

Delft University of Technology

Gene-pool Optimal Mixing in Cartesian Genetic Programming

Harrison, Joe; Alderliesten, Tanja; Bosman, Peter A.N.

DOI
10.1007/978-3-031-14721-0_2
Publication date
2022
Document Version
Final published version
Published in
Parallel Problem Solving from Nature – PPSN XVII - 17th International Conference, PPSN 2022,
Proceedings

Citation (APA)
Harrison, J., Alderliesten, T., & Bosman, P. A. N. (2022). Gene-pool Optimal Mixing in Cartesian Genetic
Programming. In G. Rudolph, A. V. Kononova, H. Aguirre, P. Kerschke, G. Ochoa, & T. Tušar (Eds.),
Parallel Problem Solving from Nature – PPSN XVII - 17th International Conference, PPSN 2022,
Proceedings (pp. 19-32). (Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 13399 LNCS). Springer.
https://doi.org/10.1007/978-3-031-14721-0_2
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-14721-0_2
https://doi.org/10.1007/978-3-031-14721-0_2

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Gene-pool Optimal Mixing in Cartesian
Genetic Programming

Joe Harrison1,2(B), Tanja Alderliesten3 , and Peter A. N. Bosman1,2

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
{Joe,Peter.Bosman}@cwi.nl

2 Delft University of Technology, Delft, The Netherlands
3 Leiden University Medical Center, Leiden, The Netherlands

T.Alderliesten@lumc.nl

Abstract. Genetic Programming (GP) can make an important contri-
bution to explainable artificial intelligence because it can create symbolic
expressions as machine learning models. Nevertheless, to be explain-
able, the expressions must not become too large. This may, however,
limit their potential to be accurate. The re-use of subexpressions has
the unique potential to mitigate this issue. The Genetic Programming
Gene-pool Optimal Mixing Evolutionary Algorithm (GP-GOMEA) is a
recent model-based GP approach that has been found particularly capa-
ble of evolving small expressions. However, its tree representation offers
no explicit mechanisms to re-use subexpressions. By contrast, the graph
representation in Cartesian GP (CGP) is natively capable of re-use. For
this reason, we introduce CGP-GOMEA, a variant of GP-GOMEA that
uses graphs instead of trees. We experimentally compare various configu-
rations of CGP-GOMEA with GP-GOMEA and find that CGP-GOMEA
performs on par with GP-GOMEA on three common datasets. Moreover,
CGP-GOMEA is found to produce models that re-use subexpressions
more often than GP-GOMEA uses duplicate subexpressions. This indi-
cates that CGP-GOMEA has unique added potential, allowing to find
even smaller expressions than GP-GOMEA with similar accuracy.

Keywords: Cartesian genetic programming · Gene-pool Optimal
Mixing · Subexpression re-use · Evolutionary computation · Symbolic
regression

1 Introduction

Automated decision-making using Machine Learning (ML) is becoming more
prevalent in domains where interpretability is critical such as medicine or law [9].
Unfortunately, many common ML techniques currently used are based on opaque
black-box models. Interpretable models are increasingly desired and sometimes
even required by law [15].

Symbolic Regression (SR) is the task of finding an expression of a function
that fits the samples of a dataset. Typically, SR techniques are used in the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 19–32, 2022.
https://doi.org/10.1007/978-3-031-14721-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_2&domain=pdf
http://orcid.org/0000-0003-4261-7511
http://orcid.org/0000-0002-4186-6666
https://doi.org/10.1007/978-3-031-14721-0_2

20 J. Harrison et al.

hope of obtaining an interpretable expression. Expressions consists of operators,
variables, and constants. Genetic Programming (GP) [7] is a popular tree-based
technique used for SR. The resulting expressions from the classic version of GP
are, however, often too large to comprehend [18], even when its subexpressions
are easy to understand by themselves. This is due to a phenomenon called bloat
[8]. Generally, the smaller the expression, the higher the likelihood that it will
be interpretable. However, smaller expressions may also be less accurate.

A key reason why classic GP results in large expressions, is because it is easier
to represent accurate function estimates with larger trees. One way to combat
bloat, is to use a fixed-size tree template. However, enforcing a small tree this
way makes the search for high quality solutions more difficult, necessitating more
sophisticated evolutionary search. One such approach is the Gene-pool Optimal
Mixing Evolutionary Algorithm [2] (GOMEA), of which several variants have
been developed for different domains, including tree-based GP (GP-GOMEA)
[17,18]. GP-GOMEA is particularly adept at finding small expressions while
retaining high accuracy. GOMEA attempts to leverage linkage among prob-
lem variables to prevent important building blocks from being disrupted during
variation while mixing them well. Linkage information can be prespecified if
the optimisation problem is sufficiently understood or can be attempted to be
learned during evolution by analysing emerging patterns in the population.

It was suggested that GP-GOMEA may benefit from including repeating
subexpressions [18]. In GP-trees subexpression re-use only occurs when the same
subexpression is evolved multiple times independently. In Cartesian GP (CGP)
[10] expressions are represented by an acyclic feedforward graph rather than
a tree. This opens up the opportunity for subexpression re-use. The re-use of
subexpressions is interesting because it contributes to the decomposability and
interpretability of an expression. Subexpression re-use does not directly decrease
the expression length, but rather decreases the number of subexpressions that
need to be independently understood. In CGP, these subexpressions can be
automatically found during the evolutionary process. However, these subexpres-
sions are not considered Automatically Defined Functions (ADFs) [8], but rather
Automatic Re-used Outputs (AROs). AROs require the function in its entirety
to remain the same whereas ADFs have dummy arguments where different inputs
can be instantiated [12,20]. Nevertheless, the two are closely related. Given that
the problem is of sufficient complexity, GP can find smaller expressions using
ADFs for some problems [8].

