
Trajectory
optimization with
gradient descent

for a
variable-volume

float
by

J.D. Snijders

Bachelor End Project
BSc Applied Mathematics
BSc Applied Physics
Delft University of Technology

Student number: 5346274
Supervisors: Prof. dr. ir. M. Verlaan

Prof. dr. ir. C.R. Kleijn

Abstract
In the realm of fluid dynamics and particle transport, the control of particle trajectories represents a
formidable challenge. It would be useful to be able to optimally navigate an oceanographic float from
one pre-set location to another by solely changing its buoyancy. In this thesis, a first step in discovering
whether this is possible and what optimization strategy can be used is taken.

To do so, first, the physical situation is translated into a mathematical model. Then, an optimization
strategy for changing the buoyancy to optimally travel to a set location is constructed. The strategy is
based on gradient descent and implemented in Python. Four different definitions of an optimal trajectory
to a target location are considered, those are 1) any trajectory that leads to the target location, 2) the
most time-efficient trajectory, 3) the most energy-efficient trajectory, and 4) a trajectory that is both
time and energy-efficient.

The optimization strategy is tested for five different starting and target locations for a small spherical
float in an idealized two-dimensional linear flow field. It is concluded that it is possible to use the
optimization strategy to navigate a float using buoyancy changes for all four optimization objectives,
although the current implementation is not efficient enough for targets far away.

The first objective of future research should be to increase the coding efficiency. Thereafter, other
steps toward a more realistic situation can be taken, such as testing for non-linear flow fields, three-
dimensional fields, and bigger floats.

J.D. Snijders
Thursday 2nd November, 2023

1

Contents
1. Introduction . 3

2. The Model . 5
2.1 Equations of motion . 5
2.2 Change in buoyancy . 6
2.3 A small float in an idealized two-dimensional linear flow field 8

3. Optimization strategy and implementation . 12
3.1 The modified gradient descent algorithm . 12
3.2 Trajectory calculation . 14
3.3 Cost functions . 15
3.4 Testing the strategy . 19

4. Results . 22
4.1 Initial guess 𝑄0 . 22
4.2 Iterations . 22
4.3 Testing . 22

5. Discussion . 26
5.1 Disadvantages of gradient descent . 26
5.2 Code efficiency . 26
5.3 Implications . 26

6. Conclusion . 29

A. Automatic Differentiation . 32
A.1 Why would Automatic Differentiation be used? . 32
A.2 How does Automatic Differentiation work? . 32

B. Code . 34

2

1. Introduction
Although oceans cover more than 70% of the earth, we do not know everything that lies within. Fascina-
tion with the water, its flow, and its ecosystems is timeless, and for most of history, exploring the oceans
was done by manned expeditions. However, in the past decades, technological developments have made
it possible to send autonomous underwater drones to do the work without constant monitoring. [15]

There are different kinds of autonomous underwater vehicles (AUVs), classified by method of move-
ment. Propelled AUVs have propellers and are more maneuverable than other kinds. Underwater gliders
change their buoyancy to move up and down, while their hydrofoils (wings) change this into more or
less controlled forward motion.[28] Oceanographic floats drift with the currents, but their density can
be changed, causing the floats to rise up and down through the water column while collecting data, see
figure 1.

How long an AUV can be used, depends mainly on the battery life. [1] A propelled AUV uses more
energy than an AUV that drifts with the currents. Therefore, it is interesting to look at the possibilities
of navigating buoyancy-changing devices, specifically floats, toward set destinations. At first glance, it
might not seem possible to control the destination of a float, but since the velocity of the surrounding
water is not equal at all depths and the vertical movements can be influenced by the buoyancy, the
trajectory of the float can be influenced. This is similar to how a hot-air balloon can be steered by
adding heat to decrease the density to enter an air layer where the currents are different. [8] Within the
sea, another similar effect can be seen in some fish larvae: some larvae are known to be able to migrate
from the open sea towards inshore nursery areas, probably by laying on the seabed during ebb tides and
moving upwards during flood tides. [22] Although it is not certain if larvae move upwards by swimming,
by changing their buoyancy, or by something different, this does raise confidence that various locations
could be reached by only using the water currents.

While there are many studies available on path optimization in gliders and propelled AUVs [16][28][15],
not so much research has been done on the trajectory planning of floats. Floats are generally used as
profiling floats, for example in the Argo program, [1] and thus not to navigate to a specific point.
Additionally, underwater gliders and propelled AUVs are not usually deployed in coastal areas, as they
are expensive and could easily be damaged by human activity or be washed ashore. [10]

This thesis is a first step to discovering to what extent the variable buoyancy of a float can be used for
navigation, with the intention to determine the viability of a small and cheap AUV that can be navigated
toward set locations in coastal regions. Should significant steering be possible, then the results can also
be used to make underwater gliders and propelled AUVs more energy efficient, as those are affected by
the water flow too, especially when their velocity relative to the water is low. The aim of this thesis
is to determine whether it is possible to optimally navigate a small (𝐷 = 10−4m) spherical float to a
target location in an idealized flow field with an optimization strategy based on gradient descent. The
idealized flow field is two-dimensional and linear, and the water has a constant density and viscosity,
and the Reynolds number for the float in the flow field is lower than 1. Four different definitions of op-

Figure 1: An apex float, specifically one built by Teledyne Webb Research [21]. The sketched example trajectory was made
by X. André et al.[2]

3

Figure 2: An example of a flow field (left) and two trajectories that a float can follow (right). Both trajectories have the
same starting and target location, but the higher path will lead the float to its destination faster than the lower path, while
the lower path requires less energy, as the buoyancy does not have to be changed.

timally navigating to a target location are considered, those are 1) following any trajectory that leads to
the target location, 2) following the most time-efficient trajectory, 3) following the most energy-efficient
trajectory, and 4) following a trajectory that is both time and energy-efficient. The difference between
these definitions of optimal navigation is shown in the example in figure 2: if the flow is to the right and
faster in higher water, then a float that moves through higher water layers will be faster than a float
that does not, while a float that does not change buoyancy will require less energy. An optimization
strategy is constructed, and with an implementation in Python, it is tested whether the strategy could
be used to determine the required buoyancy changes to travel to different target locations in time or
energy-efficient ways.

The structure of this thesis is as follows. In chapter 2, the forces on and the movement of a submerged
spherical float are converted into a mathematical model and simplified for the idealized two-dimensional
linear flow field. In chapter 3, the optimization strategy for optimizing the buoyancy changes is described,
and it is determined how the position, time, and energy can be combined into one cost function, with
weighting factors that depend on whether the float should follow a time or energy-efficient path. Results
of optimization with the implemented strategy are presented in chapter 4 and discussed in chapter 5.
Chapter 6 contains the conclusion.

4

2. The Model
In this chapter, the physical situation of a submerged spherical buoyancy-changing float is translated
into a mathematical model.

2.1. Equations of motion
The velocity 𝑣⃗ of an object submerged in a fluid is not necessarily equal to that of the fluid. The
movement depends on the forces applied to the object, as described by Newton’s second law.

𝑚d𝑣⃗
d𝑡 =∑𝐹⃗ (1)

The different components of this equation will be detailed in the next sections: first, the mass 𝑚, and
then the forces 𝐹⃗ at work.

The rotation of the body can be described with the equation of conservation of angular momentum
in the body-centered frame:

I
d𝜔⃗
d𝑡 + 𝜔⃗ × (I𝜔⃗) =∑𝑀⃗ (2)

In this equation, I is the mass moment inertia tensor, 𝜔⃗ is the angular velocity, and ∑𝑀 denotes the
sum of the torque moments.

In the rest of this thesis, the rotation of the float will be neglected. This simplification is only possible
when the angular velocity is low, as a high angular velocity would cause the pressure on one side of the
sphere to rise and on the other side to decrease, which would cause a lift force that deflects the sphere
and can not be neglected. [6]

2.1.1. Added mass
The added mass is not a real mass, but rather a clever way of adding the inertia. When something
is submerged in a fluid, the fluid must flow around it. Therefore, some of the fluid must accelerate if
the object does and vice versa. This can be incorporated in equation (1) by adding an imaginary mass
component 𝑚𝑎𝑑𝑑 to the conventional mass 𝑚𝑓 of the float. Throughout the whole thesis, subscript 𝑤
will refer to the water flow and subscript 𝑓 to the float. For a sphere, the added mass is related to the
density of the surrounding fluid 𝜌𝑤 and the diameter of the sphere as [5]

𝑚𝑎𝑑𝑑 =
𝜋𝐷3
12 𝜌𝑤 (3)

This is half of the mass of the displaced water. The total mass that should be considered in eq. (1) can
be expressed in terms of the volume 𝑉 and the density of both the sphere and the fluid:

𝑚𝑡𝑜𝑡 = (𝜌𝑓 +
𝜌𝑤
2)𝑉 (4)

2.1.2. Forces on the float
In addition to the previously mentioned neglected lift force, three other forces act on the float: the
gravitational force 𝐹𝑔, the buoyancy force 𝐹𝑎, and the drag force 𝐹𝑑. When applied to a sphere, in
a frame of reference with the direction of 𝑧̂ opposite to the gravitational force. Those forces can be
calculated with the following equations:

𝐹⃗𝑔 = −𝜌𝑓(
𝜋
6𝐷

3)𝑔 𝑧̂ (5)

𝐹⃗𝑎 = 𝜌𝑤(
𝜋
6𝐷

3)𝑔 𝑧̂ (6)

𝐹⃗𝑑 = −
1
2𝐶𝑑(

𝜋
4𝐷

2)𝜌𝑤|Δ𝑣⃗|Δ𝑣⃗ (7)

Where 𝑔 is the gravitational constant (9.81m/s2) and Δ𝑣⃗ is the velocity relative to the water, defined
as Δ𝑣⃗ = 𝑣⃗𝑓 − 𝑣⃗𝑤. The drag coefficient 𝐶𝑑 depends on the Reynolds number, which is defined as

Re = 𝜌𝑤|Δ𝑣⃗|𝐷
𝜇 (8)

5

𝜇 is the dynamic viscosity of the fluid. When 103 < Re < 3 105, 𝐶𝑑 ≈ 0.47 for a smooth sphere.[12] For
Re < 0.1, a situation that is also called Stokes flow, George Stokes found that 𝐶𝑑 and 𝑅𝑒 of a smooth
sphere can be linked through [25]

𝐶𝑑 =
24
Re (9)

Although this relation is not valid for higher Reynolds numbers, it is still reasonable to use it for Reynolds
numbers up to 1. [12] Thus, for Re < 1, the drag force can be simplified to

𝐹⃗𝑑 = 𝐹⃗𝑠 = −3𝜋𝐷𝜇Δ𝑣⃗ (10)

2.1.3. Summary equations of motion
When equations (4), (5), (6), and (7) are substituted in eq. (1), the resulting equation of motion can be
simplified to

d𝑣⃗𝑓
d𝑡 = 𝜌𝑤 − 𝜌𝑓

𝜌𝑓 +
𝜌𝑤
2
𝑔 𝑧̂ − 34

𝐶𝑑
𝐷

𝜌𝑤
𝜌𝑓 +

𝜌𝑤
2
|Δ𝑣⃗|Δ𝑣⃗ (11)

or, when eq. (10) can be used,

d𝑣⃗𝑓
d𝑡 = 𝜌𝑤 − 𝜌𝑓

𝜌𝑓 +
𝜌𝑤
2
𝑔 𝑧̂ − 18𝜇

(𝜌𝑓 +
𝜌𝑤
2)𝐷

2Δ𝑣⃗ (12)

𝜌𝑓 and 𝐷 change when the buoyancy of the float is altered, and 𝜌𝑤 and 𝜇 are not constant in general.
However, in this thesis, they are assumed to be constant, with values 𝜌𝑤 = 1.026 103kg/m3 and
𝜇 = 1.2 10−3Pa s. Those values correspond to a temperature of 15∘𝐶 and a salinity of 35g/kg. [24]

2.2. Change in buoyancy
There are different methods to change the buoyancy of an object. The buoyancy depends on the density
of the object, thus can be altered by changing the mass while maintaining the volume, changing the
volume while maintaining the mass, or a combination of those. While the buoyancy of underwater
gliders and floats is commonly controlled with a hydraulic pump that moves oil in and out of an external
bladder, [1] inspiration for this thesis is provided by another design provided by nature: swim bladders in
fish and fish larvae. Both are examples of changing the volume while keeping the mass (almost) constant.
In fish, oxygen and other gasses flow through veins to and from the swim bladder. There, clever use of
biological processes allows the fish to secrete gasses into the bladder, despite the high pressure.[13] The
shortage or excess amount of dissolved gasses in the veins can be restored with little mass change when
the blood flows through the gills.

The volume 𝑉𝑆𝐵 of a swim bladder changes due to four processes: the changing water pressure,
leakage of gasses from the bladder, absorption of gasses from the bladder, and secretion of gasses into
the bladder. Those processes will be explained first. Then, a differential equation describing the total
change in volume will be derived.

2.2.1.Water pressure
The volume of a gas depends on the pressure. In water, the hydrostatic pressure 𝑃 can be derived from
Pascal’s law: [20]

𝑃(𝑑) = 𝑃0 + 𝜌𝑤𝑔𝑑 (13)
𝑃0 is the atmospheric pressure (1.01325 105Pa) and 𝑑 is the depth in m.

