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SUMMARY

It goes without saying that the Internet is far from secure. As the number of Internet-
connected devices increases, so do the number of cyberattacks we have to deal with. Numer-
ous industry reports reveal significant upswings in software vulnerabilities year after year.
These are issues plaguing enterprises of all sizes, within the public and private sector. In
light of these findings, it becomes imperative for businesses, regardless of size, to prioritize
cybersecurity and re-evaluate their current defense mechanisms against this evolving threat
landscape.

The evolving cyber threat landscape has emphasized the importance of adopting proactive
approaches to manage and mitigate cybersecurity risks. Organizations can take a great many
steps to achieve this, but mainly choose security measures that revolve around compliance
requirements and standardized methodologies and frameworks to improve overall security
posture. Adapting and integrating these standardized methodologies is not merely a technical
endeavor; it also entails considerable monetary and human resources, and time commitments.
However, it remains unclear to which extent such investments have their desired effect. This
is mainly because security is a latent property that cannot be measured directly, meaning that
changes to it through means of security investment cannot be determined in a straightforward
manner.

Alternative approaches have recently emerged that aim to measure security in a more
direct manner. Instead of relying on self-reported data, internal or otherwise, firms gather
externally accessible data such as network or server misconfigurations, as well as data
concerning malicious activities within the organization’s network (e.g., hosts listed in various
abuse blacklists). Subsequently, a classifier is trained using this data, enabling it to predict,
with a certain level of accuracy, which organizations are likely to experience (large-scale)
breaches.

Still, while there seems to be a correlation between external measurements and breaches,
causality between the two has yet to be confirmed by independent research, calling into
question the feasibility of their endeavor. Furthermore, it is not clear how metrics derived
from purely external measurements compare to the security level derived from internal
measurements of an organization’s network. This reveals the necessity of taking into account
the internal state of networks when observing external security signals, instead of exclusively
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2 SUMMARY

relying on externally observable or publicly reported data breaches.

Using exclusively external network data treats organizations as black boxes. There is
no way to tell whether these signals say anything about the internal state of the network.
Furthermore, the predictions are very coarse-grained. Introducing internal network data from
network intrusion detection systems (NIDSs) that is processed and examined by security
operations centers (SOCs) into this problem can be used to study the links between external
network signals and the internal state. NIDSs and the rulesets they employ are responsible
for the detection of potentially malicious activity, and, therefore, serve as windows into the
internal state of an organization’s network.

This dissertation studies the feasibility of security incident prediction and risk estimation.
It examines how external network scan data can be leveraged to infer information about the
internal state of security of an organization’s network. Thus, we formulate the following
research question: How can internal security incidents be predicted through the leverage of

external network signals? The following chapters present the multiple studies that altogether
aim to address different portions of this overarching research question.

Chapter 2 compiles and systematizes novel asset discovery techniques. We presented
a framework for asset discovery that proposes a syntax to make explicit the steps in the
asset-discovery process and used it to systematize all asset discovery techniques designed or
mentioned in literature published in 14 leading academic venues between 2015 and 2019.
This framework and systematization provide a natural way for researchers to identify gaps in
their study design, thereby creating opportunities to build on earlier efforts by broadening the
set of assets discovered. Furthermore, they can help researchers select relevant techniques
for the individual steps of our framework based on their needs. Finally, we illustrate how
techniques can be combined and how to identify where gaps remain.

Chapter 3 aimed at shedding light on signature-based NIDSs and the rulesets they
employ to detect threats. Using 13 years of NIDS rule management data and internal
alert and incident data from a managed security service provider (MSSP), we analyze the
evolution of said rules and rulesets, as well as how the rules influence the detection of threats
and the investigation of security incidents. We find that, overall, barely a fifth of all rules
are meaningfully updated throughout their lifespan (i.e., in a way that alters their detection
capabilities), either to account for changes in the threat landscape, or to reduce the amount
of generated alerts by making rules more specific to certain threats, thereby alleviating the
workload on the SOC and its analysts. Furthermore, half a percent of rules are responsible
for 80% of all alerts. Of all these alerts, we find only a 1.2% are significant enough to
warrant closer investigation, of which only a fourth carry any risk to an organization.

Chapter 4 studies the organizational processes surrounding the management of signature-
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based NIDSs and their respective rulesets. Although many of these processes are technical in
nature, they are carried out manually by a team of professionals, and end up determining the
types of security incidents and the degree to which they are detected and resolved. We find
that there are a number of critical factors that dictate the manner in which rules are managed,
and that there was significant consensus among participants regarding the importance of
these factors when they are used to determine the quality of rules and rulesets. Still, we find
that there is no single manner in which all SOCs are managed. The different factors need
to be managed and balanced against each other within the context of, e.g., the SOC’s rule
management processes, analyst experience, resource availability, and customer expectations.

Chapter 5 investigates how a collection of external network signals can be used to predict
the occurrence of internal network security incidents. To this end, we use nearly five years
of external network scan data, malicious activity reports and abuse datasets, to train a model
to predict internal security incidents. This system is able to predict with high accuracy the
number of internal security incidents within a certain time span, thereby demonstrating the
predictive power of external network data. Additionally, we find that this performance is
highly dependent upon the sparsity of the input features extracted from the external data
and abuse datasets. These findings allow organizations to identify troubling security signals
ahead of time, thereby potentially be kick-starters for organizations to take a more proactive
approach to their network security.

Finally, Chapter 6 presents the main findings and outcomes, and reflects on the gov-
ernance implications that result from the creation and widespread use of risk estimation
and security incident prediction technology. While previous work has demonstrated the
effectiveness and predictive power of external network signals when observing and exploring
large data breaches, none had examined such relationships with internal security incidents.
We discovered a myriad of asset discovery techniques buried within recent academic litera-
ture that have not found themselves in the field of external network security measurements,
despite their clear relevance. These additional discovery techniques can shed much more
light on an organization’s level of security. Moreover, the additional exposure discovered
through these techniques can potentially translate into internal security incidents detected
by an NIDS and investigated by a SOC. We find that the relationship between external
network signals and the internal state of a network is significant enough for the former to
have predictive power for the latter. However, the effectiveness of this prediction system
depends on various factors that vary between organizations, and, hence, such systems need
to be continually updated and retrained as each organization’s threat landscape and security
practices evolve. Nevertheless, our work successfully demonstrates the feasibility of this
approach.





SAMENVATTING

Het spreekt voor zich dat het internet verre van veilig is. Naarmate het aantal met internet
verbonden apparaten toeneemt, neemt ook het aantal cyberaanvallen waarmee we te maken
krijgen toe. Talloze brancherapporten laten jaar na jaar aanzienlijke stijgingen in softwa-
rekwetsbaarheden zien. Dit zijn problemen waarmee ondernemingen van elke omvang,
binnen de publieke en private sector, te kampen hebben. In het licht van deze bevindingen
wordt het voor bedrijven, ongeacht hun omvang, absoluut noodzakelijk om prioriteit te
geven aan cyberbeveiliging en hun huidige verdedigingsmechanismen tegen dit evoluerende
dreigingslandschap opnieuw te evalueren.

Het zich ontwikkelende landschap van cyberdreigingen heeft het belang benadrukt
van het aannemen van een proactieve aanpak om cyberveiligheidsrisico’s te beheren en te
beperken. Organisaties kunnen een groot aantal stappen ondernemen om dit te bereiken,
maar kiezen vooral voor beveiligingsmaatregelen die draaien om compliance-eisen en
gestandaardiseerde methodologieën en frameworks om de algehele beveiligingsniveau te
verbeteren. Het aanpassen en integreren van deze gestandaardiseerde methodologieën is niet
alleen een technische onderneming; het vereist ook aanzienlijke financiële en menselijke
middelen. Het blijft echter onduidelijk in hoeverre dergelijke investeringen het gewenste
effect hebben. Dit komt vooral omdat veiligheid een latente eigenschap is die niet direct kan
worden gemeten, wat betekent dat veranderingen daarin door middel van investeringen in
veiligheid niet op een eenvoudige manier kunnen worden bepaald.

Er zijn recentelijk alternatieve benaderingen ontstaan die tot doel hebben de veiligheid
op een directere manier te meten. In plaats van te vertrouwen op zelfgerapporteerde ge-
gevens verzamelen bedrijven extern toegankelijke gegevens zoals verkeerde netwerk- of
serverconfiguraties, evenals gegevens over kwaadwillige activiteiten binnen het netwerk van
de organisatie (bijvoorbeeld hosts die op verschillende zwarte lijsten van misbruik staan).
Vervolgens wordt met deze data een classifier getraind, waardoor deze met een zekere mate
van nauwkeurigheid kan voorspellen welke organisaties waarschijnlijk te maken zullen
krijgen met (grootschalige) inbreuken.

Hoewel er een verband lijkt te bestaan tussen externe metingen en inbreuken, moet de
causaliteit tussen beide nog worden bevestigd door onafhankelijk onderzoek, waardoor de
haalbaarheid van hun inspanningen in twijfel kan worden getrokken. Bovendien is het niet
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6 SAMENVATTING

duidelijk hoe statistieken die zijn afgeleid van puur externe metingen zich verhouden tot het
beveiligingsniveau dat is afgeleid van interne metingen van het netwerk van een organisatie.
Hieruit blijkt de noodzaak om bij het observeren van externe beveiligingssignalen rekening
te houden met de interne staat van netwerken, in plaats van uitsluitend te vertrouwen op
openbaar gerapporteerde datalekken.

Door uitsluitend externe netwerkgegevens te gebruiken, worden organisaties als zwarte
dozen behandeld. Er is geen manier om te bepalen of deze signalen iets zeggen over de
interne staat van het netwerk. Bovendien zijn de voorspellingen zeer breed. Het introduceren
van interne netwerkgegevens van network intrusion detection systems (NIDS’s) die worden
verwerkt en onderzocht door security operations centers (SOC’s) in dit probleem kan worden
gebruikt om de verbanden tussen externe netwerksignalen en de interne staat te bestuderen.
NIDS’s en de regelsets die zij gebruiken zijn verantwoordelijk voor de detectie van potentieel
kwaadaardige activiteiten en dienen daarom als vensters op de interne status van het netwerk
van een organisatie.

Deze dissertatie bestudeert de haalbaarheid van het voorspellen van beveiligingsinciden-
ten en risicoschatting. Het onderzoekt hoe externe netwerkscangegevens kunnen worden
gebruikt om informatie af te leiden over de interne beveiligingsstatus van het netwerk van
een organisatie. Daarom formuleren we de volgende onderzoeksvraag: Hoe kunnen interne

beveiligingsincidenten worden voorspeld door gebruik te maken van externe netwerksigna-

len? In de volgende hoofdstukken worden de verschillende onderzoeken gepresenteerd die
er gezamenlijk op gericht zijn verschillende delen van deze overkoepelende onderzoeksvraag
te beantwoorden.

Hoofdstuk 2 verzamelt en systematiseert nieuwe technieken voor asset discovery. We
presenteren een framework voor asset discovery dat een syntax voorstelt om de stappen
in het asset-discovery proces expliciet te maken en gebruikte het om alle asset discovery
technieken te systematiseren die zijn ontworpen of genoemd in de literatuur gepubliceerd in
14 toonaangevende academische locaties tussen 2015 en 2019. Dit framework en de syste-
matisering bieden een natuurlijke manier voor onderzoekers om gaten in hun studieontwerp
te identificeren, waardoor ze kunnen voortbouwen op eerder werk door het uitbreiden van de
set van ontdekte assets. Bovendien kunnen ze onderzoekers helpen relevante technieken te
selecteren op basis van hun behoeften. Tot slot illustreren we hoe technieken kunnen worden
gecombineerd en hoe te identificeren waar technieken ontbreken.

Hoofdstuk 3 onderzoekt signature-based NIDS’s en de regelsets die ze gebruiken om
dreigingen te detecteren. Met behulp van 13 jaar aan NIDS-regelbeheergegevens en interne
waarschuwings- en incidentgegevens van een managed security service provider (MSSP),
analyseren we de evolutie van regels en regelsets, evenals hoe de regels de detectie van
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dreigingen en het onderzoek van beveiligingsincidenten beïnvloeden. We ontdekken dat, over
het algemeen, nauwelijks een vijfde van alle regels zinvol wordt bijgewerkt gedurende hun
levensduur (d.w.z. op een manier die hun detectiecapaciteiten verandert), hetzij om rekening
te houden met veranderingen in het dreigingslandschap, of om de hoeveelheid gegenereerde
waarschuwingen te verminderen door regels specifieker te maken voor bepaalde dreigingen.
Hierdoor wordt de werkdruk op het SOC en zijn analisten verlicht. Bovendien is een half
procent van de regels verantwoordelijk voor 80% van alle alerts. Van al deze alerts zijn
slechts 1,2% belangrijk genoeg om aanvullend onderzoek te rechtvaardigen, waarvan slechts
een vierde enig risico voor een organisatie met zich meebrengt.

Hoofdstuk 4 bestudeert de organisatorische processen rond het beheer van signature-
based NIDS’s en hun respectievelijke regelsets. Hoewel veel van deze processen technisch
van aard zijn, worden ze handmatig uitgevoerd door een team van professionals, en bepalen
ze uiteindelijk de soorten beveiligingsincidenten en de mate waarin ze worden gedetecteerd
en opgelost. We ontdekken een aantal kritieke factoren die de manier dicteren waarop
regels worden beheerd, en dat er aanzienlijke consensus was onder de deelnemers over het
belang van deze factoren wanneer ze worden gebruikt om de kwaliteit van regels en regelsets
te bepalen. Toch blijkt er geen één manier te zijn waarop alle SOC’s worden beheerd.
De verschillende factoren moeten worden afgewogen tegen elkaar binnen de context van
bijvoorbeeld de regelbeheerprocessen van het SOC, analistervaring, beschikbaarheid van
middelen en klantverwachtingen.

Hoofdstuk 5 onderzoekt hoe een verzameling van externe netwerksignalen kan worden
gebruikt om het optreden van interne netwerkbeveiligingsincidenten te voorspellen. Hiertoe
gebruiken we bijna vijf jaar aan externe netwerkscangegevens, rapporten van kwaadaardige
activiteiten en internet abuse datasets om een model te trainen die interne beveiligingsin-
cidenten kan voorspellen. Dit systeem kan met hoge nauwkeurigheid het aantal interne
beveiligingsincidenten voorspellen binnen een bepaalde tijdspanne. Hiermee wordt de voor-
spellende kracht van externe netwerkgegevens aangetoond. Bovendien constateren we dat
deze nauwkeurigheid sterk afhankelijk is van de schaarsheid van de input features die uit de
externe gegevens en abuse-datasets worden gehaald. Deze bevindingen stellen organisaties
in staat om verontrustende beveiligingssignalen vooraf te identificeren, waardoor ze mogelijk
een proactievere benadering van hun netwerkbeveiliging kunnen nemen.

Tot slot presenteert Hoofdstuk 6 de belangrijkste bevindingen en resultaten van deze
dissertatie. Verder reflecteert het op de bestuursimplicaties die voortvloeien uit de creatie en
wijdverbreid gebruik van risicoschatting en voorspellingstechnologieën. Hoewel eerdere lite-
ratuur de effectiviteit en voorspellende kracht van externe netwerksignalen heeft aangetoond
bij grote datalekken, heeft niemand dergelijke relaties met interne beveiligingsincidenten on-
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derzocht. We ontdekken een groot aantal asset discovery technieken in recente academische
literatuur die zich nog niet in het veld van externe netwerkbeveiligingsmetingen bevonden,
ondanks hun duidelijke relevantie. Deze extra ontdekkingstechnieken kunnen veel meer
licht werpen op het beveiligingsniveau van een organisatie. Bovendien kunnen de door
deze technieken ontdekte assets potentieel worden vertaald in interne beveiligingsincidenten
die door een NIDS gedetecteerd en door een SOC onderzocht worden. We stellen vast dat
het verband tussen externe netwerksignalen en de interne staat van een netwerk significant
genoeg is voor voorspellende kracht. De effectiviteit van dit voorspellingssysteem is echter
afhankelijk van verschillende factoren die variëren tussen organisaties. Daarom moeten
dergelijke systemen continu worden bijgewerkt en getraind naarmate het dreigingslandschap
en de beveiligingspraktijken van elke organisatie evolueren. Desalniettemin demonstreert
ons werk met succes de haalbaarheid van deze aanpak.



1
INTRODUCTION

In 2022 we witnessed an all-time high volume of cyberattacks, reaching nearly 1,200 attacks
per organization in the last quarter of the year. This upswing indicates a 38% increase in
cyberattacks on corporate networks in 2022 compared to the previous year, suggesting that
we are currently in the midst of several converging cyber threat trends [46]. This is reflected
in the number of published CVEs, rising 24% from 20,161 in 2021 to 25,059 in 2022 [61].
Not all CVEs are created equal, though, some being more severe than others. Thus, perhaps
a more striking development in the same time span is the increase in the number of published
CVEs with a critical CVSS score of 9 and higher: nearly 40%, from 3,596 to 5,008 [204].

However, these threats are not limited to the corporate giants. Disturbingly, nearly
43% of these cyberattacks targeted small and medium businesses [17]. The vulnerability
of this sector becomes even more evident when considering that a mere 14% of these
smaller businesses are adequately prepared to defend against such threats, underscoring the
significant security gap present in this sector.

Adding to the concerns, IBM’s recent data breach report suggests that the frequency of
security lapses has become alarmingly common. A staggering 83% of organizations reported
experiencing more than one data breach during 2022 [104]. Financial repercussions from
these incidents have also intensified. The global average cost of a data breach witnessed an
increase, climbing from $4.24 million in 2021 to $4.35 million in 2022 [104].

In light of these findings, it becomes imperative for businesses, regardless of size,
to prioritize cybersecurity and re-evaluate their current defense mechanisms against this
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evolving threat landscape.

1.1. BACKGROUND
Organizations are not defenseless against threats. Considerable effort is exerted to secure an
organization from both external and internal threats. These efforts exist in different forms,
such as procedural (compliance frameworks) and technical (antivirus), or reactive (incident
detection and response) and proactive (penetration testing).

1.1.1. FRAMEWORKS AND SECURITY

The evolving cyber threat landscape has emphasized the importance of adopting proactive
approaches to manage and mitigate cybersecurity risks. Organizations can take a great many
steps to achieve this. These can include the use of antivirus software and periodic penetration
testing. A prominent example is red/blue or purple teaming. A red team comprises offensive
security experts that attempt to penetrate an organization’s security defenses. By contrast,
a blue team defends against the red team’s intrusion attempts. A purple team blends both
approaches together, allowing for greater collaboration between members of both teams.

However, organizations mainly choose security measures that revolve around compliance
requirements and standardized methodologies and frameworks [149] to improve overall
security posture.

Such standardized methodologies and frameworks provide structured guidelines and best
practices tailored to address a spectrum of potential threats and vulnerabilities. Frequently
used frameworks include the NIST Cybersecurity Framework [157], CIS Controls (formerly
SANS Critical Security Controls) [44], and ISO/IEC 27001 [109].

The NIST Cybersecurity Framework [157] is a product of the U.S. National Institute of
Standards and Technology. It offers a comprehensive structure, guiding organizations in the
direction of managing and reducing cybersecurity risks. The framework is divided into five
core functions: Identify, Protect, Detect, Respond, and Recover. Each function provides a
high-level, strategic view of an organization’s management of cybersecurity risk, allowing
for a broad perspective on organizational preparedness and response mechanisms.

The CIS Controls [44], developed by the Center for Internet Security, represent a more
specific set of actions that organizations should adopt to enhance their cyber defense posture.
Unlike the broader strategic focus of the NIST and ISO frameworks, the CIS controls provide
organizations with a granular approach, outlining specific defensive actions to tackle an
array of cyber threats. The controls encompass various areas, from inventory and control of
hardware assets to maintenance, monitoring, and analysis of audit logs.

Lastly, ISO/IEC 27001 [109] provides an international standard focused on information



1.1. BACKGROUND

1

11

security management. Rooted in a systematic approach, this framework emphasizes the
management of sensitive company information. Organizations that adopt this standard
are typically looking to ensure the confidentiality, integrity, and availability of their data.
Key elements of ISO/IEC 27001 revolve around assessing risks, establishing controls, and
continuous monitoring and improvement of the information security management system
(ISMS).

The implementation of cybersecurity frameworks and other associated information secu-
rity measures has become a significant financial investment. Adapting and integrating these
standardized methodologies is not merely a technical endeavor; it also entails considerable
monetary and human resources, and time commitments.

The magnitude of this investment is evident when looking at the broader industry
trends. Financial forecasts highlight the rising commitment of businesses to bolster their
cybersecurity defenses. Spending on information security and risk management products
and services is on a sharp incline. The market’s growth trajectory is set to continue, with a
predicted rise of 11.3% in 2023, leading to the global market surpassing $188.3 billion [87].

Clearly, the intention is to improve an organization’s security posture through investments
in the organization’s security. However, it remains unclear to which extent such investments
have their desired effect. This is mainly because security is a latent property that cannot be
measured directly, meaning that changes to it through means of security investment cannot
be determined in a straightforward manner.

1.1.2. MEASUREMENT OF SECURITY

The prevailing industry standard for determining level of security is based on two different
aspects: the behavior of other organizations, and degree of compliance to several standardized
security frameworks and best practices. Specifically, if many organizations gravitate towards
certain controls or frameworks, then they are assumed to be effective. For the compliance
aspect, firms verify whether the organization adheres to a number of predefined security
standards.

Alternative approaches have recently emerged that aim to measure security in a more
direct manner. Instead of relying on use of controls or adherence to frameworks, they
measure the resulting (malicious) activity that might be a consequence of all the technologies
and frameworks put into place by an organization.

A number of new risk rating services have emerged that take a more direct approach to
security and risk measurements. Such firms include SecurityScorecard [203], BitSight [29]
and Quadmetrics [118] (recently acquired by FICO [79, 147]). These risk-rating services
have their basis in research that has undergone validation through peer-reviewed publications,
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with the research conducted by Liu et al. [133] being a prominent instance. Instead of relying
on self-reported data, internal or otherwise, from client companies, these firms firms gather
externally accessible data such as misconfigured DNS, SMTP, and untrusted TLS certificates,
as well as data concerning malicious activities within the organization’s network (e.g., hosts
listed in various abuse blacklists). Subsequently, a classifier is trained using this data,
enabling it to predict, with a certain level of accuracy, which organizations are likely to
experience breaches (based on the large-scale breaches recorded in the VERIS Community
Database [238] and other public breach notification databases).

However, there are a number of issues that remain unaddressed. First and foremost,
while there seems to be a correlation between external measurements and breaches, causality
between the two has yet to be confirmed by independent research, calling into question the
feasibility of their endeavor. Furthermore, it is not clear how metrics derived from purely
external measurements compare to the security level derived from internal measurements of
an organization’s network.

This reveals the necessity of taking into account the internal state of networks when
observing external security signals, instead of relying on externally observable or publicly
reported data breaches. Such a window into the state of an organization’s internal network
can be found through controls that are installed to monitor said networks and detect threats:
intrusion detection systems.

1.1.3. NIDSS AND SOCS

One of the main lines of defense that organizations employ against internal and external
threats is the intrusion detection system (IDS). These are systems that attempt to detect
malicious activity that occurs within a network and raise alerts or drop network traffic when
such activity is detected. IDSs are classified by their placement and by the techniques that
are used for detection. As for the placement of an IDS, there are network-based, host-based,
and application-based intrusion detection systems. A network-based IDS (NIDS) is named
as such, because it is placed at a strategic point within a network and analyzes all network
packets it receives to detect attacks. It is generally a single, independent system whose
only purpose is to capture and analyze network traffic, allowing for the monitoring of large
networks.

Furthermore, depending on its method of detection, an IDS can be signature-based or
anomaly-based [146]: detecting malicious activity by means of rules that characterize known
malicious activity, or statistical- or machine learning-based techniques to identify deviations
from a network’s standard behavior, respectively.

Signature-based IDSs find malicious activity by matching it with a predefined set of



1.2. TOWARDS EMPIRICAL RISK ESTIMATION

1

13

patterns or events that are characteristic of known attacks. Although this technique certainly
is effective at detecting known attacks, it struggles at detecting novel attacks. This is because
a signature for the novel attacks is not available yet. Anomaly-based IDSs work with the
assumption that malicious activities behave differently than normal activities. By establishing
a baseline for normal behavior, it tries to detect the malicious activities by identifying these
differences. In this manner, it aims to detect not only previously-seen attacks, but novel
attacks as well. This approach is hardly perfect, with false positives being one of the major
drawbacks and point of contention [146].

Recent studies in network intrusion detection have increasingly leaned towards statis-
tical and machine-learning approaches [148, 209, 220]. Due to the necessity of manual
maintenance, both industry and academia have held the belief that traditional rule- and
signature-based techniques will not be able to match the pace of rapidly advancing threats,
thereby rendering them outdated. Nevertheless, these types of NIDSs can still be found
performing their tasks dutifully and effectively. Even though industry players have long
lamented their lack of quality [39], these systems remain a cornerstone of network security,
as evidenced by their continued use throughout SOCs globally [8, 120].

Oftentimes, NIDSs are maintained and managed by a security operations center (SOC),
which is composed of a team of security professionals and analysts. The SOC receives the
output from, e.g., NIDSs, and processes the alerts, investigates potential security incidents,
and provides incident response to maintain an organization’s network security.

Naturally, alerts produced by NIDS—if managed properly—say something about the
internal state of a network. There is much flexibility in the information that you can acquire
from an NIDS, as it all depends on what a rule is designed to detect. Network intrusions are
not the only occurrence that can be detected from analyzing network traffic. They can be
designed to detect numerous sorts of unwanted behavior, such as unauthorized or out-of-date
software use, suspicious web traffic originating from within the network, or other types of
network policy violations. Furthermore, they can be built to detect threats from both internal
and external sources. Such functionality is not only useful for reactive security in case of
an actual breach, but for proactive security efforts such as red, blue, or purple teaming [59].
Thus, MSSPs and organizations themselves can use NIDS data for processes such as internal
diagnostics and evaluations of network security and can launch investigations or deliberate
with the client in order to correct its cause.

1.2. TOWARDS EMPIRICAL RISK ESTIMATION
As opposed to previous work [133], which bases its predictions and risk estimations on large,
publicly-reported breaches to which organizations have fallen victim, internal SOC and
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Figure 1.1: A simplified version of a risk measurement pipeline. Previous work [133] predicts the
occurrence of large data breaches directly, thereby excluding the internal network items in the orange
area from their designs, and depriving analysts of the ability to make observations about the internal
state of their network.

NIDS data is much finer-grained and enables us to to look at the issues of incident prediction
and risk estimation from a new perspective. What previous work fails to mention, however,
is that these large-scale breaches are often the result of (persistent) malicious activity within
an organization’s network. Such malicious activity is likely recorded in the form of NIDS
alert and security incident logs. Figure 1.1 illustrates this. This internal malicious activity is,
thus, a precursor to large-scale data breaches. It not only provides information regarding
successful breaches into an organization’s network, but large collections of unsuccessful
breach attempts and lower-level malicious activity that takes place periodically within any
network. Hence, it provides a larger window into the internal state of its respective network.
Assuming the validity of previous work and that these types of breaches reveal information
regarding an organization’s security posture, it stands to reason that the findings will be
consistent when attempting this different, finer-grained approach.

Adequate risk estimation requires additional elements. We know that attacks are the
principal cause of incidents. However, the extent to which attacks translate into actual
incidents is moderated by an organization’s security and its exposure [162]. An organization’s
exposure can refer, for instance, to the size of its IP space, and the number of assets it owns
and/or operates. Thus, thoroughly measuring an organization’s exposure is vital to empirical
security and risk estimation.

As long as such accurate metrics are not developed and used in cybersecurity, securing
people and organizations will remain practically guesswork. This dissertation aims to move
us closer toward to that objective.
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1.3. RESEARCH GAPS
As stated in Section 1.1.2, empirical risk measurement as performed by the aforementioned
firms is substantiated by peer-reviewed work [121, 133]. Using exclusively external network
data, they are able to infer security risk information. While the predictive power of these
methods provides some evidence for their validity, they do treat the organization as a black
box. There is no way to tell whether these signals say anything about the internal state of the
network. Furthermore, the predictions are very coarse-grained: Liu et al. [133] distinguish
organizations that were victim of large breaches from organizations that are not, while
Kotzias et al [121] focus their analysis on a narrow range of signals (malware and potentially
unwanted programs). Introducing internal network data from NIDSs that is processed and
examined by SOCs into this problem can be used to study the links between external network
signals and the internal state.

Indeed, NIDSs and SOCs play a major role in this research. An NIDS and the rulesets
it employs are responsible for the detection of potentially malicious activity. They serve
as the window into the internal state of an organization’s network. However, NIDS alerts
are known to be considerably noisy [8], and although we know the rules and their design is
what is culpable for the noise, it is unknown what drives their quality. In fact, most of the
literature related to NIDS and its rulesets revolves around system performance metrics such
as CPU load, memory usage and packet loss [10, 63, 207, 246]. Additionally, managing
rulesets and processing alerts is a human task that also ultimately influences what a SOC
is able to “see” within a network. Thus, the non-technical processes that govern NIDS and
ruleset management are inseparable from the technical processes, since the latter is rooted
in the former. As of yet, we lack the knowledge regarding how SOCs ensure the quality
of the rules such that networks can be maintained secure and malicious adversaries can be
thwarted. This, in turn, allows us to understand how data from NIDSs and SOCs can be used
to create a picture about the security posture of organizations.

Much of the recent Internet measurement and security literature mentions or develops
novel methods of external asset discovery, which remains unused in this type of research.
However, it seems that a large portion of these techniques are created in a vacuum, fading
into obscurity as the novelty of the original paper diminishes. Still, these are techniques that
can be combined, and many of them chained one after another to extract a wide array of
an organization’s network assets. As the focus of the previous security incident prediction
and risk estimation work lies on external measurements, it is necessary to be able to create
the most comprehensive view of an organization’s Internet exposure. This makes the
aforementioned literature (and asset discovery methods detailed within) highly relevant to
this field of research, where previous work has focused on a limited collection of features
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and services [121, 133]. By compiling the largest possible collection of potentially relevant
external signals, similar systems can be implemented that are able to create much more
accurate risk estimations.

Altogether, we discover three main gaps in the current research: 1) we lack the knowledge
regarding state-of-the-art asset discovery techniques that are relevant for comprehensive
external network measurements, 2) we do not know the driving factors behind NIDS rule
and alert quality, limiting the value they provide regarding the internal state of the network,
and 3) it is unclear whether, and to which extent, external network signals are indicative
of the internal state of a network. We will conduct four research activities to address the
identified gaps.

Firstly, we will create a comprehensive compilation of state-of-the-art external asset
discovery techniques, and specify how to chain said techniques to extract the desired
network information. Secondly, we will analyze the rules used by NIDSs, what factors drive
their quality, the alerts they trigger, and the security incidents that the SOC investigates.
Thirdly, we examine the human aspects of SOC and NIDS management that determine
how security professionals ensure effective SOC operation. We do this by means of semi-
structured interviews that allow us to discover the heuristics and thought processes that SOC
professionals employ. And lastly, we combine these observations and insights and create a
predictive model that attempts to link external network signals to internal security events.

1.4. RESEARCH OBJECTIVE
This dissertation studies the feasibility of security incident prediction and risk estimation. It
examines how external network scan data can be leveraged to infer information about the
internal state of security of an organization’s network.

Thus, we formulate the following research question:

How can internal security incidents be predicted

through the leverage of external network signals?

In this dissertation, we lay the focus towards comprehending the relationship between
external network signals and the internal network state. Conducting this research requires
thorough examination of both of the aforementioned facets through the leverage of a mixed-
methods approach: discovering and compiling sufficient external network signals, and
understanding both the technical and non-technical aspects of internal security event detec-
tion and response. Specifically, the scientific contribution of this dissertation lies in tying
seemingly unrelated external network signals to the occurrence of internal security events
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detected within the network of organizations, thereby advancing the progression of empirical
risk estimation techniques.

Due to the nature of the overarching problem, this research requires different methods of
investigation. The exploration encompasses not only the technical aspects of cybersecurity
but also extends to the various actors involved. Security analysts whose heuristics and
thought processes affect the manner in which they examine security incidents, for instance.

Thus, this research is interdisciplinary from the offset. We look at how to develop a
new technology within an organization and its IT infrastructure, taking into account the
influence that the actors within that organization have on the systems being studied to create
that technology. We, therefore, utilize quantitative and qualitative analysis in tandem. The
chapters in this dissertation being based on research papers, each individual chapter will
expand upon its portion of the research methodology.

1.5. DISSERTATION OUTLINE
This section provides an outline of the dissertation. It describes the four studies that were
conducted, as well as the research questions posed. This section also presents an overview
of the peer-reviewed papers linked to their corresponding study and chapter.

STUDY 1
Asset discovery is fundamental to any organization’s cybersecurity efforts. Indeed, one
must accurately know which assets belong to an IT infrastructure before the infrastructure
can be secured. While practitioners typically rely on a relatively small set of well-known
techniques, the academic literature on the subject is voluminous. We systematize asset
discovery techniques by constructing a framework that comprehensively captures how
network identifiers and services are found. We extract asset discovery techniques from
recent academic literature in security and networking and place them into the systematized
framework. We then demonstrate how to apply the framework to several case studies of
asset discovery workflows, which could aid research reproducibility.

The research question addressed by this study is the following:

RQ1: How can an organization’s assets and controls be accurately identified
through external measurements?

STUDY 2
Ultimately, internal network security can only be measured by the occurrence of security
incidents, or lack thereof. And in cases of signature-based NIDSs, SOCs and analysts can
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only detect incidents for which they write a rule for. However, as threats evolve, so, too,
must an organization’s defenses. Hence, we study the NIDS operated by a major MSSP. We
use longitudinal datasets of the rulesets employed by the MSSP, the alerts that are triggered
by the rules, and the resulting security incidents that are investigated by the SOC to track the
evolution of rules and how such evolution affects detection performance and examine how
rule management processes are designed to achieve security. We perform in-depth interviews
with rule developers to corroborate the patterns found in our analysis. Finally, we identify
several rule management practices that influence rule and ruleset efficacy.

The research question addressed by this study is the following:

RQ2: How do security companies develop and manage NIDS rules to optimize
incident detection and improve security?

STUDY 3
Although existing literature has attempted to address the complications and shortcomings
within SOCs’ use of NIDSs (through automation and implementation of ML systems), none
have proposed solutions that address the root of the problem: the design and maintenance
of NIDS rules. Since this human aspect of security influences how effective a SOC is at
detecting incidents, it is crucial to understand the processes that govern it. What does the
organizational ruleset management process look like? What are the main factors and success
criteria in managing and evaluating NIDS rules and rulesets? How can security professionals
improve rule management and network incident monitoring workflows to optimize SOC
processes? To understand these processes, we conduct interviews with professionals who
work at MSSPs or other organizations that provide network monitoring as a service or
conduct their own network monitoring internally. We discovered numerous critical factors,
such as rule specificity and total number of alerts and false positives, that guide SOCs
in their rule management processes. We present several recommendations that address
these lower-level aspects to help improve alert quality and allow SOCs to better optimize
workflows and use of available resources.

The research question addressed by this study is the following:

RQ3: How do security professionals manage network incident monitoring
processes to achieve security?

STUDY 4
Recently, novel approaches have emerged that directly measure an organization’s security
using external network signals. While these approaches provide breach prediction and risk
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ratings inferred from external signals, no link is made to the internal state of organizations’
networks. Through our partnership with an MSSP, we acquire data on security events from
their clients’ networks, and SOC analysts. For the same period, we collect external signals
related to these networks. Employing a gradient booster classifier, we successfully predicted
the number of high-risk security incidents with high accuracy. Our results confirm the
predictive power of external signals for an organization’s internal security state, although the
sparsity of external signals significantly influences incident prediction.

The research question addressed by this study is the following:

RQ4: How can internal security incidents be predicted using external network
signals?

Table 1.1: Dissertation outline

Chapter Publication

Ch. 2 Vermeer, M., West, J., Cuevas, A., Niu, S., Christin, N., Van Eeten,
M., Fiebig, T., Ganán, C. and Moore, T. 2021. SoK: A Frame-
work for Asset Discovery: Systematizing Advances in Network
Measurements for Protecting Organizations. In Proceedings of the
2021 IEEE European Symposium on Security and Privacy (EuroS&P
’21), Vienna, Austria, 2021, 440-456, https://doi.org/10.1109/
EuroSP51992.2021.00037

Ch. 3 Vermeer, M., van Eeten, M., Gañán, C. 2022. Ruling the Rules:
Quantifying the Evolution of Rulesets, Alerts and Incidents in Net-
work Intrusion Detection. In Proceedings of the 2022 ACM on Asia
Conference on Computer and Communications Security (ASIA CCS
’22). Association for Computing Machinery, New York, NY, USA,
799–814. https://doi.org/10.1145/3488932.3517412
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S. 2023. Alert Alchemy: SOC Workflows and Decisions in the
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EXTERNAL ASSET DISCOVERY

Asset discovery is fundamental to any organization’s cybersecurity efforts. Indeed, one

must accurately know which assets belong to an IT infrastructure before the infrastructure

can be secured. While practitioners typically rely on a relatively small set of well-known

techniques, the academic literature on the subject is voluminous. In particular, the Internet

measurement research community has devised a number of asset discovery techniques to

support many measurement studies over the past five years. In this paper, we systematize

asset discovery techniques by constructing a framework that comprehensively captures how

network identifiers and services are found. We extract asset discovery techniques from

recent academic literature in security and networking and place them into the systematized

framework. We then demonstrate how to apply the framework to several case studies of asset

discovery workflows, which could aid research reproducibility. These case studies further

suggest opportunities for researchers and practitioners to uncover and identify more assets

than might be possible with traditional techniques.

2.1. INTRODUCTION
The bedrock of good security posture for any organization’s IT security is accurate knowledge
of which systems belong to its IT infrastructure. If a company does not know what systems
and software it is using, it cannot ensure their security and, therefore, cannot secure the
organization. All risk management strategies are predicated on having full visibility into
the organization’s assets. Hence, it is no coincidence that the first function in the NIST

21



2

22 2. EXTERNAL ASSET DISCOVERY

Cybersecurity Framework is to “identify” and the first category within this function is
“asset management” [158]. For the same reasons, the ISO/IEC 27001 information security
standard [11] requires the identification of assets that are associated with information and
information processing facilities, as well as keeping this overview updated.

