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Modelling transition zones in railway tracks

A.B. Faragau1, A.V. Metrikine1, T. Mazilu2, K.N. van Dalen1

1Delft University of Technology
2Bucharest University of Technology

Introduction
Transition zones are locations of discontinuity in the support,
such as stiffness transition zones in the ballasted track (close
to bridges, culverts and tunnels). These zones necessitate
special attention, mainly because they:
- Require frequent and expensive maintenance activities.
- Cause delays due to unexpected maintenance.

Model A
1D model of an infinite Euler-Bernoulli beam on viscoelastic
Winkler foundation subjected to a constant moving load.

Main characteristics

- Infinite extent of the beam-foundation system.
- Inhomogeneous foundation stiffness and damping.
- Nonlinear foundation-stiffness constitutive law.
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Figure 1: Schematics of Model A

1D model of an infinite Euler-Bernoulli beam on viscoelastic
Winkler foundation subjected to a mass-spring oscillator.

Main characteristics

- Infinite extent of the beam-foundation system.
- Inhomogeneous foundation stiffness and damping.
- Nonlinear contact stiffness (Hertzian contact model).

Figure 3: Schematics of Model B

Conclusions
The models presented here can be used for preliminary
designs of transition zones in railway tracks. Given the
stiffness dissimilarity and the initial plastic deformation, the
optimum length of the transition zone can be obtained to
minimize the damage in the railway track.
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Solution method

The nonlinear problem is solved using the Mixed Time-
Frequency Method. Assuming that the system behaves
linearly in the beginning, the forward Laplace transform is
performed over time. Then, the Finite Difference Method is
used to approximate the 4th order spatial derivative. The
solution in the Laplace-domain reads:

In the time-domain we search for the first nonlinear event.
Then, we make a new system with updated stiffness profile
and solve it assuming linear behaviour until the next nonlinear
event occurs. The next solution in the Laplace-domain reads:

The procedure is repeated until the whole solution is obtained.

Graphical Results
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Figure 2: Displacement field of the inhomogeneous and 
nonlinear system

Solution method

The interaction between the mass and the beam-foundation
system is solved using the Green’s Function Method. Firstly,
the beam-foundation system Green’s functions are computed:

Secondly, the Green’s function of the mass is derived
analytically. Finally, the Green’s functions of the two
subsystems are combined using the following contact relation:

The nonlinear equation is solved iteratively for the contact
force.

Graphical Results
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Figure 4: Maximum normalized contact force vs. load velocity

Model B
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