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Abstract

We live in an online world: we date online, we do business online and we communicate online. To make
sure this happens securely, almost all transferred data is encrypted by cryptosystems. This paper focuses
on one of these: the knapsack cryptosystem of Merkle and Hellman, which relies on the hardness of
solving the knapsack problem (1978). In general it works as follows.

Bob, who wants to communicate with Alice, encrypts his message with a public key and sends this
to her. If a third party now intercepts it, he must solve an instance of the knapsack problem, which is
NP-hard in general. However, this becomes computationally infeasible if the number of items is large,
and therefore Bob’s message is safe. Alice has access to a private key, which she uses to transform the
hard knapsack problem into an easier one: one where the vector of weights is superincreasing. That is,
each component of the vector is larger than the sum of all previous components. In this case she can
solve the problem efficiently and read what Bob sent her.

This method seems to be reliable at first sight. However, a few years after it was published, cryp-
tographer Shamir proposed an algorithm that breaks the system (1984). The algorithm finds a pair of
numbers by solving two systems of inequalities. Then a third party can use this pair to transform the hard
knapsack problem into one he can solve, which may be different from the one Alice finds. However, he
will find the same solution, and therefore he can also read Bob’s message.

This algorithm can be implemented as a computer program and in this paper we used Python. The
first system of inequalities is written as a optimization problem and since there is fixed number of
unknowns, we can solve it in polynomial time using Lenstra’s integer programming algorithm (1983).
In this paper we used the Gurobi optimizer to solve it, as Lenstra’s algorithm is hard to use in practice.
The second system of inequalities is solved by comparing lower and upper bound, which can also be
carried out in polynomial time. Nevertheless, the total algorithm finishes in polynomial time only with
a certain high probability since we made some probabilistic assumptions. This implies that there is a
small probability of failure. However, if it finds a solution, then the algorithm is fast, and therefore it is
still valuable to use in real life.
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Chapter 1

Introduction

Everybody has the right of privacy, in real life, but maybe even more important, online. Each day people
send private documents and photos by email, fill in passwords at websites and communicate using the
internet. You cannot prevent that your data gets intercepted, but it is possible to ensure that even then
your data is safe. You can do this by encrypting your data before sending it and decrypting it after
receipt. This can be done with the use of public-key cryptosystems.

This type of system uses two keys: a private key, which is only known by the receiver, and a public
key, which is accessible for everyone. Once someone wants to send a message, the plaintext, he can use
the public key to encrypt it. This encrypted text, called the ciphertext, is then sent to the receiver who
can decrypt it with the use of the private key. Throughout the paper, we will denote the receiver by Alice
and the sender by Bob. A visualisation of a public-key cryptosystem is found in Figure 1.1.

Figure 1.1: Simple visualisation of the different steps of a public-key cryptosystem.

There are a lot of different public-key cryptosystems that can be used for the en/decryption. Most
of these rely on the difficulty of a computational problem. For instance, the RSA system, probably the
most common scheme, uses the difficulty of the factorization problem. In this paper, however, the focus
will be on another system: the knapsack cryptosystem, published by Merkle and Hellman (1978). This
system is based on the hardness of solving the knapsack problem. The theory behind this combinatorial
problem will be explained in Chapter 2.

In 1984 the knapsack cryptosystem was successfully attacked by Shamir (1984). He proposed an
algorithm that breaks the system and this attack is the main focus of this paper. In Chapter 3 the algorithm
will be explained step by step and in Chapter 4 we will see the steps needed for an implementation in
Python. Finally, in Chapter 5 the implementation of the attack is discussed and some potential research
is given that can be done in the future.
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Chapter 2

Theory

The goal of this chapter is to explain the knapsack cryptosystem. First we will look at the knapsack
problem itself, in general an NP-hard combinatorial problem. Next, we consider the general technique
of the knapsack cryptosystem and we end the chapter with a worked-out example to help understand the
system.

2.1 Knapsack problem

The knapsack problem is a 0-1 optimization problem. We are given a finite set of items N. Each
item j ∈ N has a certain weight a j > 0 and a value p j > 0. The problem is to decide which items
we should bring in the “knapsack”, which has a capacity of S. In the original knapsack problem we
want to maximize the total value of the items in the knapsack. However, for the knapsack cryptosystem
we only need a specific variant of the problem, the subset-sum problem. In this version we want to
determine which items we should include in the knapsack such that the total weight is exactly equal to
the capacity S. Note that the values of the items are irrelevant in this version.

To formulate this more precisely, we define the variable x j as

x j =

{
1 if item j is included in the knapsack;
0 otherwise.

Then the subset-sum problem is to find x j ∈ {0, 1} such that ∑ j∈N a jx j = S. From now on, the name
“knapsack problem” refers to this subset-sum problem, unless stated otherwise.

It is easy to check whether a given vector x is a solution, but finding a solution might not be that
simple. This is because the subset-sum problem is actually an NP-hard problem. So it is considered
unlikely that there is a polynomial time algorithm that solves it. Therefore, to solve the subset-sum
problem one might use trial and error to search over all possible answers. However, if the number of
items is large this becomes computationally infeasible.

2.1.1 Dynamic programming

The knapsack problem can also be solved with the use of dynamic programming. This approach uses re-
cursion to divide the main problem into subproblems, which are again divided into smaller subproblems.
This continues until there are subproblems which can easily be solved. The main idea behind dynamic
programming is that each solution is saved into a matrix. So if a subproblem is faced again, one can just
take the solution from the matrix without having to solve it again.

In our case the subproblems are to find a subset of the first i items of the vector a such that their sum
is equal to y; we denote these by subset-sum(a, i, y). So if we say that N consists of n items, the original
problem is subset-sum(a, n, S).
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As stated before, dynamic programming makes use of a matrix. For the knapsack problem this is
an (n+ 1)× (S+ 1) matrix and we will call it M. Each entry of the matrix corresponds to a different
subproblem and is defined in the following way:

M[i, y] =

{
True if there is a solution to subset-sum(a, i, y);
False otherwise.

Some subproblems can be solved easily and are called the base cases. First of all, if y = 0, then there
is always a solution to the subset-sum problem. Indeed, the empty set is a subset of each set and always
sums up to 0. Second, if i = 0, that is, we do not consider any components of a, then there is only a
solution if y = 0. These observations give us the first column and row of the matrix M:

M[i,0] = True ∀ i≥ 0,

M[0, y] =

{
True if y = 0;
False otherwise.

Knowing the base cases we can determine the other entries of the matrix M using the following
relation:

M[i, y] = M[i−1, y−ai]∨ M[i−1, y]. (2.1.1)

This relation comes from the fact that we have two options for each ai: we either include it or exclude
it. Suppose we include ai (we only consider this case when ai ≤ y). Then subset-sum(a, i, y) has a
solution if and only if there exists a subset of {a1, . . . , ai−1} that sums up to y− ai. In other words,
M[i, y] = M[i− 1, y− ai]. On the other hand, if we exclude ai, then subset-sum(a, i, y) has a solution
if and only if there exists a subset of {a1, . . . , ai−1} that sums up to y. So M[i, y] = M[i− 1, y]. If we
combine these two observations we obtain Equation (2.1.1).

Now the dynamic programming algorithm for the knapsack problem is as follows:

Algorithm 1: Dynamic programming algorithm for the knapsack problem
Data: S, a1, a2, . . . , an

Result: M
M[i, 0]← True ∀i ∈ {0, . . . , n}
M[0, y]← False ∀y ∈ {1, . . . , S}
for i← 1 to n do

for y← 1 to S do
if ai > y then

M[i, y] = M[i−1, y]
else

M[i, y] = M[i−1, y]∨ M[i−1, y−ai]
end

end
end
return M

We are interested in the solution of subset-sum(a, n, S). So after running this algorithm, we must
look at the value M[n, S]. If it is False, then the knapsack problem does not have a solution. However
if M[n, S] = True, it does and we can find the solution with the use of the complete matrix M and
Equation (2.1.1) by taking the following steps.

We start at M[n, S] and consider the value of the entry above. If M[n− 1, S] = True, we do not
include an as the solution for this subproblem is also a solution of subset-sum(a, n, S). If M[n−1, S] =
False, then there is no solution to subset-sum(a, n− 1, S) and therefore, we must include an. Further-
more, we deduce from Equation (2.1.1) that M[n−1, S−an] = True. The next step is to either consider
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M[n−1, S] (first case) or M[n−2, S−an] (second case) and follow the same procedure. We continue un-
til we arrive at either the first row or column and then we have found the solution of subset-sum(a, n, S).

