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Abstract 
Humans are our best example of the ability to learn a structure of the world through 
observation of environmental regularities. Specifically, humans can learn about different 
objects, different classes of objects, and different class-specific behaviors. Fundamental to 
these human abilities is evolved sensory hardware and automatic pattern recognition 
systems thought to be powered in part by the leading neuroscience theory of predictive 
coding. Artificial intelligence research is often inspired by neuroscience and algorithms 
already exist that implement predictive coding. In this paper, we seek to evaluate a leading 
predictive coding video-prediction algorithm, PredNet, for its ability to perform human-like 
learning of the types mentioned. By successfully training PredNet on a custom Simple 
Shape Motion (SSM) video dataset that explicitly requires structure learning to occur in 
order to accurately predict the next frame, we establish that PredNet is capable of 
rudimentary structure learning. We investigate PredNet filters and feature maps but find 
scant evidence of truly symbolic knowledge, and propose instead that PredNet performs 
semi-symbolic learning. We perform ablation studies that reveal the aspects of PredNet 
that critically contribute to its structure learning ability. Finally, we detail a set of 
modifications made to PredNet to allow object-centric processing as a promising step 
change towards human-like structure learning. Evaluation results and investigations are 
provided. Performance was slightly worse than Baseline, likely due to a noted 
implementation flaw. Code and instructions to reproduce dataset creation and model 
training / evaluation are available at https://github.com/ofSingularMind/parallel_prednet. 
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EVALUATING PREDICTIVE CODING VIDEO
PREDICTION ALGORITHM, PREDNET, FOR
EVIDENCE OF STRUCTURE LEARNING

Alex H. Ledbetter
Department of Cognitive Robotics
Delft University of Technology
Delft, The Netherlands

ABSTRACT

Humans are our best example of the ability to learn a structure of the world through
observation of environmental regularities. Specifically, humans can learn about
different objects, different classes of objects, and different class-specific behav-
iors. Fundamental to these human abilities is evolved sensory hardware and au-
tomatic pattern recognition systems thought to be powered in part by the leading
neuroscience theory of predictive coding. Artificial intelligence research is often
inspired by neuroscience and algorithms already exist that implement predictive
coding. In this paper, we seek to evaluate a leading predictive coding video-
prediction algorithm, PredNet, for its ability to perform human-like learning of
the types mentioned. By successfully training PredNet on a custom Simple Shape
Motion (SSM) video dataset that explicitly requires structure learning to occur
in order to accurately predict the next frame, we establish that PredNet is capa-
ble of rudimentary structure learning. We investigate PredNet filters and feature
maps but find scant evidence of truly symbolic knowledge, and propose instead
that PredNet performs semi-symbolic learning. We perform ablation studies that
reveal the aspects of PredNet that critically contribute to its structure learning
ability. Finally, we detail a set of modifications made to PredNet to allow object-
centric processing as a promising step change towards human-like structure learn-
ing. Evaluation results and investigations are provided. Performance was slightly
worse than Baseline, likely due to a noted implementation flaw. Code and instruc-
tions to reproduce dataset creation and model training / evaluation are available at
https://github.com/ofSingularMind/parallel_prednet.

1 INTRODUCTION

1.1 BACKGROUND

Humans are our best example of intelligent behavior and the ability to learn the structure of the world
through observation of environmental regularities. Specifically, humans can perceive objects in the
environment, learn that these objects belong to a class hierarchy, notice the states of objects and the
world (for example, a car is out of gas, and it is daytime or nighttime), and learn to associate specific
behaviors with learned classes (for example, cars generally move in the direction their front tires are
pointing). These are fundamental skills that humans apply in order to understand and navigate the
world we live in. These human abilities arise in part from a combination of highly-evolved sensory
hardware, and a brain network architecture that facilitates automatic pattern recognition (Frensch
& Rünger, 2003) (Farroni et al., 2013) (Filippetti et al., 2013). This automatic pattern recognition
allows us to recognize objects that we’ve seen before, and to identify new objects as belonging to
a class identity that we are familiar with. The leading theory for how the brain accomplishes this
automatic pattern recognition is called predictive coding (Rao & Ballard, 1999) (Huang & Rao,
2011) (Millidge et al., 2022). Predictive coding suggests that the brain is fundamentally a sensory
input prediction machine. This means that at all times, the brain is forming predictions about what
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Figure 1: The Simple Shape Motion (SSM) dataset comprising four video tasks was developed in
this work. Together, they enable proof of claim for a video-prediction model’s ability to represent
objects, classes, states, and behavioral associations at a rudimentary level. See Section 3.2 for the
task details. Note that the dotted grey lines in Task 3 are added for clarity.

sensory inputs it expects to be receiving next. Through a process of prediction-error minimization,
the brain adapts to form an internal representation of the world that allows ever more accurate
predictions for future sensory input.

In this paper, then, we seek to evaluate an existing machine learning model that applies the principles
of predictive coding for performance against human-like abilities. This effort seeks to answer the
question, “Can machine learning algorithms based on our leading neuroscience theory for how the
human brain works actually learn about the same environmental regularities that humans can?” To
this end, a search was performed for a viable candidate model to evaluate against a small subset of
human abilities. Our constraints for model selection included that the model learn in an unsupervised
or self-supervised fashion (similar to how human infants learn without labels), the model should
apply principles of predictive coding, and the model should operate over visual sensory data. This
search resulted in choosing PredNet due to its simplicity, status as a well-known implementation of
visual predictive coding, and due to its impressive performance on synthetic and real-world video-
prediction datasets (Lotter et al., 2017).

Having chosen a model to evaluate, we establish specifically that the human abilities we are looking
to evaluate against include the following: object detection in a cluttered environment, object-class
recognition, perception of object and world states, and the ability to associate class-specific behav-
iors to perceived class instances, all at a nearly simplest-case level. For brevity we term this set
of abilities, object, class, state, and behavior association representation-learning (OCSBA-RL). In
order to evaluate PredNet for these abilities, we attempted to find in the literature existing methods
that capture this learning for an unsupervised video-prediction model. After a thorough search, we
noted that validation of OCSBA-RL occuring in video-prediction models was primarily treated as
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an implicit goal while the primary and measured goals were to perform well on downstream tasks
such as action recognition, person or object tracking, pose estimation, segmentation forecasting,
object perception and state-transition learning, among others (See Section 2). The datasets that sup-
ported performance measurement on these tasks were deemed ill-suited for the explicit evaluation
of OCSBA-RL in PredNet as we sought. Therefore, we needed to create a new dataset that allowed
explicit evaluation of these skills.

In so developing such a dataset that allows for explicit testing of OCSBA-RL occuring in a video-
prediction model, we first determine success criteria in order to make claims that the model has
learned about these components, namely, objects, classes, states, and associated behaviors.

1.2 SUCCESS CRITERIA TO CLAIM OCSBA-RL

1.2.1 OBJECTS

We propose that:

• Objects exist in a world

• Objects are separate from the world

• Objects can be occluded by parts of the world

• Objects have properties: shape, color, size, position, rotation, and motion

In order to say that a video-prediction model has effectively learned to recognize, understand,
and predict futures for objects, predicted futures should correctly isolate the objects from the
world, correctly predict the future values of their changing-properties, and correctly maintain their
static-properties. Additionally, previously occluded portions of objects that have now come into
view should be in-filled with a reasonable estimate given the model’s experience with similar
objects. Perfectly predicting the deterministic next-frame properties while providing appropriate
estimates for stochastic or previously unseen properties indicates an effective understanding of
objects and their transformations over short time-horizons.

1.2.2 CLASSES

We propose that:

• Classes refer to a set of objects with shared class-specific properties and/or behaviors

In order to say that a video-prediction model has effectively learned to recognize and understand
classes and their significance (i.e. learned about classes), without using representation-to-class-label
prediction, we must rely on visually discernible class-specific properties or behaviors. With these
present, we can say that the model has learned about classes when next-frame predictions display
discrete and correct future values for the class-specific changing-properties, or when transformations
according to class-specific behaviors are discretely obeyed. Note that by “discrete”, we mean that
the predictions are unambiguous. For example, in the dataset developed and presented in this paper,
cross-shape class-objects are presented visually and shown to move down, while ellipse-shape class-
objects move to the right. In this setup, an ambiguous prediction for a presented class-object would
apply behavioral transformations that blur the line between downwards movement and rightwards
movement, e.g. the next frame might show the shape having moved both down and to the right, or
the class-object may have lost shape fidelity by drawing portions of the shape to be both down and
to the right while the total shape is now distorted.

Additionally, the video-prediction model’s recognition and predictions should be position and
property-invariant (within the learned bounds of each class property including size, aspect ratio,
color, edge thickness, and rotation) and generalize to previously-unseen class-shape sizes and
aspect ratios within and beyond the training ranges. This is important because to claim the ability
to recognize members of a class, the model should be able to recognize all possible variants of that
class.
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1.2.3 STATES

We propose that:

• A state reflects the current values of an object’s changing-properties.
• Values for certain states have the ability to alter how objects change their properties over

time. For example, when one’s energy level is low, they may be less inclined to go for a
run.

In order to say that the model has effectively learned to recognize and understand the effect of an
object’s state, predicted futures should display object transformations that discretely and correctly
obey the effect of these object states.

1.2.4 ASSOCIATED BEHAVIORS

We propose that:

• A behavior refers to the manner in which changing-properties adjust over time.
• A behavior can be dependent on an object- or world-state.
• A certain behavior can be specific to and/or associated with a particular object class. For

example, among 2D shape classes, only the circle rolls with a constant centroid height.

In order to say that the model has effectively learned to recognize, understand, and associate
behaviors to particular objects and classes, predicted futures should display the correct behaviors
considering the presented object and/or class.

1.2.5 GENERAL CONSTRAINT - NO TIME HISTORY

Finally, we propose that in order to truly demonstrate recognition and prediction for objects,
classes, states, and associated behaviors, predictions should be formed without the assistance of
time-history. This means that from a single view of the scene, the video-prediction model should be
able to predict the deterministic aspects of the next frame. This additional constraint is what allows
us to separate true OCSBA-oriented predictions from simple appearance and motion modeling of
seen motion history, in which it is not clear if predictions are only “smearing pixels” based on how
they have been moving in the last few frames, or if predictions are also accounting for the perceived
objects, classes, states, and associated behaviors.

Having defined success criteria in Section 1.2 that allow claim of OCSBA-RL, a set of requirements
for the design of a dataset were drafted (See Section 3.1). Following these requirements resulted
in a set of synthetic videos that allow for proof-by-demonstration of the claim of OCSBA-RL (see
Figure 1 for a visualization). This means that the videos are designed such that successful next-
frame prediction explicitly hinges on an effective understanding of all aspects of OCSBA-RL. This
effective understanding of the aspects of OCSBA-RL is developed within the internal weights of
PredNet as it watches videos containing visual examples of the environmental regularities we intend
for it to perceive and learn to predict. Without this developed effective understanding, the model
would be unable to predict accurately what will occur in the next frame. For reference, we will refer
to this dataset as the Simple Shape Motion OCSBA-RL Dataset, or the SSM dataset for short.

Equipped with this new SSM dataset, which serves as a tool to allow proof of OCSBA-RL, we eval-
uate PredNet on the test videos and find that PredNet is able to successfully pass the tests. The result
of this effort, then, is the conclusion that PredNet is capable of performing structure learning of
objects, classes, and class-specific behaviors, including those conditioned on both object and
world states, at a rudimentary level. Following successful test completion, we perform a series
of model investigations and ablation studies in order to understand the representations being formed
when the model makes a prediction, and to seek evidence for symbolic learning. These investigations
and ablation studies allow us to conclude that no single element or feature map in the hierarchical
representations explicitly indicate either the class being recognized or the associated behaviors to
be predicted. Nevertheless, due to the explicitly discrete predictions formed upon perception of a
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scene for object, class, state, and futures dependent on class-specific behaviors, we hypothesize that
PredNet performs semi-symbolic learning. This implies that subsets of model neurons are activating
to form distributed representations that indicate proper recognition and prediction of existing scene
elements, instead of only single neurons activating to indicate the presence of an object-class, the
proper behavioral transformation to apply, etc.

1.3 MOTIVATION

Finally, one might ask, “So what?” Well, a trend is noticed in the deep-learning community to
progressively hyper-specialize into narrower and narrower tasks. Consider former research goals of
action recognition now being divided into action detection, action localization, action segmentation,
and actionness ranking (Xu et al., 2015). An alternative approach is to focus on ever more general
and capable representation learning and continual world model development followed by querying
for data required for the specific task at hand; “model and query”. Machine learning models such as
PredNet process observations into useful representations that can be queried for reliable estimates
about the world it has observed (Lotter et al., 2017). This is what predictive coding suggests for
human brain sensory processing, too, namely that our minds develop an exquisite world model by
means of prediction-error minimization, and that querying based on the demands of the situations
we find ourselves in occurs automatically, or through conscious deliberation. By extension, then,
further development of model-and-query algorithms like PredNet could play a key role in advancing
towards AI systems with human-like cognitive abilities.

