

Delft University of Technology

Configuration of the Actor and Critic Network of the Deep Reinforcement Learning
controller for Multi-Energy Storage System

Páramo-Balsa, Paula ; Gonzalez-Longatt, Francisco; Acosta , Martha N. ; Rueda Torres, José Luis;
Palensky, Peter; Sanchez, Francisco; Roldan-Fernandez, Juan Manuel; Burgos-Payán, Manuel
DOI
10.1109/GPECOM55404.2022.9815793
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 2022 4th Global Power, Energy and Communication Conference (GPECOM)

Citation (APA)
Páramo-Balsa, P., Gonzalez-Longatt, F., Acosta , M. N., Rueda Torres, J. L., Palensky, P., Sanchez, F.,
Roldan-Fernandez, J. M., & Burgos-Payán, M. (2022). Configuration of the Actor and Critic Network of the
Deep Reinforcement Learning controller for Multi-Energy Storage System. In Proceedings of the 2022 4th
Global Power, Energy and Communication Conference (GPECOM) (pp. 564-568). Article 9815793 IEEE.
https://doi.org/10.1109/GPECOM55404.2022.9815793
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/GPECOM55404.2022.9815793
https://doi.org/10.1109/GPECOM55404.2022.9815793

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

978-1-6654-6925-8/22/$31.00 ©2022 IEEE

Configuration of the Actor and Critic Network of the
Deep Reinforcement Learning controller for Multi-

Energy Storage System

Paula Páramo-Balsa
Department of Electrical Engineering

Universidad de Sevilla

Seville, Spain
pparamo@us.es

Jose Luis Rueda Torres
Department of Electrical Sustainable

Energy
Delft University of Technology

Delft, The Netherlands
J.L.RuedaTorres@tudelft.nl

F. Gonzalez-Longatt
Department of Electrical Engineering,

Information Technology and

Cybernetics
University of South-Eastern Norway

Porsgrunn, Norway
fglongatt@fglongatt.org

Peter Palensky
Department of Electrical Sustainable

Energy
Delft University of Technology

Delft, The Netherlands
P.Palensky@tudelft.nl

Martha N. Acosta
Department of Electrical Engineering,

Information Technology and

Cybernetics
University of South-Eastern Norway

Porsgrunn, Norway
Martha.Acosta@usn.no

Francisco Sanchez
Wolfson School of Mechanical,

Electrical and Manufacturing

Engineering
Loughborough University

Loughborough, UK
f.sanchez@ieee.org

Juan Manuel Roldán-Fernández
Department of Electrical Engineering

Universidad de Sevilla

Seville, Spain
jmroldan@us.es

Manuel Burgos-Payán
Department of Electrical Engineering

Universidad de Sevilla

Seville, Spain
mburgos@us.es

Abstract—The computational burden and the time required

to train a deep reinforcement learning (DRL) can be

appreciable, especially for the particular case of a DRL control

used for frequency control of multi-electrical energy storage

(MEESS). This paper presents an assessment of four training

configurations of the actor and critic network to determine the

configuration training that produces the lower computational

time, considering the specific case of frequency control of

MEESS. The training configuration cases are defined

considering two processing units: CPU and GPU and are

evaluated considering serial and parallel computing using

MATLAB® 2020b Parallel Computing Toolbox. The agent used

for this assessment is the Deep Deterministic Policy Gradient

(DDPG) agent. The environment represents the dynamic model

to provide enhanced frequency response to the power system by

controlling the state of charge of energy storage systems.

Simulation results demonstrated that the best configuration to

reduce the computational time is training both actor and critic

network on CPU using parallel computing.

Keywords—actor-network, critic network, deep reinforcement

learning, energy storage systems, enhanced frequency response,

parallel computing.

I. INTRODUCTION

The 2021 United Nations Climate Change Conference,
COP26, produced the first multi-county reach net-zero
emissions (over 140 countries). However, reaching net-zero
emission is a complex task involving multiple actors in the

energy sector. The electricity sector and, in particular
electrical utilities, face a very complex path ahead. The very
drastic and fast move in the sector to cope needed to reach
zero-carbon implies the transition to high penetration of
generation coming from environmentally friendly sources at
the time. One necessary consequence is the sudden reduction
of the total system rotational inertia that negatively affects the
power system operation and security. However, seral
technologies are taking a position as enablers of the zero-net
future. The energy storage systems (ESS) are a desirable
alternative to counteract the lack of inertia of the power system
due to its controllability features and its ability to fast supply
active power to the power system [1], [2].