At first glance, this algorithm might look polynomial time, as the time complexity is O(nS). How-
ever, polynomial time implies that it is polynomial with respect to the size of the input and not with the
value of the input. It is clear that this is not the case for this algorithm: if S increases from 100 (∼ 27)
to 1000 (∼ 210), processing S goes from 7 to 10 bits. Hence, the time complexity grows exponentially
with the number of bits, ie. the size. Therefore, the algorithm is not polynomial time, but so-called
pseudo-polynomial time. Consequently, if n and especially S are large, the knapsack problem cannot be
solved in a manageable time period by dynamic programming.

2.1.2 Efficiently solvable version of the knapsack problem

There are some special cases in which the knapsack problem can be solved efficiently. One example is
when the vector a, consisting of all weights a j > 0, is superincreasing. This means that

ai >
i−1

∑
j=1

a j ∀i ∈ {2, . . . , n}, (2.1.2)

that is, each component of the vector is larger than the sum of all previous components.

Theorem 2.1.1. Let a = (a1, a2, . . . , an) be a superincreasing vector such that ai 6= 0 ∀i. If the subset-
sum problem ∑

n
j=1 a jx j = S has a solution, then x = (x1, x2, . . . , xn) given by

xi =

{
1 if S−∑

n
j=i+1 a jx j ≥ ai;

0 otherwise,

for i = n, . . . ,1, is a solution. Moreover, x is the unique solution.

Proof. Suppose that the subset-sum problem ∑
n
j=1 a jx j = S has a solution x = (x1, x2, . . . , xn). If S≥ an

then we must have that xn = 1, otherwise S =∑
n
j=1 a jx j =∑

n−1
j=1 a jx j ≤∑

n−1
j=1 a j < an≤ S, a contradiction.

If however S < an, then we must have that xn = 0.
Now x′ = (x1, x2, . . . , xn−1) is a solution of the subset-sum problem with the superincreasing vector

a′ = (a1, a2, . . . , an−1) and S′ = S − an xn, and the theorem follows by induction.

We finish this section with the conclusion that the knapsack problem is in general a hard problem to
solve, but there are special cases in which it is not. This property makes the knapsack problem a perfect
base for a cryptosystem. Indeed, if your encrypted message is a solution of the knapsack problem, a
third party would not be able to decrypt it. However, if the receiver has more information and can
transform the hard problem into an easier one, he can decrypt it and read your message. The knapsack
cryptosystem uses this technique and we will see how it works in detail in the next section.

2.2 Knapsack cryptosystem

As already mentioned in the introduction, the knapsack cryptosystem is a public-key cryptosystem.
So the system uses a private key and a public key. The private key consists of three elements. First,
Alice chooses a superincreasing vector a = (a1, a2, . . . , an) (for definition, see Section 2.1.2) such that
ai 6= 0 ∀i. Therefore, she can easily solve a knapsack problem that involves this vector, as explained
in the previous section. Furthermore, she chooses 2 large numbers m and w such that m > ∑

n
j=1 a j and

gcd(m, w) = 1.
The public key is the vector b = (b1, b2, . . . , bn) which is constructed using the relation

bi = wai mod m, (2.2.1)
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where “p mod q” is the remainder of p
q in {0, . . . , q−1}.

The cryptosystem works as follows. Suppose Bob wants to send Alice a message. He only has access
to the public key and must encrypt his message using the vector b. First he transforms the plaintext of
the message to binary code using, for instance, the ASCII table. Next, Bob divides the binary code into
n-bit words, denoted by yk; the last word is padded with zeros if needed. Then, Bob computes the inner
product of yk and b for each yk and saves these values in a vector c. This vector forms the ciphertext
and that is what Bob sends to Alice.

Suppose a third party, say Eve, intercepts the message and wants to know what information it holds.
To decrypt the text she must solve the knapsack problem using the vector b for each word ck of the
vector c. However, this is in principle a generic looking knapsack problem and therefore, one hopes,
difficult to solve because it is an NP-hard problem. So we can conclude that Bob’s message is secure.

In the final part of the cryptosystem, Alice needs to decrypt the vector c that Bob has sent to her. In
fact, she has to solve the same hard knapsack problem as Eve. However, Alice has extra information,
the private key, to transform it into an easier problem. First, she notices that the modular multiplicative
inverse w−1 of w exists since gcd(m, w) = 1. Furthermore, she knows that m > ∑

n
j=1 a j ≥ ∑

n
j=1 a jx j.

Using these observations she can compute

(w−1ck) mod m =

(
w−1

n

∑
j=1

b jx j

)
mod m

=

(
w−1

n

∑
j=1

(wa j mod m)x j

)
mod m

=

(
n

∑
j=1

a jx j

)
mod m

=
n

∑
j=1

a jx j.

The problem that now appears is a knapsack problem that uses the superincreasing vector a, instead of b.
Since Bob’s message is a solution, Alice knows by Theorem 2.1.1 that she can solve the problem and
that she will find this unique solution. Therefore, she retrieves the original binary words Bob sent. Her
final step is to remove the added zeros and transform the binary words back into the plaintext. Then,
finally, she can read Bob’s message.

2.2.1 Worked-out example

In the previous section we have seen the general procedure of the knapsack cryptosystem. In this section
we will work out a small example (n = 5) to help make the idea more clear.

Suppose Alice chooses the vector a = (61, 102, 171, 356, 745), m = 6031 and w = 2550. These form
together the private key and only Alice has access to them. The vector b, the public key, is calculated
with the relation (2.2.1) and this gives the vector b = (4775, 767, 1818, 3150, 6016). Now Bob wants
to send the message “Hi” to Alice. First he transforms the two letters into binary code using the ASCII
table, which gives “H” = 1001000 and “i” = 1101001. If Bob then combines these two codes and divides
the total binary code into 5-bit words, he obtains y1 = 10010, y2 = 00110 and y3 = 10010, where y3 is
padded with one extra zero. The next step for Bob is to take the inner product of each yk and b and store
the values in a vector c. He gets c = (4775 + 3150, 1818 + 3150, 4775 + 3150) = (7925, 4968, 7925).
Finally, he sends the vector c to Alice.

Alice receives the vector c and computes for each component the value w−1ck mod m, where w−1

is the modular multiplicative inverse of w and equals 3971. She finds T = (417, 527, 417). Now as
explained in the previous section, Alice needs to solve the knapsack problems with the original superin-
creasing vector a and each component of T. She can do this with the use of Theorem 2.1.1.

5



Since 417 < 745, she determines x5 = 0. Then since 417 > 356, x4 must be equal to 1, and finally,
417-356 = 61 implies that x3 = 0, x2 = 0 and x1 = 1. Hence, Alice finds 10010, which is exactly equal
to y1. She repeats these steps for the other components of T and retrieves y2 and y3 consecutively.
Adding all found words of length 5 and dividing the total binary code into words of length 7, Alice
transforms the message using the ASCII table back into the original text. Finally, she can read the
message Bob sent to her: “Hi”.
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Chapter 3

The attack

In this chapter we will go over the article of Shamir (1984), in which he shows an algorithm that breaks
the knapsack cryptosystem of Merkle and Hellman (1978). He explains that one can find a so-called
trapdoor pair that allows an interceptor to transform the hard knapsack problem into an easier one and
hence decrypt any encrypted message. In this chapter we will find out what this trapdoor pair is and how
someone can obtain it. Furthermore, we will observe that each step of his algorithm can be carried out
in polynomial time. We end this chapter with a worked-out example to see how it works in practice.

3.1 Assumptions

The only input of the algorithm is the encryption key that Alice made public. This key consists of the
vector b = (b1, b2, . . . , bn), which was made with the following operation:

bi = wai mod m,

where “mod m” is the remainder operator. Throughout this chapter we assume that the size of m grows
linearly with n; we say that m is a dn bit number, where d is an integer larger than 1. Furthermore,
we make the assumption that each ai is chosen to be a dn− n+ i− 1 bit number. This d denotes the
ratio between the sizes of the encrypted text and the plaintext. We can see this as follows: the plaintext
consists of binary words of length n and the encrypted text is formed by the inner product of these words
and the vector b. This encrypted text will thus presumably have a size of dn bits.