A swim bladder is adapted for a certain pressure, but the wall of such a bladder can stretch easily,
such that the internal and external pressures are equal and the enclosed gas obeys the ideal gas law for
pressures between 0.5 and 1.4 times the pressure to which the bladder is adapted.[11] For example, this
implies that a bladder that is adapted to 5m depth could be used on depths between 0m (as the float
or fish will not rise out of the water) and 7m, while one that is adapted to 20m could be used between
5m and 28m. Thus, when the pressure is between the imposed boundaries,

𝑉𝑆𝐵(𝑡) =
𝑛𝑅𝑇
𝑃(𝑑(𝑡)) (14)

𝑛, 𝑅 and 𝑇 are the number of moles of gas within the bladder, the universal gas constant, and the
temperature.

6

2.2.2. Leakage
Because a swim bladder is not impermeable, gasses will diffuse into the surrounding tissues. [9] The
volume change due to leakage d𝑉𝐿

d𝑡 in m3/s is negative and proportional to the surface 𝑆 of the bladder
and the pressure difference Δ𝑃 between the gasses inside the bladder, 𝑃(𝑑), and the gasses dissolved in
the surrounding water, 𝑃0 [14][26]

d𝑉𝐿
d𝑡 = −𝐺𝑆Δ𝑃 = −𝐺𝑆(𝑃(𝑑) − 𝑃0) (15)

𝐺 is a permeability constant, a realistic value in fish can be ca. 1.5 10−13m3O2 m−2Pa−1s−1.[26] The
surface area of a spherical swim bladder can be related to the volume through

𝑆 = 𝜋(6𝑉𝑆𝐵𝜋)
2
3 (16)

2.2.3. Absorption (active deflation)
Fish can deflate their swim bladder by reabsorbing gasses from the bladder into the bloodstream.[9] The
maximum rate depends on the properties of the fish blood: the amount of blood flowing to the bladder,
the specific gasses, and the hemoglobin binding sites in the blood, and only to a lesser extent on the depth
of the fish.[11] However, the optimization technique that will be tested is intended for broad purposes,
and the exact rate is only important for very specific cases, thus an estimation for the maximum rate
will suffice.

It is assumed that the reabsorption of gasses does not cost energy, as the gasses diffuse from a location
with a high concentration of gasses to blood with a lower concentration.

2.2.4. Secretion (active inflation)
Like with absorption, the amount of gas that a fish can secrete into the bladder depends on the amount
of blood flowing to the bladder and the amount of gasses in the blood. [11] Again, the specific rates are
unimportant for this research.

The process of inserting gas into the swim bladder costs energy. Firstly when the gasses are filtered
from the blood and compressed from the partial pressure in the blood 𝑃𝑏𝑙𝑜𝑜𝑑 to 𝑃(𝑑) and secondly when
the compressed gasses are added to the swim bladder. When a short time is considered and the volume
changes slowly, the second process can be seen as quasi-static. Additionally, the pressure adapts to the
external pressure, thus is nearly constant on a short time scale, thus the process is also isobaric. The
work associated with a quasi-static isobaric process is equal to

Δ𝑊 = ∫d𝑉 = 𝑃(𝑑)Δ𝑉𝑆𝐵 (17)

However, as there are always energy losses, the associated energy will be higher by an efficiency factor
𝐸𝑒𝑓𝑓:

Δ𝐸 = 𝑃(𝑑)Δ𝑉𝑆𝐵𝐸𝑒𝑓𝑓 (18)

The energy associated with the first process, on the other hand, will strongly depend on the method
used to filter and compress the gasses. For example, when the compression is done with a continuous
process without energy loss and the sea acts as a heat bath, Δ𝑊 can theoretically be as low as 0J/s.
But when the compression is done in batches (and slow enough to assume isothermal compression),
the required work to compress the molecules that are added in one time step (𝑛̇Δ𝑡) would be Δ𝑊 =
(𝑛̇Δ𝑡𝑅𝑇) ln(𝑃(𝑑)

𝑃𝑏𝑙𝑜𝑜𝑑
). [26] In the rest of this thesis, the energy for this step is simplified by assuming

that the required energy is proportional to the number of added molecules, and thus can be taken into
account by raising 𝐸𝑒𝑓𝑓.

2.2.5. Differential equation
In this section, a differential equation describing the volume change is derived. The change is equal
to the added volume minus the lost volume plus the produced volume. In the derivation, temperature
differences are neglected, since the temperature differences within the sea are small and the sea acts as
a heat bath.

7

The ‘produced’ volume is the volume change due to the change in pressure. This is equal to the
derivative of eq. (14) with respect to time, which can be simplified using the derivative of eq. (13):

d𝑉𝑆𝐵(𝑡)
d𝑡 =

d 𝑛𝑅𝑇
𝑃(𝑑(𝑡))
d𝑡 = − 𝑛𝑅𝑇

𝑃(𝑑(𝑡))2
d𝑃(𝑑(𝑡))

d𝑡 = − 𝑉𝑆𝐵(𝑡)
𝑃(𝑑(𝑡))𝜌𝑤𝑔

d𝑑(𝑡)
d𝑡 (19)

The added and removed volumetric flows can be divided into a passive and an active flow. The passive
flow consists of the change due to leakage, see eq. (15).

The active change in volume due to secretion and absorption will be called d𝑉𝑎
d𝑡 and depends on how

many gas molecules are inserted into the bladder. Since it is difficult to instinctively relate the number
of molecules to a volume, it was chosen to introduce a volume change rate 𝑞 in m3/s with respect to the
atmospheric pressure. This choice can be justified by the fact that the number of gas molecules that can
be transported to and from the bladder depends mainly on the properties of the fish blood, [11] while
the volume that corresponds to this amount of molecules does vary significantly with depth due to the
pressure. This implies that the boundary values for 𝑞 are constant.

According to the ideal gas law, the molecules that occupy a volume of ∫𝑞d𝑡 at 𝑃0 occupy at 𝑃(𝑑) a
volume equal to

𝑉𝑎 =
𝑃0
𝑃(𝑑) ∫𝑞d𝑡 (20)

The derivative of this equation with respect to the time is equal to

d𝑉𝑎
d𝑡 =

𝑃0
𝑃(𝑑)𝑞 −

𝑃0
𝑃(𝑑(𝑡))2 𝜌𝑤𝑔

d𝑑(𝑡)
d𝑡 ∫𝑞d𝑡 (21)

The total rate of volume change consists of the sum of equations (19), (21), and (15):

d𝑉𝑆𝐵(𝑡)
d𝑡 = − 𝑉𝑆𝐵(𝑡)

𝑃(𝑑(𝑡))𝜌𝑤𝑔
d𝑑(𝑡)
d𝑡 + 𝑃0

𝑃(𝑑)𝑞 −
𝑃0

𝑃(𝑑(𝑡))2 𝜌𝑤𝑔
d𝑑(𝑡)
d𝑡 ∫𝑞d𝑡 − 𝐺(6𝑉𝑆𝐵(𝑡)𝜋)

2
3 (𝑃(𝑑) − 𝑃0) (22)

The only part of this equation that can be influenced during the operation of the float is 𝑞.

2.3. A small float in an idealized two-dimensional linear flow field
The optimizing strategy that will be derived in the next chapter will be tested for a small float in an
idealized two-dimensional linear flow field. The initial diameter of the considered float will be 𝐷0 =
10−4m. When the buoyancy changes through volume changes, the diameter will change too. To protect
the structural integrity of the float, the maximal expansion and compression will be limited. The seawater
density and viscosity will be assumed to be constant.

In this section, first, the chosen linear flow field will be described. Then, it will be derived that in
this field, Re < 1 for a float with diameter 𝐷0 = 10−4m and a realistic maximal water velocity. Lastly,
the equations of motion for the float in the chosen field will be summarized.

2.3.1. Flow field
In this first research, a two-dimensional linear flow field is assumed. The two dimensions are the vertical
direction (𝑧̂) and one horizontal direction (𝑥̂). The velocity of the water in such a flow field can be
written as

𝑣⃗𝑤(𝑥, 𝑧) = 𝑣⃗𝑤(0, 0) + (𝛼𝑥𝑥𝑥 + 𝛼𝑧𝑥𝑧)𝑥̂ + (𝛼𝑥𝑧𝑥 + 𝛼𝑧𝑧𝑧)𝑧̂ (23)
with all 𝛼𝑖 constant and 𝑣⃗𝑤(0, 0) the velocity in an arbitrary origin.

In a two-dimensional slice of the sea, the seabed does not have to be flat and waves and tides can
influence the height of the water column. For a general case, the vertical coordinate of the seabed can
be described with a formula 𝐵(𝑥) and the height of the water column with 𝐻(𝑥, 𝑡). However, in the
flow field that will be considered in the implementation, it will be assumed that there are no sandbanks
or other bumps present in the slice of the sea. Additionally, the time-dependent waves and tides are
disregarded, as those would usually correspond to a non-linear flow field. Hence, when the origin is set
on the seabed, 𝐵(𝑥) = 0m and 𝐻(𝑥, 𝑡) = 𝐻, with 𝐻 constant.

In the sea, the horizontal scale is much larger than the vertical one. Therefore, it is reasonable to
assume that the horizontal velocity of the water is much larger than the vertical one. Additionally, when

8

the seabed is flat, there is no reason why the flow velocity would depend on the horizontal location.
Therefore, 𝛼𝑧𝑥 in eq. (23) can be expected to be much higher than 𝛼𝑥𝑥, 𝛼𝑥𝑧, and 𝛼𝑧𝑧. In the implemen-
tation, 𝛼𝑥𝑥, 𝛼𝑥𝑧, and 𝛼𝑧𝑧 will be neglected. Additionally, the velocity on the seabed was set to 0⃗m/s,
as interactions with the seabed slow the flow down.

Hence the velocity 𝑣⃗𝑤 of the water of the considered flow field can be expressed as

𝑣⃗𝑤(𝑥, 𝑧) = 𝛼𝑧 𝑥̂ (24)

𝛼 is equal to both |𝑣⃗𝑤(𝑥,𝐻)|
𝐻 and 𝑑𝑣𝑤𝑥(𝑧)

𝑑𝑧 . In the sea, it can be assumed that the maximal velocity is
roughly 1m/s. Figure 3 depicts the considered flow field.

Figure 3: The considered flow profile. The flow velocity is 0m/s in the vertical direction (𝑧) and is linearly increasing with
height in the horizontal direction (𝑥). The velocity is 0m/s at the seabed.

2.3.2. Stokes flow
The simplifications corresponding to Stokes flow can be used for a spherical float with diameter 𝐷 ≈
10−4m in the assumed flow field. This will be proven by assuming that eq. (12) can be used, and then
deriving that the maximal Reynolds number is indeed smaller than 1, thus that eq. (12) could indeed
be used. As this number depends on the maximal velocity difference |Δ𝑣⃗|, eq. (12) has to be solved.
Throughout this whole derivation, it is assumed that the density of the float is constant.

A differential equation can only be solved when boundary conditions are known. It is assumed that
the initial height of the float is 𝑧0 and that the initial velocity matches the velocity of the water at this
point: 𝑣⃗𝑓(𝑡 = 0) = 𝛼𝑧0𝑥̂. For this initial velocity, the assumption of Stokes flow is correct, as Δ𝑣⃗ = 0⃗m/s,
thus the initial Reynolds number is 0. When 𝜌𝑓 ≠ 𝜌𝑤, the float will move upwards or downwards, and
the velocity differences will increase.

Because the velocity vector Δ𝑣⃗ in eq. (12) is not squared, the vector and thus the whole equation can

easily be decomposed in a horizontal and a vertical part. When 𝐴 = 𝜌𝑤−𝜌𝑓
𝜌𝑓+

𝜌𝑤
2
𝑔 and 𝑡0 =

(𝜌𝑓+
𝜌𝑤
2)𝐷2

18𝜇 are
substituted, those parts are respectively

d𝑣𝑓𝑥(𝑡)
d𝑡 = −

𝑣𝑓𝑥(𝑡) − 𝑣𝑤𝑥(𝑡)
𝑡0

(25)

d𝑣𝑓𝑧(𝑡)
d𝑡 = 𝐴 −

𝑣𝑓𝑧(𝑡) − 𝑣𝑤𝑧(𝑡)
𝑡0

(26)

The reason for naming the second variable 𝑡0 will become clear soon. In the considered case, 𝑡0 ≈ 10−3s.
This can be seen by inserting 𝐷 ≈ 10−4m, 𝜌𝑤 ≈ 103kg/m3, and 𝜇 ≈ 10−3Pa s, and assuming that the
density of the float is similar to that of the surrounding water (i.e. 𝜌𝑓 ≈ 𝜌𝑤).

With the flow 𝑣𝑤𝑧(𝑡) = 0m/s and the boundary condition 𝑣𝑓𝑧(𝑡 = 0) = 0, the vertical part, eq. (26),
can be solved as

𝑣𝑓𝑧(𝑡) = 𝐴𝑡0(1 − 𝑒−𝑡/𝑡0) (27)
Note that Δ𝑣𝑧(𝑡) = 𝑣𝑓𝑧(𝑡) and that 𝑡0 is a characteristic time, useful for estimating how long it takes
before the float reaches its maximal velocity.

