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Abstract—The computational burden and the time required 

to train a deep reinforcement learning (DRL) can be 

appreciable, especially for the particular case of a DRL control 

used for frequency control of multi-electrical energy storage 

(MEESS). This paper presents an assessment of four training 

configurations of the actor and critic network to determine the 

configuration training that produces the lower computational 

time, considering the specific case of frequency control of 

MEESS. The training configuration cases are defined 

considering two processing units: CPU and GPU and are 

evaluated considering serial and parallel computing using 

MATLAB® 2020b Parallel Computing Toolbox. The agent used 

for this assessment is the Deep Deterministic Policy Gradient 

(DDPG) agent. The environment represents the dynamic model 

to provide enhanced frequency response to the power system by 

controlling the state of charge of energy storage systems. 

Simulation results demonstrated that the best configuration to 

reduce the computational time is training both actor and critic 

network on CPU using parallel computing. 

Keywords—actor-network, critic network, deep reinforcement 

learning, energy storage systems, enhanced frequency response, 

parallel computing. 

I. INTRODUCTION  

The 2021 United Nations Climate Change Conference, 
COP26, produced the first multi-county reach net-zero 
emissions (over 140 countries). However, reaching net-zero 
emission is a complex task involving multiple actors in the 

energy sector. The electricity sector and, in particular 
electrical utilities, face a very complex path ahead. The very 
drastic and fast move in the sector to cope needed to reach 
zero-carbon implies the transition to high penetration of 
generation coming from environmentally friendly sources at 
the time. One necessary consequence is the sudden reduction 
of the total system rotational inertia that negatively affects the 
power system operation and security. However, seral 
technologies are taking a position as enablers of the zero-net 
future. The energy storage systems (ESS) are a desirable 
alternative to counteract the lack of inertia of the power system 
due to its controllability features and its ability to fast supply 
active power to the power system [1], [2]. 

Currently, there is a wide variety of ESS technologies, but 
among all the ESS, it is worth highlighting batteries (BESS), 
supercapacitors (UCESS) and flywheels (FESS) [3]. Authors 
in [4] proposed the use of a multi-electrical energy storage 
system (MEESS) to provide fast frequency response service, 
precisely the Enhanced Frequency Response (EFR) [5], [6]. 
The MEESS combines BESS, UCESS and FESS. In [4], a 
two-layer controller was presented where a fuzzy logic control 
was used to define the power reference of the MEESS 
considering the frequency deviation and the state of charge 
(SOC) of the storage assets. However, that publication made 
evident the need to carefully control the SOC of BESS, 
UCESS and FESS need be controlled to ensure it is within 
certain limits and guarantee an adequate amount of energy to 
operate when necessary [7]. 
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Authors in [8] took advantage of reinforcement learning as 
a universal function approximator and proposed a deep 
reinforcement learning-based controller for the SOC 
management of MEESS. The authors compare the 
performance of the proposed Deep Reinforcement Learning 
(DRL) to classical proportional integral derivative (PID) 
control and a fuzzy logic controller (FLC), demonstrating the 
suitability of the proposed approach.  

The  DRL consists of an agent and an environment that 
interact through a sequence of actions, observations and 
rewards. The agent takes action on the environment to 
maximise the reward  [8]. The training process is carried out 
over many episodes for the agent to learn the actions that it 
must take to get the maximum reward. Although the training 
process might require considerable time, the use of 
appropriate hardware reduces the total computational time. 

The authors collaborate with the Digital Energy System 
Laboratory, DigEnSys-Lab [9], where specialised hardware 
has been implemented to develop research in the area of 
artificial intelligence. As a consequence, this paper is 
motivated by the need of the research team to experimentally 
identify the most favourable hardware arrange when training 
actor and critic networks to solve the delicate problem related 
to frequency control using MEESS. 

This scientific paper presents an experimental assessment 
to determine the most favourable configuration to train the 
Deep Deterministic Policy Gradient (DDPG) agent for Multi-
Energy Storage systems. It considers the central processing 
unit (CPU) and graphics processing unit (GPU) to train the 
DRL actor and critic network. Moreover, this assessment 
considers the powerful advantages provided by parallel 
computing. Finally, an experimental assessment of the 
training process is performed in terms of computational time-
consuming (elapsed time) when the actor and critic network 
training is carried out on only CPU, only GPU or a 
combination of both. 