CGP has the ability to produce expressions that re-use subexpressions
natively without the need to evolve the same subexpression multiple times. Given
the observed advantages brought by GOMEA for GP, it is therefore interesting
and potentially of added value to see whether CGP can also benefit from an inte-
gration with concepts from GOMEA. Vertices in subexpressions that are re-used
can possibly benefit from the simultaneous swaps of genes that happen during
linkage-based variation in GOMEA as to not disrupt the salient subexpression.

Gene-pool Optimal Mixing in Cartesian Genetic Programming 21

Fig. 1. Illustration of how GOM works in CGP-GOMEA. Operator vertices in the 2×2
grid have a problem variable index on the right diagonally above the operator vertex
and two underlined problem variable indices to the left representing the location of the
incoming vertex. Problem variables in the orange rectangle are an example of variables
with high linkage and appear together in the FOS. Problem variables in the blue
rectangle are swapped simultaneously from donor to recipient (i.e. clone). Above each
graph is a corresponding string representation. Intron vertices and arcs are indicated
by dashed lines, and the active graph by filled lines. (Color figure online)

The main contribution of this paper is realising and studying the integration
of GOMEA principles in CGP, which we will call CGP-GOMEA1. We will com-
pare and contrast CGP-GOMEA with GP-GOMEA and CGP and investigate
performance in terms of accuracy, expression length, and subexpression re-use.

2 Methods

Below we outline the relevant details on GOMEA, CGP, and their integration.
Special attention is brought to the differences between GP-GOMEA and CGP-
GOMEA since these are both GP variants combined with GOMEA. When dis-
cussing CGP, the terms vertices and arcs are used, while for GP-trees and GP
and CGP in general, the terms nodes and connections are used.

2.1 GOMEA

GOMEA operates on a fixed-length string representation of the problem vari-
ables in a genotype. Any mapping from genotype to string can be used as long
as the mapping is unique. For instance in GP-GOMEA, nodes in fixed height
trees are mapped to a fixed-length string using the pre-order traversal of the tree
[17]. Once a mapping is defined, a model describing the linkage between string
indices is learned in the form of a Family Of Subsets (FOS), which is a set of
subsets of all string indices. Alternatively, the FOS can be provided exogenously.
1 Code and data can be found at https://github.com/matigekunstintelligentie/CGP-

GOMEA.

https://github.com/matigekunstintelligentie/CGP-GOMEA
https://github.com/matigekunstintelligentie/CGP-GOMEA

22 J. Harrison et al.

The FOS in this paper is learned each generation and is a hierarchical clus-
ter tree, called a Linkage Tree (LT), where string indices with strong linkage are
grouped together in a hierarchical fashion. We used Normalised Mutual Informa-
tion (NMI) as a proxy for linkage. NMI is used because it is a measure of mutual
dependence among variables (in this case string indices). For indices with strong
mutual dependence it might be beneficial if the genetic material associated with
these indices, is varied in a joint fashion. The algorithm Unweighted Pair Group
Method with Arithmetic mean (UPGMA) [5] is used to build the LT. UPGMA
only needs the NMI between pairs of problem variables as input, represented by
an NMI matrix, to build an LT. The application of UPGMA results in an FOS
of size 2l − 1, where l is the number of string indices. The subset containing all
string indices is removed as to not swap entire individuals. The effective FOS
size is 2l − 2. A randomly initialised population is expected to have no linkage,
but due to the NMI matrix being estimated using finite samples some linkage is
measured, especially in the case of GP [18]. To combat this, [18] introduced a
linear bias correction measured from the initial population such that the NMI
matrix is identity at the start of the evolutionary process. This correction is
measured once and used throughout the evolutionary process.

Variation in GOMEA happens by means of Gene-pool Optimal Mixing
(GOM). Each generation, each individual of the population is first cloned and
then undergoes GOM. For each subset in the FOS, a random donor is sampled
and then each problem variable instantiation indicated by the subset is copied
from the donor to the clone. If the expression of the clone has changed, its fitness
is evaluated. If the fitness is equal or better than its original, the change is kept
and otherwise it is discarded. The clones replace the entire original population.

2.2 CGP

In CGP, an expression is encoded using a Cartesian grid. Each vertex in the
grid has incoming arcs that can potentially come from any preceding column in
the grid, making it an acylic feedforward graph. Note that this makes skip con-
nections and vertex re-use possible (see Fig. 1). By limiting to which preceding
column in the grid a vertex can connect, the number of subexpression re-uses
can be influenced. This parameter is called Levels-Back (LB). A CGP graph
consists of four types of vertices:

1. Ephemeral Random Constants (ERCs) - vertices that output a constant value
sampled at the start of the evolutionary process.

2. Inputs (Ii) - vertices that return an input feature of a dataset.
3. Outputs (Oj) - vertices that return the output of an expression.
4. Operators - vertices that apply operations to its incoming arcs.