9

To solve the equation for the horizontal velocity, eq. (25), 𝑣𝑤𝑥(𝑡) has to be known. This velocity
depends on the height, which can be derived by integrating the vertical velocity, eq. (27):

𝑧(𝑡) = 𝑧0 +∫
𝑡

0
𝑣𝑓𝑧(𝑡)d𝑡

= 𝑧0 +∫
𝑡

0
𝐴𝑡0(1 − 𝑒−𝑡/𝑡0)d𝑡

= 𝑧0 + 𝐴𝑡0𝑡 + 𝐴𝑡20(𝑒−𝑡/𝑡0 − 1)

(28)

Hence the horizontal velocity of the water at the location of the float at time 𝑡 is

𝑣𝑤𝑥(𝑡) = 𝛼(𝑧0 + 𝐴𝑡0𝑡 + 𝐴𝑡20(𝑒−𝑡/𝑡0 − 1)) (29)

The derivative of Δ𝑣𝑥(𝑡) = 𝑣𝑓𝑥(𝑡) − 𝑣𝑤𝑥(𝑡) can be simplified by substituting eq. (25) and the derivative
of eq. (29):

dΔ𝑣𝑥
d𝑡 =

d𝑣𝑓𝑥(𝑡)
d𝑡 − d𝑣𝑤𝑥(𝑡)

d𝑡

= (−
𝑣𝑓𝑥(𝑡) − 𝑣𝑤𝑥(𝑡)

𝑡0
) − (𝛼𝐴𝑡0 − 𝛼𝐴𝑡0𝑒−𝑡/𝑡0)

= −Δ𝑣𝑥𝑡0
− 𝛼𝐴𝑡0(1 − 𝑒−𝑡/𝑡0)

(30)

One way to solve this equation is to assume a solution of the form Δ𝑣𝑥(𝑡) = 𝐶(𝑡)𝑒−𝑡/𝑡0 . With boundary
condition Δ𝑣𝑥(𝑡 = 0) = 0m/s, the solution is

Δ𝑣𝑥(𝑡) = 𝛼𝐴𝑡0𝑡𝑒−𝑡/𝑡0 − 𝛼𝐴𝑡20(1 − 𝑒−𝑡/𝑡0) (31)

For the next step, it will be convenient to know an upper bound of |Δ𝑣𝑥(𝑡)|. Note that 𝛼𝐴𝑡0𝑡𝑒−𝑡/𝑡0 and
𝛼𝐴𝑡20(1−𝑒−𝑡/𝑡0) are both 0m/s at 𝑡 = 0s and have the same sign for higher 𝑡. Additionally, the absolute
value of the derivative of the first term is always lower than that of the second one. Hence

0 ≤ |Δ𝑣𝑥(𝑡)| ≤ |𝛼𝐴𝑡20(1 − 𝑒−𝑡/𝑡0)| (32)

Before determining the Reynolds number, the ratio |Δ𝑣𝑥| ∶ |Δ𝑣𝑧| will be determined.

|Δ𝑣𝑥(𝑡)|
|Δ𝑣𝑧(𝑡)|

≤ |𝛼𝐴𝑡20(1 − 𝑒−𝑡/𝑡0)|
|𝐴𝑡0(1 − 𝑒−𝑡/𝑡0)|

= 𝛼𝑡0
1 ≪ 1 (33)

The last inequality is only valid in this specific context, as 𝑡0 ≈ 10−3s and 𝛼 = |𝑣⃗𝑤(𝑥,𝐻)|
𝐻 , which will be

lower than 1s−1 in a flow field in a calm estuary. This implies that the 𝑥 component does not contribute
much to the total length of Δ𝑣, thus Δ𝑣 ≈ Δ𝑣𝑧. Hence, the Reynolds number is

Re ≈ 𝜌𝑤|Δ𝑣𝑧|𝐷
𝜇 ≤ |𝐴𝑡0|

𝜌𝑤𝐷
𝜇 = |𝜌𝑤 − 𝜌𝑓|

𝜌𝑤𝑔𝐷3
18𝜇2 (34)

In the considered situation, this implies Re < 1, as 𝐷 ≈ 10−4m, 𝜌𝑤 ≈ 103kg/m3, 𝜇 ≈ 10−3Pa s, and
𝜌𝑓 is within reasonable bounds, that is, not lighter than air, but also not more than twice the density of
water. It is indeed reasonable to use the equations of motion in Stokes flow.

2.3.3. Simplification of the horizontal velocity
In eq. (33), it was derived that Δ𝑣𝑥 is much smaller than Δ𝑣𝑧. Therefore, in this situation, it is reasonable
to approximate Δ𝑣𝑥 = 0m/s, which corresponds to

𝑣𝑓𝑥(𝑡) = 𝑣𝑤𝑥(𝑡) = 𝛼𝑧(𝑡) (35)

10

2.3.4. Summary idealized flow field
In the simplified setting of this subsection, the position and other changing properties of the float can be
summarized in a four-dimensional state vector. The four states are all described in the previous section:
horizontal and vertical position, vertical speed, and volume. The vector will be called 𝑋⃗.

𝑋⃗(𝑡) = (
𝑥
𝑧
𝑣𝑓𝑧
𝑉
) (36)

The derivative of the different components of the state vector were derived previously in this chapter,
in equations (35), (26), and (22). As the setting is described using the height above the seabed and not
with the depth, 𝑑 = 𝐻 − 𝑧 and d𝑑

d𝑡 = −
d𝑧
d𝑡 = 𝑣𝑓𝑧 are substituted.

Additionally, it is assumed that the bladder takes up all of the volume, i.e. 𝑉 = 𝑉𝑆𝐵, and that the
mass of the added and removed gas molecules can be neglected compared to the mass of the wall, such
that the mass 𝑚 can be considered constant. Such an allocation of the volume is not possible in real
life, as both the mechanism controlling the volume change and measuring equipment would be outside
of the bladder. However, it is reasonable to assume that when the optimization strategy can be used in
the simplified case, it can also be used for a float that does not entirely consist of a swim bladder.

The derivative of 𝑋⃗ is

𝑓⃗(𝑋⃗, 𝑡) = d𝑋⃗
d𝑡 =

⎛
⎜⎜⎜

⎝

𝛼𝑧
𝑣𝑓𝑧

𝜌𝑤−
𝑚
𝑉𝑚

𝑉 +
𝜌𝑤
2
𝑔 − 18𝜇

(𝑚𝑉 +
𝜌𝑤
2)(

6𝑉
𝜋)

2/3 𝑣𝑓𝑧

𝜌𝑤
𝑉

𝑃(𝐻−𝑧)𝑔𝑣𝑓𝑧 + 𝑞(𝑡)
𝑃0

𝑃(𝐻−𝑧) +
𝑃0

𝑃(𝐻−𝑧)2 𝜌𝑤𝑔𝑣𝑓𝑧 ∫𝑞(𝑡)d𝑡 − 𝐺(
6𝑉(𝑡)
𝜋)

2
3 (𝑃(𝐻 − 𝑧) − 𝑃0)

⎞
⎟⎟⎟

⎠
(37)

11

3. Optimization strategy and implementation
In the first section of this chapter, an optimization strategy that is based on gradient descent and can
be used to determine the required changes in the buoyancy of a float to navigate it from a location
(𝑥0, 𝑧0) to another location (𝑥𝑔 , 𝑧𝑔) is explained. Integration methods that can be used to determine the
trajectory that a float follows are described in section 3.2, and different ways to quantify whether the
buoyancy changes are optimal are derived in section 3.3.

The optimization strategy is implemented in Python for the small float in a two-dimensional linear
flow field that was described in section 2.3. JAX, a package in Python that can automatically differentiate
a wide range of functions, [4], is used to calculate the gradients. See appendix A for more information
about automatic differentiation.

Finally, in section 3.4, a test that can be used to determine whether this strategy can indeed be used
to find an optimal sequence of buoyancy changes is presented.

3.1. The modified gradient descent algorithm
3.1.1. Introduction to gradient descent
The buoyancy of the float is changed through volume changes, as described in eq. (22). When the
optimization strategy is implemented, the situation will be discretized in time. Let 𝑄 be the array
consisting of the volume rates of change 𝑞 at every time step of the discretization and define a cost
function that is a measure of how close the float approaches the intended target location when the
volume is changed as described with 𝑄. When 𝑄 is random, the probability that the float ends up in the
desired location is very small, and the cost function is high. Thus, a random 𝑄 is not optimal. However,
when it is known that increasing or decreasing one or more of the elements of this 𝑄 in a certain way
decreases the value of the cost function, this change can be used to construct a slightly better 𝑄.

The derivative of a function with respect to an input value describes whether the function increases
or decreases when the input is increased. Therefore, derivatives can be used to determine in which way
a single element of 𝑄 should be altered to decrease the cost function.

Gradient descent algorithms[23] are based on this idea: for some input 𝑄, the gradient of the cost
function 𝑐𝑜𝑠𝑡(𝑄) with respect to the inputs is derived, and 𝑄 is updated in the opposite direction of the
gradient:

𝑄𝑛𝑒𝑤 = 𝑄𝑜𝑙𝑑 − 𝜂 ⋅ ∇𝑄𝑐𝑜𝑠𝑡(𝑄𝑜𝑙𝑑) (38)

𝜂 is called the learning rate and determines how much the input 𝑄 is changed per iteration.

3.1.2. Modification
The standard gradient descent method is modified to account for boundary conditions and to include
changes in the learning rate. The flow chart in figure 4 shows the algorithm, which will also be described
below.

Let 𝑐𝑜𝑠𝑡(𝑄) be the considered cost function, 𝑄0 the initial guess, 𝑞𝑚𝑎𝑥 and 𝑞𝑚𝑖𝑛 the boundary
conditions for the elements of 𝑄, 𝐽 the number of iterations, and 𝛿 the first step size. Before the first
iteration is started, the cost corresponding to the input is calculated. Then, the following steps are
repeated for all 𝐽 iterations.

• With reverse automatic differentiation, the gradient ∇𝑄𝑐𝑜𝑠𝑡(𝑄) of the cost function with respect
to the current 𝑄 is determined.

• In the next step, the gradient is going to be scaled such that the highest absolute value in the
gradient corresponds to 𝛿 or −𝛿. However, some values of Q cannot be changed much, as there
is a physical limit to how much volume can be added or subtracted at one time. Therefore, the
components of ∇𝑄𝑐𝑜𝑠𝑡(𝑄) that potentially can alter the corresponding 𝑞 to a value higher than
𝑞𝑚𝑎𝑥 or lower than 𝑞𝑚𝑖𝑛 are temporarily neglected. The remaining values of the gradient are called
(∇𝑄𝑐𝑜𝑠𝑡(𝑄))∗. When this set is empty, no alterations are possible. In that case, 𝛿 is halved and a
new iteration is started.

• The learning rate 𝜂 depends on 𝛿 and the highest absolute value of (∇𝑄𝑐𝑜𝑠𝑡(𝑄))∗, in such a way
that the 𝑞 that is altered the most still satisfies the boundary conditions.

12

Figure 4: Flow chart describing the modified gradient descent algorithm.

13

• A new 𝑄𝑛 is derived with eq. (38) and clipped such that all 𝑞 are between the maximal and minimal
values.

• The cost of 𝑄𝑛 is determined, and when the 𝑐𝑜𝑠𝑡(𝑄𝑛) is lower than the original 𝑐𝑜𝑠𝑡(𝑄), 𝑄𝑛 will
be accepted as 𝑄. If the cost is higher, 𝑄𝑛 will be rejected and 𝛿 will be halved. In both cases, a
new iteration starts.

The last value 𝑄 is called the optimized 𝑄 for the evaluated cost function and is denoted 𝑄𝑓.

3.2. Trajectory calculation
To determine the trajectory for a certain input 𝑄, the differential equations that describe the state of
the float of interest have to be integrated. Two different finite difference integration methods, Forward
Euler (FE) and Runge-Kutta (RK4), are used in the implementation and testing process. The state of
the float will be denoted as 𝑋⃗(𝑡). Both methods approximate the state 𝑋⃗(𝑡 + Δ𝑡) based on 𝑋⃗(𝑡) and the
derivative of the state:

𝑓⃗(𝑋⃗, 𝑡) = d𝑋⃗
d𝑡 (39)

When using FE, the state Δ𝑡 seconds after time 𝑡 is calculated as follows:

𝑋⃗(𝑡 + Δ𝑡) = 𝑋⃗(𝑡) + Δ𝑡 ⋅ 𝑓⃗(𝑋⃗(𝑡), 𝑡) (40)

When using RK4, the state Δ𝑡 seconds after time 𝑡 is determined with four intermediate predictors:
𝑘⃗1, 𝑘⃗2, 𝑘⃗3, and 𝑘⃗4:

𝑘⃗1 = Δ𝑡 ⋅ 𝑓⃗(𝑋⃗(𝑡), 𝑡)

𝑘⃗2 = Δ𝑡 ⋅ 𝑓⃗(𝑋⃗(𝑡) +
𝑘⃗1
2 , 𝑡 +

Δ𝑡
2)

𝑘⃗3 = Δ𝑡 ⋅ 𝑓⃗(𝑋⃗(𝑡) +
𝑘⃗2
2 , 𝑡 +

Δ𝑡
2)

𝑘⃗4 = Δ𝑡 ⋅ 𝑓⃗(𝑋⃗(𝑡) + 𝑘⃗3, 𝑡 + Δ𝑡)

(41)

The new state is
𝑋⃗(𝑡 + Δ𝑡) = 𝑋⃗(𝑡) + 16(𝑘⃗1 + 2𝑘⃗2 + 2𝑘⃗3 + 𝑘⃗4) (42)

3.2.1. Time step
When a finite integration method is used, a time step Δ𝑡 has to be chosen for the discretization. The
accuracy of a method depends on the time step and is usually better when Δ𝑡 is smaller. [27] FE requires
less computing power than RK4, but the accuracy is lower when using the same time steps. [18]If the
time step is too big, the solution might be unstable, which means that the errors introduced due to the
discretization increase with every step. Stability conditions for the time step depend on the eigenvalues
of the Jacobian of eq. (39). [27]

The dynamics of the considered system are not stable, thus it is not possible to determine an upper
bound for Δ𝑡 using the eigenvalues of the Jacobian of eq. (37). This instability stems from the facts that
both 𝑥 and 𝑧 are unlimited and that the volume of the float is unstable: when there is no active control
over the volume and the float rises a bit, the pressure decreases, causing the volume to increase and the
float to rise even further. When the float sinks a bit, the opposite process occurs. The volume will not
increase or decrease limitless, due to the active addition and removal of volume together with boundaries
for the volume and height (the float cannot sink below the seabed and cannot rise out of the sea).