The paper is structured as follows. Section II briefly 
describes the reinforcement learning framework and its 
components. Moreover, it describes the principle of frequency 
control using DRL. Section III presents the serial and parallel 
computing description and the main instructions used on 
MATLAB® 2020b Parallel Computing Toolbox MATLAB®. 
Section IV presents the experimental results and the principal 
findings of this paper. Finally, Section V provide the main 
conclusion of this paper. 

II. DEEP REINFORCEMENT LEARNING IN FREQUENCY 

RESPONSE CONTROL 

The deep neuronal network (DNN) is an excellent option 
to be used as a universal function approximator. If the DNN is 
trained using reinforcement learning (RL) techniques, DRL 
formation [8] is an attractive technique for control purposes. 
The RL framework is composed of an agent and an 
environment. The agent contains two components: (i) a policy 
and (ii) a DRL algorithm. It receives a set of observations and 
a reward which are used by the DRL algorithm to determine 
the following action and provide a policy. The policy 
maximises the total upcoming rewards. Meanwhile, the 
environment represents the dynamic model of the problem to 
be solved. The environment uses the actions coming from the 
agent to achieve a task. It generates a set of observations that 
are the resulting behaviour of the dynamic model. Then, it 
calculates a reward that represents how well the actions 

contribute to accomplishing the task. The primary purpose of 
the RL is to train an agent to achieve a task inside an uncertain 
environment. The RL framework, which contains the iteration 
between the agent and the environment, is shown in Fig. 1. 

There are several DRL algorithms in the literature, and 
they can be classified into three categories: (i) Value-based, 
(ii) policy-based and (iii) actor-critic. Depending on the DRL 
algorithms, the agent uses one or several DNN for training the 
policy and the DNN can be used in two different ways: (i) as 
an actor-network which, for a given observation, it returns the 
action that maximises the expected cumulative rewards and 
(ii) as a critic network which, for a given observation and 
action, it returns the expected value of the cumulative long-
term reward for the task. 

Agent

Reward
ActionsObservations

DRL 

algorithm

Policy

Environment 

Policy 

update

 

Fig. 1. Illustrative diagram showing the main components of the RL 
framework and their iteractions and signal flow. 

A. SOC control of the ESS in the RL framework 

The structure of the RL framework is taken from [8]. The 
main objective is to provide EFR services to the power system 
while the SOC of the ESS is controlled. Below a brief 
description is presented: (i) Agent: The DDPG, which is an 
actor-critic algorithm type, is used. Every time step, the agent 
generates a set of actions and receives a set of observations 
and a reward. (ii) Environment: The environment consists of 
the dynamic model of three ESS technologies (BESS, UCESS 
and FESS) equipped with an EFR controller. Each time step 
(t), the environment produces a set of outputs (observations 
and reward) and receives a set of inputs which are the actions 
generated by the agent. (iii) Actions: The actions are the 
control reference of the ESS technologies and are related to 
the injection/absorption of active power to charge or discharge 
the ESS. (iv) Observations: The observation vector contains 
the active power output, the previous control action, the SOC 
signal and the SOC error signal of each ESS. (v) Rewards: The 
total reward is the sum of the discrete and continuous rewards 
obtained from the environment. The formulation of the 
rewards is in such a way that penalised if the SOC is not within 
predefined values by using the SOC error. 

III. PARALLEL COMPUTING IN DRL 

Since the emergence of the first computers, they have 
evolved and become a fundamental tool in the research area in 
recent years. Consequently, advances in various disciplines 
have been greatly accelerated by advances in computing and 
the reduction in computer prices [10], [11]. Traditionally, 
computer programs were developed so that, given a set of 
instructions, they were implemented in series. In this way, 
only one instruction could be executed at a time, and the 
subsequent instructions could not be executed and must wait 
until the current instruction was finished. This can be seen in 
Fig. 2. The problem to be solved is written as a set of 
instructions executed one by one following the order in which 
they were written. Recently, the significant technological 
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advances in software and hardware have allowed models and 
solve several complex problems closer to reality. This entails 
defining more complex mathematical problems with a high 
number of operations. For this reason, this type of serial 
computation is not as efficient as the time it would take to 
solve these problems would be extremely high, so the process 
would not be computationally efficient [12]. Due to the 
drawbacks mentioned above of serial computing, a new 
concept to perform multiple processes simultaneously is 
raised, and it is called parallel computing. The main objectives 
of parallel computing are related to the possibility of adjusting 
the model and software to reality. In this way, if several 
processors are working simultaneously, it is possible to reduce 
the simulation time and improve their efficiency significantly.  

