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Abstract

Background: Advancements in the field of artificial intelligence have lead to the incorporation of automated
algorithms in the analysis of medical images and data. Deep learning algorithms have been applied in muscu-
loskeletal research to improve the understanding of osteoarthritis and to assist in disease detection and prognosis.
The majority of the developed methods examine and process X-ray images and clinical data (age, gender etc.),
with a small minority using MRI as inputs.

Objective: The current master thesis project aims to investigate the influence of MRI scans on the early detection
of knee osteoarthritis through the use of deep learning architectures, and to develop a semi-automatic method for
knee region of interest extraction for creating the MRI input of detection algorithms.

Methods: The MRI scans used in this project were acquired from the publicly available database of the Os-
teoarthritis Initiative. In total 593 dual echo steady state and intermediate-weighted turbo spin-echo sequences
were included. The extraction of the knee joint included several processing steps. Initially, a U-Net model was
trained on 507 annotated dual echo steady state MRIs for the segmentation of bone and cartilage tissue, which
was followed by the registration of the output masks to intermediate-weighted turbo spin-echo sequences in order
to create the joint labels for the desired MRI scans. Final step for the region of interest construction included the
search of bone coordinates and the creation of the knee joint region of interest. The detection of early osteoarthri-
tis progression from knee MRI scans was tested through three different deep learning architectures, a residual
network (ResNet), a densely connected convolutional network (DenseNet) and a convolutional variational au-
toencoder (CVAE). Furthermore, the probability output of the ResNet and DenseNet as well as the feature vector
of the CVAE were coupled with clinical data (age, gender, bone mass index) and used as input to a Logistic
Regression Classifier, in order to investigate the influence of osteoarthritis related features to the detection task.
The U-Net segmentation method was evaluated using Dice similarity coefficient and Intersection of Union while
the detection algorithms using the area under the receiver’s characteristic curve (AUC) and the precision-recall
curve (PR-AUC) metrics, with two different input data configurations, only MRI and a combination of MRI and
clinical data.

Results: The U-Net algorithm for bone and cartilage segmentation showed adequate results, since Dice simi-
larity coefficient and Intersection of Union reached mean values higher than 0.99 and 0.88. Regarding the early
detection of knee osteoarthritis incidence, ResNet and DenseNet showed similar results, with both methods hav-
ing an AUC value ranging from 0.5033 to 0.6269, when only MRI scans were examined. In the case of MRI
and clinical data combination, the more complicated deep learning architecture (DenseNet) achieved the highest
AUC at 0.6556. The best performing model was CVAE with the largest number of latent space features (1000)
achieving an AUC of 0.6699 when combined with clinical data and an AUC of 0.6689 when used alone as input
to the logistic regression classifier. All three deep learning algorithms yielded higher performance metrics when
clinical data where combined with models’ outputs.

Conclusion: The tested deep learning algorithms showed a potential in the challenging task of early detection of
knee osteoarthritis throughMRI scans, even though they did not reach the same level of performance metrics. The
region-of-interest creation had promising results for the implementation of U-Net method for bone tissue labelling.

Keywords: Deep Learning, Knee, Osteoarthritis, MRI, Segmentation, ResNet, DenseNet, Autoencoder

iii





Acknowledgements

First and foremost, I would like to thank my main supervisor dr.ir. Nazli Tümer for her scientific guidance through
my master years, her support and belief in me during this graduation project, no matter the difficulties and ob-
stacles I faced until its completion.

I would also like to thank dr. Jukka Hirvasniemi, post doctoral researcher at Biomedical Imaging Group Rot-
terdam in Erasmus Medical Center and my daily supervisor, for sharing his experiences and knowledge in the
field of deep learning and osteoarthritis and for helping me guide through the path of my master thesis project.
His mentoring was a significant variable in my goal completion and I’ve learned many great things regarding
scientific research and artificial intelligence from him during the past year.

Sincere thanks to my friends during my master studies, with whom we had amazing times.

Last but not least, deep-hearted thanks to my mother, Tereza, sister, Zoe, and my partner Elsa, for their love,
support and belief in me.

Anastasis Alexopoulos
Delft, August 2022

v





Contents

Abstract iii

Acknowledgements v

Acronyms ix

1 Introduction 1
1.1 Osteoarthritis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Deep Learning Methods In Knee Osteoarthritis . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Thesis Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Materials and Methods 7
2.1 MRI Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Extraction of region-of-interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 DESS Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 DESS to IW-TSE Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Bone Tissue Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 3D IW-TSE input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Detection Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Residual Network (ResNet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Densely Connected Convolutional Network (DenseNet) . . . . . . . . . . . . . . . . . 13
2.3.3 Convolutional Variational Autoencoder (CVAE) . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Training and Evaluation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Results 17
3.1 Control and Case groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 ROI Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Residual Network (ResNet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Densely Connected Convolutional Network (DenseNet) . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Convolutional Variational Autoencoder (CVAE) . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Discussion 29
4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Conclusion 33

Bibliography 35

vii





Acronyms

AI artificial intelligence. 2

AUC area under the curve. 3

BICL Boston Imaging Core Lab. 7

BMI bone mass index. 4

BML bone marrow lesion. 2

DESS dual echo steady state. 2

DL deep learning. 1

FPR false positive rate. 3

FSE fast spin-echo. 5

IoU intersection of union. 3, 9, 29

IW intermediate weight. 7

KL Kellgren-Lawrence. 2

ML machine learning. 2

MOAKS MRI osteoarthritis knee score. 2

MRI magnetic resonance imaging. 1

MSE mean squared error. 14

NIfTI Neuroimaging Informatics Technology Initiative. 9

OA osteoarthritis. 1

OAI osteoarthritis Initiative. 4

PR precision recall. 4

ROC receiver operating characteristics. 3

ROI region of interest. 5

SE spin-echo. 2

SQ semi-quantitative. 7

TPR true positive rate. 3

TSE turbo spin-echo. 2

WORMS whole-organ MRI score. 2

ix





1
Introduction

In the first sections of this chapter the main information regarding osteoarthritis (OA) and magnetic resonance
imaging (MRI) modality role on OA diagnosis are presented, along with the basic principles of deep learning
(DL) and its applications on OA detection and prediction. In the last sections the research aim, methodology and
the outline of the report are stated.

1.1. Osteoarthritis
OA is a chronic joint disease that affects a significant portion of the world population. Although it can affect
any synovial joint, the knee, hip and hand joints are the most common sites of OA development [1, 2]. OA is
viewed as an age-related disease since it impacts a large portion of adults over 60 years of age and can lead to pain,
stiffness and loss of mobility [1, 3]. OA is characterized by degeneration of articular cartilage and bone where
the intrinsic repair mechanisms are insufficient. Joint space narrowing, osteophytosis, subchondral sclerosis,
cyst formation and abnormalities of the bone contour are some of the radiographic features incorporated in the
definition of OA[1]. Several elements have been identified to influence the development of OA in joints, that can
be grouped into systemic and local risk factors. The systemic factors include age, gender, genetics, bone mass
density, osteoporosis and nutrition, andmay increase the joint susceptibility to injury or decrease the repair process
in damaged bones and tissues. The local factors are thought to expose individual joints to injury and excessive
loading, and may include obesity, joint deformities, muscle strength and weakness and acute injuries[1].

OA affects several structures of the joint, leading to articular cartilage loss, bone remodelling, synovitis and
lesion development in the bone marrow[4]. These outcomes of OA pathogenesis influence the joint in a nonuni-
form way since areas with cartilage loss and bone deformities can further increase mechanical stresses and cause
joint misalignment, which lead to higher loading that deteriorates joint integrity, creating a cycle of joint degra-
dation. Furthermore, areas of the synovium and the cartilage with inflammation can contribute to joint pain and
degeneration.

The structural changes in the joint compartments are the basis of OA detection and diagnosis, along with
the presence of symptoms such as joint stiffness and pain, even though they are detected when the disease is
advanced and irreversible[3, 4]. The early identification of cartilage loss or subchondral bone degeneration on
patients without or few symptoms can assist the treatment effectiveness and the disease progression[3]. Several
imaging modalities are used to depict the joint structures. The traditional method used is X-ray images which are
created in a few seconds and allow the extraction of 2D morphological and statistical features, however hinder
the detection of early developed OA measurements, such as localised cartilage degradation, due to them being
2D projections of 3D structures[3, 5]. A more modern technique is MRI modality that reveals high resolution
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2 Chapter 1. Introduction

3D structures and has higher sensitivity in detection of early joint changes. Furthermore, MRI does not involve
ionising radiation but may cause claustrophobia to some patients and excludes people with implants [3, 5].

The most commonly used method to assess the severity of OA is the Kellgren-Lawrence (KL) grade scale[6]
which is based on X-rays. The Kellgren-Lawrence classification system is the first method for assessing the
severity of joint OA. It consists of five grades based on the presence of OA features, from 0 for no joint space
narrowing or reactive damage to 4 for large ostephytes, severe joint space narrowing and sclerosis and definite
bone ends deformity[6].

Two semi-quantitative grading systems, that are widely used, are based on MRI scans, whole-organ MRI
score (WORMS)[7] and the MRI osteoarthritis knee score (MOAKS)[8]. WORMS evaluation incorporates T1-
and T2-weighted spin-echo (SE) sagittal and coronal MRI scans with and without fat-suppression sequences,
while MOAKS mostly uses 3D T1-, T2-, intermediate-, proton-density-weighted fat suppressed turbo spin-echo
(TSE) and dual echo steady state (DESS) sequences. In both scoring methods, features such as bone marrow
lesion (BML) size, percentage of cartilage thickness loss, osteophytes formation size, synovial volume, meniscal
and ligament abnormalities are graded, using different scales for each feature. The main difference between
WORMS and MOAKS is that the latter has implemented a detailed assessment of BML regions and scores and
omitted redundancy information regarding cartilage[8].