1.4 RESEARCH CONTRIBUTIONS

This paper makes the following contributions:

1. We identify, justify, and fill an existing gap for datasets testing for OCSBA-RL in unsuper-
vised video-prediction algorithms.

2. We conclude that well-known video-prediction algorithm, PredNet, is capable of perform-
ing structure learning of objects, classes, and class-specific behaviors, including those con-
ditioned on both object state and world state, at a rudimentary level, as evidenced by suc-
cessfully passing a set of video-prediction tasks designed to test for exactly that.

3. We provide further evidence in support of predictive coding as a realistic neuroscientific
postulate for the high-level functioning of the human brain capable of recognizing, learning,
and predicting environmental regularities from visual data alone.

1.5 PAPER ORGANIZATION

The remainder of the paper is organized as follows. In Section 2, we review existing work that learn
models related to OCSBA-RL, and the datasets used in these works. In Section 3, we discuss the
justification and creation of the SSM dataset that we test on in order to prove claim of OCSBA-
RL. In Section 4, we examine the experiments carried out, specifically PredNet’s performance on
our newly created dataset. In Section 5, we discuss several points including the justification of
proof of claim of OSCBA-RL for PredNet by demonstration of successful results on our newly
created dataset, further evidence in support of predictive coding, and the most-likely best next-
steps for model improvement. In Section 6, we reiterate the findings presented in this paper and
conclude. In the Appendix, in Section A.1, we review the model investigations undertaken to better
understand the functioning of PredNet over the SSM dataset. In Section A.2 we review the ablation
study performed to identify the key architectural components of PredNet required for the successful
performance demonstrated by the baseline model. In Section A.3, we discuss possible future work.
Finally, in Section A.4 we review a number of architectural modifications that we feel may offer
PredNet some performance gains.

2 RELATED WORK

In our search for existing work proving claim of OCSBA-RL, we encountered many datasets and
learning tasks that at first glance appear to be requiring similar learning to occur. These include
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Moving-MNIST (Kosiorek et al., 2018) (Jaques et al., 2020) (Hsieh et al., 2018), 2D dSprites (Hig-
gins et al., 2017), the three-body physics problem (Jaques et al., 2020) (Kipf et al., 2020) (Ehrhardt
et al., 2019), 2D bouncing balls with occlusions (Lin et al., 2020) and without (Hsieh et al., 2018)
(van Steenkiste et al., 2018) (Lotter et al., 2016), physics learning for primitive 3D shapes (Lin et al.,
2020), prediction for 2D object-based narrative tasks (Kumar et al., 2019), novel viewpoint estima-
tion in stationary (Eslami et al., 2018) (Kumar et al., 2019) (Nanbo et al., 2020) (Nanbo et al., 2021)
(Yan et al., 2023) and moving 3D scenes (Singh et al., 2019) (Chen et al., 2021), scene decompo-
sition of static 2D and 3D scenes (Burgess et al., 2019) (Emami et al., 2021) (Eslami et al., 2016),
planning and prediction in multi-agent vehicle intersection and infantry combat (Sukhbaatar et al.,
2016) and basketball scenes (Minderer et al., 2019), prediction for Atari games (Xu et al., 2019)
(Kipf et al., 2020) (van Steenkiste et al., 2018), structure modeling of action-conditioned interacting
2D and 3D shape objects (Kipf et al., 2020) (Watters et al., 2019), prediction for single agents with
many behaviors, for example robotic arm motions (Finn et al., 2016) and single humans performing
various actions (Minderer et al., 2019), class-based real-world action recognition (Xu et al., 2015),
and pedestrian intention prediction considering only past trajectory and current position (Hoy et al.,
2018) or also considering estimated pedestrian age and gender for a more class-based approach (Ma
et al., 2017). These more novel dataset tasks stand in addition to a wide body of synthetic and
real-world video prediction datasets that offer annotations for a number of downstream tasks such
as next-frame prediction, segmentation forecasting, gaze prediction, trajectory prediction, activity
recognition, video sentiment analysis, occupancy grid-map prediction (Rasouli, 2020), and video
object segmentation and tracking (Gao et al., 2023) (Yao et al., 2020).

Certainly, the goals between these dataset tasks and ours have similarities, but for various reasons
the complete set comprising OCSBA-RL does not appear to come together prior to this work. To
demonstrate this, we would like to present a closer look at a few learning tasks that come close to
what we attempt to accomplish in proving claim of OCSBA-RL. These include learning and predic-
tion for the 2D object-based narrative tasks (Kumar et al., 2019), Section 2.1, structure modeling of
action-conditioned interacting 2D and 3D shape objects (Kipf et al., 2020), Section 2.2, and class-
based video action recognition via the A2D dataset (Xu et al., 2015), Section 2.3.

2.1 NARRATIVE TASKS - TRAVELING SALES PERSON

Figure 2: The Traveling Sales Person (TSP) narrative task dataset is an example of a dataset that
meets some but not all requirements in order to test for OCSBA-RL. In this dataset, one shape (in
this case the green square) sequentially moves towards and visits the other four shapes in some
stochastic order. (Text and image reproduced with edits from Kumar et al. (2019)).

See Figure 2 for a dataset description. It depends on how we interpret the narrative test, i.e. whether
there is a single object/class comprised of five shapes and a single, group behavior, or if there
are five shapes belonging to two classes, agents and locations, where locations have no behavior,
and agents have TSP behavior, or if there is just a single object/class, the agent, in a cluttered
environment with locations to visit. However, taking the last case as the most reasonable, the Authors
demonstrate that their model can identify a scene element as being an isolated object pertaining to
a class (agent) and exhibiting a complicated (TSP) behavior. Successfully predicted behavior is
demonstrated occasionally per the published results. We do, however, see the model struggle to
capture the green square’s true shape perfectly, a similar issue with our results, discussed further in
Section 5. This differs from our work because there is arguably only one class-behavior association
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being made, and thus no object-class distinctions need be performed and only one object’s behavior
is predicted in time.

2.2 OBJECT-ACTION STRUCTURE MODELING

Figure 3: The two grid world environments shown here are other examples of datasets that meet
some but not all requirements in order to test for OCSBA-RL. These two grid world environments
(2D shapes and 3D blocks) involve multiple interacting objects that can be manipulated indepen-
dently by an agent. (Text and image reproduced with edits from Kipf et al. (2020)).

See Figure 3 for a dataset visualization. These two tasks ask a model, serving as an agent with the
ability to apply actions to objects to move them, to predict what future state the objects will be in if
it applies a given action. This dataset has similarities in that the model must learn to recognize and
isolate objects in the scene from raw image data, and learn to predict behaviors for those objects,
but the dataset differs in that there is only a single object class and action-conditioning labels are
required for accurate predictions thus violating the unsupervised requirement. For these reasons, the
dataset was deemed ill-suited for proof-by-demonstration for OCSBA-RL.

2.3 CLASS-BASED VIDEO ACTION RECOGNITION

Figure 4: The actor-action dataset (A2D) is a third example of a dataset that meets some but not
all of the requirements in order to test for OCSBA-RL. The image shows examples of single actor-
action instances as well as multiple actors doing different actions in the actor-action dataset. (Text
and image reproduced with edits from Xu et al. (2015)).

The A2D dataset (shown in Figure 4) consists of 3782 videos from YouTube with both pixel-level
actors, classes, and actions labelled in each video (Xu et al., 2015). This dataset, then, offers models
a chance to demonstrate learning of class-specific behaviors. For example, ball- and car-type classes
can both “jump”, but in very different manners. A “ball jumping” scene shows a ball bouncing off
the ground, while a “car jumping” scene shows a car with hydraulic lifts.

Certainly on paper, we could see this dataset as satisfying the object-class-behavior association
requirements. However, because we would like the model to predict behavior in an unsupervised
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manner, and without time-history, in order to demonstrate semi-symbolic class-specific behavioral
association, as opposed to pixel-wise appearance and motion modeling, the specific behavior that
the class will perform should be accurately predictable from a single still frame. However, given a
ball on the ground in one frame, we cannot say if in the next frame it is rolling away, or bouncing
upwards. A future work could allow a few frames with poor prediction quality while the model
identifies the action being performed, and then snap into much more certain predictions to possibly
still prove OCSBA-RL. In the end, the dataset meets some of the requirements but offers more
complexity than is desired for a simple proof-by-demonstration video dataset.

3 METHODS

In this section we will detail the requirements for a dataset that attempts proof-by-demonstration
of object, class, state, and behavior association representation-learning (OCSBA-RL) and futures
prediction within a structured environment (aka rudimentary world-structure learning) for unsuper-
vised video-prediction algorithms. We will then justify why each requirement is necessary. Finally,
we will describe the SSM dataset we have created in order to satisfy these requirements and allow
proof-of-claim for OCSBA-RL in PredNet.

3.1 DATASET REQUIREMENTS

We establish the following as a minimum set of requirements for a video dataset to meet in order
to properly test for object, class, state, and behavior association representation learning and futures
prediction within a structured environment for unsupervised video-prediction algorithms:

1. There should be multiple object classes. This requirement allows the model to prove it
can associate specific behaviors with specific object classes.

2. Class-membership should be visually discernible from a single timestep (no labels).
This is required to isolate class-specific futures predictions as separate from appearance
and motion modeling based on time-history.

3. Class-membership should be general (there are all sorts of cars). This is required to
be sure that class recognition occurs for any representative of the class. Arguably this is
a nice-to-have - we can define classes to be more specific (e.g. we could consider only
red crosses and white ellipses of constant size, rotation, and position) but a human under-
standing of classes represents multiple possible variants that qualify as class members. We
consider cars to be a class, and a Honda Civic to be a class-member of cars. We could also
consider Honda Civics to be a smaller class, and Honda Civics with VIN# 123123123 to
be a smaller class, still, with a single member. Keeping in the spirit of a class containing
many such variants, however, we choose to enforce this requirement that class-membership
be generalized for many such parameters (color, size, rotation, edge thickness, etc) while
requiring a distinct feature subset to be present for each class member.

4. Class-membership recognition should be robust to occlusions. It is an well-known
human ability to recognize classes subject to partial occlusion, e.g. when a car is half-
occluded by a building, we still recognize it as a car. This requirement ensures that no
single portion of the class-specific features are being relied upon for recognition. We can
recognize an elephant by its trunk, by the texture and color of its skin, by its enormous feet,
by the location where it seeks water, etc.

5. Class-specific behaviors should be unique and consistent. We aim to show association
of behaviors to specific classes, and thus we avoid ambiguity for a simplest-case baseline
test. We offer class- and world-conditioned class-specific behaviors as a step towards more-
complicated and less-consistent class-specific behaviors.

6. Behaviors should be visually discernible. This is necessary for an unsupervised video-
prediction algorithm to identify the behaviors.

7. Behaviors should be simple. By finding the simplest demonstrations that prove the claim,
we aim to ensure that some models tested on the dataset succeed.
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8. Behaviors should be visually distinct. This requirement is critical for performance assess-
ment. When the model makes a prediction for how the perceived class-object will behave,
evaluation should be obvious and binary; right or wrong.

9. World structure should be visually distinct from object structure (unique textures or
distinct borders). We are looking for simplest-case tests that prove the claim. In a 2D
image without depth cues, overlapping shapes of the same texture without distinct borders
would be a more difficult task. Considering real-world object textures are often very distinct
from their surroundings, this is a reasonable requirement.

10. World structure should include visual occlusions. This requirement positions the model
to use a class-based understanding to in-fill occluded parts of the object, and to perform
figure-ground organization between object and world in order to further demonstrate the
model effectively understands which parts of the image belong to the object and which
belong to the world structure.

11. Video-prediction and object-class-behavior recognition and association should be
qualitatively clear and/or quantitatively measurable. The proof-by-demonstration re-
sults should be unambiguous, with distinct correct and incorrect predictions, where correct
predictions explicitly rely on the correct object-class-behavior associations. Where feasible
and necessary, quantitative metrics should be provided assessing performance and further
justifying a successful prediction.

3.2 DATASET CREATION

Here we will discuss the design of our video SSM dataset that meets our dataset requirements in
order to allow proof-by-demonstration of OCSBA-RL in PredNet. We will discuss the animation
software used to produce the videos and the specific tasks encoded into the videos that allow testing
for OCSBA-RL.

All of the animated task videos were produced using the Processing programming language (Pro).
Separate scripts were prepared to produce each animation. The language allowed manipulation of
all parameters as dictated by the dataset requirements. Every animated task video was produced in
50 x 50 pixel resolution with three RGB color channels.