Even though the dynamics are unstable, a time step has to be chosen. It was decided to choose the
time step based on the model that corresponds to the situation when the volume is set to be constant.
Then only the vertical velocity is of interest:

d𝑣𝑓𝑧
d𝑡 = 𝜌𝑤 − 𝜌𝑓

𝜌𝑓 +
𝜌𝑤
2
𝑔 − 18𝜇

(𝜌𝑓 +
𝜌𝑤
2)𝐷

2 𝑣𝑓𝑧 (43)

14

The eigenvalue associated with this equation is

𝜆 =
𝜕 d𝑣𝑓𝑧

d𝑡
𝜕𝑣𝑓𝑧

= − 18𝜇
(𝜌𝑓 +

𝜌𝑤
2)𝐷

2 = −
1
𝑡0

(44)

The minimal value for 𝜆 corresponds to the situation where 𝐷 is maximal. In the considered setting, the
order of magnitude of 𝜆 is then 3. The stability condition for the time step is for FE

Δ𝑡 ≤ −2𝜆 = 2𝑡0 (45)

and for RK4 [27]

Δ𝑡 ≤ −2.8𝜆 = 2.8𝑡0 (46)

To be on the safe side, Δ𝑡 = 0.5 10−3s is used in the implementation.

3.3. Cost functions
As a gradient can only be calculated for a known cost function, a cost function will have to be defined.
The cost function depends on the purpose of the float. In this research, the navigation of a float to a
desired location is the primary objective. However, it is usually preferred that this location is reached
in a specific way: fast, energy-efficient, or a combination of those two. In order to determine whether
the optimization strategy can be used for any float, the optimization strategy will be tested for all those
different objectives. The objectives will be numbered as follows:

1. The trajectory corresponding to the optimized 𝑄 leads to the desired destination.

2. The trajectory corresponding to the optimized 𝑄 leads to the desired destination and requires the
least amount of time to do so.

3. The trajectory corresponding to the optimized 𝑄 leads to the desired destination and requires the
least amount of energy to do so.

4. The trajectory corresponding to the optimized 𝑄 leads to the desired destination and combines
efficiency in time and energy in some way.

For each objective, a cost function that relates the input 𝑄 to how well the input and trajectory
meet the objective has to be defined. This is done in two steps. First, the costs for the three individual
parts of the objectives are defined. The individual parts are the position, time, and energy and the
corresponding cost functions will be called partial cost functions. Then, weighting factors are introduced
and calculated. Those are necessary when more than one partial cost function is examined at the same
time, which is the case for objectives 2, 3, and 4. If one partial cost function is given too much weight
compared to another cost function, the results might be unsatisfactory. See figure 5 for an example.

3.3.1. Partial cost functions
When given an input 𝑄, the trajectory can be derived with one of the methods that are described in
section 3.2. Let 𝑥(𝑡) and 𝑧(𝑡) be the coordinates of the trajectory. While the trajectory is only defined
every Δ𝑡 seconds, the intermediate points on the trajectory can be approximated using interpolation.

The positional cost has to be large when the float never comes close to destination (𝑥𝑔 , 𝑧𝑔). Therefore,
it makes sense to let the cost depend on the minimal distance between the trajectory and the destination.

The cost function will be defined as

𝑐𝑜𝑠𝑡𝑝(𝑄) =min
𝑡
((𝑥(𝑡) − 𝑥𝑔)2 + (𝑧(𝑡) − 𝑧𝑔)2) (47)

which is measured in m2.
When the horizontal velocity of the water is much larger than the vertical velocity, as is the case in

the studied flow field as described with eq. (23), the horizontal velocity of the float is much larger than
the vertical velocity and it can be assumed that the position closest to the destination has horizontal

15

Figure 5: An example of unsuitable weighting factors. If the weighting factor corresponding to the time (𝑤𝑡) is too high,
the found solution might be to rise as far as possible and ignore the target position. If the weighting factor corresponding
to the energy (𝑤𝐸) is too high, the found solution might be to not change the volume at all, and thus stay at the same
height.

coordinate 𝑥𝑔. Let 𝑧𝑥𝑔 be the vertical coordinate that corresponds to 𝑥𝑔. Then the positional cost can
also be approximated with

𝑐𝑜𝑠𝑡𝑝(𝑄) = (𝑧𝑥𝑔 − 𝑧𝑔)2 (48)

The time it takes to reach the location closest to the destination will be called 𝑡𝑥𝑔 and can be used
as the cost for the time:

𝑐𝑜𝑠𝑡𝑡(𝑄) = 𝑡𝑥𝑔 = argmin
𝑡

((𝑥(𝑡) − 𝑥𝑔)2 + (𝑧(𝑡) − 𝑧𝑔)2) (49)

this is measured in s. Alternatively, the time corresponding to 𝑥𝑔 can be used.
The energy consumption depends on all the volume rates of change 𝑞 before the closest point is

reached. As it was assumed that only the addition of volume costs energy, we will only consider positive
values of 𝑞:

𝑔(𝑞) = {
𝑞 if 𝑞 ≥ 0m3/s
0 if 𝑞 < 0m3/s (50)

With the ideal gas law, the positive volume change on depth 𝑑 can be calculated from the volume change
relative to atmospheric pressure:

Δ𝑉+ = (𝑔(𝑞) ⋅ Δ𝑡))
𝑃0
𝑃(𝑑) (51)

This volume can be converted into energy with eq. (18), and has to be added for all time steps. Let 𝑄′
denote the set of volume rates of change 𝑞 for all time steps before 𝑡𝑥𝑔 is reached. Then

𝑐𝑜𝑠𝑡𝐸(𝑄) = ∑
𝑞∈𝑄′

(𝑔(𝑞(𝑡)) ⋅ Δ𝑡)𝑃0𝐸𝑒𝑓𝑓 (52)

measured in J.

3.3.2. weighting factors
When the objective is to optimize 𝑄 for a combination of two or more of the three partial cost functions,
the different cost functions will have to be added:

𝑐𝑜𝑠𝑡𝑖 = 𝑤𝑝𝑐𝑜𝑠𝑡𝑝 +𝑤𝑡𝑐𝑜𝑠𝑡𝑡 +𝑤𝐸𝑐𝑜𝑠𝑡𝐸 (53)

In this equation, the 𝑤 are weighting factors that make the different partial cost functions dimensionless
and balance the relative importance of the objectives.

16

The cost functions corresponding to the four different objectives will be derived below, based on the
setting as described in section 2.3 and assumptions for acceptable and unacceptable costs for the four
objectives.

𝑐𝑜𝑠𝑡1, Position
For the first objective, only the final position of the float is important. Thus 𝑤𝑡 and 𝑤𝐸 are set to zero.
𝑤𝑝 has to be chosen in such a way that 𝑐𝑜𝑠𝑡1 is dimensionless. Although the actual scaling does not
influence the results when only one partial cost function is taken into account, it is useful to choose a
𝑤𝑝 that can also be used for the other objectives. This is done by dividing the distance to the target
location by a length that will be a measure of what deviation is considered acceptable. This deviation is
set to the initial float diameter 𝐷0.

𝑤𝑝 =
1
𝐷20

(54)

Hence, the first cost function is:
𝑐𝑜𝑠𝑡1(𝑄) = (

𝑧𝑥𝑔 − 𝑧𝑔
𝐷0

)
2

(55)

𝑐𝑜𝑠𝑡2, Position and Time
For the second objective, time and position are combined, thus only 𝑤𝐸 is 0. Since a trajectory-dependent
term is added to 𝑤𝑝𝑐𝑜𝑠𝑡𝑝, the minimum of 𝑐𝑜𝑠𝑡2 is not at 𝑧𝑥𝑔 = 𝑧𝑔. The idea for 𝑤𝑝 and 𝑤𝑡 is to use
the previously derived 𝑤𝑝, and a 𝑤𝑡 that is as big as possible, under the condition that |𝑧𝑥𝑔 − 𝑧𝑔| ≤ 𝐷0
for the 𝑧𝑥𝑔 where 𝑐𝑜𝑠𝑡2 is minimal. The fastest time is obtained when the float gains height quickly, as
𝑣𝑓𝑥 is larger for a bigger 𝑧 in the assumed flow field. Because the various paths that lead to the same
destination are almost all too complicated to calculate exactly, only one easy trajectory is considered: a
horizontal trajectory, thus 𝑧(𝑡) = 𝑧𝑥𝑔 at every time step. It was derived that the horizontal velocity can
be approximated with 𝑣𝑓𝑥 = 𝛼𝑧𝑥𝑔 (eq. (35)). Therefore, the corresponding time is

𝑡𝑥𝑔 = ∫
𝑥𝑔

0

1
𝑣𝑓𝑥(𝑧)

d𝑥 =
𝑥𝑔
𝛼𝑧𝑥𝑔

(56)

When 𝑧𝑥𝑔 is 𝑧𝑔 +𝐷0, the trajectory is considered acceptable, but a slightly larger 𝑧𝑥𝑔 is not acceptable,
even though 𝑐𝑜𝑠𝑡𝑡 will be lower. This implies that the derivative of 𝑐𝑜𝑠𝑡2 with respect to 𝑧𝑥𝑔 has to be
positive in 𝑧𝑥𝑔 = 𝑧𝑔 + 𝐷0.

𝑐𝑜𝑠𝑡2(𝑄) = (
𝑧𝑥𝑔 − 𝑧𝑔
𝐷0

)
2
+𝑤𝑡

𝑥𝑔
𝛼𝑧𝑥𝑔

(57)

d𝑐𝑜𝑠𝑡2(𝑄)
d𝑧𝑥𝑔

=
2(𝑧𝑥𝑔 − 𝑧𝑔)

𝐷20
−𝑤𝑡

𝑥𝑔
𝛼𝑧2𝑥𝑔

(58)

When the derivative is set to 0 in 𝑧𝑥𝑔 = 𝑧𝑔 + 𝐷0,

𝑤𝑡 ≤
2𝛼
𝐷0
(𝑧𝑔 + 𝐷0)2

𝑥𝑔
(59)

Thus the cost function for the second objective is

𝑐𝑜𝑠𝑡2(𝑄) = (
𝑧𝑥𝑔 − 𝑧𝑔
𝐷0

)
2
+ 2𝛼𝐷0

(𝑧𝑔 + 𝐷0)2
𝑥𝑔

𝑡𝑥𝑔 (60)

𝑐𝑜𝑠𝑡3, Position and Energy
For the third objective, time and energy are combined, thus only 𝑤𝑡 is 0. The idea for 𝑤𝑝 and 𝑤𝐸 is to use
the previously derived 𝑤𝑝, and a 𝑤𝐸 that is as big as possible, under the condition that |𝑧𝑥𝑔 − 𝑧𝑔| ≤ 𝐷0
for the 𝑧𝑥𝑔 where 𝑐𝑜𝑠𝑡2 is minimal. To rise higher requires a lower buoyancy and thus more energy.
Therefore, 𝑤𝐸 should be chosen in such a way that using enough energy to rise to a height 𝑧𝑔 − 𝐷0 is
preferable to using slightly less energy and rising to a higher 𝑧𝑥𝑔. Because changes in the buoyancy keep

17

affecting all future time steps, density changes directly after the float leaves the initial position are more
energy efficient than changes close to the target location. Hence, the optimal 𝑄 will be maximal for the
first moments, and 0m3/s the rest of the time.

The true optimal trajectory cannot be used to derive 𝑤𝐸, as the differential equations cannot be
solved exactly and 𝑤𝐸 is necessary to optimize numerically. Therefore, some simplifications were made
to approximate the energy required for the optimal 𝑄. Firstly, the volume changes due to pressure and
leakage are neglected, and secondly, it is assumed the total density change is achieved instantly and does
not change later.