Currently, there is a wide variety of ESS technologies, but
among all the ESS, it is worth highlighting batteries (BESS),
supercapacitors (UCESS) and flywheels (FESS) [3]. Authors
in [4] proposed the use of a multi-electrical energy storage
system (MEESS) to provide fast frequency response service,
precisely the Enhanced Frequency Response (EFR) [5], [6].
The MEESS combines BESS, UCESS and FESS. In [4], a
two-layer controller was presented where a fuzzy logic control
was used to define the power reference of the MEESS
considering the frequency deviation and the state of charge
(SOC) of the storage assets. However, that publication made
evident the need to carefully control the SOC of BESS,
UCESS and FESS need be controlled to ensure it is within
certain limits and guarantee an adequate amount of energy to
operate when necessary [7].

4th Global Power, Energy and Communication Conference (IEEE GPECOM2022), June 14-17, 2022, Cappadocia/Turkey

564

20
22

 4
th

 G
lo

ba
l P

ow
er

, E
ne

rg
y

an
d

C
om

m
un

ic
at

io
n

C
on

fe
re

nc
e

(G
PE

C
O

M
) |

 9
78

-1
-6

65
4-

69
25

-8
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
G

PE
C

O
M

55
40

4.
20

22
.9

81
57

93

Authorized licensed use limited to: TU Delft Library. Downloaded on July 14,2022 at 09:12:43 UTC from IEEE Xplore. Restrictions apply.

Authors in [8] took advantage of reinforcement learning as
a universal function approximator and proposed a deep
reinforcement learning-based controller for the SOC
management of MEESS. The authors compare the
performance of the proposed Deep Reinforcement Learning
(DRL) to classical proportional integral derivative (PID)
control and a fuzzy logic controller (FLC), demonstrating the
suitability of the proposed approach.

The DRL consists of an agent and an environment that
interact through a sequence of actions, observations and
rewards. The agent takes action on the environment to
maximise the reward [8]. The training process is carried out
over many episodes for the agent to learn the actions that it
must take to get the maximum reward. Although the training
process might require considerable time, the use of
appropriate hardware reduces the total computational time.

The authors collaborate with the Digital Energy System
Laboratory, DigEnSys-Lab [9], where specialised hardware
has been implemented to develop research in the area of
artificial intelligence. As a consequence, this paper is
motivated by the need of the research team to experimentally
identify the most favourable hardware arrange when training
actor and critic networks to solve the delicate problem related
to frequency control using MEESS.

This scientific paper presents an experimental assessment
to determine the most favourable configuration to train the
Deep Deterministic Policy Gradient (DDPG) agent for Multi-
Energy Storage systems. It considers the central processing
unit (CPU) and graphics processing unit (GPU) to train the
DRL actor and critic network. Moreover, this assessment
considers the powerful advantages provided by parallel
computing. Finally, an experimental assessment of the
training process is performed in terms of computational time-
consuming (elapsed time) when the actor and critic network
training is carried out on only CPU, only GPU or a
combination of both.

The paper is structured as follows. Section II briefly
describes the reinforcement learning framework and its
components. Moreover, it describes the principle of frequency
control using DRL. Section III presents the serial and parallel
computing description and the main instructions used on
MATLAB® 2020b Parallel Computing Toolbox MATLAB®.
Section IV presents the experimental results and the principal
findings of this paper. Finally, Section V provide the main
conclusion of this paper.

II. DEEP REINFORCEMENT LEARNING IN FREQUENCY

RESPONSE CONTROL

The deep neuronal network (DNN) is an excellent option
to be used as a universal function approximator. If the DNN is
trained using reinforcement learning (RL) techniques, DRL
formation [8] is an attractive technique for control purposes.
The RL framework is composed of an agent and an
environment. The agent contains two components: (i) a policy
and (ii) a DRL algorithm. It receives a set of observations and
a reward which are used by the DRL algorithm to determine
the following action and provide a policy. The policy
maximises the total upcoming rewards. Meanwhile, the
environment represents the dynamic model of the problem to
be solved. The environment uses the actions coming from the
agent to achieve a task. It generates a set of observations that
are the resulting behaviour of the dynamic model. Then, it
calculates a reward that represents how well the actions

contribute to accomplishing the task. The primary purpose of
the RL is to train an agent to achieve a task inside an uncertain
environment. The RL framework, which contains the iteration
between the agent and the environment, is shown in Fig. 1.