Problem 

Processor

Nt 3t 2t 1t

Instructions

kt KK  

Fig. 2. Block diagram depicting a generic scheme of serial computing. 

 

Parallel computing enables the possibility of splitting the 
main problem into several independent tasks, each containing 
a set of instructions, where all tasks are executed 
simultaneously. Moreover, each task executes its instruction 
set using a serial computing process (see Fig. 3). Thus, parallel 
computing produces a considerable reduction in total 
execution time. 

Processor

Processor

Processor

Processor

InstructionsProblem

Nt 3t 2t 1tkt KK  

Fig. 3. Block diagram depicting a generic scheme of parallel computing. 

Parallel computing usually deals with the Master / Worker 
paradigm. Thus, a process acts as a coordinator, Master, 
directing the rest, which acts as Workers. The Master is 
responsible for dividing the problem into smaller tasks, 
distributing them among the different Workers and receiving 
the partial results to compose the final solution of the problem. 
On the other hand, the Workers must receive the task to 
perform, then process it and send the results to the Master. 
This procedure is iterative until the Master has no more tasks 
to solve. Also, the partial results received by the Master can 
generate new tasks which must be distributed to the Workers 
[13]. According to the user's choice, the Master can be 
distributing the task to the Workers either in a synchronised or 
non-synchronised way. In the synchronised distribution, the 
Master waits until it receives all the Workers' results and then 
generates a new set of data to distribute. Meanwhile, in the 
non-synchronised distribution, the Master immediately after 
receiving the result of any Worker it assigns a new set of data 
to that Worker. Therefore, Workers do not require 
synchronisation between them. 

Nowadays, several computational programs use parallel 
computing as the primary mechanism to speed up their 
processes. One of those computational programs is 
MATLAB® which is equipped with a powerful MATLAB® 
Parallel Computing Toolbox that solves problems with a 

significant computational load using multicore processors, 
graphics processing units and clusters. This toolbox can 
execute a task in parallel using several Workers (MATLAB® 
calculation engines) that work locally. Therefore, if the 
computer has multiple processors, the Workers will activate 
them to perform operations more quickly. Fig. 4 depicts the 
general architecture of the parallel computing toolbox. 

 

Fig. 4. Illustrative architecture used by parallel computing toolbox  [13]. 

 

The parallel computing toolbox is widely used in medical 
image processing, control systems or Deep Learning (DL), 
among others [14]. Focusing on the DL and neural networks 
field, new forms of training have been developed to allow the 
programmer to use several options such as the CPU, multiple 
GPUs, or parallel computing to solve problems [15]. The 
selection of any of these options is easily made by using the 
following instruction:  

  trainingOptions.ExecutionEnvironment = ‘multi-gpu’   

However, this instruction is not valid for DRL 
applications. The parallel computing toolbox only allows the 
user to select GPU or CPU as an option to training the agents, 
and it is done by using the following instruction:  

  rlRepresentationOptions.UseDevice = ‘gpu’ or ‘cpu’ 

As a consequence, the multi-GPU option for DRL training 
purposes has not to be developed and included in the parallel 
computing tool. On the other hand, in order to speed up the 
DRL training calculations and make it efficient, MATLAB®  
allows user to select the Parallel Computing option within the 
training options, and it is enabled by the following instruction: 

  rlTrainingOptions.UseParallel = ‘true’ 

IV. EXPERIMENTS AND RESULTS 

This section is dedicated to presenting the numerical 
results of the actor and critic configuration assessment for a 
DRL frequency controller for MEESS. In this paper, the focus 
on the configuration of actor and critic based on the hardware, 
the implementation of the DRL frequency controller for 
MEESS was provided by the authors of  [8]. Fig. 5 shows the 
bloc diagram of the EFR controller of an EESS, which 
determines the power reference, P*

EESS from the grid 
frequency, f(t). Then, the EESS model takes as an output the 
actual power response from the EESS, PEESS(t).  This paper 
considers the implementation of BESS, FESS and UCESS as 
presented in [4], mode trails of modelling and parameters are 
shown in [4]. 