In this case, the horizontal component of eq. (12) can be written as

d𝑣𝑓𝑧
d𝑡 = 𝐴 −

𝑣𝑓𝑧
𝑡0

(61)

with 𝐴 = 𝜌𝑤−𝜌𝑓
𝜌𝑓+

𝜌𝑤
2
𝑔 and 𝑡0 =

18𝜇
(𝜌𝑓+

𝜌𝑤
2)𝐷2 constant. The solution to this equation is

𝑣𝑓𝑧(𝑡) = 𝐴𝑡0 + (𝑣𝑓𝑧(0) − 𝐴𝑡0)𝑒−𝑡/𝑡0 (62)

As previously derived, 𝑡0 ≈ 10−3s in the assumed setting. As any implementation will be used for
situations on a much larger timescale, this velocity can be approximated with

𝑣𝑓𝑧(𝑡) ≈ 𝐴𝑡0 (63)

Hence the height can be written as

𝑧(𝑡) = ∫
𝑡

0
𝑣𝑓𝑧(𝑡)d𝑡 ≈ 𝑧0 + 𝐴𝑡0𝑡 (64)

𝑧0 is the initial height. Therefore, the time required to rise to a height 𝑧𝑥𝑔 is

𝑡𝑥𝑔 =
1
𝐴𝑡0

(𝑧𝑥𝑔 − 𝑧0) (65)

Since the horizontal speed can be expressed with eq. (35), the horizontal traversed distance in this time
is

Δ𝑥 = ∫
𝑡𝑥𝑔

0
𝛼𝑧d𝑡 = ∫

𝑡𝑥𝑔

0
𝛼(𝑧0 + 𝐴𝑡0𝑡)d𝑡 = 𝛼(𝑧0𝑡𝑥𝑔 + 𝐴𝑡0

𝑡2𝑥𝑔
2) (66)

By substituting Δ𝑥 = 𝑥𝑔 and eq. (65), the value for 𝐴𝑡0 can be determined:

𝐴𝑡0 =
𝛼(𝑧2𝑥𝑔 − 𝑧20)

2𝑥𝑔
(67)

𝐴 and 𝑡0 both depend solely on the volume (by means of the diameter and the density), the corresponding
required volume change Δ𝑉𝑟 can be determined. The energy required to induce this volume change can
be derived with eq. (18) and will be called 𝑐𝑜𝑠𝑡𝐸,𝑚𝑖𝑛(𝑧𝑥𝑔). Just like when 𝑤𝑡 was derived, 𝑤𝐸 can be
determined by considering the derivative of 𝑐𝑜𝑠𝑡3 with respect to 𝑧𝑥𝑔 at the accepted boundary.

d𝑐𝑜𝑠𝑡3(𝑄)
d𝑧𝑥𝑔

=
2(𝑧𝑥𝑔 − 𝑧𝑔)

𝐷20
+𝑤𝐸

d𝑐𝑜𝑠𝑡𝐸,𝑚𝑖𝑛(𝑧𝑥𝑔)
d𝑧𝑥𝑔

(68)

In this case, the derivative has to be negative at 𝑧𝑥𝑔 = 𝑧𝑔−𝐷0, as a lower 𝑧𝑥𝑔 is undesirable. This implies

𝑤𝐸 ≤
2

𝐷0
d𝑐𝑜𝑠𝑡𝐸,𝑚𝑖𝑛(𝑧𝑥𝑔=𝑧𝑔−𝐷0)

d𝑧𝑥𝑔

(69)

The value of d𝑐𝑜𝑠𝑡𝐸,𝑚𝑖𝑛(𝑧𝑥𝑔=𝑧𝑔−𝐷0)
d𝑧𝑥𝑔

can be numerically derived, for example in Python. The total cost
function is

𝑐𝑜𝑠𝑡3(𝑄) = (
𝑧𝑥𝑔 − 𝑧𝑔
𝐷0

)
2
+ 2
𝐷0

d𝑐𝑜𝑠𝑡𝐸,𝑚𝑖𝑛(𝑧𝑥𝑔=𝑧𝑔−𝐷0)
d𝑧𝑥𝑔

(∑
𝑞∈𝑄′

(𝑔(𝑞(𝑡)) ⋅ Δ𝑡)𝑃0𝐸𝑒𝑓𝑓) (70)

18

𝑐𝑜𝑠𝑡4, Position, Time and Energy
For the last objective, all properties are considered simultaneously. This can be interesting when the
goal is to find 𝑄 such that the corresponding trajectory does not cost a lot of energy but also does not
take forever. When there is a specific reason to consider all functions at the same time, the weighting
factors will have to be adapted to the circumstances. For example, when the device has an additional
constant fuel cost, for example due to measurement taking or leakage compensation, then the energy
used for those processes will be proportional to the time, and it might be useful to scale the functions
accordingly.

In this thesis, there is no specific additional reason to consider a combination of both time and energy,
aside from determining whether the implemented program can handle such a cost function. Therefore,
the idea is to make 𝑐𝑜𝑠𝑡𝑡 and 𝑐𝑜𝑠𝑡𝐸 roughly equally important, by using 𝑤𝑡 as derived in eq. (54) and
half of the previously derived 𝑤𝑡 and 𝑤𝐸.

𝑐𝑜𝑠𝑡4 = 𝑤𝑝𝑐𝑜𝑠𝑡𝑝 +
1
2𝑤𝑡𝑐𝑜𝑠𝑡𝑡 +

1
2𝑤𝐸𝑐𝑜𝑠𝑡𝐸 (71)

3.3.3. Expectations for the different cost functions
The expectation is that, given enough iterations, optimization for the position (𝑐𝑜𝑠𝑡1) will always steer
the float to the target location. However, the specific 𝑄𝑓 will depend on the initial guess.
𝑄𝑓 for the time (𝑐𝑜𝑠𝑡2) is expected to resemble a step function, first, the elements of 𝑄𝑓 are expected

to be maximal for as long as possible, in order to maximally utilize the faster flow on higher 𝑧, and
then, the volume changes are expected to be maximal negative to make the float sink back to the desired
height.

The expectation for 𝑄𝑓 for the energy (𝑐𝑜𝑠𝑡3) is that it will only be positive that it is strictly necessary
to reach the target location. When some 𝑞 are positive, it is expected that those are only the first values,
as a change in volume directly after the float is let go will have the most impact on the final height. The
expectations for 𝑐𝑜𝑠𝑡2 and 𝑐𝑜𝑠𝑡3 are illustrated in figure 6.
𝑄𝑓 for the combination of all properties (𝑐𝑜𝑠𝑡4) should be in between the values found for 𝑐𝑜𝑠𝑡2 and

𝑐𝑜𝑠𝑡3. If 𝑄𝑓 for 𝑐𝑜𝑠𝑡4 is very close to that of 𝑐𝑜𝑠𝑡2 or 𝑐𝑜𝑠𝑡3, the time or the energy might be favored
disproportionally.

(a) (b)

Figure 6: The expected volume rates of change for a target location higher than the initial location. The left figure is
for a target far away. When optimizing for the time, the bladder will first expand until the maximum value, and then be
constant until it is decreased to the minimum value, and stay minimum until the target is reached. The figure on the right
is for a target close by. In this case, the bladder is not completely filled in the time-optimization before the float has to
sink again. In both cases, when optimizing for the energy, only as much volume as strictly necessary is added.

3.4. Testing the strategy
The described strategy for optimizing 𝑄 is implemented in Python and will be tested for a small spherical
float of initial diameter 𝐷0 = 10−4m in the simplified two-dimensional linear water flow of eq. (24) for

19

a few different starting and target locations and for the four different cost functions. The determined
optimal 𝑄𝑓 will be compared to the intuitive expected 𝑄 for the different cost functions, in order to
determine whether the optimization strategy can be used for any float, regardless of the objective.

Only the starting and target locations will be varied between tests, thus exact values have to be
chosen for the properties of the float and flow field and for other variables in the algorithm. Those are
described in the next section. Additionally, values for the initial guess 𝑄0 and the number of iterations
𝐽 will have to be chosen, those values will be determined with the procedures described in sections 3.4.2
and 3.4.3.

3.4.1. Specifications for implementation
Table 1 contains the additional variables that describe the situation, their assumed value, and a justi-
fication for this choice. The properties that were specified for the float and the flow field in section 2.3
and direct derivations of those, such as 𝑉0 =

𝜋
6𝐷

3 ≈ 5 10−13m3 and 𝜌𝑤 = 1.026 103kg/m3, are not
included.

The other variables that have to be specified in the implementation are the size of the time step Δ𝑡,
which is chosen to be 0.5 10−3s (see section 3.2), and the size of the first step size in the gradient descent
algorithm 𝛿, which is chosen to be 𝑞𝑚𝑎𝑥

5 (this allows for relatively big changes in the first few iterations).
To decrease the number of computations per iteration, it was chosen to integrate with Forward Euler

during the optimization. Runge-Kutta was used to determine the trajectory corresponding to 𝑄𝑓, as this
method is more accurate, and thus can be used to partially check whether the introduced error due to
FE causes the trajectory to converge to an incorrect location.

Table 1: Assumptions for the variables in the implemented model.

Variable Value Justification
𝛼 Proportionality con-

stant between 𝑧 and
𝑣𝑤𝑥

1m/s
𝐻 = 0.1s−1 The maximal velocity is estimated to be ca. 1m/s.

𝐸𝑒𝑓𝑓 Energy efficiency
factor

arbitrary, 1 This value drops out of the equation when the derived
𝑤𝐸 is used.

𝐻 Height of the water
column

10m The considered situation is close to the shore, thus a
relatively low height is chosen.

𝑞𝑚𝑎𝑥,𝑞𝑚𝑖𝑛 Maximal and mini-
mal rate of change of
the volume

±𝑉0
10%
1s ≈ ±5 10−14m3/s The bladder cannot be maximally inflated or deflated

instantly and when the value is too low, the density
changes take very long, which complicates the testing
process. 10% change per second is chosen.

𝜌𝑓0 Initial density of the
float

𝜌𝑤 = 1.026 103kg/m3 The float can only switch between rising and sinking
when the density passes 𝜌𝑤, thus only initial densities
close to this value are interesting.

𝑣𝑓𝑧0 Initial vertical veloc-
ity

m/s Another initial value would only cause an offset.

d𝑉𝐿
d𝑡 Leakage 0m3/s Both 𝐺 and 𝑆 are very small, and the product is much

smaller than other terms in eq. (22).
𝑉𝑚𝑎𝑥 , 𝑉𝑚𝑖𝑛 Maximal and mini-

mal volume
2𝑉0 ≈ 10−12m3,
𝑉0
2 ≈ 2.6 10−14m3

When the volume increases or decreases too far, the
bladder can be damaged. Those values are approxi-
mately the volumes corresponding to 0.5 and 1.4 times
the initial pressure.

3.4.2. The initial guess 𝑄0
Ideally, the optimized rates of change of the volume 𝑄𝑓 do not depend on 𝑄0. However, in reality, this is
not always the case. This can be because the costs corresponding to two different 𝑄 can be equal. But
the optimized 𝑄𝑓 corresponding to two different initial 𝑄0 are also different because of the finite number
of iterations: one initial 𝑄0 might cause the corresponding 𝑄𝑓 to converge faster to the true optimal 𝑄
than another 𝑄0 does. Therefore, it is essential to choose a suitable 𝑄0.

There are infinitely many possibilities, but four different initial guesses will be compared to make a
measured decision on which 𝑄0 is suitable to use in the testing process.

The four 𝑄0 that will be compared are:

1. 𝑄0 = 𝑄𝑚𝑎𝑥, where 𝑄𝑚𝑎𝑥 is defined as the array that consists of only elements 𝑞𝑚𝑎𝑥, which is to
say that the initial volume change rate is maximal at all times.

20

2. 𝑄0 = 0. 0 is an array with all elements 0m3/s. This means that the initial volume does not
change.

3. 𝑄0 is a discontinuous sequence that is 𝑞𝑚𝑎𝑥 for the first half of the estimated required time, and
0m3/s for the other half of the time. This 𝑄0 is chosen to represent all discontinuous inputs.

4. 𝑄0 has a sinusoidal shape with two periods, the amplitude is 𝑞𝑚𝑎𝑥. This 𝑄0 is chosen to represent
all continuous, though non-constant, inputs.

The comparison will be done as follows: the optimized 𝑄𝑓 after 𝐽 iterations will be determined for
all four 𝑄0 with 𝑐𝑜𝑠𝑡2 (finding the fastest trajectory), an initial location (𝑥0, 𝑧0) = (0.0m, 5.0m), and a
final location (𝑥𝑔 , 𝑧𝑔) = (1.0m, 5.0004m). Those locations were chosen, because the intuition in this case
is relatively easy. The optimized 𝑄𝑓 will be plotted in the same figure, such that it can be determined
which initial guesses converge faster to the true optimal 𝑄 than others. The number of iterations for this
comparison will be chosen in such a way that all 𝑄𝑓 start to resemble the true optimal 𝑄, but are still
quite distinct.

3.4.3. The number of iterations 𝐽
Usually, more iterations result in a 𝑄𝑓 that is closer to the true optimal 𝑄. However, the available time
and computing power are limited, thus the number of iterations will have to be a trade-off between
enough iterations such that 𝑄 approximates the optimal solution, but few enough iterations that the
computational time is limited.