There are several DRL algorithms in the literature, and
they can be classified into three categories: (i) Value-based,
(ii) policy-based and (iii) actor-critic. Depending on the DRL
algorithms, the agent uses one or several DNN for training the
policy and the DNN can be used in two different ways: (i) as
an actor-network which, for a given observation, it returns the
action that maximises the expected cumulative rewards and
(ii) as a critic network which, for a given observation and
action, it returns the expected value of the cumulative long-
term reward for the task.

Agent

Reward
ActionsObservations

DRL

algorithm

Policy

Environment

Policy

update

Fig. 1. Illustrative diagram showing the main components of the RL
framework and their iteractions and signal flow.

A. SOC control of the ESS in the RL framework

The structure of the RL framework is taken from [8]. The
main objective is to provide EFR services to the power system
while the SOC of the ESS is controlled. Below a brief
description is presented: (i) Agent: The DDPG, which is an
actor-critic algorithm type, is used. Every time step, the agent
generates a set of actions and receives a set of observations
and a reward. (ii) Environment: The environment consists of
the dynamic model of three ESS technologies (BESS, UCESS
and FESS) equipped with an EFR controller. Each time step
(t), the environment produces a set of outputs (observations
and reward) and receives a set of inputs which are the actions
generated by the agent. (iii) Actions: The actions are the
control reference of the ESS technologies and are related to
the injection/absorption of active power to charge or discharge
the ESS. (iv) Observations: The observation vector contains
the active power output, the previous control action, the SOC
signal and the SOC error signal of each ESS. (v) Rewards: The
total reward is the sum of the discrete and continuous rewards
obtained from the environment. The formulation of the
rewards is in such a way that penalised if the SOC is not within
predefined values by using the SOC error.

III. PARALLEL COMPUTING IN DRL

Since the emergence of the first computers, they have
evolved and become a fundamental tool in the research area in
recent years. Consequently, advances in various disciplines
have been greatly accelerated by advances in computing and
the reduction in computer prices [10], [11]. Traditionally,
computer programs were developed so that, given a set of
instructions, they were implemented in series. In this way,
only one instruction could be executed at a time, and the
subsequent instructions could not be executed and must wait
until the current instruction was finished. This can be seen in
Fig. 2. The problem to be solved is written as a set of
instructions executed one by one following the order in which
they were written. Recently, the significant technological

4th Global Power, Energy and Communication Conference (IEEE GPECOM2022), June 14-17, 2022, Cappadocia/Turkey

565

Authorized licensed use limited to: TU Delft Library. Downloaded on July 14,2022 at 09:12:43 UTC from IEEE Xplore. Restrictions apply.

advances in software and hardware have allowed models and
solve several complex problems closer to reality. This entails
defining more complex mathematical problems with a high
number of operations. For this reason, this type of serial
computation is not as efficient as the time it would take to
solve these problems would be extremely high, so the process
would not be computationally efficient [12]. Due to the
drawbacks mentioned above of serial computing, a new
concept to perform multiple processes simultaneously is
raised, and it is called parallel computing. The main objectives
of parallel computing are related to the possibility of adjusting
the model and software to reality. In this way, if several
processors are working simultaneously, it is possible to reduce
the simulation time and improve their efficiency significantly.

Problem

Processor

Nt 3t 2t 1t

Instructions

kt KK

Fig. 2. Block diagram depicting a generic scheme of serial computing.

Parallel computing enables the possibility of splitting the
main problem into several independent tasks, each containing
a set of instructions, where all tasks are executed
simultaneously. Moreover, each task executes its instruction
set using a serial computing process (see Fig. 3). Thus, parallel
computing produces a considerable reduction in total
execution time.

Processor

Processor

Processor

Processor

InstructionsProblem

Nt 3t 2t 1tkt KK

Fig. 3. Block diagram depicting a generic scheme of parallel computing.