While the need to identify assets is obvious, how to accomplish this identification in
practice is not. Organizations consistently struggle to keep a complete inventory of their
assets—and consistently fail to do so. (See [20] for a couple of particularly telling examples.)
Even a medium-sized organization can easily deploy tens of thousands of systems, software
platforms and applications. This asset inventory is constantly changing, with many changes
unplanned or unrecorded. This is further amplified by the problem of “shadow IT”: IT
systems that are “not known, accepted and supported” by an organization’s official IT
department [189]. All of this means that any centralized inventory of assets, such as those
prescribed in the Information Technology Infrastructure Library (ITIL) and ISO procedures,
necessarily contain errors and omissions. Automated techniques to identify these gaps are
therefore essential for defenders to adopt.

Asset discovery is not only a defensive activity, but also a crucial component of both a
red team’s and attacker’s process. Adversaries first need to know what they are targeting
and what they want to target, before they can start attacking systems. Furthermore, the
information deficit in organizations, as outlined above, means that attackers can get a serious
advantage by having an equally good or even better overview of an organization’s assets
than the defenders on the inside of the network.

For both sides, attackers as well as defenders, numerous techniques have been researched
and tools have been developed. Many of these techniques are integrated into various industry
toolchains and handbooks. However, the field of Internet measurement also blossomed
in recent years, and many new techniques have emerged that are not yet used or even
known by practitioners involved in asset discovery. The techniques are often developed
for other purposes, such as diagnosing network disruptions; they are often not explicitly
associated with asset discovery; and they are fragmented across different academic venues
and communities. Furthermore, in recent years, automation and commoditization of these
tools has also become prevalent, with offensive and defensive uses alike. Automated tools
and techniques to discover assets have been used to show just where asset management
fails—think of exposed systems showing up in search engines like Shodan or in the scans
of pen testers [9, 32]. While automated tools and services leveraging well-known asset
discovery techniques are widely available, many defenders may still not be aware of the
most recent techniques available to understand their network, and they may lack valuable
information on what capabilities for asset discovery attackers potentially have.
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In this paper, we fill this gap by surveying and systematizing new developments in asset
discovery, i.e., techniques that appeared in papers in 14 leading academic venues over the
past five years. Our goal is twofold: First, we provide an overview of recent techniques.
This exploration is time-consuming to acquire given that these techniques are spread out
over different communities and are often not explicitly associated with the concept of asset
discovery. In other words, we aim to lower the search costs for practitioners and researchers
to find techniques that they might use or that might be used against them. Second, we provide
a systematization of asset discovery techniques that illustrate how the different techniques
can be chained to each other for the development of toolchains. One technique’s outputs
are another technique’s inputs. We frequently also observe loops, in which an initial seed
of assets is snowballed into an expanded set, which can then become the seed for the next
cycle.

The objectives of the asset discovery process determine how to select and combine
various techniques. These objectives will vary across the use cases of system administrators,
security officers, red-teams, and actuaries. A pentester might only need to opportunistically
discover a few vulnerable assets, preferably via passive techniques, to gain a foothold in the
target organization. A system administrator, on the other hand, needs to find all Internet-
reachable systems in order to secure them and has no reason to avoid active techniques.
An actuary, determining the risk exposure of a potential cyberinsurance customer, needs
a discovery toolchain that can measure assets’ footprints reliably and consistently across
large numbers of organizations and can therefore not rely on including the inside knowledge
of system administrators in these organizations. One key aim of our systematization is to
support professionals in these use cases to improve their asset discovery processes.

We scope our work in two key ways. First, as mentioned above, we focus on the
Internet measurement techniques that are reported on in the last five years (2015–2019) in 14
academic venues. We therefore focus on techniques utilized in recent work. These methods
are often novel, but not always: if an older, more established technique is still valuable, it
could be utilized by the authors. Often, while asset identification is required to complete the
research, the paper’s novelty lies elsewhere. Hence, while we do not completely catalog all
asset identification techniques, we do comprehensively identify how asset identification is
being carried out by researchers today. The scoping around Internet-based techniques also
means that we focus on active measurement techniques, i.e., we exclude passive techniques
that require a privileged vantage point inside a network. This corresponds to our goal of
providing a comprehensive document for red-team members during engagements, and a
selection of techniques for organizations to understand the capabilities and visibility outsiders
can gain on their network.
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We provide the following contributions:

• We develop a framework that systematizes asset discovery techniques.

• We comprehensively survey asset discovery techniques extracted from academic
literature published in top networking and security conferences, as well as related
venues, and map these techniques onto the framework.

• We demonstrate how the framework can be used to construct workflows where tech-
niques can be chained together for asset discovery use cases.

Structure: We introduce our framework, important terminology, and our literature search
and systematization Methodology in Section 2.2.1. Subsequently we present our results in
Section 2.3, and illustrate our findings with case studies in Section 2.4. Finally, we discuss
our findings and conclude in Section 2.5.

2.2. SYSTEMATIZATION METHODOLOGY
In this section, we first define the necessary terminology and processes to delineate the scope
of our subsequent literature review. Our definitions include what we consider an asset, what
it means to discover an asset, and what the formal meta-process of discovering an asset
looks like. Next, we describe our literature review methodology and the steps we took to
conduct the survey presented in this work. Finally, we conclude the section by introducing
the notation we use for presenting the results of our survey.

2.2.1. TERMS AND DEFINITIONS

Assets The first item to define is the meaning of asset. When we turn to existing standard-
ization frameworks for a clear definition, we find that ISO/IEC 27001 in its 2005 revision
defines asset very broadly as “anything that has value to the organization.” Similarly,
the NIST framework regards as assets both hardware (“ID.AM-1: physical devices and

systems within the organization”) and software (“ID.AM-2: software platforms and ap-

plications”) [158]. These two definitions take two very different perspectives on the term
“asset”: The NIST framework focuses on “hard” assets, i.e., physical devices, systems,
software platforms and applications. Conversely, the ISO/IEC definition also includes “soft”
assets, such as information pertaining to the employees of an organization like job titles and
email addresses, or business and financial information. As our survey focuses on external
network measurements and new techniques to identify publicly-visible IT assets, we adopt
and rephrase the definition of NIST:
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Definition 1 We consider as assets: (i) all network identifiers, e.g., addresses, FQDNs, and

contents of DNS zones, and (ii) the network services reachable via these network identifiers,

defined by the protocol they are implementing, and any information they provide upon initial

connect in their banners, e.g., implementation names and version numbers.

We specifically consider as out-of-scope inferred properties of these assets, e.g., whether
a certain network service is vulnerable to an exploit (either based on reasoning about the
version number or attempting the exploit), inferring whether multiple network identifiers
point to the same physical or logical host, or whether multiple discovered network services
constitute a joint application service.

Asset Discovery Next, we define asset discovery.

Definition 2 The discovery of an asset means that the existence of an asset associated with

a specific organization becomes, for the first time, known to an entity.

This entails that the entity which discovers an asset has not been aware of its existence, and
that the discovery of an asset is independent of third parties knowing about the asset prior to
the discovery process.

Bootstrapping Next, the issue of asset discovery leads to the question of whose assets
are to be discovered. Going from our definition of discovery, we want to discover assets
that belong to specific entities. Depending on the asset discovery technique used, it might
be necessary to first manually discover and select assets connected to an entity, before the
technique can be applied. We call this step “bootstrapping” and define it as follows:

Definition 3 Bootstrapping is the process of obtaining the initial seed of information that

the asset discovery techniques require as input to discover assets.

The information selected in the bootstrapping stage differs depending on the objective. For
penetration tests or network monitoring, one searches a specific organization’s assets. For
benchmarking, risk profiling or risk prediction, the process might focus on the assets of
a whole sector or group of organizations. In general and especially for adversarial asset
discovery, the discoverer does not know a company’s address space in advance. Even in
the case of pen-testing, the organization might not have a complete understanding of all
addresses where assets reside, because of shadow IT, outsourcing and cloud infrastructure.

Starting with network addresses is a common, but certainly not the only, technique for
bootstrapping. It is relatively straightforward, as the organization name can be fed into
common search engines and databases that associate it with the addresses and networks
registered by the organization. Examples are querying databases that contain WHOIS,
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BGP [123, 134] or passive DNS [224] data for the relevant strings. Another example is using
a general search engine to find web domains containing an organization’s name [134]. Along
the same lines, one can search for specific strings in databases of SSL/TLS certificates, as
Bonkoski et al. do, to extract relevant domain names [33]. In case of a correct match, the
certificate will contain domain name information on the organization of interest.

Bootstrapping techniques using string matching have to contend with incorrect identifi-
cation. Organization names might not be unique, or overlap with other names. A match of
the name with a WHOIS record might thus incorrectly attribute the IP range of a similarly-
named organization to an organization in the asset discovery scope. At the same time, an
organization could own several network identifiers that cannot be matched with their name.
This, for example, occurs during mergers and acquisitions, when IP ranges that used to
belong to an acquired entity are still registered under the old name. Depending on the use
case for asset discovery, different strategies are needed to deal with incorrect identification.
We will discuss these in Section 2.4.

The asset discovery process Finally, from our definition of assets, discovery, the initial
bootstrapping step, and the premise of asset discovery via external measurement, we arrive
at a model for the formal asset discovery process, shown in Figure 2.1:

Definition 4 The general asset discovery process consists of an initial bootstrapping process,

feeding network identifiers into a recursive process to discover more network identifiers (to

be fed back into the process) and network services associated with these identifiers.

The initial discovery of network identifiers is restricted to the organization of which assets
should be discovered (0), which may then yield further associated network identifiers for
investigation (1). The discovery of network services associated with network identifiers (2)
is straightforward, i.e., one just checks for open ports on the network address (if the identifier
is an address) or resolves the identifier to a network address and then checks for open ports.
In addition to basic information on the network service, the banners of the detected open
ports may then reveal further network identifiers (3) or further network services (4). As per
our asset definition above, we explicitly leave out-of-scope the discovery of known software
vulnerabilities in discovered network services.

2.2.2. LITERATURE SEARCH PROCESS

Based on our earlier definition of assets, and the asset discovery process, we can now search
the scientific literature for methods and techniques informing or enabling the asset discovery
process. We scope our literature search to the major publication venues of Computer Security,
Network Measurement, and Network Operations from the past five years (i.e., 2015–2019).



2.2. SYSTEMATIZATION METHODOLOGY

2

27

Organizations Network
identifiers Network services Network service

characteristics
0 2

31 4

Figure 2.1: Framework for asset identification techniques. Each arrow represents a set of discovery
techniques. We highlight the scope of our work with the red dotted line. The inference of software
vulnerabilities, either by directly testing for them or by inferring them from version numbers, is the
next step after asset discovery and explicitly out of scope for our survey. See Table 2.1 for examples
for network identifiers and services.

Initially, four of the co-authors independently investigated 940 papers from five years
of a leading security conference, ACM CCS, and a leading networking conference, ACM
IMC. The researchers were tasked to identify papers that performed asset discovery. They
then sought consensus by discussing conflicts, i.e., papers not included or excluded by all
researchers. Because our research setting focused on achieving consensus, we opted to not
explicitly calculate intercoder reliability, consistent with the recommendations of McDonald
et al. [145].

Using the 32 selected papers, the entire team identified criteria for what constitutes asset
discovery, and hence the exclusion and inclusion of papers, and applied those criteria to
the remaining venues indicated in Table 2.2. We discarded papers clearly unrelated to the
subject based on the papers’ abstract. If the abstract and/or introduction of a paper indicated
usage of an asset discovery process, we searched the rest of the sections. In cases where we
did not find any asset discovery process, the paper was discarded.

In total, we found 93 papers that utilized asset discovery techniques. Notably, the
venues from which we select most papers are PAM and ACM IMC. This aligns with our
expectations, as both are venues focused on network measurements and novel measurement
techniques. Other networking venues, as for example USENIX NSDI and ACM SIGCOMM
saw generally fewer papers selected. This is related to those venues also featuring a major
fraction of non-measurement networking papers, for example, high-performance networking
related research. For security venues, the number of selected papers is again lower than for
the purely network measurement focused venues. Again, this can be explained by the more
diverse focus of these venues.
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Table 2.1: Examples for “Network Identifiers” and “Network Services” in Figure 2.1 encountered
during our literature survey. While the list of network identifiers is exhaustive, the list of network
services is not. The list only contains the network services that are explicitly mentioned in the literature.

Network identifiers Network services

IPv4 address Web server
IPv6 address Name server
Domain and subdomain Proxy server
Autonomous System Mail server
BGP prefix SSH server
IPv4 prefix FTP server
IPv6 prefix Cryptocurrency clients

VPN
Honeypot
CMS services
...

Table 2.2: Overview of the 93 papers we selected from six major security and seven networking
venues analyzed during the literature survey. IEEE/IFIP NOMS only takes place every second year.
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ACM CCS 128 6 137 2 151 2 134 0 177 2 727 12
IEEE S&P 55 0 55 0 60 1 62 2 84 0 316 3
ISOC NDSS 51 2 60 3 68 0 71 0 89 1 339 6
USENIX Security 67 1 72 2 85 2 100 4 113 1 437 10
RAID 28 0 21 2 21 0 32 1 37 1 139 4
IEEE/IFIP DSN 75 0 65 2 80 1 62 4 54 1 336 8
ACSAC 48 0 48 3 48 1 60 1 60 0 264 5

Networking

ACM SIGCOMM 40 0 39 0 37 0 40 1 32 1 188 2
ACM IMC 43 2 46 6 42 3 43 3 39 6 213 20
USENIX NSDI 42 0 45 0 46 1 40 0 49 1 222 2
USENIX ATC 47 0 47 1 60 0 76 0 71 0 301 1
IEEE/IFIP NOMS – – 222 2 – – 221 0 – – 443 2
PAM 27 4 30 1 20 2 20 7 20 0 117 14
TMA 16 0 16 2 29 0 34 1 35 1 130 4

Total 667 15 903 26 747 13 995 24 860 15 4,172 93

2.2.3. SYSTEMATIZATION SYNTAX AND STRUCTURE

The papers that we select for the systematization contain tools or techniques that can be used
for asset discovery. While some papers have an asset discovery tool or technique as the main
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contribution, many simply use discovery as a means to an end. To perform a meaningful
systematization and comparison of techniques, we have to transform this heterogeneous
body of literature to a uniform, comparable terminology.

We formalize each paper’s contribution to asset identification by identifying the cor-
responding edge it represents in Figure 2.1. We base this on our definition of the general
asset discovery process: all tools and techniques described in the selected papers work from
an asset as input, be it a network identifier, or network service. This input is then used to
execute any number of tasks, after which the tool or technique produces a certain output,
which again is one or multiple assets. In general, these processes can be represented in the
form, where # is the edge the process corresponds to:

#: input asset +3 discovery method +3 output asset

network_identifier network_identifier
network_service network_service

Take as an example the usage of zone walking to enumerate hosts in an IPv6 reverse
DNS zone [35]. This methodology relies on looking up an IPv6 prefix for an organization
and returns the zone’s entries as output. Both of these assets are network identifiers, hence it
corresponds to Edge 1 from Figure 2.1. In this case, the discovery method can be represented
in the following form:

1: IPv6 prefix ⇒ NSEC3 zone walking ⇒ addresses.

Each paper can include one or more such instances of techniques. Similarly, a paper can
also include an asset discovery technique that can be decomposed into multiple different
ones, each corresponding to an edge in Figure 2.1. Each sub-technique that results from this
decomposition is individually systematized. Tables 2.3-2.6 apply this syntax to all of the
literature discussed in Section 2.3. This framework allows us to create a clear overview of
different techniques in the literature, and perform meaningful comparisons between them.
Furthermore, it enables the easy chaining of techniques, as well as identifying opportunities
to combine techniques that have not yet been pursued.

2.3. ASSET DISCOVERY
In this section we present the systematization of techniques for asset discovery based on
the model illustrated in Figure 2.1. While many papers necessarily must first complete the
bootstrapping step mapping organizations of interest to network identifiers indicated in Edge
0, this step is invariably application-specific. Hence, we focus the remaining discussion on
the more generally applicable steps 1–4 involving the discovery of network identifiers and
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services. Each edge 1–4 is discussed in the respective subsections 2.3.1–4. The literature
is summarized using the systematization syntax in Tables 2.3, 2.4, 2.5, and 2.6, which is
discussed in Section 2.3.5.

2.3.1. DISCOVERING NETWORK IDENTIFIERS FROM NETWORK IDENTI-
FIERS – EDGE (1)

Network identifiers signal the exposure of a company network. As such, a great part of the
recent research has focused on developing new methods or extending well-known techniques
to discover resources. We first discuss techniques that use known network identifiers to
discover previously unknown identifiers. We group the techniques by the input asset, since
they are each processed differently. We will first discuss methods that use domain names as
an input, which are primarily concerned with DNS and passive DNS, as well as complications
that arise due to the use of Cloud-based Security Providers. Next, we explain how onion
URLs are processed differently than domains and IP addresses to discover network identifiers.
We then examine efforts using IP addresses (v4 and v6) as input, which integrate closely with
that of BGP prefixes, Autonomous System Numbers (ASNs), and the tools and datasets built
around them. Finally, we describe techniques specific to IPv6 address discovery. Because
full Internet scans are not feasible on IPv6 due to the much larger address space, new methods
are required to find active IPv6 addresses. Note that it is common to see techniques which
mirror others in terms of inputs and outputs.

When searching for network identifiers for a given organization, one common starting
point is the known domain names for the given organization. The purpose of DNS is
to resolve a given domain name to the server’s IP address. The use of DNS to derive
an IP address does not require special tooling. Thus, it provides a simple example of
using one network identifier to learn of another network identifier. Knowing the DNS
resolution for previous points in time is sometimes beneficial, as an asset may still exist at
the former IP address even if a domain does no longer points to it. Taking a domain as input,
Tajalizadehkhoob et al. [224] and Vissers et al. [242] suggest the usage of passive DNS
databases. These databases contain logs of DNS responses received by different resolvers.
The entries in the passive DNS database can be filtered using the provided domain name,
revealing the IP addresses that at one point in time were associated with that domain. Passive
DNS is not only useful for resolving IP addresses. Liu et al. [131] utilize a passive DNS
database to perform a wildcard search to find subdomains related to a domain. Their goal
was finding potential shadowed domains: subdomains of a legitimate domain that are under
the control of a malicious actor without the domain owner’s knowledge. The technique is
also relevant for the purposes of asset discovery. Furthermore, these additional subdomains
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Table 2.3: Our systematization of papers containing techniques under Edge 1.

Citation Edge Input asset Discovery technique Output asset Remarks

Domain Input
[65, 224] 1 Domain A/AAAA records from passive DNS IPv4/IPv6 addresses
[65] 1 Domain CNAME record from passive DNS Domain
[62] 1 Domain Extract A and AAAA from DNS ANY queries IPv4 and IPv6 ad-

dresses
[129] 1 Domain Use TLD zonefiles to get IDNs IP Uses TLD zones to get IDNs &

resolve names to IPs
[101] 1 Domain DNS Zone walking IPv6
[49] 1 Domain DNS logs IP
[27, 65, 88, 90, 122] 1 Domain DNS A/AAAA query IPv4/IPv6 addresses
[112] 1 Domain DNS A-record IP Leakage after terminating a

DDoS protection service
[65] 1 Domain DNS CNAME query Domain
[242] 1 Domain Resolve domains in DNS MX, TXT records IP address Names in MX/TXT RRs re-

solve to IP addr. behind a
CBSP

[242] 1 Domain Passive DNS search IP address Data from passive DNS may
reveal an IP hidden by a CBSP

[13, 64, 153] 1 Domain Passive DNS search IP address
[131] 1 Domain Passive DNS wildcard search Subdomains For example, *.domain.com
[194] 1 Domain ZDNS IP address
[202] 1 Domain Satellite tool IP addresses The tool discovers IP addresses

of used CDN infrastructure
[48] 1 Domain DomainScouter tool Domains Identifies IDNs; Add. checks

needed to confirm ownership
[242] 1 Domain Search domain in IP/SSL certificate pair collec-

tion; domain from certificate that resolves differ-
ently exposes real IP.

IP address Discovers the real IP that is hid-
den by a CBSP

[210] 1 Domain WHOIS AS
[95] 1 Domain DNS A queries from geographically distributed

vantage points
IP addresses Different IP addresses can be

returned for the same domain if
websites are hosted by CDNs

[143] 1 Domain CARONTE tool IP address Comb. of techniques to iden-
tify IPs of hidden services

IPv4 Input
[154] 1 IPv6 addresses 6gen algorithm IPv6 addresses Generates IPv6 Addr. candi-

dates from IPv6 hitlists
[85] 1 IPv6 addresses Entropy/IP IPv6 addresses Generates IPv6 Addr. candi-

dates from IPv6 hitlists
[22, 42, 52, 114,
173]

1 IP address CAIDA prefix-to-AS data mapping (pfx2as) AS

[64, 90] 1 IPv4/IPv6 pr. CAIDA prefix-to-AS AS
[176] 1 BGP prefix CAIDA AS-to-organization mapping dataset ASes Identifies ASes that belong to

the same organization
[178] 1 IP address Censys data query AS
[178] 1 IP address MaxMind AS data query AS
[91] 1 IP address CAIDA topology dataset search IP address Discovers IP address belonging

to the same router
[113] 1 IP address OpenINTEL historical active DNS dataset Domain Uses historic data; records

could be out of date
[42, 65] 1 IP address Reverse DNS dataset search Domain
[177] 1 IP address Zmap Domain
[90, 91, 175, 178] 1 IP address Reverse DNS query Domain
[93] 1 IP address TreeNET IP prefix
[92] 1 IP address WISE IP prefix
[22, 98, 123] 1 IP address RouteViews/RIPE RIS data BGP prefix
[51, 66, 84, 176,
251]

1 IP address RouteViews/RIPE RIS data AS

[225] 1 IP address MaxMind WHOIS dataset search IP addresses The output is the IP range be-
longing to the organization

[174] 1 IPv6 address UAv6 technique IPv6 address UAv6 is an alias resolution
technique for IPv6

[65] 1,2 Domain names Multiple probes to determine hosting Dom. names/IP
addr./srv.

Identifies multiple domains
hosted on the same IP

IPv6 Input
[81] 1 IPv6 prefixes Algorithm in paper IPv6 addresses Enumerates IPv6 reverse DNS

entries
[80] 1 IPv6 prefixes Algorithm in paper (using DNS NXDOMAIN) IPv6 addresses Enumerates IPv6 reverse DNS

entries
[35, 101] 1 IPv6 prefix Reverse zone scanning NSEC3 IPv6 addr./networks The output is a list of IPs in the

same IPv6 zone
[24] 1 IPv6 addresses Algorithm in paper IPv6 addresses Generates IPv6 Addr. candi-

dates from IPv6 hitlists

may in turn uncover additional IP addresses.

Domain owners and organizations sometimes try to protect their websites from threats,
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notably denial-of-service attacks, by using a Cloud-based Security Provider (CBSP) that
acts like a reverse proxy. In this scenario, the domain name is directed to an IP address under
the control of the CBSP. The CBSP will then proxy the HTTP(S) traffic to the source IP
address, where the web service is truly hosted, by using the domain in the HTTP Host header.
Plain DNS is not helpful in these cases for discovering “true” source IP addresses. Vissers et
al. [242] discuss several methods to discover source IP addresses of web servers which use
a network identifier as an input, including querying a passive DNS database as discussed
previously. Hiding the source IP address is problematic for protocols that do not contain any
host information, such as FTP and SSH. Instead of connecting directly through an IP address,
administrators can opt to create a subdomain that resolves directly to the source or “real” IP
address. A method mentioned by Vissers et al. connects to a subdomain to find such a service,
and subsequently discover the real IP address of a server. Another method proposed by the
authors trawls an Internet-wide collection of SSL certificates. Domains using CBSPs will
frequently have multiple certificates for the same domain hosted by different IP addresses,
one of which ends up being the true source IP. Yet another method proposed by Vissers et al.
involves DNS servers. Sometimes, DNS records such as MX or TXT records still reference
the source IP address that the CBSP is hiding [235]. By requesting these MX and TXT
records, the true source IP address for the web server can often be revealed even when the A
record is pointed to the CBSP [242]. Finally, Scott et al. develop a methodology and tool to
capture the IP addresses of Content Delivery Network (CDN) deployments used for input
domains [202].

Onion URLs are network identifiers used to host Tor hidden services while obfuscating
the server’s true IP address. Matic et al. introduce CARONTE, an automated tool to discover
location leaks that betray the source IP of Tor hidden services [143]. The automated tool
uses several techniques to find potential Onion URL to IP mappings. The tool extracts URLs,
email addresses and IP addresses from the page. The URLs and domains are resolved to
collect more candidate IP addresses. Additionally, CARONTE extracts unique strings from
the page and performs search engine queries containing that string. The domains of the pages
that contain this string are also resolved and the IP addresses are added to the candidate
IP collection. The tool also looks for potential identifiers in the leaf certificate of HTTPS
hidden services. The final techniques utilize a certificate repository. Websites and hidden
services hosted on the same server may share a certificate or public key. CARONTE searches
the certificate repository to see if the hidden service’s certificate or public key matches any
other websites, thus creating a leak. It then validates the potential IP addresses by visiting
each one directly without relaying through Tor nodes.

While IP addresses are often outputs of network identifier discovery methods, they can
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also be used as inputs. In a simple role-reversal, Gharaibeh et al. [91] and Cangialosi et
al. [42] utilize reverse DNS to obtain domain names from IP addresses.

IP addresses may also be mapped to their BGP prefixes or used to discover which
Autonomous System Number (ASN) it is routed through. Jonker et al. [114] seems to collect
BGP data and use an unspecified process to map each IP address to the most specific BGP
prefix containing the address. For those not interested in manually collecting BGP data,
RouteViews is a project by the University of Oregon which uses probes placed in different
places throughout the Internet to track BGP information and makes this information publicly
available [192]. RIPE RIS is a similar tool for tracking how the Internet routes traffic [190].

Both RouteViews and RIPE RIS have a variety of use cases for finding network identifiers
from another identifer, which are outlined below. Benson et al. [22], and Krenc et al. [123]
utilize RouteViews as well as RIPE RIS to find the announced BGP prefixes that correspond
to given queried IPv4 addresses. Chung et al. [51] and Foremski et al. [84] also use the
RouteViews dataset to derive the ASN from an IP address. Yeganeh et al. [251] utilizes
RouteViews in addition to RIPE RIS to accomplish the IP address to ASN mapping. CAIDA
uses the RouteViews data to derive a dataset which maps BGP prefixes (for IPv4 and IPv6) to
their respective ASNs, which saves on labor for some users; this dataset is commonly called
pfx2as [14]. Chung et al. [52] utilizes CAIDA’s pfx2as dataset to find BGP prefixes from
IPv4 addresses. Then they use that same dataset to map the prefix to the ASN. Benson et
al. [22] and Jonker et al. [114] also use CAIDA’s pfx2as dataset with the BGP prefixes they
previously obtained from IP addresses to determine to which autonomous system number
(ASN) they each belong. Cangialosi et al. [42], Padmanabhan et al. [173], also use CAIDA’s
pfx2as dataset to map IP addresses directly to ASNs.

As a last note on Internet topology discovery, Gharaibeg et al. [91] and Czyz et al. [62]
utilize CAIDA Ark data to find router interface IP addresses. CAIDA Ark is a measurement
platform which collects traceroute data for random portions of the Internet among other
measurements. Researchers may use this traceroute data to discover router IPv4 and IPv6
addresses. While this method of discovery is not as targeted to an organization as an active
scan of an organization’s known address space, one can still feasibly map a given router to
an organization if the organization’s address space is known.

Lastly, we discuss methods which are targeted directly at IPv6 addresses. Fiebig et
al. [80, 81], Beverly et al. [24], Hu et al. [101], and Borgolte et al. [35] all look specifically
at IPv6 hosts and use IPv6 addresses or (individual) IPv6 networks as inputs or outputs. The
methods developed by Fiebig et al. [80, 81] and Borgolte et al. [35] take a more technical
approach to the discovery process than previously discussed work. The authors develop a
technique to walk an IPv6 network’s reverse zone using either protocol level features of
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DNS [80, 81, 101] or by leveraging peculiarities of hashing in DNSSEC [35, 101]. The
work by Fiebig et al. utilizes differences in responses between DNS labels that do and do
not have children to prune the reverse zone search tree (NXDOMAIN). Similarly, Borgolte
et al. [35] leverage DNSSEC for exploring zones. DNSSEC allows operators to sign DNS
responses, in turn allowing clients to verify if a DNS response has been tampered with.
The issue here is the ability to prove the non-existence of records. DNSSEC does this by
returning a non-existence record listing the (alphabetically) previous and next entry in the
zone (NSEC), or hashed versions of these records (NSEC3). Borgolte et al. leverage the
structured nature of the IPv6 reverse zone to break NSEC3 hashes in reasonable time, thereby
allowing exploration of reverse zones. The network identifiers discovered by these methods
are a list of allocated IPv6 addresses. Foremski et al. [85] use entropy analysis and statistical
modeling from a known set of IPv6 addresses to create a tool that can generate a list of
additional possible IPv6 addresses. Related to the earlier efforts to directly discover IPv6
addresses, Murdock et al. [154] propose a technique that utilizes a so called “hitlist,” i.e.,
a list of allocated IPv6 addresses as, e.g., discovered by one of the previous techniques to
generate further IPv6 addresses that might be active based on the allocation pattern observed
in the hitlist.

2.3.2. DISCOVERING NETWORK SERVICES FROM NETWORK IDENTI-
FIERS – EDGE (2)

The techniques that correspond to this edge can be split up into two principal categories.
The first category consists of techniques that typically leverage databases such as (passive)
DNS and WHOIS by querying them, either actively or passively. It is one of the most
straightforward methods of identifying network services accessible through a network
identifier. Its range of network services is generally restricted to the types of records made
available through those protocols, such as name servers and mail servers (DNS NS and
MX records, respectively). These are well established protocols, and the data obtained
from these sources is often standardized or predictable. In the specific case of passive
databases, such as passive DNS, the data has been preprocessed, and researchers that use
this data benefit from that. They also enable researchers to conduct longitudinal studies due
to the large amounts of data that is collected over time. The second category is composed
of Internet-wide scanning techniques, which are necessary to address the aforementioned
shortcomings. The techniques described in this category utilize existing scanners, or create
custom tools or algorithms that identify network services. These techniques are necessary
because of the previous category’s limited scope in terms of discoverable network services
(essentially only web, mail, and name servers). As these techniques are not necessarily
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Table 2.4: Our systematization of papers containing techniques under Edge 2.

Citation Edge Input asset Discovery technique Output asset Remarks

Database Queries
[114] 2 Domain DNS A, AAAA, NS queries Web server, name

server
[225] 2 Domain Custom crawler tool CMS IDs cPanel, Plesk, DirectAd-

min, & Virtualmin instances
[65, 71, 86, 100,
122]

2 Domain DNS MX record query Mail server

[65] 2 Domain MX record from passive DNS Mail server
[65] 2 Domain NS DNS queries Name server
[65] 2 Domain NS record from passive DNS Name server
[134] 2 IP address Open Resolver Project dataset search Name server The dataset contains IP ad-

dresses of open resolvers
[132] 2 Domain WHOIS statistical parsing model Name servers WHOIS parsing using a statis-

tical model
[115] 2 IP address DNS query for hostnames under own domain Name server Identifies open resolvers

through successful name
resolution

Internet-Wide Scanning
[25] 2 IP address Censys/Shodan port 80 and 8080 scans Proxy server Identifies MikroTik routers

with enabled proxy
[247] 2 Domain Dmap Web server Uses DNS A/AAAA queries to

discover the network service
[247] 2 Domain Dmap Mail server Uses DNS MX queries to dis-

cover the network service
[225] 2 Domain Port 22 banner scan SSH server (version)
[71] 2 IP address Port 25 scan Mail server The scan on this port aims to

find a running SMTP service
[137] 2 Domain Port 443 scan for DNS-over-HTTPS paths Name server Discovers DNS server that of-

fer DNS-over-HTTPS
[62] 2 IPv4/v6 pairs Server sibling detection alg. from [23, 200] Multiple services Identifies IPv4/IPv6 multihom-

ing
[250] 2 IP address Angry IP scanner Multiple services Identifies protocols such as

SSH and Telnet on a host
[70] 2 IP address ZGrab Multiple services Application scanner with ban-

ner grab functionality
[236] 2 IP address ZMap scan on port tcp/7 Echo server Identifies servers running

ECHO using TCP SYNs
[218] 2 IP address Zmap scan on port tcp/21 FTP server
[137] 2 IP address ZMap scan on port tcp/853 Name server Discovers name servers that of-

fer DNS-over-TLS
[163] 2 Domain Custom Java tool Web server Tests HTTPS connectivity
[135] 2 IP address ZMap scan on port tcp/8080 Bytecoin client
[135] 2 IP address ZMap scan on port tcp/8333 Bitcoin client
[3, 88, 199, 219] 2 Domain ZMap scan on port tcp/443 Web server
[125] 2 Domain Censys cert scan Web server
[178] 2 IP address ZMap scan on port 53 Name server Send DNS A query to verify a

port is offering a DNS service
[3] 2 IP address ZMap UDP scan on ports for IKEv1 and IKEv2 VPN Scan ports for IPsec IKE proto-

cols to find VPNs
[88, 89] 2 IPv6 address ZMapv6 scan on tcp/80,443, and udp/53,443 Web server, name

server
ZMapv6 is ZMap with IPv6
scanning capabilities

[128] 2 IP address ZMap for DNP3, Modbus, BACnet, Tridium Fox,
and Siemens S7 protocols

Industrial control
system

[19] 2 IP address ZMap on ports 25, 110, 443, 465, 587, 993, 995 Web server, Mail
server

Ports correspond to email re-
lated services

[181] 2 IP address Censys port 443 scan data Web server
[194] 2 IP address ZMap with custom QUIC extension QUIC services
[12] 2 IP address TCP ping for ports used by various protocols Multiple services
[152] 2 IP address ZMap scan; analyze sigs. in fetched banners Honeypot Discovers/identifies honeypots;

(From IEEE/IFIP INM)
[31] 2 IP address Search IP in botnet population Bot services Creates a botnet churn simula-

tor
[58] 2 IP/Dom./URLs Scans of S3 buckets S3 buckets Identifies misconfigured/public

Amazon S3 buckets
[156] 2 IP address Active probes Service (reverse

proxy)
Identifies reverse proxies using
TCP fingerprinting

[214] 2 IP/MAC addr. Layer 2 and 3 timing probes SDN service Uses timing attacks to identify
SDN services

[65] 1,2 Domain names Multiple probes to determine hosting Dom. names/IP
addr./srv.

Identifies multiple domains
hosted on the same IP

[105] 2,3,4 IP/MAC addr. nmap/arpscan + HW side-channels IP/MAC addr. Identifies HW colocation on
public cloud platforms

restricted by the specifications of existing protocols, they widen the search space and give
researchers more freedom to find the network services necessary for their research. This
is important for asset discovery, as there exists a plethora of additional network services
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that can be running on an organization’s network, with many more that will be developed in
the future. Techniques corresponding to this edge can be found in Table 2.4. We start by
discussing the first category of techniques.

As noted in the previous section, DNS is used extensively in Internet measurement
research. It also proves useful in identifying network services. Such techniques correspond
to the first category. Many authors use DNS queries to discover network services. Jonker
et al. [114] and Dell’Amico et al. [65] query name servers using a certain domain name
and extract A, AAAA, and NS records to identify web servers and name servers. Similarly,
Foster et al. [86], Durumeric et al. [71], Dell’Amico et al. [65] and Kountouras et al. [122]
query for MX records in order to identify mail servers.

Some DNS servers provide recursive name resolution services to any user on the Internet,
either on purpose or by accident. Such servers are called open resolvers. Liu et al. [134]
describe a method that queries Open Resolver Project data [170] using an IP address to
discover whether an open resolver is accessible through that address.

Querying WHOIS is also widely employed, but automatic parsing of such data remains
an issue due to the lack of format standardization [132]. Liu et al. develop a statistical
model for parsing WHOIS data that takes a domain as input, enabling users to automatically
extract the addresses corresponding to a queried domain’s name server [132]. The authors
report an accuracy for parsed fields of over 99% for com domains. For TLDs outside of com,
the accuracy decreases, although a specific number is not given. For instance, the model
mislabels 16 out of 127 fields in emheartcu.coop’s WHOIS record.

The second category will be discussed below, which includes Internet-wide scanners
and other custom tools. Most of the papers discussed here specifically involve Internet-wide
port scanning and use the same scanner to discover network services, namely ZMap [72].
Since its introduction, ZMap has been ubiquitous in Internet measurement research. ZMap
is a network scanner specially designed to enable fast Internet-wide scans [72]. The authors
highlight three optimizations that allow it to perform such scans at a much faster rate.
Firstly, ZMap does not throttle its transmission rate to avoid saturating the scanned or
scanning network. Instead, ZMap sends messages as quickly as the network interface card
permits. Furthermore, ZMap does not maintain state for each connection to track its scanning
progress. Since the goal is to scan random portions of the address space, the scanner avoids
storing previously scanned addresses by making use of randomly permuted IP addresses
to select targets. It tracks connection timeouts by embedding state information in packet
fields. Finally, ZMap opts not to retransmit lost packets. While this results in a 2% loss of
network coverage, the authors view this to be an insignificant amount “for typical research
applications.” [72]
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Researchers use this tool to identify network services accessible through domains or IP
addresses. Adrian et al. [3], Springall et al. [219], and Scheitle et al. [199] scan port 443
on a host to identify web servers that support HTTPS. Durumeric et al. use ZMap scans
on port 25 to find mail servers running SMTP [71]. Adrian et al. also use ZMap’s UDP
functionality to probe ports for IKEv1 [96] and IKEv2 [116] to find IPsec VPNs. Loe and
Quaglia find hosts running Bitcoin and Bytecoin clients by using ZMap to scan ports 8333
and 8080, respectively [135]. Springall et al. also use ZMap to scan port 21 in order to
to discover FTP servers [218]. Lu et al. scan port 853 to discover DNS servers that offer
DNS-over-TLS [137]. Morishita et al. use ZMap to scan IP addresses on a large collection
of ports. From the responses to the scans, they extract the banners and create signatures that
allow them to accurately detect and discover different versions of honeypots [152]. Finally,
Gasser et al. use ZMapv6 in their study, a variant for scanning IPv6 addresses. They perform
TCP scans on ports 80 and 443, as well as UDP scans on ports 53 and 443 to discover web
servers (potentially using the QUIC protocol [111]) and DNS servers [89].