3.2 Outline of the attack

The algorithm tries to find a pair (M, U) such that si = Ubi mod M is a superincreasing sequence with
nonzero elements and its sum smaller than M. Such a pair is called a trapdoor pair. If Eve can find this,
she can use the same steps as Alice to transform the hard knapsack problem into a tractable problem and
solve it. Therefore, Bob’s message is not secure anymore. We know that such a trapdoor pair exists,
because we can take M = m and U ≡w−1(mod m). However, the algorithm may find different values for
M and U , though this does not influence the solution of the knapsack problem. Indeed, Eve can compute

(Uck) mod M =

(
U

n

∑
j=1

b jx j

)
mod M

=

(
n

∑
j=1

(Ub j mod M)x j

)
mod M

=

(
n

∑
j=1

s jx j

)
mod M
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=
n

∑
j=1

s jx j,

where ck is the kth value of the encrypted message. Since si is a superincreasing sequence, she can
solve the knapsack problem efficiently. Furthermore, she knows that Bob’s message is a solution and by
Theorem 2.1.1, this solution is unique. Hence, Alice retrieves Bob’s message.

3.3 Analysis trapdoor pair

In the previous section we found out that we need to find a trapdoor pair in order to decrypt a message
encrypted by the knapsack cryptosystem. So in the the upcoming sections we will take a look at the
properties of such a pair. This will give us insight into their values and how to find them.

3.3.1 Analysis sawtooth curves

We define M0 = m as the unknown dn bit modulus and U0 ≡ w−1(mod m) as the modular inverse of
the unknown multiplier w. Notice that (M0, U0) is a trapdoor pair. Now consider the function fi(U) =

Ubi−M0

⌊
Ubi
M0

⌋
on the domain [0, M0), which we will denote by fi(U) = Ubi mod M0 from now on.

We know that this function has the form of a sawtooth and only takes values in [0, M0), as shown in
Figure 3.1.

U

fi(U)

M0

M0

0
0

Figure 3.1: A graph of the function fi(U) =Ubi mod M0 on the interval [0,M0).

We note that each line segment has a slope of bi and that the discontinuities/minima are located at
the multiples of M0

bi
. So on the interval [0,M0) there are in total bi minima and the distance between

successive minima is M0
bi
.

Now we focus on the function f1, the sawtooth curve corresponding to b1. Consider the interval
I =
[
h M0

b1
, (h+1)M0

b1

)
, where h ∈N is such that U0 is in I. This implies that h M0

b1
is the closest minimum

of f1 on the left side of U0. On this interval the function has a slope of b1. So the horizontal distance
between U0 and h M0

b1
(the red line in Figure 3.2) is equal to U0b1 mod M0

b1
. We are interested in the magnitude

of this distance. So we take a closer look at the numerator and denominator.
First of all, we know that b1 = wa1 mod M0 and so, a1 ≡U0b1 (mod M0). However, since ∑ai < M0

we know that a1 < M0 and therefore, a1 = U0b1 mod M0. Furthermore, a1 < 2dn−n due to the fact that
we chose a1 to be a dn−n bit number. So we find that the numerator is smaller than 2dn−n.

We can also say something about the size of the denominator, b1. It is reasonable to assume that b1 is
uniformly distributed, that is P(b1 = X) = 1

M0
∀X ∈ {0, . . . ,M0−1}. Then using the fact that M0 < 2dn,
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U0

U0b1 mod M0

Figure 3.2: Graph of the function f1(U) =Ub1 mod M0 on the interval I, where the red line denotes the
distance between U0 and h M0

b1
.

we find that P
(
2dn−K ≤ b1 ≤ 2dn

)
= (1−2−K)2dn

M0
> (1−2−K)2dn

2dn = 1− 2−K , where 0 ≤ K < n is a certain
integer constant. Even for small values of K this probability is already close to 1. So it is reasonable to
assume that b1 is inside the interval [2dn−K , 2dn].

With these observations about a1 and b1 in mind we can estimate the distance t1 between U0 and
the closest minimum of f1 on its left. We find that t1 = U0b1 mod M0

b1
= a1

b1
< 2dn−n

2dn−K = 2−n+K . This implies
that whenever n is large compared to K, which is reasonable to assume as we only consider cases with
large n, this t1 becomes small. Consequently, the unknown U0 is close to a minimum of f1.

We can repeat these steps for each function fi and we find for each i that ti, the distance between U0

and the closest minimum of fi to its left, is less than 2dn−n+i−1

2dn−K = 2−n+K+i−1. For small values of i and
if n� K, this means that U0 is close to a minimum of each fi. So to find U0 we search for points that
are within a distance of 2−n+K+i−1 of a minimum of fi. However, if i approaches n, this distance is
large and does not effectively reduce the number of places in which U0 may be located. Therefore, it is
convenient not to consider all n sawtooth curves, but only 0 < λ < n, where λ is such that 2−n+K+λ−1

is not too large. Each point that is within a distance of 2−n+K+i−1 of a minimum of fi to its left, for
all i ∈ {1, . . . , λ}, is called a collection point. Note that U0 is such a point and thus to find U0 we must
search for the collection points. However, before we can find these, we must choose λ to make sure that
the number of collection points is manageable, otherwise the algorithm will be slow. In the next section
we will estimate λ .

3.3.2 Estimation number of sawtooth curves

Suppose we analyze λ sawtooth functions. We want to know for which value of λ the number of
collection points is manageable. Therefore, we are interested in the expected number of collection
points on the interval [0, M0). We know that each of these points is within a distance of 2−n+K+i−1 of
a minimum of fi to its left for all i ∈ {1, . . . , λ}. Consequently, the corresponding f1 minimum must
be within a distance of 2−n+K+i−1 of the other minima. An f1 minimum that satisfies this condition is
called a vicinity point. So if we make sure that the expected number of vicinity points is small, then
presumably the expected number of collection points will be small as well.

Now consider the pth minimum of f1, which is located at (p− 1)M0
b1

. Then the closest mini-
mum of any other function fi must be within a distance of 1

2
M0
bi

, that is anywhere in the interval

Ii =
[
(p−1)M0

b1
− 1

2
M0
bi
, (p−1)M0

b1
+ 1

2
M0
bi

]
. This holds since the distance between two successive min-

ima of fi is equal to M0
bi

.
Now let Ei be the event that there exists a minimum of fi such that the distance between this minimum

9



and (p− 1)M0
b1

is smaller than 2−n+K+i−1. Note that E1 is always true, so P(E1) = 1, and that the pth
minimum of f1 is a vicinity point if Ei is true for all i ∈ {1, . . . , λ}. By making the reasonable, but
unrigorous assumption that the actual values of the minima of fi are uniformly distributed independent
random variables on Ii, we see that P(Ei) = min

(
1, 2−n+K+i−1

M0/bi

)
≤ 2−n+K+i−1

M0/bi
for i ∈ {2, . . . , λ}. Hence,

using the fact that each bi is smaller than M0 and thus bi
M0

< 1, we can estimate the probability that the
pth minimum of f1 is a vicinity point by:

P(E1) ·P(E2) · . . . ·P(Eλ )≤ 1 · b2

M0
2−n+K+1 · . . . · bλ

M0
2−n+K+λ−1

< 2−n+K+1 · . . . ·2−n+K+λ−1

= 2∑
λ−1
i=1 (−n+K+i) ≤ 2(λ−1)( 1

2 λ+K−n).

Using this probability we can estimate the number N1 of f1 minima that are vicinity points. Since there
are b1 < 2dn possible values for p, we find

E(N1)< b1 ·2(λ−1)( 1
2 λ+K−n) < 2dn+(λ−1)( 1

2 λ+K−n)

and this value is smaller than 2 whenever

dn+(λ −1)
(

1
2

λ +K−n
)
< 1

⇐⇒ n(d−λ +1)+(λ −1)
(

1
2

λ +K
)
< 1

⇐⇒ n(λ −d−1)> (λ −1)
(

1
2

λ +K
)
−1.

Since λ and K are constants this implies that if n is large, the condition is satisfied whenever λ > d +1.
The claim that the expected number of vicinity points is smaller than 2 should not be taken literally. We
know that there is at least one vicinity point, as U0 is a collection point and the closest f1 minimum to
its left must be a vicinity point. It may happen that some collection points are close to other f1 minima.
However, it is reasonable to assume that there will not be too many of these “accidental” vicinity points
whenever λ > d +1.

Since we want that 2−n+K+λ−1 is not too large, we let λ be the smallest integer that satisfies the
inequality we found. So from now on, we will try to find U0 by analyzing λ = d + 2 sawtooth curves
and determining the corresponding collection points.