1.2. Magnetic Resonance Imaging
MRI modality is considered by many one of the most informative imaging modalities regarding the structure
of the knee joint [9, 10]. The key aspect lies in the ability of MRI scans to provide detail depictions of soft
tissues, allowing all joint compartments to be examined simultaneously. Furthermore, the direct construction
of 3D images offers a multiplanar tomographic view, which excludes projectional distortion, magnification and
overlapping structural superimposition occurring in 2D X-rays. Another advantage of using MRI scans in OA
detection is the examination both the morphology and the compositional parameters closely linked to arthritic
processes. Thus, its ability to create relatively high spatial resolution visualizations of subchondral bone, cartilage,
ligaments, synovium and meniscus makes the MRI modality more suitable for the early detection of knee OA
when compared to X-rays.

1.3. Deep Learning
A scientific field that is being applied more frequently in the musculoskeletal imaging and other applications,
due to the growth in computing power, is artificial intelligence (AI), which is involved with aspects and terms
from pattern recognition, probability theory and statistical analysis. AI is composed of two main groups, machine
learning (ML) and its subcategory, DL, and aims to automatically extract patterns in data. Their main difference
is that deep learning methods learn patterns directly from their input images, while in machine learning the input
data should be predefined by the developer of the method. So it can be said that machine learning is feature-based
while deep learning is input-based[11].

Deep learning methods can perform two types of tasks, classification and regression. Classification cate-
gorizes the input data into a particular class according to the presence of a specific feature, for example the
classification of osteophyte formation in OA, and its output is a discrete value. On the other hand, regression
problems map the input to a continuous value, such as the staging of OA. A subcategory of classification task
is image segmentation DL algorithms, which aims to divide regions of interest within an image by classifying
each pixel as being part of a specific tissue compartment. In order to perform the classification and regression
tasks, two main strategies are applied in the algorithms. Supervised learning which requires the combination of
data with labels that act as the ground truth, while unsupervised learning does not require the use of labelled data.
The process through which the performance of a deep learning model is optimized is called model training and,
in most cases, aims to minimize the error between the model’s output and the ground truth, also known as loss
function[12–15].
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Convolutional Neural Networks
Deep learning algorithms are based on neural networks, which are composed of several connected nodes, called
neurons, that construct a layer. A node receives the input which is combined with weights, sums it up and with the
application of an activation function creates the output. One of the most notable classes of deep learning models
in image processing tasks is convolutional neural networks [13] with the following components:

Convolutional Layers
Convolutional layers utilize various kernels that slide over the whole image (convolve) and intermediate feature
maps, save the operation result at each position and generate the output feature map of the layer. The kernels are
weight matrices designed to detect specific patterns in the input image. The advantages of convolutional layers
include the reduced number of parameters due to weight sharing, the invariance to object position and the corre-
lations of close pixels due to local connectivity of the kernels[13]. The convolutional function can be depicted
with the following expression:

O(i, j) ≡ (K ∗ I)(i, j) =
M∑
m

N∑
n
I(i+m, j + n)K(m,n)

With I being the input,K the kernel,M,N the size of the kernel and O the output feature maps.

Pooling Layers
Pooling layers usually are placed after convolutional layers and reduce the dimensions of the feature maps and the
number of network parameters. Similar to convolutional layers, pooling layers are translation invariant since the
pooling function slides over a specific number of pixels until it covers the whole image. The two most commonly
used types of pooling functions are averaging and maximizing, with the first keeping the average and the second
the maximum value of neighboring pixels.

Fully-Connected Layers
Fully connected layers are usually used in the last part of the convolutional network, their containing nodes are
linked with each node of the previous layer and their output further incorporated for the network’s task. The dis-
advantage of these layers is their large number of parameters which leads to higher requirements in computational
power for their training.

Performance Metrics
The performance of deep learning models for the detection, prediction and severity classification of knee OA
can be measured with the use of the confusion matrix (table 1.1) from which several performance metrics (table
1.2) can be extracted, such as accuracy, sensitivity, specificity and precision. The segmentation of a medical
image is measured through the intersection of union (IoU) and Dice Similarity Coefficient metrics (table 1.2).
The columns of a confusion matrix represent the prediction results and the rows the ground truth labels.

Prediction
1 (with OA) 0 (without OA)

Ground
Truth

1 (with OA) True Positive (TP) False Negative (FN)
0 (without OA) False Positive (FP) True Negative (TN)

Table 1.1: Confusion Matrix

The area under the curve (AUC) receiver operating characteristics (ROC) can be used to evaluate the ranking
performance of a classifier. The axis of the graph are usually two different pairs of metrics, Sensitivity & (1-
Specificity) and true positive rate (TPR) & false positive rate (FPR) at the Y and X axis. The points (0,0) and
(1,1) of a ROC curve depict the training-free classifiers Always Negative and Always Positive respectively, while
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Metric Formula Evaluation Focus

Accuracy TP+TN
TP+FP+TN+FN

Ratio of correct predictions
over the total number of instances evaluated

Sensitivity or
True Positive Rate

TP
TP+FN

Fraction of positive instances
that are correctly classified

Specificity or
True Negative Rate

TN
TN+FP

Fraction of negative instances
that are correctly classified

Precision TP
TP+FP

Ratio of correctly predicted positive instances
from the total predicted positive instances

Intersection of
Union

|A∩B|
|A∪B|

Measures the similarity and diversity
between sample sets

Dice Similarity
Coefficient

2×|A∩B|
|A|+|B|

Measures spatial overlap
between two segmentations

Table 1.2: Evaluation metrics

the point (1,0) shows the ideal classifier and (0,1) the classifier that outputs always wrong results. The ROC graph
is divided diagonally by the (0,0)-(1,1) line which represents a non-discriminative algorithm (TPR=1-FPR=TNR).
In the upper left part of this graph are the classifiers that perform better than random and on the lower right part
those who perform worse than random.

Apart from AUC ROC performance analysis, another common metric for binary classification models is the
precision recall (PR) AUC which shows the precision (positive predictive value) as a function of recall (true
positive rate). In PR-AUC graphs, precision is placed in Y axis while recall in X, and the curve is maximized in
the upper right corner.

1.4. Deep Learning Methods In Knee Osteoarthritis
The majority of the developed deep learning algorithms for the detection, severity diagnosis and progression of
knee OA use X-rays as their input, mostly from the publicly available database of osteoarthritis Initiative (OAI).
In two research papers conducted by Tiulpin[16, 17], the ability of a residual based network to grade OA from
knee X-rays was tested, with the first one[16] implementing a Siamese architecture that reached an AUC of 0.93
for the detection of subjects with KL≥2, and the second one[17] examining an ensemble of residual networks
for the automatic grading of knee OA that achieved an average accuracy of 66.68% and an AUC of 0.98 for
OA vs no-OA classification. Another publication of Tiulpin[18], utilized X-rays as the input to a residual based
network, combined its output predictions with clinical data (age, gender, bone mass index (BMI), symptomatic
assessment) and reached an AUC of 0.81 for the task OA progression prognosis. The influence of clinical data
on the detection of OA severity was also studied by Kim[19], which showed that combination of the output
predictions of a residual-based network with clinical data can improve the classifier’s AUC value for KL grades
0, 1 and 2.

In a research paper published byNorman[20] the classification of OA grade severity was implemented through
the use of an ensemble of different versions of DenseNet and demographics and reached sensitivity values of 0.86,
0.69 and 0.70 for KL grades 4,3 and 2 respectively. A version of DenseNet with a larger number of layers for the
OA severity detection task was developed by Thomas[21], where the network that was trained with both original
and augmented X-ray images yielded an average accuracy of 0.71 for each KL grade and 0.87 for OA vs no-OA
KL grades. The ability of a DenseNet to predict OA progression from X-rays was tested by Guan[22]. The
best performing developed method combined the predictions of the DenseNet with clinical and radiographic risk
factors and yielded an AUC of 0.86.

A different deep learning algorithm was examined in the paper published by Nasser[23] for the detection of
knee OA. An autoencoder was developed that received as input knee X-rays, extracted several discriminative
features and used different classifiers to distinguish OA vs no-OA subjects, reaching an accuracy of 0.83. In
a paper published by Chen[24] X-ray images were tested by several deep learning architectures for KL grade
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classification with the VGG-19 method reaching the highest average accuracy at 0.70.
Two reports that examined MR imaging modalities as inputs for the detection of knee OA were published

by Pedoia[25, 26]. The performance of a shallow 3D convolutional network for the detection of lesions in the
meniscus and patella from 3D fast spin-echo (FSE) MRI sequences was tested[25], reaching an AUC of 0.89 and
0.88 for meniscus and patella lesions respectively. In the second publication,[26], T2-weighted MRI sequences
were used as input to a DenseNet method, with the combinations of its predictions with clinical data achieving
an AUC of 0.82 for detecting knee OA.

Another study published by Tolpadi [27] investigated the ability to predict total knee replacement from MRI
scans within 5 years. In this publication, the tested DenseNet incorporated X-rays and 3D IW-TSEMRI sequences
along with clinical data, and compared their performance metrics. The results revealed that in MRI based model
performed similarly to the X-ray based model on predicting total knee replacement with AUC 0.89 and 0.83
respectively, when imaging and clinical data were combined, and MRI based model outperformed X-ray based
model when used as input clinical and imaging data from no-OA subjects at baseline reaching an AUC of 0.943
vs 0.799. In the research conducted by Schiratti [28] the performance to predict the progression of OA based
on joint space narrowing within 12 month from MRI scans was investigated. 2D IW-TSE and 3D DESS MRI
sequences along with clinical data on subjects’ experienced pain were used as input and the tested EfficientNet
achieved an AUC of 0.65 and 0.63 when 2D IW-TSE and 3D DESS MRI scans respectively.

1.5. Thesis Objective
A large number of scientific publications regarding knee OA were mainly focused on the disease severity classi-
fication from X-ray images, with a small portion of the existing literature examining the ability of deep learning
algorithms for the early progression prognosis. MRI modality has not been yet investigated thoroughly for it’s
impact on the prediction of knee OA development, even though this type of imaging modality can detect bone
and cartilage changes that may increase the risk of joint collapse at short periods of time (1-2 years)[29, 30]. Fur-
thermore, the majority of the deep learning methods developed for the detection of knee OA are based on ResNet
and its more elaborate version, DenseNet, with a few reports investigating the performance of other methods for
OA diagnosis and prognosis task.