The DRL agent-environment model of the frequency 
control was modelled in Simulink®, Fig 6. and Fig 7. The full 
details of the model and its parameters can be found in [8]. For 
assessment purposes, the total simulation time is chosen as 
1800 seconds, the time step is 1 second, and the maximum 
number of episodes is 100. The experiments are divided into 
two main tests: Test 1: serial computing and Test 2: parallel 
computing. For each test, four possible training configurations 
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of the actor and critic network training are considered, and it 
is shown in Table I. 

Enhanced Frequency

Controller

*

EESS
P

Electrical
energy 
storage 

system

( )EESS
P t

d

dt

−

+

∆f

d

dt

( )f t

*f

df

dt

EESSdP

dt

EESS
P

* E
E

S
S

P

∆f

 

Fig. 5. EFR controller integrated with the EESS to control output power 
(PEESS) and ramp rate (dPEESS/dt). f * is the nominal system frequency (50 Hz) 
[4]. 
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Fig. 6. Overview of an RL agent trained with DDPG [8]. 
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Fig. 7. Overview of the control environment used to train the DRL agent 
[8]. 

TABLE I.  ACTOR AND CRITIC NETWORK TRAINING CONFIGURATION 

Network 
Training Configuration 

I II III IV 

Actor CPU CPU GPU GPU 

Critic CPU GPU CPU GPU 

 The computational platform used for the training is a 
specifically designed computer at the DigEnSys-Lab. The 
computer uses an operating system, Windows 10 Pro (64 bit), 
with 64 GB of RAM. The processor is an Intel® Xeon® W-
3235 CPU (3.30 GHz), and the graphic processor is an 
NVIDIA GeForce RTX 2080 Ti GPU; for more details, visit 
[9]. 

A. Test 1: Serial computing 

The serial computing tests consists of evaluating the four 
training configurations presented in Table I. The resulting 
computational time after executing the training over 100 
episodes, considering the four training configurations is 
shown in Table II.   

TABLE II.  COMPUTATIONAL TIME RESULTS USING SERIAL 

COMPUTING TO TRAIN THE ACTOR AND CRITIC NETWORK 

Training 

configuration 

Serial Computing 

Training Time (s) Time (h) 

A  13,126 3.65 

B  - - 

Training 

configuration 

Serial Computing 

Training Time (s) Time (h) 

C  13,983 3.88 

D  15,610 4.34 

From Table II, it can be observed that training 
configurations A, C and D have been implemented 
successfully. On the other hand, training configuration B, 
which refers to training the actor-network on CPU and critic 
network on GPU, failed. The DRL toolbox of MATLAB® 
does not support such training configuration. The training 
configuration A (CPU-CPU) shows the best performance, i.e., 
for the same 100 episodes, it takes 3.65 hours of training, 
which compared with the worst performance produced by 
training configurations D (GPU-GPU), it reduces the 
computational time-consuming 15.9 %, saving 0.65 hours 
(41.4 minutes). Even though using training configuration I to 
train the actor and critic network reduces the computation 
time, it must be noticed that the training just considered 100 
episodes, and usually, the DRL uses at least 2000-3000 
episodes to be correctly trained. Therefore, the computational 
time using serial computing is still considered to be very high. 
For instance, if 2000 episodes (20 times the current value) are 
used, the computation time would be excessive, 
approximately 73 hours. 