Only operator vertices are part of the CGP grid. For each operator vertex,
the number of incoming arcs is equal to the maximum arity of all operators
used. Unary operators only use the first input and ignore other inputs. For the
remainder of the paper, the maximum input arity of each operator is two (as

Gene-pool Optimal Mixing in Cartesian Genetic Programming 23

in [18]). A vertex in the CGP grid can always connect to an input or ERC
vertex regardless of what the value of the LB parameter is. The grid size and
number of ERC vertices are (manually) determined a priori and highly depend
on the problem and desired shape of the resulting expressions. The number of
input vertices depends on the number of inputs in the dataset. Note that even
though a vertex appears in the grid it might not be connected to an output
vertex, see for example the vertex with string index 3 in Fig. 1. The part of the
graph consisting of all vertices and arcs that are connected to a particular output
vertex will be referred to as the active graph for that output. Other vertices are
considered introns. In CGP it is possible to have multiple outputs or recurrent
connections, which enables interesting use-cases. However, in this paper, only
feedforward graphs are used for the CGP experiments and only problems with
a single output are experimented with in order to compare with GP-GOMEA.

In classic CGP variation happens by means of point mutation [11]. An indi-
vidual is mutated through point mutation of the operators and arcs until the
active graph has changed. A notable difference in our implementation is that
ERCs are not mutated in order to be able to fairly compare to the GOMEA
algorithms. Originally, selection happens in a 1+λ scheme [10]. However, tour-
nament selection is also common for larger population sizes [11].

2.3 Adapting GOMEA for CGP

In trees, the location of a problem variable explicitly encodes the location of the
incoming child nodes and arcs too, whereas this is not the case in feedforward
graphs. To adapt GOMEA for CGP, the incoming arcs in the graph must be
added as problem variables in addition to the operator problem variables in the
grid. Additionally, a string index is needed for the arc from the grid to the output
vertex. When an LT is used, the number of problem variables, and consequently
the FOS size, required for a template that can accommodate a similar tree as
in GP-GOMEA, is larger. The formula for the number of problem variables in
CGP used to build the LT is 3rc + 1 (for maximum arity of two), where r and c
are the number of rows and columns in the CGP grid respectively. An important
distinction is that the ERCs and input vertices, as opposed to the original GP-
GOMEA implementation [19], are not part of the LT FOS because they are
encoded at a fixed position in the grid in CGP-GOMEA. This also means that
there is no need for converting continuous ERCs to discrete values (bins) as is
needed in GP-GOMEA [18]. To mix ERCs in the population, ERCs are added
as unary subsets to the FOS after building the LT. Note that this means that
the FOS size increases by the number of ERCs used.

Any unique mapping from vertex and arc to problem variable index can be
used. Here, a mapping is used where, starting from the nodes in the first column,
each vertex is given three problem variable indices, one for the operator and two
for the incoming arcs. The mapping used in this paper is illustrated in Fig. 1.

A larger population size positively impacts the accuracy of the NMI esti-
mation [18]. Typically, there are more inputs and ERCs than operators. This

24 J. Harrison et al.

means that there are more possible arcs than operators, especially for the out-
put which can connect to any of the grid vertices. This makes the NMI estimate
less accurate for the same population size compared to GP-GOMEA because
the cardinality of the variables is higher. Hence, for small population sizes, GP-
GOMEA is expected to lead to better results. This, together with the larger FOS
size, increases the run-time of GOM as it depends on both factors. GOM is the
most costly part for both GP- and CGP-GOMEA due to the many fitness eval-
uations performed inside GOM. One way to make CGP-GOMEA more efficient
is by shrinking the FOS size. We here consider two ways to do this: truncate the
FOS or trade expressivity for speed by making the grid smaller.

Table 1. Information about the datasets used in the experiments.

Dataset #Features #Samples Variance y

Boston Housing 13 506 84.59

Yacht Hydrodynamics 6 308 229.84

Tower 25 4999 7703.36

3 Experimental Setup

3.1 General Setup

Each experiment is repeated 30 times using a different random seed for each
repetition, but equal random seeds across different experiments to create identi-
cal dataset splits for each experiment. Significance is tested using the Wilcoxon
signed-rank test using the Pratt tie handling procedure [13] with α = 0.05/β,
where β is the Bonferroni correction coefficient [3,18].

Initialisation. In GP-GOMEA, ERC and input nodes are sampled with prob-
abilities 1

1+#inputs and #inputs
1+#inputs respectively. ERC nodes, therefore, occur much

less often as a terminal node, especially when there are many inputs. In CGP-
GOMEA and CGP-Classic, the number of ERCs needs to be defined beforehand.
The number of ERCs is set to half the number of terminal locations in a full
GP tree. For example, a GP tree of height 4 has 16 terminal nodes, in this case,
8 ERCs are instantiated for CGP. The probability of connecting to an ERC
or input vertex in CGP is equal. The values for ERCs are sampled uniformly
between the minimum and maximum target value in the training set.