Each task video positions a video-prediction algorithm such as PredNet to predict the next frame.
The task videos portray animations consisting of a world consisting of a solid-color background,
fixed occlusions, and objects. The objects belong to one of two shape-classes; either an ellipse or a
cross shape. Each class has a unique class-specific behavior; a motion. Specifically, crosses always
move at a constant speed towards the bottom side of the image, while ellipses always move at the
same constant speed as crosses, but to the right side of the image. For task videos 1 and 2, instances
of each class have various parameters set randomly. These parameters include color, size, aspect
ratio, rotation, and position, where position refers to a fixed positional coordinate for each class
(x-pos for crosses moving downwards, y-pos for ellipses moving to the right, in a typical Cartesian-
coordinate system). Thus, a member of each class is recognized due to its shape characteristics
alone, and there are an arbitrary number of different instances of each class, generalized by these
parameters. For task videos 3 and 4, in order to allow object color to indicate object state and
for simplicity, only the parameters other than color were set randomly. Finally, generalization of
class membership is shown further by training and testing the model on instances of different sizes
and aspect ratios. More specifically, generalization interpolation and extrapolation were performed
for testing. This means that when the animations were generated, the size and aspect ratios were
randomly sampled from two ranges, each with an internal gap range blocked out. See Figure 5 for a
visualization. Training shapes were sampled outside of this gap, while testing shapes were sampled
only within this gap (interpolation), or beyond the ranges (extrapolation). Therefore, the model is
shown to recognize and predict behavior for novel class instances at test time.

There are four task videos, altogether, as described in the next sections.

3.2.1 SINGLE INSTANCE PREDICTION

This task video displays animations of shapes moving across the screen per the class-specific mo-
tions. Only one shape is visible on the screen at any time. The fixed coordinate for each class is
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Figure 5: Generalized Train and Test Size and Aspect Ratios

randomly sampled within the ranges (width*[0.1, 0.9], height*[0,1, 0,9]) for (cross, ellipse), respec-
tively. A series of bars form occlusions that cover portions of the shapes as they pass by. During
training, animations are shown for both class types, and the model is asked to predict the position
and occlusion of the presented shape in the next frame. Successful prediction relies crucially on
learning the two classes, the two behaviors, and the associations between class and behavior. At
prediction time, the model must recognize the shape-class, isolate the portions of the image that
belong to the shape-object and those that belong to the world, apply the proper class-specific motion
to the isolated shape-object, and fill in the world over and around the object.

3.2.2 MULTIPLE INSTANCES PREDICTION

This task video is identical to the Single Instance prediction case, except that there are up to two
shapes visible on the screen at one time. Succeeding in this task provides further evidence that the
model really knows which aspects of the scene constitute each object. In the single instance case,
there is concern that the background, with the object, together are shifted down or to the right, but
in this case, we see the objects correctly predicted to move in different directions.

3.2.3 CLASS STATE CONDITIONAL PREDICTION

This task video displays animations of shapes moving across the screen per the class-specific mo-
tions, conditioned on the “state” of the presented class-instance. The state of the class-instance is
designated through shape color. Each class-instance is either red (#FF0000) or black (#000000)
during all portions of the animations, and thus color is not randomly selected for each class-instance
as in the previous two task videos. When the class-instance state is red, the object will show move-
ment in the next frame, and when the state is black, the object will not show motion in the next
frame. Thus, the model is asked to predict the position of the presented shape in the next frame,
and successful prediction relies on the model having learned the association between class-state and
subsequent motion, in addition to the associations between class and class-specific motion.

3.2.4 WORLD STATE CONDITIONAL PREDICTION

Similar to Class-Conditional Prediction, this task video displays animations of shapes moving across
the screen per the class-specific motions, conditioned on a “state”, but this time it regards the state of
the world. This time, all shapes are a constant black (#000000). World state is indicated by a cross
pattern of squares that switch from red (#FF0000) to green (#00FF00). When the world state is red,
the presented shapes will not show motion in the next frame, but when the world state is green, the
presented shapes will show motion in the next frame. Thus, the model is asked to predict the position
of the presented shape in the next frame, and successful prediction relies on the model having learned
the association between the world-state and subsequent motion of the presented class-instance, in
addition to the associations between class and class-specific motion.
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Name # of Layers # of Output Channels per Layer # of Time-Steps Layer Weights
Baseline 4 [3, 48, 96, 192] 10 [1, 0.1, 0.1, 0.1]

Table 1: PredNet Model Details

4 EXPERIMENTS

In this section we will describe and visualize the experiments performed, document the results ob-
tained, and detail any conclusions that can be drawn with reasonable certainty.

4.1 MODEL SETUP

We implemented the Baseline PredNet (with Lall layer weighting) in Keras 3 per specifications
given by Lotter et al. (2017). See their paper for a description of the model and Figure 6 for an
overview visualization. Model details are provided in Table 1. The code is publicly available at
https://github.com/ofSingularMind/parallel_prednet.

Figure 6: PredNet Architecture (Reproduced from Lotter et al. (2017))

4.2 EXPERIMENTAL SETUP AND TRAINING

For each of the four tasks, training videos comprised of 80k images were produced via the Processing
animation language. PredNet is then trained via next-frame prediction-error minimization. One
important note is that PredNet struggled to predict the objects and occlusions in the task videos,
over the white background, without assistance. To provide this assistance, the first 40k images (1st
stage) were produced with a random RGB colored background, by pixel, and occlusions, by shape.
The colors shifted each frame. See Figure 7 for an example. Following these first 40k images,
PredNet then completed training on the white background and grey occlusions images (2nd stage).

Figure 7: Random RGB Background and Occlusions Used During 1st-Stage Training

4.3 EVALUATION

After the model has been trained on the videos pertaining to each task, with the training shape sizes
and aspect ratios, the model is then evaluated on videos from the SSM testing datasets, with testing
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shape sizes and aspect ratios, as discussed in Section 3.2. There are two testing regimes, one for a
qualitative performance analysis, and one for a quantitative performance analysis.

The qualitative performance analysis involves preparing a testing video dataset for each task, and
presenting the trained PredNet model with a starting frame in the video, and asking PredNet to
predict the next frame. Qualitative performance is deemed good and passing if the next-frame pre-
dictions from the starting frame display the correct object and its properties (color, shape, border
width, size, aspect ratio), and if they display a transformation of the object presented in the starting
frame, according to the object’s class-specific behavior (crosses move down while ellipses move to
the right). If the predictions display ambiguity about where the object will be in the next frame,
or how it will look (aside from minor rendering quality variances), then the task is failed. After
each presented starting frame, model tensor activations are reset. This erases any time-history in the
model’s ConvLSTM, requiring the model to decide predictions based on the presented shape in the
single frame alone.

The quantitative performance analysis involves preparing a testing video dataset with 1000 image
pairs for each task. At test time, we present the first image in the pair to a trained PredNet model
and ask it to produce a prediction for the next frame. We then quantitatively compare the ground-
truth and predicted next frames by calculating mean-squared-error (MSE) between the frames. Each
image pair shows the same shape(s) in the two frames, but in the second frame, the shapes have
moved per the dataset task design (crosses down, ellipses to the right, respecting the object and
world states). By designing the test this way, we remove unpredictability between the first and
second frame. If we instead tested on a raw animation video dataset like we trained on, there would
be a number of frames where shapes randomly pop into the scene. Then, when calculating the MSE,
we would be accumulating error due to the model’s inability to predict these shapes popping in.
We instead only want to accumulate error for the predictable changes between frames, and thus we
construct our test to evaluate the model on controlled image pairs.

For Tasks 3 and 4, there is additional unpredictability related to the state transitions that needs to
be removed. For Task 3, the object’s color, indicating object state, will change randomly from
one frame to the next. We remove this unpredictability by applying post-processing to both the
ground-truth and predicted frames. This post-processing adjusts each frame to a binary black and
white, where black is applied wherever the ground-truth and predicted frames display an object
or prediction artifact (technically any non-white pixel becomes black). This effectively sets the
quantitative analysis here to look only at object shape and pose prediction error, while the rendering
quality of the shape interior and shape border are ignored. Similarly, for Task 4, the world-state
indicators (the five red/green squares) will randomly change from red to green or from green to
red, from one frame to another. In this case, to remove the unpredictable element from the MSE
calculations, both the ground-truth and predicted frames are post-processed to set the world-state
indicators to a shared solid color (we used blue). This allows the MSE to focus only on the predicted
shape properties and pose.

4.4 RESULTS

Here we present the results of the four trained baseline PredNet models against the qualitative and
quantitative tasks described in the preceding section. The qualitative results are presented first in
Section 4.4.1, while the quantitative results are next, in Section 4.4.2.

4.4.1 QUALITATIVE RESULTS

See Figures 8 through 15 for the qualitative results for PredNet on the SSM Dataset, and Section 4.3
for a description of the test methods.

4.4.2 QUANTITATIVE RESULTS

See Table 2 for the quantitative results for PredNet on the SSM Dataset, and Section 4.3 for a
description of the test methods.
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Figure 8: Qualitative Results for Task 1 - Sin-
gle Shape Prediction, Example 1: Success.

Figure 9: Qualitative Results for Task 1 - Sin-
gle Shape Prediction, Example 2: Success.

Figure 10: Qualitative Results for Task 2 -
Multiple Shape Prediction, Example 1: Suc-
cess.

Figure 11: Qualitative Results for Task 2 -
Multiple Shape Prediction, Example 2: Suc-
cess.

Figure 12: Qualitative Results for Task 3 -
Class-State Conditional Prediction, Example
1: Success.

Figure 13: Qualitative Results for Task 3 -
Class-State Conditional Prediction, Example
2: Success.

Prediction Source Task 1 Task 2 Task 3 Task 4
Previous-Frame as Prediction (MSE) 0.06487 0.10255 0.06345 0.05006
Baseline PredNet Prediction (MSE) 0.00519 0.02325 0.00549 0.00502

(PredNet Improvement over Previous-Frame Prediction) 92.00% 77.33% 91.35% 89.97%

Table 2: Quantitative Results by PredNet on the SSM Dataset
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Figure 14: Qualitative Results for Task 4 -
World-State Conditional Prediction, Exam-
ple 1: Success.

Figure 15: Qualitative Results for Task 4 -
World-State Conditional Prediction, Exam-
ple 2: Success.

5 DISCUSSION

5.1 PROOF OF CLAIM OF OCSBA-RL IN PREDNET

We conclude that PredNet is capable of performing structure learning of objects, classes, and class-
specific behaviors, including those conditioned on both class state and world state, at a rudimentary
level. This is evidenced by successful performance on a set of “proof-by-demonstration” video-
prediction tasks in the SSM dataset. Through performance on these task videos, we see that PredNet
learns to predict the class-specific behavior of distinct, randomly arranged, and partially occluded
class-instance objects. Performance on these task videos is qualitatively evaluated per the success
criteria outlined in Section 1.2, summarized below:

• The model should perform figure-ground organization to isolate perceived objects from the
rest of the scene.

• The model should perform reasonable generative modeling to in-fill previously-occluded
and unseen portions of the perceived objects.

• The model should produce next-frame predictions that correctly update any general and
class-specific changing-properties.

• The model should recognize in-domain class members and generalize to a reasonable do-
main extension.

• The model should produce predicted futures that obey the effect of perceived object- and
world-states.

• The model should apply behavioral transformations according to the classes of perceived
objects.

• The model should produce predictions without the aid of recent time-histories.

5.2 FURTHER EVIDENCE FOR PREDICTIVE CODING

Neuroscience offers a compelling theory in predictive coding for how the human mind learns about
objects, classes, their properties and states, and associates behaviors to specific classes. By success-
fully evaluating a machine learning algorithm based on this theory against these human abilities, we
claim further support for this theory.

5.3 AREAS WHERE PREDNET STRUGGLES

Despite the impressive performance seen from PredNet in demonstration through the SSM dataset
tasks, there are a couple of areas noted where PredNet struggles to demonstrate a complete un-
derstanding of the attributes of OCSBA-RL. These include (1) generating estimates for previously
occluded portions of objects, both in in the single- and multiple-shape tasks, and (2) disambiguation
when shapes overlap in the multiple-shape task, Task 2.

In the first area where PredNet struggles, despite a rather high number of examples of the cross and
ellipse shapes which should enable estimation of true shape form for previously occluded portions
of shapes, PredNet tends to in-fill estimates that are somewhat imprecise. In Figure 16, we can
see how the green ellipse is predicted to move in the correct manner, but the black border is not
well-rendered. This may be due to the fact that actually, due to the low image resolution, there is
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Figure 16: Infill Difficulty Example #1 Figure 17: Infill Difficulty Example #2

a number of ellipse shapes greater than one that could appear as shown in the first time-step in the
first row. Then, if this is true, PredNet is properly modelling uncertainty by making the predicted
border a bit blurry. This is in-line with how the MSE loss function that PredNet utilizes operates.
Namely, the mean of all possible outcomes (or shapes) often serves as the best estimate under MSE,
as it minimizes the sum of squared deviations from all those outcomes (Oprea et al., 2022). Finally,
then, training on higher resolution images may allow PredNet to disambiguate better what the true
form of the shape is as there all fewer possible fitting shapes. On the other hand, in Figure 17, we
can see an example that should have no ambiguity about the proper form and position of the lower
border of the horizontal arm of the cross. In the first frame, we can see sufficiently the two edges that
meet to form the lower right-hand corner of the horizontal arm. This provides the information about
how to draw this lower edge of the horizontal arm, but PredNet does not form a perfect prediction.
Additionally, the bottom-most edge of the vertical arm is seen in both the first and second frames,
but PredNet does not draw properly this known edge.