Parallel computing usually deals with the Master / Worker
paradigm. Thus, a process acts as a coordinator, Master,
directing the rest, which acts as Workers. The Master is
responsible for dividing the problem into smaller tasks,
distributing them among the different Workers and receiving
the partial results to compose the final solution of the problem.
On the other hand, the Workers must receive the task to
perform, then process it and send the results to the Master.
This procedure is iterative until the Master has no more tasks
to solve. Also, the partial results received by the Master can
generate new tasks which must be distributed to the Workers
[13]. According to the user's choice, the Master can be
distributing the task to the Workers either in a synchronised or
non-synchronised way. In the synchronised distribution, the
Master waits until it receives all the Workers' results and then
generates a new set of data to distribute. Meanwhile, in the
non-synchronised distribution, the Master immediately after
receiving the result of any Worker it assigns a new set of data
to that Worker. Therefore, Workers do not require
synchronisation between them.

Nowadays, several computational programs use parallel
computing as the primary mechanism to speed up their
processes. One of those computational programs is
MATLAB® which is equipped with a powerful MATLAB®
Parallel Computing Toolbox that solves problems with a

significant computational load using multicore processors,
graphics processing units and clusters. This toolbox can
execute a task in parallel using several Workers (MATLAB®
calculation engines) that work locally. Therefore, if the
computer has multiple processors, the Workers will activate
them to perform operations more quickly. Fig. 4 depicts the
general architecture of the parallel computing toolbox.

Fig. 4. Illustrative architecture used by parallel computing toolbox [13].

The parallel computing toolbox is widely used in medical
image processing, control systems or Deep Learning (DL),
among others [14]. Focusing on the DL and neural networks
field, new forms of training have been developed to allow the
programmer to use several options such as the CPU, multiple
GPUs, or parallel computing to solve problems [15]. The
selection of any of these options is easily made by using the
following instruction:

 trainingOptions.ExecutionEnvironment = ‘multi-gpu’

However, this instruction is not valid for DRL
applications. The parallel computing toolbox only allows the
user to select GPU or CPU as an option to training the agents,
and it is done by using the following instruction:

 rlRepresentationOptions.UseDevice = ‘gpu’ or ‘cpu’

As a consequence, the multi-GPU option for DRL training
purposes has not to be developed and included in the parallel
computing tool. On the other hand, in order to speed up the
DRL training calculations and make it efficient, MATLAB®
allows user to select the Parallel Computing option within the
training options, and it is enabled by the following instruction:

 rlTrainingOptions.UseParallel = ‘true’

IV. EXPERIMENTS AND RESULTS

This section is dedicated to presenting the numerical
results of the actor and critic configuration assessment for a
DRL frequency controller for MEESS. In this paper, the focus
on the configuration of actor and critic based on the hardware,
the implementation of the DRL frequency controller for
MEESS was provided by the authors of [8]. Fig. 5 shows the
bloc diagram of the EFR controller of an EESS, which
determines the power reference, P*

EESS from the grid
frequency, f(t). Then, the EESS model takes as an output the
actual power response from the EESS, PEESS(t). This paper
considers the implementation of BESS, FESS and UCESS as
presented in [4], mode trails of modelling and parameters are
shown in [4].

The DRL agent-environment model of the frequency
control was modelled in Simulink®, Fig 6. and Fig 7. The full
details of the model and its parameters can be found in [8]. For
assessment purposes, the total simulation time is chosen as
1800 seconds, the time step is 1 second, and the maximum
number of episodes is 100. The experiments are divided into
two main tests: Test 1: serial computing and Test 2: parallel
computing. For each test, four possible training configurations

4th Global Power, Energy and Communication Conference (IEEE GPECOM2022), June 14-17, 2022, Cappadocia/Turkey

566

Authorized licensed use limited to: TU Delft Library. Downloaded on July 14,2022 at 09:12:43 UTC from IEEE Xplore. Restrictions apply.

of the actor and critic network training are considered, and it
is shown in Table I.