3.3.3 Removal of M0

In the previous sections the value of M0 is needed to determine the locations of the minima of the
sawtooth curves. However, M0 is still unknown. To overcome this problem, we take a look at the
functions gi(V ) = 1

M0
fi(V M0) =V bi−bV bic, which we will denote by gi(V ) = V bi mod 1. These new

functions are still sawtooth functions where each line segment has slope bi. However, the distance
between successive minima is reduced to 1

bi
and the gi minima are located on the interval [0, 1). A

visualisation of such a function can be seen in Figure 3.3.
In this new coordinate system we no longer want to find U0, but the new parameter V0 =

U0
M0

. The
distance between V0 and the closest minimum of gi on its left is reduced by a factor 2dn, since we
chose M0 to be a dn bit number. This distance will thus become 2−n+K+i−1

2dn = 2−dn−n+K+i−1. So from
now on, the new definition of a collection point is a point that is within a distance of 2−dn−n+K+i−1 of a
minimum of gi to its left for all i ∈ {1,...,λ} and a vicinity point is now a g1 minimum that is within a
distance of 2−dn−n+K+i−1 of a certain minimum of each gi. As we only rescaled the coordinate system,
the analysis of the previous section is still valid and therefore we can take λ = d +2.
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V

gi(V )

1

1

0
0

Figure 3.3: A graph of the function gi(V ) =V bi mod 1 on the interval [0, 1).

3.4 The algorithm

With the analysis of the previous three sections in mind, we know that we first need to find collection
points in order to find a trapdoor pair. This will thus be the first step of the algorithm, which will be
explained in the upcoming section.

3.4.1 Step 1: Find collection points

To find the collection points of the minima of gi(V ) we must search for all points that are within a dis-
tance of 2−dn−n+K+i−1 of a minimum of gi to its left for all i ∈ {1,...,λ}. Consequently, each collection
point is close to a certain g1 minimum, a vicinity point. So we can find the collection points by searching
for these vicinity points.

As we noticed in Section 3.3.3, there must be a minimum of each gi for all i ∈ {1,...,λ} within a
distance of 2−dn−n+K+i−1 of a vicinity point. However, for our choice of λ and because n� K, this
value is small. So instead of calculating this exact distance, we can just take a small ε > 0.

Now to find the vicinity points we set up a system of λ −1 inequalities, which represent the condi-
tions that the q2th minimum of g2, the q3th minimum of g3, etc., are all close to the pth minimum of g1.
That is ∣∣∣∣ p−1

b1
− qi−1

bi

∣∣∣∣≤ ε ∀i ∈ {2,...,λ}.

By multiplying each inequality by its denominators, we can transform the system into

|(p−1)bi− (qi−1)b1| ≤ δi ∀i ∈ {2,...,λ}, (3.4.1)

where δi = εb1bi. Furthermore, we have the following constraints for the λ unknowns:

p, qi ∈ N, (3.4.2)

1≤ p≤ b1, (3.4.3)

1≤ qi ≤ bi ∀i ∈ {2,...,λ}. (3.4.4)

The total system, consisting of inequalities (3.4.1)-(3.4.4), can be solved using linear programming. This
will be explained in more detail in Chapter 4.

The program will find values for p and all qi. However, we are interested in the vicinity points. So
we only need one of these, namely p. Once we know this value, we know that a corresponding collection
point is located close to p−1

b1
and we know that V0 must be inside the interval

[
p−1
b1

, p
b1

]
for some p.
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Moreover, we may end up having to test many solutions of the system before finding a trapdoor pair.
To make sure that the algorithm is still fast, we choose a number k > 0 to be the maximum number of
vicinity points we will consider. So the program stops whenever it has found k values for p.

In Appendix B we analyze the influence of this k on the success rate of the algorithm. It turns out
that if we assume that each δi is equal to δ < min{

√
b1/2, b2, . . . ,bλ} and λ ≥ 3, then the probability

that λ randomly chosen sawtooth curves have at least k vicinity points when it is known that they have

at least one is at most
(

1
dk/2e

)λ−1
. This means that if we take λ = 4 and k = 100, the probability of

finding 100 vicinity points is at most 1
503 = 0.000008. So if the program is aborted after 100 points are

found, the probability of failure is negligible.

3.4.2 Step 2: Find trapdoor pairs

In the previous step we found out that we must concentrate on a few intervals in which the true value of
V0 must be located. Suppose we find the value p∗ as a solution of (3.4.1)-(3.4.4). This implies that V0

may be located in the interval
[

p∗−1
b1

, p∗
b1

]
.

Within this interval there are discontinuity points of the functions gi, which we will denote by
V1 < V2 < .. . < Vs. We divide the interval into the subintervals [Vt ,Vt+1), where t ∈ {1, . . . , s− 1}.
Within the subintervals there are no discontinuities and therefore, all gi look like a linear function. This
linear function has a slope of bi and intersects the V -axis at τ t

i
1
bi

, where τ t
i denotes the number of minima

of gi on (0,Vt ]. With these observations we can set up the linear expression of gi on the subinterval
[Vt ,Vt+1). We obtain

gi(V ) = bi

(
V − τ

t
i

1
bi

)
= biV − τ

t
i . (3.4.5)

To see how this works in practice, we take a look at a small example. Suppose we have b = (3,15,4)
and we have found p∗ = 3. The three functions g1, g2 and g3 and their discontinuity points are drawn on
the interval

[2
3 ,1
]
, which can be seen in Figure 3.4.

The next step is to consider the interval [V1, V2) =
[2

3 ,
11
15

)
. Within this interval there are no dis-

continuity points of any of the three sawtooth curves. This implies that each gi can be seen as a linear
function, more specifically, as the linear functions shown in Figure 3.5.

Using (3.4.5) we can express the gi as linear functions on the interval
[2

3 ,
11
15

)
. This gives us

g1(V ) = 3V −2,

g2(V ) = 15V −10,

g3(V ) = 4V −2,

which are exactly the green, orange and red function, respectively, in Figure 3.5. So we see that (3.4.5)
gives the right expression.
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Figure 3.4: The functions g1(V ) = 3V mod 1 (green), g2(V ) = 15V mod 1 (orange) and g3(V ) =
4V mod 1 (red) with their discontinuity points V1-V6 (black dots) on the interval

[2
3 ,1
]
.
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Figure 3.5: The line segments of the sawtooth curves g1 (green), g2 (orange) and g3 (red) which are
linear on the interval

[2
3 ,

11
15

)
.

13



Now that it is clear how to find the linear expressions, we continue the algorithm. With these ex-
pressions we can set up a system of inequalities to find trapdoor pairs (M, U). As has been mentioned,
a pair is a trapdoor pair if si = Ubi mod M is a superincreasing sequence with nonzero elements and
∑

n
i=1 si < M. Equivalently, (M, U) is a trapdoor pair if σi =

U
M bi mod 1 is a superincreasing sequence

with nonzero elements and ∑
n
i=1 σi < 1. Note that we are now considering all n sawtooth curves and not

only λ . We see that the elements of the sequence σ are exactly equal to the functions gi(V ) evaluated at
the trapdoor ratio U

M . So to find this ratio we only need to know for which V the gi(V ) form a superin-
creasing sequence with nonzero elements and its sum smaller than 1. Since the gi(V ) can be expressed
as a linear function (see (3.4.5)) on each subinterval, this leads to the following system of inequalities:

Vt ≤V <Vt+1, (3.4.6)
n

∑
j=1

(b jV − τ
t
j)< 1, (3.4.7)

b1V − τ
t
1 > 0, (3.4.8)

biV − τ
t
i >

i−1

∑
j=1

(b jV − τ
t
j) ∀i ∈ {2, . . . , n}. (3.4.9)

We know that for some t this system has at least one solution since V = U0
M0

is a trapdoor pair. In general,
the solutions are within small subintervals of [Vt ,Vt+1). Now since each rational number U

M in such a
subinterval satisfies (3.4.6)-(3.4.9), (M,U) is always a trapdoor pair. Conversely, if (M,U) is a trapdoor
pair, it must be in such a subinterval for some p and t. This finishes the algorithm.

3.5 Time complexity

In the previous section we have examined an algorithm to break the knapsack cryptosystem. The only
thing left to do is to show that every step can be carried out in polynomial time. Then if k is small, we
have a fast algorithm. To show this, we will go over every step of the algorithm and determine its time
complexity.

3.5.1 Time complexity step 1

In this step of the algorithm we find the vicinity points by solving the IP problem, consisting of inequal-
ities (3.4.1)-(3.4.4). In total we consider λ sawtooth curves, so we must solve a system of λ −1+λ =
2λ − 1 inequalities with λ unknowns. Since λ is a constant, we can do this by using Lenstra’s integer
programming algorithm (1983), which is polynomial in the size of the coefficients for any fixed number
of unknowns. However, this algorithm is hard to use in practice. Therefore, in this paper we use linear
programming to solve the system, in particular, the Gurobi optimizer.