In this paper, we focus on small expressions with a total number of symbols
smaller than or equal to 32, a limitation posed on the expression length based on
findings by [18]. This corresponds with a GP tree of height 4 and arity of 2 with
an additional output node. In GP-GOMEA trees are initialised half-and-half as
in [16,18]. For CGP models with a grid with many columns, the full initialisation
method [12] often creates large graphs that exceed the 32 node limit. Therefore,

Gene-pool Optimal Mixing in Cartesian Genetic Programming 25

only the grow method will be used for all CGP algorithms. Graphs that exceed
32 nodes are penalized in their fitness with a fitness penalty of 10e6, severely
limiting the chance of selection in the tournament selection of CGP-classic. In
GP-GOMEA and CGP-GOMEA, changes due to subset swaps during GOM
resulting in a penalty are likely to be discarded.

Operators. The following operators are used: {+,−,÷,×,min,max, exp, pow,
log, sqrt, sin, cos, asin, acos}. Note that no protected operators are used. This is
done to enhance interpretability as protected operators add complexity to each
operator. Expressions that return an error on samples in the training set are
penalised with a high fitness offset of 10e6.

Linear Scaling. To improve performance while keeping an expression small,
Linear Scaling (LS) [4,6] is applied to each solution during fitness evaluation
unless stated otherwise. LS effectively adds four symbols to each expression.
These symbols are however not counted towards the total expression length.

Grid Sizes. For the CGP-GOMEA experiments, four different grid sizes are
experimented with: 16× 4 (rows× columns), 8× 8, 1× 10, and 1× 64. The 16× 4
grid serves as a comparison to trees of height 4. This grid size is chosen because
it is the minimum size that can accommodate any tree of height 4 evolved by
GP-GOMEA. An 8× 8 grid is used to test what happens if the grid is more
flexible in terms of graph depth. A 1× 64 grid, which can represent more graph
configurations than the 16× 4 grid, is tested as a suggestion from literature
[11]. A 16× 4 grid with LB = 1 is also tried. All other experiments have the LB
parameter set equal to the number of columns of their respective grid. The 16× 4,
8× 8, and 1× 64 grids all have an FOS size of 384. A grid of 1× 10 is tested
because it has the same FOS size as a tree of height 4 in GP-GOMEA. Further,
truncation of the FOS of a 16× 4 CGP grid is investigated. After shuffling the
FOS during GOM, only the first k subsets of the FOS are considered, where k
is the truncation value. With a truncation of 61, the same FOS size as a tree of
height 4 is reached.

Performance Metrics. The training and test coefficients of determination
(R2) and expression length are reported. The expression length is counted as
the total number of nodes used in the active graph including the output node.
The mean squared error of the training set is optimised instead of optimising the
R2 directly. In particular, we are interested in the re-use of nodes. GP trees can
evolve the same subexpression multiple times, whereas CGP has the native abil-
ity to re-use vertices. Subexpressions can have the same semantic outcome while
differing syntactically. To test whether CGP-Classic and CGP-GOMEA re-use
subexpressions more often than that GP-GOMEA evolves duplicate subexpres-
sions, we therefore count the number of re-uses by comparing the output of
each connection in the graph or tree with all other connection outputs, except

26 J. Harrison et al.

connections to terminal-nodes. Outputs are generated by using the training set
augmented with 1000 samples from a normal distribution as input. The re-use
count is incremented when two outputs are within a 10e−6 range of each other.

Computational Budget. The number of evaluations made in GOM is the
most time-consuming part of GOMEA [18]. Since CGP-GOMEA has a larger
FOS size, the number of evaluations per generation is also much higher. We
have therefore opted for a time-based comparison where each run gets a budget
of 5000 s. We empirically found that 5000 s leaves enough time for populations
of most sizes to converge. A run is terminated when one or more of the following
conditions is met: the run reaches 5000 s, the mean fitness and best fitness are
equal, the best fitness remains unchanged for 100 generations, or, the mean
fitness remains unchanged for 5 generations.

3.2 Setup Main Experiment

Three commonly used datasets will be used in our main experiment: Boston
Housing, Yacht Hydrodynamics, and Tower (see Table 1) [1]. The datasets are
split into a training and test set of 75% and 25% of the samples respectively.
Two sets of experiments are done. One where only inputs are used as terminal
nodes and one where both inputs and ERCs can appear as terminal nodes.
These sets of experiments are done because there is a difference in how ERCs
are handled between CGP- and GP-GOMEA. GP-GOMEA needs to convert
continuous ERCs to discrete problem variables. This is done in GP-GOMEA by
binning ERCs into 100 bins, the most successful method from [18].

Due to the relatively large size of populations used in this paper, tournament
selection is used with a tournament size of 4 for classic CGP to select the parents
of the new population that will be mutated to create offspring. The individual
with the best fitness is directly copied into the new population.

3.3 Population Size Study

The grid size influences the population size that is needed to ensure the variety
of subexpressions in the initial population is large enough, which is important
for the success of GOMEA variants. For the main experiments we chose a fixed
population size of 1000 as in [15], but this choice is not necessarily optimal. To
show the influence of choosing a population size, we do a study to find the optimal
population size for GP-GOMEA, CGP-GOMEA 16× 4, and CGP-Classic on the
Boston Housing dataset without ERCs under the time constraint of 5000 s. In
Table 4 experimental results are reported using the found optimal population
sizes for the Boston Housing dataset on the Yacht and Tower dataset.

