semi-stable limit cycle, Γ23,
appears in this system and then splits into an unstable
cycle Γ2 and a stable cycle Γ3 with further decreasing α2k.
The formed domain D3 bounded by the limit cycles Γ2, Γ3

and also the domain D1 bounded on the inside by the limit
cycle Γ1 will enlarge and the spirals filling these domains
will untwist excluding a possibility of the appearance of a
semi-stable limit cycle there.

All other combinations of the parameters α2k, α2k−2, and
α2k−4 are considered in a similar way. It follows that
system (18) can have at most l + 3 limit cycles.

If we continue the procedure of successive inputting the
field rotation parameters, α2k, . . . , α2, into system (14),

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2x

2 + . . .+ α2kx
2k),

(20)

it is possible to obtain k limit cycles surrounding the origin
and l surrounding one by one the other singularities (foci
or nodes) (−α2k � α2k−2 � −α2k−4 � α2k−6 � . . .).

Then, by means of the parameter α0 �= β1 + . . . + β2k−1

(α0 > α∗
0, if α2 < 0, and α0 < α∗

0, if α2 > 0), we will
have the canonical system (6) with an additional limit
cycle surrounding the origin and can conclude that this
system (i. e., the Liénard polynomial system (3) as well)
has at most k + l + 1 limit cycles, k + 1 surrounding the
origin and l surrounding one by one the antisaddles (foci
or nodes) of (6) (and (3) as well). The theorem is proved.
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and α∗
2k−2 > 0, such a semi-stable cycle exists. Return to

system (14) again and input first the parameter α2k−2 > 0:

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2k−2x

2k−2).

(17)

This parameter rotates the vector field of (17) counter-
clockwise preserving the origin as a nonrough stable focus.

Fix this parameter under α2k−2 = α∗
2k−2 and input the

parameter α2k < 0 into (17) getting again system (16).
Since, by our assumption, this system has two limit cycles
surrounding the origin for α2k > α∗

2k, there exists some
value of the parameter, α12

2k (α12
2k < α∗

2k < 0), for which
a semi-stable limit cycle, Γ12, appears in system (16) and
then splits into a stable cycle Γ1 and an unstable cycle
Γ2 under further decreasing α2k. The formed domain D2

bounded by the limit cycles Γ1, Γ2 and filled by the spirals
will enlarge since, on the properties of a field rotation
parameter, the interior unstable limit cycle Γ2 will contract
and the exterior stable limit cycle Γ1 will expand under
decreasing α2k. The distance between the spirals of the
domain D2 will naturally increase, which will prevent the
appearance of a semi-stable limit cycle in this domain for
α2k < α12

2k.

Thus, there are no such values of the parameters, α∗
2k < 0

and α∗
2k−2 > 0, for which system (16) would have an

additional semi-stable limit cycle surrounding the origin.
Obviously, there are no other values of the parameters α2k

and α2k−2 for which system (16) would have more than two
limit cycles surrounding this singular point. On the same
reason, additional semi-stable limit cycles cannot appear
around the other singularities (foci or nodes) of (16).
Therefore, l + 2 is the maximum number of limit cycles
in system (16).

Suppose that system (16) has two limit cycles, Γ1 and
Γ2, surrounding the origin and l limit cycles surrounding
the other antisaddles of (16) (this is always possible if
−α2k � α2k−2 > 0). Fix the parameters α2k, α2k−2

and consider a more general system inputting the third
parameter, α2k−4 < 0, into (16):

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2k−4x

2k−4

+α2k−2x
2k−2 + α2kx

2k).

(18)

For decreasing α2k−4, the vector field of (18) will be
rotated clockwise and the focus at the origin will im-
mediately change the character of its stability generating
a third (stable) limit cycle, Γ3. With further decreasing
α2k−4, Γ3 will join with Γ2 forming a semi-stable limit
cycle, Γ23, which will disappear in a “trajectory concen-
tration” surrounding the origin; the cycle Γ1 will expand
disappearing on a separatrix cycle of (18).

Let system (18) have three limit cycles surrounding the
origin: Γ1, Γ2, Γ3. Could an additional semi-stable limit
cycle appear with decreasing α2k−4 after splitting of which
system (18) would have five limit cycles around the origin?
It is clear that such a limit cycle cannot appear either in
the domain D2 bounded by the cycles Γ1 and Γ2 or in

the domain D4 bounded by the origin and Γ3 because
of the increasing distance between the spiral coils filling
these domains after decreasing α2k−4. Consider two other
domains: D1 bounded on the inside by the cycle Γ1 and
D3 bounded by the cycles Γ2 and Γ3. As before, we will
prove the impossibility of the appearance of a semi-stable
limit cycle in these domains by contradiction.

Suppose that for some set of values of the parameters
α∗
2k < 0, α∗

2k−2 > 0 and α∗
2k−4 < 0 such a semi-stable

cycle exists. Return to system (14) again inputting first
the parameters α2k−2 > 0 and α2k−4 < 0:

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2k−4x

2k−4 + α2kx
2k).

(19)

Fix the parameter α2k−2 under the value α∗
2k−2. With

decreasing α2k−4, a separatrix cycle formed around the
origin will generate a stable limit cycle Γ1. Fix α2k−4 under
the value α∗

2k−4 and input the parameter α2k > 0 into (19)
getting system (18).

Since, by our assumption, (18) has three limit cycles for
α2k > α∗

2k, there exists some value of the parameter α23
2k

(α23
2k < α∗

2k < 0) for which a semi-stable limit cycle, Γ23,
appears in this system and then splits into an unstable
cycle Γ2 and a stable cycle Γ3 with further decreasing α2k.
The formed domain D3 bounded by the limit cycles Γ2, Γ3

and also the domain D1 bounded on the inside by the limit
cycle Γ1 will enlarge and the spirals filling these domains
will untwist excluding a possibility of the appearance of a
semi-stable limit cycle there.

All other combinations of the parameters α2k, α2k−2, and
α2k−4 are considered in a similar way. It follows that
system (18) can have at most l + 3 limit cycles.

If we continue the procedure of successive inputting the
field rotation parameters, α2k, . . . , α2, into system (14),

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2x

2 + . . .+ α2kx
2k),

(20)

it is possible to obtain k limit cycles surrounding the origin
and l surrounding one by one the other singularities (foci
or nodes) (−α2k � α2k−2 � −α2k−4 � α2k−6 � . . .).

Then, by means of the parameter α0 �= β1 + . . . + β2k−1

(α0 > α∗
0, if α2 < 0, and α0 < α∗

0, if α2 > 0), we will
have the canonical system (6) with an additional limit
cycle surrounding the origin and can conclude that this
system (i. e., the Liénard polynomial system (3) as well)
has at most k + l + 1 limit cycles, k + 1 surrounding the
origin and l surrounding one by one the antisaddles (foci
or nodes) of (6) (and (3) as well). The theorem is proved.
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