While ZMap is used for network service discovery using port scans, it is not able to
discover any specifics about the network service. Thus, if such custom functionality is
desired, users need to develop a custom ZMap toolchain of their own. For instance, Adrian
et al. implemented the SSH protocol in the ZMap toolchain to examine the version and
Diffie-Hellman cipher usage in SSH servers, and also added DHE and DHE_EXPORT ciphers
to discover HTTPS servers using TLS that support these ciphers [3]. Similarly, Scheitle et al.
first use ZMap to discover HTTPS servers on port 443, after which they employ a custom
TLS scanner to examine the corresponding TLS certificates. While Springall et al. discover
FTP servers using standard ZMap functionality, they needed to implement a custom FTP
enumerator to perform a connection and extract information from the server.

Durumeric et al. developed another scanning tool called ZGrab [70], which is an
application scanner that scans ports on a host to discover what services are running on
said host. At the time of publishing, ZGrab supported scanning of IP addresses in order
to identify services such as HTTP, HTTP Proxy, HTTPS, SMTP(S), IMAP(S), POP3(S),
FTP, CWMP, SSH, and Modbus by means of protocol handshake initiations. This tool is
extensible, meaning that custom protocols can be added if necessary. ZGrab has since been
deprecated and replaced by its successor, ZGrab2 [231]. As an improvement over ZGrab,
ZGrab2 allows users to scan targets on multiple ports using multiple protocols.

Wullink et al. develop a scanning tool of their own that discovers network services [247].
Their tool, Dmap, takes domain names as input and discovers whether any DNS, HTTP,
TLS, or SMTP services are accessible through that domain (or IP corresponding to that
domain), using three crawlers. The HTTP crawler attempts to connect the website hosted
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on the domain, thereby discovering a web server. Apart from A, AAAA, and TXT records,
the DNS crawler extracts MX records to discover the mail server corresponding for the
input domain. The SMTP crawler attempts to connect to the discovered mail server address
through both IPv4 and IPv6 addresses, if available.

Censys [43] and Shodan [208] are search engines that employ such Internet-wide network
and application scanners to collect data about devices that are publicly accessible on the
Internet. In fact, ZMap itself is the scanner behind Censys [70]. Bijmans et al. use Censys
and Shodan scan data on ports 80 and 8080. By querying the data with IP addresses, they
discover whether that IP address belongs to a router (specifically the MikroTik brand) with
its proxy functionality enabled [25].

Other researchers opt to create custom tools tailored to their own specific needs. Tajal-
izadehkhoob et al. discover the presence of admin panels on a server by taking a domain
and crawling the ports that are usually associated with cPanel, Plesk, DirectAdmin, and
Virtualmin [225]. To improve measurement performance, they instructed the crawler to
navigate to the URLs that are often used by these admin panels (e.g., /panel/).

The following works use techniques from the two different categories to achieve a goal.
Czyz et al. utilize data from Internet-wide DNS ANY queries to extract A and AAAA
records corresponding to the same domain name [62]. By probing the obtained IPv4 and
IPv6 addresses, they identify the network services accessible through these addresses (e.g.,
SSH, Telnet, HTTP, among others). The authors found many IPv6 misconfigurations, where
services were accessible through the IPv6 address but not the IPv4 address, presumably by
accident. The implication of this finding is that you can determine what network services are
offered on an IPv4 address by observing a multi-homed IPv6 address.

However, determining whether an IPv4 and IPv6 address pair actually point to the same
server is not straightforward. Several authors have developed techniques for making this link.
Beverly and Berger developed a TCP-layer fingerprinting approach that probes IPv4/IPv6
address pairs and utilizes TCP Options signatures and TCP timestamp skew to determine
whether the address pair points to the same server [23]. Scheitle et al. developed a similar
algorithm, but taking more features into account, such as network latency, TTL values, as
well as other calculated features [200]. By combining either of these approaches with the
findings from Czyz et al. [62], it is possible to discover the purpose of (and, therefore, the
network services offered by) an IPv4 address, even though the service is not accessible
through the IPv4 address.
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Table 2.5: Our systematization of papers containing techniques under Edge 3.

Citation Edge Input asset Discovery technique Output asset Remarks

Reverse Information Flow
[242] 3 Mult. services Access net. service without explicit host info IP address Real IP leaked if a service on a

subdomain behind CBSP lacks
protocol information

[97] 3 Name server Query open resolver for v6only zone IPv6 address Identifies IPv6 addresses of
open resolvers

[105] 2,3,4 IP/MAC addr. Probing (nmap/arpscan), HW side-channels IP/MAC addr. Identifies HW colocation on
public cloud platforms

Misconfigurations
[130, 242] 3 Name server Dictionary attack Domains Only the domains in the used

dictionary file are discovered
[130, 242] 3 Name server DNS zone transfer Domains Only works if the DNS server

has enabled zone transfers
[242] 3 Web server Trigger outbound connection from web server IP address Return traffic not going

through CBSP exposes the real
host

2.3.3. DISCOVERING NETWORK IDENTIFIERS FROM NETWORK SER-
VICES – EDGE (3)

Edge 3 encompasses techniques that leverage information from network services, such as
DNS records, to discover network identifiers, such as IP addresses. Notably, this is the only
edge that uses a higher level attribute to infer a lower level one, as illustrated in Figure 2.1.
Some of the techniques discussed here are similar to those employed in Edge (1), except that
the flow of information could be reversed, or a new flow may result from a misconfigured
service. For example, more than simply resolving domain names to IP addresses (Edge (1)),
DNS can be used to discover new network identifiers (Edge (3))–a difference we will
illustrate below. Edge 3 techniques typically seek to discover origin IP addresses (i.e.,
the real network location of a service situated behind a content-delivery network or other
cloud-based service provider), and do so by leveraging potentially misconfigured services
and/or their byproducts (e.g., files these services create).

In their comprehensive study of techniques to bypass cloud-based service providers
(CBSP), Vissers et al. describe several Edge (3) techniques, as they seek to expose the origin
IP address of a CBSP-protected domain. An attacker with knowledge of the origin IP address
can in turn completely bypass any CBSP protection, as traffic sent to that address would
not be routed through the CBSP security infrastructure [242]. The first technique involves
leveraging DNS records associated to services that may be running in the host, such as mail
servers. For instance, if a CBSP only forwards HTTP traffic, SMTP will need to establish a
direct connection with the mail server, thus leaking the origin IP address. Rather than just
performing identifier-to-identifier resolution (domain to IP), a network service (SMTP) here
provides us with a new identifier (origin IP). A second method described by both Vissers et
al. [242] and Liu et al. [130] uses the zone transfer functionality of (misconfigured) DNS
servers (network service) to obtain zone records (network identifiers). This is possible when
an attacker pretends to be a secondary DNS server and asks a main DNS server for zone
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records. Unless the main DNS server has restricted zone transfers, it will oblige and send
the records to the attacker.

A third set of techniques rely on potentially specific misconfigured services that may
exist in the host that leak the IP addresses through a variety of ways. For instance, Vissers et
al. note how “sensitive files” (e.g., verbose error pages or log files, such as phpinfo() files)
revealed by misconfigured services could cause a leak [242]. Similarly, non-web protocols
may also be a concern when improperly handled. Some cloud-based service providers act as
a reverse proxy and rely on HTTP Host headers to separate requests for different clients.
Hence, protocols that, unlike HTTP, do not contain Host information (such as SSH) may not
be supported. Then, administrators may elect to create subdomains for non-web protocols
which directly resolve to the origin IP address – effectively bypassing voluntarily any CBSP
protection. A dictionary-based attack of common subdomains could then, easily be used to
retrieve the origin IP address [242]. Services that trigger outbound connections can cause
similar issues, as the connections may not be routed through the CBSP and leak the origin
IP address.

2.3.4. DISCOVERING NETWORK SERVICES FROM NETWORK SERVICES –
EDGE (4)

Table 2.6: Our systematization of papers containing techniques under Edge 4.

Citation Edge Input asset Discovery technique Output asset Remarks

DNS Based Discovery
[155] 4 Name server Authoritative name server discovery technique Name server Identifies auth NS from apex

and NS records in the child
[6] 4 Name server DNS query for hostnames under own domain Name server Identifies outbound addresses

of (open) resolvers
[7] 4 Name server DNS query for hostnames under own domain Name server Identifies open resolvers shar-

ing a cache
[119] 4 Mail server Send email to inexistent dst. in target domain Name server Uses email bounces to identify

recursive resolvers of MTAs
[198] 4 Mail/DNS srv. Send email from domain with auth. NS control Name server Identify recursor used by MTA

due to triggered SPF check

Other
[179] 4 Web server Port scans using server-side requests Multiple services
[237] 4 Web server Prober bash script tool Multiple services Discovers protocols on a server

with ALPN/NPN
[105] 2,3,4 IP/MAC addr. nmap/arpscan + HW side-channels IP/MAC addr. Identifies HW colocation on

public cloud platforms

As described in previous sections, DNS is fundamental to asset discovery. Similar to
Edge (3), we will describe several techniques based around DNS server functionality. In
fact, most of the techniques in this section are DNS-based. While DNS techniques under
Edges 1 and 2 focus on asset discovery through DNS queries (e.g., A/AAAA, MX, NS), the
techniques described here involve the inner workings of the DNS protocol and the network
service itself. It is often of interest to discover an organization’s internal infrastructure of
DNS resolvers. Due to its fundamental role, DNS security remains an important topic both
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in industry and research communities. The other techniques mentioned in this section cannot
be grouped into a single category, as they use different methods and discover different assets.
We start by describing the DNS-based techniques.

Al-Dalky and Schomp [7] devise a method to discover name servers by leveraging how
the servers collaborate during resolution. The authors set up two instrumented hostnames
and send two queries to the authoritative name server of their own domain. If the resolver is
part of a pool of collaborating name servers, the two queries may arrive at the authoritative
name server from two different IP addresses, revealing a previously unknown name server.

Al-Dalky et al. [6] scanned the IPv4 address space to discover DNS resolvers by sending
crafted DNS requests for hostnames from their own domain and recording the queries
arriving at their experimental authoritative server. When a DNS resolver receives a request
with domain names specified, it needs to query name servers unless it is already cached from
serving a prior request. By setting up researchers’ own name servers, the researchers are able
to get the message out of DNS resolvers, allowing them to understand how DNS resolvers
work. In this case, they also configured the name servers to only respond to queries with the
EDNS0-Client-Subset (ECS) option set to discover DNS resolvers using ECS.

Schomp et al. [201] developed a set of methods to discover client-side DNS infrastruc-
ture. Similar to Al-Dalky et al. [6], they also registered their own authoritative domain and
deployed their own authoritative DNS to probe the IP address space by sending crafted DNS
requests to potential DNS resolvers and receiving the data from DNS resolvers to their name
servers. Again, the DNS requests they send out attempt to resolve various hostnames within
their own domain, so the DNS recursive resolvers, which are out of their control, will query
the name servers as specified in the original DNS requests, arriving to the name servers the
researchers have control of. The difference is that they studied the IP addresses arriving at
their authoritative name space to find recursive DNS egress resolvers as well as open DNS
ingress servers to gain a deeper understanding of different DNS resolvers.

Klein et al. [119] used a similar probing strategy to Schomp et al., but furthered the
device discovery process to find hidden caches used in DNS infrastructure. Apart from
directly sending DNS requests to open resolvers, they also used web browsers and mail
servers to generate DNS requests. The former was achieved by embedding a script in
an ad network page and attaching it to a static URL. The latter involves sending emails
to non-existing email addresses in the target domains. To be compliant with the SMTP
standard, email servers are required to generate a Delivery Status Notification (DSN, or
bounce) message to the originator, and the server has to perform DNS resolution to generate
the bounce message. The responses from DNS resolvers sent to researchers’ name servers
contain the data for discovering DNS services.
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Scheffler et al.[198] leverage the functionality of both mail and name servers. The Sender
Policy Framework (SPF) was developed to combat spam by verifying the identity of senders.
In SPF, valid mail transfer agent (MTA) IP addresses are listed in a TXT record in the
organization’s domain. The authors set up their own domain and sent out emails as part of
their measurement methodology. When the emails arrive at an MTA, they trigger an SPF
check. The MTA’s resolver then queries your authoritative name server, thereby revealing
the IPs of those DNS resolvers.

Naab et al. [155] implement a custom DNS resolver that uses QNAME minimization
to discover all of the available authoritative name servers within a queried zone. QNAME
minimization [36] was developed to improve privacy by not sending the full original DNS
query name (QNAME) in each query. Instead, name servers are only queried for the domain
level they are responsible for. Their custom DNS resolver queries all available authoritative
name servers for each zone in the domain using three different methods. It extracts name
servers from the name in delegation (NS) records and from the IP addresses contained within
glue (A) records. Lastly, name servers are extracted from all other NS records in the zone
apex.

Pellegrino et al. [179] uses the server-side request functionality of a website running on
a server. One can provide to a web server, for instance, a request containing the URL and
port that one wants to probe. The web server then performs the server-side request to the
provided URL and port. When the web server fails to parse the probed server’s response as
HTTP, it returns an error message. These error messages can in turn reveal which services
are running on the probed server, such as the software running on the probed port or which
service is running on the probed port.

Finally, Varvello et al. [237] create a bash script Prober to scan for multiple network
services. Prober uses OpenSSL to perform ALPN and NPN negotiations on web servers. It
does this to discover numerous protocols that might be announced by the server.

2.3.5. SYSTEMATIZATION SUMMARY

Tables 2.3 to 2.6 contain the systematization of the literature performed for this survey. Note,
that one paper might occur in multiple lines if it uses multiple techniques, and multiple
papers may appear on the same line, if they use the same asset discovery technique. The
Edge column corresponds to the edge number in Figure 2.1. Furthermore, the techniques
presented in the table follow the systematization syntax described in Section 2.2.3.

A simple, but interesting, observation is the significant underrepresentation of network

service-to-network identifier and network service-to-network service (Edges (3) and (4)),
when compared to the other two types of asset discovery techniques. Much of the surveyed
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literature deals with Internet measurement. Given its nature, the initiation of this type of
research necessitates basic network identifiers, such as IP addresses and domains. This
logically leads to an overrepresentation of asset discovery techniques that take a network
identifier as input.

The techniques used in Edge (1) can be roughly grouped into three groups: discovery
using 1) passive data sources, 2) functionality of existing technologies and infrastructure,
and 3) novel algorithms making use of existing technologies. CAIDA prefix-to-AS and
RouteViews data seem to be the standard choice for discovering BGP prefixes and ASs.
Both passive and active DNS are widely used in academic research.

Edge (2), discovering network services using network identifiers, is the second overrep-
resented edge. A significant amount of the discovery techniques described in the literature
revolve around the network scanner ZMap.

Edges (3) and (4) use network services to discover network identifiers and more network
services, respectively. Most of the techniques associated with these two edges involve the
usage of flaws in configuration or the technology itself.

2.4. APPLYING THE ASSET IDENTIFICATION FRAMEWORK

TO CASE STUDIES
Having mapped the literature onto the various edges of the asset identification framework,
we now illustrate its use by applying that framework to several case studies. In the previous
section, we extracted the particular edge that researchers used in their work. Here, we
construct sequences of edges into paths indicating different asset-discovery processes from
beginning to end.

External estimation of enterprise cyber risk A slew of firms, such as Security Scorecard,
QuadMetrics, Bitsight, and CyberCube, now offer external assessments of enterprise cyber
risks. Their tools provide quantitative scores based on externally observed network charac-
teristics. For these scores to be valid, they first need an accurate asset inventory for the target
organizations, which they have to obtain without the organization’s cooperation.

While the methods employed by these firms are proprietary, we can glean some in-
sights into their approach by studying the academic papers published by the founders of
QuadMetrics [134, 253]. For the bootstrapping phase (Edge (0)), the authors used data
from regional Internet registries to identify all the organizations asserting ownership over IP
address space. From there, they associate the advertised IP addresses with each organization.
They supplement this by searching for the organization’s domain name on a search engine
(Edge (0)), then resolving the domain to its IP address and identifying the subnet on which
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the IP address resides (Edge (1)). This in turn identifies more IP addresses belonging to the
organization.

Because the researchers’ goal is to identify network misconfigurations [34, 67] that
could lead to a security breach, they identified network services where misconfigurations
could readily be identified. This included identifying open DNS resolvers (Edge (2)) that
could be used in DDoS amplification attacks. They also went beyond the identification
of services to identifying weaknesses, including BGP misconfigurations and problematic
HTTPS certificates, and open SMTP relays.

Take-away: We now have a standardized view into what these researchers did to identify
assets. Others carrying on similar efforts could improve upon their findings by utilizing
more Edge (1) and (3) actions from the Tables 2.3 and 2.5. The authors’ choice of Edge (2)
actions reflects their underlying goal of identifying security misconfigurations that may be
predictive of future breaches, so it is not as clear whether the efforts would benefit from
identifying additional network services.

Understanding IPv4/IPv6 security configuration inconsistencies A more research-driven
problem is an investigation of configuration inconsistencies between IPv4 and IPv6 in dual-
homed hosts. With the global IPv4 address exhaustion, more and more organizations start to
deploy IPv6 on their networks. However, this opens the door to simple misconfigurations,
where access policies differ between IPv4 and IPv6, as—depending on the platform—firewall
configurations have to be configured in other places than for IPv4 [67].

To investigate this issue, we can either start with the exploration of IPv4 or IPv6 addresses
of assets for all organizations connected to the Internet (Edge (0)). As soon as we identified
IPv4 or IPv6 addresses, we can start “matching,” i.e., identifying corresponding IPv4 or
IPv6 addresses (Edge (1)). This can be done by resolving the reverse DNS entries of the
identified addresses, and subsequently resolving the corresponding A/AAAA RRs of the
returned hosts (Edge (1)). As soon as we identified a set of dual homed hosts, we can explore
the available services on these hosts (Edge (2)). This service exploration can then be used
to further refine our network resources list, e.g., by checking that services running on the
identified IPv4 and IPv6 addresses present the same banners (Edge (3)).

Take-away: By using the proposed framework, we can formalize the discovery process of
assets. Especially for the procedure of identifying multi-homed hosts, it provides clarity
on what we want to discover using which means. More fundamentally, the asset discovery
procedure as outlined in this paper provides a guideline from which researchers can start to
design their discovery procedure. The seemingly obvious choice of what to start (IPv4 or IPv6
addresses) becomes more evident as an and-choice, not an either-or-choice. Furthermore,
the option to utilize services to further refine the selection of multi-homed hosts seems
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obvious when using our framework. Nonetheless, earlier work did not directly utilize this
option when conducting such a study, and only focused on address discovery using DNS
(Edges (0) and (1)) [62].

Discovering IoT services Since Nmap creator Gordon “Fyodor” Lyon scanned “the entire
Internet” in 2008 [140], replicating this feat has become commoditized. Nowadays, we have
services and tools that literally save days of scanning networks, either by speeding up the
process or simply providing the list of open ports as a service. These services have recently
specialized in the identification of Internet-enabled devices that are openly accessible, the
so-called, Internet of things (IoT). Based on similar principles as Nmap, multiple online
search engines have emerged providing identification of services running on IoT devices
such as Shodan.io, Zoomeye.org and Fofa.so.

The starting discovery technique of these engines is quite simple, i.e., they take IPv4
addresses and identify any service running on that address (Edge (2)). Once all these
services are identified they store any metadata related to the open service(s). After the initial
exhaustive discovery data storage are completed, these tools allow to search for any Internet
device, filtering by date, location, ports, protocols, operating system, and much more. All
these different network resources and services are indexed in an online search engine which
allows the researcher to discover resources and services over all edges of our framework.
Taking Shodan [208] as an example, we can map the network resources of any organization
by entering its name (Edge (0)). This search will identify a set of network resources that can
be used to identify more network resource (Edge (1)) and/or network services (Edge (2))
simply clicking on the identified resources. Shodan also allows searching for a particular
network service (e.g., UPnP) which will discover additional network resources (Edge (3))
and network services (Edge (4)) that have that port open. Moreover, as Shodan also stores
banner and protocol communication information for openly accessible network resources, it
allows characterizing network services and thus identifying IoT devices.

Take-away: By scaling up a simple tool introduced in 2008, we can now identify services
running in any openly accessible IoT device. Unfortunately the techniques behind these
tools do not scale up for IPv6 connected devices. By leveraging IPv6 discovery techniques
from Table 2.3 such as [81] and scan data as collected by Shodan [208], researchers could
further identify more services running on IoT devices.

Illicit marketplace forensics Since the early 2010s, illicit online anonymous marketplaces
[50, 217] have experienced rapid economic growth. Due to the very nature of the goods being
sold (primarily narcotics [50], but with digital goods a sizeable component as well [245]),
those markets are constantly under scrutiny and attempts at take-down by law enforcement.

The set of discovery tools described above might seem to be of limited use to this

Shodan.io
Zoomeye.org
Fofa.so
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application case, since the markets are hosted on Tor hidden services [68], which conceal IP
addresses and related metrics (e.g., BGP AS numbers); by the same token, no DNS records
are available, if these servers are properly configured. However, the hidden service protocol
involves the registration of a .onion pseudo-DNS name with Tor’s directory servers. Similar
to what happens with DNS, some operators elect to have vanity addresses—the now defunct
Silk Road market was notoriously hosted at silkroad6ownowfk.onion. As such, the
.onion address, like a DNS name, becomes a network identifier that might be enumerated.
Some online aggregators such as dark.fail provide a list of verified links (primarily to
prevent phishing scams) as a form of directory for some .onion services (Edge (0)). Along
the same lines, even Wikipedia sometimes contains links to these services (e.g., the former
Silk Road address is mentioned in the relevant article). In addition, researchers have
shown that it was possible to exhaustively list all onion services by passively listening to
announcements [28] (Edge (1)). While this specific problem has long been fixed, it is worth
noting that .onion names, much like domain names are discoverable network identifiers.

In addition, misconfiguring a hidden service frequently leaks information that can be used
to identify traditional network identifiers and services (Edges (3) and (4)). For instance, the
notorious AlphaBay marketplace briefly leaked an email address belonging to its operator—
ultimately facilitating the marketplace take-down and the operator’s arrest [165]. While
AlphaBay is an extreme example of a data leak, it is not particularly unique—Silk Road
[50] also fell victim to a similar mishap. Setting aside such egregious mistakes, tools like
CARONTE [143] automate the exploitation of information leaks to attempt to deanonymize
hidden services by revealing their IP addresses (Edge (1)).

More generally, much like their legitimate counterparts, modern online anonymous
marketplaces rely on several servers, for load balancing traffic, denial-of-service resilience,
and decoupling of basic functions (e.g., backend database vs. “hot wallet” server hosting
cryptocurrency holdings). Using the type of asset discovery techniques discussed earlier, one
of these servers leaking information (e.g., an IP address) could point investigators to other
servers of interest. This is what seems to have happened with Silk Road, though details in
the criminal complaint [1] are scarce. For instance, even though no public details about the
investigative techniques used in Operation Onymous [233] were shared, the mere fact that a
police operation succeeded in taking down multiple marketplaces at the same time suggests
that successful asset discovery took place. Because the take-down was incomplete (leading
markets such as Evolution survived this police operation), we can only speculate that the
markets that were identified might have shared part of their infrastructure, which turned out
to be vulnerable. For instance, they might have had some portions of their services hosted
on the same vulnerable platforms.
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More generally, a hidden service could leak information by its mere existence. Indeed,
assume that you run a virtual private server, and notice that one of your hosted machines
only connects to a single IP address, which happens to be a Tor node, and that all traffic
patterns resemble typical Tor patterns: this is pretty clear evidence that a Tor hidden service
is running on the hosted machine. Subsequently, an adversary might use this information
to discover which hidden service is running on the machine. Historically, this could be
done by injecting a large number of nodes in the Tor network and hope the hidden service
eventually picks one of the adversarial nodes as a “guard” (the first connection in the Tor
circuit used by the hidden service to talk to the rest of the world), thereby revealing its IP
address to the adversary [172] (Edge (4)). While this issue has mostly been resolved by
picking long-term guards, more recently, novel passive attacks against hidden services [126]
have been proposed. The short story is that maintaining anonymity is extremely difficult,
and subject to similar techniques.

Take-away: Even in cases where assets purposely attempt to avoid detection, the techniques
described above make it possible for an investigator to obtain considerable additional
information from limited information leaks.

2.5. DISCUSSION AND CONCLUDING REMARKS
Asset discovery is typically not the main focus of network measurement research. As a
result, it often does not get the attention it deserves, since enumerating a population of
assets involves many trade-offs. It would be far better to explicitly consider the choices and
leverage novel techniques proposed by others. However, in practice, an understandable focus
on primary measurement tasks, and the lack of a consistent framework to “plug together”
asset discovery techniques, often result in an incomplete or ad hoc asset discovery process.

To address these issues, we present a framework for asset discovery. Our framework
proposes a syntax to make explicit the steps in the asset-discovery process. This in turn
provides a natural way to identify gaps in study design, thereby creating opportunities
to build on earlier efforts by broadening the set of assets discovered. Furthermore, our
systematization of recent advances in active asset discovery can help researchers select
relevant techniques. Finally, we apply our framework to various use cases, which illustrates
how techniques can be combined and how to identify where gaps remain.

Looking at the past five years of newly developed asset discovery techniques, the intro-
duction of ZMap in 2013 had a long-lasting impact on the asset discovery process by enabling
exhaustive scans of the IPv4 address space. However, the continued migration toward IPv6
has prompted research on IPv6 space scanning, which cannot be done exhaustively. Despite
preliminary progress, this remains an area of future research.
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DNS emerges as a central tool for discovering assets, especially network services.
Interestingly, this appears to be a fairly recent trend, as the academic research community
has seemingly overlooked DNS as an asset discovery tool for many years. Similarly, we find
DNS helpful in locating IPv6 network resources. We therefore conclude that DNS-related
asset discovery techniques could become more prevalent, as more corner cases and niche
features of DNS are explored.

For topology-related asset discovery, the CAIDA prefix-to-AS and the RouteViews data
have become the de facto standard across several recent publications. Nonetheless, these
datasets also highlight that asset discovery is usually not the main goal. Instead, we find
that researchers regularly create datasets and techniques to model how the Internet works,
and not to discover assets in the cases we outline, such as red team use. Similarly, we find a
large body of work focusing on different forms of misconfigurations [67, 82] and how to
discover them on the Internet, without having the operational aspect of computer security in
mind. This, again, highlights the value of our classification and formalization we provide in
this work, as it enables researchers to assess those techniques’ value for being used in asset
discovery.

Our framework can also foster new approaches to asset discovery, by re-assessing and
re-positioning established techniques in a new context. For instance, the discussion of
illicit marketplace exploration in Section 2.4 shows how our framework can help identify
functional analogies and similarities between a priori different protocols. Service discovery
techniques for a given protocol may then be successfully repurposed for a different protocol.
In turn, our framework can help implement asset discovery for concealed network services,
e.g., via CBSP or even Tor.

Additionally, this paper sheds light on some causes behind the replication challenges
present in cybersecurity and network measurement research. A natural explanation for
why it is hard to replicate network measurement results is that we are studying a dynamic
network whose configurations regularly change (e.g., IP address churn through DHCP,
changing BGP routes). While these are real impediments, inconsistent use of different
combinations of techniques can yield different asset compositions for investigation, which
hampers replication. While not eliminating these problems, our framework does make such
differences explicit, which may point to a solution.

Besides its immediate significance, we believe our work will remain relevant and valuable
for researchers in the future. While protocols evolve, e.g., DNS over HTTPS (DoH), the
underlying concepts—connections, state, and identifiers—remain the same as they were 40
years ago, when TCP/IP was first introduced. Consequently, the techniques we describe
will continue to be usable in research for some time. Furthermore, many of the techniques
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are not explicitly advertised as asset discovery techniques. Having them described and
referenced in our paper might help keep future researchers from having to reinvent the wheel.
The framework itself can be continuously extended as new techniques emerge in scientific
literature. When such new techniques arise, researchers can map them onto the framework
using the proposed syntax and combine them into tool-chains needed for conducting their
own research. For example, we have found a lack of IoT discovery techniques in the
scientific literature, even though there are more IoT connections to the Internet than non-IoT
connections [138]. Additionally, we noted a dearth of research focusing on discovery of
network services running on non-standard ports, an important but overlooked subject.

The proposed syntax and framework is very general and abstract enough to fit changes
in networking. Even networks that do not operate on TCP/IP communicate through network
identifiers and network services. Nonetheless, major changes in networking and protocols
are entirely possible (e.g. New IP [102], LoRaWAN [136]). If a significant change occurs
in the future such that networks will behave differently than those of today, the techniques
mentioned in this systematization will become less relevant. In that case, however, our
framework can still incorporate the changes, as the concept of communication does not
change: network services will always have to make identifiers accessible to users.
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ALERTS, AND INCIDENTS

Notwithstanding the predicted demise of signature-based network monitoring, it is still

part of the bedrock of security operations. Rulesets are fundamental to the efficacy of

Network Intrusion Detection Systems (NIDS). Yet, they have rarely been studied in production

environments. We partner with a Managed Security Service Provider (MSSP) to gain more

insight into the evolution of rulesets, the alerts that they trigger and the incidents that get

investigated. We analyze a combined ruleset –including both commercial and proprietary

rules– that consists of 130 thousand rules and was used to monitor hundreds of networks.

We find that these rulesets keep growing over time but there is almost no overlap among them

in terms of detection options or indicators of compromise. The combined ruleset triggered

more than 62 million alerts and led to 150 thousand incident investigations by SOC analysts,

though the vast majority of rules never triggered a single alert. We find that just 0.5% of

all rules are responsible for more than 80% of the alerts and incidents and only 1.2% of all

alerts were deemed to merit closer investigation. Of all incidents, 16% were labeled as false

positives and 9% carried significant risk to the client organization. Independently of the

type of rule, updating rules is a minor activity. Most rules are never modified and only a

fraction is deleted, except for periodic purges in some sets. Seven in-depth interviews with

rule developers corroborate the patterns found in our analysis. Finally, we identify several

rule management practices that influence rule and ruleset efficacy, such as supplementing

commercial rules with your own and making rules as specific as possible.
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3.1. INTRODUCTION
Over the last decade, the number of network attacks has steadily increased, putting even more
emphasis on the efficacy of network monitoring [83]. Recent research in network intrusion
detection has focused on statistical and machine-learning methods—e.g., [148, 209, 220].
The underlying motivation is that conventional rule- and signature-based methods are deemed
unable to keep up with the fast-evolving threats and therefore they will become increasingly
obsolete. As early as the turn of the century, industry reports were predicting the demise
of signature-based network monitoring [39, 240]. Yet, two decades later, signature-based
monitoring is still part of the bedrock of organizational security. Walk into any security
operations center (SOC) and what you will see is analysts triaging alerts generated by
network intrusion detection systems (NIDS) that still rely heavily on rulesets. Most, if not
all, Managed Security Service Providers (MSSP) purchase and develop rulesets in order to
detect relevant events on their client networks. Despite important advances in host-based
detection and anomaly detection, there are few signs that this is changing any time soon.

To put it a bit facetiously, rules work in practice, but not in theory. Rulesets are incredibly
important for protecting organizations everywhere and yet they are barely researched in
real-world production settings. Prior work has focused mostly on analyzing the impact of
rulesets on the system performance of an NIDS in a test setting, measuring sensor-based
metrics such as CPU load, memory usage and packet loss [10, 63, 207, 246]. These studies
looked at the sensors, not at the rulesets themselves, nor how they are managed to optimize
detection capabilities. Other work has focused on improving the signatures used in NIDS
[124, 213, 241, 243, 252]. The closest work we could find was a recent study by Gashi and
Asad [16], who compared four different open and commercial rulesets, their changes over a
period of five months and the alerts they generated in a test on a part of a university network.
They concluded that there was barely any overlap in alerts, suggesting that organizations
should combine rulesets to optimize detection.

To the best of our knowledge, we present the first study that opens up the black box of
NIDS rulesets and their management in a real-world production setting. We have partnered
with an MSSP that monitors hundreds of client networks using various commercially-
acquired rulesets as well as a ruleset it develops in-house. We present an analysis of four
rulesets that collectively consist of 130 thousand rules, span 13 years (2008–2021), and
functioned in a production environment to monitor hundreds of networks. The rulesets
received more than one million modifications, triggered more than 62 million alerts and led
to 150 thousand incident investigations by SOC analysts.

How do rulesets evolve over time? How fast do they get revised and updated? How many
rules actually trigger an alert in practice? How many of these alerts represent real threats?
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We are especially interested a critical underlying tradeoff: How are rulesets managed in
order to maximize detection of intrusions (true positives) and minimize the number of alerts
that need to be investigated (false positives)? You can only detect what you create a rule for
and yet the larger the (combined) ruleset, the harder it will be to keep it accurate and up to
date and the higher the likelihood of overwhelming the SOC analysts with irrelevant alerts.

We analyze the changes in the rulesets, the scale and type of modifications and the
relation between the rules and the alerts and incidents that are triggered by them. We
complement this analysis by a small, but in-depth, user study of seven rule developers within
the MSSP. We conducted semi-structured interviews to understand the process of rule writing
and management.

In summary:

• We present the first longitudinal analysis of NIDS rulesets spanning up to 13 years
(2008–2021), the alerts they generated and incidents that they helped detect.

• We created a tool to quantitatively analyze NIDS rule changes. This tool allows
tracking the evolution of a rule over its lifespan, extract metadata from the rule’s
syntax and classify the different types of modifications. We open source this tool to
the community.

• While in use, around 23% of all rules are updated in terms of detection capability. We
quantify the factors that trigger changes within rulesets and find two major causes:
(i) changes in the threat landscape; and (ii) reducing the number of alerts by making
rules more specific. These factors are then cross-validated through semi-structured
interviews with seven experts in the area of rule developing and security incident
response.

• We find that 80% of all alerts were triggered by a mere 0.5% of all rules. The
overwhelming majority of rules never trigger a single alert. This helps explain why
rulesets can grow into the tens of thousands over time, without overwhelming SOC
analysts. Still, only 1.2% of all alerts were deemed to require closer investigation, and
only 0.3% of all alerts carried significant risk to the organization.

• We identify a number of rule management practices employed by rule developers and
their influence on the efficacy of the rules. Specifically: (i) multiple rulesets are used
simultaneously due to the lack of exhaustive coverage of the threat landscape by any
single ruleset; (ii) proprietary rules are updated more often than commercial rules
leading to a higher incident detection rate; and (iii) false positive incidents have a
noticeable impact on rule updates.
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3.2. RELATED WORK
Research on ‘traditional’ signature-based NIDSs and NIDS rulesets is relatively rare. Modern
research focuses primarily on creating statistical or machine learning-based NIDSs in lieu of
studying or improving upon signature-based approaches, which remain an industry standard
to this day. Examples include Srivastav and Challa[220], Shone et al. [209], and Mirsky et
al. [148].

In the rare instances where research has indeed looked at signature-based NIDSs, the
effort has gone into studying the performance of the system itself and what the effect
is of ruleset volume changes, instead of the processes driving rule changes. Soumya
Sen [205] examines the Snort IDS and its performance when varying bandwidth and, perhaps
unsurprisingly, that as bandwidth increases, the size of the ruleset must decrease in order
to keep Snort’s error rate below a certain threshold. This effect is magnified for a given
bandwidth when the size of IP payloads decreases, as Snort will have to process more packets
during the same amount of time, resulting in more packet loss.

Thongkanchorn et al. [232] perform an analysis similar to Sen [205]. The authors take
the Snort, Suricata, and Bro (now Zeek) NIDSs and analyze their performance when varying
attack type, ruleset sizes, and network traffic rates. For the experiment, they use the Emerging
Threats (ET) Open ruleset for all NIDSs. They select a set of different types of attacks and
generated the corresponding packets to test the different NIDSs. Results from the analysis
include low packet loss and low CPU usage for TCP traffic, and that a higher traffic rate leads
to higher CPU usage, higher packet loss, and a higher number of generated alerts. Finally,
the authors also find that using more rulesets also causes a higher number of generated alerts.
However, the study does not examine the underlying causes for the performance detriments,
such as potential inefficiencies in the rules.

Gashi and Asad [16] perform a study more closely related to our work, as they analyze
the evolution of and similarities between four different rulesets: Snort’s official Community,
Registered, and Subscribed rulesets, as well as the ET Open Suricata ruleset [187]. The
analysis was performed on five months of rule updates. They examine the diversity and
overlap between both blacklisted IPs and rule content options for the four different rulesets.
The authors find that there is minimal overlap between ET’s and Snort’s IP blacklists and
rule content options, with only 1% of rules containing matching content options. As a result,
the alert triggering behavior of the rulesets from both sources also has minimal overlap,
potentially indicating that both may be useful to provide more defense to a network.

While the work from Gashi and Asad [16] is somewhat related to the analysis we carry
out in this work, there is only marginal overlap. To the best of our knowledge, there has
been no research into the nature of rule changes and the rule development process as a
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whole. Neither has this rule data been combined with alert and incident data from production
settings – in our case: an MSSP – to investigate the evolution of the rulesets in a changing
threat landscape.

3.3. BACKGROUND
At the core of this work are two closely related topics, namely intrusion detection systems
and the rulesets they employ to detect potentially malicious traffic. In this section we explain
these concepts and place them within the context of an MSSP.

3.3.1. INTRUSION DETECTION SYSTEMS

IDSs are classified by their placement and by the techniques that are used for detection itself.
As for the placement of an IDS, there are network-based, host-based, and application-based
intrusion detection systems. Furthermore, depending on its method of detection, an IDS can
be signature-based or anomaly-based [146]. The type of IDS that is the focus of this work is
the signature-based NIDS.