Enhanced Frequency

Controller

*

EESS
P

Electrical
energy
storage

system

()EESS
P t

d

dt

−

+

∆f

d

dt

()f t

*f

df

dt

EESSdP

dt

EESS
P

* E
E

S
S

P

∆f

Fig. 5. EFR controller integrated with the EESS to control output power
(PEESS) and ramp rate (dPEESS/dt). f * is the nominal system frequency (50 Hz)
[4].

at

DRL Agent

Target actor

Actor

Target critic

Critic

Q(s,a)

s

a

rt

st

y
L

Update θQ

Ω

μ(s|θμ)

replay
buffer

Noise
model

Environment

Rewards

States

st+1

rt+1

actions

Fig. 6. Overview of an RL agent trained with DDPG [8].

Calculate

rewards

Generate

observations

ρ1

Grid frequency

Pref1

ρN

PrefN

ESS1

EFRN

f

P
R

ef ESSN

P1

SOC1

PN

SOCN

rt

St

At

[ρ1,…,ρi,…,ρN]

Pi

ρi,t-1

SOCi

ʃΔSOCi

[ΔSOCi,t-4,…,ΔSOCi,t]

rc

rd

EFR1

f

P
R

ef

f

RL

Agent

Environment

Rewards

Obervations

actions

Fig. 7. Overview of the control environment used to train the DRL agent
[8].

TABLE I. ACTOR AND CRITIC NETWORK TRAINING CONFIGURATION

Network
Training Configuration

I II III IV

Actor CPU CPU GPU GPU

Critic CPU GPU CPU GPU

 The computational platform used for the training is a
specifically designed computer at the DigEnSys-Lab. The
computer uses an operating system, Windows 10 Pro (64 bit),
with 64 GB of RAM. The processor is an Intel® Xeon® W-
3235 CPU (3.30 GHz), and the graphic processor is an
NVIDIA GeForce RTX 2080 Ti GPU; for more details, visit
[9].

A. Test 1: Serial computing

The serial computing tests consists of evaluating the four
training configurations presented in Table I. The resulting
computational time after executing the training over 100
episodes, considering the four training configurations is
shown in Table II.

TABLE II. COMPUTATIONAL TIME RESULTS USING SERIAL

COMPUTING TO TRAIN THE ACTOR AND CRITIC NETWORK

Training

configuration

Serial Computing

Training Time (s) Time (h)

A 13,126 3.65

B - -

Training

configuration

Serial Computing

Training Time (s) Time (h)

C 13,983 3.88

D 15,610 4.34

From Table II, it can be observed that training
configurations A, C and D have been implemented
successfully. On the other hand, training configuration B,
which refers to training the actor-network on CPU and critic
network on GPU, failed. The DRL toolbox of MATLAB®
does not support such training configuration. The training
configuration A (CPU-CPU) shows the best performance, i.e.,
for the same 100 episodes, it takes 3.65 hours of training,
which compared with the worst performance produced by
training configurations D (GPU-GPU), it reduces the
computational time-consuming 15.9 %, saving 0.65 hours
(41.4 minutes). Even though using training configuration I to
train the actor and critic network reduces the computation
time, it must be noticed that the training just considered 100
episodes, and usually, the DRL uses at least 2000-3000
episodes to be correctly trained. Therefore, the computational
time using serial computing is still considered to be very high.
For instance, if 2000 episodes (20 times the current value) are
used, the computation time would be excessive,
approximately 73 hours.

B. Test 2: Parallel computing

Due to the high computation time required by the DRL to
carry out 100 training episodes using serial computing, the
MATLAB® Parallel Computing Toolbox is used to train the
actor and critic network. The training considers the same
parameter of serial computing: the total simulation time is
chosen as 1800 seconds, the time step is 1 second, and the
maximum number of episodes is 100. In this scenario, the four
training configurations defined in Table I are considered.
Besides, it is contemplated the effect of using the maximum
number of Workers available or if it is preferable to leave a
Worker available to perform the rest of the operations
required. The platform used for the training has 24 logical
processors, which is a maximum of 12 Workers. Table III
present the resulting computational time after executing the
training over 100 episodes, considering the four training
configurations defined in Table I.