Figure 18: Shape-Overlap Difficulty Exam-
ple #1

Figure 19: Shape-Overlap Difficulty Exam-
ple #2

In the second area where PredNet struggles, overlapping shapes, especially of similar colors, are
difficult for PredNet. It demonstrates a difficulty in determining which lines in the image belong
to which shape, which leads to poor shape rendering, although the predicted motions are generally
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correct. In Figure 18, we see that the ellipse and cross have been moved to the correct locations, but
that the previously overlapping areas show quite poor segmented shape-rendering. In the next frame,
with some accumulated time-history and with the shapes no longer overlapping, we see the model
again accurately predicting form and position. In Figure 19, the overlap and subsequent rendering-
quality reduction are more severe. For the regions of the shapes furthest from the region of overlap,
the predictions for form and position are decent, but for the region of previous overlap, we see the
shape of the red ellipse is truncated on the right side, and the left arm of the green cross (which was
previously overlapping) is improperly estimated. Perhaps the largest error made, however, is in the
next frame, where now most of the cross has been revealed. Here, the red ellipse looks okay, but the
top of the vertical arm of the green cross is truncated. In the second frame, we note that this portion
is still overlapping, and so we can explain this error as being a result of that, but the issue is that
never in all of the training data has there been a cross with a shorter vertical arm than the horizontal
arm. This rather embarrassing mistake on behalf of PredNet demonstrates only an incomplete or
fragile representation of the objects and classes it has learned to model. When shapes overlap, this
representation proves insufficient to correctly isolate the shapes every time.

5.4 UTILIZING OBJECT-CENTRIC PROCESSING IN AN ATTEMPT TO IMPROVE PREDNET’S
STRUCTURE LEARNING

In this section, we will review the efforts made to augment PredNet with object-centric processing
capabilities in order to improve PredNet in the areas where it struggles. We will discuss the justifi-
cation for this effort, the design details and their justification, and the results of the effort along with
a discussion about reasons believed to be holding back an implementation like this from offering
more aid to PredNet.

1. Justification for why it was necessary to improve PredNet

2. Introduction to the proposal for improving PredNet in an object-centric manner

3. Justification for why improving PredNet should be done in an object-centric manner

4. Introduction and Justification for the high-level design of Object-Centric PredNet

5. Introduction and Justification for the low-level design of Object-Centric PredNet

6. Discussion of results

7. Discussion of possible reasons why the approach is not out-performing baseline

8. Discussion of the possibility that unrestricted PredNet may be superior

9. Discussion of possible areas for model improvement

5.4.1 JUSTIFICATION FOR WHY IT WAS NECESSARY TO IMPROVE PREDNET

Baseline PredNet showed an excellent ability to associate a behavior with a class object (pick which
direction to go) and to estimate the degree to which to apply the behavior. However, Baseline Pred-
Net showed only an okay ability to predict the exact shape of the object in the next frame and to
predict infilling for previously occluded portions of the object in the next frame. And, lastly, when
two objects overlapped, Baseline PredNet showed a poor ability to disentangle the portions of the
image belonging to each shape, and subsequently, again, to in-fill the previously overlapping por-
tions of each shape. Altogether, these flaws suggest that Baseline PredNet can detect class objects
and associate class behaviors with those objects well, but that Baseline PredNet struggled to re-
member and apply the vast experience with the different, highly-regular shapes that PredNet had
observed. For example, when the corner of a cross shape was occluded in one frame, Baseline Pred-
Net would tend to struggle to infill the pointed corner as it was revealed from the occlusions in the
next frame. This, despite never having seen an un-occluded cross shape with rounded corners. What
we would prefer instead, is to recognize that the partially-occluded shape and the revealed shape in
the next frame are the same object, and have the same shape, despite part of it being covered up.
If PredNet could recognize this, then we would expect better shape in-filling as the object moved
away from the occlusions. Humans tend to *imagine* the unoccluded shape in full, which allows
us to be less surprised when the shape is revealed to have the form we imagined (Bower, 2021).
In summary, we hoped to improve PredNet’s ability to recognize (A) class-object shape-continuity,
(B) the regularities of a object-class’ true form (all crosses have sharp corners, for example), and
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lastly, (C) to apply this knowledge to perform better at the challenging task of forming predictions
for overlapping objects.

5.4.2 INTRODUCTION TO THE PROPOSAL FOR IMPROVING PREDNET IN AN OBJECT-CENTRIC
MANNER

Taking note of the three areas of improvement we are focusing on, we see that each is particularly
focused on the understanding of what it means to be one object class versus another. This leads us to
suggest the high-level strategy of making PredNet more “object-centric”. This means that PredNet
will both learn about and predict for each of the objects individually in the scene, as opposed to
learning about and predicting for the whole scene together. By learning, we mean that attention
within the scene, and to the received prediction-error signals will be focused on individual objects
in the scene, and then, for predicting, we mean that PredNet will be forming predictions for the
individual objects themselves. Then, all the predictions are aggregated into a composite prediction
for the scene as a whole.

5.4.3 JUSTIFICATION FOR WHY IMPROVING PREDNET SHOULD BE DONE IN AN
OBJECT-CENTRIC MANNER

Having detailed the focus of improvement for PredNet, we now justify why moving towards a more
object-centric PredNet was determined to be the best route. We note that humans, including in-
fants, are good at tasks involving perception of shape continuity and object permanence (Pätzold &
Liszkowski, 2020) and that humans selectively attend to the individual objects in a scene (Lindsay,
2020). Then, we hypothesize that recognizing the prediction errors associated with individual ob-
jects may help to lock in the true forms of the object classes. Lastly, we hypothesize that forming
predictions for and receiving error signals for individual objects in the scene will allow PredNet to
better focus on how each object in the scene is behaving, and changing from one frame to the next.

There are other justifications for why one would encourage an object-centric focus for PredNet.
First, as is detailed in Section A.1, model investigations did not reveal specifically where in the
model the learned aspects of specific class objects were being stored. Moving towards a more
object-centric approach, depending on the implementation, may lead to a higher degree of model
explainability. As we will see later on, our proposed implementation sought to make this aspect of
what has been learned about certain class objects, and where it was stored, explicit.

5.4.4 INTRODUCTION AND JUSTIFICATION FOR THE HIGH-LEVEL DESIGN OF
OBJECT-CENTRIC PREDNET

In order to allow PredNet to improve at the mentioned goal abilities, we have suggested we encour-
age PredNet to focus more on, and predict for, the individual objects in the scene. If successful,
then we argue that PredNet is operating in a more object-centric manner. In order to allow PredNet
to focus on and predict for the individual objects in the scene, we suggest the following high-level
modifications. In the next section, we will discuss how each modification is implemented.

1. Scene decomposition - Decompose the scene, which is an image of several overlapping
objects, in general, into several images, one for each object, in which single isolated objects
from the scene are displayed over black backgrounds. From time-step to time-step, keep
track of which objects are in which decomposed frame to ensure that temporal regularities
are being recognized for the same objects over time.

2. Classification - For each decomposed frame displaying only a single object in the scene,
perform a classification task to associate a class label with each frame.

3. Short-term memory - Based on the class label assigned, store in a sliding window short-
term memory, the last two frames observed for each object in the scene.

4. Long-term memory - For each class label, and for each sequential pair of frames, form long
term memories by compressing each two-frame sequence into a low-dimensional vector en-
coding the spatial and temporal properties for an observation of that object class. Maintain
a set of these vector memories as a form of stored knowledge about an object class, formed
through PredNet’s observations of that class.
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Figure 20: High-Level Object-Centric PredNet Implementation - We change the data structure Pred-
Net predicts for from a composite image to a stack of decomposed images, one for each class-object,
and we include learned class-specific object representations as additional inputs.

5. Class-Object representations - At each time-step, and for each class, consolidate the set
of stored long-term memories along with context from the current scene in order to form
a single information structure (tensor) representing what PredNet knows about the object
classes in general, and how this knowledge should be applied to the current scene in order
to inform next-frame predictions for each object in the scene.

6. Decomposed predictions - At each time step, and for each decomposed frame, aligned
based on the specific identity of the objects in the previous frame, form predictions for each
of the decomposed frames, considering the recent past states of the object in the current and
past frames, as well as the context-aware object-class representations provided to PredNet’s
representation units. Predictions take into account the error signals for the other objects in
the scene.

7. Decomposed learning - At each timestep, and for each decomposed frame, make adjust-
ments to model calculation parameters based on the error signals generated for each ob-
ject’s prediction imperfections.

In summary, PredNet should decompose the scene into the individual objects present, identify the
class to which each object belongs, and continuously create short- and long-term memories related
to the observations of each object class. These long-term memories are then used to form a repre-
sentation of how a particular class typically looks and behaves. This class representation is applied
to the current frame context to create a consolidated understanding of each class. This consolidated
representation helps inform PredNet about the likely future states of each class object in the frame,
based on both past observations and the current behavior of the object. PredNet then uses this in-
formation to make predictions for each isolated object in the scene, taking into account the states
of all objects in the scene. Finally, it adjusts model parameters based on the error signals generated
for each object, improving its future predictions for similar objects in the scene. Note that all of
steps 2 through 4 occur within a standalone ObjectRepresentations layer augmented within Pred-
Net’s bottom predictive-coding layer, while step 5 occurs in each predictive-coding layer, creating
object representations individually tailored for that layer’s predictions and error signals. Addition-
ally, steps 6 and 7 only occur in the bottom predictive-coding layer. This is because only the bottom
layer produces representations and predictions concretely aligned on a channel-basis to the scene
elements. The upper layers, having vastly more representation and prediction channels, tend to pro-
duce more abstract representations and predictions that the bottom layer then learns to interpret.
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Step 1 is performed in the dataset loading phase during training and testing. More detail will follow
in the next section.

5.4.5 INTRODUCTION AND JUSTIFICATION FOR THE LOW-LEVEL DESIGN OF
OBJECT-CENTRIC PREDNET

Scene decomposition A large part of the inspiration for the object-centric PredNet and the deci-
sion to decompose the scene into isolated objects was the Deepmind model, MONet Burgess et al.
(2019). This model is able to learn to decompose a scene into a set of textured masks, one for each
object in the scene. An additional benefit was that the textured masks formed would, in some cases,
show proper in-filling for the partially-occluded portions of of the objects; so, each mask displayed
what the object looks like on its own. We felt this would be particularly useful for learning about
the true form of the objects in the scene as they moved behind obstacles. In the end, however, three
flaws prevented the direct use of MONet in our final implementation to improve PredNet. See Figure
22 for a visualization of all three. First, the in-filling only showed up for objects in 3D scenes. This
was true in Deepmind’s published results as well as in our testing of MONet on the SSM dataset.
This flaw, by itself, did not prevent use of MONet. However, in addition to the lack of in-filling, we
observed the two other flaws to be an inconsistency in object-ordering for the created masks, and
imperfections in the created masks. By inconsistent ordering, we mean that, from one time-step to
the next, MONet would assign object A to slot 1, and object B to slot 2. Then, in the next frame,
MONet would sometimes swap the arrangement of objects to slots, for example placing object B in
slot 1, and so on. This is problematic when we consider how PredNet is expected to learn from these
decomposed frames, that is, by use of a convolutional LSTM (ConvLSTM) which expects coherent
sequences of images in order to produce a representation of that sequence. If the sequences fed into
the ConvLSTM are misaligned, sometimes showing object A, and other times showing object B,
then the representations formed would try to represent both objects in the sequence together, which
is not in alignment with our object-centric approach, where we would like to form representations
of sequences of isolated class-objects. Then, by imperfections in the created masks, we mean that
while, in the complete scene, the objects are distinct, and should be able to be unambiguously de-
composed, sometimes MONet would form a pair of textured masks that combined the features of the
two objects. In reality, MONet performed quite well at the isolation task, and only rarely mixed to-
gether the two shapes. Confronted with these three imperfections, we decided that, because MONet
very-nearly did what we required of it, we felt that it would be a reasonable stretch to perform the
scene decomposition (and frame-to-frame object alignment) ourselves, manually, considering the
very simple shape motion dataset. The result of this decision is that PredNet is now augmented with
an artificial ability to decompose a scene into its isolated objects which is representative of where
we feel unsupervised scene decomposition capabilities will be in a couple of months or years. Note
that no manual object in-filling was performed. While MONet did demonstrate this ability, for 3D
objects, due to time constraints, we leave this as future work to further improve PredNet. Finally,
we discuss where the scene decomposition occurs. The intent was to place MONet within the Target
units of the bottom layer for Baseline PredNet. This means that as each new scene frame was ob-
served by PredNet, it would immediately be decomposed into a stack of class-object-sorted images
before passing it on to PredNet for standard processing. Then, as we moved away from MONet,
we decided to perform the scene decomposition directly within the dataset loading sequence. A
dataset dataloader would pull out a batch of sequences of images, then pre-process each image into
a stack of decomposed frames, then align each frame within the stacks according to the class-object
positions within the stacks for the previous frame, ensuring that the top position in each stack, from
time-step to time-step, would display the same object moving around, for example. The images in
each stack were concatenated in the channel dimension, producing an H x W x 12-channel tensor
from the H x W x 3-channel input scene image. These twelve channels (from four 3-channel RGB
images) correspond to the up to four class objects present in the scene at a time, per the SSM dataset.
Those classes include the background, the criss-cross occlusions, and the crosses and ellipses. See
Figure 23 for a visualization.