So we conclude that step 4 of the algorithm can be done in polynomial time, when using Lenstra’s
integer. However, the implementation shown in this paper will not be polynomial.

3.5.2 Time complexity step 2

In step 1 we have found at most k solutions of the system of inequalities, where k is an integer constant.
For each found value p we need to find the discontinuity points of the n sawtooth curves in

[
p−1
b1

, p
b1

]
.

The expected number of such points is O(n). So there are O(n) subintervals and for each of these
we have to solve the system of inequalities (3.4.6)-(3.4.9). That is, n+ 1 inequalities and 1 unknown.
Rewriting and combining all inequalities gives small intervals in which a solution must be located. These
operations can be done in polynomial time.

We end this section with the conclusion that both steps of the algorithm of Shamir can be carried
out in a polynomial time. However, the implementation of step 1 in this paper, which will be shown
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in the next chapter, is not polynomial as it does not use Lenstra’s integer program. Moreover, the total
algorithm is not polynomial time. This would imply that each input will always give a solution in
polynomial time. However, due to some probabilistic assumptions, this is only true with a certain high
probability, that is, there is a probability of failure.

3.6 Worked-out example

In the previous sections we have seen the steps of the algorithm. In this section we will work out an
example to show how it works in practice. We use the example as in Section 2.2.1, but now as the third
party Eve.

Eve wants to find a trapdoor pair and decrypt the message of Bob. She only knows the private key
b = (4775, 767, 1818, 3150, 6016). To find a trapdoor pair she first needs to find the vicinity points by
solving the system of inequalities (3.4.1)-(3.4.4) as explained in Section 3.4.1. She chooses ε = 10−4

and thus obtains:

|767(p−1)−4775(q−1)| ≤ 343.2325,

|1818(p−1)−4775(r−1)| ≤ 868.0950,

|3150(p−1)−4775(s−1)| ≤ 1504.1250,

|6016(p−1)−4775(t−1)| ≤ 2872.6400.

Furthermore, she knows n = 5, d = 2, which implies λ > d + 1 = 3 and she chooses λ = 4 and
k = 100. Then with the use of linear programming she finds a list of at most 100 solutions for p.

For example, she finds p = 1296. Following step 2 (Section 3.4.2), she focuses on the interval[1295
4775 ,

1296
4775

)
≈ [0.27120, 0.27141). The only discontinuity within this interval is located at 1632

6061 ≈ 0.27128.
So Eve must consider the subintervals I1 = [0.27120, 0.27128) and I2 = [0.27128, 0.27141).

The last part of the algorithm is to find a trapdoor pair in one of the subintervals. Therefore, Eve first
determines the linear expression of the sawtooth curves with the use of Equation (3.4.5). On the interval
I1 she finds

g1(V ) = 4775V −1295,

g2(V ) = 767V −208,

g3(V ) = 1818V −493,

g4(V ) = 3150V −854,

g5(V ) = 6016V −1632.

Next she solves the system (3.4.6)-(3.4.9) and she finds the values M = 99998 and U = 27120. Note
that these are not the same values as Alice used to form the encryption key (see Section 2.2.1). To see
that (99998, 27120) is indeed a trapdoor pair, we check if si = 27120bi mod 99998 is a superincreasing
function with its sum smaller than 99998. Calculating each si gives the sequence (590, 1456, 5146,
29708, 57182). This sequence is indeed superincreasing and its sum is 94082 < 99998. Therefore,
(99998, 27120) is a trapdoor pair.

Now suppose Eve has intercepted the encrypted message c = (7925, 4968, 7925) and she wants to
read it. To decrypt the message, she computes the value 27120ck mod 99998 for each component ck.
She finds T = (30298, 34854, 30298). Then following the same steps with the si as Alice did with the ai,
Eve finds consecutively, 10010, 00110 and 10010. After transforming this via the ASCII table, she can
read Bob’s message: “Hi”.
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Chapter 4

Implementation of the attack

In the previous chapter we have seen how the algorithm works in theory. However, to use it in practice,
it should be implemented as a computer program, for instance using Python. In this chapter we take a
look at some parts of the implementation that need some explanation. The complete code can be found
in Appendix C.

4.1 Implementation step 1

To find V0 we must find out where the collection points of the λ sawtooth curves are located. In step 4
of the algorithm we have set up the system of inequalities (3.4.1)-(3.4.4) to obtain the vicinity points,
which give an idea of these locations. We can solve it with the use of linear programming. Therefore,
we must rewrite the system into an optimization problem:

minimize
p

p

s.t. |(p−1)bi− (qi−1)b1| ≤ δ ,

1≤ p≤ b1,

1≤ qi ≤ bi,

p, qi ∈ N,

where i ∈ {2,...,λ} and δ < min{
√

b1/2, b2, . . . ,bλ} as explained in Appendix B. Its solution, ṗ, is the
smallest value for p for which p−1

b1
is a vicinity point. However, we are not interested in one solution

but in k solutions, if possible. Therefore, to find the second smallest solution, we must change the lower
bound for p from 1 to ṗ+ 1. So the first found value will not be a solution anymore. We continue
changing the lower bound, until there is no feasible solution or if we have found k solutions.

It may occur that our choice to let p correspond to the first element of b immediately leads to an
infeasible problem. This happens if b1 is small in comparison to some bi ∈ {b2, . . . , bλ}. So it might be
convenient to let p not correspond to b1 but to the largest value of b and using the same argument q2 to
the second largest, etc. In other words, we should sort the vector b in such a way that its components
are descending and then solve the optimization problem from above with this new vector. We can do
this without any consequences, as we just need to consider λ sawtooth curves; it does not matter which
ones. We only need to make sure that once we have found the vicinity points, we use the original vector b
again for the next steps.

4.2 Implementation step 2

For each value p that we found in step 1 we need to find the discontinuity points in the interval
[

p−1
b1

, p
b1

]
.

We know that each discontinuity point of gi is of the form j
bi

. So we should let the program search for j
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and i such that the rational number j
bi

is in
[

p−1
b1

, p
b1

]
. This gives us the values for V1, V2, . . . , Vs.

Then in each subinterval [Vt , Vt+1) the sawtooth curves are just linear functions. In Section 3.4.2 we
already found out that the linear expression for gi is given by gi(V ) = biV − τ t

i , where τ t
i is the number

of minima of gi on (0,Vt ]. The bi’s are known, but we still need to find the values for the τ t
i ’s.

We know that the jth minimum of gi is located at j−1
bi

. However, if we only consider the interval

(0,Vt ], the location of the jth minimum is j
bi

. So if there are exactly τ t
i minima on (0,Vt ], then τ t

i
bi

must

be inside this interval and τ t
i +1
bi

must not. Therefore, the program should search for the largest value of j
for each i such that j

bi
≤Vt and store this value as τ t

i .
The last step of the algorithm is to find the small subintervals of [Vt , Vt+1) for which the inequalities

(3.4.6)-(3.4.9) hold. Rewriting (3.4.6)-(3.4.8) to lower and upper bounds for the unknown V gives

V ≥Vt , (4.2.1)

V <Vt+1, (4.2.2)

V <
1+∑

n
j=1 τ t

j

∑
n
j=1 b j

, (4.2.3)

V >
τ t

1
b1

. (4.2.4)

Rewriting inequality (3.4.9) gives us two cases for each i ∈ {2, . . . , n}:

if bi >
i−1

∑
j=1

b j then V >
τ t

i −∑
i−1
j=1 τ t

j

bi−∑
i−1
j=1 b j

, (4.2.5a)

if bi <
i−1

∑
j=1

b j then V <
τ t

i −∑
i−1
j=1 τ t

j

bi−∑
i−1
j=1 b j

. (4.2.5b)

In total, the inequalities (4.2.1), (4.2.4) and (4.2.5a) all give a lower bound for V , whereas inequalities
(4.2.2), (4.2.3) and (4.2.5b) all give an upper bound. Now let lb be the maximum lower bound and ub
be the minimum upper bound. If lb < ub, there is a solution to the system and we can find a trapdoor
pair. In fact, each pair (M, U) for which U

M ∈ (lb,ub) is a trapdoor pair. So for example, we can take
V = lb+ub

2 and express this as a rational number. This gives us a trapdoor pair and therefore, we can
decrypt any message encrypted with this particular vector b.
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Chapter 5

Discussion

In this paper we have taken a closer look at the original knapsack cryptosystem, as published by Merkle
and Hellman. In their article they also mention different variants of this cryptosystem. One uses a
multiplicative knapsack, which is transformed into the additive knapsack by taking logarithms. Another
one is the iterative variant, which is just the original knapsack system where the steps to form the
encryption key are repeated several times. The one explained in this paper can thus also be seen as the
single-iteration Merkle-Hellman cryptosystem. The algorithm proposed by Shamir breaks this single-
iteration cryptosystem. However, it would be interesting to examine if his algorithm can also be used to
break the other variants.