3.4 Setup Known Ground Truth Experiment

The optimal formula for the three datasets in Table 1 and the required grid size
or tree height is unknown. It is equally unknown whether the datasets have a

Gene-pool Optimal Mixing in Cartesian Genetic Programming 27

bias for solutions with less or no subexpression re-use. We want to know whether
a known expression with multiple re-used subexpressions is more easily found
by CGP-GOMEA compared to GP-GOMEA and CGP-Classic. To this end,
we devised a synthetic dataset with a specific known expression that re-uses
subexpressions: I40−I41+ I4

2
I4
3
. To search for this expression, we only allow operators

{+,−,÷,×} to be used. The 4th powers in the expression can thus only be
created by re-using sub-expressions with the × operator multiple times. The
synthetic dataset has 1000 samples each with 4 input variables, each sampled
from a normal distribution with σ = 0.25 and μ = {0, 1, 2, 3} respectively as to
generate slightly overlapping yet mostly distinct input samples. The grid size was
chosen so that it is possible to evolve the formula exactly. Only GP-GOMEA,
CGP-GOMEA 16× 4, 8× 8, 16× 4 LB = 1, and CGP-Classic are tested. In this
experiment, LS is not used, because finding the formula rather than optimising
for accuracy is what matters here. Nor are ERCs used.

Fig. 2. Results population size study. Shaded area between 10th and 90th percentile.

4 Results

Main Experiment. The results of the main experiment are shown in Table 2.
The best training R2 on the experiments both with and without the use of ERCs
is achieved with the CGP-GOMEA 8× 8 configuration on Boston Housing and
Yacht, and with GP-GOMEA on Tower. The Tower dataset has more variables
than available terminal-nodes, which makes it difficult to re-use subexpressions.
This is because subexpression re-use means that fewer variables can be used,
since re-used subexpressions still count towards the 32 node expression limit.
The Yacht Hydrodynamics dataset has a much smaller number of variables and
much more re-use is observed for this dataset. A notable difference between the
experiments with and without ERCs is that less subexpressions are re-used when
ERCs are used, with some CGP configurations even re-using zero subexpressions.

28 J. Harrison et al.

ERCs are used in favour of repeating subexpressions. This could be due to the
way ERCs are mixed. In an experiment where ERCs are not added to the FOS
and therefore remain unmixed, the re-use of subexpressions was higher for each
experiment with similar training R2.

Truncation, as described earlier, is not a viable method of reducing the FOS
size. It consistently ranks among the worst R2 for all experiments. Trading
expressivity for speed is also detrimental to the R2. A small grid such as 10× 1
forces re-use, while as mentioned re-use may not be part of the optimal expres-
sion. The configuration from literature, one row with multiple columns, similarly
results in low R2. This is because many individuals in the initial population are
penalised for having an expression over 32 nodes, which makes it difficult to
create better offspring during GOM without a dedicated constraint handling
mechanism in GOMEA, which is currently lacking.

Table 2. Experiment results of various algorithms with and without ERCs as terminal
nodes. Median R2 values are reported due to high variance in test and train R2. Num-
bers in bold are best performing for the respective parameter and dataset. Underlined
numbers significantly outperform all other algorithms. tr is short for truncation. Test
R2 values filtered from outliers due to unprotected functions are indicated with *.

Algorithm Without ERCs With ERCs

Median
train R2

Median
test R2

Mean
expression
length

Mean
subexpression
re-use

Median
train R2

Median
test R2

Mean
expression
length

Mean
subexpression
re-use

Boston Housing

GP-G 0.803 ± 1.71e−2 0.761 ± 5.67e−2 19.1 ± 3.53 0.1 ± 3.00e−1 0.83± 1.77e−2 0.758 ± 1.15e−1 21.6 ± 3.90 0.1 ± 3.00e−1

CGP-G 16 × 4 0.81 ± 2.24e−2 0.756 ± 5.60e−2∗ 18.1 ± 4.13 0.1 ± 3.00e−1 0.806 ± 2.67e−2 0.783 ± 4.79e−2 18.3 ± 5.46 0.0

CGP-G tr 0.768 ± 2.29e−2 0.729 ± 5.81e−2 11.5± 4.54 0.133 ± 5.62e−1 0.788 ± 2.23e−2 0.733 ± 5.60e−2 12.2 ± 3.90 0.0

CGP-G 8 × 8 0.846± 2.05e−2 0.807± 4.53e−2 27.7 ± 4.64 0.433 ± 6.16e−1 0.830 ± 2.94e−2 0.787 ± 7.45e−2 25.0 ± 6.42 0.333± 6.50e−1

CGP-G 1 × 10 0.785 ± 2.29e−2 0.743 ± 4.48e−2 15.7 ± 5.63 1.03± 2.12 0.772 ± 2.96e−2 0.75 ± 6.30e−2 11.1± 3.90 0.1 ± 3.96e−1

CGP-G LB = 1 0.824 ± 2.01e−2 0.779 ± 4.43e−2 21.3 ± 4.08 0.133 ± 4.27e−1 0.824 ± 2.25e−2 0.789± 5.56e−2∗ 19.6 ± 4.38 0.0333 ± 1.80e−1

CGP-G 1 × 64 0.807 ± 2.01e−2 0.78 ± 6.91e−2 15.7 ± 4.58e−1 0.133 ± 3.40e−1 0.810 ± 1.90e−2 0.767 ± 2.08e−1 15.4 ± 9.12e−1 0.0333 ± 1.80e−1