The aim of the current master thesis project can be encapsulated by the following research question:

Do deep learning-based MRI features influence the early detection of knee osteoarthritis progression?

The examination of this research question raised one significant challenge which is listed below as a subsidiary
questions:

• How accurate is the automatic extraction of regions of interest from knee MRI scans?

1.6. Research Methodology
The aim of the current master thesis project is to examine the ability of deep learning algorithms to detect the
early progression of knee OA between baseline and 24 months follow-up period through MRI scans. For this
purpose a set of medical knee MRI images were collected from the publicly available database of the OAI[31].
With respect to knee OA progression detection, the images were categorized into two different groups: (i) knee
with OA and (ii) control (knee without OA) based on presence of OA features on knee MRIs after 24 months.

The second step in the methodology of this work was to segment the MRI scans into the knee joint region. For
this process, a 2D segmentationmethod (U-Net[32]) was applied in order to identify the different bone regions and
thus extract their pixel coordinates. This allowed for the extraction of the minimum and maximum coordinates
of the tibial and femoral bones which were used to create the region of interest (ROI) around the knee joint.
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Having identified the size of the cropping area, the third step was to create the 3D kneeMRI scans for both the
control and progress groups and use them as input to investigate deep learning algorithms for the early diagnosis
of OA progression. A review of the existing work and literature related to OA prognosis and classification
reveals a large number of techniques with no clear ”best” model suggestions. Thus, in the current thesis project
three approaches were examined, two that most commonly applied in previous publications, a Residual Network
(ResNet[33]) and a DenseNet[34], and a not so commonly used method, a Convolutional Autoencoder[35].

1.7. Thesis Organisation
The rest of the master thesis is arranged as follow. Chapter 2 provides more information regarding the materials
and methods applied in this project, the process the dataset was created, the ROI extraction procedures of the
MRI scans, that involve bone tissue segmentation and different MRI sequences registration, and the deep learning
architectures tested for early detection of knee OA. The results of the developed semi-automated ROI extraction
and detection algorithms are presented in Chapter 3, discussion of the main findings in terms of the research
question in Chapter 4 and the thesis conclusion in Chapter 5.



2
Materials and Methods

The procedures and the developed deep learning methods used along the project are described in detail in the
current chapter. These include the dataset creation, the choice of MRI sequences as well as the segmentation of
the knee joint area. Furthermore, an elaborate presentation of the different deep learning methods that were tested
for the early detection of knee OA progression is included.

2.1. MRI Data Description
The data used for this research were retrieved from the publicly available database of OAI. The OAI[31] provides
data from amulti-center, longitudinal, prospective observational study of knee OA. The OAI cohort includes 4796
participants of both genders between 45 and 79 years of age and consists of medical images, clinical data and
biospecimens, collected at baseline and at four follow-up visits (12-,24-36-,48- months). MRI images of the OAI
datasets were acquired using Siements 3 Tesla scanners, with a total acquisition time of 75 min for both knees.
The MRI sequences examined in this master thesis project are the coronal intermediate weight (IW) 2D turbo
spin-echo (TSE) (COR 2D IW-TSE) and the sagittal 3D dual-echo in steady state (DESS) with water excitation
(SAG 3D DESS WE), with total acquisition time 6.8 and 21.2 minutes respectively. DESS sequence is used for
the segmentation of the knee joint due to the utilization of already annotated DESS scans and IW-TSE is used
for the early detection of knee OA, due to it’s sensitivity and specificity to bone and cartilage changes. The MRI
protocol acquisition parameters for the two examined sequences are shown in table 2.1:

Scans Plane FS Matrix
(phase)

Matrix
(freq)

No. of
slices

FOV
(mm)

Slice
thick./gap
(mm/mm)

Flip
angle

(degrees)
COR IW
2D TSE Coronal No 307 384 35 140 3/0 180

SAG 3D
DESS WE Sagittal WE 307 384 160 140 0.7/0 25

Table 2.1: Acquisition parameters for coronal 2D IW-TSE and sagittal 3D DESS.
FS: fat suppression, WE: water excitation, FOV: field of view

The twoOAI datasets were chosen to be examined for the task of early detection of OA through kneeMRIs are
the knee MRI (kMRI) SQ MOAKS (Boston Imaging Core Lab (BICL)) and the knee MRI (kMRI) SQ WORMS
datasets, that reported centrally performed longitudinal semi-quantitative (SQ) readings of OA from knee MRI
performed at the BICL. The first dataset contains data from five projects with knee joint changes assessed by
MOAKS [36] grading scale, however we examined projects 22 and 65 with 600 and 1033 subjects at baseline

7

https://nda.nih.gov/oai/
https://www.bicl.org/
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respectively due to the aspect that they were the only projects with data from five time points (baseline, 12-, 24-,
36-, 48-month visits). The second dataset used the same MRI sequences as the first one, from three time points
(baseline, 24-months, 48-months) and the structural abnormalities of the knee joint were assessed by using the
WORMS[7] system.

The two above mentioned grading systems assess the presence of several OA related features such as degener-
ative changes in cartilage, bone marrow lesions, meniscus and formation of osteophytes. According to WORMS,
OA in the whole knee joint is diagnosed if the following items are fulfilled [7]:

• Cartilage morphology score >= 3

• Bone marrow lesions (BML) score >= 2

• Osteophytes >= 2

The MRI definition of tibiofemoral OA according to MOAKS grading scale as defined by Hunter [37] is
based on the presence of both group [A] features or one group [A] and two or more group [B] features.
Group [A]:

• Definite osteophyte formation >= 2

• Full thickness cartilage loss >= 3

Group [B]:

• Subchondral bone marrow lesion or cyst >= 1

• Meniscal subluxation, maceration or degenerative tear >= 2

• Partial Thickness cartilage loss (where full thickness loss is not present) 3 >=grade>= 1

The first step was to apply a feature based search in the datasets in order to find which subjects had the above
features reported and at which follow-up visits. Furthermore, the focus was on which subjects had features that
exceeded the OA presence threshold as mentioned above, thus showing the progression of OA between specific
visits. This initial investigation of the datasets revealed several issues regarding the formulation of MRI OA
definition. The main aspect was that both datasets (kMRI SQ MOAKS (BICL), kMRI SQ WORMS) did not
report the osteophytes score in the majority of the subjects and not in every time point, even though the scores of
BML, cartilage thickness loss and meniscus degradation were. Another question that was raised was whether it
is possible to combine the two datasets even though the same grading scale was not applied to assess the state of
OA features in MRI scans, and which time points should be chosen in order to define the early OA progression.

For the lack of osteophytes scores, it was decided based on the existing literature to extract the participants’
osteophyte grade from their X-rays. Several research publications[38–40] highlight the correlation between os-
teophytes depicted in radiographs and cartilage damage in MRI, which supports the role of osteophytes in OA
process. With the incorporation of X-ray detected osteophytes, the OA presence threshold needed clarification
since KL grade 1 was considered as a possible osteophytic lipping[6], thus based on previous research papers[41]
subjects with KL grade 1 should be treated as early OA group. Regarding the issue of using data from both stud-
ies, even though they apply different OA grading systems (WORMS, MOAKS), it was decided to include both
datasets for the final control and case groups creation, since MOAKS is a newer and refined version of WORMS
as stated in several publications[37, 42]. Both groups were composed of participants from two follow-up visits
(12-, 24- months) due to the decreasing number of subjects without OA in later time points.

As a result of the above mentioned challenges regarding the two datasets, the distinction between subject
with and without OA progression within the first two follow-up visits was accomplished by applying a modi-
fied MOAKS grading system that included thickness cartilage loss, BML and meniscal degradation grades from
MOAKS and WORMS and osteophyte formation grades from KL method. Those OA variables we extracted
from the OAI database documents of the kMRI SQ MOAKS (BICL) and kMRI SQ WORMS studies. The final
number of subjects that are comprise control and case groups is shown in section Control and Case groups of
chapter Results.



2.2. Extraction of region-of-interest 9

Based on the identification number of the subjects included in the final control and case groups, the clinical
data along with the sagittal 3D DESSWE and coronal 2D IW-TSEMRI sequences from baseline time point were
acquired from the OAI database. The DESS sequence was used in order to segment the bone tissue for the ROI
extraction and the IW-TSE images were the input image of the OA detection algorithms, due to their sufficiency
in finding central cartilage damage[8] and BMLs[43] when compared to DESS. Furthermore, clinical information
(age, gender, BMI) were combined with the output of the deep learning methods to create the input dataset of the
logistic regression classifier.

2.2. Extraction of region-of-interest
In order to create the area around the knee joint, a semi-automated extractionmethod was developed, that involved
the identification of the pixels that belonged to the tibial and femoral bones and the acquisition of the minimum
and maximum coordinates of those pixels. This processing pipeline incorporated the DESS sequences for bone
mask creation, the IW-TSE images registration to the DESS masks and the bone coordinates labelling in the
desired MRI sequence.

2.2.1. DESS Segmentation
The segmentation of DESS images was achieved with the application of U-Net method[44] which is constructed
of four down-sampling and up-sampling steps in order to extract context and spatial information, where each pixel
is and in which label it belong to (tibia, femur). Each down-sampling step was composed of two 2D convolution
layers, one dropout and one max-pooling layer. Each up-sampling step included one transpose convolution, one
dropout and two convolution layers, as 2.1 shows. The tested segmentation method was based on a previously
built U-Net model during a master student’s internship project in collaboration with Erasmus Medical Center and
Delft University of Technology and was trained with the use of Adam’s optimizer, categorical cross-entropy loss
function and its performancewas assessed using the Dice Similarity Coefficient, mean IoU and pixel classification
accuracy metrics. Dice Similarity Coefficient shows the spatial overlap between two segmentations while IoU
measures the accuracy of segmentation by calculating the fraction of the area of overlap between ground truth
and predicted regions over the area of union between the same regions.