Furthermore, the implementation given in this paper does not use Lenstra’s integer program and this
makes it a non-polynomial time algorithm. So one should try to implement this program of Lenstra or
find another algorithm that solves LP-problems in polynomial time. This will make the algorithm even
more useful.

Lastly, it is interesting to think about other and faster ways to break the knapsack cryptosystem. For
instance, in 2019 an attack was proposed based on the orthogonal lattice technique (Liu et al., 2019).
The algorithm that was used is proven to be faster than Shamir’s. Now one might wonder if even faster
algorithms exist.
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Appendix A

Python code: Knapsack cryptosystem

1 import math
2

3 # Example of a private key
4 a = [61, 102, 171, 356, 745]
5 m = 6031
6 w = 2550
7

8 winv = pow(w,-1,m) # Modulo inverse of w
9

10 ########################################################
11 # FUNCTIONS:
12 # text_to_ascii: transforms characters into the corresponding

values in the ASCII table
13 # decimals_to_binary: transforms decimals into their binary values
14 # samelength: makes all elements of a list of equal length by

adding zeroes to the front of the element
15 # samelength2: makes all elements of a list of a certain length by

adding zeroes to the end
16 # split: splits a binary code in words of a certain length
17 # binary_to_text: transforms each element in a list into the

corresponding character , using the ASCII table
18 # make_b: makes the encryption key with a given vector a and

numbers m and w
19 # make_S: calculates the inner product of a binary word and the

vector b
20 # encrypt: encrypts a given text and returns an encrypted code
21 # decrypt: decrypts a given list of encrypted codes and returns

the decrypted text
22

23 ########################################################
24

25 def text_to_ascii(text):
26 asc =[]
27 for elt in text:
28 asc_elt = ord(elt)
29 asc.append(asc_elt)
30 return asc
31
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32 def decimals_to_binary(asc):
33 binary = []
34 for elt in asc:
35 bin_elt = bin(elt).replace('0b', '')
36 binary.append(bin_elt)
37 return binary
38

39 def samelength(binary):
40 length = []
41 for elt in binary:
42 length.append(len(elt))
43 for i in range(len(binary)):
44 elt = binary[i]
45 if len(elt) != 7:
46 n = 7 - len(elt)
47 new_elt = n*'0'+ elt
48 binary[i] = new_elt
49 return binary
50

51 def samelength2(binary_lst , l):
52 elt = binary_lst [-1]
53 n = l - len(elt)
54 new_elt = elt + n*'0'
55 binary_lst [-1] = new_elt
56 return binary_lst
57

58 def split(binary , l):
59 b = len(binary)
60 binary_lst = []
61 for i in range(math.ceil(b/l)):
62 binary_lst.append(binary[l*i:l*(i+1)])
63 return binary_lst
64

65 def binary_to_text(code_list):
66 code = ""
67 for elt in code_list:
68 for value in elt:
69 code = code + str(value)
70 binary_tot = str(code)
71 r = (len(code)%7)
72 if r !=0:
73 binary_new = binary_tot [:-r]
74 else:
75 binary_new = binary_tot
76 binary_values = split(binary_new , 7)
77 ascii_string =""
78 for elt in binary_values:
79 an_integer = int(elt , 2)
80 ascii_character = chr(an_integer)
81 ascii_string += ascii_character
82 print(ascii_string)
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83

84 ########################################################
85

86 def make_b(a, w, m):
87 b = []
88 for elt in a:
89 new_elt = (w*elt) % m
90 b.append(new_elt)
91 return b
92

93 def make_S(code , b):
94 S = sum([code[i]*b[i] for i in range(len(code))])
95 return S
96

97 ########################################################
98

99 def encrypt(b):
100 text = input('Give a text: ')
101 asc = text_to_ascii(text)
102 binary = decimals_to_binary(asc)
103 new_binary = samelength(binary)
104 binary_tot = ''
105 for elt in new_binary:
106 binary_tot += elt
107 binary_lst = split(binary_tot , len(b))
108 binary_lst = samelength2(binary_lst , len(b))
109 encrypted_S = []
110 for elt in binary_lst:
111 code =[]
112 for number in elt:
113 code.append(int(number))
114 S = make_S(code , b)
115 encrypted_S.append(S)
116 print(encrypted_S)
117

118

119 def decrypt(winv , m, a):
120 encrypted_codes = input('Give a list of encrypted codes: ')
121 encrypted_codes = encrypted_codes.replace('[','')
122 encrypted_codes = encrypted_codes.replace(']','')
123 encrypted_S = list(map(int , encrypted_codes.split(', ')))
124 decrypt_list =[]
125 for S in encrypted_S:
126 l = len(a)
127 S_prime = (winv*S) % m
128 x_prime = [0 for j in range(l)]
129 if S_prime >= a[l-1]:
130 x_prime[l-1] = 1
131 for i in range(l-2,-1,-1):
132 if S_prime - sum([ x_prime[j]*a[j] for j in range(i+1,l

)]) >= a[i]:
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133 x_prime[i] = 1
134 decrypt_list.append(x_prime)
135 print('\n')
136 return binary_to_text(decrypt_list)
137

138

139 ########################################################
140 # Main program
141

142 # Encrypt
143 b = make_b(a,w,m)
144 encrypt(b)
145

146 # Decrypt
147 decrypt(winv ,m,a)
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Appendix B

Analysis of the number of vicinity points

As described in Section 3.4.1 the algorithm of Shamir is aborted once it has found k vicinity points of
the λ sawtooth curves. In this appendix we will take a look at the influence of the value of k on the
probability of failure of the algorithm.

We will do this by first making some assumptions that will make the analysis easier. Next we give a
definition of a certain set and state and prove some lemmas. We end the appendix with the main theorem,
which gives an upper bound for the probability of failure of the algorithm.

B.1 Analysis of k

For the sake of simplicity, we assume that b1 is a fixed prime number and the other bi’s are independent
random variables with discrete uniform distribution on [1, b1−1]. This implies that gcd(b1, bi) = 1 ∀i∈
{2, . . . , λ} and therefore, b2, . . . , bλ all have a well-defined inverse modulo b1. Furthermore, we assume
that the δi’s in the inequalities given by (3.4.1) are all equal and we denote this new bound by δ . Since
we are free to choose this value, we may assume that δ < min{

√
b1/2, b2, . . . ,bλ}.

The first step is to define Si as the set of indices of the g1 minima which are close to some minimum
of gi. That is,

Si = {1≤ p≤ b1−1 : ∃qi,1≤ qi ≤ bi−1, s.t. |pbi−qib1| ≤ δ},

where p and qi are integers. We notice that S =
⋂

λ
i=2 Si is exactly the set of solution to inequalities

(3.4.1)-(3.4.4), except for the cases when p = 0 and qi = 0. However, if qi = 0, then we should have
that |pbi| ≤ δ < bi, which implies that −1 < p < 1, that is, p = 0. So in fact, S only lacks p = 0. We
know that 0 is always a solution as the first minimum of each sawtooth curve is located at the origin.
Therefore, throughout this appendix we forget about p = 0 and only focus on the values in S.

We start with a lemma that shows that we can write each Si in an alternative way.

Lemma 1. If δ < min{
√

b1/2, b2, . . . ,bλ}, then Si = { jib−1
i mod b1 : | ji| ≤ δ , ji 6= 0}.

Proof. Suppose p ∈ Si. Then there exists a 1 ≤ qi ≤ bi− 1 such that |pbi− qib1| ≤ δ . Write ji =
pbi−qib1, so | ji| ≤ δ . Furthermore, we claim that ji 6= 0.

Indeed, suppose ji = pbi− qib1 = 0. The smallest values for p and qi for which this holds are
p = lcm(b1,bi)

bi
and qi =

lcm(b1,bi)
b1

, where lcm is the least common multiple. Using the relation lcm(a,b) =
ab

gcd(a,b) , we see that p = b1bi
bi gcd(b1,bi)

and qi =
b1bi

b1 gcd(b1,bi)
. We know that gcd(b1, bi) = 1 by assumption,

so we obtain p = b1 and qi = bi. However, since p ∈ Si, we know that p≤ b1−1 and qi ≤ bi−1. This
is a contradiction, proving the claim.