CGP-C 0.789 ± 2.88e−2 0.767 ± 7.35e−2 16.9 ± 4.94 0.367 ± 7.06e−1 0.801 ± 2.26e−2 0.762 ± 4.50e−2 18.1 ± 4.29 0.0333 ± 1.80e−1

Yacht Hydrodynamics

GP-G 0.995 ± 7.52e−4 0.992 ± 1.71e−3 17.7 ± 4.30 0.367 ± 1.28 0.995 ± 7.59e−4 0.994 ± 1.78e−3 17.5 ± 4.30 0.1 ± 3.00e−1

CGP-G 16 × 4 0.995 ± 8.75e−4 0.994 ± 2.08e−3 21.2 ± 6.05 1.2 ± 1.56 0.995 ± 7.61e−4 0.993 ± 2.07e−3 18.5 ± 4.51 0.3 ± 7.37e−1

CGP-G tr 0.994 ± 1.02e−3 0.992 ± 2.20e−3 18.7 ± 5.05 1.53 ± 2.26 0.995 ± 9.51e−4 0.993 ± 1.91e−3 15.0± 3.81 0.167 ± 5.82e−1

CGP-G 8 × 8 0.996± 8.89e−4 0.994± 1.62e−3 28.7 ± 3.38 1.83 ± 2.25 0.997± 8.66e−4 0.995± 1.71e−3 26.6 ± 4.92 0.667 ± 1.07

CGP-G 1 × 10 0.994 ± 6.85e−4 0.992 ± 1.80e−3 26.4 ± 4.07 12.6± 1.11e1 0.995 ± 6.21e−4 0.993 ± 2.10e−3 18.2 ± 3.90 0.733± 1.46

CGP-G LB = 1 0.995 ± 5.24e−4 0.994 ± 1.81e−3 25.1 ± 3.72 1.77 ± 1.91 0.996 ± 6.38e−4 0.994 ± 2.25e−3 21.0 ± 4.31 0.467 ± 1.98

CGP-G 1 × 64 0.995 ± 4.92e−4 0.994 ± 1.63e−3 15.4± 9.87e−1 0.1 ± 3.00e−1 0.995 ± 5.79e−4 0.994 ± 1.88e−3 15.8 ± 4.96e−1 0.1 ± 3.00e−1

CGP-C 0.994 ± 1.21e−3 0.992 ± 2.19e−3 22.7 ± 3.96 0.967 ± 1.43 0.995 ± 9.49e−4 0.994 ± 2.08e−3 19.1 ± 3.87 0.433 ± 8.44e−1

Tower

GP-G 0.873±8.08e−3 0.878± 1.10e−2 28.2 ± 3.91 0.0667±2.49e−1 0.877± 6.43e−3 0.874± 1.09e−2 29.3 ± 2.58 0.0667 ± 2.49e−1

CGP-G 16 × 4 0.846 ± 1.29e−2 0.853 ± 1.52e−2 17.2 ± 3.89 0.0667 ± 2.49e−1 0.84 ± 3.14e−2 0.847 ± 3.26e−2 16.0 ± 4.01 0.0333 ± 1.80e−1

CGP-G tr 0.817 ± 3.78e−2 0.821 ± 3.99e−2 13.0± 4.45 0.1 ± 3.00e−1 0.764 ± 4.15e−2 0.789 ± 4.55e−2 11.2 ± 2.86 0.0

CGP-G 8 × 8 0.868 ± 1.09e−2 0.872 ± 1.67e−2 22.6 ± 6.28 0.2 ± 6.00e−1 0.864 ± 1.50e−2 0.866 ± 1.31e−2 21.7 ± 6.05 0.233± 6.16e−1

CGP-G 1 × 10 0.816 ± 3.34e−2 0.827 ± 3.63e−2 13.9 ± 3.97 0.3 ± 9.00e−1 0.769 ± 3.39e−2 0.767 ± 3.57e−2 9.7± 2.79 0.0

CGP-G LB = 1 0.861 ± 1.81e−2 0.861 ± 1.87e−2 21.0 ± 3.89 0.167 ± 3.73e−1 0.85 ± 2.33e−2 0.851 ± 2.51e−2 17.0 ± 3.62 0.0667 ± 3.59e−1

CGP-G 1 × 64 0.851 ± 1.46e−2 0.845 ± 1.58e−2 15.9 ± 3.00e−1 0.1 ± 3.00e−1 0.847 ± 1.59e−2 0.85 ± 1.70e−2 15.9 ± 3.40e−1 0.0333 ± 1.80e−1

CGP-C 0.844 ± 2.69e−2 0.837 ± 2.84e−2 19.3 ± 3.70 0.333± 5.96e−1 0.823 ± 3.35e−2 0.835 ± 3.38e−2 16.1 ± 4.75 0.1 ± 3.00e−1

Population Sizing Study. The results of the population sizing study (see
Fig. 2) show that all three algorithms initially have a positive trend upwards
in terms of R2 as the population size increases. For CGP-GOMEA 16× 4 this
trend declines for population sizes above 8000, a smaller population size than

Gene-pool Optimal Mixing in Cartesian Genetic Programming 29

observed for the onset of decline in GP-GOMEA and CGP-Classic. This is
because although the larger population size positively impacts the quality of
the linkage information it also severely limits the number of generations that
can be achieved within the maximum time budget, because the run-time of the
GOM procedure depends on the FOS size which is larger for CGP-GOMEA.