For the training of the segmentation model, the publicly available by Ambellan[45] dataset was used, which
contains 507 3D DESS MRI scans with the same acquisition parameters as mentioned in table 2.1. The slice
annotation performed by the experts concerned the tibial and femoral bone and cartilage tissues of the sagittal
plane, thus the U-Net was trained and validated with 81,120 slices. The results with the specific hyper-parameters’
values are shown in chapter Results, section U-Net. After the training and validation process, the developed 2D
U-Net received as input the 593 DESSMRI scans of both the control and case groups in order to create the labelled
masks, that classify each pixel to five classes, 0 for background, 1 and 3 for femoral and tibial bones respectively,
and classes 2 and 4 for femoral and tibial cartilage tissue respectively. This resulted in 95,040 labelled slices of
both control and case groups.

2.2.2. DESS to IW-TSE Registration
Since the MRI sequence that was used for the detection of early OA progression was IW-TSE, the registration
of DESS to IW-TSE sequences was needed in order to create the IW-TSE masks and extract the knee joint ROI.
The pipeline for the acquisition of the IW-TSE labelled images was applied in the 3D Neuroimaging Informatics
Technology Initiative (NIfTI) files of both sequences, incorporated with the use of ElastiX[46], a medical image
registration library, is presented in figure 2.2 and can be described with the following steps:

1. The DESS MRI scans for each patient with 384×384×160 slices (axial, coronal, sagittal planes) were reg-
istered through an affine transformation into IW-TSE sequences with 384×37×384 slices (axial, coronal,
sagittal).
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Figure 2.1: 2D U-Net for segmentation of sagittal 2D DESS MRI scans
for bone and cartilage mask creation[45]

2. The initial image registration gave two outputs, a new image that combined the two MRI sequences and
the transformation parameter map that created for this registration.

3. With the use of the transformation parameter map, the DESS masks created by the U-Net were registered
to the combined DESS/IW-TSE image and the desired IW-TSE bone segmentation of 384×37×384 slices
(axial, coronal, sagittal planes) was created.

The quality of registration was evaluated qualitatively through a visual inspection of the superimposed target
IW-TSE image and the registered IW-TSE mask. Out of the 593 registrations only one failed to create a proper
labelled IW-TSE image, and after the application of different registration methods with the same outcome, it was
discarded.
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Figure 2.2: Image Registration Pipeline
for the creation of IW-TSE bone and cartilage masks

2.2.3. Bone Tissue Coordinates
The next step for the creation of the knee ROI was the search of minimum and maximum pixel coordinates of the
tibial and femoral bones. Due to the imperfections of the segmentation and registration processes, several pixels
were misclassified and instead of belonging into the background class indicated bone areas. For the purpose
of discarding the misclassified areas, the Canny Edge detection algorithm[47] was applied in each slice in the
created IW-TSE masks. The distinction between those bones during the searching process was accomplished
through the use of their label values from the IW-TSE mask image (femur: 1, tibia: 3). The IW-TSE MRIs
and their corresponding masks were flipped so each knee joint (left or right) had right knee orientation and after
a global search in both datasets (control and case) the minimum and maximum coordinates were found. The
implementation of the Canny Edge Detection pipeline is presented in figure 2.3

Figure 2.3: Canny Edge Detection Pipeline
Femur variance σ, low threshold= 0.37, high threshold= 0.39
Tibia variance σ, low threshold= 0.90, high threshold= 0.95

2.2.4. 3D IW-TSE input
The next step in the ROI extraction pipeline is the selection of those coronal slices that depict bone tissue and
not only soft tissue or image background. For this purpose, a condition on the number of bone pixels present in
a slice was implemented. After a visual inspection of the results with different threshold values, the final applied
threshold was the following: # of bone pixels in each slice > 500 pixels.
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By setting the above threshold, the result was the reduction of coronal plane slices in the initial 3D IW-TSE
MRI scans. Instead of the initial 37 coronal slices, the new images varied from 18 to 27 coronal slices. In order
to standardize the shape of the image inputs for the detection algorithms, the interpolation of those 3D images
with coronal slices greater than 18 was applied through the use of ndimage.zoom function of SciPy Python image
processing library.

After the application of slice interpolation, the knee joint regions were extracted by applying a cropping
function with the desired rectangular shape. The final 591 3D IW-TSE MRI input scans that composed the
control and case groups had the following shape: 250X18X320 slices in the axial, coronal and sagittal planes
respectively.

Figure 2.4: Flowchart for the creation of
final 3D IW-TSE MRI input (axial, coronal, sagittal)

2.3. Detection Algorithms
Several deep learning architectures have been tested for their ability to classify the severity of OA or to detect
the presence of OA in knee imaging modalities, both X-ray images and MRIs, by processing 2D, 3D inputs in
combination with clinical information, as mentioned in section 1.4. The most commonly used according to the
existing literature include ResNet[33] and DenseNet[34], which were tested in the current master thesis project.
Along with these two deep learning methods, an additional algorithm was chosen to be examined for the task of
early detection of knee OA through MRI scans, a Convolutional Variational Autoencoder[48], which be applied
for binary classification and its performance with MRI scans as input can be compared to existing publication
that used X-ray images as input[23].

In the following subsections the implementation details of the above mentioned deep learning algorithms for
the classification task of early detection of knee OA through knee MRIs are presented.

2.3.1. Residual Network (ResNet)
Deep residual networks are based residual learning which instead of aiming that few stacked layers fit a desired
mapping H(x), aim at a residual mapping F(x) := H(x) − x. Thus the original function becomes F(x) + x,
with+x showing a shortcut connection performing an identity mapping. This combination of residual and identity
mapping forms a residual block, the building element of residual networks, that can be expressed by the following
function: y = F(x,Wi) + x, with x and y being the input and output respectively. Several variations of ResNet
have been developed, the shallower versions (ResNet-18, ResNet-34) with two 3× 3 convolutional layers in the
residual blocks and the deeper versions (ResNet-50, ResNet-101, ResNet-152) with two 1 × 1 and one 3 × 3

convolutional layers. The two residual blocks can be seen in figure 2.5.
Due to the limited computational resources, the ResNet-50 was chosen for this master thesis project, which

is presented in figure 2.6. ResNet-50 is composed of 50 layers, of four different residual block, with each block
repeated several times (3,4,6,3). Each repetition of the residual blocks is applied with different number of filters
and its concluded with compressing the output feature map to match the input dimensions of the next repetition.
The implemented ResNet-50 was modified in order to be able to receive the desired 3D IW-TSEMRI inputs. The
total number of learned parameters was around 45 million and was trained with the use of binary cross-entropy

https://scipy.org/
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Figure 2.5: Residual Blocks. Left: for ResNet-18/34, Right: for ResNet-50/101/152

function, giving as an output the probability of a single 3D image belonging to the progress group.

Figure 2.6: ResNet-50

2.3.2. Densely Connected Convolutional Network (DenseNet)
DenseNet constitutes a more elaborate and complicated version of Residual Network. DenseNet utilizes the out-
puts of several convolutional layers through features reuse, thus resulting in an easier-to-train and parameter-
efficient network. The main difference between DenseNet and ResNet is the concatenation of feature-maps
learned by all previous layers, which increases the variation in the input values of subsequent layers.

The connectivity of DenseNet can be shown by the following input expression of the lth layer: xl = Hl([x0,

x1, ..., xl]), where [x0, x1, ..., xl−1] refers to the concatenation of features produced by the previous layers. The
building operations of the DenseNet are called composite function and include of three layers, a batch normaliza-
tion, followed by a rectified linear unit (ReLU) and a convolutional layer. Two composite functions, with 1 × 1

and 3 × 3 convolution kernel sizes respectively, construct the Dense Block. Four dense blocks are used to cre-
ate the DenseNet architecture with specific filters and repetitions, which lead to DenseNets with different depth
(121, 169, 201, 264 layers). Between each of these blocks a transition layer is implemented, which facilitates the



14 Chapter 2. Materials and Methods

down-sampling of feature maps and thus the networks parameter efficiency.
The shallower version of DenseNet, DenseNet-121, was tested in this project. This model version is composed

of 121 layer, of four dense block with different feature maps and repetitions (6, 12, 24, 16) for each block. The
parameters of the convolution and pooling layers were modified in order to be able to receive the 3D IW-TSE
MRI inputs, resulting to a total number of around 11 million trainable parameters. DenseNet was also trained
with the incorporation of binary cross-entropy loss function.

In the figure 2.7, a schematic depiction of the developed DenseNet-121 for the task of early detection of knee
OA through MRI scans can be seen:

(a) DenseNet-121 (b) DenseNet-121 building blocks

Figure 2.7: 3D DenseNet-121.
a) A detailed depiction of the developed DenseNet-121

b) First dense block with 6 repetitions of composite function (upper)
Composite Function with two convolution layers,

Transition Layer with one convolution and one average pooling layer (lower)

2.3.3. Convolutional Variational Autoencoder (CVAE)
The autoencoder is an unsupervised learning algorithm that has as a goal to reconstruct the output from the
input image. It consists of an encoding part, which is employed to encode the input image into a latent-space
representation, and a decoding part, which reconstructs the encoded features. In order to encode the input images,
the encoder maps this input data through the use of several convolutional or fully connected layers. The created
final representation can be depicted with the following function z = fe(W

L
e × hL−1 + bLe ) where fe is the

activation function, hL−1 shows the output of the previous layer, L the current layer, WL
e and bLe the weight

and bias terms of the specific layer. To obtain the reconstructed image, the decoder acts in a similar way as the
encoder, with the feature code being its input. The original form of the autoencoder uses the mean squared error
(MSE) as a loss function for its optimization process.

A method different from the traditional autoencoder was tested for the task of early detection of knee OA,
called Convolutional Variational Autoencoder (CVAE), based on existing publications [23, 35]. CVAE is con-
structed with the use of 3D convolutional and de-convolutional layers for the encoding and decoding part re-
spectively, and the addition of latent space reparameterization. This code reparameterization enables the feature
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vector to be determined by a multivariable Gaussian distribution z = µx + σ × ϵ, where ϵ ∼ N(0, I), with µ

being the mean, σ the standard deviation and ϵ Gaussian Noise variable. Therefore, in variational autoencoder,
the encoder outputs a probability distribution in the bottleneck layer, from which the latent space is sampled.