24



The only thing left to show in this part is that p = jib−1
i mod b1, with our choice of ji. Substituting gives

(pbi−qib1)b−1
i mod b1 = (p−qib1b−1

i ) mod b1,

= p mod b1,

= p.

So p ∈ { jib−1
i mod b1 : | ji| ≤ δ , ji 6= 0} and hence Si ⊆ { jib−1

i mod b1 : | ji| ≤ δ , ji 6= 0}.
Now suppose p ∈ { jib−1

i mod b1 : | ji| ≤ δ , ji 6= 0}. So p is of the form jib−1
i mod b1 and hence

p ∈ [0, b1−1]. We claim that p 6= 0.
Indeed, suppose p = 0. Then since p ≡ jib−1

i (mod b1), either ji = 0 or jib−1
i is a multiple of b1.

The first equation cannot be true, as ji 6= 0 by assumption. The second equation is only true if there
exists an a such that jib−1

i −ab1 = 0. Now we can use the same reasoning as in the proof of the previous
claim. We know that the b−1

i has a modular inverse, namely bi. Therefore, the gcd(b1, b−1
i ) = 1. So the

smallest values for a and ji for which jib−1
i − ab1 = 0 is true, are a = b−1

i and ji = b1. However, we
assumed that | ji| ≤ δ <

√
b1/2 < b1 (last inequality holds as b1 > 1) and this is a contradiction.

We know that p≡ jib−1
i (mod b1) and thus pbi ≡ ji (mod b1). This implies that there exists a qi such

that ji = pbi−qib1. Now since | ji| ≤ δ , we get |pbi−qib1| ≤ δ . However, it is not immediately clear
that 1≤ qi ≤ bi−1. To show that this holds, we use the inequalities 1≤ p≤ b1−1 and | ji| ≤ δ < bi ∀i
and the equation ji = pbi−qib1. We obtain

0 =
1bi−bi

b1
<

pbi− ji
b1

= qi =
pbi− ji

b1
<

(b1−1)bi +bi

b1
= bi.

Using the fact that qi is an integer, we indeed obtain 1 ≤ qi ≤ bi − 1. Therefore, p ∈ Si and thus
{ jib−1

i mod b1 : | ji| ≤ δ , ji 6= 0} ⊆ Si. Consequently, Si = { jib−1
i mod b1 : | ji| ≤ δ , ji 6= 0} and this

finishes the proof.

Lemma 1 shows us that for each p there is a one-to-one correspondence between the sequences (b2, . . . ,bλ )
and ( j2, . . . , jλ ). So p

b1
is a vicinity point of (g2, . . . , gλ ) if and only if the corresponding ji are all nonzero

integers on the interval [−δ , δ ].

Lemma 2. Let p′
b1

and p′′
b1

be two vicinity points of (g2, . . . , gλ ) and let ( j′2, . . . , j′
λ
) and ( j′′2 , . . . , j′′

λ
) be

their corresponding j indices. If δ < min{
√

b1/2, b2, . . . ,bλ}, then both sequences are integral multi-
ples of some common ( j2, . . . , jλ ) sequence for which the greatest common divisor gcd( j2, . . . , jλ ) = 1.

Proof. We know that p′ ≡ j′ib
−1
i (mod b1) and p′′ ≡ j′′i b−1

i (mod b1) and this gives us

bi ≡ j′i p
′−1 ≡ j′′i p′′−1(mod b1).

We can rewrite this to
j′i j′′i
−1 ≡ p′p′′−1(mod b1).

Now since the right-hand side does not depend on i, we must have that for all s and t,

j′s j′′s
−1 ≡ j′t j′′t

−1(mod b1),

or equivalently,
j′s j′′t ≡ j′t j′′s (mod b1). (B.1.1)

By the assumption that | ji| ≤ δ <
√

b1/2 for all i, each product j′ j′′ will be in the interval
(
−b1

2 ,
b1
2

)
.

Therefore, Equation (B.1.1) holds even without the modular operation, that is

j′s j′′t = j′t j′′s ∀s, t.
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This equation only holds if the two sequences are rational multiples of each other. In other words, there
exist x,y ∈ Z\{0} such that j′i =

x
y j′′i ∀i . We can assume that the greatest common divisor (gcd) of x

and y is equal to 1.
Furthermore, since both sequences are integral, y divides x j′′i . Together with the fact that gcd(x,y)= 1,

this implies that y divides j′′i . Therefore, we can write j′′i = y ji, where ji is an integer. Then the other
sequence becomes j′i =

x
y j′′i = x ji. Hence, both sequences are multiples of some integral sequence

( j2, . . . , jλ ).
Lastly, we can say that the elements of this common sequence have a gcd of 1. Because if it has a

gcd of h 6= 1, then we divide all elements by h and this will give us the desired sequence.

A direct consequence of this lemma is stated in the following corollary.

Corollary 1. If δ < min{
√

b1/2, b2, . . . ,bλ} and S 6= /0, then there is a basic vicinity point p∗
b1

with
( j∗2, . . . , j∗

λ
) whose gcd is 1, and the j indices of all other vicinity points are obtained by multiplying j∗i

by an integer z 6= 0. That is, the j indices of each vicinity point are ji = z j∗i with z j∗i 6= 0 and |z j∗i | ≤ δ ∀i.

Proof. Let p′
b1

and p′′
b1

be two vicinity points of (g2, . . . , gλ ) and let ( j′2, . . . , j′
λ
) and ( j′′2 , . . . , j′′

λ
) be their

corresponding j indices. Then we know from Lemma 2 that there is a sequence, which we will denote
by j∗i , with gcd equal to 1 such that j′i = x j∗i and j′′i = y j∗i ∀i, where x,y ∈ Z\{0}. We claim that there is
a vicinity point that corresponds to these j∗ indices.

Indeed, we see that | j∗i | =
∣∣∣ j′i

x

∣∣∣ = | j′i |
|x| ≤ | j

′
i| ≤ δ and j∗i =

j′i
x 6= 0. Therefore, if we write p∗ =

j∗i b−1
i mod b1, then by Lemma 1 we know that p∗

b1
is a vicinity point which corresponds to j∗i .

Now let p̂
b1

be an arbitrary vicinity point and let ( ĵ2, . . . , ĵλ ) be its corresponding j indices. Applying

Lemma 2 to p̂
b1

and p∗
b1

we know that there exist v,w ∈ Z\{0} and a sequence j̃i with gcd equal to 1 such
that ĵi = v j̃i and j∗i = w j̃i ∀i. Now since j̃i is an integral sequence, we must have that w divides j∗i .
However, we know that j∗i has a gcd of 1, so w must be equal to 1 and this implies that j∗i = j̃i. Hence, ĵi
is a multiple of j∗i and since we choose an arbitrary vicinity point, we can conclude that the j indices
of all vicinity points are a multiple of j∗i . Furthermore, we know by Lemma 1 that each ji = z j∗i , where
z ∈ Z\{0}, such that z j∗i 6= 0 and |z j∗i | ≤ δ ∀i, corresponds to a vicinity point.

Next, we define N(λ , k, δ ) to be the number of (b2, . . . , bλ ) sequences in [1,b1− 1] for which the
size of S is at least k, when the allowed distance is δ . Recall that p∈ S implies that p

b1
is a vicinity point..

We want to find the value of k for which the probability that there are at least k vicinity points is low,
since then if the algorithm is aborted after k points are found, the probability of failure is small.

We know that the λ sawtooth curves have at least one vicinity point, since V0 is a collection point
and must be close to such a point. So we are interested in the conditional probability that the λ sawtooth
curves have at least k vicinity points, when it is known they have at least one. This probability is given
by

P(|S| ≥ k | |S| ≥ 1) =
P(|S| ≥ k, |S| ≥ 1)

P(|S| ≥ 1)

=
P(|S| ≥ k)
P(|S| ≥ 1)

=
N(λ , k, δ )/T
N(λ , 1, δ )/T

=
N(λ , k, δ )

N(λ , 1, δ )
, (B.1.2)

where T is the total number of (b2, . . . , bλ ) sequences in [1,b1−1].
The goal of the last part of this appendix is to find an upper bound for this probability. First, the

following lemma gives an approximation for N(λ , 1, δ ).
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Lemma 3. For any δ < min{
√

b1/2, b2, . . . ,bλ} and λ ≥ 3, there is a constant τ ∈
[ 3

π2 ,
1
2

]
that only

depends on λ such that
N(λ , 1, δ )≈ τ(b1−1)(2δ )λ−1.