This exemplifies the importance of using the right parameters in population-
based search such as GP. Moreover, what is key to notice from the graph is that
the best performance of GP-GOMEA is equal to that of CGP-GOMEA. As these
algorithms can represent similar solutions, this was to be expected. However, this
search-space-based expectation only holds if the search algorithm is capable of
finding high-quality solutions in that space effectively. CGP using classic point-
based mutation is not capable of performing equally well. This reconfirms the
potential of GOMEA for the GP domain and also confirms that our integration
of GOMEA to CGP is essentially successful.

This result also shows that the population size of 1000 used in the main exper-
iment, while congruent with much of literature, can potentially lead to wrong
conclusions about the maximum performance of the algorithms tested. Still, the
conclusions are valid within the assumed limits. Moreover, the most important
comparison, between CGP-GOMEA and GP-GOMEA holds, as from the popu-
lation sizing experiment we expect these algorithms to perform similarly.

Known Ground Truth Experiment. As mentioned, the expressions found
for some datasets have more subexpression re-use than others. If re-use can be
found then CGP-GOMEA is a good option. In Table 3 it can be seen that CGP-
GOMEA algorithms have a better training R2 and re-use more subexpressions
than GP-GOMEA and CGP-Classic. The CGP-GOMEA 16× 4 LB = 1 config-
uration is the only algorithm that can find the exact expression (twice).

Table 3. Results on synthetic dataset. Numbers marked in bold are best performing for
the respective parameter. GP-G, CGP-G and CGP-C are short for GP-GOMEA, CGP-
GOMEA and CGP-Classic respectively. The value after ± is the standard deviation.

Algorithm Median
train R2

Median
test R2

Mean
expression
length

Times
expression
found

GP-G 0.995 ± 3.33e−3 0.995 ± 4.65e−3 0.63 ± 7.52e−1 0

CGP-G 16 × 4 0.997 ± 2.88e−3 0.997 ± 3.01e−3 1.77 ± 1.36 0

CGP-G 8 × 8 0.999 ± 2.15e−3 0.999 ± 2.44e−3 3.27 ± 2.43 0

CGP-G LB= 1 0.999 ± 6.98e−4 0.998 ± 1.30e−3 3.87 ± 3.19 2

CGP-C 0.998 ± 4.27e−3 0.998 ± 4.08−3 2.0 ± 1.37 0

30 J. Harrison et al.

5 Discussion

In CGP-GOMEA a grid size still needs to be defined a priori. A large enough
grid could be defined such that it could accommodate any possible tree with
32 nodes, but this would lead to a very large FOS size and subsequently very
long run-times. This effectively means that the expressions in CGP-GOMEA
are always bounded by a predefined grid size. Potentially a technique akin to
NeuroEvolution of Augmenting Topologies (NEAT) [14] could be used to evolve
unbounded graphs while still being able to swap homologous blocks using a
GOMEA-like approach.

Table 4. Training R2 of various algorithms trained on Yacht and Tower dataset with
population size found in population sizing study for the Boston Housing dataset.
Median R2 values are reported due to the high variance in test and train R2 val-
ues. Numbers marked in bold are best performing for the respective parameter and
dataset. Underlined numbers significantly outperform all other algorithms.

Boston
Housing

Yacht
Hydrodynamics

Tower

GP-G 0.803 ± 1.27e−2 0.994 ± 5.85e−4 0.769 ± 1.60e−2

CGP-G 0.791 ± 2.80e−2 0.994 ± 3.93e−4 0.844 ± 2.66e−2

CGP-C 0.788 ± 1.70e−2 0.993 ± 9.49e−4 0.780 ± 1.98e−2

The R2, expression length, and potentially the number of re-used subexpres-
sions are of interest to optimise. In this paper, however, only the training R2 is
optimised. No pressure is applied on evolving short expressions or expressions
with subexpression re-use. Instead, these are just attributes that resulted from
single-objective training. As a result, less re-use may have been observed than
what is possible. A multi-objective setting may overcome this as well as give
more insight into just how much re-use is possible.

Further, a potentially interesting line of research is using the subgraphs with
multiple re-uses found by CGP-GOMEA as building blocks for other algorithms.
Since these re-uses clearly have value [7,17]. Re-used subexpressions are easily
found in CGP graphs without using exogenous processes.

Limitations of this work are the use of only one population size in the
main experiment, a restricted number of datasets, and a fixed runtime. Ide-
ally, the optimal population size is used for each configuration and dataset. This
would however quickly exceed our computational budget. Of high interest are
approaches that adaptively set the population size, increasing resources over
time so that an anytime algorithm is obtained. More research is needed to iden-
tify in more detail what datasets can benefit from models with native re-use.
Finally, only one configuration of CGP-Classic is compared against. While we

Gene-pool Optimal Mixing in Cartesian Genetic Programming 31

believe the comparison was fair, showcasing the potential of GOMEA within a
basic representation space of CGP, more versions of CGP exist [11] and should
be compared against in future work, with similar augmentations on the GOMEA
side.