Another change that was examined in the tested CVAE was a modified reconstruction loss function. Due to
the complex nature of knee MRI scans and the high similarity between ROIs of healthy and early OA progression
subjects, a discriminative term was incorporated in the object function, based on the work of Nasser et.al.[23],
which forces the network to extract those features that minimize intra-class and maximize inter-class distances.
This term is called discriminative penalty and is expressed by the following function: Ωdisc =

σ2
1+σ2

2

|µ1−µ2|2 , where
µi and σ2

i are the mean and variance of the learned latent space respectively of each class. Thus, the overall loss
function can be expressed with the following terms: JCV AE = JMSE + λΩdisc, where λ is the discriminative
penalty weight. The developed CVAE is constructed with three convolution and three de-convolution layers in
the encoding and decoding part, along with two dense layers for the creation of the latent space, resulting in
around 22 million parameters. In the figure 2.8 a schematic depiction of the models’ architecture is shown.

Figure 2.8: 3D Convolutional Variational Autoencoder

2.3.4. Training and Evaluation Process
Several variations of the three different deep learning methods were applied in order to counter class imbalance
and investigate the influence of convolutional layer parameters in the model’s performance. Both ResNet and
DenseNet models were trained using only original and a combination of original and augmented images through
clockwise, anti-clockwise rotation (±5°) and contrast (×1.5) and brightness (+50 in each pixel value) enhance-
ment in both original and rotated images using the cv2.convertScaleAbs function of OpenCV image processing
library. In order to enhance the attention of those two models on the under-represented progression group, class
weights were calculated using the sklearn.class_weight function of the Scikit Learn Python library for training
with the original data. Furthermore, ResNet and DenseNet were trained with the use original and augmented
data and the implementation of L2 norm regularization term in each convolution layer, resulting in a total of five
different models for each of the two architectures (trained on original data, original data+ L2 norm, original data
+ L2 norm+ class weights, augmented data, augmented data+ L2 norm). In the case of CVAE method, the only
augmentation method was the oversampling (creating duplicates) of the progression group due to the structure of
the model that required the presence of the same number of subjects from each class. The addition of L2 norm
regularization was also implemented in this method, leading the creation of two main CVAE models, with and
without regularization.

In order to incorporate patient’s clinical data, a Logistic Regression classifier was implemented. Regarding
ResNet and DenseNet models, their output probability value was combined in a vector with patient’s age, gender
and BMI values, while in the case of CVAE the learned feature vector was concatenated with clinical information
for the creation of the classifier’s input.

The initial control and progression groups were split into 70/15/15 ratio resulting into 425 training, 77 vali-
dation and 89 testing 3D IW-TSE images, and data augmentation was applied only in the training dataset. During

https://opencv.org/
https://scikit-learn.org
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the training process, the Adam optimizer method was implemented for each of the three deep learning architec-
tures. Several different values of model hyper-parameters were tested. For ResNet and DenseNet those hyper-
parameters were the input batch size and the Adam’s learning rate, while for the CVAE the values of epoch
number, discriminative penalty term, latent space size, batch size and Adam’s learning rate were changed.

The performance of each deep learning method along with the Logistic Classifier on the testing dataset was
assessed using AUC and PR-AUC metrics.



3
Results

The outcomes of the previously described deep learning architectures are presented in this chapter. These include
the final number of subjects in control and case groups, the training and testing results of the U-net for the
segmentation of the 3D DESS MRI scans, the creation of IW-TSE masks through image registration and the
tables and figures of the detection algorithms’ performance (ResNet-50, DenseNet-121, CVAE).

3.1. Control and Case groups
After a thorough search of the files available at OAI that contained MOAKS, WORMS and KL grading scores of
OA features, the basic information regarding the control and case groups are shown in table 3.1:

OA group Control Case
# subjects 434 (73%) 159 (27%)

Table 3.1: Control and case groups.
Control group: number of participants that did not develop knee OA after 24 months.

Case group: number of participants that developed knee OA after 24 months.

3.2. U-Net
In the current section the DESS sequences segmentation performance with different values in the model’s hyper-
parameters along with the DESS-to-IW-TSE registration outcomes are going to be presented. Representative
images of the created and registered masks are also included.

3.2.1. Segmentation

507 annotated 2D sagittal DESS MRI sequences were used in order to train the U-Net for image segmentation.
Regarding the model’s hyper-parameters, the number of epochs was kept constant (5) and three different batch
sizes were tested (4,8,16). In table 3.2 the mean values for all classes for the training performance metrics with
different batch size are presented.

17
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Cumulative Results

Batch Size Dice Coefficient Loss Function Accuracy mean IoU
4 0.99509 0.01711 0.99334 0.88835
8 0.99539 0.01607 0.99371 0.89311
16 0.99542 0.01544 0.99391 0.90538

Table 3.2: Testing performance metrics for all different batch sizes (4,8,16)

Based on table 3.2, the U-Net achieved higher performance metrics with batch size 16, since not only the Dice
coefficient was 0.99542 but also the mean Intersection of Union exceeded 0.90. Thus, these configurations were
chosen in order to create the bone and cartilage labelled images for the 594 DESS MRI scans of the control and
case groups. In the figure 3.1 the training metrics of the U-Net with batch size 16 and in table 3.3 for tibial and
femoral classes of the same batch size are presented.

Batch size 16

(a) Dice Similarity Coefficient (b) Loss Value

Figure 3.1: Training and validation graphs for
Dice similarity coefficient and loss function values for batch size 16

Dice Coefficient Intersection of Union
Tibia 0.9846893 0.9698405
Femur 0.9870652 0.9744608

Table 3.3: Dice Similarity Coefficient and Intersection of Union values
for tibial and femoral labels for batch size 16
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Segmentation Results

Figures 3.2, 3.3, 3.4 and 3.5 show some of the segmentation outputs of the 594 DESS MRI scans of both the
control and progression groups are presented.

Figure 3.2: Sagittal view of right knee of control group patient 9725978, slice 90
Superimposed original and segmented DESS MRI

Figure 3.3: Sagittal view of left knee of control group patient 9412037, slice 41
Superimposed original and segmented DESS MRI
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Figure 3.4: Sagittal view of left knee of progress group patient 9029791, slice 116
Superimposed original and segmented DESS MRI

Figure 3.5: Sagittal view of right knee of progress group patient 9878804, slice 40
Superimposed original and segmented DESS MRI

3.2.2. Registration

In figure 3.6, the DESS-to-IW-TSE registration along with the created labelled IW-TSEMRI scans are presented.
In figure 3.7 the alignment of the output IW-TSE mask over the original IW-TSE MRI sequence of one subject
is shown as an example of the visual inspection of the registration process result.
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Figure 3.6: Registration pipeline of left knee for patient 9050299.
Step 1: DESS (A) to IW-TSE (B) registration with output DESS-to-IW-TSE image C.

Step 2: DESS Mask(D) to DESS-to-IW-TSE(C) registration.
Output the desired IW-TSE Mask (E)

(a) 9003113-R (b) 9890414-L

Figure 3.7: Alignment of IW-TSE MRIs and their corresponded IW-TSE masks.
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In the figures 3.8 and 3.9 several examples of the registration output IW-TSE masks are presented. In several
cases some background areas were labelled as bone or cartilage regions, which led to the implementation of
Canny Edge Detector for the purpose of dismissing those misclassified pixels for minimum and maximum bone
coordinates search. After trials and errors with the Canny Edge Detection parameters, the values that led to
dismissing the incorrect pixels were variance σ = 8, for the tibial bone low threshold = 0.90 and high threshold
= 0.95, and for femoral bone low threshold = 0.37 and high threshold = 0.39.

(a) 9609732-R (b) 9866291-R (c) 9956822-R

Figure 3.8: Examples IW-TSE masks after the registration process without misclassified background pixels.

(a) 9248710-R (b) 9282888-R (c) 9830048-R

Figure 3.9: Examples IW-TSE masks after the registration process with misclassified background pixels.

3.2.3. ROI Extraction
The next step after the registration and the creation of IW-TSE MRI masks, was the application of whole dataset
search in order to find the minimum and maximum bone coordinates. The results of this search are presented in
the table 3.4

Based on the minimum and maximum bone coordinates, the region of interest around the knee joint would
have width = 306 pixels and height = 155 pixels, with starting point (33,133). After a visual inspection of the
created rectangular it was decided to increase its dimensions and change the starting point to (33,93) in order to
include as much femoral bone as possible.

Coords Femur Xmin Femur Xmax Tibia Xmin Tibia Xmax
X 33 339 43 320
Y 133 209 197 288

Table 3.4: Minimum & Maximum Bone Coordinates
of both control and case groups



3.2. U-Net 23

Figure 3.10: Different starting points of ROI (top). Minimum and maximum of tibial and femoral bones
with femoral and tibial canny edge detection (bottom). Yellow line connects minimum and maximum tibial coordinates.

Purple line connects minimum and maximum femoral coordinates

(a) 9457264-R (b) 9004184-R (c) 9885588-R

Figure 3.11: Examples of final ROIs of 250×320 pixel size.

(a) 9457264-R (b) 9004184-R (c) 9885588-R

Figure 3.12: Augmentation examples of final ROIs of 250×320 pixel size.
(a) brightness adjustment, (b) anti-clockwise rotation,

(c) clockwise rotation and contrast adjustment
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3.3. Residual Network (ResNet)

The cumulative performance metrics of ResNet-50 are presented in the Appendix, with changed values regarding
the batch size and the Adam’s optimizer learning rate. Table 3.5 shows the AUC and the PR-AUC of the highest
performing ResNet-50 models.