Proof. N(λ , 1, δ ) is the number of (b2, . . . , bλ ) sequences in [1,b1− 1] for which |S| ≥ 1, when the
allowed distance is δ . In other words, the number of sequences that have at least one vicinity point.
We can overcount this by counting the number of (p, b2, . . . , bλ ) sequences in which p

b1
is a vicinity

point of the gi’s. Indeed, one sequence can be counted for multiple values of p. Using Lemma 1, we
know that p

b1
is a vicinity point if and only if the corresponding ji are all nonzero integers on the interval

[−δ , δ ]. This means that

|{(b2, . . . , bλ ) : |S| ≥ 1}| ≤
∣∣∣∣{(p, b2, . . . , bλ ) : 1≤ p≤ b1−1 and

p
b1

is an vic. point
}∣∣∣∣

= |{(p, j2, . . . , jλ ) : p = jib−1
i mod b1 ∀i ∈ {2, . . . , λ} and | ji| ≤ δ , ji 6= 0}|

= (b1−1)(2δ )λ−1.

The last equation holds since there are b1−1 different values for p and each of the λ −1 indices ji can
take 2δ values.

To correct the overcounting, we must only consider the ji sequences which elements have a gcd of 1.
By Corollary 1, we know that each bi sequence with vicinity points has exactly two ji sequences whose
gcd is 1: the ji sequence as described in the lemma and the sequence with the opposite elements.

Furthermore, it is known that λ − 1 integers, which are chosen independently and uniformly from
{1, . . . , n}, are coprime with a probability of 1

ζ (λ−1) whenever n→∞ (Nymann, 1972), where ζ (·) is the
Riemann zeta function. In our case, where the ji are not uniformly distributed, this probability is only
an indication.

We see that for λ = 3, the probability is equal to 1
ζ (2) =

6
π2 and for λ → ∞ we get 1

ζ (∞)
= 1

1 = 1. So

since the function 1
ζ (·) is strictly increasing, the fraction of ji sequences for which the gcd equals 1 is in

between 6
π2 and 1. However, each bi sequence with vicinity points has exactly two ji sequences and is

thus counted exactly twice. Hence, the correct reducing factor τ is in between 3
π2 and 1

2 .

The next lemma gives an upper bound for N(λ , k, δ ).

Lemma 4. If δ < min{
√

b1/2, b2, . . . ,bλ}, then N(λ , k, δ )≤ N
(

λ , 1, δ

ek/2d

)
.

Proof. Let ( j∗2, . . . , j∗
λ
) be the sequence with gcd = 1 as described in Corollary 1. The j indices of the k

vicinity points of the bi sequence are thus obtained by multiplying this sequence by −1,2,−2, . . . , r,
where

r =

{
− k

2 if k is even;
(k+1)

2 if k is odd.

This implies that each element ji can be multiplied with dk/2e without exceeding δ . Consequently,
| ji| ≤ δ

dk/2e , and thus the bi sequence has at least one vicinity point when δ is replace by δ

dk/2e . Hence,

N(λ , k, δ )≤ N
(

λ , 1, δ

dk/2e

)
.

Using Equation (B.1.2), Lemma 3 and Lemma 4 we can now give an upper bound for the conditional
probability we are interested in.

Theorem B.1.1. When δ < min{
√

b1/2, b2, . . . ,bλ} and λ ≥ 3 the conditional probability

P(|S| ≥ k | |S| ≥ 1) is at most
(

1
dk/2e

)λ−1
.
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Proof.

P(|S| ≥ k | |S| ≥ 1) =
N(λ , k, δ )

N(λ , 1, δ )

≤
N(λ , 1, δ

dk/2e)

N(λ , 1, δ )

≈
τ(b1−1)

(
2 δ

dk/2e

)λ−1

τ(b1−1)(2δ )λ−1

=

(
1
dk/2e

)λ−1

.

To understand what this theorem actually tells us, we take a look at an example. Suppose λ = 4 and
k = 100. Then if δ < min{

√
b1/2, b2, . . . ,bλ}, the probability that the algorithm will find 100 vicinity

points of 4 sawtooth curves, when it is known that they have at least one, is at most 1
503 = 0.000008. This

means that if the algorithm is aborted after 100 points are found, the probability of failure is negligible.
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Appendix C

Python code: Attack

1 from gurobipy import *
2 from fractions import Fraction
3 import math
4

5 ########################################################
6

7 def decrypt(winv , m, a):
8 encrypted_codes = input('Give a list of encrypted codes: ')
9 encrypted_codes = encrypted_codes.replace('[','')

10 encrypted_codes = encrypted_codes.replace(']','')
11 encrypted_S = list(map(int , encrypted_codes.split(', ')))
12 decrypt_list =[]
13 for S in encrypted_S:
14 l = len(a)
15 S_prime = (winv*S) % m
16 x_prime = [0 for j in range(l)]
17 if S_prime >= a[l-1]:
18 x_prime[l-1] = 1
19 for i in range(l-2,-1,-1):
20 if S_prime - sum([ x_prime[j]*a[j] for j in range(i+1,l

)]) >= a[i]:
21 x_prime[i] = 1
22 decrypt_list.append(x_prime)
23 print('\n')
24 return binary_to_text(decrypt_list)
25

26 ########################################################
27

28 # Example of a public key
29 b = [4775, 767, 1818, 3150, 6016]
30 bsort = sorted(b, reverse=True)
31

32 k=100
33 l=4
34 y=1
35

36 delta = min(math.sqrt(bsort [0]/2) , min(bsort))-1e-4
37
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38 ########################################################
39

40 p_var = []
41 answer = False
42 while answer == False:
43 try:
44 x=[]
45 m1 = Model('Vicinity points ')
46 x0 = m1.addVar(lb = y, ub = bsort[0]-1, vtype=GRB.INTEGER ,

name = 'x'+ str (0))
47 x = [m1.addVar(lb = 1, ub = bsort[i]-1, vtype=GRB.INTEGER ,

name = 'x'+ str(i)) for i in range(1,l)]
48 x = [x0] + x
49

50 for i in range(1,l):
51 m1.addConstr ((x[0]-1)*bsort[i]-(x[i]-1)*bsort [0] <=

delta)
52 m1.addConstr ((x[0]-1)*bsort[i]-(x[i]-1)*bsort [0] >= -

delta)
53

54 m1.setObjective(x[0], GRB.MINIMIZE)
55 m1.Params.LogToConsole = 0
56 m1.optimize ()
57

58 var = m1.getVars ()
59 p = var [0].x
60 p_var.append(p)
61 V_list = [(p-1)/bsort[0], p/bsort [0]]
62 for i in range(1,len(bsort)):
63 for j in range(0,bsort[i]):
64 if (p-1)/bsort [0] < j/bsort[i] < p/bsort [0]:
65 V_list.append(j/bsort[i])
66 V_list.sort()
67

68 for r in range(0, len(V_list) -1):
69 lbs = []
70 ubs = []
71 lb1 = V_list[r]
72 ub1 = V_list[r+1]
73 d=[]
74 for i in range(0,len(b)):
75 d.append(next(j for j in reversed(range(0, b[i]))

if j/b[i] <= lb1))
76 for i in range(1, len(b)):
77 if b[i]>sum(b[j] for j in range(0,i)):
78 lbi = (d[i]-sum(d[j] for j in range(0,i)))/(b[

i]-sum(b[j] for j in range(0,i)))
79 lbs.append(lbi)
80 if b[i]<sum(b[j] for j in range(0,i)):
81 ubi = (d[i]-sum(d[j] for j in range(0,i)))/(b[

i]-sum(b[j] for j in range(0,i)))
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82 ubs.append(ubi)
83 lb2 = d[0]/b[0]
84 ub2 = (1+sum(d))/sum(b)
85 ubs.extend ([ub1 , ub2])
86 lbs.extend ([lb1 , lb2])
87 lb = max(lbs)
88 ub = min(ubs)
89

90 if lb < ub:
91 MU = Fraction ((lb+ub)/2).limit_denominator(pow(2,

len(b)*2+2))
92 M = MU.denominator
93 U = MU.numerator
94 new_b = []
95 for i in range(0,len(b)):
96 new_b.append ((U*b[i]) % M)
97 print('U is', U, '\nM is', M)
98 decrypt(U,M,new_b)
99 answer = True

100 break
101 else:
102 continue
103 if answer == True:
104 break
105 y = p + 1
106 if len(p_var) >= k:
107 answer = True
108 print('No solution found (len >k)')
109 break
110

111 except AttributeError:
112 answer = True
113 print('No solution found ')
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