The number of iterations to use when the strategy is tested will be determined in the same context
as the initial guess, that is: time optimization from (0.0m, 5.0m) to (1.0m, 5.0004m). The initial 𝑄0
will be the guess that was deemed the most suitable in the previous section. The 𝑄𝑓 corresponding to
different numbers of iterations ranging from 0 up to 100 will be determined and plotted together in the
same figure. The 𝐽 that will be used in the following tests will be chosen based on those results.

3.4.4. Testing method
The goal is to determine whether the optimization strategy could potentially be used for broad purposes,
thus for different starting and target locations and for different cost functions. To do so, optimized 𝑄𝑓
are derived for the different cost functions from section 3.3 and different starting and target locations
with the choices for 𝑄0 and 𝐽 as determined in the previous procedures.

If the 𝑄𝑓 and corresponding trajectories for a cost function meet the expectations for the true optimal
𝑄 and indeed steer the float to the target location for all tested starting and target locations, it is
reasonable to assume that the optimization strategy can be used in almost all similar situations. If the
𝑄𝑓 does not match the expectations, the optimization strategy most probably does not work. If a 𝑄𝑓
matches the expectations, but the float is not steered towards the target location, it has to be determined
whether this is due to the optimization strategy or due to the choice of the cost function.

Five different starting and target locations are considered:

• (0.0m, 5.0m) to (1.0m, 5.0004m)

• (0.0m, 5.0m) to (1.0m, 5.0m)

• (0.0m, 5.0m) to (1.0m, 4.9996m)

• (0.0m, 0.0m) to (1.0m, 0.0m)

• (0.0m, 5.0m) to (100.0m, 5.5m)

In the first three cases, the float starts in the middle of the water column and is instructed to rise,
return to the same height, and sink. Those cases are considered to determine if the strategy works for
standard manoeuvres when different costs are considered.

The other two situations are to determine whether the strategy can also be used to optimize in more
extreme situations, that is, when the horizontal velocity is very small (since 𝑧𝑔 is close to the seabed) or
when 𝑥𝑔 is very large. In the fourth case, 𝑧0 = 0, thus the float would not rise from the seabed if 𝑄0 = 0,
therefore, in this situation, 𝑄0 = 𝑄𝑚𝑎𝑥 will be used, regardless of the 𝑄0 derived using the process in
section 3.4.2.

21

4. Results
The optimization strategy as described in section 3.1 is tested in Python as described in section 3.4. In
this chapter, the individual results are plotted and discussed. The implications and further discussion
are presented in the next chapter.

4.1. Initial guess 𝑄0
Different initial series of volume rates of change 𝑄0 were tested for 𝑐𝑜𝑠𝑡2 with the method described
in section 3.4.2. It was decided that 50 iterations are sufficient to determine for which initial guess 𝑄0
the corresponding 𝑄𝑓 is closest to the true optimal 𝑄. The initial 𝑄0 and the resulting trajectories are
depicted in figure 7. Although all trajectories approach the target location, all 𝑄𝑓 still have some faults
compared to the expectation: the 𝑄𝑓 corresponding to the sinusoidal input is furthest from the expected
step function; the 𝑄𝑓 for the maximal input returns to the maximal value after 𝑥𝑓 is reached; the 𝑄𝑓
corresponding to the discontinuous input consists of two distinct parts; and the 𝑄𝑓 corresponding to the
zero input is more like a parabola than a step function. The optimized 𝑄 for 𝑄0 = 0 was considered the
most acceptable and was used in the testing process.

(a) (b)

Figure 7: Time optimization for different initial guesses 𝑄0 for a float that is to be steered from (0.0m, 5.0m) to
(1.0m, 5.0004m). 7a shows the optimized 𝑄𝑓 together with the initial controls. The initial guesses are plotted with
dotted lines and the optimized 𝑄𝑓 with solid lines. 7b shows the corresponding trajectories. The accepted deviation from
the target location in 7b is equal to the initial diameter of the float.
Note that all vertical axis scales are very small because the float is very small, and 𝑞𝑚𝑎𝑥 ≈ 5 10−14m3/s.

4.2. Iterations
Different numbers of iterations 𝐽 were tested for 𝑐𝑜𝑠𝑡2 with the method described in section 3.4.3. The
results are depicted in figure 8. It is clear that using more iterations results in a 𝑄𝑓 that better resembles
the expected step function. A number of 70 iterations was considered a reasonable trade-off between
approaching the eventual optimal 𝑄 and the use of computing power, and was in the rest of the testing
process.

4.3. Testing
The implemented optimization strategy is tested for five different initial and target locations as described
in section 3.4.4.

4.3.1. Standard manoeuvres
The first three situations require the float to respectively rise, return to the same height, and sink, as
the float is set to move from (0.0m, 5.0m) to (1.0m, 𝑧𝑔), where the 𝑧𝑔 are 5.0004m, 5.0m and 4.9996m.
The optimized 𝑄𝑓 and corresponding trajectories for the four different cost functions are shown in figure
9.

22

(a) (b)

Figure 8: Time optimization for different numbers of iterations for a float which is to be steered from (0.0m, 5.0m) to
(1.0m, 5.0004m), with initial guess 𝑄0 = 0. 8a shows the optimized 𝑄𝑓 and 8b shows the corresponding trajectories. The
accepted deviation from the target location in 8b is the initial diameter of the float.
Note that all vertical axis scales are very small because the float is very small, and 𝑞𝑚𝑎𝑥 ≈ 5 10−14m3/s.

Most 𝑄𝑓 and corresponding trajectories match the expectations that were expressed in section 3.3.3
for all cost functions. Only the trajectory corresponding to the optimized 𝑄𝑓 for the energy (𝑐𝑜𝑠𝑡3) when
the target is 𝑧𝑔 = 5.0004m does not pass within a radius of 𝐷0 of the target position. As the 𝑄𝑓 matches
the expectations for 𝑐𝑜𝑠𝑡3, it can be concluded that the strategy does function in this situation, but that
the weighting factors should be altered in order to obtain a 𝑄𝑓 that does steer the float to the target
location. Another option is to increase the number of iterations, but this will only result in a trajectory
that comes closer to 5.0004m if the minimal possible value for 𝑐𝑜𝑠𝑡3 corresponds to a 𝑧𝑥𝑔 such that
|𝑧𝑥𝑔 − 5.0004m| ≤ 𝐷0.

Some of the optimal 𝑄𝑓 and trajectories overlap; those are the positional, energetic, and combined
optimizations in figures 9c and 9d, and the positional and energetic optimal paths in figures 9e and 9f.
The equality of the energetic and positional costs in both cases makes sense, as only the expansion of
the bladder requires energy and no expansion is required to reach the target location. The equality of
the optimized trajectory for the combined, energy and position optimizations when the target is at the
same height as the initial position implies that the energetic cost is much more important than a shorter
time in the considered case.

4.3.2. From the seabed to the seabed
The fourth situation is a float for which the initial and target locations are on the seabed: from
(0.0m, 0.0m) to (1.0m, 0.0m). The optimized 𝑄𝑓 and corresponding trajectories for the four different
cost functions are shown in figure 10.

The trajectories that correspond to the 𝑄𝑓 are nearly the same for all cost functions, and while they
steer the float closer to the target location than the initial guess did, none of the trajectories come
within the intended 𝐷0 radius of the target, and none of the 𝑄𝑓 for 𝑐𝑜𝑠𝑡2, 𝑐𝑜𝑠𝑡3 and 𝑐𝑜𝑠𝑡4 match the
expectations. Those observations are interlinked, as the positional cost (𝑐𝑜𝑠𝑡𝑝) is included in all four
cost functions, and the weights 𝑤𝑡 and 𝑤𝐸 are chosen in such a way that 𝑐𝑜𝑠𝑡𝑡 and 𝑐𝑜𝑠𝑡𝐸 only become
important when the trajectory comes within a radius 𝐷0 around the target location, which is not yet the
case after 70 iterations. Therefore, all 𝑄𝑓 resemble the optimized 𝑄 for 𝑐𝑜𝑠𝑡𝑝, which explains the shape
of 𝑄: The bladder is full after about 20s, as the maximum volume of the bladder was set to 2 ⋅ 𝑉0, the
maximum increase at atmospheric pressure to 𝑉0 ⋅

10%
1s , and the pressure at the seabed is almost twice

the atmospheric pressure. After the bladder is filled, the volume change rate has to be non-positive.
The float has risen due to the volume changes, but the target location is on the seabed. Therefore, the
volume has to be decreased until the density of the float is higher than that of the water. Between 30s
and 80s, the volume decreases to the minimum volume of 𝑉02 , and then the volume change rate plateaus
again, as the volume cannot decrease any further. In the last part of the graph, the volume change rate
returns to the initial guess, as changes in the volume in the last few moments before the target location

23

(a) (b)

(c) (d)

(e) (f)

Figure 9: Optimization for a float which is to be steered from (0.0m, 5.0m) to (1.0m, 𝑧𝑔) for different 𝑧𝑔 and different
cost functions, as defined in equations (55), (60), (70), and (71). From top to bottom, 𝑧𝑔 = 5.0004m, 𝑧𝑔 = 5.0m, and
𝑧𝑔 = 4.9996m. 𝑄0 = 0 and 70 iterations are used. The left figures depict the optimized 𝑄𝑓, while the figures on the right
show the corresponding trajectories, where the plotted accepted deviation from the target location is the initial diameter
of the float.
Some of the optimal trajectories overlap; in figures 9c and 9d, positional, energetic, and combined optimizations overlap,
and in figures 9e and 9f, the positional and energetic optimizations overlap. Note that all vertical axis scales are very small
because the float is very small, and 𝑞𝑚𝑎𝑥 ≈ 5 10−14m3/s.

24

is ‘reached’ do not affect the final location much, and therefore will only be changed slowly per iteration.

(a) (b)

Figure 10: Trajectory optimisation from (0.0m, 0.0m) to (1.0m, 0.0m) for different cost functions, as defined in equations
(55), (60), (70), and (71), with 𝑄0 = 𝑄,𝑚𝑎𝑥 and 70 iterations. 10a shows the optimized 𝑄𝑓 and 10b shows the corresponding
trajectories. Note that all vertical axis scales are very small because the float is very small, and 𝑞𝑚𝑎𝑥 ≈ 5 10−14m3/s.

4.3.3. Target location far away
The last tested situation is a float that starts in the middle of the water column and has to traverse
a longer horizontal distance than before: from (0.0m, 0.0m) to (1.0m, 0.0m). The optimized 𝑄𝑓 and
corresponding trajectories for the four different cost functions are shown in figure 10.

The 𝑄𝑓 are almost equal, and all trajectories except for that corresponding to the energy come within
𝐷0 of the target location; the 𝑤𝑝𝑐𝑜𝑠𝑡𝑝, equal to 𝑐𝑜𝑠𝑡1 or eq. (55), are respectively 9 10−7, 0.2, 7.2 and
0.9. Additionally, the 𝑄𝑓 corresponding to 𝑐𝑜𝑠𝑡2, 𝑐𝑜𝑠𝑡3, and 𝑐𝑜𝑠𝑡4 do not match the expected shapes.
This will be discussed further in the next chapter.

(a) (b)

Figure 11: Trajectory optimisation from (0.0m, 5.0m) to (100.0m, 5.5m) for different cost functions, as defined in equations
(55), (60), (70), and (71), with 𝑄0 = 0 and 70 iterations. 11a shows the optimized 𝑄𝑓 and 11b shows the corresponding
trajectories. Note that the vertical axis scale in subfigure 11a is even smaller than the vertical scales in the other 𝑄 graphs
in this chapter.

25

5. Discussion
The results of the individual tests were discussed in the previous chapter. In this chapter, the flaws of
gradient descent, the flaws in the implementation, and the implications and conclusions for general flow
fields and floats will be discussed.

5.1. Disadvantages of gradient descent
It is important to be aware of the disadvantages of gradient descent. The most prominent disadvantage is
typical for the majority of numerical optimization methods: gradient descent will find a local minimum.
When the cost function has more than one local minimum, the found solution will depend on the initial
guess and an appropriate initial guess is essential.

A second challenge is the choice of learning rate 𝜂. A constant function is often not optimal, as a too
low 𝜂 requires a high number of iterations, and a too high 𝜂 can cause fluctuations around the minimum
of the cost function. In the strategy proposed in this thesis, 𝜂 was chosen in such a way that the maximal
change in one element of 𝑄 per step was constant until the cost function no longer decreased, and was
then lowered. This is not the only possible approach. [7] For future applications, it is recommended to
determine a more efficient learning rate, such that fewer iterations are required.

5.2. Code efficiency
The most prominent flaw in the implementation was the efficiency of the code. Every iteration of the
implemented program requires a lot of computations. Since the cost depends on the trajectory, the chosen
integration method is repeated for every time step, and then the gradient of the input at each of those
steps is determined with reverse automatic differentiation. This has two inconvenient consequences.
First, an iteration can take a lot of time when the float is to be steered during a long time interval.
Second, the Python kernel might run out of memory when too many inputs or iterations are evaluated.

To reduce the number of computations per iteration, it was chosen to integrate with Forward Euler
during the optimization. To check whether the errors introduced by this method cause convergence to
another location than the intended target location, the more accurate Runge-Kutta was used to determine
the trajectory corresponding to 𝑄𝑓.