B. Test 2: Parallel computing 

Due to the high computation time required by the DRL to 
carry out 100 training episodes using serial computing, the 
MATLAB® Parallel Computing Toolbox is used to train the 
actor and critic network. The training considers the same 
parameter of serial computing: the total simulation time is 
chosen as 1800 seconds, the time step is 1 second, and the 
maximum number of episodes is 100. In this scenario, the four 
training configurations defined in Table I are considered. 
Besides, it is contemplated the effect of using the maximum 
number of Workers available or if it is preferable to leave a 
Worker available to perform the rest of the operations 
required. The platform used for the training has 24 logical 
processors, which is a maximum of 12 Workers. Table III 
present the resulting computational time after executing the 
training over 100 episodes, considering the four training 
configurations defined in Table I.   

TABLE III.  COMPUTATIONAL TIME RESULTS USING PARALLEL 

COMPUTING TO TRAIN THE ACTOR AND CRITIC NETWORK 

Training 

configuration 

Parallel Computing 

Maximum 

workers 
Training Time (s) Time (h) 

A 

11  3,606 1.00 

12  3,910 1.09 

B 4  - - 

C 
4  4,094 1.14 

3  4,655 1.29 

D 4  5,773 1.60 

From Table III, it can be observed that the training 
configuration B (CPU-GPU) the training failed as occurred 
using serial computing. In general, the rest of the training 
configurations have successful training and reduce around 
one-third of the computational time concerning serial 
computing. Another interesting result is that maintaining one 
Worker free to perform other operation outcomes in a 
computational time reduction of 10 %, in contrast, to use the 
maximum number of Workers when using training 
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configuration A (CPU-CPU). Meanwhile, in training 
configuration C, which involves GPU and CPU, there is a 
computational time reduction of around 20 % when the 
maximum number of Workers are used compared with the 
case when one Worker is set to be available. 

 

Fig. 8. Computational time comparison for serial and parallel computing 
using training configuration A(CPU – CPU), Test 2: Parallel computing. 

The training configuration A (CPU-CPU) leaving one 
Worker available is the best configuration to train the actor 
and critic network since its configuration produces less 
computational time in both serial and parallel computing. 
Moreover, using parallel computing with training 
configuration A and leaving one Worker available is the best 
option since it reduces 73 % of the computational time (see 
Fig. 8). The principal reason the computation time is slow 
down when using GPU is the DRL toolbox of MATLAB® 
2020b has no multiple GPU training support. It produces all 
calculations to be performed on the same GPU even though 
there are more GPUs available. 

V. CONCLUSIONS 

This scientific paper presents an experimental assessment 
to determine the most favourable configuration to train the 
Deep Deterministic Policy Gradient (DDPG) agent for 
frequency controller of a MEESS. The assessment considers 
two hardware schemes for the training: the central processing 
unit (CPU) and graphics processing unit (GPU); they are used 
to train the DRL actor and critic network. The simulations 
were divided into two groups: serial computing and parallel 
computing. The MEESS has been provided in the form of a 
Simulink model, and MATLAB® Parallel Computing Toolbox 
has been used for the DDPG. The results of assessing four 
training configuration cases, considering serial and parallel 
computing, have demonstrated that the best suitable 
configuration to perform the actor and critic network training 
is using the parallel computing for both actor and critic 
network without using the maximum number Workers. This 
configuration reduces around 73% of the computation time 
compared to serial computing, representing a remarkable 
improvement to training DRL algorithms that usually involve 
thousands of episodes to be trained. The computation time 
showed better results when training the actor and critic 
network on CPU than using GPU or CPU-GPU configuration. 
The increase in computation time is due to the DRL toolbox 
of MATLAB® 2020b having no support for training on 
multiple GPU and producing a time slowdown because the 
computation is carried out only on one GPU. This result shows 
that although the latest released computers offer excellent 
tools for speeding up computational time to solve complex 
problems, computer programs still need to be improved to take 
advantage of all the benefits that hardware offers. In 
particular, the implementation of DRL algorithms still has a 

gap concerning parallel computing that must be covered to 
take advantage of all benefit that using multiple GPUs provide 
to speed up the training time. As future work, the proposed 
configuration strategies allow to simulate more complex 
systems and to train more advanced DRL in a lower period of 
time. In fact, the authors are working in adding to the actual 
system economic criteria. In this way, the enhanced frequency 
response service will be provided while maximizing the 
economic benefit. For these reasons, adding economic reward 
to the discrete and continuous reward of the power system 
used in [8] will be necessary.  
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