A network-based IDS is placed at a strategic point within a network and analyzes all
network packets it receives to detect attacks. Signature-based IDSs find malicious activity by
matching it with a predefined set of patterns or events that are characteristic of known attacks.
Examples of such IDSs include Snort [53], Suricata [223], and Zeek (formerly Bro) [182].

3.3.2. NIDS RULES AND RULESETS

Signature-based IDSs detect threats in a network with rules that inform the system what to
look for in network traffic. Figure 3.1 illustrates the syntax of such a rule. An NIDS rule
consists of two main parts: (1) the header, and (2) the options. The header can also be split
up into two different parts: (1a) the action, and (1b) the network traffic descriptors. The
action is the portion of the header that tells the NIDS what to do in case the rule is triggered
(e.g., raise an alert, drop the packet, log the packet, among others). The second portion of
the header that we identify are the network traffic descriptors, which specify the origin and
destination IP addresses and ports, as well as the protocol of the packet that the rule looks for.
The secondary section of the rule is the options, which can be split up into two parts: (2a)
the detection options, and (2b) the non-detection options. They determine how a packet is
analyzed, and contain fields for matching packet headers, or sections of the payload content,
among others. Non-detection options provide additional information regarding the type of
traffic the rule wants to detect, such as the category of threat, references to documentation
about the threats, as well as rule ID and version number.
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Figure 3.1: Rule syntax used by Snort and Suricata NIDSs.

Rule developers create rules that are as specific to the threat as possible, but also
generalizable to different versions of the same threat present on the Internet. Regardless
of how this trade-off is made, it will inevitably imply some fraction of alerts being false
positives, due to the sheer amount of network traffic flowing through the Internet. A false
positive is defined as normal or legitimate traffic that is mistaken as malicious. Conversely,
malicious activity can be missed by an IDS if there is no rule present that explicitly detects it.
In order to keep this risk at a minimum, organizations need to continuously keep up with the
latest threat intelligence and ensure their NIDS is up to date. Organizations can do this by
either purchasing a subscription to a commercial ruleset created by a third party, or develop
the rules in-house.

Figure 3.2 illustrates the typical life cycle of an NIDS rule. Rules developed by the
MSSP are either directly added to the production environment, or are first added to a test
environment to evaluate accuracy and false positive rates. Commercial rulesets are added to
production directly, as it is assumed that these rules have already undergone an acceptable
level of quality control. Once in production, the MSSP only updates its own proprietary
rules; the commercial rules are left alone and are only filtered out through other methods.
Rules in the production environment trigger alerts if the logic within the rule matches with
an incoming packet. Finally, only if an alert is deemed severe enough by the analysts in the
SOC, the alert is grouped together with a number of related alerts into an incident. This
incident is then thoroughly investigated by the security analysts.



3.4. DATA AND METHODOLOGY

3

57

Testing
environment

trigger

Production
environment

Commercial
rules

In-house
rules

Alerts Incidents

rule
updates

test rule
update

Figure 3.2: Life cycle of an NIDS rule. Commercial rules are added to production immediately,
while many rules developed in-house are tested within a testing environment before they are added to
production. Once in production, rules are updated or removed from the ruleset. Rules in the production
environment produce alerts if they detect packets that match its detection logic. If deemed severe
enough, related alerts are grouped together into an incident and thoroughly investigated by analysts.

3.4. DATA AND METHODOLOGY
Our collaboration with an MSSP has enabled us access to a number of datasets surrounding
their NIDS and SOC operations. In this section we discuss these datasets and how we use
them to perform this work.

3.4.1. DATA COLLECTION

NIDS rulesets The MSSP uses rulesets from different origins on the network sensors that
they install on their customers’ networks. In addition to commercial rulesets purchased from
Emerging Threats [186] and VRT [54], they also employ a proprietary ruleset that is created
and maintained by an in-house team of developers. All rulesets are hosted on internal Git
repositories. The MSSP has been using its own ruleset since 2008, and the repository has
been tracking the changes to that ruleset ever since. Commercial rulesets have also been
used since that time, but have only been mirrored on a local repository since 2018 or 2019,
depending on the ruleset, meaning that the commercial ruleset data are limited to those years.
Both VRT (now Talos) and Emerging Threats are market leaders in NIDS rulesets, with the
former being the maker of the official Snort ruleset, and the latter being one of the three paid
services specifically mentioned by OISF, Suricata’s maintaining organization, in their 2018
SuriCon conference [168]. We feel this is a representative sample of the NIDS market, and
we therefore limit our study to the two commercial rulesets.

Alert data The rules installed on the network sensors produce alerts when they detect
threats, and all the alerts are logged when they arrive at the SOC. We have access to alert logs
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that date from mid-2009 to mid-2018. The logs are in CSV format and contain the following
information: (i) alert timestamp; (ii) rule ID, revision, and priority; (iii) rule category;
(iv) protocol of packet (TCP, UDP, ICMP, IP, numerous application layer protocols); and
(v) potential corresponding incident. Between 2017 and 2018, the MSSP was gradually mi-
grating to a different logging platform, causing this logging data to be incomplete throughout
that last year.

Incident data One or more alerts deemed critical enough by SOC analysts to merit closer
investigation are grouped together into an incident. The analysts then investigate all related
alerts to determine the cause and severity of this incident and ultimately label it accordingly.
These labels are Undetermined, False positive, Not interesting, Interesting, Low risk, High

risk, and Successful hack attacks. We consider all but Undetermined and False positive
incidents as true positives. The difference between a High risk incident and a Successful hack

attack is that the former involves activities that will directly lead to network compromise,
while the latter is an incident where such network compromise has already occurred without
the SOC being able to halt the attempt. Undetermined incidents (0.9%) are excluded, as we
cannot establish a reliable label for them.

The incident logs contain the following: (i) incident open, response, and close times-
tamps; (ii) corresponding customer; (iii) category label; (iv) whether the incident was
escalated to the customer. This data also dates from mid-2009 to mid-2018 and is also
missing entries from 2018 due to the platform migration process.

Interviews We carried out semi-structured interviews with seven analysts and rule devel-
opers employed by the MSSP to better understand their heuristics and work processes. We
recorded, transcribed, and coded the interviews to extract the relevant information.

3.4.2. QUANTIFYING RULESETS’ EVOLUTION

Although changes to the rules are tracked by the Git repository, the evolution of the ruleset
as a whole is not. For the MSSP’s proprietary ruleset, there are no set guidelines when it
comes to managing rules and rulesets. New rules are created on the basis of new threat
intelligence, and from analysis of potentially malicious software. Furthermore, we learn
from the interviews that there are, in general, two instances where ruleset updating occurs:
(i) when analysts or rule writers have no other work activities planned and go through the
ruleset out of their own initiative; (ii) when a rule triggers alerts more often than is deemed
acceptable by the analysts. While the creators of the commercial rulesets might also have
such guidelines, the reasons behind rule updates are not logged (publicly) either.

We make a distinction in the methodology that we apply to the two different datasets
that we have access to. The first is the repositories of both the commercial and proprietary
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NIDS rules. The second is the datasets containing the triggered alerts and incidents, which
will be discussed in the next subsection. We analyze the repositories of the commercial and
proprietary rulesets separately, since the two types of rulesets differ significantly not only in
size, but also in purpose.

First, we implement a tool that is able to track the evolution of the ruleset over time.
This tool checks out every commit made to the repository and keeps track of the additions
and deletions made to the ruleset. It does this by traversing the repository in a reverse
chronological order and parsing the complete ruleset for every commit in pairs of two. A
new rule is a rule that is present in the latter ruleset and not present in the former. A deleted

rule is a rule that is present in the former ruleset and not present in the latter; or a rule that is
not commented out in the former ruleset and is so in the latter ruleset; or a rule that has been
moved to a specific file designated for deleted rules. An updated rule is a rule that is present
in both former and latter rulesets and differ in text. However, not all updates are made equal.
Only updates to the header and detection options will influence the performance of a rule.
Therefore, the tool also differentiates between the types of updates made to a rule. The result
of this analysis is a list of all the rules that were ever added to the repository, paired with
every modification performed on each rule over the lifetime of the repository.

To the best of our knowledge, a free and open-source NIDS ruleset analysis tool has not
been developed and released before. We realize that such analyses might be valuable for
other researchers and professionals. As a contribution to not only the scientific community,
but the numerous users of this type of NIDSs in industry, we have published the source code
on Github 1.

The tool’s output allows us to calculate a number of statistics, both in total and longitudi-
nally, that we used for further analysis of the rulesets. Such statistics include rule changes
occurred in total and their type, the lifespan of individual rules, and size of the ruleset over
time. All statistics are discussed in Section 3.5.1.

Manual inspection of rule changes was also performed. Specifically, we randomly
sampled 50 rule updates and determined the reasons behind them (i.e., was the rule made
more specific/efficient/etc.).

All rules, commercial and proprietary, have their own unique ID, and the MSSP ensures
that there is no overlap between the IDs of proprietary rules and commercial rules. Every
alert record includes a reference to the unique ID of the rule that triggered it. This enables us
to link an alert to a specific version of its corresponding rule. By examining the changes to
the Git repository, and combining this information with alert data and statistics, we can learn
not only how rules change, but also ascertain the reasons behind those changes and identify

1https://github.com/mathewvermeer/ruling-the-rules
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trends in the ruleset’s evolution (e.g., moving away from very specific to more generic
rules, more rule updates than rule deletions, etc.). This data also allows us to examine the
relationships between rules and alerts.

The proprietary ruleset itself consists of two parts: (1) the rules in production, and (2) the
rules still in testing. In this study, we focus primarily on alerts that influence the workflow of
the SOC and its analysts. For that reason, we focus only on the ruleset in production and
discuss the evolution of rules in the testing environment separately.

3.4.3. INTERVIEWS

To complement our data on the rulesets, alerts and incidents, we also conducted seven
interviews with security professionals within the MSSP who write or manage NIDS rules, or
have done so previously in their career. The participants were recruited though snowballing—
i.e., asking each participant for a list of names of other people who would be relevant to
interview on the company’s NIDS rule development and management. This process was
halted when the only names we received were professionals who we had already interviewed
before and two participants who did not respond to our invitations. The semi-structured
interview protocol consists of 37 questions (Appendix A.2). Each interview was conducted
by two interviewers, recorded and transcribed.

These interviews are part of a larger, separate study with similar interviews in other
MSSPs (Chapter 4). Here, we only include the data from interviews inside the partner MSSP
for two narrow purposes: (i) to reconstruct the rule development process and understand the
datasets at the MSSP (Sections 3.3.2 and 3.4.1); and (ii) to help interpret and validate our
findings from the analysis of the rules, alerts and incidents. In Section 3.8 (Discussion), we
compare our findings to what we heard in the interviews.

3.4.4. ETHICS

To conduct the user study, we received formal approval from the Human Research Ethics
Committee at our institution. All interviewees explicitly consented to the recording and
transcription of the interview and to the usage of quotes. We minimize the risks of data leaks
by anonymizing all data gathered during the interviews. The recordings were stored for the
duration of this research on an encrypted hard drive. All answers given were confidential
and were only available to the other researchers involved in this project.
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Figure 3.3: Size of the proprietary and commercial rulesets employed by the MSSP over time. The
following are the ruleset sizes at the start and end of their respective curves: MSSP: 20-2,065; ET Pro
Snort: 46,074-53,000; ET Pro Suricata: 39,546-43,863; VRT: 9,908-12,760.

3.5. RULE EVOLUTION IN PRACTICE
The rulesets employed by MSSPs are very large and, at the surface level, we find that
changes are made to these rulesets constantly. Upon further inspection, though, we discover
a number of different phenomena within the rulesets. Firstly, many of the created rules are
never meaningfully updated while remaining in use over a long period of time, though this
differs per ruleset: 84% and 68% for the ET Pro Snort and Suricata rulesets, 97% for the
VRT and 65% for the MSSP rulesets. Then, there is the subset of rules that are deleted
without ever being updated. This subset makes up 12% of the MSSP ruleset, and at most
0.6% of the commercial rulesets. Finally, there are rules that are updated throughout their
lifetime. The updates themselves can be divided into four different groups: updates made to
a rule’s (1) action, (2) network traffic descriptors, (3) detection options, and (4) non-detection
options. The second and third types of updates are what we will mainly focus on, since those
are the types that affect detection. The ET Pro rulesets overwhelmingly perform network
traffic descriptor updates over all the other types, while the VRT ruleset receives much
more non-detection option updates, each signalling different priorities as to their ruleset
management strategies. The subsections elaborate on the deeper examination we performed
to shed light on the unique behavior of each of the rulesets.

3.5.1. RULESET EVOLUTION

Ruleset size. Figure 3.3 illustrates the sizes of all the different rulesets employed by the
MSSP. It seems to show a general increasing trend for all rulesets. However, the data we
have of the commercial rulesets are limited to the last two to three years, trends across longer
time spans are not visible. The evolution of the ET Pro rulesets are punctuated by significant
purges of rules, with a linear increase between the purges. The third commercial ruleset used
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Figure 3.4: Number of additions, modifications, and deletions performed on the different commercial
rulesets.
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Figure 3.5: Detection options, and unique IP and domain overlap, respectively between the different
rulesets.

is the one created by VRT, now Talos, which is the organization that maintains the official
Snort rulesets [54]. Though the size of this ruleset is significantly smaller than the ET Pro
rulesets, it exhibits similar behavior to the ET Pro rulesets in the apparent steady addition
of new rules without concurrent deletion of old and potentially outdated ones. Figure 3.4
illustrates this. This could mean that they either prefer to have the most number of threats
covered by their rules regardless of quality, or deem most newly created rules of a high
enough quality to remain (unchanged) in the ruleset indefinitely. The MSSP’s ruleset is
significantly smaller than the commercial rulesets, which can be explained by the fact that
ruleset creation is not the core of the business. Similar to the ET Pro rulesets, the MSSP
also has occasional purges of rules. As evidenced by the rising curve in Figure 3.3, though,
this deletion of rules does not happen regularly, nor does it happen enough to maintain the
ruleset at a (near) constant size, similar to the VRT ruleset. This indicates that efficiency
through ruleset size limits is not a priority for rule management, though it certainly was in
the past [205].
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Figure 3.6: Number of updates in the proprietary ruleset.
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Figure 3.7: Number of updates to existing rules per month and the type of modification for the different
commercial rulesets. Updates to non-detection options are shown in blue, network traffic descriptors in
teal, and detection options in red.

Next, we examine the overlap between the rulesets using two different measures, illus-
trated in Figures 3.5b and 3.5a, respectively. The first method used here is comparing the
detection options extracted from all rules in a manner similar to that performed by Gashi and
Asad [16], which aims to measure the functionality of the rules themselves. We supplement
this overlap measure with the overlap in unique IP addresses and domains present in a rule.
This measure is an indicator for a subset of threat intelligence-based rules that act as a
blacklist (i.e., raise an alert solely due to the presence of a specific IP or domain). While the
former measure has limitations, since different implementation of the same detection logic
would result in no match, taking both measures together yields a general overview of the
threat coverage of the different rulesets. Irrespective of these limitations, both figures show
that despite the large sizes of the commercial datasets and the large coverage they provide,
the overlap is nearly negligible.

Rule updates. Of all rules currently active in the different rulesets, many have never
been updated after their creation. This percentage stands on roughly 14% for both ET Pro
rulesets, 42% for the MSSP ruleset, and 69% for VRT. There is also a set of rules that are
never touched until their deletion. This phenomenon occurs more often in the MSSP ruleset
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Figure 3.8: Number of modifications to existing rules in the proprietary ruleset per two months and
the type of modification made. Updates to non-detection options are shown in blue, network traffic
descriptors in teal, detection options in red, and to the action in pink.

than the commercial rulesets: of all rules ever added to this ruleset, this number stands at
12%. For all commercial rulesets, this percentage is at most 0.6%.

Then, there is the set of rules that are updated throughout their lifetime. We disregard
trivial updates to the non-detection options, as these have no effect on the working of a rule.
To investigate the nature of these rule updates, we sampled 50 rule updates that alter either
the rule header or the rule’s detection options from the different rulesets and grouped them
into a number of broad categories:

• Efficiency improvements: Changes to a rule that make the rule faster or less resource
intensive, for instance using the fast_pattern keyword or optimizing byte compar-
isons or regular expressions, while keeping the rest of the rule unchanged.

• More specific: Narrowing the rule’s search space by, for instance, increasing the length
of the content string to match or explicitly specify the subset of ports on which to look
for the threat.

Table 3.1: Rule update categories for the 50 randomly sampled updates from every ruleset.

Type of update MSSP ET Pro Snort ET Pro Suricata VRT

Efficiency improvement 10% - - 6%
More specific 36% - - 30%
More general 10% - - 24%
Bug fix 4% - - 30%
Threat intel update 22% 100% 100% -
Other 18% - - 10%
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• More general: Widening the search space in a manner contrary to the previous.

• Bug fixes: Updates made to a rule due to the rule not working as intended or improper
usage of certain rule options. Examples include detecting buffer overflows using
isdataat instead of the dsize keyword, as usage of the latter can lead to false
negatives.

• Threat intel updates: Implement into a rule discoveries made through threat intel such
as changes to malicious domains or IPs or changes in how certain malware operates.

• Other: Any other type of modification such as change in rule action, editing of flowbits,
or fixing typos.

This categorization is illustrated in Table 3.1. Interestingly, for the ET Pro rulesets, all of
the sampled rule updates fall under the “threat intel update” category. The sampled updates
from both the proprietary and VRT rulesets are distributed in a more balanced manner across
the different categories. It seems that there is a general trend towards making rules more
specific, perhaps to reduce the chances of false positive alerts.

We can also split the non-trivial updates into two broad categories, the first of which is
network traffic descriptor updates. Emerging Threats is, essentially, the only organization
that focuses largely on network traffic descriptor updates (see Figures 3.7 and 3.8). The
MSSP also performs such updates, although hardly to the extent as Emerging Threats. VRT,
on the other hand, performs a negligible number of such updates. Both this, and the findings
in Table 3.1, are consistent with Figure 3.5b.

The second category of non-trivial updates are those made to a rule’s detection op-
tions. We first examine these changes made by the updates by means of the Levenshtein
ratio between two consecutive versions of a rule’s detection options, shown in Figure 3.9,
which is a measure of their similarity. The ratio is computed with the following formula:
Levratio = sum of string lengths−2×Levdistance

sum of string lengths . Clearly, this metric is not suitable for the analysis
of rule update semantics, since single-character changes could be the difference between
detecting a threat or not, and large changes could be an attempt at efficiency improvement
without affecting detection at all. Therefore, we simply use it to identify update trends and
mass update events. We see that the ET Pro rulesets exhibit notably different behavior: the
Suricata ruleset has a spike at around the 0.5-mark, and both spike at around the 0.75-mark.
The latter spike corresponds to nearly 4,000 nearly identical rule updates in each ruleset,
each with a Levenshstein distance of 46. Most of the updated rules detect DNS lookups for
potential trojans, ransomware, malicious URLs, etc., and the updates themselves change the
manner in which the first 12 bytes of the UDP packet are matched. Interestingly, the spike at
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the 0.5-mark in the ET Pro Suricata ruleset corresponds to updates made to the same rules as
the latter spike, and again altering the way these DNS lookups are detected. In this case, the
detection options are updated with the Suricata-specific dns_query keyword, which explains
why this spike is absent in the ET Pro Snort curve. Other minor spikes in both the ET Pro
Snort and Suricata rulesets are similar in that they involve the introduction of case-specific
keywords due to efficiency improvements [142]. Interestingly, though, these updates were
not the direct effect of keyword release or deprecation, since these updates were made many
years after the fact [167], and many rules using the deprecated keywords still remain in the
ruleset. In fact, Emerging Threats announced support for these new features back in late
2019 [227], but noted that the implementation of the features were still a “work in progress
and under active development,” explaining why such updates are still made periodically.

The fact that these spikes are so evident when looking at the ratio indicates that many
of the updates in the ET Pro rulesets are made in a single wave to all of the rules of that
type. And although the curve of the VRT ruleset appears much smoother than the ET Pro
curves, only 355 updates are made to the detection options during the two years we have
records of for that ruleset — a minuscule amount compared to the nearly 13,000 rules in
this set. Finally, we see that the MSSP ruleset also produces a very smooth graph, indicating
that there are no mass update events, and that the updates that do occur are done on a more
case-by-case basis. Thus, most detection option changes are made to the syntax of a rule
without changing detection itself in a meaningful way, such as the aforementioned DNS
lookup rules.

Altogether, it seems a minority of updates are actually made due to rule performance
issues. Instead, most updates involve either changes in metadata, syntax, or swapping out
threat indicators. Most rules are, evidently, of high enough quality once they enter production.
Furthermore, rule development is primarily input driven, with the focus lying not so much
on the eventual efficacy or precision of rules as observed by an organization or SOC, but on
creating these rules for new threats in the first place.

Rule deletions. Aside from ruleset management through the updating of existing rules,
sometimes rules are also deleted from the ruleset. Looking at the deletion behavior in all
of the analyzed rulesets, there seems to be little reason to throw out rules. As is the case
with update behavior in the ET Pro rulesets, deletions also revolve around changes in threat
intelligence. For instance, a large portion of the deleted rules in the major ET Pro rule purges
(see Figure 3.3) involve outdated C&C servers and SSL certificates [183–185]. Thus, the
absence of threat intel-based rules from the VRT ruleset could explain the lack of deletions
for this particular ruleset. The MSSP ruleset somewhat shares the deletion behavior of the
ET Pro ruleset, since it contains a number of threat intel-based rules, although not to the
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Figure 3.9: CDF of the Levenshtein ratio between the detection options of a rule and its previous
version. A higher ratio indicates a high similarity between both versions.

degree of ET Pro. Many of the deleted MSSP rules, however, fall outside of this category.
This unique behavior can be explained by the direct feedback loop that the rule developers
have from the MSSP’s SOC.

3.5.2. RULE TESTING

We must not overlook the fact that rules are tested before being enabled in a production
environment. Interestingly, we see that the overwhelming majority of rules are added fairly
quickly. It seems that the MSSP’s priority is to have a rule pushed to production as quickly
as possible, and only optimize the rule after the fact if necessary. That said, 26% of rules
from the testing environment never make the cut and are deleted from testing before they
make it to the production environment. While many of these rules are deleted relatively
early on (roughly a third within the first week), the remaining rules are deleted in a random
fashion.

3.6. ALERTS TRIGGERED OVER TIME
The MSSP with which we collaborate has a particular manner in which alerts arriving at the
SOC are processed. Under normal circumstances, all alerts that arrive are processed by the
analysts working in the SOC. Deviation from these normal circumstances occurs in cases of
false positive floods, for instance. In such cases, the alerts from the responsible rules may be
manually suppressed to prevent overburdening the analysts and taking out the SOC back-end
systems. In case that one or multiple alerts are suspicious and merit further investigation,
these suspicious alerts are grouped together into an incident. Incidents are composed of one
or multiple alerts that are potentially part of the same threat. Every incident is individually
investigated. From this investigation, the analysts determine whether the incident is a false
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Figure 3.10: CDF of the number of alerts and incidents triggered over the rules employed by the
MSSP. Includes all distinct rules that have ever been added to both the proprietary and commercial
rulesets. The dashed and dotted lines indicate the 80%-mark for alerts and incidents, respectively.

positive, and if so, it is labeled as such. In case of a true positive, the analysts assess the
severity of the incident and label the incident. If an incident is deemed severe enough, an
escalation takes place whereby the customer itself is informed of the incident in order to
carry out the necessary defensive and mitigation measures.

We have obtained nine years of alert and incident data for our analysis, from mid-2009
to mid-2018. We first analyze the raw alert data. It simply contains every alert triggered by
any active rule present on the probes. Naturally, not every rule will trigger as often as the
rest, as some malicious activities are more common than others. We expect this distribution
to follow a power-law-esque distribution. Indeed, this is what we find if we plot the data.
Figure 3.10 illustrates this, and we see that 672 rules are responsible for 80% of all alerts.
Additionally, out of all the proprietary and commercial rules that we have records of, over
110,000 rules—85%—did not trigger a single alert. However, we do not have access to the
entire lifespan of the commercial rulesets. As a result, we have no records of commercial
ruleset modifications before May 2018. Some rules may have been created and subsequently
deleted before the MSSP began mirroring the ruleset on its local repository. The actual
number of rules that never generated an alert could, therefore, be much larger.

To further investigate the nature of these highly productive rules, we randomly sample and
manually examine 50 of the 672 rules. This examination allows us to identify characteristics
of the rules that makes them trigger the number of alerts that they do, as oftentimes rules or
rule descriptions are unclear, ambiguous, or mislabeled. Of the sampled rules, 52% consists
of reconnaissance activity detection and detection of known vulnerability exploitation
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Figure 3.11: Alerts over time of 24 of the uncommonly triggered rules in our 50-rule sample. Notice
the sudden spikes above the quiet baseline for many of them.

attempts. This explains the large number of alerts, since these activities are carried out by
many a malicious actor on a daily basis across the entire IPv4 space. The remaining 48%
not in the two aforementioned categories consists of activities that are not as common an
occurrence. Examples include internal network policy violations, DNS requests for malicious
domains, or usage of vulnerable software. Therefore, a high level of alerts maintained over a
longer period of time is not a realistic explanation for the productivity of these types of rules.
Indeed, what we find is that 28% of the total sample population are, in essence, quiet rules
until a single event causes the rule to trigger up to thousands of times in a single day (see
Figure 3.11).

As the size of the proprietary ruleset increased since 2008, so have the number of rules
that trigger alerts: from 3,758 after the first year to 6,787 just before the MSSP started
migrating to a new logging platform (mid-2017). Not only that, but the proportion of the total
alerts that are triggered by proprietary rules has also increased from 1% to 6%. Nevertheless,
the number of rules that compose 80% of all the alerts per year remains fairly stable every
year: roughly between 200 and 250 rules. Between 18% and 50% of these rules overlap year
on year.

Of the aforementioned 672 rules responsible for 80% of alerts, 164 (26%) are proprietary
rules, even though proprietary rules make up just 3% of all rules employed by the MSSP
that we have a record of. Additionally, of the roughly 20,000 distinct rules responsible for
all of the alerts, around 1,000 rules are from the MSSP’s proprietary ruleset. Taking into
account the smaller size of the proprietary ruleset compared to the commercial rulesets (see
Figure 3.3), it is apparent that the proprietary ruleset performs better in terms of rule utility.

Since different rules detect different threats, and, therefore, exhibit different alerting
behavior, we examine if such differences in behavior are also reflected in a rule’s updates.
Table 3.3 shows that rules in both the commercial and proprietary rulesets that trigger alerts
are over eight times as likely to receive an update than rules that do not trigger any alert, and
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almost thrice as likely when looking solely at the MSSP rules. We stated in Section 3.5.1
that most of the commercial ruleset updates are threat intelligence-based, where, for instance,
out of date indicators of compromise are swapped out for new ones. These are updates that
occur regularly, and it makes sense that they are not affected by the the number of alerts
that these rules trigger. Looking solely at detection options, the number of updates drops
drastically in both alert and non-alert subsets, and the update frequencies per rule drop to
0.18 and 0.16, respectively, meaning that rules that trigger alerts are 12.5% more likely to
receive updates than rules that do not trigger.

3.7. SECURITY INCIDENTS
Most of the alerts produced by the rulesets are not deemed relevant or severe enough by the
SOC. Of the millions of alerts that the SOC has processed over the years, only a relative
handful are investigated more thoroughly: 735 thousand (or 1.2%), which are produced by
6,720 different rules. This subset of alerts add up to 150 thousand incidents. The precise
numbers are specified in Table 3.2.

Of the 6,720 rules that are present in the incidents, 4,806 (71%) of them are present in
80% of the rules; a very uniform distribution that is in stark contrast to the 672 that produce
80% of all alerts. Interesting here is that of these 672 rules, only 89 are investigated by the
SOC, indicating that high alert-producing rules do not necessarily provide usable security
information.

The incident labels described in Section 3.4.1 allow us to group the incidents into two
larger groups: risky and non-risky incidents. The risky group contains incidents labeled Low

risk, High risk, and Successful hack attack, while the non-risky group is made up of False

positive, Not interesting, and Interesting incidents. Due to the granularity of the labeling,
this alternate categorization perhaps better represents the relative severity of the different
incidents.

Figure 3.12 illustrates that the number of alerts and (risky) incidents have not only
increased over time, but are also highly correlated. All three curves in the figure are also very
much correlated with the increase in the MSSP’s customer base. However, we must exclude
the exact customer data from the paper due to reasons of confidentiality. The correlations
suggests that organizations remain exposed to external threats to a constant degree as time
goes on. We encounter the same phenomenon when observing the rate of triggered incidents
by rules of a certain age, illustrated in Figure 3.13. The figure shows that the newest rules
produce the most incidents per week, but this activity levels out as the rule gets older. Within
several weeks, the rule ceases to produce as much incidents as in the moments closer to its
inception. This can indicate an evolution of threats and vulnerability to novel threats, as well



3.7. SECURITY INCIDENTS

3

71

2010 2011 2012 2013 2014 2015 2016 2017 2018
date

0

1

2

nu
m

be
ro

fa
le

rt
s

×106

0

1000

2000

nu
m

be
ro

fr
is

ky
in

ci
de

nt
s

0

2000

nu
m

be
ro

fi
nc

id
en

ts

alerts
incidents
risky

Figure 3.12: Number of alerts, incidents, and risky incidents handled by the SOC. The grayed out
portion on the right-hand side of the graph indicates the MSSP’s period of migration to a new logging
platform. Note the secondary and tertiary axes.

as an adaptation to older threats by organizations as to no longer remain vulnerable to them.

Table 3.2: Number of alerts that compose the different types of incidents, and the corresponding
number of distinct rules that triggered the alerts.

# Associated alerts Distinct associated rules

Alerts - 62,321,663 19,744
Incidents 150,437 735,262 6,720
True positive incidents 69,471 674,177 4,731
Risky incidents 13,589 157,388 2,618
Successful hack attacks 106 734 80

With the commercial rulesets being significantly larger (over 20 times as large), one
could likely expect the alerts and incidents to be caused by the different rulesets in similar
proportions. This is not the case, however, as we actually find that MSSP rules are overrep-
resented in many of the true positive incidents, highlighting type of “quality over quantity”
philosophy. We calculate the precision of all rules in the different rulesets by dividing the
number of true positive incidents of that rule by the total number of incidents in which
that rule is present. The ET Pro and VRT rulesets have an average rule precision of 0.68
and 0.65, respectively, and the proprietary ruleset bests both with an average rule precision
of 0.74, which clearly shows the higher utility of the MSSP’s proprietary ruleset. Indeed,
despite making up a fraction of all the rules employed by the MSSP, the proprietary rules are
present in 27% of all true positive incidents. Thus, a smaller but contextualized ruleset adds
significant detection capability, which supports the economic reasons that were mentioned
in the interviews to develop the ruleset.

Most rules that cause false positive and low risk incidents are updated more quickly than
the rest of rules. Specifically, with a median of 13 and 15 days, respectively, as opposed to
the 30+ days for other incident categories. After the occurrence of false positive incidents,
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Figure 3.13: Average number of incidents per week triggered by MSSP rules of a certain age within
the first year.

Table 3.3: Average updates per rule (to header or detection options) for different rule subsets.

Rules subset # Rules # Updates
Updates
per rule

# Updates
(detection

options)

Updates per rule
(detection

options)

No triggered alerts 115,482 276,339 2.39 18,738 0.16
Triggered only alerts 9,988 370,417 37.1 1,768 0.18
Triggered only incidents 6,513 31,635 4.88 1,910 0.29
No triggered alerts (MSSP rules) 2,506 1,097 0.44 626 0.25
Triggered only alerts (MSSP rules) 447 576 1.29 432 0.97
Only TP incidents (MSSP rules) 276 244 0.88 124 0.45
At least one FP incidents (MSSP rules) 293 512 1.74 405 1.38
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updates mainly fall into three different categories, namely bug fixes, threat intel updates,
and making rules more specific (see Table 3.1 for the full list of categories), as is expected
in case of false positive incidents. As for the low risk incidents, most of the rules updated
within the first two weeks are updates made to the non-detection options, indicating that low
risk incidents are no cause for concern and its corresponding rules are working as intended.

Since the MSSP also tests many of its own rules before adding them to the production
environment, we examine its effects on the incidents triggered by these rules. The benefit of
testing rules over a longer period of time is not immediately clear from the data. For all rules
that trigger incidents and are tested before being added to the production environment, they
remain in testing for a median of 11 days, with a notable outlier being the true positive-only
rules that are tested for a median of 16 days. The fact that this subset of rules is tested for a
longer period seems to indicate that this action has a positive effect on the quality of rules.
However, only 21% of this true positive-only subset was tested at all before being added to
the production environment.

In addition to examining the incidents themselves, this section will also investigate the
effect of incidents on ruleset update behavior. Section 3.6 points out that the update behavior
of alert-producing rules differs significantly from rules that never trigger throughout their
lifetime. This section will expand on those findings and analyze the effect of incidents and
their type on rule update behavior. In a similar vein as alert-producing rules, Table 3.3 shows
that rules that trigger incidents are more likely to receive updates than rules that do not
trigger at all. This holds for both types of updates shown in the table.

Updates made to the commercial rulesets are independent from the MSSP’s alert and
incident statistics; the MSSP does not influence the update behavior of the commercial rules.
Furthermore, the datasets provided to us give us no way of knowing which commercial rules
have been suppressed manually, due to, for instance, alert floods or false positives. When
looking at the effect of incidents on update behavior, we therefore also focus on the MSSP’s
proprietary ruleset.

We find in Table 3.3 that false positive incidents are a much higher driver of updates.
Rules that appear in at least one false positive incident are over twice as likely to receive
updates than rules that only appear in true positive incidents. You don’t change a winning
team, and it seems the same goes for NIDS rules. This also makes sense from the perspective
of a SOC. If a rule is causing valuable man-hours to be wasted on a fruitless investigation, it
may be well worth it to make sure that rule performs as intended.
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3.8. DISCUSSION AND LIMITATIONS
Our analysis has generated several takeaway findings. First, rulesets have grown over time
and now a single sensor is running a combined set of over 65k rules. The focus in earlier
research on the performance impact of large rulesets on an NIDS, seems to have disappeared
as a concern. Only sporadically are rules purged from the set.

Second, notwithstanding the size of each ruleset, there is almost no overlap among
them in terms of detection options or what indicators of compromise they contain. This
suggests each ruleset covers a different and very limited fraction of the threat landscape,
even those from leading vendors like Emerging Threats and Talos (formerly VRT). Thus,
to maximize detection, all rules are combined and enabled by default, regardless of official
recommendations against this practice [55]. This finding also underlines the economic
reasons for the MSSP to invest also in in-house rule development. It is tailored to high-end
threats relevant to their client base which the MSSP felt were not sufficiently captured by the
commercial rulesets. The results bear out their intuition. While these proprietary rules make
up just a tiny fraction of the entire collection of rules, they contribute disproportionately to
the detection of incidents that are evaluated as posing a real threat.

Third, maintenance of the rulesets to improve detection is a minor activity. Most rules are
produced once and then either remain untouched or they are modified in bulk for technical
reasons, like changes in syntax or replacing the indicators from threat intelligence. In the
small fraction of updates where the detection options are changed, the primary reason for
the update is to make the rule more specific to the threat it is trying to detect, possibly in
response to alerts flooding the SOC. Rules that trigger alerts more often are also more likely
to receive updates. In rule management, as elsewhere, it seems that the squeaky wheel gets
the grease.

Fourth, most rules do not contribute directly to detection. In fact, 85% of all rules never
trigger a single alert in their lifetime. Only a minuscule fraction of these tens of thousands
of rules are responsible for tens of millions of alerts: 0.5% of all rules generate 80% of all
alerts. The overwhelming majority of these are noise. Only 1.2% of all alerts – generated by
5% of all rules – are deemed worthy of investigation by the SOC as incidents. And only a
fraction of these investigated alerts – 0.3% of all alerts – turn out to carry legitimate risk to
an organization.

3.8.1. INTERVIEWS

Our findings are supported and informed by the interviews with the security analysts who
wrote or managed the rulesets. In terms of growing rulesets, the interviewees expressed that
they did not really see a downside to keeping all the rules enabled by default. Even though
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older rules are much less active than newer ones, they are rarely deleted: “Most of the rules

don’t really get out of production anymore, because it was proven that the rule works. [...]

Maybe the [malicious] tool has new version and the old rule doesn’t trigger on this new

version, but you cannot say for certain that an actor wouldn’t use the old version, so then

it’s better to have it active.”

Most participants did not really see experience concerns for the impact of growing
rulesets and continually adding rules to the NIDS: “Unless it starts to flood [...] or becoming

slow, maybe we don’t even notice it. Then there’s no process to evict this rule. [...] I probably

think this rule will still be in the ruleset.” That said, some interviewees did express some
concern, perhaps carried over from an earlier time, when performance impact might have
been a factor. When asked about a computationally-expensive rule for the detection of a
banking trojan, one interviewee stated: “yeah, that’s the trade-off, [...] if they already say

the performance impact is high, I wouldn’t deploy it.”

The lack of overlap – and thus threat coverage – of each ruleset was indeed a concern
that led to the development of in-house rules: “I do think you also need to have rules for

[...] more advanced malware that maybe Emerging Threats doesn’t really look into.” One
analyst remarked that their proprietary rules make up “thirty to forty percent of the cases we

escalate, so these rules are so much better. [...] They are a really small part of our rule set

but they have enormous impact.”

In terms of rule maintenance and modifications, one security analyst noted that: “we

tend to only delete rules if they’re actually, like, flooding.” This fits with our finding that
substantive changes to rules are often to make them more specific to the threat. Another
analyst pointed to the fact that rules would be tested, before they are taken into production,
thus reducing the need for later modifications: “usually you give it like one or two days, or

preferably a week, to run this rule [...] in testing.”