However, even with this reduction, the number of computations was a limiting factor. For example, in
the results for navigation over a long horizontal distance, it was not evident whether the 𝑄𝑓 did not meet
the expectations due to a too low number of iterations or for another reason. While the obvious next
step was to increase the number of iterations and repeat the optimization, this proved to be impossible
with the current implementation, as the Python Kernel kept being terminated due to out-of-memory
errors, even when only 100 iterations were considered. This implies that the current implementation of
the strategy is not robust and efficient enough to be applicable in larger studies. Some suggestions to
increase the efficiency of the implemented strategy are:

• To use another coding environment than Python, for example C. This would improve the efficiency,
as Python is an interpreted coding language and such languages are generally slower and require
more memory than compiled coding languages. [17]

• To test other Python packages than JAX, as this might not be the most efficient package.

• To decrease the number of iterations that is required before an acceptable 𝑄𝑓 is obtained, for
example by determining a better initial guess, or a better learning rate, as described in section 5.1.

5.3. Implications
5.3.1. Conclusions for the considered field
Even though only five situations are tested, it is possible to draw conclusions for the whole field. Based
on the standard movements for positive, negative, and zero vertical displacements, it can be concluded
that the optimization method can indeed be used to optimize the buoyancy changes of a float in order
to navigate it to a certain location, even with different secondary objectives such as energy-efficiency, in
at least a few simple cases. However, from the results for a target location on the seabed and a target
location 100m away, it can be concluded that there are limitations on when the optimization strategy
can be used.

26

It can only be concluded that the optimization method can be applied to the whole field if all reasons
why no optimal 𝑄 can be found are due to the efficiency of the implementation and not due to the
optimization strategy itself. There are four factors that can potentially restrict the performance of the
implemented method for general initial and target locations, compared to the performance for the tested
movements up, down, and to the same height. Those limiting factors are the reachability of the target
location, the boundary conditions on the state of the float, whether 𝑄 can converge to the true optimal
𝑄 within the maximal number of iterations, and the choice of weighting factors.

Reachability
The target location can only be reached if a sequence of density changes exists such that the float reaches
the destination. In a two-dimensional linear flow field, the reachable locations can be found by deter-
mining the paths for maximal positive and maximal negative buoyancy changes. The locations that
theoretically can be reached are between those extremes. There is no point in trying to optimize the
buoyancy changes when the target location cannot be reached.

Boundary conditions on the state of the float
In the tests for the standard movements, none of the boundary conditions on the state of the float had
to be enforced: the volume of the float was never maximal or minimal and the float never came close
to the seabed or surface. When the float is to be steered for a longer time or closer to the seabed or
surface, those boundary conditions might have to be enforced. In that case, there is a possibility that
the implemented program is unable to properly calculate the gradients, which would greatly limit the
potential applications of the optimization strategy.

However, from the results for navigation to the seabed, it can be concluded that the enforcement of
the boundary conditions is not a limiting factor for the performance of the optimization strategy: even
though the target location is not reached, the optimized 𝑄 does satisfy the boundary conditions for the
volume.

Efficiency in convergence
When 𝑄 cannot converge to the true optimal 𝑄 within the maximal number of iterations, the optimized
𝑄𝑓 will be inaccurate. This is in all likelihood the reason why the target location on the seabed is
not reached, and this could be the reason why the optimized inputs for the energy in the results from
(0.0m, 5.0m) to (1.0m, 5.0004m) and for all secondary objectives in the results for the target location
far (100m) from the initial position are inadequate.

When the convergence is the only limiting factor on the performance, it can be concluded that the
strategy theoretically works, but that the possibilities for applications are limited by the efficiency of the
implemented code, which can be improved in any of the methods mentioned in section 5.2.

Choice of weighting factors
Although the results for a positive, negative, and zero vertical displacement prove that there are situations
where the optimization method can be used when the objective is to navigate the float in a time or energy-
efficient way, it should be noted that the performance for those secondary objectives is highly dependent
on the choice of the weighting factors. When the weighting factors are chosen incorrectly, the minimum
of the cost function might not satisfy the condition that the float ends up close to the target location, or
it might take a lot of iterations before optimizing for the secondary objective decreases the cost function
more than decreasing the distance to the target location does. In section 3.3, it was attempted to derive
general weighting factors, but the assumptions and simplifications on the trajectories might have been too
crude to apply to long distances, which is a second potential explanation for the flawed optimized results
for the energy in the results from (0.0m, 5.0m) to (1.0m, 5.0004m) and for all secondary objectives in
the results for the target location far (100m) from the initial position.

In future research, especially when the considered float has a specific secondary objective, it is rec-
ommended to determine more suitable weighting factors.

All in all, the flaws in the performance of the implemented strategy are in all likelihood due to the
number of iterations and the choice of weighting factors, and not due to the optimization strategy and
implementation. It can be concluded that the optimization strategy can be used for initial and target
locations in the whole field, as long as the target location is reachable, and when the float has to be

27

navigated for a longer time than a few seconds, the implementation has to be more efficient than the
current one, and the weighting factors for time and energy have to be chosen more carefully.

5.3.2. Conclusions for all idealized two-dimensional linear fields
In this section, it will be made plausible that the previous conclusions for the field with variables chosen
as in table 1 can be applied to small floats in all general idealized two-dimensional linear flow fields.
That is, flow fields where the density and dynamic viscosity are constant, and the assumption of Stokes
flow can be used.

Most choices of variables in the tested field only cause an offset. For example, if the leakage is not
neglected, some or all of the values of 𝑄 have to be higher to compensate for the losses, and when the
initial density is higher, more volume has to be added before the float can start rising. Furthermore, it is
likely that additional components of the flow field in the vertical direction will also only cause an offset,
as long as the assumptions leading to Stokes flow hold in this direction, but it was not possible to test
this in the time available for this thesis.

Therefore, the limitations for applying the results in other fields are the assumptions leading to
Re < 1: 𝛼 has to be small enough, and the density of the float cannot become too high or low.

5.3.3. Conclusions for general floats and flow fields
This thesis is a first step in testing the viability of a gradient descent-based optimization strategy for
navigating a float to a target location using only density changes. Many additional steps have to be
taken before this strategy can be used for a real float, as a lot of assumptions were made.

Firstly, the considered float was spherical and had an initial diameter 𝐷0 = 10−4m. This simplified
the situation, as the rotational inertia of the float could be neglected and the flow could be approximated
as Stokes flow around a sphere. When the strategy is tested for a bigger float or a float with another
shape, the implementation has to be altered to include rotational inertia and the non-simplified equations
of motion.

Furthermore, the buoyancy-changing method was based on simplified processes in a swim bladder
filled with an ideal gas, while the buoyancy of profiling floats and underwater gliders is commonly
controlled with bladders filled with oil that are expanded and drained with a hydraulic pump. [1] The
choice of a modified swim bladder did actually increase the complexity of the model, as the physical
system is unstable because a rising float will expand, hence rise faster, and vice versa, while Oil is far
less compressible than gasses are. It is recommended that future research works with the more common
oil-filled bladders instead of swim bladders, as more research has been done for those bladders, and the
use of such a bladder would greatly simplify the formula describing the volume change.

Lastly, the considered flow field was very idealized. It was two-dimensional and linear, the density and
dynamic viscosity of the water were constant, and the Reynolds number had to be smaller than 1 at all
times. All of those assumptions can only be applied to a real situation on a very small time scale. When
longer time scales are considered, the model will have to be expanded to include the third dimension,
non-linear and time-dependent flow fields, a changing water density and viscosity, and Re ≥ 1. For
future research into the viability of a steerable buoyancy-changing float, it is recommended to include
those generalizations one at a time.

28

6. Conclusion
The goal of this thesis was to take the first steps necessary to determine whether it is possible to navigate
an oceanographic float that is only able to alter its buoyancy to specific targets, while also minimizing
the required time or energy, with an optimization strategy based on gradient descent. Such a float
could possibly be cheaper and more practical to use than underwater gliders and propelled AUVs in
coastal regions. Those first steps consisted of the construction and testing of a gradient descent-based
optimization strategy in an idealized linear two-dimensional flow field.

To do so, a mathematical model for a volume-changing spherical float in water was derived and
then simplified for the situation where the water has a constant density and viscosity, Re < 1 at all
times, and the flow field is two-dimensional and linear. Then, an optimization strategy for optimizing
the buoyancy changes was derived, and it was determined how the position, time, and energy can be
combined into one cost function, with weighting factors that depend on whether the float should follow a
time or energy-efficient path. In a nutshell, the optimization strategy is to start from an initial guess 𝑄0
for the required sequence of volume change rates to reach the target location, and then iteratively alter
the guess by taking small steps in the opposite direction of the gradient of the cost function, until an
optimal sequence 𝑄 is determined. The strategy was tested in five different initial and target locations
for four different cost functions.

For target locations that could be reached within a few seconds, the strategy, implemented as described
in chapter 4, could be used to properly optimize the volume change rates for all cost functions for
positive, negative, and zero vertical displacement targets, in most cases within 70 iterations. Although
the optimized volume change rates could not steer the float in 1m from the seabed back to the seabed,
this test proved that the implemented strategy can be used even when there are restrictions on the
maximum and minimum volume of the float. The optimized volume change rates in the last test, a
target location far (100m) away, did not meet the expectations for a time or energy-efficient optimal 𝑄
within 70 iterations. It could not be determined whether this was due to inadequately chosen weighting
factors in the cost functions, or due to the number of iterations, as the current coding efficiency prevented
tests with more iterations.

All in all, it can be concluded that the optimization strategy can most probably be applied to small
floats in all idealized two-dimensional linear flow fields, but that the current implementation is not
efficient enough to optimize for targets far away, and that a reassessment of the weighting factors between
position, time, and energy in the cost functions is necessary for longer distances or specific floats.

This is an acceptable first step in testing the viability of navigating a buoyancy-changing float to
specific targets, but due to the current efficiency and the large number of assumptions, it is not yet
possible to assess whether a workable program for optimizing buoyancy changes for navigation of a real-
life float can be made. Many steps have to be taken before a float based on these principles can be
released into our coastal waters.

The first step in future research should be to increase the coding efficiency. Thereafter, other steps
toward a more realistic situation can be taken, such as testing for non-linear flow fields, three-dimensional
fields, and bigger floats.

29

References
[1] About the Argo program. https://argo.ucsd.edu/about/. Accessed: 23-10-2023.
[2] Xavier André et al. “Preparing the New Phase of Argo: Technological Developments on Profiling

Floats in the NAOS Project”. Frontiers in Marine Science 7 (2020).
[3] Atilim Gunes Baydin et al. “Automatic differentiation in machine learning: a survey”. Journal of

Marchine Learning Research 18 (2018), pp. 1–43.
[4] James Bradbury et al. JAX: composable transformations of Python+NumPy programs. Version 0.3.13.

2018.
[5] Christopher E. Brennen. Introduction to Added Mass. http://brennen.caltech.edu/fluidbook/

basicfluiddynamics/unsteadyflows/addedmass/introduction.pdf. Accessed: 12-09-2023. 2006.
[6] Lyman J Briggs. “Effect of spin and speed on the lateral deflection (curve) of a baseball; and the

Magnus effect for smooth spheres”. American Journal of Physics 27.8 (1959), pp. 589–596.
[7] Christian Darken, Joseph Chang, John Moody, et al. “Learning rate schedules for faster stochastic

gradient search”. Neural networks for signal processing. Vol. 2. Citeseer. 1992, pp. 3–12.
[8] Tuhin Das, Ranjan Mukherjee, and Jonathan Cameron. “Optimal trajectory planning for hot-air

balloons in linear wind fields”. Journal of guidance, control, and dynamics 26.3 (2003), pp. 416–424.
[9] E.J. Denton. “6 - The Buoyancy of Fish and Cephalopods”. Progress in Biophysics and Biophysical

Chemistry 11 (1961), pp. 177–234.
[10] Pablo Rodríguez Fornes, Núria Pujol Vilanova, and David Roque Atienza. “AUV Risk Management

in Coastal Water surveys”. Instrumentation viewpoint (2013).
[11] FR Harden Jones and P Scholes. “Gas secretion and resorption in the swimbladder of the cod

Gadus morhua”. Journal of Comparative Physiology B 155 (1985), pp. 319–331.
[12] L.P.B.M Janssen and M.M.C.G. Warmoeskerken. Transport Phenomena Data Companion. 3rd ed.

Delft Academic Press / VSSD, 2006.
[13] W Kuhn et al. “The filling mechanism of the swimbladder: Generation of high gas pressures through

hairpin countercurrent multiplication”. Experientia 19 (1963), pp. 497–511.
[14] George N Lapennas and Knut Schmidt-Nielsen. “Swimbladder permeability to oxygen”. Journal of

Experimental Biology 67.1 (1977), pp. 175–196.
[15] Pierre FJ Lermusiaux et al. “A future for intelligent autonomous ocean observing systems”. Journal

of Marine Research 75.6 (2017), pp. 765–813.
[16] Daoliang Li and Ling Du. “Auv trajectory tracking models and control strategies: A review”.

Journal of Marine Science and Engineering 9.9 (2021), p. 1020.
[17] Abhinav Nagpal and Goldie Gabrani. “Python for Data Analytics, Scientific and Technical Appli-

cations”. 2019 Amity International Conference on Artificial Intelligence (AICAI). 2019, pp. 140–
145.