In summary, while Baseline PredNet would receive a sequence of single images of the scene, Object-
Centric PredNet receives sequences of class-object-aligned stacks of images.

Classification In order to allow storage of class-specific short- and long-term memory, as well
as creations of class-specific object representations, as classification network is used to sort the
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Figure 21: Object-Representations Class Process Flow

observed, decomposed frames as they enter memory. As noted in Section 5.4.4, the classifier is
only present in the bottom layer of PredNet. The classifier was chosen to be a simple custom CNN
composed of a stack of alternating 2D convolutional layers and max-pooling layers, ending with a
pair of dense layers that produce a final set of logits for each frame in a batch of decomposed frames
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Figure 22: Mixed Performance from MONet. The first two frames show MONet decomposing and
aligning the images by class well. The third frame makes a class-alignment mistake, and the fourth
frame makes a quality mistake. In all frames, in-filling is absent.

presented to the classifier. The logits represent a degree of confidence associated with each of the
candidate classes. The logits exit the classifier in raw form, and are converted into a probability
distribution over the four classes during the short-term memory storage stage. Note that we pre-train
the classifier on samples from a dataset similar to the SSM dataset except that during the creation
of this alternate dataset, the colors of the four object classes are locked to four distinct colors.
This allows us to decompose the frames, and assign a class label based on the color of the object,
automatically. See Figure 24 for the architecture details.

In summary, the classifier produces a set of predictions corresponding to the most-likely class for
each decomposed frame in the 12-channel stack, at each time-step.

Short-Term Memory The short-term memory storage stage is simple, and occurs only in the
bottom-layer of PredNet. There are two steps. At each time-step, a batch of 12-channel decomposed-
frame tensors arrives. The order of the images in the stack, however may not align with the clas-
sification class-IDs. So, we take the logits from the classifier associated with this stack of frames,
use softmax(logits * beta), where beta is a large number (e.g. 1e6) to convert it into an approximate
one-hot encoding, and then re-order the images in the stack so that the image classified ’Class 0’ is in
position ’0’ within the stack, the image classified ’Class 1’ is in position ’1’ within the stack, and so
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Figure 23: Dataset Loading Scene Decomposition - Note: The SSM uses crosses instead of triangles
which are only shown for clarity.

Figure 24: Decomposed-Frame Classifier Architecture

on. Next, with this reordered stack of images, we update our short-term memory buffer. This buffer
stores the most recent frames for each class according to a specified hyperparameter, which dictates
the number of frames to retain in each sequence—for example, the last two frames. For simplicity,
if we consider a batch size of one, the buffer maintains the last two frames for each class as a form
of short-term memory. These frames remain uncompressed to preserve the full information content
in the short term.
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There is one consideration to be aware of. Recall that the SSM dataset consists of shapes moving
down and right. In can happen that one or both shapes have moved ’off frame’ and then one or
two of the frames received at the short-term memory storage stage are empty frames. In this case,
the classifier will give consistent but ambiguous logits corresponding to which class is present in
the frame. We handle this by first nullifying the logits associated with empty frames, then apply
a softmax over the class-prediction axis (again with a high beta value to ensure nearly one-hot
predictions) to ’lock-in’ the predictions for the non-empty frames. Finally we add a little positive-
value noise to the nullified logits to make them nearly zero but unequal. Finally, we apply another
softmax, but this time along the image stack axis. The previous softmax identified the most likely
class for images with non-nullified logits. This second softmax along the image-stack direction then
assigns a probability of 1.0 to the as-yet unassigned classes for the empty frames. In the end, this
ensures that each class has one frame assigned to it, with blank frames being randomly assigned to
the classes not actually present in the frame in that time-step.

Long-Term Memory At each time-step, the long-term memory storage step converts the latest
short-term memories into a compressed and structured vector that is memory- and information-
efficient for long-term storage and later usage. Each vector encodes both spatial and temporal prop-
erties of the input short-term memory sequence, on a class-by-class basis. The key to the long-term
memory formation is our custom Sequence-Variational-Autoencoder (sVAE), see Figure 25. A typ-
ical VAE (Kingma & Welling, 2013) is extended by including a convolutional LSTM (ConvLSTM)
at the head of the encoder. This ConvLSTM takes the short-term memory sequence as input, and
outputs a single tensor representing the whole sequence. This output is then fed into a typical condi-
tional VAE encoder (Kingma et al., 2014) comprised of a set of 2D convolutional layers followed by
a dense layer where the class ID of the current sequence is encoded in, and then another dense layer
to produce the final class-specific “sequence latent vector”. This sequence latent vector then repre-
sents a single long-term memory. We then maintain a set of such sequence latent vectors for each
class using a Sequence Latent Maintainer, see Figure 26. This set, then, represents the long-term
memory for what PredNet has observed it to mean to be that class, including spatial and temporal
properties, and over several instances observed. This sequence VAE is trained to encode compressed
and informative sequence latent vectors by pre-training the unit on a sequence reconstruction task
over the SSM dataset. The sequence reconstruction task is performed by also training a decoder
which converts this newly compressed sequence latent vector back into the input sequence, as close
as it can. This process is optimized by minimizing reconstruction error and the KL divergence over
the latent variables. Note that while the short-term memory sequences are of 3-channel RGB images,
these images are converted to binary masks before being passed into the encoder. This is mirrored on
the decoder side, where the decoder produces a matching sequence of binary masks. The intent here
was to ignore color-information and allow better reconstructions from the single channel image.

The rationale for the Sequence-VAE design is as follows. First, a ConvLSTM is designed to trans-
form an input sequence of images into to out sequence of tensors representing the spatiotemporal
features at each timestep (SHI et al., 2015). However, a ConvLSTM can also be used to transform
a continuous sequence of images into a single tensor that represents the whole sequence. This is
performed by processing the sequence and taking only the final output tensor as the sequence repre-
sentation. The specifics of the form out the output tensor from a ConvLSTM will depend on the loss
function used to train it. In this context, because the loss function is connected to the later-decoded
sequence reconstruction loss, the ConvLSTM is simply trained to provide a useful representation
of the sequence for that task. Then, with this useful representation of the sequence in hand, we
use a VAE to compress these sequences into a single, structured object, in this case, a small vector
(dimensionality 32). A VAE compresses high-dimensional inputs into a set of latent dimensions that
tend to display structural properties. This means that, ideally, each element of the compressed-form
vector, or, latent vector, tends to encode a specific aspect or property of the input data. For example,
if the input data is an image of various simulated 3D objects, adjusting just one of the latent vector
elements will tend to adjust, for example, the color or position or shape or size of the 3D object. This
is shown when the latent vectors are decoded back into their source images. Then, when we adjust
single elements of the latent vectors, we can then decode those adjusted vectors and see how the
reconstructed images have changed. For example, adjusting one latent vector element might show
reconstructed images of the same shape, but changing colors. This structural encoding is useful
in our case, because we want to store specific spatiotemporal memories of observed class objects.
Later on, these stored memories can be combined in a number of fashions to produce another vector
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Figure 25: Sequence Variational Autoencoder (sVAE)

that represents all of these spatiotemporal properties as seen over many observations. This combina-
tion of spatiotemporally-encoded latent vectors (sequence latent vectors) we refer to as a meta-latent
vector, as it represents the properties observed for a class object, in general.

At each time-step, we produce a new sequence latent vector for each object class, but we only keep
a limited number of them in long-term memory. We hypothesized that it would be advantageous
to store an “ideal” set of these sequence latent vectors. Several methods were attempted in order
to maintain this set of ideal vectors. We felt that maximizing the diversity among the stored ex-
periences would be a strong approach, attempting to ensure two things. First, it would ensure that
the meta-latent vectors formed from the combination of the set would represent a wide range of
observations from these class objects. Second, it would ensure that, over time, the set of stored
vectors would stabilize to an ideal set. This occurs, because, over time, as we experience more and
more observations of a class object, we tend to eventually have seen all of the various things that
that object tends to do, and all the different forms / appearances / positions that the class object
will appear in. Having seen “all aspects” of the class object, and having picked from all of those
observations, the most diverse set, we then see that new observations tend to be less novel than the
existing experiences, and thus do not overwrite them. As this happens, we argue, then, that we have
“learned what there is to learn” about the class object. Quantifying diversity was approached with a
combined loss metric seeking to maximize the sum of pairwise distances between the stored vectors,
in summation with the total volume spanned by the set of vectors as computed by the determinant
(or log-determinant for numerical stability) of the matrix, G, formed by the matrix multiplication
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Figure 26: Sequence Latent Vector Maintainer

of the tensor of vectors with dimensions (number of stored vectors, vector dimensionality) and the
transpose of this tensor of vectors (Gover & Krikorian, 2010). [volume = logdet(V ∗ V T )]. This
is known as the Gram method, named after Jørgen Pedersen Gram. Unfortunately, however, when
considering an existing, full set of vectors (full in the sense that the desired number of vectors to be
stored in total has been reached) and a new vector (or batch of vectors), we must make a “selection”
from this combined set of candidate vectors. In general, “hard” selection means to pick exact copies
from the combined set, and “soft” selection means to form a new set of vectors as the weighted sum
of vectors from the combined set. We felt that in order to maintain the integrity of the stored set
of vectors, we needed to be performing a hard selection, or at-least, a very close approximation.
In deep-learning, however, this is difficult, and extensive research into the problem did not reveal a
solution. We, however, devised two such methods. In the end, however, due to time constraints, and
numerical stability and/or gradient propagation issues, that may or may not prevent the actual use of
these two methods, we considered two simpler approaches. The first approach requires us to simply
maintain a sliding window of experiences. This means that, as each new frame is fed through Pred-
Net, a new sequence latent vector experience is formed. Then, we update our long-term memory by
removing the oldest experience, and adding in our newest experience. The second approach, instead,
randomly selects sequence latent vectors from the combined set of stored and new vectors. Both of
these approaches have no ability to maximize diversity as discussed, but they do offer simplicity and
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Figure 27: Sequence Variational Autoencoder - Encoder

Figure 28: Sequence Variational Autoencoder - Decoder

computational efficiency. The published results in this paper utilize the random selection approach.
Over the sliding window approach, the random selection approach offers a broader set of long-term
memories which should increase vector diversity. Finally, we store the 20 last such spatiotemporal
sequence latent vector experiences for each class, and we feel certain that, for our dataset, due to
the lack of extreme variability in class object form and behavior, this maintained set is still fairly
representative of the class-object’s properties overall.
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In summary, for each class, 20 randomly-selected stored sequence latent vectors represent our
object-centric long-term memory storage.

Class-Object Representations The class-object representations are then formed from this class-
specific long-term memory storage. Having formed a stored set of sequence latent vector expe-
riences, as just discussed, we want to then combine this set into a single form representing the
class-object’s properties in general; the meta-latent vector. Again, we considered a few options.
One was to pass the flattened set of sequence latent vectors through a series of dense layers to then
produce a single vector of specified size. This may have been a fine approach, but for reasons
explained later, we went with another, third approach. Second, we considered to utilize a second
VAE that would perform further compression of the set of vectors. The VAE would be trained to
reconstruct the original set of latent vectors with a regularized latent space. We found, however,
that reconstruction error remained high despite efforts to make the encoder and decoder units robust
and capable. We hypothesize that, because each of the original sequence latent vectors are of a
compressed, and thus highly information-rich, form, by attempting to perform further compression
(we chose a meta-latent dimensionality only twice that of the original vectors), there is simply too
much loss of information to reconstruct the input set of vectors well. Due to time-constraints, proof
of this hypothesis is left for future work. The third option we considered was the simple average
of the input set of sequence-latent vectors. The rationale here is that, if each element of the input
sequence latent vectors already encodes some aspect of the class object’s form and behavior, then
the average should be the average of these aspects. Consider that the first element controls to a high
degree the x-positional coordinate of the shape, and the second element controls strongly the color
of the shape, and the third element controls strongly the rotation of the shape, and the fourth element
controls the direction of movement from one frame in the sequence to the next frame, and the fifth
the speed, etc., then, for a single class object, averaging this set of vectors will result in a sequence
latent vector representing the average of these properties. So, the average size, average direction of
motion (constant in our dataset, dependent only on the object’s class), average position, etc. Based
on this rationale, we felt that this was a fairly informative means to combine the vectors for later
use. Additionally, similar to the method we chose to select which vectors to store, this method is
parameter-free and computationally-efficient.

Now that we have formed a single meta-latent vector, by taking the average of our long-term mem-
ory set of stored sequence latent vectors, which represents a combined set of spatiotemporal class-
object experiences, we will now discuss how the vector is used in order to assist PredNet in making
informed predictions about the objects it is predicting for. First, we discuss where the output of this
process should go. This tells us what tensor shape we should expect our output to be in. We consid-
ered and tested three options for where in the PredNet processing stream to insert this class-object
specific information. First, we considered to place the output into PredNet’s bottom-layer Represen-
tation unit as additional input alongside the top-down information signal. Second, we considered to
utilize the object representations directly in the Prediction units, as an additional input. Finally, and
this was our chosen implementation, we utilize the first approach, but we form object representations
tailored for the Representation units in each PredNet layer, instead of just the bottom layer. Tailored
in the sense that they have the correct spatial dimensions for that layer.