Finally, no interviewee had remarked on the fact that most rules never contribute directly
to detection – i.e., never generating a single alert. This is understandable to some extent.
No one would expect all rules to trigger alerts, so they would not evaluate rulesets that
way. Lack of coverage would be much more critical than redundant rules. Thus, there is
an intrinsic drive towards more rules, even if they never get triggered. All interviewees did
remark on false positives. One analyst said that an ideal rule is one that is “extremely specific

for a specific type of malware [...] with as low amount of false positives as possible, while

maximizing true positives.” This is an important trade-off, since most interviewees agree that
a false positive alert flood is the most severe situation that can occur in a SOC: “rule-wise, I

think that is the worst thing that could happen: flooding of the SOC. Not only because you

cannot handle the alerts anymore, but it could take the back-end down because the database
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is not responding.” There are no rules on how to make trade-offs like these. Instead, they
depend on the experience of a developer. And the resulting outcome is much more skewed
than the interviews led us to believe: nearly 99% of all alerts are never even investigated and
only 0.3% are ever evaluated as indicating actual risk. This corresponds to 16% of all rules.

3.8.2. LIMITATIONS

The ruleset repository tool we developed contains a limitation that is inherent to its design.
While it is able to accurately track additions, updates, and deletions from the ruleset, it is
possible to introduce errors in its analysis. Since the tracking of rules across commits is
based on a rule’s ID, altering the ID of an already existing rule is counted as an addition
of a new rule with the new ID and a removal of the rule with the old ID. While this does
affect the computation of total additions and deletions over time, it does not affect the
ruleset’s total rule count. Through manual examination, we are able to estimate that of the
approximately 8,800 modifications made to the proprietary ruleset, only around 100 have
been ID alterations. Rule IDs are meant to be unique identifiers, and thus this limitation is
an unfortunate symptom of ruleset mismanagement.

The manner in which the alert data is collected affects the result of the analysis. Specif-
ically, the size of the customer base affects the distribution of alerts over rules. As the
customer base of the MSSP grows, the same rules will trigger more often, and the more
skewed the distribution will be (see Figure 3.10). This does not give a realistic view into the
alert behavior within a single organization. However, we have approached this analysis from
the perspective of the MSSP, not a single organization. Such an issue is inherent to an MSSP
and undoubtedly plays a role in the processes that go into the management of the different
rulesets.

3.9. CONCLUSION
Traditional NIDSs and their rulesets are an often overlooked portion of network security.
This work presents the first study that aims to shed light on this cornerstone of network
security.

After analyzing four different NIDS rulesets containing around 130 thousand rules, we
find that the vast majority of rules fail to produce a single alert, i.e., 80% percent of all alerts
were triggered by a mere 0.5% of all rules. However, this does not pose a problem for the
SOC analysts as rule developers keep adding new rules and barely modifying the existing
ones. In fact, only around 23% of all rules are updated in terms of detection capability, with
primarily two objectives: (i) adapt to changes in the threat landscape; and (ii) reducing the
number of alerts and false positives by making rules more specific. Hence the possibility
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of using large rulesets without overwhelming SOC analysts. Just 1.2% of all alerts were
deemed important enough to be investigated by the SOC, and only 0.3% of all alerts carried
significant risk to the organization.

We also identified a set of common rule management practices that include: (i) using
multiple rulesets simultaneously due to the lack of exhaustive coverage of the threat landscape
by any single ruleset; (ii) creating proprietary rules to cover client-specific threats and
updating these with higher frequency than commercial rulesets; and, (iii) reducing false
positive incidents by updating the rules that triggered the corresponding alerts.

Finally, our analyses allow us to conclude that the rumours of the death of signature-based
monitoring were greatly exaggerated. Contrary to what appeared to be popular opinion, the
findings in this chapter seem to indicate that signature-based NIDSs and their rulesets remain
vital in network security. Future work is needed to compare this with different approaches,
such as host-based detection in the form of end-point monitoring. With such analysis, we
move closer to determining the fate of traditional signature-based systems: is it an archaic
and obsolete technology or does it remain an indispensable part of a secure network?
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Signature-based network intrusion detection systems (NIDSs) and network intrusion preven-

tion systems (NIPSs) remain at the heart of network defense, along with the rules that enable

them to detect threats. These rules allow Security Operation Centers (SOCs) to properly

defend a network, yet we know almost nothing about how rules are created, evaluated

and managed from an organizational standpoint. In this work, we analyze the processes

surrounding the creation, management, and acquisition of rules for network intrusion de-

tection. To understand these processes, we conducted interviews with 17 professionals who

work at Managed Security Service Providers (MSSPs) or other organizations that provide

network monitoring as a service or conduct their own network monitoring internally. We

discovered numerous critical factors, such as rule specificity and total number of alerts and

false positives, that guide SOCs in their rule management processes. These lower-level

aspects of network monitoring processes have generally been regarded as immutable by

prior work, which has mainly focused on designing systems that handle the resulting alert

flows by dynamically reducing the number of noisy alerts SOC analysts need to sift through.

Instead, we present several recommendations that address these lower-level aspects to help

improve alert quality and allow SOCs to better optimize workflows and use of available

resources. These recommendations include increasing the specificity of rules, explicitly

defining feedback loops from detection to rule development, and setting up organizational

processes to improve the transfer of tacit knowledge.
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4.1. INTRODUCTION
Security Operations Centers (SOC) are a key part of defending enterprise networks against
attacks. Located inside these networks are a variety of security tools and systems – such as
Network Intrusion Detection Systems (NIDS) – that generate alerts. Analysts in the SOC
are burdened with triaging the deluge of alerts that consist mostly of false positives [8]. For
years, academic research and industry reports alike have raised the problem of alert fatigue
and analyst burnout [180, 221]

A lot of academic research on improving SOC operations has pursued better automation
– most notably using machine learning (ML) to analyze the alerts and generate more infor-
mative alarms for the analysts to investigate. Indeed, an “insufficient automation level of
SOC components” was considered the top issue by SOC managers, according to a recent
study [120]. Prior work includes human-subjects studies with stakeholders, aiming to un-
derstand the problems in the SOC workflow to handle alerts [8, 120, 221, 222]. To address
workload issues using ML, studies have focused on alert prioritization [94, 171, 244] and
false positive detection [215, 244]. While the promise of ML for SOC operations is clear,
adoption has been low, and solutions have under-delivered on the promise [60, 110].

The attempts to use ML for improving SOC operations have in common that they are
“end of pipe” solutions: they take the flow of alerts as a given and build a system that ingests
this flow in order to generate meaningful information that supports analysts in triaging
the alerts. Alahmadi et al. [8] aim to improve the development of such ML solutions by
identifying properties that the output of the ML, “alarms,” should have to be useful to
analysts. Ex-post, these systems are designed to take low quality alarm noise as input in
order to produce informative and actionable output that SOC analysts can use. Well known
within the ML community is that inadequate training data will have a detrimental effect
on the quality of the resulting model, as is exemplified by the familiar saying “garbage in,
garbage out” [195]. And even though their work focuses on alleviating the limitations of
alarms through the use of ML-based tools, all of the mentioned limitations are also closely
related to the features that determine the quality of a rule. By improving the quality of the
rules, the quality of triggered alerts will also improve, thereby also bettering the quality of
the input for whatever ML system uses this data.

Thus, we propose a different and complementary approach: rather than end-of-pipe, we
focus on the source of the problem and want to understand how to improve the quality of the
alerts that go into the pipe. Where do the alerts come from? Typically, they are generated
by systems that compare the network traffic against a set of rules or signatures. As early as
2010, experts had forecast the demise of rule-based detection [39, 240] and focused their
research on statistical and machine-learning approaches – e.g., [148, 209, 220]. So far,
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however, the predicted death of rule-based approaches has not materialized. More than a
decade later, the industry still predominantly relies on rules for generating the alerts that are
the basis for SOC detection of attacks.

The craft of developing effective rules is, thus, critical to producing meaningful alerts
and enabling detection, also for those solutions that rely on “end-of-pipe” ML. Yet, we
lack understanding as to how practitioners in SOCs design rules for processing network
activity and how an alert is established and evaluated as being effective in practice. Rule
development and management take place with limited knowledge, such that alerts require
investigation to determine if a threat exists on the network. Most rules never trigger any
alert [239]. Of those that do, the overwhelming majority of the alerts are false positives. True
positives are scarce and false negatives might remain hidden. Under these constraints, how
do rule developers figure out what is a good rule versus a bad rule? How do they evaluate
the quality of the overall ruleset? What practices do they follow in producing rulesets that
are effective in detecting attacks?

In this paper, we present the first interview study focused on professionals who develop
or revise rules used in network threat detection – as the input for SOC incident reporting
systems, rather than how the analysts manage the outputs of these systems. We aim to answer
the following questions: (1) What does the organizational ruleset management process look
like?; (2) What are the main factors and success criteria in managing and evaluating NIDS
rules and rulesets?; (3) How can security professionals improve rule management and
network incident monitoring workflows to optimize SOC processes?

Between June 2020 – March 2022, we interviewed 17 professionals who have developed
NIDS rules, and who either work at Managed Security Service Providers (MSSPs) providing
network monitoring as a service, or at government agencies and firms that conduct their own
network monitoring. Some of the rules they work with were manually developed in-house,
some were commercially acquired, and some were shared within their community. While
our interviewees have different roles, inside and outside SOCs, they all are mandated to
develop or change the detection rules running in their production environment.

While rules are designed to various degrees of quality, we found that the true test of
quality only emerges after the rules are deployed in production. Such evaluation is mostly
based on total number of generated alerts and false positives. Most quality criteria are
optimizing for the SOC analysts’ workload, rather than for detection – in other words, for
reducing false positives rather than false negatives. The aspects of NIDS rules that determine
their quality are balanced against each other to match the organizational processes and
resources. In fact, SOC teams appear to work in a delicate equilibrium, operating on a
knife’s edge, where their resources are in balance with the workload and the services they
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offer to clients. They provide ‘enough’ security to keep clients content, and, given their
specific organizational processes, more resources would not necessarily result in a ‘better’
product. In terms of necessary improvements, we were unable to identify common issues,
as there was no consensus between respondents regarding any critical challenges; most
conversations revolved around specific aspects of the employer’s organizational processes.
This emphasized the importance of understanding analysts’ workflows. Contrary to recent
work on SOCs, no interviewee mentioned automation to replace rules – that is, using AI or
machine-learning approaches like anomaly detection – as an important direction that they
believed would improve their work.

In sum, our main contributions are:

• We present the first interview study focused on professionals who make active use of –
i.e., develop or revise – rules for network detection, and how they experience and per-
form their specific rule creation and management processes within their organizations;

• We find that there is no one trivial way in which to manage a SOC; many critical
factors in the function of a SOC (such as rule specificity and false positive thresholds)
must be balanced against other equally critical factors. This speaks to the value in
understanding how these decisions are made in context, and providing evidence to
inform decisions such as rule management and SOC resource allocation;

• SOCs balance resourcing and capabilities against customer expectations, wherein
we evidence alternatives to a traditional approach to security of ‘more is better’.
Examples include security tailored to specific threats and environments instead of
blanket coverage of the global threat landscape;

• External (e.g., commercial) rulesets create a negative externality for its users: while
they are designed to provide broad threat coverage, users incur the costs of deactivating
or fine-tuning individual rules, or manage the noise they often generate by them if
they opt not to do so;

• There is barely any feedback loop in place for handling false negatives. Since SOCs
cannot know when and how an incident will be missed, and proactive ‘horizon
scanning’ of threats is an effort to compensate for this shortcoming;

• We present a number of recommendations for internal SOCs processes that can help
with improving the overall effectiveness of SOC teams and the services that they
provide, with a focus on making improvements at an earlier stage of the network
monitoring and incident response process.
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Figure 4.1: Example of a rule used by Snort and Suricata NIDSs. Rule developers document
the purpose of the rule and background information related to the threat in the alert message and
“documentation” blocks, respectively. The “detection options” block is used by the system to detect the
actual threat.

4.2. BACKGROUND

4.2.1. NIDS, NIPS, RULES, AND RULESETS

Intrusion detection systems (IDSs) and intrusion prevention systems (IPSs) are catego-
rized based on where they are placed and their methods of detection. There are network-
based, host-based, and application-based systems. Furthermore, they can be either signature-
based or anomaly-based depending on how they detect threats [146].

A network-based IDS (NIDS) is positioned at a key point in the network and scans all
incoming network packets for signs of attacks. By comparing the content of packets with a
predefined collection of patterns or events that are typical of known attacks, signature-based
IDSs identify malicious activity. Network-based IPSs (NIPSs) are installed inline with
a network, which gives it the ability to actively block traffic in case of malicious activity
detection. Examples include Snort [53], Suricata [223], and Zeek [182].

These systems detect threats in network traffic using rules that tell the system precisely
what to look for in network traffic that might be indicative of malicious activity. Using these
rules, analysts can specify characteristics of network traffic such as origin and destination IP
addresses, protocol used, packet payload content, among others. Additional documentation
and metadata may be added to the rule to improve manageability. See Figure 4.1 for an
example of such a rule. A collection of rules are grouped together into a ruleset and deployed
on an IDS/IPS.

When traffic meets the conditions specified in a rule, it triggers an alert. This alert is
then typically sent to an analyst to be validated as an actual attack or threat and of what
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kind. These analysts can be in different locations, but they typically are in SOCs. Some
organizations operate their own SOC, some have it outsourced to an MSSP. A SOC is
confronted with an alert flow that can quickly go into the thousands of alerts per day.

Rule developers are professionals with the mandate to write, change or remove rules.
They might be analysts in the SOC who, based on the alerts they see, change the rule to
provide more useful signals – i.e., make the rule more precise to avoid legitimate traffic
triggering the alert. Other rule developers work outside the SOC. At MSSPs, for example,
they might be located close to the threat intelligence department, to craft new rules in light
of attacks observed elsewhere. And some rule developers work at companies that sell a
whole set of detection rules as a service, e.g., Proofpoint’s ET ruleset [186] and Cisco Talos’
ruleset [54]. Often, these commercial rulesets consist of tens of thousands of rules [239].
Organizations, including MSSPs, subscribe to these rulesets in order to complement the
rules they develop themselves. They can then mandate people in their own organization to
assess, deploy, change or remove rules from these commercial sets, depending on what alerts
they trigger.

4.2.2. RELATED WORK

Shutock and Dietrich consider people, process, and technology in SOC management [211].
They enumerate current challenges in operating a SOC, including staffing issues, and
outsourcing of SOC capabilities from within organizations to external MSSPs. The authors
discuss platform consolidation against the converse view of SOCs maintaining their own
internally-developed tools – we find that there are factors relating to business offerings and
client needs which inform these choices, beyond the amount of effort involved.

Kokulu et al. [120] interviewed 18 SOC analysts and managers, with a view to both
technical and non-technical challenges. An argument is that current SOC arrangements are
insufficient to counter current threat levels and that they are failing to operate sufficiently
well; further, the authors presume that there are practical problems within SOCs that can
be identified and addressed to improve their capabilities. Among their findings are that
false positives in malicious activity detection do not majorly impact SOC operations. The
authors included budget-related questions for managers, Identified SOC issues were framed
according to whether they were perceived by one of the analysts or managers, or both
(mismatched or matched). Among matched issues were ‘poor quality reports and logs’, and
‘high false positive rate’. Of note is that managers in the Kokulu et al. study stated that they
had ‘sufficient’ budget to operate their SOC, where the authors identify ‘insufficient budget’
for SOCs in terms of managers being very aware of having limited budget which can impact
their capacity to enact change programs, training or travel.
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Sundaramurthy et al. [222] apply Activity Theory in a long-term (3.5 year) observation
of how SOC professionals work together to satisfy goals and objectives. This uncovered
tensions and contradictions, specifically issues with tools and operating rules.

Alahmadi et al. [8] focus on false positive alert generation in SOCs, examining this
persistent challenge through interviews with 20 practitioners. The authors arrive at five
indicators of quality for alerts: reliable, explainable, analytical, contextual, and transferable.
An approach to improving alert quality is taken as opposed to a general focus elsewhere to
find tools to reduce the volume of alarms.

We agree with Alahmadi et al. [8] that improving alert quality is urgent and critical to
better detection and SOC performance. However, their call also underlines that so far, the
prior work has focused on how to handle the flow: helping analysts to triage and validate
the voluminous influx of alerts into false positives, true positives, and more fine-grained
distinctions. It has not investigated how that flow is generated, namely via detection rules.
To improve the quality of alerts means improving the quality of the rules that generate these
alerts. How professionals aim to do that is the focus of our study.

Basyurt et al. [21] conduct interviews with nine SOC practitioners to uncover challenges
that SOCs face when collecting and analyzing data, as well as communication cyber situa-
tions. The challenges that the authors identify are of a technical nature, such as the collection
and compilation of data sources and trustworthiness assessments of information, and suggest
the development of a tool that is able to automate those tasks. As opposed to Basyurt et al.,
we lay the focus more on organizational challenges.

4.3. METHODOLOGY
Here we detail the structure of our interview study, along with our recruitment activities and
approach to analysis.

4.3.1. STUDY DESIGN

Our overarching research question is, “How do security professionals manage network
incident monitoring processes to achieve security?” We addressed this through interviews
with professionals. Interviews have been used in prior studies to understand challenges
around management of provisioned security (e.g., [120]).

Our interviews were structured to capture the following information, as also detailed in
the question set itself (see Appendix A.2):

1. Participant details, including their role, organization, and qualities of the services they
provide;
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2. Analyst’s organization services and workflows, focusing on how detection rules are
constructed and managed on a regular, day-to-day basis;

3. The specific processes analysts use for ruleset evaluation;

4. The management of rules, including collaboration with others in the organization,
and related responsibilities for assessment and corroboration of evidence around
rule-related decisions;

5. How analysts meet objectives in practice, including views on improvement.

At the beginning of the study, we performed pilot interviews in order to test our interview
protocol. Minor adaptations were made to the phrasing of some questions. An additional
sample rule for evaluation was also added.

4.3.2. RECRUITMENT AND PARTICIPANTS

We recruited professionals to participate in interviews from a range of different organizations
providing managed security services (similar to [8]). This allowed for the comparison of
working practices and decision-making around rulesets and their management, etc.

The initial seven participants from Org1 (see Table 4.1) were recruited through snowballing—
the process of asking from each participant a short list of names of other people within the
company’s NIDS rule development and management teams whom they believe to be relevant
to this study. This process was halted when the only names we received were professionals
whom we had already interviewed before and two participants who did not respond to our
invitations. After the initial batch of participants, we encountered similar recruitment chal-
lenges as Alahmadi et al. [8], with it being challenging to recruit from a profession wherein
the occupation requires individuals to almost always be active or available for work-related
activities.

Due to the hour to 1.5-hour duration of this interview, and the time constraints and daily
task requirements that analysts work with, we were unable to find many more participants at
the analyst level. Instead, the majority of the participants in this study, after the initial seven,
are security professionals at a more senior level.

We leveraged our research team’s institutional relationships to contact the remaining
10 participants, either through direct emails or through open invitations on LinkedIn. The
prerequisite for participants was that they must be involved in the processes surrounding the
creation or management of NIDS/NIPS rules, be they analysts or managers.

The participants in this study come from nine different organizations across five different
sectors. Not only do they differ in sector, but also in size. See Table 4.1 for an overview of
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the participants. Although we cannot disclose specific characteristics of these organizations
for reasons of confidentiality, their sector may provide an indication of the scale of the
networks that they manage.

4.3.3. ETHICS

Before starting our research, we followed the ethics approval and research data management
procedure outlined by our institution. Data Management Plan has been approved for this
study to ensure accountability, transparency, and compliance. We also followed the principles
of the Menlo Report of ethics for ICT Research [117] during the study. This included
respondents explicitly consenting to the recording, transcription of the interview, and to the
usage of quotes, as well as being informed about their options as to their participation in
the study. We minimized the risks of data leaks by pseudonymizing all data gathered during
the interviews. The quotes have been assessed by the team members regarding the risk of
reverse identification and de-pseudonimization of research participants. The recordings were
stored for the duration of this research on an encrypted hard drive and destroyed when it was
no longer necessary to keep them. All answers were confidential and only available to the
researchers involved in this project.

4.3.4. DATA ANALYSIS

Interviews were transcribed, after which thematic analysis [37, 38] was conducted with
the transcripts. This involved a process of qualitative coding – three coders of diverse
backgrounds were involved in the codebook development, and regular codebook review
meetings to arrive at a final codebook of cross-cutting themes that emerged from the inter-
views (and interviewees) themselves. For the quotations used, reverse identification checks
were conducted by the researchers to safeguard the anonymity of research participants.

The thematic analysis resulted in the following themes emerging: (1) services offered by
the organizations and associated workflows; (2) rule evaluation; (3) ruleset evaluation; (4)
internal and external collaboration processes; and (5) desired points of improvement. The
subsections in the next section (Results) are arranged according to these themes, elaborating
on the views that emerged from the interviews according to these cross-cutting areas. We
present the prominent codes under each code theme, representing the strongest points of
discussion across our participant group.
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Table 4.1: Overview of all participants, their corresponding organization and business sector, and their
role and experience within that organization.

ID Org. ID Sector Role Experience ID Org. ID Sector Role Experience

P1 Org1 Cybersecurity Analyst 4 years P10 Org4 Cybersecurity Senior security researcher 16 years
P2 Org1 Cybersecurity Forensics 3 years P11 Org5 Shipping SOC manager 7 years
P3 Org1 Cybersecurity Analyst 3 years P12 Org6 Telecom Senior analyst 8 years
P4 Org1 Cybersecurity Senior security expert 14 years P13 Org7 Consultancy SOC manager 4 years
P5 Org1 Cybersecurity Incident response 6 years P14 Org8 Government SOC manager 15 years
P6 Org1 Cybersecurity Incident response 6 years P15 Org8 Government Project architect 19 years
P7 Org1 Cybersecurity Analyst 6 months P16 Org9 Consultancy Senior analyst 15 years
P8 Org2 Cybersecurity Analyst 17 years P17 Org9 Consultancy Analyst 1.5 years
P9 Org3 Government Analyst 5 years

Internal threat intel
gathering

Reverse
engineering

malware

In-house rules

Commercial rules

NIDS/NIPS SIEM

Analyst decision

Alerts

Industry partner
collaborations

External threat intel
sources (tech blogs,

vulnerability reports, etc.)

Figure 4.2: Simplified version of the NIDS/NIPS pipeline employed by organizations. In-house and/or
commercial rules are installed on an NIDS or NIPS, which produces alerts that are used as input by
SIEM (tools). Analysts then make decisions regarding detected threats based on the output of the
SIEM tools. Illustrated are also the different data sources that organizations use when creating their
in-house rulesets.

4.4. RESULTS

The interviews revolved around four main topics: (1) the different workflows within the
organization that make up its incident monitoring and response services, (2) the different
processes and objectives that surround the management of NIDS rules and rulesets, (3) how
the participants collaborate with peers and clients to carry out said processes and objectives,
and (4) points of (dis)satisfaction regarding work processes expressed by the participants.

In the sections below, we specifically use the term “alert” to refer to the notifications
generated by NIDS/NIPS rules. This is in contrast to the term “alarm”, which is used by
related literature to refer to the notifications generated by SIEM (security information and
event management) tools “as a result of the correlation of multiple alerts” [8]. This is
illustrated in Figure 4.2: the NIDS/NIPS generates alerts, which are used by the SIEM as
input.
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4.4.1. ORGANIZATION SERVICES AND WORKFLOW

To understand the culture and workflows that govern the SOC, we first set out to identify the
different aspects that make up the security services each SOC offers. This section will discuss
the results that describe initial client interactions and on-boarding, ruleset management and
development practices, and type of network monitoring offered by the SOC (i.e. NIDS or
NIPS).

CLIENT ON-BOARDING

All organizations but one mention client on-boarding procedures, whereby the organization
gathers information about a client’s network before active network monitoring begins. This
allows SOCs to calibrate the network sensor output to the resources available to the SOC
and familiarize themselves with the client network. It can consist of in-person meetings and
preliminary alert processing, which includes setting up the network sensor infrastructure,
and analyzing alerts without performing direct incident response. Gathered information
can include (sub)network descriptions, most valuable assets, and non-standard software
running within the network. The exception to this is the shipping organization Org5, which
does not monitor its clients’ networks; instead, it monitors its own network, which it makes
available to all of its clients. However, Org5 does ensure that the NIDS/NIPS rules that
monitor their network do not interfere with the functionality of client software interacting
with the network.

Participants mentioned the lack of a formal time limit set for this on-boarding procedure,
although they all indicate a usual duration of several weeks. Seeing as the time limit for
this phase is not formally defined, it likely varies from client to client, and it is up to the
analysts to determine when the network sensors and rules are properly configured to the
client network.

Notable on-boarding procedures exist at Org3 and Org9. Instead of having a single
ruleset that is used for all client environments, these two organizations create a custom
ruleset in conjunction with their clients that are completely tailored to the networks of said
clients. Similarly, Org7 creates custom rulesets for each client, although with much less
client involvement.

RULESET MANAGEMENT AND DEVELOPMENT

Ruleset types can be split into the following: free external (i.e., community), paid external
(i.e., commercial), and in-house rulesets. Both types of external rulesets can be obtained
from threat intelligence vendors, and can contain tens of thousands of rules [239]. In-house
rulesets vary from a few tens to a few thousands, depending on the size and resources of the
organization, and its business model.
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All organizations except Org3, Org4, and Org9, use some sort of external ruleset. Al-
though there is considerable diversity regarding the usage and management of external rules,
there certainly is a consensus around their quality. All organizations that use such rulesets
criticize the poor quality of rules, which leads to a large amount of noise and many false
positives (Org1, Org2, Org5, Org6, Org8). However, participants also admit the added value
that these external rulesets provide: “I do think you need to cover all types of malware,

also like the new ones that are coming out. So that is what I think we have covered by

[the external ruleset]” (P14). Though the value of external rulesets is recognized, many
participants also noted the noisiness that these rulesets tend to produce: “We tend to find that

they’re [...] extremely noisy in our environment. Just little things can set them off. (P11)”

P10 explains that it is due to this noisiness and tendency to produce many false positives
that Org4 refrains from using such external rulesets. Since Org4 operates an inline NIPS,
packets are dropped when they trigger a rule. Having a rule erroneously trigger on legitimate
traffic then becomes a more significant problem. Floods of false positives will cause much
legitimate traffic to be dropped, negatively affecting their clients’ business continuity. Org5
operates a hybrid system, where rules can be set to either just alert when triggered or drop
the potentially malicious packet. While this system is also set up inline to be able to block
packets, this allows them to switch blocking rules to alerting rules in case of sub-optimal
detection performance (e.g., too many false positives) so as to not affect business continuity
in the same manner as Org4.

P8 mentions that free NIDS rulesets are not used at all or disabled immediately due to the
large number of false positives it produces. P8 also claims that these rulesets “generally look

at non-conformity towards RFCs (Request for Comments),” and since many applications on
the Internet “bend the RFCs” to properly work, using such rulesets will easily flood a SOC
with alerts. P8 is also disillusioned by the detection performance of commercial rulesets.
Many rules contain IP addresses and domains of known C&C servers, for instance, that are
out of date and are no longer used for malicious activities, and can therefore trigger many
false positives. “Those are generally, for 99% out of date, and they will trigger way too

much false positives” (P8). P8 continues: “I will come across indicators of compromise

easily three or four years old still in a rule set so, and from a paid service you’d expect more.”

P11 shares a similar opinion: “we preach about it a lot in our environment that the [IP and

domain] indicators are worthless.” Thus, an organization that decides to employ external
rulesets must design its operations such that dealing with that amount of noise and false
positives is feasible for the technologies and the manpower available to it.

Due to this lack of quality, many organizations build their own in-house ruleset. All
organizations except Org8 indicate the use of a custom ruleset crafted in-house. Such in-
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house rulesets can be built and tuned to the specific requirements and workflow practices of
each organization.

In-house rulesets are used by Org1, Org5, and Org6, in a fashion complementary to
external rulesets. As P4 states, the external rulesets—specifically the commercial rulesets—
are made by a bigger team and thus generate more general coverage, allowing Org1 to focus
their own rule development efforts on more severe and potentially targeted threats that are
not covered by the external rulesets (which may focus more on, e.g., botnet traffic, untargeted
commodity attacks). Org3, Org4, Org7, and Org9 forgo external rulesets completely to avoid
the noise and false positives it can potentially produce. Instead, they rely solely on their own
in-house ruleset, opting to delegate the security provided by the external rulesets to another
layer in their defenses. Even though an in-house ruleset is currently not employed at Org8,
both participants from Org8 (P14 and P15) acknowledge the importance of such a custom
ruleset and share the plans of their organization to incorporate this aspect into their workflow
in the near future: “we found out that it’s really important to separate things, separate the

rulesets from the engines to be able to always [...] use your own rules” (P15).
Org3 and Org9 create a custom-made ruleset for every client. The rulesets created

by these two organizations are particularly small (under 100), especially compared to the
rulesets employed by the rest of the organizations, and are developed to detect threats specific
to the network and threat landscape of a client. The rest of the organizations employ custom
rulesets with a volume that can run up into the thousands of rules (tens of thousands if
external rulesets are counted). Different data sources are employed by organizations to create
their in-house rulesets, as illustrated in Figure 4.2.

NETWORK INCIDENT MONITORING

All but one of the organizations uses an NIDS for network monitoring. Org4 is the only
organization that employs an NIPS. P14 mentioned that Org8 had recently made the switch
from running NIPSs to NIDSs due to issues with latency (as the system is set up inline
with the network) and false positives dropping legitimate traffic. As a result, their rule
management procedures and evaluation criteria needed to be adapted to this new form of
network monitoring. This is described in Section 4.4.2.

4.4.2. RULE EVALUATION

Rules that are developed and put into operation require a level of quality that makes them
effective at securing the network. As different organizations have different processes for
securing networks, there cannot be a universal definition of what a quality rule is. Still,
analysts from distinct organizations look for these attributes in much the same ways in order
to assess the quality of rules. This quality control is done in two stages: pre-deployment,
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Table 4.2: Criteria used by participants to determine the quality of rules.

Rule quality criteria Participants Percentage

Rule design
Rule specificity 17 100%
Syntax and structure 6 35%
Dislike of domain and IP blocklists within a rule 4 24%
Usage of the fast_pattern keyword in
rules whenever possible 4 24%

Specifying origin and destination networks 3 18%
Rule performance
Number of total alerts triggered by a rule 17 100%
Number of false positives triggered by a rule 16 94%
Danger of resource intensive rule 4 24%
False negatives 3 18%
Ruleset evaluation
Volume and resource intensity 17 100%
Legacy rules 17 100%
Coverage, of which 15 88%

- threat coverage for a specific environment 7 41%
- overall threat coverage 2 12%

during rule design, and post-deployment, when the detection performance of a rule is
evaluated after adding it to the production environment. This section will elaborate on the
different factors that the participating organizations take into account when determining the
quality of a rule. An overview of the different criteria can be found in Table 4.2. Our findings
identify contributing factors ahead of the impacts that analysts have raised as challenges in
the work of Agyepong et al. [4], specifically volume of alerts, false positives, manual and
repetitive processes, and workloads.

RULE DESIGN

Much of what a SOC “sees” originates from the rules that are installed on NIDS systems.
How these rules are designed largely determines the information that a SOC receives about
potential threats. Organizations have no say in how external rules are designed; that is entirely
within the purview of the rule vendors. As a result, assessment of external rules is limited
to post-deployment evaluation of detection performance – options are limited to switching
off rules rather than modifying external rules (as ruleset updates undo those modifications).
For pre-deployment assessment, organizations can only focus on how they design their own
in-house rules. Analysts and rule writers often go through research, experimentation, and
multiple rounds of testing for every rule that they design. After conducting the interviews,
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we identified characteristics of a rule that influence its potential quality.

Specificity. The single most important aspect of rule design is to make the rule specific to
the threat for which it is being designed; all participants make mention of the importance
of this quality criterion during their respective interview (see Table 4.2). A rule that is
specific to a particular threat will, for instance, try to detect the threat using some very
unique characteristic that make it easy to distinguish from other types of traffic. By contrast,
a rule that is more generic will use indicators that are less tied to a particular instance of a
threat, in order to capture more variations of said threat. As such, a generic rule will likely
trigger more often than a more specific one.

As there can be many exploits that target the same vulnerability, and malware families
using these exploits can become quite large, creating a rule for every single instance quickly
becomes infeasible: “I’m going to write as few rules as possible to detect as many web

shells as possible. Rather than creating [...] static checks for each and every one of them,

[...], you try to find a pattern between all these web shells and see if you can make one rule

to cover maybe 80% of all the web shells out there, and then see if you can make it work”

(P6). Therefore, these two aspects must be balanced when developing rules. P10 explains:
“you want to be as specific as you can to prevent false positives, but you don’t want to be so

specific that you’re going to miss different variants of a piece of malware or something other

than the POC (proof of concept).” Create a rule that is too specific, and it might not trigger
on different versions of the same threat; create a rule that is too generic, and you might
overload your analysts and SOC: “in practice [it can be] really difficult [...] to actually get

really good detection rules that apply to the threats but do not generate false positives, and

it’s this balance that we need to keep up every day. Sometimes we get too strict and you

don’t see things, sometimes we write and update the rules, then we could get called by the

24/7 team that is getting a lot of noise in the monitoring system because the rules apply to a

lot of traffic” (P12).

Indeed, the aspect of specificity does not exist in a vacuum. It not only has an effect on
the potential false positive alerts, but also on the number of alerts in general. This will be
discussed in Section 4.4.2.

Rule syntax and structure. Six participants mention a rule’s syntax and structure as an
aspect that influences quality. These aspects determine the readability of a rule because it
makes maintenance of the rules easier (P4, P10, and P11). Three participants (P2, P4, and
P6) mention the importance of using variables to specify the origin and destination networks
of the traffic being analyzed by the rule. Configuring a rule to be executed for any origin and
destination IP will increase the resource intensity of the rule, since the rule will be applied to
every packet entering and leaving the network. Specifying origin and destination networks or
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addresses for a rule ensures that the rule is applied only to relevant packets, thereby reducing
its resource consumption. Additionally, four participants (P1, P4, P6, and P10) mention the
usage of the fast_pattern keyword in rules whenever possible. With this keyword, an
analyst can tell the system how to perform more efficient pattern matching for the potentially
malicious content of the packet, which can also greatly increase the speed at which the rule
is executed.
Blocking IPs and domains. Finally, four of the participants also displayed some animosity
towards the use of domain and IP blocklists within the rule, not only due to the resource
intensity of these types of blocklist rules, but also because they are difficult to maintain and
quickly become out of date, making them easily prone to false positives.

Although looking at the rule itself can provide an indication of its quality, it by itself
does not provide enough information for a definitive verdict: “it’s very hard to classify a

rule as good or bad based on only the rule itself, so you really need to [...] have the rule

tested on real network traffic” (P1).

RULE PERFORMANCE

All participants share a similar opinion regarding characteristics that determine rule quality.
Interestingly, the only element on which all participants unanimously agree is the significance
of the number of alerts that a rule triggers. The number of false positives a rule triggers
is a close second, with all but P15 making a mention of this second aspect. The degree to
which the remaining characteristics are deemed important differs depending on the workflow
practices of the organizations.

A rule that triggers an abundance of alerts, and thus potentially floods the SOC, was
stated by all participants to be undesirable. Analysts need to process every alert that arrives
at the SOC, and an alert flood interferes with the analysts’ ability to perform their work
effectively. Furthermore, a rule that starts producing a very large amount of alerts might also
overload the SOC systems, causing downtime, leading to the SOC not being able to monitor
their clients’ networks at all. Indeed, most participants deem flooding of the SOC the most
severe failure that can occur within their operation.

An example of when this can go wrong comes from a few participants from Org1: “So

[our rule vendor] created a rule. They found out that SMB1 traffic was now deprecated,

and should be considered malicious because it can be exploited. So, basically, they said ‘if

SMB1 traffic occurs, then it should create an alert, because that is a really bad sign.’ And

in some way it is. However, there are a lot of companies who still use that legitimately. So

basically what happened when they introduced that rule and we synced it into our production

environment, [is that] it broke everything” (P5). P4 elaborates: “The flooding of the SOC is

not only bad because you cannot handle the logs anymore [...], but also it could take the
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backend down because of the database not responding [...]” Ways to safeguard against such
failures include mandatory testing of rules on real network traffic before being placed in
production, as well as syntax checks to ensure that rules only trigger a set amount of times
within a certain period.

P3 describes the Org1’s heuristic process of creating “good” rules that takes the amount
of triggered alerts into account. Apart from triggering on true positives, with that being the
ideal scenario, another gauge of rule quality is the lack of triggers while being tested on
customer network traffic. It is difficult to test a rule’s true positive rate, since there is no
guarantee that it will detect specific malicious traffic during its testing period. And depending
on the rarity of a threat, many of the alerts will turn out to be false positives. So instead
of going through the difficulties of measuring a rule’s true positive rate, rule developers
can look at the absence of false positives to estimate the quality of a rule. This heuristic
is clearly not a one-size-fits-all and includes implicit assumptions about the severity of the
threat in question, since many (potentially less severe) threats are much more accessible and
present in the wild, and will inevitably trigger these less severe rules when exposed to real
network traffic (e.g., port scans). “Another good indicator [of rule quality is the following.]

We [push] the [rules in our] testing repository [to several of] our biggest customers [for] a

reason: that is because if it doesn’t trigger there, then the rule is probably well written. [...]

So then if it doesn’t trigger [there,] then we [...] make the assumption that, [though] it’s not

triggering, it’s also not flooding. So the traffic is unique enough — or at least the indicators

are — to put in production. And that’s when we put it in production” (P3).

It is not to say, however, that “good” rules will remain that way indefinitely. Due to
the constant evolution of the Internet and the types of traffic that you can find in it, there
remains the chance that even the most specific of rules will start detecting a new type of
traffic as potentially malicious. It is then up to the SOC to handle such situations quickly
and effectively to prevent further incidents.