TABLE III. COMPUTATIONAL TIME RESULTS USING PARALLEL

COMPUTING TO TRAIN THE ACTOR AND CRITIC NETWORK

Training

configuration

Parallel Computing

Maximum

workers
Training Time (s) Time (h)

A

11 3,606 1.00

12 3,910 1.09

B 4 - -

C
4 4,094 1.14

3 4,655 1.29

D 4 5,773 1.60

From Table III, it can be observed that the training
configuration B (CPU-GPU) the training failed as occurred
using serial computing. In general, the rest of the training
configurations have successful training and reduce around
one-third of the computational time concerning serial
computing. Another interesting result is that maintaining one
Worker free to perform other operation outcomes in a
computational time reduction of 10 %, in contrast, to use the
maximum number of Workers when using training

4th Global Power, Energy and Communication Conference (IEEE GPECOM2022), June 14-17, 2022, Cappadocia/Turkey

567

Authorized licensed use limited to: TU Delft Library. Downloaded on July 14,2022 at 09:12:43 UTC from IEEE Xplore. Restrictions apply.

configuration A (CPU-CPU). Meanwhile, in training
configuration C, which involves GPU and CPU, there is a
computational time reduction of around 20 % when the
maximum number of Workers are used compared with the
case when one Worker is set to be available.

Fig. 8. Computational time comparison for serial and parallel computing
using training configuration A(CPU – CPU), Test 2: Parallel computing.

The training configuration A (CPU-CPU) leaving one
Worker available is the best configuration to train the actor
and critic network since its configuration produces less
computational time in both serial and parallel computing.
Moreover, using parallel computing with training
configuration A and leaving one Worker available is the best
option since it reduces 73 % of the computational time (see
Fig. 8). The principal reason the computation time is slow
down when using GPU is the DRL toolbox of MATLAB®
2020b has no multiple GPU training support. It produces all
calculations to be performed on the same GPU even though
there are more GPUs available.

V. CONCLUSIONS

This scientific paper presents an experimental assessment
to determine the most favourable configuration to train the
Deep Deterministic Policy Gradient (DDPG) agent for
frequency controller of a MEESS. The assessment considers
two hardware schemes for the training: the central processing
unit (CPU) and graphics processing unit (GPU); they are used
to train the DRL actor and critic network. The simulations
were divided into two groups: serial computing and parallel
computing. The MEESS has been provided in the form of a
Simulink model, and MATLAB® Parallel Computing Toolbox
has been used for the DDPG. The results of assessing four
training configuration cases, considering serial and parallel
computing, have demonstrated that the best suitable
configuration to perform the actor and critic network training
is using the parallel computing for both actor and critic
network without using the maximum number Workers. This
configuration reduces around 73% of the computation time
compared to serial computing, representing a remarkable
improvement to training DRL algorithms that usually involve
thousands of episodes to be trained. The computation time
showed better results when training the actor and critic
network on CPU than using GPU or CPU-GPU configuration.
The increase in computation time is due to the DRL toolbox
of MATLAB® 2020b having no support for training on
multiple GPU and producing a time slowdown because the
computation is carried out only on one GPU. This result shows
that although the latest released computers offer excellent
tools for speeding up computational time to solve complex
problems, computer programs still need to be improved to take
advantage of all the benefits that hardware offers. In
particular, the implementation of DRL algorithms still has a

gap concerning parallel computing that must be covered to
take advantage of all benefit that using multiple GPUs provide
to speed up the training time. As future work, the proposed
configuration strategies allow to simulate more complex
systems and to train more advanced DRL in a lower period of
time. In fact, the authors are working in adding to the actual
system economic criteria. In this way, the enhanced frequency
response service will be provided while maximizing the
economic benefit. For these reasons, adding economic reward
to the discrete and continuous reward of the power system
used in [8] will be necessary.

REFERENCES

[1] M. N. Acosta, F. Gonzalez-Longatt, S. Denysiuk, and H. Strelkova,
"Optimal Settings of Fast Active Power Controller: Nordic Case," in
2020 IEEE 7th International Conference on Energy Smart Systems
(ESS), May 2020, pp. 63–67, doi: 10.1109/ESS50319.2020.9160281.

[2] H. R. Chamorro, F. R. S. Sevilla, F. Gonzalez-Longatt, K. Rouzbehi, H.
Chavez, and V. K. Sood, "Innovative primary frequency control in low-
inertia power systems based on wide-area RoCoF sharing," IET Energy

Syst. Integr., Feb. 2020, doi: 10.1049/iet-esi.2020.0001.
[3] A. M. Ersdal, F. Gonzalez-Longatt, M. N. Acosta, J. L. Rueda, and P.