ResNet-50 ResNet-50 +
Clinical Data

Batch
Size

Adam’s
Learning
Rate

AUC PR-AUC AUC PR-AUC

orig+reg 4 0.01 0.6042 0.3194 0.6406 0.3613
orig+reg 8 0.01 0.5983 0.3115 0.6511 0.3786

orig+aug+reg 8 0.01 0.5846 0.3912 0.6458 0.3669
orig+aug+reg 4 0.001 0.5775 0.3752 0.6458 0.3633

Table 3.5: ResNet-50 AUC & PR-AUC values for epochs number= 15
batch size= 8 & 4 and Adam’s optimizer learning rate= 0.001 & 0.01 .

orig+reg: trained on original data with kernel regularization
orig+aug+reg: trained on original and augmented data with kernel regularization

It is important to state that the Logistic Regression Classifier, when trained only with clinical data (age, BMI,
gender), achieved an AUC of 0.6399 and a PR-AUC of 0.3643. Regarding the performance of the ResNet-50
with batch size 4, the highest AUC and PR-AUC without the incorporation of patients’ data in the classifier
was 0.6042 and 0.3194, respectively, for training data without any augmentation technique and the use of kernel
regularization terms in its layers. When the output probabilities of the ResNet-50 with batch size 4 were combined
with age, BMI and gender for the training and testing of the logistic regression classifier, the highest AUC was
0.6458 with PR-AUC at 0.3633. This values refer to the ResNet-50 that used augmented training data and kernel
regularization terms.

When ResNet-50 was trained with batch size values equal to 8, the highest AUC value, 0.5983, with cor-
responding PR-AUC value of 0.3115, were reached by the model version trained on original data and kernel
regularization. The same trained model variation reached the highest values in both AUC (0.6511) and PR-AUC
(0.3786) when its output was combined clinical data to be used as input to the classifier. Figure 3.13 presents the
AUC, PR-AUC ROC Curves and the confusion matrix for the best performing classifier that combines the output
of the ResNet-50 model and clinical data .
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(a) AUC ROC Curve (b) Precision-Recall AUC ROC Curve

(c) Confusion matrix

Figure 3.13: ResNet-50 in combination with Logistic Regression classifier,
epochs: 15, batch size: 8, Adam’s learning rate: 0.01,

use of kernel regularization terms, trained on original dataset

3.4. Densely Connected Convolutional Network (DenseNet)
Regarding the performance of the DenseNet-121, the model’s highest performance metrics with different hyper-
parameters’ values and inputs are shown in table 3.6.

DenseNet-121 DenseNet-121 +
Clinical Data

Batch
Size

Adam’s
Learning
Rate

AUC PR-AUC AUC PR-AUC

orig 8 0.01 0.6269 0.3711 0.6406 0.3653
orig+reg 4 0.01 0.5618 0.2945 0.6556 0.3714

orig+reg+bw 4 0.01 0.5521 0.2797 0.6198 0.3217
orig+aug 8 0.001 0.5358 0.3641 0.6543 0.3623
orig+reg 4 0.001 0.5273 0.2728 0.6426 0.3386

Table 3.6: DenseNet-121 AUC & PR-AUC values for epochs number= 15,
batch size= 8 & 4 and Adam’s optimizer learning rate= 0.001 & 0.01 .

orig: trained on original data, orig_reg: trained on original data with kernel regularization
orig+reg+bw: trained in original data with kernel regularization and balanced weights

orig+aug: trained on augmented data

Regarding the performance of the DenseNet-121 with batch size 4, the model that was trained with original
data and the use of kernel regularization terms achieved the highest AUC value for both cases, with and without
the incorporation of clinical data in the logistic regression classifier. When only the model outputs were counted,
the AUC and PR-AUC values were 0.5618 and 0.2945 respectively, and the combination of model outputs and
age, BMI and gender information reached an AUC of 0.6556 and a PR-AUC of 0.3714.
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When DenseNet-121 used batch size 8, the highest AUC regarding the model’s output was reached by the
version trained with original data, with an AUC of 0.6269 and a PR-AUC of 0.3711. When clinical data were
combined with the ResNet probability values for the classifier, the AUC and the PR-AUCwere 0.6543 and 0.3623,
respectively.

AUC ROC and PR-AUC ROC Curves along with the confusion matrix of the best performing DenseNet +
Logistic Regression classifier are presented in figures 3.14.

(a) AUC ROC Curve (b) Precision-Recall AUC ROC Curve

(c) Confusion matrix

Figure 3.14: DenseNet-121 in combination with Logistic Regression classifier,
epochs: 15, batch size: 4, Adam’s learning rate: 0.01,

use of kernel regularization terms, trained on original dataset

3.5. Convolutional Variational Autoencoder (CVAE)

Several models of Convolutional Variational Autoencoder were tested for the task of early detection of knee
OA through MRI scans, due to the increased number of hyper-parameters that are included in this deep learning
algorithms. Apart from the number of epochs (25, 50, 100, 200), batch size (4,8) and Adam’s learning rate(0.001,
0.01), different values of the discriminative penalty (0.0005, 0.001, 0.01) in the loss function and the size of the
latent feature space (100, 500, 1000) were tested. In total 80 CVAE models were tested. In tables 3.7, 3.8 CVAE
algorithms with the highest AUC values are presented.
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Epochs: 100 Without Kernel Regularization

CVAE and
Logistic

Regression

CVAE
in combination with
Clinical Data in

Logistic Regression
AUC PR-AUC AUC PR-AUC

BS=4, LR=0.01,
DiscPen=0.01,
CD=1000

0.6689 0.3463 0.6699 0.3589

BS=4, LR=0.001,
DiscPen=0.01,
CD=1000

0.6468 0.3623 0.6564 0.3651

BS=4, LR=0.01,
DiscPen=0.001,

CD=1000
0.6442 0.3625 0.6468 0.3654

BS=4, LR=0.01,
DiscPen=0.001,

CD=100
0.6006 0.3164 0.6628 0.3523

Table 3.7: CVAE in combination with Logistic Regression classifier, without kernel regularization terms, trained on balanced dataset
(BS=batch size, LR= Adam’s learning rate, DiscPen= discriminative penalty, CD=latent space dimensions.)

Epochs: 100 With Kernel Regularization

CVAE and
Logistic

Regression

CVAE
in combination with
Clinical Data in

Logistic Regression
AUC PR-AUC AUC PR-AUC

BS=8, LR=0.001,
DiscPen=0.01,
CD=1000

0.6064 0.4038 0.6218 0.4372

BS=4, LR=0.001,
DiscPen=0.01,

CD=500
0.6006 0.4161 0.6141 0.4101

BS=8, LR=0.01,
DiscPen=0.001,

CD=100
0.5705 0.2978 0.6276 0.3384

BS=4, LR=0.001,
DiscPen=0.001,

CD=100
0.5647 0.2904 0.6288 0.3291

Table 3.8: CVAE in combination with Logistic Regression classifier, with kernel regularization terms, trained on balanced dataset
(BS=batch size, LR= Adam’s learning rate, DiscPen= discriminative penalty, CD=latent space dimensions.)

For the above tables, the best performing CVAEmodel has batch size = 4, learning rate = 0.01, discriminative
penalty = 0.01 and latent space dimension = 1000, for both logistic regression inputs. With only the CVAE learned
code as input the logistic regression achieved an AUC of 0.6689 and a PR-AUC of 0.3463, and with the addition
of clinical data the AUC was 0.6699 and the PR-AUC 0.3589.
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(a) ROC (b) Precision-Recall

(c) Confusion matrix

Figure 3.15: CVAE and Clinical Data with Logistic Regression classifier,
epochs: 100, batch size: 4, learning rate: 0.01,

discriminative penalty:0.01, latent space dimensions: 1000

Table 3.9 presents the highest AUC values which were achieved for each algorithm combination with the
Logistic Regression Classifier.

Parameters Metrics

Trained
Data

Kernel
Reg. Epochs Batch

Size

Adam’s
Learning
Rate

Disc.
Pen.

Code
Dim. AUC PR-AUC

RN-50 Orig. No 15 8 0.01 - - 0.6511 0.3613
DN-121 Orig. Yes 15 4 0.01 - - 0.6556 0.3714
CVAE Orig.+Aug. No 100 4 0.01 0.01 1000 0.6699 0.3589

Table 3.9: Best detection models & clinical data as Logistic Regression Classifier’s input
RN-50: ResNet-50, DN-121: DenseNet-121, CVAE: Convolutional Variational Autoencoder

Kernel Reg.: L2 regularization term, Disc.Pen.: Discriminative Penalty



4
Discussion

4.1. Discussion
The main aim of the current master thesis project was to examine the influence of deep learning-based MRI fea-
tures in the early detection of knee OA progression. Several different steps were involved in order to investigate
the main research question of this thesis. Initially, the OAI studies that include subjects with knee MRI scans
were acquired and the features that define the presence of OAwere searched. Due to missing osteophyte measure-
ments and feature scores in every time point, a modified OA definition was applied that included BML, cartilage
thickness loss and meniscal degradation scores from MRI-based grading systems and osteophyte scores from
X-ray based system, leading to the creation of control and case groups of subject that developed OA within the
first 24 months from their initial visit. The next step involved the development of a semi-automated method for
the extraction of the knee joint region, that included the segmentation through a U-Net of DESS MRI sequences,
their registration to IW-TSE scans and the creation of the rectangular knee region based on tibial and femoral
bone coordinates. This process resulted in the construction of the final 3D IW-TSE images, which were given
as input to three different deep learning algorithms (ResNet, DenseNet, CVAE) for the task of early detection
of knee OA. The output of these DL methods was combined with clinical data (age, gender, BMI) and given
as input to a logistic regression classifier in order to additionally examine the effect of non-imaging features to
early OA progression diagnosis. The performance of segmentation method (U-Net) was measured using the Dice
similarity coefficient and the IoU and the three different early detection algorithms’ performance was measured
using the AUC and PR-AUC metrics. The highest AUC value (0.6689) was achieved by the CVAE method with
batch size 4, Adam’s learning rate 0.01, discriminative penalty 0.01 and feature vector of 1000 elements, when
the algorithm’s output was combined with clinical information as input to the logistic regression classifier. A
significant remark about the results was that the combination of patients’ data with the output probability value
of the deep learning algorithms in order to construct the input vector to the logistic classifier yielded higher AUC
and PR-AUC values that the detection algorithms alone.