The number of false positives triggered by a rule is closely tied to the previous aspect. A
rule that triggers many false positives will inevitably tie up SOC resources unnecessarily, as
these cases will still need to be evaluated individually by an analyst. There is a trade-off here,
though, that was mentioned by several participants from Org1, namely that the acceptable
proportion of false positives a rule triggers depends on the severity of the threat that the rule
is trying to detect: “we as writing experts can say, well, this is truly malicious behavior

and we are willing to risk, let’s say, a 50% false positive rate so we can catch these as

soon as possible, because the weight of it will balance the false positives” (P5). P13 also
mentions such a trade-off that is sometimes made in cases of new discoveries of severe
threats. In such instances, the severity of a threat and the necessity of being able to detect it
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can sometimes trump potential standards for noise and false positives: “Generally, these

rules are a little more cowboy fire from the hip, because we’re trying to be fast, and we

accept some additional noise” (P13).

Org4 operates an NIPS that drops traffic when it triggers a rule, as opposed to an NIDS
that raises an alert, and Org8 also did up until their recent switch to an NIDS. The case of
Org8 gives us the opportunity to examine the changes in rule evaluation criteria caused by
the shift in network monitoring approach. When operating an NIPS, P14, along with P10,
who also operates an NIPS, describe preventing false positives as the most crucial aspect
of rule development and management, since dropping legitimate traffic impacts business
continuity directly. After switching to an NIDS, P14 states that they are still concerned about
false positives, although for a different reason, namely the burden placed on the SOC and
analyst fatigue.

Participants from Org1, Org4, Org6, and Org9 mention the danger of resource-intensive
rules, which can potentially lead to sensor downtime. Thus, evaluating the resource intensity
of a rule also plays a role in determining the quality of the rule, although not as significant a
role as the previous aspects.

Only three participants (P5, P7, P14) mention false negatives as a main concern in
regards to NIDSs. Given that the participating organizations are tasked with securing client
networks, it is curious why failing to detect an intrusion is not considered more critical,
especially since such SOC failures could be directly caused by an inadequate rule for which
analysts and rule developers are responsible. P5 regards false negatives as most severe, while
viewing false positives as “not that bad”, in contrast to most of the other participants. This
could be due to P5’s role within the organization’s incident response team: false negatives
can quickly lead to security incidents, meaning that P5 would be directly influenced by such
occurrences. This is in contrast to the majority of the other participants, who are responsible
for SOC operations instead of incident response. P14 views both false negatives and false
positives as equally severe, although depending on the point of view of the assessor: from
a risk point of view, false negatives are deemed most severe, while from the point of view
of security analysis workload, false positives can be seen as most severe. Finally, P7 is an
analyst with six months of experience in the field. Ahmad et al. state that junior analysts have
“less developed mental models,” [5], which offers an explanation as to why their opinion
does not match with the statements of their more senior peers. The issue of false negatives is
also identified by Agyepong et al. as one of the challenges that analysts face, although to a
significantly lesser degree [4].
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4.4.3. RULESET EVALUATION

Through the interviews, we identified three primary drivers of ruleset quality, namely threat
landscape coverage, ruleset volume and resource intensity, and management of legacy rules
(rules designed to detect older threats, software, or systems).

Coverage. The topic of ruleset evaluation that featured the most is the aspect of coverage.
Out of all participants, 15 agree that coverage is a primary factor of ruleset quality. The type
of coverage different organizations strive for, however, does differ, and can be generally split
up into two broad categories: “overall threat coverage” and “threat coverage for a specific
environment”. The majority of the organizations adhere to the latter category, while only
Org1 and Org5 explicitly strive for larger overall threat coverage. An interesting case is
Org3, where P9 states that, ideally, a client’s entire environment threat landscape be covered,
but clients of Org3 themselves find such coverage unnecessary and are satisfied with more
moderate monitoring.

Legacy rules. There also seems to be some overlap between this philosophy on threat
coverage and the way organizations deal with “legacy” rules. These are rules that, for
instance, detect older threats, old versions of software, or rules that simply do not trigger any
alerts anymore. This is not to say, however, that such rules are considered “bad”. These are
simply rules that are potentially no longer relevant for a specific detection environment.

Five of the seven organizations that aim for threat coverage of a specific environment
remove these legacy rules from operation if the client network no longer expressly requires
it (e.g., all instances of a certain software are updated to a newer version). Management of
legacy rules brings with it different costs that the organization can incur, one of which is
the traffic processing costs in case legacy rules remain in the ruleset indefinitely, which will
be touched upon later in this section. On the other hand, removing legacy rules may incur
higher costs to the organization. These rules would have to be individually and manually
assessed before deciding on whether to keep or remove them. This means that the larger a
ruleset grows, the larger the cost will be that an organization will incur when performing
this manual work. This could explain why the aforementioned five organizations are able to
easily remove superfluous legacy rules: the environment-specific rulesets that they create are
smaller and, therefore, more manageable.

The rest of the organizations choose to keep these legacy rules in place if the threat is
deemed severe enough, lest they miss a security incident in the future due to the removal
of that rule. Org4 presents an interesting case here, where they balance between providing
environment-specific threat coverage and coverage of more severe threats that might not
be as relevant to a network anymore. In general, it also seems that the size of the ruleset
employed by organizations is not a determining factor when it comes to ruleset quality.



4

98 4. NIDS RULE AND INCIDENT MANAGEMENT PROCESSES

Each organization operates with rulesets of different sizes, and their network monitoring
services have been calibrated to work efficiently with the rulesets of that size; none have
indicated desire for a different type of ruleset than they already use. The SOC teams in the
organizations have calibrated their processes to the types of services that they offer. For
instance, P8 says of Org3 that the analysts are capable of processing around 300 alerts per
day, which is almost exactly what the SOC receives from the client networks using only a
commercial ruleset for threat coverage. Adding more rules to increase coverage will likely
not add any benefit for clients, and may in fact be detrimental to overall security, since the
analysts will then become overburdened.

Volume and resource intensity. On a ruleset-wide level, resource intensity is primarily
influenced by the number of rules contained within the ruleset. As was the case for the
resource intensity of individual rules, a ruleset’s resource intensity does not seem to be a
major issue for most of the organizations. “There’s a correlation, obviously, between a

hundred thousand rules vs. one thousand rules in terms of performance. Now, I can have a

thousand poorly performing rules that perform worse than a hundred thousand good rules,

so you can’t say there’s a causation there [...]. But if you start talking about engine specifics

and how it’s doing everything from the multi-pattern matching to the actual rule inspection,

[...] all that makes a difference, so volume doesn’t really factor into it as much,” explains
P10. However, Org6 and Org8 do explicitly acknowledge the point, the reason being that
both organizations monitor networks where the data rate can reach 100 Gbps. At these high
rates, the network sensors used by organizations can easily be overwhelmed if every packet
has to be tested against a ruleset that is much too large. Other organizations do not monitor
networks or network segments that generate that much traffic, or simply operate with a single
ruleset that is maintained small enough that throughput degradation due to volume will never
be an issue.

4.4.4. COLLABORATION

When asked about the way they worked together with immediate peers to achieve their
workflow objectives, participants spoke mostly about two main elements: clients and peers.
Client input/feedback was a theme that featured most often and consistently across all the
interviews. Some respondents came up with informal examples of interactions, such as

“it’s a good change that you’ve done” (P16) and “yeah, why didn’t you put these rules into

production?” (P17), while the others described a detailed setup communication mechanism
on case-by-case basis: “For instance, we have an entire email inbox set up for end users [...]

to email us directly and say, hey, there’s something weird either going on my computer or

something I received in an email. Do you mind checking it?” (P11).
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In terms of processes, client input is seen as necessary early on, during on-boarding
(as reported in [169]) to familiarize with client systems, and also to fine-tune specific rules.
Responding to needs extends to when clients are reacting to specific developments reported
by news sources, e.g., “you’ll see the news reports, whatever hits the news, all clients come

in [and say] ‘oh, do you have coverage for SolarWinds?”’ (P10), and changes in the business
environment, e.g., “the government decides what we have to do” (P14). Although there may
be these inputs to the on-boarding and management of rules, generally engaging with clients
constructively, it can nonetheless swing between imploring the client to “trust us and let us

do our thing. We’ll show you the summaries of what we’ve done” (P13), and having client
representatives equally versed in the technology who might be “a really up-to-date security

officer, or maybe a network engineer who is curious if we cover [a particular threat] too”

(P12). Although Onwubiko et al. [169] also mention the importance of the client perspective,
their work makes no specific mention of client input regarding the desired threat coverage.

The second element, collaboration with peers during rule design, development, and
evaluation, is essential to safeguard the flexible, tailored approach that we have mentioned
in the previous sections. “We usually don’t have an issue working together. To be honest,

it’s the opposite - it’s actually working together has got us through situations [where] we

had no idea what to do” (P16). Respondents from different organizations describe having
agile protocols in place to execute the “four eyes” principle[57] and to resolve issues within
the team, as well as possibilities to solicit external expertise. Trust and freedom to both
ask for clarification and to implement the solutions deemed necessary are commonplace.

“There’s a mutual trust between us as coworkers that you know what you’re doing; and if

you didn’t, then you should have asked” (P3). Specialist expertise can be solicited through
various means: workshops, chat groups, collaboration with colleagues from the other teams,
industry-specific circles of trust, as well as through conducting own research. Time and
capacity restrictions influence collaboration in different ways: prioritizing threats (“Yes,

so our first line does the initial filtering [...] So that goes from 300 alerts to five that go

to my line and my colleague” (P8)), and prioritizing analyst work-life balance (“I want

to say we will turn off the rule if it goes haywire, doesn’t let us sleep at night" (P17)). A
notable improvement point is calling for even broader collaboration within the industry and
security community: “so if you have the second, third, thousandth opinion from a number

of researchers and security professionals around the world working on different rules, that

is very very useful. So I’m a big fan of these standardized languages for rules. And I think

more people should use them in the industry” (P16).
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4.4.5. IMPROVEMENT POINTS

In general, we could not identify a common issue for the respondents. When specifically
asked about the possible points for improvement, participants related mainly to different
organizational aspects, in turn reflecting the diversity of their work processes. The improve-
ment mentioned most often was better documentation of the different aspects of the rules (6
out of 17 interviews), such as actions that have been taken in the past or history of changes.
Platforms or tools to systematize and access this information were mentioned as another
desired improvement point: “You don’t have, like, one dashboard that says: this is what’s

happening right now, and these people should be cleaning up their rules” (P6).

Other suggestions varied greatly and included better-organized client feedback loop,
introducing an asynchronous aspect into peer review, better flow between deployment and
testing, better quality of the rulesets, better and more testing, and more integrity checks.
Automation was mentioned two times as an improvement component: automation of some
“boring” processes, as well as extra quality assurance in an automated fashion to be able to
employ more part-timers (i.e., a solution to a possible problem rather than a current one).
This is mirrored in existing work [222]. As for the areas that could become better, one
participant mentioned broader research to maintain detection quality, and another stressed
the importance of keeping up with the current trends: “[...] you start basing it on techniques

and tactics and procedures that attackers use, [...], so it goes more from an artifact-based

approach to behavior-based approach. And from that, I guess, you could move into even

more, say, non-standard territory: statistical models and baselining; and you start going

into data science and artificial intelligence stuff, right. So that’s probably what, I would say,

is an improvement that needs to happen across the board” (P16).

Perhaps indicative of the optimized nature of SOCs is the diversity in the desired im-
provement points within SOCs. Participants seem generally satisfied with internal processes;
there is no single shortcoming that is severe enough for all participants to point out and that
needs immediate fixing. As systems become more optimized to specific work processes,
they also introduce fragility into the system, as any change will upset the delicate balance
necessary for all workflow optimizations to function properly. This is exemplified by an
occurrence at Org1, where the addition of a SIEM tool to their existing pipeline that was
meant to lighten SOC workload actually overloaded analysts by tasking them with using a
tool they were unfamiliar with.

4.5. DISCUSSION
Many factors are considered in decisions around the use of rules in NIDS and NIPS systems.
These are weighed against each other on a continuous basis in order to optimize the man-
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agement of potential intrusion events. This phenomenon has been explored elsewhere [206]
but only through construction of a conceptual SOC model representing analyst expertise
and alert triage times, rather than direct empirical data gathered from practice (though
the requirement to ‘trade off’ aspects against each other is highlighted). Many proposed
solutions aim to optimize network monitoring and response workflows at a higher level (e.g.,
after the SIEM layer [8]), taking the inefficiencies of lower-level components (e.g., NIDS
rulesets) as a given and immutable. Our results demonstrate that such inefficiencies are not
immutable at all, as it is the proper balancing of the aforementioned factors that determines
the quality of threat detection and SOC effectiveness. Through the balancing of these factors
and trade-offs at a lower level, SOCs can significantly reduce the impact of such low-quality
information on the higher levels.

4.5.1. CREATING QUALITY RULES AND RULESETS

A recurring theme during our interviews with practitioners was the importance of using
good rules, since that is what provides the SOC with security information and allows them
to respond accordingly to threats. Creation, acquisition, and management of rules allow a
SOC to both detect incidents and have the capacity to meaningfully respond to the incidents,
supporting the detecting-responding alignment [212].

Kokulu et al. [120] investigate challenges surrounding the scalability of SOC operations,
referring to “complexity and the difficulty of integrating new technology” into a SOC as the
singular issue regarding scalability. Furthermore, while prior work has identified trade-offs
made by SOCs during rule management, network monitoring, and incident response, they are
limited to balancing false positives and false negatives [120], and trade-offs revolving around
monetary costs of SOC analysts [206]. In this work we identify numerous additional aspects
within SOC operations that are weighed and balanced against each other to effectively operate
a SOC. Additionally, we also find that the structure and content of rules are determined
not only by the rule design itself, but also by the externalities created by the characteristics
and workflows of SOC teams. By examining these characteristics at the lower level of
NIDS rules, we are adding to the understanding of how management practices and security
practices influence each other.

In order to write good rules and create effective rulesets, a combination of experience
and understanding is needed in order to find an appropriate balance between the multiple
critical factors that influence rule and ruleset quality. The critical factors that were mentioned
by participants are (1) specificity, (2) number of alerts and false positives, and (3) coverage.
These separate factors are often interlinked, and so by altering one factor, another factor will
be affected by that change, perhaps detrimentally. Choices about how to balance these factors
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are reflected in the security processes and approach of each organization. This indicates
that balancing these factors is a non-trivial task that varies per environment. Such tasks thus
require a significant degree of familiarity with the respective environment and its (human
and computerized) components to make an appropriate decision. A particular configuration
of these factors might work for one SOC, but possibly overwhelm another. This can also
influence how new technologies are implemented into existing workflows, and their potential
effectiveness within its respective environment. Slight differences in resource and workload
capacity between SOCs can result in wildly distinct outcomes.

Specificity. Specificity in a rule interacts with all other rule management factors; increasing
a rule’s specificity to a threat makes it less prone to false positives, but also inherently
decreases the threat coverage provided by the rule. In turn, this requires a larger volume of
distinct rules to provide broad coverage. This is balanced against having more general rules,
which, although they may increase the threat coverage to detect, e.g., variations of the same
exploit or malware, it will also potentially cause the rule to produce more false positives.

The general consensus among our participants is that it is more desirable to have specific
rules than generic rules, in order not to overwhelm the SOC – and the analyst team – with
false positives. A study analyzing SOC and rule update logs found the same pattern: a gen-
eral trend towards making rules more specific [239]. This may also explain why commercial
rules are regarded as less than ideal by our interviewees, and why multiple organizations
complement commercial rulesets with their own in-house ruleset, or choose not to use such
rulesets at all.

Alerts and false positives. All participants remarked that minimizing alert floods and false
positives is an objective to strive for. This ties into the previous point on specificity, which
can reduce the risk of both. There are instances, however, when a larger amount of false
positives is tolerated, namely when the severity of a threat is deemed high enough, or after
the emergence of a new threat for which no coverage or understanding yet exists. Due
to their time-sensitive nature, such pressing circumstances thus force detection to rely on
underspecified rules that also trigger on benign events.

In the case of Org2, for instance, work processes are calibrated to instances where the
used commercial ruleset works as intended (i.e., no floods or excessive false positives).
During instances where it does not, the SOC disables the infringing rules, thereby reducing
false positives and workload on the SOC, sacrificing threat coverage in the process.

Coverage. In Section 4.4 we explained how organizations deal with threat coverage in
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distinct ways, which can depend on the type of service that they provide to clients. One
of the decisions an organization needs to make is whether to optimize for overall threat
coverage, or to optimize threat coverage for a specific environment.

Among our participants, two particular themes emerged: firstly, retaining rules that rarely
triggered but were seen as important to keep just in case, because the impacts associated
with a true positive or incident absolutely had to be avoided. This relates to a concern of
potential ‘Black Swan’-style risks [226] (low probability but high impact). This also relates
to non-trivial decisions about the retention of legacy rules.

Second was a phenomenon similar to the ‘benign triggers’ observed by Alahmadi et al.
[8], where in essence, a rule was triggered which analysts had already determined a response
for, i.e., action had already been taken prior to the alert and there was seen to be no need
to be told about it again. A simple example is network policy rules that are tolerated due
to client-specific use cases. Persistent triggering of such a rule was then because the rule
had not been refined, seemingly because it was not seen as worthwhile to do so, and the
fact that the rule still works as intended and, therefore, still provides the threat coverage it
was designed for. While tolerated, such benign triggers can potentially provide additional
information about a potential security incident in the future.

INTERNAL AND EXTERNAL FEEDBACK LOOPS

The interviews tell us that there is no strictly-defined feedback loop for quality in terms
of threat detection on an organizational level, and that rule management relies in part on
the intuition of the analyst. Analysts rely on their intuition to make appropriate decisions.
Since experienced analysts perform better than more novice peers [206], this indicates that
a feedback loop exists for the fine-tuning of this intuition. Decisions regarding network
incident monitoring and response are very context-dependent, and analysts state that the
process for developing this intuition consists of investigating and analyzing alerts and security
incidents within the contexts of different networks and organizations. This iterative fine-
tuning of analyst intuition is critical for the proper functioning of a SOC, since determining
the value and validity of a rule is not a straightforward task.

In many cases, the only indications of rule quality are the number of alerts a rule generates
(i.e., whether it floods the SOC with alerts), and the number of false positives it produces.
This must be considered alongside the analysts’ understanding of the threat(s) related to the
events, and to what extent it is believed that those threats relate to the organization; this is
reflected in analysts’ proactive searching for emerging threats, which are then considered
against the knowledge of the organization/client network and vulnerable systems.

All organizations that create their own rules test these rules on real network traffic before
pushing them to the production environment in their clients’ networks. Testing yields an
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indication of rule quality. Only when true positive detections arrive at the SOC and analysts
compare that to the number of false positives, can they truly determine whether the rule is of
high quality. The proactive ‘horizon scanning’ for new threats is an effort to compensate
for this, i.e., to avoid a false negative – a successful attack – being the moment when a
threat is discovered. Among our participants, there was a perception of being successful at
catching all possible threats, which indicates that they are working effectively and protecting
their organizations/clients. This does mean, however, that there rarely is a feedback loop of
false negatives (breaches) back into the detection process, and in turn, a lack of experience
with false negatives. Detection capabilities then evolve based on a mixture of incidents
‘elsewhere’ that are communicated out in the professional community or via news, as well as
the aforementioned ‘horizon scanning’ for new threats, and problem-solving as to how those
threats may relate to managed environments. The feedback loop consists of targeted rule
edits and additions to provide coverage for the threat(s) that contributed to the breach. Since
there is no way for the SOC to know when an incident will be missed, this is the only action
SOCs can take for rule management.

Prior work [234] has studied this ‘horizon scanning’ and the use of publicly available
data in the creation of rules. While this falls out of scope for this work, future work could
further examine how reliance on this data affects SOC workflows and eventual network
security, especially since analysts have stated that such open-source threat research is integral
to the creation of in-house rules.

EXTERNAL RULESETS

Our participants regarded commercial rulesets as akin to ‘starter packs’. Whether these
rulesets are useful for the organization or not depends on the manner in which they provide
their security services. Akin to the concerns about rare, high-impact events, external rulesets
were regarded as useful for standard threat landscape coverage, containing the low-hanging
fruit of threats that smaller teams of rule developers and analysts cannot create themselves
due to time and resource constraints. Additionally, since they were unanimously regarded
as “noisy,” organizations need to have the technology and resources to be able to manage
all the noise that they create. There is then a negative externality created by these external
rulesets – their intention is to provide broad and comprehensive coverage, as a signal to
customers of the quality of their rulesets as a product. However, this does not consider the
amount of ‘noise’ they generate for those using the rulesets, who must then choose whether
to selectively switch off or abandon the rules, as the cost of fine-tuning each rule to be less
noisy was regarded as simply too great by our participants.
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INTRUSION DETECTION VS PREVENTION

Through the interviews, we also discovered that rule quality assessment differs depending on
the type of system that is being used. Three of the nine organizations considered in this study
operate an NIPS, or have done so in the recent past, and all state false positives as the greatest
concern in this context, since traffic is immediately dropped. Consequently, the balance
between making a rule specific or generic tilts more towards making rules specific, in order
to reduce the risk of false positives. The fact that false positives remain a major concern is a
strong indicator of why most organizations opt for an NIDS. Client business continuity is a
top priority for all organizations, which is why even Org5 uses a hybrid NIDS/NIPS where
most rules drop traffic, while some rules that are prone to false positives are modified to only
produce alerts when triggered, instead of dropping the infringing packet.

The case of NIPSs dropping packets directly after triggering a rule highlights the impor-
tance of start-of-pipe improvements (see Figure 4.2). Taking such drastic action beforehand,
and attempting to correct the issue in the SOC afterwards is effective for neither the SOC
nor the client, since the consequences of such misconfigurations have already carried out
their effect on the client network, potentially, business continuity.

4.5.2. WIDER IMPLICATIONS

From the interviews, we can ascertain that all organizations seem to be satisfied with how
their network monitoring processes are set up. No participant suggests that additional
resources are necessary to improve internal processes.

Where Kokulu et al. [120] mention that SOCs have insufficient budget to accommodate,
e.g., one-off costs such as travel, here we find our participants in general agreement that they
have sufficient budget to operate their SOC and, crucially, to meet the needs of their clients.
This, however, may be a consequence of action to limit ‘floods’ of false positives or ‘noise’
created by general (external) rules, so that alerts are manageable within the workload of the
analysts. It is possible that budget issues are not reported because SOCs are matching their
workload to their work capacity.

Current literature claims that signature-based NIDSs are becoming more antiquated
by the day [39, 240], and should therefore be replaced by ML-based systems. However,
ML-based are often positioned as being a solution much later in the process of protecting
a network; here we see that the rules used to first detect events must be mastered, and that
ML-based systems cannot necessarily build a picture of the system in retrospect so late in
the process. ML-based systems are not unaffected by the problem of false positives [8].

It is also often claimed that signature-based NIDSs cannot keep up with the fast evolution
of the threat landscape, are unsuitable for the detection of new threats, and can therefore
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create security risks for the organization that employs such systems. Not a single participant
mentions this as a potential drawback of their signature-based systems. Even Org7, which is
actively and explicitly investing and focusing on machine learning-based approach, never-
theless finds most clients subscribing to the signature-based service, and tends to use their
ML approach in environments that are more standardized, such as point of sale systems.

However, ML was seen as having a potential role in the protection of systems, and it
holds the promise of reducing the alert volume to be investigated. Moreover, explainability
of alerts is mentioned by Alahmadi et al. as crucial for the efficient functioning of a SOC,
and current implementation of AI and ML models largely remain opaque [8], meaning that
issues regarding explainability will only get amplified in case of the implementation of these
systems.

4.5.3. RECOMMENDATIONS

From this study we have identified a preliminary set of recommendations:

Rule specificity and reduction of false positives. Consistent with findings from Agyepong
et al. [4], yet contrary to the work by Kokulu et al. [120], we find that false positives are
a major concern for SOC teams, primarily due to workload issues. SOCs often take false
positives as an indication that a rule needs to be made more specific to the threat it is trying
to detect. Therefore, a straightforward recommendation is to make rules more targeted
and specific. Ideally, though, this adjustment should be assessed on an individual basis.
From our interviews, we learned that false positives are often tolerated to some extent if
the threat being detected is novel or severe enough. This indicates that driving down false
positives, while an important aspect of SOC management, is not a cure-all. As stated in our
Results, making a rule more specific will also reduce threat coverage, and thereby also losing
information about any potential malicious traffic inside a network. And as explained by P6,
generic rules are more useful in cases where there is a preponderance of similar malware
that can be easily covered by a single rule.

Still, reducing the amount of false positives a rule generates will make the rule more reli-
able, and subsequent alerts generated by that rule more trustworthy and actionable, thereby
also reducing the potential workload for SOC analysts. Proposed solutions to current work-
load issues include ML systems that are designed to provide analysts with actionable tasks
by filtering out false positive noise from already inherently noisy alerts [8]. Even though
addressing the issues of false positives at the end-of-pipe stage may improve workload diffi-
culties for a SOC, this is treating the symptom and not the cause. Furthermore, attempting to
improve workflows by adding additional technologies to the network monitoring pipeline
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may very well upset the delicate balance within a SOC, since our participants indicated that
they were generally satisfied with their workflows, and comfortable with using the tools that
they are currently familiar with.

Feedback loops. Just as it is labor-intensive to create a large collection of specific rules to
catch all variations in a malware family, so, too, is it to build every single exception into rules
to filter out every potential false positive. This is in contrast to our finding regarding making
rules more specific and is an important counter to an unquestioning implementation of such a
policy: specificity is a goal to strive for, but it is too effortful to write specific exceptions for
every corner case. This all depends on the rule, the threat, and the situation itself, meaning
that there is no magic bullet that will work for every case. What is clear is that if a SOC
wants to increase the quality of the rules, one way to accomplish that goal is to have much
more feedback from the detection process in the rule development process. In practice, this
feedback is very limited, often only occurring in cases of (false positive) floods. Including
more feedback from additional steps in the rule evaluation processes, such as a rule’s testing
phase, or when rules stop producing alerts, can yield analysts with valuable information
regarding rule quality. Additionally, proactively implementing discoveries within the wider
security community is a process that needs to be exploited further.

Creation of quality rules mainly relies on analyst intuition, which, in turn, can be de-
veloped by means of these feedback loops. Through the inclusion of novice analysts to a
greater extent within these feedback loops, organizations can help cultivate such necessary
level of experience.

Document intuition and tacit knowledge. Finally, another factor closely related to aspects
of internal collaboration is the aspect of tacit knowledge, something also identified in work
by Agyepong et al. [4], where they recommend the creation of playbooks and distribution of
documentation about SOC processes that less experienced analysts can draw knowledge from.
In addition to this, we recommend the setting up of well-defined systems of collaboration
within teams using rulesets (whether they are within a SOC or elsewhere), such as developing
rules in a pair programming fashion, or under the four eyes principle [57], and peer review
sessions of developed rules. This will allow for a more fluent exchange of tacit knowledge
from more experienced analysts to the more junior ones, leading to more effective use of
rulesets.
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4.6. CONCLUSION
In this paper we aimed to shed light upon the processes that surround the development and
acquisition of rules for network detection. We found that there are a number of critical
factors, such as rule specificity and total number of alerts and false positives, that dictate the
manner in which rules are managed, and that there was significant consensus regarding the
importance of these factors when they are used to determine the quality of rules and rulesets.
These factors are weighed against each other in different ways by different organizations
and carefully calibrated to the organization’s network monitoring practices. Previous work
has aimed at improving SOC effectiveness through different means, many of which fail to
take the aforementioned factors into account, instead opting for solutions that make SOC
data easier to deal with by automatically filtering out noise. We argue that such solutions
are sub-optimal, and we presented a number of concrete recommendations that address
these factors at the earlier stages of the network monitoring and incident response pipeline.
With this, we propose a path forward that aims not to treat the symptoms, but to address a
root cause of potential SOC ineffectiveness while leveraging a SOC’s current resources and
technologies.
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In the fast-paced world of cybersecurity, organizations are continuously striving to enhance

their security posture and reduce the risk of successful cyberattacks. These often rely on com-

pliance requirements and normative frameworks to prioritize security measures. However,

the effectiveness of these efforts remains uncertain, as measuring security improvements is

complex and challenging. Recently, novel approaches have emerged that directly measure

an organization’s security using external network signals. Commercial companies offer risk

rating services based on externally observable data. These approaches treat security as a

latent variable inferred from noisy external signals. This paper advances empirical risk

estimation by comparing external signals to the internal state of an organization’s network.

Partnering with a Managed Security Service Provider (MSSP), we acquired data on security

events from their clients’ networks, labeled by Security Operations Center (SOC) analysts

from October 2016 to January 2021. For the same period, we collected 338 external signals

related to these networks. Employing a gradient booster classifier, we successfully predicted

the number of high-risk security incidents with high accuracy (R2 = 0.81). Our results

confirm the predictive power of external signals for an organization’s internal security state.

We found that certain external features significantly influence incident predictions. However,

sparse features, such as organization size, can lead to misleading outcomes. Nonetheless, by

better understanding these interactions, organizations can take proactive steps in prioritizing

which security controls to deploy.
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5.1. INTRODUCTION
An organization can take many steps to reduce the risk and harm of a successful attack. Chief
Information Security Officers (CISOs) often prioritize measures based on compliance re-
quirements and normative frameworks [149] – like NIST [157], COBIT [108], CIS Controls
(formerly SANS Critical Security Controls) [44]. While the objective is clearly to improve
the security posture of the organization, it is unclear to what extent these efforts ultimately
have the intended effect [149]. This is in part because measuring security and, by extension,
security improvements is not straightforward.

What is typically measured by organizations is not security but effort: what controls
they have implemented and how these compare against “best practices” or some normative
framework like a maturity model. Those models assume that more advanced controls result
in higher security. This assumption is not unreasonable, but ideally, we would like to measure
the result, not the effort.

In the past decade, new approaches have emerged that try to measure the security of
organizations more directly. Services like SecurityScorecard, FICO Cyber Risk Score, and
BitSight offer risk rating to organizations directly and to third parties who value accurate
information on security postures, e.g., for third-party vendor management and cyber breach
insurance underwriting. These risk-rating services are based on methodologies that have
been validated in peer-reviewed publications. A leading example is the work of Liu et
al. [133]. The authors do not rely on any self-reported data from the organizations they rate.
Instead, they collect externally visible data on misconfigurations – such as misconfigured
DNS, SMTP, and untrusted TLS certificates – and on malicious activity in the organization’s
network – such as the presence of hosts in different abuse blacklists. A classifier trained on
these features is then able to predict with some accuracy which organization will suffer a
breach, as observed in the VERIS Community Database [238] and other sources. Similar
studies were presented by Edwards et al. [73] and Kotzias et al. [121].

These approaches, both in their academic and industry implementations, currently pro-
vide us with the best available methods for empirical security risk estimation. In measurement
terms, they treat security as a latent variable that cannot be directly observed, but that can be
inferred from a set of noisy externally visible signals–somewhat similar to how IQ is not
directly observable but is inferred from the answers to a range of questions and puzzles.

While there the predictive power of these methods provides some evidence for their
validity, they do treat the organization as a black box. Do these signals really tell us the
internal state of the network? Also: the models can classify organizations that suffered a
large, public breach versus those that did not—a coarse distinction. Do they also provide a
valid assessment of the security posture of organizations that did not suffer such a breach?
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We want to advance the state of empirical risk estimation by comparing the external
signals to the internal state of the network. To this end, partnered with an MSSP with data on
security events in the networks of their 207 clients, as labeled by analysts in their Security
Operations Center from 2016 to 2021. This provided us with reliable signals about the
internal state. For a subset of 101 clients, we collect 338 external signals, similar to those
used by [73, 133]. We then develop a model to predict the security events from the 338
external signals.

We find that the external features as described by Liu et al. [133] and Edwards et al. [73]
do have predictive power for the internal state of an enterprise. However, the classification
technique from [133] does not work, due to the fewer number of organizations in our dataset
(their 3 million organizations vs. our 101) and the larger number of finer-grained security
incidents of differing severity that we have access to (their 1,150 incidents vs. our 12,218
incidents). Instead, we use XGBoost [47], a gradient booster classifier. Our model is able to
accurately low-risk and high-risk incidents (R2 = 0.65 and R2 = 0.81, respectively), although
we find that prediction performance is highly dependent upon sparsity of the external signal
data.

With this work, we advance the state of the art of empirical risk estimation. We confirm
the assumption behind prior work that there is correspondence between external security
signals and internal security events. These results open the door to numerous different use
cases. Collecting these signals can help organizations to take a more proactive approach
to their security by identifying worrisome security signals beforehand. MSSPs can use the
signals and model to provide predictive risk metrics to clients.

In sum, we make the following contributions:

• We present the first study that explores the links between external network security
signals and internal network security signals as SOCs or network operators see them.

• We replicate the work by Liu et al. [133] and, to an extent, Edwards et al. [73] in the
real-world environment of MSSP client’s networks.

• We find that the methods from Liu et al. [133], when applied to the finer-grained
datasets of SOC security incidents, do not produce results equal in effectiveness as
reported in the original work. When adjusting the original methods to our unique
datasets, however, we are able to create and train a regression model that is able to
predict the number of future incidents with high accuracy.

• We demonstrate that feature sparsity plays a significant part in model performance, thus
limiting the applicability of incident prediction systems to organizations possessing
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a sufficient level of Internet presence and exposure, especially for the prediction of
more severe incidents. Thorough evaluation of NIDS alerts and incidents by SOCs
is, therefore, crucial to ensuring the design of a well-functioning model by means of
adequate ground-truth data creation.

5.2. RELATED WORK
The related work in this domain encompasses a range of machine learning-based approaches
applied to different aspects of cybersecurity risk estimation. Soska et al. employ various
machine learning techniques to estimate the probability of a website becoming malicious
in the future [216]. They gather historical data from websites known to be benign as well
as those known to be malicious. This data is used to ascertain the point in time when a
website turned malicious. Features such as Alexa Site Rank and HTML DOM information
are extracted and utilized to construct a classifier capable of predicting whether a website
will be compromised within a year, achieving a true positive rate of 66% and a false positive
rate of 17%.

The work by Liu et al. [133] is the closest to what we intend to study in this work.
Liu et al. develop a model that predicts an organization’s breaches using only externally
observable symptoms of mismanagement and open incident data that indicates malicious
activity originating from an organization’s network. They found this data to be predictive of
breaches, achieving an average true positive rate of 90% and an average false positive rate of
10%. Expanding on this work, Sarabi et al. attempt to forecast a broader range of incidents,
encompassing both physical and cyber-attacks [197]. One of their objectives is to predict the
type of incident an organization will confront in the future. They predict future incidents
with a 90% true positive rate and 11% false positive rate and identify a correlation between
organization features and incident signatures, but are unable to predict the specific type of
incident with certainty.

Edwards et al. carry out a statistical analysis to identify correlations between what
they term “organizational risk vectors” and botnet infections [73]. The authors gather data
through external measurements of an organization’s IP space, assessments of services that
may be vulnerable, and externally observable security incidents. These potentially vulnerable
services are referred to as risk vectors. Examples of such risk vectors are publicly accessible
unsecured protocols like FTP, Telnet, and SMTP, improperly configured TLS services, and
the existence of P2P file sharing on the network. Consequently, the externally observable
incidents are botnet infections. Although they successfully observe a correlation between the
chosen risk vectors and malicious activity, their research is limited to botnet infections only.

The work by Kotzias et al. also investigates enterprise security posture but differs from
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the previous papers in that the majority of security posture analysis is performed by means
of internal data in its analysis: presence of malware, potentially unwanted programs [121].
They also utilize IPv4 scans of organizations to measure vulnerability patching behavior.
Their findings revealed that many organizations struggled with patch management and timely
vulnerability remediation. Additionally, they find that industries are affected to a differing
degree, with the electrical equipment industry being affected much more than, e.g., banks.

Xiao et al. employ data from several spam blacklists, vulnerability exploit information,
and end-host patching behavior to assess the extent to which vulnerabilities are exploited
in the wild [249]. In particular, they identify network entities exhibiting similar behavior
concerning malicious activities and compare it to the risk behavior of various end-hosts by
analyzing patching data. Through this analysis, they can detect the existence of exploits in
these networks with a true positive rate of 90% and a false positive rate of 10%.

These diverse studies collectively highlight the potential of machine learning techniques
in predicting cybersecurity incidents and understanding security posture. Our work seeks
to contribute to this field by thoroughly examining the correspondence between external
network security signals and internal network security events, thereby advancing the un-
derstanding of empirical risk estimation. Importantly, our study stands out as the first of
its kind to leverage internal data captured by NIDS and integrate it with external signals to
gain deeper insights into an organization’s security landscape. By bridging the gap between
external and internal security signals, we aim to provide a more comprehensive and accurate
estimation of cybersecurity risk, paving the way for more effective and proactive security
measures.

5.3. DATA SOURCES

5.3.1. DATASETS

Internal alert and incident data. Through our partnership with an MSSP, we access alerts
from NIDSs installed across client networks. The MSSP’s SOC constantly reviews these
alerts, escalating significant ones to incident status for further investigation. Incidents are
categorized by experts at the MSSP into several labels based on accuracy and severity: false

positive, low risk, high risk, and successful hack attack. Labeling is performed by experts at
the MSSP, who rely on their extensive personal experience. Thus, while labeling remains
potentially ambiguous at incident-level, we assume the labels to be more reliable when taken
as a whole (as demonstrated by the MSSP’s continued existence).

We have selected a subset of this data from October 2016 to January 2021, covering 101
different organizations. This subset includes only the true positive incidents—comprising
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low risk, high risk, and successful hack attack categories—totaling 12,218 incidents. These
incidents are distributed as follows: 6,825 low-risk, 5,039 high-risk, and 354 successful
hack attacks, representing 101 of the original 207 organizations in the dataset.

IP-to-organization mapping. To attribute IP blocks to their corresponding organizations,
we use the MaxMind GeoIP database [144]. Through this database, MaxMind periodically
publishes mappings of IP addresses to organization names. We use MaxMind GeoIP data
from October 2016 to January 2021.

Historical IP registration data. The RIPE NCC offers a historical WHOIS API [191] for
retrieving IP block allocation data. We use this API alongside the specified organization-to-
API mapping to confirm the accuracy of IP block assignments to their claimed organizations
at specific times.