6 Conclusion

In this paper, we showed how GOMEA principles can be applied to CGP and we
thereby introduced CGP-GOMEA. We find that CGP-GOMEA with a grid-size
of 8× 8 strikes a good balance between CGP grid depth and breath and obtains
similar training R2 compared to GP-GOMEA and superior training R2 compared
CGP-Classic on three common datasets while re-using more subexpressions. On
a synthetic dataset, where the expression to regress to is known, that has multi-
ple subexpression re-uses, CGP-GOMEA is better able to find expressions that
are close to optimal compared to GP-GOMEA and CGP-Classic. We therefore
conclude that CGP-GOMEA can successfully leverage the advantageous prop-
erties of GOMEA within the CGP representation, enabling re-use integrated
within the search procedure, opening up interesting avenues of research.

Acknowledgement. This research is part of the research programme Open Com-
petition Domain Science-KLEIN with project number OCENW.KLEIN.111, which is
financed by the Dutch Research Council (NWO). We further thank the Maurits en
Anna de Kock Foundation for financing a high-performance computing system. We
also thank Marco Virgolin aiding in implementing GP-GOMEA, and Dazhuang Liu
and Evi Sijben for their fruitful discussions and reviews.

References

1. Asuncion, A., Newman, D.: UCI machine learning repository (2007)
2. Bosman, P.A.N., Thierens, D.: On measures to build linkage trees in LTGA. In:

Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.)
PPSN 2012. LNCS, vol. 7491, pp. 276–285. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32937-1 28

3. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

4. Dick, G., Owen, C.A., Whigham, P.A.: Feature standardisation and coefficient
optimisation for effective symbolic regression. In: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 306–314 (2020)

5. Gronau, I., Moran, S.: Optimal implementations of UPGMA and other common
clustering algorithms. Inf. Process. Lett. 104(6), 205–210 (2007)

6. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scal-
ing. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.)
EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36599-0 7

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

https://doi.org/10.1007/978-3-642-32937-1_28
https://doi.org/10.1007/978-3-642-32937-1_28
https://doi.org/10.1007/3-540-36599-0_7
https://doi.org/10.1007/3-540-36599-0_7

32 J. Harrison et al.

8. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs,
vol. 17. MIT Press, Cambridge (1994)

9. Lipton, Z.C.: The mythos of model interpretability: in machine learning, the con-
cept of interpretability is both important and slippery. Queue 16(3), 31–57 (2018)

10. Miller, J.F., et al.: An empirical study of the efficiency of learning boolean functions
using a cartesian genetic programming approach. In: Proceedings of the Genetic
and Evolutionary Computation Conference, vol. 2, pp. 1135–1142 (1999)

11. Miller, J.F.: Cartesian genetic programming: its status and future. Genet. Program
Evolvable Mach. 21, 1–40 (2019). https://doi.org/10.1007/s10710-019-09360-6

12. Poli, R., Banzhaf, W., Langdon, W.B., Miller, J.F., Nordin, P., Fogarty, T.C.:
Genetic Programming. Springer (2004)

13. Pratt, J.W.: Remarks on zeros and ties in the Wilcoxon signed rank procedures.
J. Am. Stat. Assoc. 54(287), 655–667 (1959)

14. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (2002)

15. Vilone, G., Longo, L.: Explainable artificial intelligence: a systematic review. arXiv
preprint arXiv:2006.00093 (2020)

16. Virgolin, M., Alderliesten, T., Bel, A., Witteveen, C., Bosman, P.A.: Symbolic
regression and feature construction with GP-GOMEA applied to radiotherapy dose
reconstruction of childhood cancer survivors. In: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 1395–1402 (2018)

17. Virgolin, M., Alderliesten, T., Witteveen, C., Bosman, P.A.: Scalable genetic pro-
gramming by gene-pool optimal mixing and input-space entropy-based building-
block learning. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference, pp. 1041–1048 (2017)

18. Virgolin, M., Alderliesten, T., Witteveen, C., Bosman, P.A.: Improving model-
based genetic programming for symbolic regression of small expressions. Evol.
Comput. 29(2), 211–237 (2021)

19. Virgolin, M., De Lorenzo, A., Medvet, E., Randone, F.: Learning a formula of
interpretability to learn interpretable formulas. In: Bäck, T., et al. (eds.) PPSN
2020. LNCS, vol. 12270, pp. 79–93. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-58115-2 6

20. Woodward, J.R.: Complexity and cartesian genetic programming. In: Collet, P.,
Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS,
vol. 3905, pp. 260–269. Springer, Heidelberg (2006). https://doi.org/10.1007/
11729976 23

https://doi.org/10.1007/s10710-019-09360-6
http://arxiv.org/abs/2006.00093
https://doi.org/10.1007/978-3-030-58115-2_6
https://doi.org/10.1007/978-3-030-58115-2_6
https://doi.org/10.1007/11729976_23
https://doi.org/10.1007/11729976_23

	Gene-pool Optimal Mixing in Cartesian Genetic Programming
	1 Introduction
	2 Methods
	2.1 GOMEA
	2.2 CGP
	2.3 Adapting GOMEA for CGP

	3 Experimental Setup
	3.1 General Setup
	3.2 Setup Main Experiment
	3.3 Population Size Study
	3.4 Setup Known Ground Truth Experiment

	4 Results
	5 Discussion
	6 Conclusion
	References