Palensky, "Frequency Support of Fast-Multi-Energy Storage Systems in
Low Rotational Inertia Scenarios," in 2020 IEEE PES Innovative Smart
Grid Technologies Europe (ISGT-Europe), Oct. 2020, pp. 879–883, doi:
10.1109/ISGT-Europe47291.2020.9248843.

[4] F. Sanchez, J. Cayenne, F. Gonzalez-Longatt, and J. L. Rueda,
"Controller to Enable the Enhanced Frequency Response Services from
a Multi-Electrical Energy Storage System," IET Gener. Transm.

Distrib., Nov. 2018, doi: 10.1049/iet-gtd.2018.5931.
[5] "National Grid ESO, 'Mandatory response services.'”

https://www.nationalgrideso.com/balancing-services/frequency-
response-services/mandatory-response-services?overview (accessed
Aug. 15, 2020).

[6] F. Sanchez, F. Gonzalez-Longatt, and D. Bogdanov, “Probabilistic
assessment of enhanced frequency response services using real
frequency time series,” 2018 20th Int. Symp. Electr. Appar. Technol.

SIELA 2018 - Proc., pp. 1–4, 2018, doi: 10.1109/SIELA.2018.8447080.
[7] F. Gonzalez-Longatt, M. N. Acosta, H. R. Chamorro, and D. Topic,

“Short-term Kinetic Energy Forecast using a Structural Time Series
Model: Study Case of Nordic Power System,” 2020.

[8] F. S. Gorostiza and F. Gonzalez-Longatt, “Deep Reinforcement
Learning-Based Controller for SOC Management of Multi-Electrical
Energy Storage System,” IEEE Trans. Smart Grid, vol. 3053, no. c, pp.
1–1, 2020, doi: 10.1109/tsg.2020.2996274.

[9] “Website of fglongatt-Lab: DigEnSys-Lab,” 2021.
https://fglongattlab.fglongatt.org/index.html (accessed Jan. 15, 2022).

[10] W. Gao, Q. Kemao, H. Wang, F. Lin, and H. S. Seah, “Parallel
computing for fringe pattern processing: A multicore CPU approach in
MATLAB® environment,” Opt. Lasers Eng., vol. 47, no. 11, pp. 1286–
1292, Nov. 2009, doi: 10.1016/j.optlaseng.2009.04.018.

[11] S. Rastogi and H. Zaheer, “Significance of parallel computation over
serial computation,” in 2016 International Conference on Electrical,

Electronics, and Optimisation Techniques (ICEEOT), Mar. 2016, pp.
2307–2310, doi: 10.1109/ICEEOT.2016.7755106.

[12] Q. Wu, M. Spiryagin, C. Cole, and T. McSweeney, “Parallel computing
in railway research,” Int. J. Rail Transp., vol. 8, no. 2, pp. 111–134, Apr.
2020, doi: 10.1080/23248378.2018.1553115.

[13] “Mathworks. ‘Parallel Computing Support in MATLAB and Simulink
Products.’” https://es.mathworks.com/products/parallel-
computing/parallel-support.html (accessed Nov. 01, 2020).

[14] S. Neralkar and J. Katti, “An Efficient Technique of Parallel Share
Generation and Reconstruction for Medical Images,” in 2018 Fourth
International Conference on Computing Communication Control and

Automation (ICCUBEA), Aug. 2018, pp. 1–6, doi:
10.1109/ICCUBEA.2018.8697617.

[15] M. Antonio Cruz, R. Silva Ortigoza, C. Marquez Sanchez, V. M.
Hernandez Guzman, J. Sandoval Gutierrez, and J. C. Herrera Lozada,
“Parallel Computing as a Tool for Tuning the Gains of Automatic
Control Laws,” IEEE Lat. Am. Trans., vol. 15, no. 6, pp. 1189–1196,
Jun. 2017, doi: 10.1109/TLA.2017.7932708.

0

5000

10000

15000

0 5 0 1 0 0 1 5 0

T
im

e
 (

s
)

Episodes

Serial Computing Parallel Computing

4th Global Power, Energy and Communication Conference (IEEE GPECOM2022), June 14-17, 2022, Cappadocia/Turkey

568

Authorized licensed use limited to: TU Delft Library. Downloaded on July 14,2022 at 09:12:43 UTC from IEEE Xplore. Restrictions apply.