Taking this final approach of feeding the object representations to the Representation units in each
PredNet layer as our model, we then describe how the consolidated meta-latent vector for each class
is turned into a form usable by these Representation units. We utilize a “class-object representation
(COR) decoder” quite similar to the decoder for the sequence-VAE. There are two differences. First,
the COR decoder takes four inputs: for each class, the decoder takes the meta-latent vector, the
latest sequence latent vector, the latest stored short-term memory frame sequence, and the class ID
encoded as a one-hot vector. The logic is thus; we want to combine the general class knowledge
from the class-specific meta-latent vector with context about what that class object is doing and
looking like right now in the current scene. This context is provided by the latest sequence latent
vector and latest frame sequence. As a first input, the meta-latent vector and the latest sequence
latent vector are concatenated along with the class ID vector. These get expanded into an image-
shaped tensor the same size as the Representation unit in that layer of PredNet. This tensor is then
concatenated with the image sequence, and then convolved into a final class-object representation
tensor combining general class features and local context in order to assist each PredNet layer to
produce informative Representation tensors for subsequent predictions and error-minimization. See
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Figure 29 for details. And second, the COR decoder is trained via PredNet’s overall prediction-error
minimization scheme, instead of being pre-trained.

Figure 29: Class-Object Representation Decoder

In summary, steps 2 through 5 store short-term and long-term class-specific spatio-temporal memo-
ries, and convert these memories into a local-time-contextualized tensor representing what it means
to be that class, right now. These are then passed to each PredNet layer’s Representation units as
additional inputs to inform predictive-coding representation and prediction formation.

Decomposed Predictions and Decomposed Learning So, now that each PredNet layer has been
informed with class-object representations, we now look at the final steps which follow the standard
predictive-coding prediction-error minimization scheme. The only difference now is that the Repre-
sentation units at the bottom layer produce a representation tensor that is expected to be used by the
bottom-layer prediction unit to produce a 12-channel tensor, instead of a 3-channel one. Again, this
12-channel tensor is just the predicted next-frames for the four, distinct class-objects in the frame.
Then, as discussed earlier, our target images are also a 12-channel stack of frames. With these pre-
dictions and targets in hand, we can then calculate prediction error for each class-object, and pass
that back to the representation units, and up the hierarchy, to start the cycle all over again, aiming
to minimize class-specific prediction errors over time. See Figure 20 for an example of training
progress for the Object-Centric PredNet. Note that in the figure, every three rows is structured as
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[Predictions, Targets, Raw Error] for the four class-objects, except for the last two rows, which show
the predicted and target composite frames.

Figure 30: Training Progress for Object-Centric PredNet

In reality, we have to consider how to form the loss function for the decomposed frames. We
have a few options. We could (A) measure error only for the decomposed frames, or (B), measure
error for both the decomposed frames and the composite reconstructed frame, or (C), only measure
error for the composite reconstructed frame. We experimented with all three, and results were
somewhat similar across the board and time did not allow putting a finer point on which loss function
was superior. The final test results published in the next section use option (B) with the following
weighting: total prediction errors = 0.1 * reconstructed frame error + decomposed frame errors

5.4.6 DISCUSSION OF RESULTS

Here we will discuss the results from our Object-Centric PredNet in comparison to the Baseline
PredNet. In short, the object-centric model did not perform as well as the smaller and much-quicker
baseline PredNet model. This was disappointing. It is unclear whether the results are due to an
imperfection in the implementation as described, or due to a fault of logic for how these information
flows are being managed. This is discussed further in the next section. In Figures 31, 32, and 33, we
see the comparative visual performance between the Baseline and Object-Centric models. This test
was performed as a set of 3000 image-pair prediction tasks. Note that the Object-Centric PredNet
utilizes manual scene decomposition, and so the image borders needed to be removed to allow fully
solid-colored objects. And in Table 3, we can see the quantitative comparison for parameter counts
and average prediction MSE as compared to using the previous frames as predictions.

Figure 31: Baseline Results
Figure 32: Object-Centric
Results

Figure 33: Double Baseline
Results
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ID # # of Layers # of Channels # of Parameters Average MSE
PF - - - 0.03456
B 4 3, 48, 96, 192 6,915,948 0.01018

OC 4 3, 48, 96, 192 22,587,873 0.01281
DB 2 3, 96, 192, 384 35,382,804 0.00992

Table 3: PredNet Improvement Evaluation Results: (PF) - Previous Frame as Prediction, (B) -
Baseline PredNet, (OC) - Object-Centric PredNet, (DB) - Double-Channel Counts for Baseline
PredNet

5.4.7 DISCUSSION OF POSSIBLE REASONS WHY THE APPROACH IS NOT OUT-PERFORMING
BASELINE

We feel strongly that the sVAE-encoded sequence latent vectors are an efficient and informative
structure to encode a spatial and temporal observation-memory of a particular object-class over
time. However, upon investigation into the structure of the encoded sequence latent vectors, we see
that evidence for “disentangled” structure is scant. According to Higgins et al. (2017), setting a
hyper-parameter for a constant factor, beta, applied to the KL-divergence loss term can help control
to what degree the latent dimensions are disentangled. We trained our sequence-VAE with a beta
value of 0.25, in order to produce more accurate reconstructions. The authors note that beta values
above 1.0 will tend to encode a more-disentangled latent space, while beta values below 1.0 will
allow the VAE to utilize more of the latent dimensions to encode the various aspects of the input
sequence, potentially leading to over-fitting and inferior latent space disentanglement. In a future
work, we would like to try training with a higher beta value, above 1.0, and possibly also a lower
dimensionality of the latent space, to see if we cannot encourage a more-discrete encoding of the
input sequence characteristics into the latent dimensions. See Figure 34 to see how varying the latent
dimensions independently changes the decoded output sequence. Note that the decoder produces a
pair of images, pertaining to the input sequence, and that these are displayed both between the red
bars. The base vector used to produce the plot is displayed down the middle column. Then, to the
left and right, we see how varying the individual latent dimensions of this base vector somewhat
changes the decoded output sequence. Admittedly, it is not the most informative plot at a glance,
but if we look at latent dimension 20, for example, we see how varying this dimension alone tends
to make the cross thinner or thicker, which is a valid aspect of the input sequences. Curiously,
position and rotation seem completely absent from the plot, which implies that a combination of
latent dimensions work in tandem to control these aspects. Recall that the sequence-VAE operates
over binary masks, and so color is not encoded or decoded.

We feel the random-selection from stored and latest sequence latent vectors approach to maintain-
ing a long-term memory may be non-ideal but perhaps not vastly inferior to an explicit diversity-
maximizing approach. Explicit diversity maximization may be too extreme anyhow, storing se-
quence latent vectors associated with shapes at the edge of the screen, etc. It is left as future-work
to determine the superior method.

We feel that forming our meta-latent vector for class-object representation decoding as the average
of the long-term memory stored sequence latent vectors is a reasonable approach considering the hy-
pothetical consistent encoded structure outputted from variational autoencoders. However, as noted,
the actual structural encoding from our sequence-VAE is rather weak, and so it may be that only
when the sequence latent vector structural encoding is improved that we can then expect average se-
quence latent vectors to be informative. For example, in a weakly-structured, or “entangled”, space,
the latent dimensions will tend to affect multiple aspects of the input sequence simultaneously. When
we then average these sequence latent vectors, we can get unpredictable results because the com-
bined effects of multiple entangled dimensions are not linear or simple to interpret. The averaged
vector may not represent a meaningful “average” of the features but rather a mix of entangled and
possibly conflicting influences, leading to distorted or uninterpretable decoded sequences. This is
noted as a major implementation flaw, possibly being the single issue preventing better-than-baseline
performance.

We also feel that the object-representation decoder is a likely bottleneck in the process. While
the sequence-VAE is pre-trained to produce informative sequence latent vectors, the object-
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Figure 34: Sequence VAE Latent-Space Traversal

representation decoder is only trained via gradients backpropagated from the PredNet predictive-
coding prediction-error-minimization scheme. Through this scheme, we hope that the object-
representation decoder learns to produce informative and contextualized class-object representations
in a format interpretable to the PredNet Represenation units. Had the results from our modified Pred-
Net been superior to baseline, a number of investigations could have been performed to prove that
the object representations were being used and positively contributing to the superior prediction
results. For example, we could look to the weights of the PredNet-layer Representation units’ con-
volutional layer kernels that pull in the information from the passed-in class-object representations.
If these weights are of equal or greater magnitude to the weights applied to the other Representation-
unit inputs, then we could confirm that the class-object representations are contributing to the final
representation tensors for prediction. Additionally, we could have zeroed-out these class-object rep-
resentations at each PredNet-layer, and show degraded performance. Finally, we must note that no
aspect of the input tensors to the Representation units are abstract; the ConvLSTM internal to each
Representation unit is simply a weighted sum of singular 2D convolutional layers applied to the
inputs and previous representation tensors. Then, this tensor passes one more Prediction 2D con-
volutional layer to be transformed into the final prediction images. A 2D convolutional layer has
no means to transform abstract data into an image, rather a 2D convolutional layer act simply as
a filter over the input “image”, regardless of how many input channels there are. All of this is to
say that, the class-object representations formed should essentially be images of the object-classes,
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generalized over long-term observations, and contextualized to the current class object’s form and
position. And so we should be able, at the bottom-layer, to plot the class-object tensors and see that
the representations visually resemble the subsequent predictions made. The results from this final
investigation at shown in Figure 35. Unfortunately, they show only a weak connection to the cross
and ellipse shapes from the SSM dataset the COR decoder was trained on.

5.4.8 DISCUSSION OF THE POSSIBILITY THAT UNRESTRICTED PREDNET MAY BE SUPERIOR

Having noted that the baseline PredNet is out-performing our object-centric PredNet, we would like
to discuss one possible interpretation of this result. The baseline PredNet is largely unconstrained
and general. It applies predictive coding over spatial tensors to produce tensors similar to the incom-
ing tensors. There is little explicit manipulation of information except to connect the hierarchical
layers, and to feed prediction error and the previous representation tensor back into the Represen-
tation unit to enable recurrence and produce the next representation tensor. This general approach
works remarkably well and brings into question that, if improved performance is all we are after,
and we are willing to increase parameter count (our object-centric PredNet has over 3x as many
parameters as the baseline PredNet), then perhaps simply making the baseline PredNet larger is the
correct way to go. Is there some emergent performance expected as we allow PredNet to filter out
more and more information from the error signals (via increasing channel counts), or by allowing
PredNet to form ever more abstract representations of the overall frame sequences (by increasing
layer count)?

This was an interesting question and we ran a test to test the baseline with double channel counts.
We chose not to test increasing the number of layers, because the spatial resolution at the top layer
was already only 8x8 considering our 64x64 input images. So, further layers would be 4x4, 2x2,
and finally 1x1. While this could be interesting, due to time-constraints we only looked at increased
channel count. See Table 3 for the results. As is clear, the baseline PredNet may already be operating
near the limits of performance, at least with respect to our dataset. There is only so much information
to be filtered out of an image with solid-colored 2D shapes, so this seems reasonable. Perhaps with
real-world images, the double-baseline results would show a stronger margin over baseline.

5.4.9 DISCUSSION OF POSSIBLE AREAS FOR MODEL IMPROVEMENT

It would be advantageous to improve the performance of the sequence VAE. During development,
we struggled to implement a sequence VAE that produced quality reconstructions with a disentan-
gled latent space. Possibly the Sequence VAE developed by Zhu et al. (2020), albeit more compli-
cated, would produce better sequence latent vectors.

6 CONCLUSION

This paper and its underlying research aimed to develop a method for testing unsupervised video-
prediction models for human-like abilities. Specifically, it focused on evaluating the models’ ca-
pacity for structure learning related to the perception of objects, classes, and states, the association
of behaviors with specific classes, and the formation of predictions based on these perceptions and
associations.

Despite a thorough literature review of existing datasets and testing methodologies, an existing
means to test for these abilities in an unsupervised manner could not be found. As a result, a
new Simple Shape Motion (SSM) dataset and corresponding set of success criteria was created that
allow an unsupervised video-prediction model to prove by demonstration that it can perform these
abilities.

This general and widely-applicable dataset was then applied to the well-known PredNet model based
on the leading neuroscience theory for how the mind learns structure in the world, called predic-
tive coding. Based on meeting the defined success criteria, we conclude that PredNet is capable
of performing structure learning of objects, classes, and class-specific behaviors, including those
conditioned on both class-state and world-state, at a rudimentary level. This conclusion offers addi-
tional support for the neuroscience theory of predictive coding. In addition to this main conclusion
for PredNet, we also present ablation studies that reveal that both the depth of hierarchy, and the
number of representational filters, contribute significantly to model performance, which serves to
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(a) Object Representation Tensor in Bottom-
Layer, Class 0

(b) Object Representation Tensor in Bottom-
Layer, Class 1

(c) Object Representation Tensor in Bottom-
Layer, Class 2

(d) Object Representation Tensor in Bottom-
Layer, Class 3

Figure 35: Plotting Bottom-Layer Class-Object Representation Tensors
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guide future predictive coding model improvements. We also present model investigations based on
convolutional neural networks that fail to decisively reveal class-specific recognition or behavioral
associations, further justifying the need for proof-by-demonstration tasks via the SSM dataset or
similar.