[18] R Bosede Ogunrinde, S Emmanuel Fadugba, and J Temitayo Okunlola. “On some numerical meth-
ods for solving initial value problems in ordinary differential equations”. IOSR Journal of Mathe-
matics (IOSRJM) 1 (2012), pp. 25–31.

[19] Seon Ki Park and Kelvin K Droegemeier. “Sensitivity analysis of a 3D convective storm: Implica-
tions for variational data assimilation and forecast error”. Monthly weather review 128.1 (2000),
pp. 140–159.

[20] Blaise Pascal. Traités de l’equilibre des liqueurs. Paris, 1663.
[21] Teledyne Webb Research. APEX Profiling Float. http://www.argo.org.cn/data/apex_apf11_

usermanual.pdf. Accessed: 25-10-2023. 2014-2017.
[22] AD Rijnsdorp, M Van Stralen, and Hendrik Willem Van Der Veer. “Selective tidal transport

of North Sea plaice larvae Pleuronectes platessa in coastal nursery areas”. Transactions of the
American Fisheries Society 114.4 (1985), pp. 461–470.

30

https://argo.ucsd.edu/about/
http://brennen.caltech.edu/fluidbook/basicfluiddynamics/unsteadyflows/addedmass/introduction.pdf
http://brennen.caltech.edu/fluidbook/basicfluiddynamics/unsteadyflows/addedmass/introduction.pdf
http://www.argo.org.cn/data/apex_apf11_usermanual.pdf
http://www.argo.org.cn/data/apex_apf11_usermanual.pdf

[23] Sebastian Ruder. “An overview of gradient descent optimization algorithms”. arXiv preprint arXiv:
1609.04747 (2016).

[24] Mostafa H Sharqawy, John H Lienhard, and Syed M Zubair. “Thermophysical properties of sea-
water: a review of existing correlations and data”. Desalination and water treatment 16.1-3 (2010),
pp. 354–380.

[25] GG Stokes. “On the effect of internal friction of fluids on the motion of pendulums”. Transactions
of the Cambridge Philosophical Society 9.8 (1850), p. 106.

[26] Espen Strand, Christian Jørgensen, and Geir Huse. “Modelling buoyancy regulation in fishes with
swimbladders: bioenergetics and behaviour”. Ecological Modelling 185.2 (2005), pp. 309–327.

[27] C. Vuik et al. Numerical Methods for Ordinary Differential Equations. Delft Academic Press /
VSSD, 2018.

[28] Runfeng Zhang et al. “Surfacing Positioning Point Prediction of Underwater Glider with a New
Combination Model”. Journal of Marine Science and Engineering 11.5 (2023).

31

A. Automatic Differentiation
A.1. Why would Automatic Differentiation be used?
There are four methods for computing derivatives in computer programs: coding manually derived
derivatives, Numerical Differentiation, Symbolic Differentiation, and Automatic Differentiation. [3] They
all have strengths and weaknesses:

Coding manually worked out derivatives leads to exact solutions, but it is prone to error and time-
consuming. [19]

Numerical Differentiation or finite difference methods are easy to implement, but round-off and
truncation errors can result in large deviations from the real values. Additionally, it scales poorly for
gradients, thus is inefficient for cases with many inputs. [3]

Symbolic Differentiation is when the program applies differentiation rules to a closed-form expression.
It provides exact expressions, but those expressions are often huge and cluttered. [3]

Like Symbolic Differentiation, Automatic Differentiation (AD) breaks down the function into ele-
mentary arithmetic operations and functions, and applies the chain rule. However, AD is certainly not
the same as Symbolic Differentiation, as the second determines a formula for the derivative, while AD
determines only the result for a specific input. AD counters most of the downsides of the other meth-
ods: it is possible to differentiate functions without a closed-form expression, like loops and recursion,
and to evaluate derivatives at nearly machine precision, since the derivatives are determined through
accumulation of values during the execution of the code, rather than explicit expressions. [3]

A.2. How does Automatic Differentiation work?
In a nutshell, AD breaks down the function on which it is applied into elementary arithmetic operations,
like addition and multiplication, and elementary functions, like sin() and exp(), and then applies the
chain rule repeatedly on intermediate values. There are two types of AD: forward and reverse accu-
mulation. Forward accumulation builds the derivative starting at the input, while reverse accumulation
starts at the output. The different accumulation methods will be explained using the example function
𝑓(𝑥1, 𝑥2) = sin(𝑥1) + 𝑥1𝑥22 .

A.2.1. Forward accumulation
To compute the derivative of 𝑓 with respect to 𝑥1 for some input, for example (𝜋, 2), with forward
accumulation, first it is determined how 𝑓 is composed of intermediate values that interact only with
elementary operations. Subsequently, the values for every intermediate value and the corresponding
derivatives with respect to 𝑥1 can be determined. Figure 12 shows the intermediate values. Define

𝑣̇𝑖 =
𝜕𝑣𝑖
𝜕𝑥1

(72)

Knowing 𝑣̇−1 = 1 and 𝑣̇0 = 0, the values and derivative of intermediate steps are calculated with the
previous values until 𝜕𝑓(𝜋,2)𝜕𝑥1

= 3 is determined, this is visible in table 2. The downside of this method is
that the whole process has to be repeated to determine the derivative with respect to 𝑥2.

Figure 12: Flowchart for 𝑓(𝑥1 , 𝑥2) = sin(𝑥1) + 𝑥1𝑥22 with intermediate values.

32

Table 2: Computation of the derivative of 𝑓(𝑥1 , 𝑥2) = sin(𝑥1) + 𝑥1𝑥22 with respect to 𝑥1 using forward accumulating AD.
The first column has the intermediate values: 𝑣−1 for 𝑥1 and 𝑣0 for 𝑥2, then 𝑣𝑖 , 𝑖 ∈ {1, 2, ...} for all elementary calculations.
The second column shows how the 𝑣𝑖 depends on previous values, while the third column has the values of the example.
The fourth and fifth column have the calculation of the derivatives and how they can be computed using the previous
values. The derivative is determined by working from top to bottom.

value of 𝑣𝑖 derivative of 𝑣𝑖 w.r.t. 𝑥1
intermediate values dependency value dependency value
𝑣−1 𝑥1 𝜋 𝑥̇1 1
𝑣0 𝑥2 2 𝑥̇0 0
𝑣1 sin(𝑣−1) sin(𝜋) cos(𝑣−1) ⋅ 𝑣̇−1 −1 ⋅ 1
𝑣2 𝑣20 22 2 ⋅ 𝑣0 ⋅ 𝑣̇0 2 ⋅ 2 ⋅ 0
𝑣3 𝑣−1 ⋅ 𝑣2 𝜋 ⋅ 4 𝑣̇−1 ⋅ 𝑣2 + 𝑣−1 ⋅ 𝑣̇2 1 ⋅ 4 + 𝜋 ⋅ 0
𝑣4 𝑣1 + 𝑣3 0 + 12.566 𝑣̇1 + 𝑣̇3 −1 + 4
𝑓(𝜋, 2) 𝑣4 12.566 𝑣̇4 3

A.2.2. Reverse accumulation
When using reverse accumulation, the algorithm works from the output towards the input. The deriva-
tives now are defined as

𝑣𝑖 =
𝜕𝑓(𝑥1, 𝑥2)
𝜕𝑣𝑖

(73)

Let the ‘successors of 𝑖’ be defined as the 𝑗’s such that 𝑣𝑗 depends directly on 𝑣𝑖. Thus in the example,
even though 𝑣4 is influenced by 𝑣0, 4 is not a successor of 0, only 2 is. Then

𝑣𝑖 = ∑
𝑗∈successors of 𝑖

𝜕𝑓(𝑥1, 𝑥2)
𝜕𝑣𝑗

𝜕𝑣𝑗
𝜕𝑣𝑖

= ∑
𝑗∈successors of 𝑖

𝑣𝑗
𝜕𝑣𝑗
𝜕𝑣𝑖

(74)

In the example, only −1 has two successors, namely 1 and 3, and the other 𝑖′𝑠 each have only one
successor. First, all the intermediate 𝑣𝑖 are computed with a forward run, and then the derivatives are
determined backward, starting with 𝑣4 = 1, as can be seen in table 3. Both 𝜕𝑓(𝑥1 ,𝑥2)

𝜕𝑥1
and 𝜕𝑓(𝑥1 ,𝑥2)

𝜕𝑥2
can

be calculated in one sweep.

Table 3: Computation of the derivative of 𝑓(𝑥1 , 𝑥2) = sin(𝑥1) +𝑥1𝑥22 with respect to 𝑥1 and 𝑥2 using reverse accumulating
AD. The first column has the intermediate values: 𝑣−1 for 𝑥1 and 𝑣0 for 𝑥2, then 𝑣𝑖 , 𝑖 ∈ {1, 2, ...} for all elementary
calculations. The second column shows how the 𝑣𝑖 depends on previous values, while the third column has the values of
our example. The fourth and fifth columns have the calculation of the derivatives of 𝑓 w.r.t. the intermediate values and
how they can be computed using the succeeding values. The 𝑣𝑖 are computed from top to bottom, and the 𝑣𝑖 from bottom
to top.

values of 𝑣𝑖 derivative of 𝑓 w.r.t. 𝑣𝑖
intermediate values dependency value dependency value

𝑣−1 𝑥1 𝜋 𝑣1
𝜕𝑣1
𝜕𝑣−1

+ 𝑣3
𝜕𝑣3
𝜕𝑣−1

=
𝑣1 ⋅ cos(𝑣−1) + 𝑣3 ⋅ 𝑣2

1 ⋅ −1 + 1 ⋅ 4 = 3

𝑣0 𝑥2 2 𝑣2
𝜕𝑣2
𝜕𝑣0

= 𝑣2 ⋅ 2 ⋅ 𝑣0 3.142 ⋅ 2 ⋅ 2 = 12.566
𝑣1 sin(𝑣−1) sin(𝜋) 𝑣4

𝜕𝑣4
𝜕𝑣1

= 𝑣4 ⋅ 1 1 ⋅ 1
𝑣2 𝑣20 22 𝑣3

𝜕𝑣3
𝜕𝑣2

= 𝑣3 ⋅ 𝑣−1 1 ⋅ 𝜋
𝑣3 𝑣−1 ⋅ 𝑣2 𝜋 ⋅ 4 𝑣4

𝜕𝑣4
𝜕𝑣3

= 𝑣4 ⋅ 1 1 ⋅ 1
𝑣4 𝑣1 + 𝑣3 0 + 12.566 1
𝑓(𝜋, 2) 𝑣4 12.566 𝑣4 1

33

B. Code
The following is an excerpt from the code. This contains one of the cost functions (𝑐𝑜𝑠𝑡2), how the
gradient of this function is determined, and the gradient descent algorithm.
import jax .numpy as jnp
from jax import grad

def f_cost_tijd (Vc_control , x0 , z0 , vz0 ,V0, xf , z f) :
final_xzvzV , temp_cost = lax . scan (scan_fun , (x0 , z0 , vz0 ,V0) , Vc_control)

scan_fun integrates the t ra j ec tory ; temp_cost i s an array with the energy , x , and z
at every dt

z_iv , cost_t = minimum(temp_cost [1] , temp_cost [2] , xf)
minimum inte rpo la te s the postion where cost [1]=xf , and determines the corresponding

z and t

cost_pos = (z_iv - z f) **2/Dn**2
t i jd_factor = 2*alpha*(Dn+zf) **2/xf/Dn
return cost_pos + ti jd_factor * cost_ti jd

grad_cost_tijd = grad (f_cost_tijd , argnums=0)

def gradient_descent (control0 , x0 , z0 , vz0 ,V0, control_min , control_max , cost , grad_cost , de lta=0 . 001 ,
max_iter=70) :

contro l = control0
cost_al l = []

cost0 = cost (control , x0 , z0 , vz0 ,V0, xf , z f)
cost_al l . append(cost0)

fo r i in range (max_iter) :
grad_cost0 = grad_cost (control , x0 , z0 , vz0 ,V0, xf , z f)
search_direction = - grad_cost0

check_array = search_direction [((control_min+delta<contro l) | (search_direction>0))&((
control_max - delta>contro l) | (
search_direction<0))]

i f jnp . s i z e (check_array) == 0 :
delta = delta /2
continue

max_step = jnp .max(jnp . abs (check_array))
search_direction = search_direction/max_step

control_new = contro l + delta * search_direction
control_new = jnp . c l i p (control_new , control_min , control_max)

cost_new = cost (control_new , x0 , z0 , vz0 ,V0, xf , z f)
i f cost_new <= cost0 :

cost0 = cost_new
contro l = control_new

e l s e :
de lta = delta /2

cost_al l . append(cost0)
return control , cost_all , de lta

34

	Introduction
	The Model
	Equations of motion
	Change in buoyancy
	A small float in an idealized two-dimensional linear flow field

	Optimization strategy and implementation
	The modified gradient descent algorithm
	Trajectory calculation
	Cost functions
	Testing the strategy

	Results
	Initial guess Q0
	Iterations
	Testing

	Discussion
	Disadvantages of gradient descent
	Code efficiency
	Implications

	Conclusion
	Automatic Differentiation
	Why would Automatic Differentiation be used?
	How does Automatic Differentiation work?

	Code