The developed semi-automated ROI creation method involved the segmentation of DESS MRI scans, the
registration of DESS to IW-TSE images and the search of minimum and maximum tibial and femoral bone coor-
dinates in the newly created IW-TSE masks. The applied U-Net algorithm achieved the highest Dice similarity
coefficient value and mean IoU when trained with batch size 16, 0.99542 and 0.90538 respectively, as was re-
ported in table 3.2, similar to the performance of the U-Net developed by Ambellan [45]. For the same batch
size the IoU values for tibial and femoral bones were 0.9698405 and 0.9744608 respectively, while the Dice co-
efficient similarity values were 0.9846893 and 0.9870652 respectively. These performance metrics showed that
the implementation of U-Net for sagittal DESS segmentation could yield sufficient bone labelled images, which
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could assist in the construction of knee joint masks in each plane (coronal, axial, sagittal). Regarding the regis-
tration of DESS masks to IW-TSE MRI sequences with the goal of IW-TSE bone and cartilage label formation,
the discarding of one MRI scan due to errors along with the visual inspection of the created masks could suggest
room for improvement in the direction of multimodel image registration, however this was out of the scope of
this thesis project.

Concerning the trained deep learning architectures that were tested for the detection of early progression of
knee OA through IW-TSE MRI sequences, the AUC values that were found for the datasets incorporated in this
project were lower than the majority of the existing literature which for both X-ray and MRI modalities achieved
AUC greater than 0.80, as presented in section 1.4 of the introduction. This holds for both outputs, only the
use of DL methods probability output and their combination with patients’ clinical data (age, gender, BMI). The
addition of these variables that are associated with OA presence in knee joints increased the AUC and PR-AUC
performance metrics for every trained model (ResNet-50, DenseNet-121, CVAE) that was tested. The highest
AUC value for ResNet-50 with only 3DMRI scans as input was 0.6042 (batch size=4, Adam’s learning rate=0.01),
while when it’s probability value was combined with patients’ information the AUC reached 0.6541 (batch size=8,
Adam’s learning rate=0.01). Similarly for DenseNet-121 the best performing model without clinical information
had an AUC of 0.6269 (batch size=8, Adam’s learning rate=0.01), while with the combination of age, gender and
BMI an AUC of 0.6556 (batch size=8, Adam’s learning rate=0.01). The increase of the highest AUC value for
the tested CVAE when additional data were combined as input to the logistic regression classifier was smaller,
0.6689 for CVAE with only image input and 0.6699 for CVAE probability value and clinical data as input to the
classifier.

Moreover, regarding the two methods with similarities in their architecture design (ResNet and DenseNet),
there were not significant differences in their detection measurements when only the model’s outputs were used,
since there was the same number of model’ versions with AUC under 0.5 (six for both ResNet and DenseNet).
The effect of the clinical data combination with model’s outputs to form the logistic regression input was greater
in DenseNet-121 since more models achieved an AUC larger than 0.6 (18 vs 12). One reason for this could
be the extensive preservation of information from previous layer outputs applied in DenseNet models, which
concatenate feature maps from a larger number of layers inside the dense blocks.

The tested CVAE algorithm was a variation of a similar method published by Nasser[23], where an autoen-
coder with only dense layers was applied for the task of early detection of knee OA from X-rays. The version
of the autoencoder developed in this project included 3D convolutional layers and the reparameterization of the
encoded latent space in order to extract spatial and more smooth features from the 3D input MRI scans. The
representation code of the CVAE was used as input to the logistic regression classifier alone and in combination
with clinical data, and showed adequate performance metrics when the number of epochs during the training
process was 100, reaching AUC values between 0.55 and 0.6. With the differentiation of the latent vector size,
from 100 to 500 and 1000, the performance metrics were improved and reached their highest value for code size
1000, for both logistic regression inputs (code vector alone, combination of code and clinical data), showing a
similar behavior as the autoencoder developed by Nasser[23], where the highest accuracy (0.81) was achieved
when code size was 1000 and discriminative penalty 0.01.

The CVAE model with batch size 4, epoch number 1000, Adam’s learning rate 0.01, latent space dimension
1000 and without the use of L2 regularization term achieved the highest AUC values when coupled with the
logistic regression classifier for both inputs, reaching an AUC of 0.6689 with only code input and an AUC of
0.6699 with the combination of code and clinical information as input. The latter AUC value was the highest
among the 80 CVAE, 12 ResNet and 12 DenseNet models trained for the task of early detection of knee OA from
MRI scans. Comparing CVAE with the other two tested methods (ResNet-50, DenseNet-121) showed that the
CVAE model was able to distinguish more informative features from the 3D input IW-TSE MRI scans. This
higher AUC value of the CVAE method could also indicate that the autoencoder’s texture analysis can extract
meaningfull patterns between early OA patients and healthy subjects, when compared to ResNet and DenseNet
algorithms, which perform an analysis based on the shape of the input images.
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Several factors might limit the performance of the developed methods and could explain their lower metrics
when compared to the existing literature as mentioned in section 1.4. The method applied for the construction
of the control and progression groups might have hindered the developed DL algorithms’ ability to detect OA
progression, since the distinction between case and healthy subjects was based solely on their KL grades and not
on a MRI based scoring method. The incorporation of a modified MOAKS grading scale for the definition of
OA in knee MRI due to the lack of osteophyte measurements also influenced the number of subjects constructing
both control and case groups, and especially the latter, since MR imaging modality has higher sensitivity and
specificity in osteophyte detection. Furthermore, another aspect that might reduced the models’ performance was
the number of clinical variables used as input, since previous publications did not only include age, gender and
BMI but also clinical data such as knee injury and surgery history or an expert defined KL grade. Moreover, the
developed algorithm’s were trained using random initialization of their weights, while the majority of the pub-
lished algorithms incorporated pre-trained weights, which can improve their AUC values on knee OA detection
and prognosis.

4.2. Future research
Some suggestions and recommendations that could validate and expand the knowledge obtained in the current
master thesis project regarding the influence of deep learning-based MRI data on early detection of knee OA are:

1. The influence of smaller areas of the knee joint on the detection of OA progression could be examined via
the incorporation of heat maps in the models’ outputs or via the use of smaller ROIs (medial and lateral
knee side).

2. In this project the performance of a Convolutional Variational Autoencoder with a discriminative term in
its loss function was investigated. Several different implementations of 3D Autoencoders can be examined,
not only with convolutional but also with an addition of dense layers [23].

3. In terms of the ResNet and DenseNet models’ structure, the recommendation would be to test their deeper
variants (ResNet-101,-152, DensNet-169,-201,-264), since these types are most commonly used in the
existing publications [21, 26].

4. The effect of pre-trained weights in the tested detection algorithms (ResNet-50, DenseNet-121, CVAE)
could be investigated since the majority of the published research applied transfer learning for the tested
DL algorithms[16–18, 23, 27].

5. A different ROI extraction algorithm could be applied such as Regional Proposal Network (RPN)[49] and
YOLO[50], since the developed pipeline incorporated many steps and procedures (bone segmentation,
multi-modal image registration, semi-automatic ROI definition) which can introduce errors and require
more time and computational resources.

6. Different MRI sequences can be used to train the same deep learning algorithms in order to examine their
influence.





5
Conclusion

For this master thesis project the influence of deep learning-based MRI features in the early detection of knee
osteoarthritis progression was examined, which included the investigation of three different deep learning archi-
tectures along with a semi-automated construction of a segmentation method for the knee joint extraction.

The results of the region-of-interest creation showed promising outcomes for the application of a U-Net algo-
rithm for the bone and cartilage tissue labelling, reaching high accuracy and Dice Similarity Coefficient metric
values.

Existing publicly available deep learning models have focused mainly on the OA severity detection through
X-ray and MRI scans, reaching AUC values of 0.90 and 0.82 for modality, with a few publications examining
the early detection of knee osteoarthritis progression only through X-ray. The maximum AUC value when X-ray
scans and clinical data from OAI have been processed for OA prediction progression is 0.81 .

In this study, the results showed that different deep learning algorithms have similar performance metrics
when 3DMRI scans are being processed since ResNet, DenseNet and CVAE had close AUC and PR-AUC values.
Furthermore, the combination of model predictive outcomes and clinical data as input for the Logistic Regression
classifier increased their performance, showing the influence of OA-related variables such as age, gender and BMI
to the detection of knee OA.