Lastly, we attempted to improve PredNet by fundamentally changing the data over which it learns to
identify structure in, to include object-centric representations but the results were inferior to baseline.
A major noted implementation flaw may be the single culprit prevent superior performance.
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A APPENDIX

A.1 MODEL INVESTIGATIONS

The following model investigations were performed in order to better understand how PredNet is
forming object, class, and associated class-specific behavior representations. Inspiration for these
model investigations comes from the literature for investigating convolutional neural networks. Each
subsection pertaining to the below list of investigations will introduce the methodology and source.

1. Section A.1.1 - Top-activated channels by mean and STD

2. Section A.1.2 - Top-activated channels by aggregation

3. Section A.1.3 - Predictions per restricted top-down influence

4. Section A.1.4 - Dimensionality reduction for convolutional filter weights

5. Section A.1.5 - Dimensionality reduction for convolutional feature maps

6. Section A.1.6 - Images to maximally-activate convolutional filters via optimization
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A.1.1 TOP-ACTIVATED CHANNELS BY MEAN AND STD

In this investigation, the mean and standard deviation for the global-max-pooled activation for each
representation and prediction channel, in each PredNet layer, are computed over 5000 instances
each of cross and ellipse class-objects presented to the trained model from Task 1, introduced in
Section 3.2.1. The intent was to identify a subset of channels within each layer that primarily
activate for either one or the other class. For example, if only 15 of the 192 channels in the top layer
representation tensor activate strongly for crosses, while a different 15 channels activate strongly
for ellipses then this would indicate a learned, fairly sparse, distributed representation activating
for each class, aka semi-symbolic learning as discussed in the introduction. As shown in Figure
36, at the highest layer, there does appear to be some class-specific channel activations. However,
as shown in Figure 39, forming predictions based on these class-specific channels alone does not
produce images that clearly portray either a cross or an ellipse. As a result, we conclude that while
semi-symbolic learning does occur for class recognition, a number of as-yet unidentified channel
activations shared between classes also play a part in the semi-symbolic activation and predictions
in recognition of a presented object’s class.

Inspiration for this investigation came from both Numenta and their work regarding sparse-
distributed representations for object recognition, (Lewis et al., 2019), and from SUMMIT, where
a similar approach is applied to identify which channels in a layer most activate and represent each
class in a model (Hohman et al., 2019). The approach used by SUMMIT is discussed further in
Section A.1.2 below.

Figure 36: Top 10 Representation and Prediction Conv. Filters by Activation Mean and STD

A.1.2 TOP-ACTIVATED CHANNELS BY AGGREGATION

This investigation is similar to that of Section A.1.1 presented above, however, instead of calculat-
ing the mean and standard deviation of activations for each channel in response to presented cross
and ellipse class-objects, we evaluate the channel influence on class recognition by means of an
aggregated ranking. This aggregated ranking counts the number of times each channel was a top
contributor by activation weight to the total activation response of all channels for each class. We
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considered channels contributing to the top 10% (kM2 = 0.1) as aggregation winners. We refer to
Section 6.1, Aggregation Method 2 in Hohman et al. (2019) for further details. The same 5000 in-
stances of cross and ellipse class-objects each from Section A.1.1 above are presented to the trained
model from Task 1. The resulting aggregation winner counts are displayed in Figure 37. We note
that there is significant class-overlap again between the top channels activating in response to the
two shape-classes. Therefore, in order to show more clearly the difference in channel activations per
class, we also present the aggregation winner count differences in Figure 38.

Figure 37: Aggregation Winners Figure 38: Aggregation Winner Differences

A.1.3 PREDICTIONS PER RESTRICTED TOP-DOWN INFLUENCE

This investigation involved three sub-investigations. First, we wanted to know how the activations
from any single layer influenced the final predicted images. This is shown in the leftmost portion
of Figure 39. Second, we wanted to know how the activations from any restricted subset of upper
layers influenced the final predicted images. This is shown in the middle portion of Figure 39.
Third, we investigate with the same goal as the middle portion of the image, except now we perform
channel filtering on the top-layer channel activations. This means that the top 10 channels per
class were identified from the investigation in Section A.1.1, and then at prediction time, prior to
top-down influence, activations for all channels besides these top channels are reset to zero. The
intent here is to determine if the top-channel-activations in the top layer for a specific class are
sufficient to produce quality predictions. We focused on ellipse-shape activations only. This third
sub-investigation is shown in the rightmost portion of Figure 39.

All results for this investigation are presented in Figure 39. Some explanation of the figure is re-
quired. In each of the three portions of the figure (left, middle, and top), we see paired rows, where
the top and bottom row in each pair displays the average filter activations for the Representation and
Prediction tensors in each layer, respectively. Then, within each row, the four image-squares show
the representation and prediction tensors pertaining to the four PredNet layers, with the bottom layer
on the left, up to the top layer on the right. Thus, in the green boxes, with all layers activated, we see
a sharp prediction for the next frame in the bottom row, leftmost image-square, considering the input
provided in the upper left. Please note that this investigation was carried out on a model trained on
a previous version of the SSM dataset in which ellipses move downwards while crosses move to the
right. Taking this into consideration, we see that the predicted image, then, is correct. Then, for
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Figure 39: Representations and Predictions from Top-Down Influences

each of the three portions of the image, pertaining to the three sub-investigations mentioned above,
the blue boxes indicate which layers are contributing to the lowest-layer’s predictions. For example,
in the leftmost portion of the image, where we see an orange square symbol, the layer 3 tensors
are boxed in blue. This indicates that, after presentation of the input image, the representation and
prediction tensors for all other layers besides layer 3 are cleared, and then top-down predictions are
flowed down from layer 3 to produce the final predicted image. Finally, the faded image-squares
represent upper layers that were reset to zero and not subsequently populated via top-down influence.

From sub-investigation one, we can conclude that the only single-layer influence able to produce
a viable prediction is that from layer 4. This result is indicated by the yellow star symbol. While
the prediction quality is certainly degraded, the prediction does appear to show a pink ellipse in the
correct, downwards position. Considering this layer contains the most representation channels to
activate and pass down as a top-down influence, this result is not altogether surprising. Single-layer
influence from layers 1 and 2, on the other hand, appear to produce predictions that leave the input
largely unchanged, albeit in significantly degraded image quality. Finally, single-layer influence
from layers 3 (orange square symbol) is interesting as it seems to apply behavioral transformations
somewhat between those for crosses and ellipses; the predicted ellipse shape appears stretched both
rightwards and downwards.

From sub-investigation two, we can conclude that resetting activations for lower levels will degrade
prediction image quality, with more degradation seen for the resetting of more lower levels. The
final case, where only layer 4 is left to influence the predicted image, shows to lowest prediction
image quality. We also note that this result is identical to that found in sub-investigation one, and so
the same yellow star symbol is shown.

From sub-investigation three, in the green box, where only layer 4 has been filtered and no other
layers have been reset, we see that predicted image quality has been severely degraded. Not only is
image quality lower, but the discrete behavioral prediction appears to be mixed between downwards
and rightwards motion as discussed above regarding the orange-square-symbol result for top-down
influence only from layer 3. As we then progressively reset the lower layers, moving down the
rightmost portion of the image towards the blue square, we see the prediction concept remain the
same while image quality is further reduced.

In conclusion for this investigation, only the top layer, layer 4, appears to contain sufficient informa-
tion to produce a viable prediction through top-down influence on its own. Based on the single-layer
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influence results for layer 3, we see some ambiguity for which behavioral transformation to apply.
We could speculate that perhaps layer 3 is performing some specialization for behavioral transfor-
mations, but without indication from layer 4, it cannot conclude which transformation to apply.
However, this is quite speculative, and instead, based on the formed representations displayed for
each layer, we conclude more reasonably that each layer is focused on the same goal of representing
and predicting the same scene, albeit from a different perspective. These different perspectives are
inherent to how predictive coding operates. Based on the inputs to each layer, we note that the bot-
tom layer is seeking to model and predict for the ground-truth external reality, while the next layer
up is seeking to model and predict for the prediction-error signal produced by the layer below. We
see that these two input signals, ground-truth reality and prediction-error are fundamentally different
signals in that information has been added (via bottom layer predictions) and removed (by taking
the difference between ground-truth and predictions) to the ground-truth reality signal in order to
form the prediction-error signal for the second layer. This prediction error signal then is a novel
informational perspective describing an interaction between layer 1 and the environment, and so the
second layer is really modeling how the bottom layer is interacting with some inferred environment.
As we traverse the hierarchy up further, the abstraction continues, where layer 3 is now modeling
how layer 2 behaves in response to layer 1 predictions and an unseen environment signal, and so on.
Each of these perspectives, then, are learned to be passed down and interpreted to form an accurate
prediction at the bottom layer.

Inspiration for this investigation came from our own intuition upon reflection of the presence of
some class-specific channel activations as demonstrated in Section A.1.1.

A.1.4 DIMENSIONALITY REDUCTION FOR CONVOLUTIONAL FILTER WEIGHTS

In this investigation, we aimed to perform dimensionality reduction on the convolutional filter
weights to determine if the filters form clusters that can be clearly divided by class recognition. We
utilized Principal Component Analysis (PCA) (Tipping & Bishop) and Uniform Manifold Approx-
imation and Projection (UMAP). (McInnes et al., 2018) to reveal linear and non-linear clustering
relationships, respectively. Using a trained PredNet model, the trained weights within each layer’s
Representation ConvLSTM convolutional filter gates, and within the Prediction convolutional fil-
ters, are gathered and flattened into vectors, one for each filter. A separate dimensionality reducer
is fit to the filter vectors for each layer. Finally, the filter vectors are reduced via this fitted reducer.
The results are shown in Figures 40 and 41 for PCA and UMAP, respectively. As is clearly evident,
the filters, as defined as points in a high-dimensional space over its spatial and channel dimensions,
do not form clear clusters based on the features each filter is specialized to respond to.

Inspiration for this investigation came from our own intuition upon reflection of the desire to de-
termine if the model was producing class-specific specialized filters. Validation of this approach is
found in the literature where Hoyt & Owen (2021) seek to investigate how neural networks separate
classes in the outputs of various layers in popular convolutional neural networks.

A.1.5 DIMENSIONALITY REDUCTION FOR CONVOLUTIONAL FEATURE MAPS

Similar to the dimensionality reduction investigation applied to the convolutional filter weights in
Section A.1.4, in this investigation, we also attempt to reveal class-specific clustering behavior but
this time from within the Representation and Prediction activated feature maps. We also only in-
vestigate the final Representation ConvLSTM output hidden state feature maps, instead of those for
each convolutional gate as in Section A.1.4. These feature maps are produced by presenting 5000
examples each of cross and ellipse shapes to a trained PredNet model, producing a model activa-
tion (feature map) for each example shape. Thus, we are left with 10,000 total feature maps. Each
feature map is a spatial tensor of shape (height x width x channels), where height, width, and
channels vary based on layer number. We then flatten each of these feature maps into a vector and
fit a dimensionality reducer to the combined set of cross and ellipse feature maps. With the trained
reducer, we then separately reduce the cross and ellipse feature maps so that we can color them
differently in the plot and identify any clustering between classes. The result is shown in Figures 42
and 43 for PCA and UMAP, respectively. As the figures clearly show, the reduction from thousands
of features in each map to just two does not produce visible clustering, preventing us from deter-
mining that any subset of convolutional filters in each layer responds more to one class over another.
Potentially t-SNE or use of an autoencoder for dimensionality reduction could be more effective in
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Figure 40: PCA Applied to Conv. Filters Figure 41: UMAP Applied to Conv. Filters

revealing non-linear clustering behavior between activated feature maps based on class, but this is
left as future work.

Here as well, inspiration for this investigation came from our own intuition upon reflection of the
desire to determine if the model was producing class-specific specialized filters, and validation of
the approach is found in Hoyt & Owen (2021).

Figure 42: PCA Applied to Feature Maps Figure 43: UMAP Applied to Feature Maps

A.1.6 IMAGES TO MAXIMALLY-ACTIVATE CONVOLUTIONAL FILTERS VIA OPTIMIZATION

In this investigation we seek to generate images that maximally activate the convolutional filters
within a trained PredNet model. The generated images are formed through gradient ascent over
each filter’s activation magnitude. While we performed this execerise for each Representation and
Prediction convolutional filter, we show only a single set of filters, for Representation ConvLSTM
output filters in Layer 3. These are presented in Figure 44. Unfortunately, the images do not display
any meaningful structures from which to derive explanations for the learned representations. This is
also the case for the filters in the other layers.

Inspiration for this investigation comes from the literature regarding convolutional neural network
interpretability investigations (Zeiler & Fergus, 2013).