IPv4 scans. To detect misconfigurations, vulnerabilities, and other management issues
within organizations, we utilize scan data from Shodan [208]. Shodan conducts regular
Internet-wide scans of IPv4 addresses across various ports, identifying active services,
retrieving certificates, capturing banners, and detecting potential vulnerabilities. However,
there is a limitation: Shodan’s daily port scans are not consistent; it randomly selects different
ports for each scan. This method expands the diversity of detected ports and services but
results in less reliable feature measurements, as the availability of a service on a specific
host during certain time periods cannot be precisely determined.

We also use data published by ShadowServer [229], an organization that performs daily
IPv4 scans and publishes data concerning accessible services and vulnerabilities. See [228]
for the full list.

Malicious activity. As signals of malicious activity occurring in the networks of orga-
nizations, we identify compromised hosts within the IP blocks allocated to the MSSP’s
client organizations using a number of commercial IP reputation blocklists. These include
APEWS [15], CBL [2], Spamhaus XBL [230], PhishTank [56], PSBL [188], and Shad-
owServer [229]. These blocklists capture malicious behavior originating from hosts such as
spam, phishing, and botnet infections. While the availability of the datasets differs in time
span, they all overlap from 2016 to 2021. Thus, to ensure completeness of data, we extract
all data only from this span of roughly five years.

BGP routing data. The RouteViews project collects BGP routing information from numer-
ous routers worldwide [193]. This data contains detailed records of how routes change over
time in the form of BGP update data. We collect this data from all available RouteViews
collectors for the time span of October 2016 to January 2021.
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5.3.2. ETHICAL CONSIDERATIONS

Internal incident data is sensitive information. Several actions were taken to ensure customer
privacy. Firstly, all data was stored and analyzed on MSSP premises. The data analysis
took place within the terms of contract of the MSSP and its clients. Finally, all data was
checked by MSSP staff for personally identifiable information before being made available
for analysis.

5.4. DATA PROCESSING METHODOLOGY
Measuring external network signals for our set of organizations first requires the identification
of their IP space over time. A simplified flowchart is illustrated in Figure 1 (Appendix B.1).
Only after identification can we process the different datasets to extract the necessary features.
This section will elaborate on these processes.

5.4.1. ORGANIZATION AND IP BLOCK MAPPING

Although we obtained a list of organizations from our partner MSSP, these organization
names are mostly shortened versions of the official organization names. Sometimes or-
ganization names are used by other entities, so to properly identify the organizations and
determine the official names of the organizations, we first perform a manual web search
for each organization in the customer list and verify with the MSSP which entity is the one
receiving security monitoring and response services.

To gather and analyze the degree to which the MSSP’s clients are exposed to threats,
we need to identify the IP address blocks that belong to each organization. While the
MaxMind GeoIP data provides an IP-to-organization mapping, we require an organization-
to-IP mapping. Thus, at every available date, we query this database for all IPv4 addresses,
enabling us to reverse the mapping and create a longitudinal mapping of organization names
to IP blocks. Depending on the organization, this lookup will also yield IP blocks officially
allocated to, e.g., cloud or hosting providers. Since this is still infrastructure under partial
management of the corresponding company, we include it in the selection.

These GeoIP records are not standardized, however, and there can be considerable
differences in fields between different records — even those belonging to the same entity.
For instance, different records belonging to the same organization can contain name fields
that differ in punctuation and capitalization. We then query this IP registration data for
all organization names to cover all variations and obtain a list of all organization names
that contain the queried company name with the respective IP blocks registered to that
organization at every date. To ensure that the collected names are correct and contain only
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the names belonging to the MSSP customers, we perform manual verification of all the
names in the list. Of the initial 207 organizations, we only find 157 organizations in the data.
We proceed with the organizations for which we are able to find IP registration data and
discard the rest.

We then query this same data, but extract all the different IP blocks that are assigned to
each organization (and all valid variations of organization names). We collect these IP blocks
daily — as long as the data availability allows it — for the years 2009 to 2021. Gaps in the
daily sampling are filled by propagating the last valid observation forward. Afterwards, we
sample the daily IP block data at two-week intervals. IP block allocations do not change
very often, so limiting the queries to these larger intervals not only saves execution time and
manual verification, but also mitigates instability due to potentially inconsistent allocation
data.

Next, we split the list of companies into two groups: one containing companies that have
256 or fewer IP addresses assigned to it, and another containing companies with more than
256 IP addresses. The former group is used for further manual processing, which is now
feasible due to the smaller number of IP addresses per organization that potentially need
such manual verification. We perform this manual verification to examine the stability of the
allocated IP blocks and the potential effects of IP block sub-allocation on the validity of our
data. These steps are explained below.

We compare the IP blocks of each organization to the official RIPE allocation list. If the
list contains the IP block allocated to the same client organization, we classify it as correct.
Otherwise, we proceed to the next step.

If the RIPE record matches the organization name found in the MaxMind data used for
the query, then the name is classified as correct. If the RIPE record mentions any other
organization that is not a network operator or hosting provider, then it is classified as incorrect
and discarded. In case that the name is a network operator or hosting provider, we assume
the IP block has been delegated or sub-allocated and classify the name as correct.

If the RIPE historical WHOIS database has no record of the specific IP block at a
particular date, additional steps are taken for verification. Specifically, the RIPE historical
WHOIS database is queried for the parent IP block of the potential IP block. If this parent IP
block is registered with a network operator or hosting provider, we assume delegation or
sub-allocation and classify the IP block as correct. Alternatively, if the queried IP block and
date predates the official RIPE historical WHOIS records for that IP block, the first record is
used for manual verification, following the steps laid out above. Any IP block that does not
pass these verification steps is discarded. This process yields a list of all organization names
and the IP blocks that have been assigned to it over time.
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Through this process, we find that only 8 IP block errors (totaling 72 IP addresses
over time) out of a total of 8,914 IP block-date pairs were verified. We consider this error
negligible, and therefore abstain from performing this manual verification on the other subset
of the organizations. After this verification, we merge both subsets.

We then smooth the two-week interval data by forward filling the dates over all the
days in each two-week interval. Finally, we extract the subset of data starting in October
2016 to January 2021, corresponding to the availability of malicious datasets to ensure that
the appropriate features can be extracted. Through this process, we are left with a dataset
containing 101 organizations and their allocated IP blocks over time.

5.4.2. FEATURE EXTRACTION

After collecting each organization’s historical IP block registration data, we use the IP
block and date pairs to query Shodan [208] for all its scan data for every IP block at every
corresponding date. This yields a dataset containing all available port scan data for each IP
address, belonging to the organizations in our population. It is mainly from this dataset that
we extract the network features that, traditionally, are collected through port scans.

One of the main methodologies we adhere to for feature extraction is the one developed
by Liu et al. [133]. The authors aggregate features over a window of 60 days to capture
the dynamic behavior of an organization over time. To closely follow and verify their
methodology and results, we select the same 60-day window as a base for our own approach.
We also experiment with a shorter 30-day time window, resulting in decreased model
performance. We will discuss this in section 5.6. Though the number seems arbitrary, these
experiments illustrate the value of an organization’s behavioral patterns over longer periods.

Additionally, they select the feature windows to be 60 days before the occurrence of a
breach. This is unsuitable for our data, since our set of organizations is much smaller, but
the incident population is much larger. Hence, we use a regular sliding window of 60 days,
where the target values to be predicted are the number of incidents that will occur in the 60
days after the feature window.

Despite evidence linking an organization’s industrial sector to cyber incident risk [26,
121], we exclude this as a feature due to our small sample size, where many sectors have only
one or a few organizations. This limitation prevents reliable generalization within sectors
and could skew the model by capturing excessive variance regardless of other features.

The full list of features can be found in Appendix B.3.

MALICIOUS ACTIVITY

We group the blocklists we have access to into three groups: spam (APEWS, PSBL), phishing
(PhishTank), and miscellaneous malicious activity (XBL, CBL). For each organization, we
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extract the number of unique IPs that are present in each group, for every day in the time
window.

PERSISTENCE

In addition to measuring the number of IP addresses that are present in malicious activity
datasets, we also measure how long IP addresses remain (i.e., persist) in the malicious
activity datasets throughout the given time window. Thus, from the previous malicious
activity time series, we extract persistence features that describe the general behavior of the
hosts in the three different malicious activity dataset groups.

Plotting the malicious activity time series yields a graph such as the one illustrated in
Figure 5.1. As illustrated, the plot can be divided by two boundaries, splitting the area into
three different regions. The two boundaries are calculated by taking ±20% of the mean of the
time series. The middle region represents the “normal” behavior for malicious activity during
the given time series. The behavior changes as the malicious activity moves away from the
mean. Accordingly, the top and bottom regions represent the “bad” and “good” regions.
For each region, we calculate the following statistics: 1) normalized average magnitude, 2)
un-normalized average magnitude, 3) average duration of persistence in that region, and 4)
the frequency at which the time series data enters that particular region. Finally, in addition
to collecting this data for the entire span of the window, we compute the same statistics for
the last 14 days of the window. The specifics are described fully in [133].
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Figure 5.1: The number of an organization’s IP addresses present in the spam datasets over a period
of 60 days. The graph is divided into three regions by the dashed lines: the “bad” upper region, the
“normal” middle region, and the “good” lower region.

MISMANAGEMENT SYMPTOMS

Liu et al. [133] specify five different types of mismanagement symptoms: 1) open recursive
resolvers, 2) non-use of DNS source port randomization, 3) BGP misconfigurations, 4)
untrusted HTTPS certificates, and 5) open SMTP mail relays. Unfortunately, the datasets
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available to us did not allow for the collection of DNS source port randomization and open
SMTP mail relay features. A notable difference between our methodologies is that, while
Liu et al. use a single data snapshot from which a single feature is extracted for each of the
five mismanagement symptoms, we perform longitudinal measurements of each symptom.
This will provide better information about an organization’s security posture, as we are able
to capture their evolution over time.

To collect the BGP misconfiguration data, we implemented the methodology employed
by the collectors of the data employed by Liu et al. [133]. This methodology developed
by Mahajan et al. [141] involves the detection of short-lived BGP announcements in the
global routing table. It bases the detection on the heuristic that any BGP announcement that
is withdrawn within 24 hours of its announcement is a mistake, and therefore counts as a
misconfiguration. We collect historical data from all available RouteViews listeners [193],
and processed the data to find such BGP misconfigurations. Unfortunately, after processing
a month’s worth of RouteViews data, we were not able to detect any misconfiguration. Even
in 2014, it was noted by Zhang et al. that the methodology by Mahajan et al. [141] is dated,
since current routing practices are much more “fine-grained” [254]. It is likely due to this
limitation that this methodology was unable to detect a single misconfiguration for our
limited organization population.

As for the detection of open recursive resolvers, the Shodan scan data allows us to extract
the presence of such resolvers for every IP address. Thus, for every organization, we collect
the total count, mean, and maximum number of open recursive resolvers that are present in
their allocated IP block(s) over the duration of the sliding window, as well as for the last 14
days of that sliding window (in a similar manner as the persistence features).

In contrast to Liu et al. [133], we focus on TLS certificates in general, and not solely on
certificates used for HTTPS. Furthermore, we look for errors and misconfigurations beyond
verifying whether certificates are browser-trusted. As described by Edwards et al. [73], we
test TLS services for the following configuration errors:

• TLS version less than or equal to SSLv3 1,

• presence of Heartbleed or FREAK vulnerabilities,

• Diffie-Helman keys with less than 2048 bits or with commonly-used prime num-
bers [160];

and the following TLS certificate errors:

1Being published in 2019, the work by Edwards et al. [73] considers SSLv3 and older insecure. As of 2021,
however, anything below TLS 1.2 is deprecated and considered obsolete [151]. Since most of our historical data
originates from before 2021, we opted to leave this feature as is.
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• certificates that are self-signed, expired, issued in the future, have non-standard roots,
or have a broken chain of trust,

• certificates with RSA or DSA keys with 1024 bits or less, or ECC using less than 224
bits.

For every port scanned by Shodan over time, if that port uses SSL/TLS, we collect features
according to the aforementioned categories. For every organization, we calculate the total
count, mean, and maximum value of the number of IP addresses that host TLS services with
configuration errors and TLS services with certificate errors over the duration of the sliding
window, and the last 14 days of the sliding window.

LIVE HOSTS

For each organization, we aggregate daily data within the specified window to calculate the
total number of unique IP addresses with open ports, the total number of open ports, and the
total number of TLS-enabled services.

FREQUENTLY-USED SERVICES

Security posture information may also be inferred from the type of services that are made
publicly accessible by organizations. We look for the presence of 21 different frequently used
services and count the number of ports, categorized as “risky”, “neutral”, and “reasonable”
services, as described in the work by Edwards et al. [73]. See Table 5.1 for the list of
services.

Table 5.1: The list of 21 services and corresponding category, as defined by Edwards et al. [73]

Service Category Service Category Service Category

FTP Risky SNMP Risky HTTP Neutral
Telnet Risky SMB Risky NTP Neutral
SMTP Risky MySQL Risky IMAPS Reasonable
POP3 Risky MSSQL Risky HTTPS Reasonable
SunRPC Risky POSTGRES Risky POP3S Reasonable
NetBIOS Risky RDP Risky SMTPS Reasonable
IMAP Risky DNS Neutral SSH Reasonable

For each organization, we count the number of ports per day that host any of the services
in each of the three groups. Then, for each group, we sum together the counts per day.
This yields three features: the total number of “risky”, “neutral”, and “reasonable” services
discovered throughout the duration of the window.
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SHADOWSERVER FEATURES

A limitation of the ShadowServer data is that it only contains scans of IP ranges that
ShadowServer has geolocated to the Netherlands. Although many of the organizations
are based in the Netherlands (and therefore primarily use RIPE-allocated IP blocks), the
organization-to-IP mapping process assigned many non-RIPE IP blocks to these European
organizations. The data will then be biased towards the organizations with a higher ratio
of RIPE-allocated IP blocks. To regularize, we perform a (crude) regularization of the
ShadowServer features: for each organization, divide all ShadowServer features by the
proportion of total RIPE-allocated IP addresses to the total number of addresses.

SIZE

The size feature represents the total size of all IP blocks allocated to an organization at
a specific time, which can change over time. For each window, we calculate the mean
total number of IP addresses allocated to an organization. Liu et al. noted that this feature
might capture “to some extent” the likelihood of targeted attacks [133]. However, in our
experiments, the model tended to overemphasize the size of an organization, especially when
dealing with sparse feature vectors (see Section 5.5.2), detrimentally affecting prediction
accuracy. In the absence of workable features, the model disproportionately focused on
the size feature, the most prominent non-zero feature, resulting in misleading predictions
that did not accurately represent an organization’s security state. Consequently, we do not
include the size feature in the feature set.

5.5. DATA EXPLORATION AND MODEL TRAINING
After collecting the necessary data and constructing all the features, we explore the feature
data and internal security incident data. This exploration enables us to identify the appropriate
training and testing procedures, as well as select the most suitable model to use.

5.5.1. ORGANIZATION POPULATION

Organization network sizes vary widely, from four to nearly 8 million IP addresses, with
an average size of about 3,600. Despite the expectation that larger networks would have
more incidents, the data show only a weak correlation, especially for high-risk incidents and
successful hacks ( 0.1).

The study includes 101 organizations across 20 industrial sectors, with technology,
finance, and business services being the most represented. Despite the wide range of
industrial sectors, we lack sufficient data for sector-specific analysis, hence our focus on
the organization level. Thus, to improve the generalizability of our findings, we exclude the
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Figure 5.2: CDF of feature sparsity (how often a feature equals 0 in the dataset) and feature vector
sparsity (what proportion of a feature vector is zero-valued).

sector from our dataset (see Section 5.4.2).

A potential drawback is that most organizations are located in the Netherlands. Nonethe-
less, considering that the Netherlands consistently scores well in cybersecurity maturity [159],
we view this as advantageous. The high level of security maturity may obscure the connec-
tions between external and internal signals. This is beneficial for our analysis; if we identify
a pattern here, it is likely that these findings will apply more readily to regions with less
mature cybersecurity practices.

5.5.2. ON FEATURE SPARSITY

Many of the organizations in our population are relatively small in terms of network size.
They are, thus, less exposed to external threats and have a lower chance of appearing in
abuse datasets. We mitigate these drawbacks by collecting more features than in previous
work: a total of 338 features, as opposed the 186 in [133]. Still, we find that the feature
space remains highly sparse (see Figure 5.2). We define two different types of sparsity: i)
feature vector sparsity refers to the number of features within an observation that contain no
data; ii) feature sparsity refers to the frequency with which a feature contains no data across
all observations.

Only 14 features have a sparsity ratio under 0.5, including the number of unique respon-
sive IP addresses, the number of open ports, and 12 features depicting “normal” behavior in
various abuse datasets as discussed in Section 5.4.2. Among these, the unique responsive IP
addresses and open ports are significant, each with a sparsity ratio of 0.48. These features
are predictive [73, 133], suggesting their importance to the target variables when non-zero
values are present.

Furthermore, a preponderance of feature vectors are sparse as well: 95% of all feature
vectors are at least 80% zero-valued. This further indicates that the features, however
sparse they are, can provide critical discriminative information that aids in making accurate
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predictions.

Many of the organizations in this subset are smaller regional companies with relatively
few allocated IP blocks: the median network size in the sparse vectors is 24, while that of
the non-sparse vectors is 804. These smaller companies (in terms of organization size and
IP block allocations) are much less likely to have enough Internet exposure to possess the
necessary external signals for proper feature collection.

5.5.3. SECURITY INCIDENT TYPES AS TARGET VARIABLES

We focus our analysis on the security incidents that are labeled as true positives by the
MSSP. These are labeled according to their estimated severity—low risk, high risk, and
successful hack attacks. Successful hack attacks are most straightforward; they include,
e.g., detected indicators of compromise, ransomware traffic, and successful exploit data in
network traffic. High-risk incidents include early signs of intrusion or signals that precede
a data breach, such as attempts at compromise, internal network scans, and botnet traffic.
Finally, low-risk incidents are composed of seemingly less precarious events such as network
policy violations, adware, and generally suspicious network traffic.

Using the sliding window method outlined in Section 5.4.2, all incidents within each
window are aggregated. Consequently, incident counts for each window and category become
separate target variables. Simply put, the model forecasts the number of each incident type
occurring within specific time window.

The occurrence of the different types of incidents varies as expected, as illustrated in
Figure 5.3. The figure shows, generally speaking, that the number of incidents decreases
as the severity of its label increases. This is also reflected in Table 5.2, which contains the
mean, median, and standard deviation of the three categories of incidents: low-risk incidents
occur more often and more erratically than high-risk incidents, which, in turn, occur more
often and more erratically than successful hack attacks.

Figure 5.3 also displays the erratic behavior of security incidents, possibly due to
new developments in the global threat landscape. It also demonstrates the need to keep a
prediction system up to date with external network measurements and internal incidents, so
the model can recognize similar behavior and outliers in the future.

Table 5.2: The mean, median, and standard deviation of the low risk incident, high risk incident, and
successful hack attack counts per organization in each sliding window.

Low-risk
incidents

High-risk
incidents

Successful hack
attacks

Mean 3.41 2.78 0.20
Median 1.00 1.00 0.00
Standard deviation 8.26 6.88 1.57
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Figure 5.3: The number of low-risk incidents, high-risk incidents, and successful hack attacks per
sliding window over time. All incidents within the sliding window have been added together, leading
to a higher number being plotted on this graph.

5.5.4. TRAINING AND TESTING PROCEDURES

Although the alert and incident data is split per organization, we cannot train an individual
model for every organization separately. This is due to the lack of data per organization,
where the available data varies from a single sliding window to just 1,500. For data with 338
features, it is unlikely that a model will be able to extract from it any type of meaningful
information. Thus, we aggregate all data into a single dataset, creating a “pseudo time series”
of all incidents that are investigated by the SOC. The process is as follows:

1. For each organization, collect and compute the 338 features within every 60-day time
window. For each of these data points, count the number of low risk incidents, high
risk incidents, and successful hacks that occur in the 60-day window following each
data point, and add to the record.

2. Concatenate all separate datasets into a single dataset.

3. Sort the resulting dataset chronologically.

Each data point then contains a single organization’s 338 observed features in a specific time
window and the total number of low-risk incidents, high-risk incidents, and successful hack
attacks the organization will encounter in the next time window. While not a true time series
in the sense that every feature vector is a direct continuation of its predecessor, the data is
still sorted chronologically.

The feature vectors, in the form of sliding windows, are not completely independent of
one another. In fact, it is due to the smoothing of the data through the creation of sliding
windows for each organization that many feature vectors are highly correlated with previous
feature vectors from the same organization.

We cannot randomly select training and testing data for sequential data as we would with
non-sequential data. Instead, we split the data chronologically, training the model on earlier
data and testing it on later data. This approach allows the model to use past observations to
predict future events, mimicking real-world scenarios.
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Receiving constant, unchanging security signals offers no insights into shifts in an
organization’s security posture. Only by noting changes in external features and associated
internal security events can system administrators effectively prepare for future incidents.

As Internet traffic evolves, these models, being trained on historical network traffic
data, may experience accuracy degradation as new data with different patterns emerges—
phenomena known as concept drift and data drift [150]. This indicates that such models
should be continuously trained to recognize similar occurrences in the future. Based on this
information, we construct the following train and test procedure:

1. train the model using the initial 50% of the feature data;

2. test the model on the subsequent weeks’ worth of data;

3. add the test data to the training data;

4. train the model using the new data;

5. repeat 2) through 4) until all test data is used.

We purposely choose to train and test the model in weekly steps. Performing this process
after every observation is realistic neither from a computational nor operational perspective.

5.5.5. MODEL SELECTION

External features do not linearly relate to internal security incidents; variations in one do
not directly alter incident counts and vary by organization. Features interrelate and affect
incident manifestations, rendering simple regressions inappropriate. No standard distribution
adequately fits feature, alert, or incident data.

Autocorrelation analysis reveals highly autocorrelated features at the organization level,
indicating that current values depend significantly on past values. However, this autocorrela-
tion disappears once all organization data is aggregated into a single dataset. Standard time
series models are, therefore, not appropriate, and we must select a model that is designed to
process more complex data.

It is also critical for the model and its output to be explainable. Explainable models
are essential as they enable analysts to understand, justify, and improve decisions, and
effectively investigate incidents. Additionally, models must be robust to outliers to handle
erratic security incidents.

Decision tree-based models meet all requirements. Indeed, Liu et al. demonstrate the
effectiveness of a random forest classifier approach [133]. They used a binary classifier for
their coarse-grained incident data, mapping the predicted probability of future incidents to a
binary outcome or using it as a risk metric by applying a threshold.
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Table 5.3: XGBoost hyperparameters after tuning.

colsample_bytree subsample max_depth n_estimators learning_rate

0.97 0.69 9 248 0.12

However, our data contains multiple different security incident measurements from the
internal state of networks, and we aim to predict how many of such internal incidents will
occur in the near future. Since our data is more fine-grained, every organization will suffer a
security incident at least once within a set time window, making a binary classifier trivial to
construct. Though we do not stray from a decision tree-based approach, we ultimately opt
for XGBoost [47] to construct a regression model, given its demonstrated effectiveness in
Internet measurement tasks [103, 196].

5.6. RESULTS
We used the XGBoost regression model to predict the number of low-risk incidents, high-
risk incidents, and successful hack attacks an organization will face in the next 60 days.
These types of incidents differ not only in severity, but also in what features, and to which
extent they are taken into account when performing a prediction. We analyze the model’s
performance, feature importance, and explainability in predicting various types of security
incidents, noting its strengths and limitations.

5.6.1. PREDICTION PERFORMANCE

To find the optimal model configuration, we use a combination of random search and grid
search, with 3-fold cross validation for each search, to tune the XGBoost hyperparameters.
See Table 5.3 for the list of tuned hyperparameters.

As mentioned in Section 5.5.4, we use a type of sequential training and testing proce-
dure to evaluate the performance of the model. All organization security incident data is
aggregated into a single dataset, creating a pseudo time series with which we train the model.
Though not a true time series, the dataset retains a sequential structure due to the sliding
window features. We then also train and test the model sequentially. Each iteration in this
process makes predictions for a week’s worth of traffic, after which the model is trained with
the additional data so it can learn from potential new developments in the threat landscape.

To determine the size of the time window (see Section 5.5.5), we test model performance
using both a 30-day and 60-day window. We find decreased model performance using the
30-day window, e.g., obtaining R2 scores of 0.15, 0.42, and 0.26 for low-risk incidents,
high-risk incidents, and successful hack attacks, respectively. Thus, we perform all further
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Figure 5.4: The mean absolute errors for each weekly training and testing iterations.

analysis using the 60-day window, as in [133].

Figure 5.4 shows the mean absolute error for each week. All three curves for different
incident types display similar trends and are highly correlated. Previous research has discov-
ered that the number of different types of internal security incidents over time are highly
correlated [239]. This suggests many incidents within organizations might be unaffected by
external security measures, potentially explaining sudden error spikes when external data
fails to predict these independent incidents.

In Figure 5.5a, the graph displays actual security incident counts for the test data,
categorized into three types, alongside their log-scaled representations. A linear relationship
between actual and predicted values is evident, particularly in the log-scaled plots. However,
the classifier had difficulty accurately identifying many outliers in the predictions.

The model struggles with a significant number of incidents, unable to provide reliable
predictions. This issue is evident from the plot of low-risk incident predictions (Figure 5.5a),
characterized by lines diverging from the bottom-left corner. These problematic instances
are linked to over 20,000 sparse feature vectors, as detailed in Section 5.5.2, where nearly
identical vectors with the same non-zero features produce different incident counts, rendering
the data ineffective for predictive modeling.

To examine prediction performance without sparse, unusable data, we remove the feature
vectors from the dataset [30] that have a sparsity ratio of 0.95, yielding the graphs shown in
Figure 5.5b.

Table 5.4 shows the model’s mean absolute error (MAE), root mean squared error
(RMSE), and R2 scores for the testing period. Given the large range of potential incident
counts, the MAE provides a good indication as to the performance of the model, since
it is less sensitive to outliers and skewness in the data distribution [99]. The RMSE and
R2 scores seem to paint a bleaker picture, both presenting relatively high and low values,
respectively. However, RMSE is suboptimal when the errors are not Gaussian [45], and
Figure 5.6 illustrates the lack of such a distribution for all types of errors.
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(a) Real incident counts vs. the model’s predicted values for the entire test set.

(b) Real incident counts vs. the model’s predicted values, excluding feature vectors with 95% or higher
feature sparsity.

Figure 5.5: The real incident counts in the test data plotted against the value predicted by the classifier.
While there are clear linear relationships between the real and predicted values, each category of
incidents contains numerous outliers. The black diagonal line illustrates the x = y line. The closer a dot
is to this line, the better the prediction.
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Figure 5.6: The mean normalized error distribution for all types of incidents.

The model underperforms for low-risk incidents and successful hacks but does better
for high-risk incidents. The low performance metrics stem from making 20,000 predictions
on sparse feature vectors. Excluding these vectors improves the scores substantially: MAE
decreases by 59%, 34%, and 39%, and R2 scores increase by 306%, 37%, and 66% for
low-risk incidents, high-risk incidents, and successful hacks, respectively Nevertheless, this
could be a reflection of not only the complications introduced by data sparsity, but also of
the ad-hoc nature of incident labeling.

Table 5.4: The mean absolute error (MAE), root mean squared error (RMSE), and R2 scores for the
three different types of incidents. This table includes results for both the entire test set and the test set
excluding all feature vectors with a 95% sparsity ratio or higher.

Entire test set Excluding ≥ 95% sparse
feature vectors

MAE RMSE R2 score MAE RMSE R2 score

Low risk 3.11 8.33 0.16 1.27 3.73 0.65
High risk 2.43 5.28 0.59 1.61 4.38 0.81

Successful
hack attack 0.33 1.84 0.29 0.20 1.62 0.48

All incidents 1.96 5.15 0.35 1.03 3.24 0.64

Table 5.4 shows poor performance in predicting successful hack attacks, improving with
less sparse data, as indicated by an R2 score of 0.48. Figure 5.7 demonstrates that adjusting
the sparsity ratio threshold enhances prediction accuracy. For instance, when setting the
threshold at 0.9 (i.e., exclude all feature vectors that are over 90% sparse or higher), the
successful hack attack R2 score increases to 0.70. Likewise, prediction performance for low
and high-risk incidents improves as well. Due to the threshold shifting, a mere 10% of the
test set is now accessible, thereby limiting the availability of this model’s functionality to a
select group of organizations possessing sufficient Internet exposure.
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Figure 5.7: Feature vector sparsity threshold ratios plotted against the model’s total MAE and R2

score. The threshold values on the x-axis represent at what sparsity ratio to discard a feature vector.
For instance, at x = 0.95, any feature vector that is over 95% sparse is discarded from the dataset.

5.6.2. FEATURE IMPORTANCE

Examining feature importance is critical for understanding a model and interpreting pre-
dictions. The XGBoost module [248] provides feature importance functionality based on
1) feature usage in tree nodes, and 2) reduction in training loss when a feature is used.
This can overestimate feature importance if features are frequently used without significant
prediction changes, potentially misrepresenting true importance [139]. Additionally, it lacks
functionality to explore feature interactions and individual prediction decisions.

Instead, we use SHAP values as proposed by Lundberg and Lee [139] to analyze feature
importance. SHAP values take a game-theoretical approach to analyze feature attribution:
each feature is a “player” that contributes to a “game”, that game being a single prediction.
Additionally, while other methods offer a global view of important features, SHAP values
reveal the intricate interactions and effects of each feature on individual predictions.

No single feature will decide outcomes alone. Instead, different feature configurations
will influence model predictions. Using this SHAP framework allows examining feature
interactions, crucial for understanding how certain combinations of external network signals
influence an organization’s security internal state.

Figure 5.8 shows the mean SHAP values for the top 10 features influencing predictions.
Different incident types are affected by different features and to varying degrees. The
magnitude differences stem from varying incident counts, with low-risk and high-risk
incidents occurring more frequently than successful hack attacks (see Figure 5.5). Despite
the sparsity of most features, only two—unique IP addresses and the number of open ports—
of the 15 less sparse features are shown. This highlights the high relevance of sparse features
in security incident prediction.

Table 5.5 groups the features into seven categories as described in Section 5.4 (excluding



5.6. RESULTS

5

131

0 1 2 3
mean(|SHAP value|)

tls_cert_errors_maxtls_config_errors_meantls_cert_errors_meanreasonable_servicesrisky_servicesnumber_open_portstls_cert_errorshas_tlsunique_ipsneutral_services

low risk
high risk
s. hack att.

Figure 5.8: The mean SHAP values for the 10 most important features for low-risk incidents, high-risk
incidents, and successful hack attacks. The mean SHAP values represent the average impact each
feature has on predictions.

the size feature). The live hosts category is ranked most important due to the sparsity in
other features. Second are the services features, with neutral services contributing more
to predictions than reasonable and risky services [73] (see Figure 5.8). Mismanagement
symptoms are third, despite being extracted from only two of the five original categories,
indicating poor network hygiene and adherence to best practices reflect an organization’s
security state. This is notable as our mismanagement features are based on longitudinal
measurements, unlike Liu et al. [133]. Malicious activity and persistence categories are less
significant compared to previous work, likely due to the data sparsity, as many organizations
do not appear in abuse datasets, resulting in no persistence features to extract.

Figure 5.9 shows a dependence plot on the effect of the number of open ports on high-risk
incident predictions and its interaction with TLS certificate errors. Each dot represents a
prediction instance with its corresponding open port count. The vertical dots at x = 0 occur
due to the high sparsity of features, causing many features to be zero-valued. The figure

Table 5.5: Normalized feature importance based on the computed SHAP values.

Feature category Normalized importance
(mean |SHAP| value)

Live hosts 0.4332
Services 0.2986
Mismanagement symptoms 0.1430
ShadowServer features 0.0431
Persistence full time window 0.0349
Malicious activity 0.0191
Persistence last 14 days of time window 0.0281
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Figure 5.9: Dependence graph for high-risk incidents that plots an organization’s number of open ports
against the SHAP value for that specific feature value. The secondary y-axis, and coloring, indicates
how the presence of TLS certificate errors interacts with the primary feature within the model to make
a prediction: as the number of open ports increases, the occurrence of TLS certificate errors increases
the predicted high-risk incident count.

shows that a small number of open ports can either increase or decrease predicted incident
risk, but this effect levels out as the number of open ports increases. At higher open port
counts, there is a slight, constant increase in predicted incident risk. The interaction with
TLS certificate errors shows that at zero open ports, TLS certificate errors have no effect on
predicted incident counts, as no TLS certificates are found in the first place. As the number
of open ports increases, TLS certificate errors increase the predicted incident count.

For many feature interactions, this pattern of no secondary effects at the x = 0 mark
holds. A notable exception we found, though, can be seen in the interaction between the
number of reasonable services and the average persistence in the “normal” spam region (see
Section 5.4.2). Regardless of the number of reasonable services (or lack thereof) that an
organization has publicly accessible, having hosts actively sending out spam emails (and
having those IP addresses present in a spam blacklist) increases the predicted incident counts.
While there are many more feature interactions, it is unfeasible to examine them all.

5.6.3. PREDICTION EXPLAINABILITY

In addition to a global view of the model’s inner workings, we also examine the output of
the model on an individual prediction level. In a real-world environment, this would allow
analysts to identify vulnerabilities, patterns, or indicators of potential threats or anomalies
in real-time. Thus, we further sample a number of noteworthy predictions and examine the
decisions taken by the model. The figures referred to in this section (Figures 2 and 3) are
located in Appendix B.2.

Figure 2 shows the decision plot for the model’s false prediction of 20 high-risk incidents,
when none had occurred. Most contributing features are related to insecure signals or
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malicious activity. At first glance, one could certainly understand the predicted number of 20,
given the large values for many of these features. This specific case corresponds to a large
cloud infrastructure provider. Given this type of company, it is likely that many of the ranges
allocated to it are not entirely managed by the organization, but instead (sub)allocated to
other entities. This could explain why no incidents were picked up by the MSSP. This, again,
stresses the necessity of accurately mapping out the external networks of organizations, and,
additionally, identifying IP block suballocations. Unfortunately, this task is challenging
when, e.g., telecom operators or (cloud) hosting providers are involved, due to the inherent
difficulty of differentiating between official allocations and (unofficial) suballocations of IP
blocks.

In Figure 3 we see a decision plot for numerous successful hack attack predictions of
varying accuracy. These correspond to the cluster of successful hack attacks visible as
a vertical line on the graph’s right-hand side in both Figure 5.5a and 5.5b. All incidents
originate from a single multinational media company. Despite over a hundred responsive
hosts with numerous TLS certificate and configuration errors and other problematic features,
the model could not predict their occurrence. Closer examination revealed that the aforemen-
tioned problematic features were present in the organization’s network since well before the
occurrence of said incidents. Interestingly, the successful hack attacks led to a decreasing
trend in responsive hosts and a reduction in many problematic features (e.g., TLS certificate
and configuration errors) within the organization network.

5.7. DISCUSSION

5.7.1. ORGANIZATIONS’ INTERNET EXPOSURE

An organization’s Internet infrastructure stands at the front line of both its success and
vulnerability. As seen in Figure 5.8, the feature with the highest importance (according
to SHAP values) for all three types of incidents is the unique_ips feature, representing
the count of an organization’s reachable IP addresses. This emphasizes the importance of
having a complete view of an organization’s Internet presence. Not only because of its high
importance, but also because the accuracy of all the other features relies on the accurate
measure of this particular feature.

Collecting and manually verifying the IP blocks allocated to different organizations was
time-consuming but resulted in accurate features. Manual verification of a 50% sample
showed that the identified IP blocks from the MaxMind GeoIP [144] database are highly
accurate. This is a 50% sample containing the smallest organizations in terms of network size,
and it is perhaps precisely the larger organizations that require manual verification, given
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the larger amount of IP blocks allocated to them. Due to manpower and time constraints,
however, this was unfeasible to perform.

In this work, we surprisingly found ourselves not utilizing the feature that was the direct
result of this process, specifically, the total size of an organization’s allocated IP blocks.
While the claim by Liu et al. that the size of an organization “to some extent captures the
likelihood of an of it becoming a target of intentional attacks [133]” seems valid, they are
contrary to our findings.

We found that this feature did not have the intended effect for our use case. Instead, it
unexpectedly influenced the model’s handling of highly sparse feature vectors. The model
erroneously learned a direct relationship between the size of a network and the number of
incidents that would occur within that network, assuming a larger network size meant more
incidents. This inference, however, is a simplification and not reflective of reality. A myriad
of factors can impact the frequency of incidents within a network, and it is not necessarily
tied to its size. Therefore, while the feature might hold some predictive power under certain
conditions, it is critical to understand that network size does not unilaterally determine the
number of incidents. Dealing with such sparse data is discussed in Section 5.7.2.

5.7.2. LACK OF EXTERNAL SIGNALS

One of the most striking facets we encountered during our data collection process was the
considerable degree of sparsity present within the data. This notable characteristic, however,
was not highlighted in the work done by Liu et al. [133] They utilized data primarily from
large-scale breaches, predominantly containing larger organizations in terms of scale and
network size than the ones in our own population. Such organizations, due to their scale,
would naturally have a denser array of network assets, reducing the observed data sparsity.

Our scenario, however, starkly differs, since the MSSP we collaborate with boasts
a diverse portfolio of clients, spanning from large multinational corporations to smaller,
regionally-focused enterprises. Given this wide variation in the scale of operations, it is
unsurprising that the smaller entities among our subject group have fewer network assets
that are publicly accessible. Consequently, the dataset we work with exhibits a high degree
of sparsity, a unique aspect that calls for specialized handling during analysis.

This somewhat calls into question the claim of being able to predict what goes on
inside a network purely from external network signals. For many organizations, there were
no external network signals to observe, yet they were still plagued with the same types
of incidents as organizations with much higher Internet exposure. Finding links between
external signals and internal incidents and security posture is impossible if there are no
external signals from which to extrapolate or infer these links in the first place. Put plainly,
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as long as there is nothing to see, there is nothing to be learned.

Another consequence of sparse features is the increased propensity of organizations
with smaller Internet exposure to share similar feature vectors (see Section 5.5.2). While
they may share external network characteristics, internal security events will certainly differ.
This provides a model with training data with inadequate training data: similar features, but
wildly different target variables. This will have a detrimental effect on the quality of the
resulting model, as is exemplified by the familiar saying “garbage in, garbage out” [195].