Previous studies have already shown the ability of deep learning methods to detect and classify knee os-
teoarthritis through mainly X-rays scans. This study contributes in the same field, examining the effect of MRI
scans for the early progression of OA. Deep learning models with the incorporation of MRI sequences as in-
puts although they do not reach the same level of performance metrics have the potential to influence in a more
informative and elaborate way the early detection of knee osteoarthritis.
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Appendix

U-Net
Batch size 4

Batch Size 4
Epoch Training Dice Validation Dice Training Loss Validation Loss
1 0.98318 0.99420 0.06826 0.02087
2 0.99399 0.99433 0.02185 0.02049
3 0.99435 0.99474 0.02036 0.01867
4 0.99451 0.99485 0.01973 0.01820
5 0.99458 0.99485 0.01944 0.01823

Table 1: Training and validation values for
Dice similarity coefficient and loss function for batch size 4

(a) Dice Similarity Coefficient (b) Loss Value

Figure 1: Training and validation graphs for dice similarity coefficient and loss function for batch size 4

Batch Size 4
Testing Dice Testing Loss Testing Accuracy
0.99509 0.01711 0.99334

Table 2: Testing Dice similarity coefficient ,loss and accuracy values for batch size 4

Intersection of Union - Batch Size 4
Mean IoU Background Femoral Bone Femoral Cartilage Tibial Bone Tibial Cartilage
0.88835 0.99292 0.97446 0.80423 0.96984 0.78605

Table 3: Testing intersection of union for batch size 4
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Batch size 8

Batch Size 8
Epoch Training Dice Validation Dice Training Loss Validation Loss
1 0.98085 0.99355 0.07933 0.02328
2 0.99417 0.99492 0.02101 0.01772
3 0.99467 0.99497 0.01888 0.01742
4 0.99482 0.99515 0.01829 0.01709
5 0.99494 0.99521 0.01781 0.01676

Table 4: Training and validation values for
Dice similarity coefficient, loss and accuracy values for batch size 8

(a) Dice Coefficient (b) Loss Value

Figure 2: Training and validation graphs for Dice similarity coefficient and loss function for batch size 8

Batch Size 8
Testing Dice Testing Loss Testing Accuracy
0.99539 0.01607 0.99371

Table 5: Testing Dice similarity coefficient and loss function values for batch size 8

Intersection of Union - Batch Size 8
Mean IoU Background Femoral Bone Femoral Cartilage Tibial Bone Tibial Cartilage
0.89311 0.99196 0.96965 0.79797 0.96513 0.74119

Table 6: Testing Intersection of Union for Batch Size 8

Batch size 16

Batch Size 16
E Training Dice Validation Dice Training Loss Validation Loss
1 0.97066 0.99389 0.12606 0.02173
2 0.99424 0.99486 0.02067 0.01790
3 0.99480 0.99520 0.01831 0.01655
4 0.99493 0.99527 0.01784 0.01635
5 0.99516 0.99535 0.01684 0.01606

Table 7: Training and validation values for
Dice similarity coefficient and loss function values for batch size 16
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Batch Size 16
Testing Dice Testing Loss Testing Accuracy
0.99542168 0.0154375 0.99391770

Table 8: Testing Dice, loss and accuracy values for batch size 16

Batch Size 16
Intersection of Union

Mean IoU Background Femoral Bone Femoral Cartilage Tibial Bone Tibial Cartilage
0.9053756 0.9929245 0.9744608 0.8042309 0.9698405 0.7860468

Table 9: Testing intersection of union values for batch size 16

Resnet Results

Batch size: 4 Adam’s learning rate: 0.001 Adam’s learning rate: 0.01

ResNet-50 ResNet-50 +
Clinical Data ResNet-50 ResNet-50 +

Clinical Data
AUC PR-AUC AUC PR-AUC AUC PR-AUC AUC PR-AUC

orig 0.4603 0.2426 0.4837 0.2457 0.5462 0.2731 0.6335 0.3295
orig+reg 0.4277 0.2556 0.526 0.2835 0.6042 0.3194 0.6406 0.3613

orig+reg+bw 0.4036 0.2164 0.4551 0.2313 0.5645 0.3034 0.6302 0.345
orig+aug 0.5058 0.3161 0.6399 0.3632 0.5131 0.2787 0.6399 0.3643

orig+aug+reg 0.5775 0.3752 0.6458 0.3633 0.4837 0.3141 0.6374 0.3626

Table 10: ResNet-50 AUC & PR-AUC values for epochs number= 15,
batch size= 4 and Adam’s optimizer learning rate= 0.001 (left) and 0.01 (right).

orig: trained on original data, orig+reg: trained on original data with kernel regularization
orig+reg+bw: trained in original data with kernel regularization and balanced weights

orig+aug: trained on augmented data, orig+aug+reg: trained on augmented data and kernel regularization

Batch size: 8 Adam’s learning rate: 0.001 Adam’s learning rate: 0.01

ResNet-50
output

ResNet-50
in combination with
Clinical Data in

Logistic Regression

ResNet-50
output

ResNet-50
in combination with
Clinical Data in

Logistic Regression
AUC PR-AUC AUC PR-AUC AUC PR-AUC AUC PR-AUC

orig 0.5586 0.3829 0.5872 0.3678 0.5612 0.3014 0.6374 0.3387
orig+reg 0.4974 0.2617 0.5384 0.2912 0.5983 0.3115 0.6511 0.3786

orig+reg+bw 0.4128 0.2727 0.4401 0.2438 0.5534 0.2953 0.6198 0.3445
orig+aug 0.5241 0.2776 0.5729 0.2971 0.5559 0.3992 0.6426 0.3639

orig+aug+reg 0.5111 0.3054 0.5723 0.3157 0.5846 0.3912 0.6458 0.3669

Table 11: ResNet-50 AUC & PR-AUC values for epochs number= 15,
batch size= 8 and Adam’s optimizer learning rate= 0.001 (left) and 0.01 (right).

orig: trained on original data, orig+reg: trained on original data with kernel regularization
orig+reg+bw: trained in original data with kernel regularization and balanced weights

orig+aug: trained on augmented data, orig+aug+reg: trained on augmented data and kernel regularization
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DenseNet Results

Batch size: 4 Adam’s learning rate: 0.001 Adam’s learning rate: 0.01

DenseNet-121
output

DenseNet-121
in combination with
Clinical Data in

Logistic Regression

DenseNet-121
output

DenseNet-121
in combination with
Clinical Data in

Logistic Regression
AUC PR-AUC AUC PR-AUC AUC PR-AUC AUC PR-AUC

orig 0.5481 0.2917 0.6204 0.3126 0.4603 0.2316 0.6269 0.3292
orig+reg 0.5273 0.2728 0.6426 0.3386 0.5618 0.2945 0.6556 0.3714

orig+reg+bw 0.5469 0.281 0.6074 0.3117 0.5521 0.2797 0.6198 0.3217
orig+aug 0.5033 0.2888 0.6426 0.3651 0.5241 0.3067 0.6406 0.364

orig+aug+reg 0.5358 0.3124 0.6393 0.3639 0.4746 0.2701 0.6419 0.3967

Table 12: DenseNet-121 AUC & PR-AUC values for epochs number= 15,
batch size= 4 and Adam’s optimizer learning rate= 0.001 (left) and 0.01 (right).

orig: trained on original data, orig+reg: trained on original data with kernel regularization
orig+reg+bw: trained in original data with kernel regularization and balanced weights

orig+aug: trained on augmented data, orig+aug+reg: trained on augmented data and kernel regularization

Batch size: 8 Adam’s learning rate: 0.001 Adam’s learning rate: 0.01

DenseNet-121
output

DenseNet-121
in combination with
Clinical Data in

Logistic Regression

DenseNet-121
output

DenseNet-121
in combination with
Clinical Data in

Logistic Regression
AUC PR-AUC AUC PR-AUC AUC PR-AUC AUC PR-AUC

orig 0.4694 0.2461 0.5339 0.3134 0.6269 0.3711 0.6406 0.3653
orig_reg 0.4818 0.2789 0.6159 0.3747 0.5801 0.3103 0.6419 0.3522

orig_reg_bw 0.4915 0.2638 0.526 0.2669 0.5365 0.2818 0.6224 0.3242
aug 0.5358 0.3641 0.6543 0.3623 0.4941 0.2911 0.6348 0.3489

aug_reg 0.5501 0.3455 0.6497 0.3722 0.5026 0.2839 0.6393 0.3641

Table 13: DenseNet-121 AUC & PR-AUC values for epochs number= 15,
batch size= 8 and Adam’s optimizer learning rate= 0.001 (left) and 0.01 (right).

orig: trained on original data, orig+reg: trained on original data with kernel regularization
orig+reg+bw: trained in original data with kernel regularization and balanced weights

orig+aug: trained on augmented data, orig+aug+reg: trained on augmented data and kernel regularization

CVAE
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Epochs = 100 Without Kernel Regularization
CVAE and
Logistic

Regression

CVAE +clinical
and Logistic
Regression

BS LR Disc.Pen Code.Dim AUC PR-AUC AUC PR-AUC
4 0.001 0.001 1000 0.625 0.3377 0.6378 0.3461
4 0.01 0.001 1000 0.6442 0.3625 0.6468 0.3654
8 0.001 0.001 1000 0.5968 0.3097 0.6128 0.3235
8 0.01 0.001 1000 0.5699 0.3519 0.5846 0.3597
4 0.001 0.01 1000 0.6468 0.3623 0.6564 0.3651
4 0.01 0.01 1000 0.6689 0.3463 0.6699 0.3589
8 0.001 0.01 1000 0.609 0.311 0.6359 0.3361
8 0.01 0.01 1000 0.55 0.2947 0.5699 0.3075
4 0.001 0.0005 1000 0.6205 0.318 0.6134 0.3256
4 0.01 0.0005 1000 0.6321 0.3396 0.6404 0.3395
8 0.001 0.0005 1000 0.6167 0.3227 0.6321 0.3404
8 0.01 0.0005 1000 0.5949 0.331 0.6096 0.3379

Table 14: CVAE AUC & PR-AUC values
for epochs number = 100 and latent space dimension = 100

without kernel regularization

Epochs = 100 With Kernel Regularization
CVAE and
Logistic

Regression

CVAE +clinical
and Logistic
Regression

BS LR Disc.Pen Code.Dim AUC PR-AUC AUC PR-AUC
4 0.001 0.001 1000 0.5705 0.2831 0.5994 0.3035
4 0.01 0.001 1000 0.5936 0.3067 0.6058 0.3252
8 0.001 0.001 1000 0.5872 0.3449 0.6141 0.3811
8 0.01 0.001 1000 0.5571 0.3148 0.566 0.3533
4 0.001 0.01 1000 0.525 0.2626 0.5571 0.2867
4 0.01 0.01 1000 0.5436 0.2785 0.5564 0.2938
8 0.001 0.01 1000 0.6064 0.4038 0.6218 0.4372
8 0.01 0.01 1000 0.5929 0.3297 0.6083 0.3511
4 0.001 0.0005 1000 0.5385 0.2706 0.5532 0.2868
4 0.01 0.0005 1000 0.6 0.3096 0.6135 0.3305
8 0.001 0.0005 1000 0.5904 0.4102 0.6026 0.4366
8 0.01 0.0005 1000 0.5814 0.3498 0.5962 0.368

Table 15: CVAE AUC & PR-AUC values
for epochs number = 100 and latent space dimension = 100

with kernel regularization
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