A.2 ABLATION STUDY

In this ablation study, several PredNet ablation variants were compared to the baseline PredNet
model to determine which parts of PredNet are crucial for its prediction accuracy. The study in-
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Figure 44: Input Images that Maximally Activate Layer 4 Conv. Filters
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ID # # of Layers # of Channels # R-CLSTM w/ ECA # of Parameters Average MSE
PF - - - - 0.10255
B 4 3, 48, 96, 192 - 6,915,948 0.02325
3 4 3, 48, 96, 192 2 11,673,799 0.03566
4 2 3, 336 - 13,266,348 0.04182
5 4 3, 12, 24, 48 - 435,084 0.05369
6 4 3, 12, 24, 48 3 1,033,398 0.06081
7 1 3 - 1,068 0.09705
8 1 339 - 4,220,892 0.09972

Table 4: Ablation Study Results: (PF) - Previous Frame as Prediction, (B) - Baseline Model

volved running each ablation-variant against the same multi-object quantitative-analysis experiment
as described in Section 4.3. This produces a MSE value for each variant, representing the next-frame
prediction accuracy in a series of single-step predictions.

To define the ablation-variants, we examined altering the number of layers and the number of chan-
nels in each layer. Additionally, per Shi et al. (2022), inspiration was taken to attempt to improve
baseline performance by stacking multiple ConvLSTM units within the Representation layers. The
motivation for this approach is to find patterns of multiple scales within each set of input data (sen-
sory input images for the bottom layer, prediction errors for the layer below for the upper layers).
So, in this approach, while the base ConvLSTM will seek to find patterns in and to model the input
data for that layer, the ConvLSTM units stacked above will attempt to find patterns in and to model
the hidden representations formed by the ConvLSTM unit below. The outputs from each ConvL-
STM are concatenated channel-wise and then modulated via Efficient Channel Attention (ECA) per
Wang et al. (2020). ECA is intended to weight the outputted representation channels per a learned
1-dimensional convolution of kernel length 3 applied through the channels at each spatial position.
The approach seemed promising but either due to insufficient or improper training, or to the ap-
proach being ill-fitting or overkill for the task, the results were less accurate than the baseline.

The results for each ablation variant are displayed in Table 4. They are ordered (past Baseline) per
ascending MSE. Note that the ’PF’ and ’B’ under ID # in the table refer to (PF) Previous-Frame
as Prediction and (B) Baseline PredNet. Also note that the number of channels altogether in the
Baseline PredNet is equal to 3 + 48 + 96 + 192 = 339, and that is where the 336 and 339 channel
counts come from, in an attempt to isolate the effect of only reducing layer count and not channel
count.

From the ablation study results, it is evident that a hierarchical structure is necessary for optimal per-
formance. A deeper hierarchy outperforms a shallower one, even when both have an equal number
of representation channels, and when we note that the average spatial dimensions for the repre-
sentation channels are higher for the shallower hierarchy. Additionally, increasing the number of
channels while keeping the layer count constant also enhances performance. Finally, without fur-
ther modifications to PredNet, or a different dataset, implementing hierarchical ConvLSTM’s in the
representation unit of each layer worsens performance while significantly increasing the number of
model parameters, thus making this an undesirable model change.

A.3 FUTURE WORK

First, there are a number of other human-like abilities that could be tested:

1. Instance recognition Here we would like to evaluate how well a model can learn to dis-
tinguish and predict for unique instances of a common class. Thus, the model is expected
to associate class-specific behaviors while also learning any unique aspect of the class-
instances the model has encountered. See Figure 45 for an illustration. In this figure,
instances of a rolling-circle class are indicated by a unique color and size combination.
A model should learn the class-specific behavior for rolling-circles (that they roll along
surfaces) while noting the different rolling speeds of the encountered instances. A human
might say, “I have seen many rolling circles. I have also noticed that these rolling circles
often roll at different speeds. Now, I see a new rolling circle, and I note the speed at which
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it rolls. Next time I see this particular rolling circle, I will attempt to recall that it rolls at
this speed.” This human ability is useful to avoid over-generalization and stereotyping.

Figure 45: Instance Recognition

2. Inter-class behaviors This ability describes how humans can learn how different classes
of objects interact. See Figure 46 for an illustration. The figure describes one possible test
implementation where the inter-class behavior is shared for all classes, namely members of
the same class repel each other while members of different classes attract. Alternatively,
tests could implement unique inter-class behaviors for different pairs of objects. For ex-
ample, a magnet and an iron nail will interact attractively while a magnet and a plastic ball
will not interact at a distance. This human ability is useful to test for because the nature of
object interactions is fundamental aspect of the structure of our world.

Figure 46: Inter-Class Behavior Recognition

3. Global behaviors Here we include behaviors shared by all classes in addition to the class-
specific behaviors. See Figure 47 for an illustration where two examples are provided,
namely, the response of all objects to gravity, and that of object permanence. To some
degree the SSM dataset does test for object permanence in that previously-occluded por-
tions of the objects do receive generative infilling, but never are the tracked objects fully
occluded.
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Figure 47: Global Behavior Recognition

4. Long-term associations Ideally, as humans navigate the world, we should store permanent
knowledge for facts that do not generally change. For example, gravity is a fairly constant
aspect of our experience in the world and thus we should always recall that letting go of
an object in mid-air will result in the object falling away from my hand. See Figure 48
for an illustration of an example where a specific inter-class behavior is expected to be
maintained over the duration of the operation of the model. This can be imagined as the
interaction between a sharp pin and a balloon. Regardless of the history before these two
objects collide, when they do collide, the pair initiates an event, that of a balloon popping.

Associations need not pertain to a pair of objects. We can also remember values for prop-
erties of a single object at arbitrary periods in the future. I know that my bicycle is painted
red and should be able to recall that fact when needed.

Figure 48: Long-Term Associations

5. n-Shot learning Here, we would like to evaluate how quickly a model can learn new classes
or class-instances, and their associated behaviors. See Figure 49 for an example illustration
related to the rolling motion of various polygons. For simple behaviors and objects, humans
can perform this learning from a single viewing. From experience training PredNet on the
SSM dataset, however, it was clear that roughly 40,000 training sequences were required
to reach the predictive performance demonstrated in Section 4.4. Further evaluation in a
future work is required to determine if PredNet, now trained to perform OCSBA-RL, can
learn new class/behavior combinations more quickly.
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Figure 49: n-Shot Learning

6. Adaption to change in environment This human ability relates to learning environment-
specific structure. For example, Checkers and Chess are two board games that use a square
checkered board and pieces that move in specific ways. However, we recognize that the
choice of game determines how the pieces move. The example is imperfect because the
game pieces are not identical, but in a model test implementation, the structure can be
made solely environment-specific. See Figure 50 for an illustration. In this figure, in the
left portion labeled ’Env 1’, circles are known to translate to the right based on a binary
world state. On the other hand, in ’Env 2’, we can establish a scenario where circles roll,
instead of translate, and that they do so always, without a world state indicator. This is a
bit of an obscure human ability, but per the mentioned examples we can see its usefulness.

Figure 50: Adaption to Change in Environment
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Second, PredNet forms a representation that can evaluated for use in downstream tasks, one of
which is next-frame video prediction reliant on rudimentary structure learning comprising objects,
classes, and associated class-specific behaviors. We have seen how PredNet performs in this task via
the SSM dataset. Other downstream tasks could be those used to benchmark CNNs such as image
classification, object detection, localization, action classification, semantic segmentation, etc., all
of which, however, require training supervision (Simonyan & Zisserman, 2015). We have seen
already in Lotter et al. (2017) how the PredNet representations formed can be useful to extract
semantic information about the present scene, for example car steering wheel angle. Based on the
experimental results presented in this paper regarding structure learning, it is noted that future work
evaluating PredNet’s representation against supervised data associated with the learned structure
(such as the number of objects in the scene, or a one-hot encoded representation of the direction
the object is moving etc.) would be a worthwhile endeavor. As noted in regards to the “Composite
Learning PredNet” model improvement described in Section A.4, this supervised evaluation can be
included during training for a potential representation-learning enhancement.

A.4 OTHER MODEL IMPROVEMENTS

Due to the inspiring but imperfect performance of the trained baseline PredNet models on the four
created SSM dataset tasks, the following concepts may show promise to improve representational
learning power and predictive performance. These improvements can each be implemented along-
side the main next-steps for model improvement described in 5.4.

1. Upgrade MSE loss function Oprea et al. (2022) and Somraj et al. (2022) both review the
loss functions used in video prediction models (see Section 2.4). They note that the chosen
loss function can have an effect on the types of errors made by the prediction model. The
errors noted for pixel-wise loss functions such as MSE (as is used in PredNet) include
blurry predictions while those for adversarial loss functions include object-related issues
such as distorted object-shapes, and the sudden appearance or disappearance of objects in
predicted frames. Despite the issues noted with each loss function, some researchers seek
to combine MSE and adversarial losses for a best-of-both-worlds result. This may also be
promising for PredNet.

2. Incorporate Multi-Frequency Pre-Processing Taking inspiration from Jin et al. (2020)
and the human visual system, target video frames can be decomposed into a spread of
directional spatial-frequency channels. These channels can then be passed through a CNN
and fed into the input to PredNet’s Representation ConvLSTM unit, similar to as described
for object-centric data in Section 5.4. By providing this additional context to PredNet, the
model can be expected to maintain an accurate understanding of the overall scene per low-
frequency components, while high-frequency components focus on local details and allow
PredNet to preserve these details in its subsequent predictions.

3. Multi-modal PredNet - In addition to raw image data, environmental regularities can be
made more obvious by means of data extension and enrichment. By including more di-
verse perspectives on the same data, the model is likely to have an easier time learning
to predict according to these regularities. These perspectives can include image disparity
for 3D scenes, optical flow, and image segmentation. These different modalities can be
concatenated channel-wise for direct use with the baseline PredNet architecture, or sev-
eral PredNet models can work in parallel, each on their own modality, and contributing
top-down predictions to the other modality PredNet models. See Figure 51 for an illus-
tration. Existing research certainly exist in this strain. For example, Slavic et al. (2021)
look at combining ground-truth odometry data alongside video data for improved video
prediction performance. It is important to note that while 3D disparity data can be deter-
ministically calculated, optical-flow and image-segmentation can only be provided to the
model as learned estimates of the underlying ground-truth. Therefore, any inconsistencies
in the flow or segmentation estimates is encountered as noise by the model, and should be
minimized.
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Figure 51: Multi-Modal PredNet Variants

4. Composite-Learning PredNet - Taking inspiration from the research direction of multi-
task learning within neural network training, we present here how such a concept could be
implemented with PredNet (Ruder, 2017). See Figure 52 for an illustration. In the figure,
we show “Pre” - predictions being formed for targets at time t, while “Re” - reconstructions
are formed for the previous time-step. Similar work with ConvLSTMs has proven benefi-
cial (Srivastava et al., 2016). Additionally, derived metrics such as numbers of each class
present in the scene can also tasked, however these metrics pose a supervised learning task
instead of the self-supervision the model is currently employing. For a synthetic dataset,
these metrics could be formed easily alongside the videos, but in a real-world continual-
learning setting, such metrics would not be immediately available.

Figure 52: Composite Learning PredNet

5. Memory-Augmented PredNet - Though not yet explicitly tested, the task envisioned in
Figure 48 is likely to be facilitated by augmenting PredNet with a long-term memory. In-
stead of storing discrete learned facts, this improvement envisions connecting an auto-
associative memory module to one or more of the representation units in the layers of
PredNet. See Figure 53 for an illustration for where the memory module has been con-
nected to the top layer’s representation unit. Taking inspiration from Annabi et al. (2022),
we propose a possible VAE-based AA module implementation as follows. A VAE with
ConvLSTM encoder and decoder is trained to complete incomplete input sequences (for
the past n time steps with the current time-step masked to a placeholder value) of the top-
layer’s Representation unit’s activated tensor. So, we are proposing to encode sequences
of the top-layer’s representation, and to retrieve a sequence that includes the expected next
representation. This final representation in the sequence can then be included as input to
the Representation unit’s ConvLSTM for generating the next representation from which to
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form the layer’s prediction. Annabi et al. (2022) propose a memory-dependent prior dis-
tribution, where the memory is a set of stored encoded representations. However, as these
authors note, over-parameterized VAE’s already implement auto-associative memory. Fur-
thermore, we feel the restriction to a set of stored, discrete memories may be memory
and computationally limiting. For these reasons, the VAE with ConvLSTM encoder and
decoder would be our initial choice.

Figure 53: Memory-Augmented PredNet

6. Pan-Hierarchical PredNet Inspiration for this model improvement comes from the highly
interconnected nature of the human visual system, where there is information transfer be-
tween all levels of the hierarchy (Van Essen & Maunsell, 1983). The Pan-Hierarchical
PredNet, then, seeks to evaluate the representations formed at every level, and to provide
back its own meta-representation to facilitate a form of communication between the layers
in a simple manner. - See Figure 54 for an illustration.

Figure 54: Pan-Hierarchical PredNet
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