The performance increase that results from removing sparse feature vectors suggests
either one of two possibilities: 1) not enough external features have been collected, or 2)
there are security issues that are simply not noticeable through external measurements. To
verify which of the two is the case, manual verification of individual incidents must be
performed, which is a possibility for future work.

Be that as it may, setting the sparsity ratio threshold to match a specific desired perfor-
mance is a workable method. The drawback is, of course, that the number of usable feature
vectors decreases as the sparsity ratio threshold is adjusted.

This suggests, then, that a system like this is only of value to larger enterprises, or, at
least, enterprises with a large degree of Internet presence. In such cases, data sparsity would
cease being an obstacle. Alternatively, sparse data can be ignored altogether. Though these
changes are trivial to implement, further work is needed to fully understand the scope and
effect of sparse data.

5.7.3. INCIDENT SEVERITY

In our analysis, we are tasked with forecasting three distinct values. Each of these corre-
sponds to the different labels assigned by the MSSP to incidents that have been confirmed
as true positives. These labels are not standardized, but influenced by factors such as the
organizational culture and work environment, and an analyst’s subjective judgment of what
constitutes low or high risk.

While analysts do seem to have a clear idea of what comprises high-risk incidents, the
blurriest line seems to be that between low-risk incidents and non-incidents. This is reflected
by the performance metrics of low-risk incidents in Table 5.4. A possible consequence
of this subjectivity is the inadvertent inclusion of noise (i.e., non-incidents) into low-risk
incidents that can muddy the relationships between external network signals and internal
security events. A straightforward remedy for this is creating concrete guidelines on how to
classify an incident’s severity, and applying these guidelines consistently.

The model performs much better when predicting high-risk incidents, both including
and excluding sparse feature vectors, implying that external network signals carry more
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information about high-risk incidents than either of the other two incident types. One possible
explanation can be found in the collection of incidents that are included in the low-risk
category and not in others: we notice a large number of adware-related incidents exclusively
classified as low risk. In contrast, high-risk incidents include Trojan traffic, internal Nmap
scans, and exploit attempts, which are more directly related to an organization’s security and
thus more easily connected to external network signals. One could argue that the adware-
related low-risk incidents are not as easily attributable to such external network signals;
either more external features need to be collected to uncover the latent relationship, or they
are entirely disconnected. A closer inspection of these incidents and their feature space is
needed for definitive conclusions.

Another finding that stands out is the relatively poor performance of the successful hack
attack predictions at higher feature sparsity thresholds. While performance improves with
adapted thresholds, the substantial difference, especially compared to high-risk incidents, is
intriguing. This performance increase at a different sparsity threshold suggests that predicting
incidents of this severity requires a richer and more complete view of an organization’s
external network, provided the organization has sufficient Internet exposure, pointing once
again to the same limitation that restricts the usability of incident prediction models to the
aforementioned types of organizations.

Considering incident types separately allows for more tailored responses to incidents
of different severity, e.g., prioritization of response, resource allocation, enhanced strate-
gic planning. This is currently affected by the distinct model performance between the
considered incident categories. Predicting high-risk incidents is, clearly, of higher value,
since those (and successful hacks) as they can potentially cause significant financial and
reputation damage, while low-risk incidents are often just nuisances. Discovering that
high-risk incidents are more directly linked with external network signals opens the door to
more effective proactive prevention measures and strategic security investments.

5.7.4. INCIDENT COUNTS VS. INCIDENT LIKELIHOOD

We opted to predict incident counts rather than likelihood of incident occurrence due to the
nature of the MSSP’s incident data. Instead of taking all incidents as a whole, we investigate
each category separately. Low-risk incidents are common, making binary classification
pointless. Instead, targeting the counts allows us to examine potential links between them
external signals, with the added benefit of making full use of the finer-grained incident
data. We extend the same methodology to the other two categories. The value of our work
lies in our demonstration and validation of such links. Consequently, incident count is a
representation of the organization’s internal state that we can infer from external data.
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Predicting counts enables organizations to compare risk and security posture to their own
(or sector-wide) incident baseline. Quantifying the expected number of incidents also allows
for the analysis of trends and taking measures accordingly, e.g., seasonality adjustments
and resource allocation. Tracking these counts over time reveals how well an organization
adapts to threats, with increasing trends potentially indicating delays in security updates, and
decreasing trends suggesting effective adaptations.

By demonstrating the links between external signals and internal indicators, we also
open the door to the creation of risk metrics that estimate incident likelihood, especially
for internal high-risk incidents. Such risk metrics make security posture comparisons more
generalizable across organizations, as they provide a standard, empirical measurement of
security posture, independent of size or industry, rather than a single number that may differ
in magnitude from one organization to the next.

Risk metrics can function as quality labels for security. Organizations can then be
incentivized to obtain better risk scores through several means, improving overall security on
the Internet. For instance, just as for energy labels [76], governments can provide subsidies
to more secure organizations to incentivize the attainment of better risk scores. Insurance
firms leveraging risk scores to assess an organization’s security posture can incentivize
improvements in security measures by offering lower premiums for better scores. Market
pressure can also be exerted by consumers, who may prefer to do business with organizations
less liable to data breaches.

5.8. CONCLUSION
This paper presents significant findings, showcasing the vital role that external network
signals can have in incident prediction. By leveraging these signals, we have demonstrated to
what extent it is possible to have accurate predictions of actual security incidents, empowering
proactive defense measures and enhanced risk management. This offers organizations a
transformative approach to cybersecurity beyond traditional compliance-driven methods.

We have demonstrated the efficacy of employing a gradient boosting regressor to predict
cybersecurity incidents. The model’s ability to forecast incident counts for low-risk, high-
risk, and successful hack attacks provides valuable insights for proactive security measures.
In contrast to prior research, our study revealed that external features lack sufficient predictive
power to accurately forecast successful attacks. However, they did demonstrate considerable
accuracy in predicting incidents driven by both low and high-risk incidents. Although
we identified challenges related to sparse data and feature interactions, addressing these
issues could significantly enhance prediction accuracy. Notably, seemingly insignificant
features hold substantial predictive power, becoming critical components in fortifying an
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organization’s cybersecurity resilience.
For instance, such a system can substantially enhance the effectiveness of a SOC by func-

tioning as a proactive early warning system for client organizations. By forecasting potential
security incidents, it empowers SOCs to alert client organizations ahead of time, enabling
them to bolster their defenses and mitigate risks before they materialize. Additionally, not
only does this predictive capability serve as a shield against potential threats but can also act
as a valuable tool in forecasting the workload of the SOC by helping to anticipate the volume
and complexity of incidents that may arise, allowing for better planning and management of
resources.

Our study lays the foundation for integrating the predictions from our model to construct
a comprehensive risk metric, enabling organizations to gain a holistic understanding of their
security posture. While additional challenges exist in standardizing predictions and defining
numerical differences between severity levels, overcoming these obstacles would provide
organizations with a powerful tool to assess and manage their security risks effectively.
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CONCLUSION

This dissertation studied how to make security predictions about the internal state of a
network through only external network observations. In Chapters 2 to 5 we have presented
four peer-reviewed studies, each of which addresses a portion of the following overarching
research question:

How can internal security incidents be predicted through the leverage of

external network signals?

In the final chapter of this dissertation, we sum up the work presented in the previous
chapters and their contributions. Next, we discuss how the studies we conducted answer
the aforementioned research question. We then elaborate on the practical implications for
governance and policy that the findings of our work have uncovered. And, finally, we discuss
potential avenues for future research that our work and findings have opened up.

6.1. SUMMARY OF THE FINDINGS

CHAPTER 2 – EXTERNAL ASSET DISCOVERY

In this chapter, we aimed to compile and systematize novel asset discovery techniques.
Since asset discovery is typically not the main focus of network measurement research, it is
overlooked, even though the process of asset discovery is crucial to many a cybersecurity
task.

139
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To address these issues, we presented a framework for asset discovery that proposes
a syntax to make explicit the steps in the asset-discovery process. We then used this
framework to systematize all asset discovery techniques designed or mentioned in literature
published in 14 leading academic venues between 2015 and 2019. This framework and
systematization provide a natural way for researchers to identify gaps in their study design,
thereby creating opportunities to build on earlier efforts by broadening the set of assets
discovered. Furthermore, our systematization of recent advances in active asset discovery
can help researchers select relevant techniques for the individual steps of our framework
based on their needs. Finally, we applied our framework to various use cases, illustrating
how techniques can be combined and how to identify where gaps remain.

CHAPTER 3 – NIDS RULES AND INCIDENTS

This chapter aimed at shedding light on another oft-overlooked yet vital aspect of network
security, namely signature-based NIDSs and the rulesets they employ to detect threats. Using
13 years of NIDS rule management data and internal alert and incident data from an MSSP,
we analyze the evolution of said rules and rulesets, as well as how the rules influence the
detection of threats and the investigation of security incidents. This analysis is complemented
by a number of in-depth interviews conducted with rule writers and SOC analysts from the
MSSP to verify the findings.

We find that, overall, barely a fifth of all rules are meaningfully updated throughout their
lifespan (i.e., in a way that alters their detection capabilities), either to account for changes
in the threat landscape, or to reduce the amount of generated alerts by making rules more
specific to certain threats, thereby alleviating the workload on the SOC and its analysts.
Furthermore, a half percent of rules are responsible for 80% of all alerts. Of all these alerts,
we find only a 1.2% are significant enough to warrant closer investigation, of which only a
fourth carry any risk to an organization.

CHAPTER 4 – NIDS RULE AND INCIDENT MANAGEMENT PROCESSES

Complementary to the previous chapter, in this chapter we studied the organizational pro-
cesses surrounding the management of signature-based NIDSs and their respective rulesets.
Although many of these processes are technical in nature, they are carried out manually
by a team of professionals, and end up determining the types of security incidents and the
degree to which they detected and resolved. To understand the way in which internal secu-
rity incidents are influenced by internal management processes, we conducted 17 in-depth
interviews with security professionals from different organizations and industries about their
roles, workflows, and heuristics when working with the NIDSs within their organizations.

We find that there is no single manner in which all SOCs are managed. Many different
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factors need to be managed and balanced against each other within the context of, e.g., the
SOC’s rule management processes and resource availability. This, in turn, is also balanced
against customer expectations. Taking these points into account, we conclude by presenting a
number of recommendations for internal management processes to improve the effectiveness
of SOC teams and their services.

CHAPTER 5 – SECURITY INCIDENT PREDICTION

Finally, this chapter investigated how a collection of external network signals can be used to
predict the occurrence of internal network security incidents. To this end, we extract 338
features from nearly five years of external network scan data from providers such as Shodan
and ShadowServer, malicious activity reports and abuse datasets, and use them to train a
model to predict internal security incidents (similar dataset as used in Chapter 3). Instead of
binary classifications, this system is able to predict with high accuracy the number of internal
security incidents within a certain time span, thereby demonstrating the predictive power of
external network data. Additionally, we find that this performance is highly dependent upon
the sparsity of the input features extracted from the external data and abuse datasets. These
findings allow organizations to identify troubling security signals ahead of time, thereby
potentially be kick-starters for organizations to take a more proactive approach to their
network security.

6.2. FROM EXTERNAL SIGNALS TO INTERNAL SECURITY
Through the findings in the previous chapters, we advance the state of the art surrounding
empirical risk estimation. While previous work has demonstrated the effectiveness and
predictive power of external network signals when observing and exploring large data
breaches, none had examined such relationships with internal security incidents. To achieve
this, we identified three primary gaps in current scientific knowledge (see Section 1.3). To
address the aforementioned gaps, we reflect and elaborate on our findings and how they
ultimately answer our overarching research question: How can internal security incidents be

predicted through the leverage of external network signals?

First, we have discovered a myriad of asset discovery techniques buried within recent
academic literature. These are discovery techniques that shed light upon an organization’s
publicly accessible digital infrastructure, both known and unknown. To our knowledge, these
technological advancements in asset discovery are rarely implemented by organizations
to keep track of digital assets. Unrecorded IT infrastructure is a problem that remains
rampant [189]. Not only is this information useful for adversaries, but also for defenders.
Adversaries often exhibit ingenuity in carrying out their plans at the expense of an orga-
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nization. These are techniques developed by academics worldwide for specific research
purposes, which are often forgotten afterwards. Consequently, the security community in
the future is forced to reinvent the wheel whenever the ability to track those specific assets
becomes necessary for the security of an organization. Being able to not only accurately
identify assets and controls, but also seamlessly integrate such techniques into existing asset
discovery pipelines, becomes vital for organizations. This closes the gap between themselves
and potential adversaries, maintaining a balance in this ongoing cat-and-mouse game.

Second, we discover that organizations prioritize three aspects when it comes to optimiz-
ing incident detection and improving security: 1) maximize threat landscape coverage, 2)
maintain NIDS rules as up-to-date as possible with current developments in security, and 3)
minimize false positives as to reduce security analyst workload. These three factors do not
exist in a vacuum, however, and many trade-offs are made depending on, for instance, the
nature of the threat and the ability of the analysts to detect said threats. To give an example,
minimizing false positives implies making rules more specific to particular threats, thereby
reducing the probability of unintended triggering on non-malicious traffic, while most likely
sacrificing a degree of genericness that allows it to detect a wider range of similar threats and
cover more of the threat landscape. This is not a static phenomenon, but rather a dynamic
process that evolves not only due to the aforementioned threat landscape, but also the shifting
abilities, resources, and priorities of the team of analysts and the organization as a whole.

Different factors influence how susceptible some organizations are to certain attacks, and
not everything that happens warrants swift and decisive action. Analysts react to various
alerts and incidents differently, depending also on the organization. These are systems
and processes managed and maintained by human professionals, making these aspects
inseparable from the human factors governing them. After a thorough examination of these
human factors, we find that the results of the quantitative analysis are reflected in the personal
experiences of the analysts. This suggests that the maintenance and management practices
implemented by organizations are intentionally and effectively carried out by the security
professionals. For instance, the aforementioned aspects of threat landscape coverage, rule
update processes, and the minimization of false positives through the creation of specific
rules are priorities at both the technical and organizational levels. Furthermore, many of
the organizational processes that ensure the effectiveness of the team and their security
systems rely on the individual intuition of security analysts. However, we find that there
is an industry-wide lack of strictly-defined feedback loops within the incident detection
process at the organizational level. This limits the opportunity for security analysts, whether
expert or novice, to gain experience from a wide range of security-related situations. Since
intuition is built off experience in a certain field, this impedes the degree to which teams
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can effectively carry out their tasks. This calls for the implementation of organizational
processes that can aid in the transfer of knowledge from more experienced analysts to
novices. Such processes could include the creation of playbooks, distribution of SOC
process documentation, and setting up systems for internal and external collaboration. Still,
these NIDSs remain vital to the security of organizations, as evidenced by their presence in
almost all security departments and their reliance on these systems for providing security to
their clients.

The incidents produced by NIDSs that security analysts respond to are influenced by
the corresponding organization’s Internet exposure and the information extracted from such
exposure. This opens the door to studying the relationships between the two. While signals
do not directly indicate how secure organizations are, they can be potential symptoms
of wider security issues affecting such organizations. For instance, an out-of-date SMTP
server is not inherently a security issue, but it may indicate inadequate organization-wide
patching practices. This, in turn, may suggest a general low level of security maturity. The
phenomenon we aim to capture is not causality but rather signals indicative of an underlying
cause. We find that the relationship between external network signals and the internal state of
a network is significant enough for the former to have predictive power for the latter. Using
a vast array of external signals collected from a variety of organizations, we have developed
a system capable of predicting with high accuracy the number of security incidents that each
respective organization will face during a specific future time window. The effectiveness of
this prediction system varies with the size, type, and Internet exposure of the organization.
Hence, similar to the NIDSs themselves, this system needs to be continually updated and
retrained as each organization’s threat landscape and security practices evolve.

Nevertheless, our work successfully demonstrates the feasibility of this approach. How-
ever, as with any new technology, it is necessary to consider the broader implications and
potential issues that may arise from its widespread use.

6.3. IMPLICATIONS FOR GOVERNANCE

The results of this research, and the feasibility of the developed prediction system carry
with it several practical implications for governance and public policy. A prediction system
as described in this thesis requires two elements: 1) extensive external network scans, and
2) unrestricted access to internal network security data (in the form of NIDS alerts and
SOC-labeled incidents). Given the scale of data collection necessary, it stands to reason that
acceptable use-cases be appropriately and specifically delineated so as to prevent misuse,
unintentional or not.
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6.3.1. SCANNING THE INTERNET

External network scans are already performed on a daily basis by numerous organizations
(e.g., Shodan [208], Censys [43], ShadowServer [229]). Such services can be employed by
both legitimate and malicious actors for their own end goals. Nevertheless, the data obtained
through these means is publicly accessible by design, and there is thus little sense in placing
restrictions upon the public to prevent them from accessing such data.

Still, improper use of scanning techniques can result in undesired side-effects on the
side of the receiving party. This can range from low-level alert triggers in the SOC to
practically a full-blown denial of service attack. While the former can be seen as simply a
nuisance, the latter can be legally actionable. Consequently, organizations and their network
administrators may prefer network scans not be performed on their infrastructure. To protect
both the—presumably benign—scanning organization and the organization being scanned,
the scanning must be performed with proper “etiquette”. Several of them were proposed by
Durumeric et al. [72], the creators of ZMap.

That is not to say that these best practices would best serve our communities enshrined
in legislation and rigorously applied by law enforcement. Nor should extensive Internet
scanning tools and techniques become exclusive to governments and intelligence agencies.
Private institutions have used these tools and techniques for many years. Through this,
they play major roles within the improvement of security on the Internet. Even though
official government institutions are ultimately responsible for the take-downs, arrests, and
prosecution of cybercriminals, this work is very often done in collaboration with private
citizens within, e.g., universities and private organizations. For instance, the aforementioned
ShadowServer Foundation [229] was instrumental in the 4 year-long international operation
aimed at bringing down the Avalanche cybercrime syndicate and botnet [78].

Existing legislation surrounding the criminality of computer abuse generally does not
address the issue of (large-scale) port scanning directly. However, some provisions are
relevant in the context of port scans and can be applied, depending on, e.g., the circumstances
surrounding the scanning and the objective of the actor performing the scans (e.g., the
Netherlands [75], U.S. [127]). And since private citizens are the ones often responsible
for discovering security flaws in the networks of companies, they are the ones who often
take the brunt of this legislation. An example of this is AT&T’s misconfiguration of their
servers that resulted in making the email addresses of iPad owners publicly accessible on the
Internet. A researcher by the name of Andrew Auernheimer then independently discovered
this misconfiguration, allowing him to scrape over a 100,000 emails from the unsecured
servers [74]. By publishing the email addresses, AT&T was forced to fix the server’s security
issues. No good deed goes unpunished, however, and Mr. Auernheimer was sentenced to
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three and a half years in prison for violating the U.S.’ Computer Fraud and Abuse Act [127],
which, among other things, prohibits anybody from gaining unauthorized access to computer
systems. Ultimately and thankfully, this conviction was overturned in an appeal, since
Auernheimer had not actually circumvented any “code-based” access restrictions [74].

Although the disclosure of the vulnerability in AT&T’s servers could have been done
more responsibly, or in a less public manner, this is hardly something for which Auern-
heimer carries the (entire) blame. Responsible vulnerability disclosure is a relatively new
development, and, at best, it was still in its infancy back in 2013. In fact, the first ISO
standard regarding vulnerability disclosure was published only in February 2014 [106]. It
can be argued that AT&T got off easy, and it repaid the security researcher responsible for
identifying a major flaw in its network by attempting to put him in prison.

Companies can be overeager to litigate and/or retaliate against security researchers who
discover and disclose vulnerabilities in their systems that the companies themselves have
lacked the capabilities to discover on their own. Many such cases can be found, and various
organizations track their occurrences over the years [18, 69]. Extending these laws, perhaps
to include the aforementioned best practices, will undoubtedly have negative repercussions
for the security community. Many organizations lack the resources or the capabilities
to completely map out their digital assets, and maintain them secure at all times, as the
pernicious phenomenon of Shadow IT demonstrates [189]. When expensive asset discovery
or penetration testing services cannot be obtained, vulnerable organizations rely on security
researchers to inform them of their predicament before more malicious actors can seize that
opportunity for themselves.

This is even more crucial nowadays due to the implementation of GDPR [166]. GDPR
mandates organizations to safeguard personal data against unauthorized access and data
breaches. The contributions of independent researchers can bolster an organization’s security
posture, ensuring ongoing compliance with GDPR’s stringent data protection requirements.
Furthermore, their involvement promotes a culture of continuous security improvement,
aligning with GDPR’s principle of “privacy by design” and helping organizations to mitigate
risks effectively, maintain trust with their customers, and avoid the severe penalties associated
with non-compliance.

In the context of this thesis, the purpose of the external network scans is to observe and
determine as accurately as possible the external state of a system. The only communication
performed with third-party computer systems is at most to identify potential misconfigura-
tions, but not to act upon them. Exploiting vulnerabilities is entirely out of scope. Accessing
the internal state of organizations’ networks is performed through completely different
means, and, therefore, requires a different type of reflection.
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6.3.2. ACCESS TO INTERNAL SECURITY EVENT DATA

The second requirement of our prediction system is access to an organization’s internal
security events. In the specific case of this thesis, this data comes in the form of alerts
generated by an NIDS installed within an organization’s network, in addition to the security
incidents that are investigated by the SOC. To create and train a workable and effective
prediction system, it requires many years’ worth of such data, which we were able to acquire
this data through strict legal agreements with the collaborating MSSP. These legal processes
can be long and arduous, since the data that is being shared with researchers is of a highly
private and sensitive nature.

This can provide an explanation as to why these prediction systems are not more
widespread, both in academia and industry. The technical requirements are not prohibitive,
even for small and medium-sized enterprises (SMEs). Instead, it is the prior step of acquiring
the necessary internal network data that is the biggest obstacle.

At the forefront of this issue is the privacy of the client organizations. Any entity that
has access to an organization’s sensitive data can discover and reveal trade secrets, business
strategies, and personal identifiable information of employees and customers. This data
must, therefore, be protected accordingly against unauthorized access and data breaches, as
mandated by GDPR and other data protection legislation.

These constraints limit the types of organizations that are currently capable of creating
such prediction systems to those that provide security services to a large network of client
organizations or departments (e.g. MSSPs, consultancy firms, large banks). Due to the
nature of the services such organizations provide, they will have access to their clients’
internal network data. The diversity in the population of client organizations and networks
will determine the generalizability of the model, although the case can be made for domain-
specific models designed for specific branches of industry.

Data marketplaces are recent phenomena that can offer an alternative to organizations
that lack a network of client organizations [77]. These platforms enable organizations can
choose to monetize their data by putting it up for sale [161]. Though many different types
of data can be published, internal network data would require additional effort to guarantee
anonymity and filter out any other type of sensitive information. However, the large quantity
of required data means that a large quantity of data must be purchased. Assuming that there
are enough organizations that opt to sell their internal network data (which is certainly not
a given), the amount of funds necessary for the purchasing of enough data may very well
be way beyond the means of any SME, again limiting this technology to a select group of
organizations.

Storing sensitive data brings with it the responsibility to maintain secure systems and
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patch vulnerable software. Although GDPR does not explicitly mention patching vulnerable
software, it does require organizations to ensure the security of processing “appropriate to
the risk” [107]. This can be interpreted as an obligation to keep systems and software up to
date and secure against known vulnerabilities. Regularly updating and patching software
can be seen as part of the requirement to take steps to secure personal data.

Given the sensitive nature of the data, it is only natural for organizations to be averse to
the sharing of this data with other parties. Thus, as with all informed consent, this process
must be carried out to ensure all parties are on the same page regarding issues such as data
ownership and what risks are involved.

This must be done, then, at the discretion of the organizations that are providing this data.
The data can be used to discover weaknesses in the networks of these organizations, as well
as provide valuable insights in how to bypass and evade security controls. Therefore, access
to internal network data should be limited to trusted personnel. Obviously, this includes
security professionals that require access to this data on a daily basis, such as SOC analysts,
(N)IDS rule writers, incident response teams, among others. Additional cases, such as
for data analytics and (academic) research purposes, should require further deliberation in
collaboration with data stewards and, potentially, legal personnel to delineate the scope.
Opting out of the data sharing programs, particularly for the latter two cases, should always
be maintained as a possibility for the client organizations.

6.3.3. RISK MEASUREMENTS

Many jurisdictions around the world mandate private and governmental entities to disclose
data breaches to the public. When this type of prediction system becomes effective enough
at predicting the occurrence of singular breaches, should these predictions be disclosed to
the public? Or perhaps to a governing body?

We should probably avoid Minority Report-esque1 situations where potential offenders
are penalized before an offence has actually taken place. This does not mean, however,
that prediction systems are worthless to governance efforts. These systems can be used to
compute risk scores based on the probability of a breach occurring within a certain time
span. The scores would be empirical measurements extracted from an organization’s digital
infrastructure.

One could draw parallels between such scores and energy labels given to electronic
appliances, vehicles, and buildings. Just as governments can incentivize the development of
energy-efficient office buildings by mandating a minimum energy label [164] or offering

1Minority Report is a 2002 movie based on a 1956 novella of the same name, set in a future where a special police
unit can arrest murderers before they commit their crimes, thanks to a technology that can predict the future.
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subsidies for additional sustainability and energy efficiency efforts [40], so can they put
in place similar mandates and subsidies to incentivize the attainment of better risk scores.
Insurance firms using these risk scores to evaluate organization’s security posture can further
stimulate organizations to improve the state of their security if that means having to spend
less money on premiums. Finally, market pressure can also be exerted by consumers and
businesses on other organizations that achieve sub-par risk scores.

A potential downside of this policy is that organizations can aim at optimizing the score
itself, rather than actually improving security in a productive way. The more a metric is used
for social decision-making, the more likely it will be to incentivize gaming and undermine
the process it is intended to improve [41]. While this is certainly a valid observation, the
same can be said about current security posture measurements that are based on compliance
metrics. At least a risk score as proposed is based on empirical measurements.

The exclusive use of external network data to make predictions is a trade-off that is made
due to the scale of the problem. Most indicators of low security originate from inside a
network. Thus, only with access to the internal network of an organization is it possible to
most accurately assess the state of an organization’s security. Analyzing all internal network
traffic for audits is impractical and unscalable due to the complexity and variability among
organizations, posing challenges for generalizability. Using external network data as a proxy
will likely result in information loss and yield less accurate results. However, if research
indicates that much information about internal security can be inferred from external data,
extensive internal analysis becomes unnecessary. Taking a snapshot of an organization’s
external digital infrastructure is simply easier.

Organizations can benefit from creating in-house prediction systems with their own data
for anomaly detection. However, these systems will struggle to adapt to benign network
changes due to the model’s lack of generalizing knowledge. Risk scores derived from the
output of in-house systems may not be as reliable as those from more advanced third-party
models. Furthermore, SMEs likely lack the financial resources to develop and maintain such
systems. For the aforementioned use cases, it is then seems more sensible for the majority of
organizations to rely on more sophisticated models for the generation of risk scores.

Such risk scores are dependent on a more advanced type of prediction system than is
developed in this thesis, though. This and other potential or necessary advancements will be
discussed next.

6.4. FUTURE WORK
The chapters in this dissertation leave room for future research. In this chapter, we discuss
these potential avenues.



6.4. FUTURE WORK

6

149

In Chapter 2, we discuss the topic of asset discovery. This is a very broad field and,
while we were able to collect and systematize many techniques, there was a noticeable lack
of discovery techniques for IoT devices, or network services running on non-standard ports.
As reconnaissance and asset discovery are crucial in the process of securing an organization,
it is important that such techniques are developed and documented.

Chapters 3 and 4 describe the technical and organizational aspects, respectively, that
govern the management of NIDS rules within a SOC. A straightforward direction for future
research is performing similar investigations at additional SOCs to verify the generalizability
of the results. Additionally, we have exclusively scoped our research to security incidents at
network level. Including security events at host and application level will allow for a rich
comparison between threat landscapes and workflows at different layers, as well as yield a
more complete view of the incidents faced by organizations and SOCs.

When SOCs lack an internal threat intelligence department, they depend wholly on
outside sources and publicly available data. Future research can investigate how complete
reliance on these sources affects workflows within the SOC, as well as, ultimately, the
network security of the organizations that the SOC is tasked with protecting. In a more
general sense, each SOC has its own unique manner in which they provide security to
their clients, depending on the unique blend of resources, expertise, and business model,
all seemingly as effective as the rest. Future work can delve into the specific differences
between different SOCs and examine how these differences affect aspects such as network
security, customer satisfaction, and analyst workload.

Chapter 5 is the most critical part of this dissertation, which also opens the door to the
largest amount of future research. The chapter describes the design and performance of an
ML-based security incident prediction system. It is able to confidently predict the number
of certain types of incidents that will occur within a specific time window. However, the
model experiences difficulties when attempting to predict low-risk incidents, and sometimes
successful hacks. Future research can examine this discrepancy more deeply, study the
specific types of threats that cause difficulties to predict, and identify the reasons why
not every incident is created equal. Furthermore, instead of using the data of third-party
Internet scanning organizations (e.g. Shodan, Censys, ShadowServer), the training data can
be collected in real-time using the asset discovery techniques collected and systematized
in Chapter 2. Also, in addition to network-level incidents originating from NIDSs that
currently form the basis of the system, security incidents at the host and application level
can be included in the training data. This can potentially allow for a more complete and
finer-grained picture of an organization’s security posture and more accurate predictions. The
discovery techniques can also be expanded on with techniques developed and published more
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recently in industry and academic literature. Finally, the prediction system currently works
with correlated signals and says nothing about causation. Additional extensive research is
still needed to establish causal links between observed external signals and security events.
This step is a necessity, seeing as the goal is to create accurate outcome-based risk metrics.
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APPENDIX A

A.1. INTERVIEW STUDY PROTOCOL
1) Welcome

2) Short overview of the study

3) Explanation of the interview

4) Informed consent

5) Start interview

6) Debriefing

A.2. INTERVIEW QUESTIONS

A.2.1. WORKFLOWS

1) Could you describe to me your workflow? a. Probe about routine and non-routine
tasks

2) What do you see as the main objectives of your work? a. Probe on incentives that they
have to reach this objective

3) Can you walk me through the process of the acquiring, creating, changing, and
deactivating rules? a. Probe on when a rule is added into the sensor b. Probe on all the
testing that is done before rules are added into the sensor

4) How many rules do you investigate every day? a. Probe on how they perceive this
task (creative / procedure / workload) b. Do you have any tasks that you don’t have
enough time for? c. Probe rule evaluation

A.2.2. MANAGEMENT

5) How do you work together with other colleagues on making or changing rules? a.
Probe on working together or separation of tasks in specific client’s rulesets? b. Probe
if they ever had a disagreement on certain rules
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6) How do you seek additional information in order to assess a rule? a. Probe on who
they asked, what advice they received. b. What kind data they were looking for.

7) Did someone ever follow up with you after you made or changed a rule?

8) In your experience, what is the most severe thing that could go wrong with the rulesets
you are using? a. Probe on fear of FN b. What are potential consequences of a ruleset
that isn’t functioning properly c. Probe on the amount of risk that they perceive on
missing TP d. Probe on the amount of FP and their perception and definition of a FP e.
Probe on how likely they think consequences might happen

9) Have there been made any mistakes while adapting rulesets? a. Probe on how this
came to light.

10) What procedures does the organization have on making or changing rules?

11) Who is responsible for the quality of the rules? a. Probe on differences between the
responsibility of individual, senior, manager.

12) How is a client involved in the creation of rules? a. Probe on relationship with clients

13) Can you give an example of feedback that you received from clients?

14) In your opinion, what could be improved in the management of rules?

A.2.3. OBJECTIVES

15) In your opinion, what is a good ruleset? a. Probe on the influence of the volume of a
ruleset

16) How do you optimize a ruleset as a whole?

17) What is the best ruleset that is achievable in practice?

A.2.4. EVALUATING RULES

18) Can you walk me through the process on how you determine whether a rule is good or
bad?

19) Can you give an example of a good rule? a. Probe on why this is a good rule

20) Can you give an example of a bad rule? a. Probe on why this is a bad rule

21) Which data do you use for evaluating rules? a. Probe on what they think is the most
important data
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22) Is there additional data that you would like to have?

23) What do you do when you have doubts on a rule?

24) How do you deal with rules that do not or no longer generate any alerts?

25) Is there anything else you would like to tell me that could benefit our research?

26) Live evaluation of sample rule #1.

27) How would you evaluate the previous rule if it is known to have generated 4000 false
positive alerts in the last month?

28) Live evaluation of sample rule #2.

29) How would you evaluate the previous rule if it is known to have generated 20 true
positives in last month?

30) Live evaluation of sample rule #3.

31) How would you evaluate the previous rule, taking its performance impact into account,
if it generates a single true positive in a year?

A.2.5. CLOSING DEMOGRAPHICS

32) What is your name?

33) What is your job title?

34) How old are you?

35) What is your educational level?

36) How many years have you been doing this work?

37) Do you know anyone else who we could interview for this research?

A.3. INTERVIEW SAMPLE RULES

Sample rule 1
a l e r t h t t p $HOME_NET any −> $EXTERNAL_NET any (

msg : " ET POLICY V u l n e r a b l e Java V e r s i o n 1 . 8 . x D e t e c t e d " ;
f low : e s t a b l i s h e d , t o _ s e r v e r ;
c o n t e n t : " J ava / 1 . 8 . 0 _ " ; h t t p _ u s e r _ a g e n t ;
c o n t e n t : ! " 2 5 1 " ; w i t h i n : 3 ; h t t p _ u s e r _ a g e n t ;
f l o w b i t s : s e t , ET . h t t p . j a v a c l i e n t . v u l n e r a b l e ;
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t h r e s h o l d : t y p e l i m i t , c o u n t 2 , s e c o n d s 300 , t r a c k b y _ s r c ;
m e t a d a t a : f o r m e r _ c a t e g o r y POLICY ;
r e f e r e n c e : u r l ,www. o r a c l e . com / t e c h n e t w o r k / j a v a / j a v a s e / 8 u− r e l n o t e s −2225394. h tml ;
c l a s s t y p e : bad −unknown ;
s i d : 2 0 1 9 4 0 1 ;
r e v : 3 0 ;
m e t a d a t a : a f f e c t e d _ p r o d u c t Java , a t t a c k _ t a r g e t C l i e n t _ E n d p o i n t , dep loyment P e r i m e t e r ,

↪→ dep loyment I n t e r n a l , s i g n a t u r e _ s e v e r i t y I n f o r m a t i o n a l , c r e a t e d _ a t 2014
↪→ _10_15 , p e r f o r m a n c e _ i m p a c t Low , u p d a t e d _ a t 2020 _04_27 ;

)

Sample rule 2
a l e r t t c p $HOME_NET any −> any any (

msg : " ET EXPLOIT P o s s i b l e OpenSSL? H e a r t B l e e d ? Large H e a r t B e a t ? Response ( C l i e n t I n i t
↪→ Vuln S e r v e r ) " ;

f low : e s t a b l i s h e d , t o _ c l i e n t ;
c o n t e n t : " | 1 8 0 3 | " ; d e p t h : 2 ; b y t e _ t e s t : 1 , < , 4 , 2 ;
f l o w b i t s : i s s e t , ET .HB. Reques t . CI ;
f l o w b i t s : i s n o t s e t , ET .HB. Response . CI ;
f l o w b i t s : s e t , ET .HB. Response . CI ;
f l o w b i t s : u n s e t , ET .HB. Reques t . CI ;
b y t e _ t e s t : 2 , > , 1 5 0 , 3 ;
t h r e s h o l d : t y p e l i m i t , t r a c k by_src , c o u n t 1 , s e c o n d s 120 ;
m e t a d a t a : f o r m e r _ c a t e g o r y CURRENT_EVENTS;
r e f e r e n c e : cve ,2014 −0160;
r e f e r e n c e : u r l , b log . i n l i n i a c . n e t / 2 0 1 4 / 0 4 / 0 8 / d e t e c t i n g − o p e n s s l − h e a r t b l e e d −with −

↪→ s u r i c a t a / ;
r e f e r e n c e : u r l , h e a r t b l e e d . com / ;
r e f e r e n c e : u r l , b log . fox − i t . com / 2 0 1 4 / 0 4 / 0 8 / o p e n s s l − h e a r t b l e e d −bug − l i v e − b log / ;
c l a s s t y p e : bad −unknown ;
s i d : 2 0 1 8 3 7 7 ;
r e v : 4 ;
m e t a d a t a : c r e a t e d _ a t 2014 _04_09 , u p d a t e d _ a t 2014 _04_09 ;

)

Sample rule 3
a l e r t h t t p $HOME_NET any −> $EXTERNAL_NET any ( msg : "ET TROJAN [ P T s e c u r i t y ] Tinba (

↪→ Banking T r o j a n ) Check − i n " ;
f low : e s t a b l i s h e d , t o _ s e r v e r ;
c o n t e n t : ! " R e f e r e r | 3 a | " ;
h t t p _ h e a d e r ;
c o n t e n t : " | 0 d0a0d0a | " ;
d e p t h : 2000 ;
b y t e _ e x t r a c t : 2 , 0 , by te0 , r e l a t i v e ;
b y t e _ e x t r a c t : 2 , 0 , by te1 , r e l a t i v e ;
b y t e _ t e s t : 2 , = , by te1 , 6 , r e l a t i v e ;
b y t e _ t e s t : 2 , ! = , byte1 , 7 , r e l a t i v e ;
b y t e _ t e s t : 2 , = , by te1 , 10 , r e l a t i v e ;
b y t e _ t e s t : 2 , ! = , byte1 , 11 , r e l a t i v e ;
b y t e _ t e s t : 2 , ! = , byte1 , 23 , r e l a t i v e ;
b y t e _ t e s t : 2 , ! = , byte0 , 25 , r e l a t i v e ;
b y t e _ t e s t : 2 , ! = , byte1 , 27 , r e l a t i v e ;
b y t e _ t e s t : 2 , = , by te0 , 40 , r e l a t i v e ;
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b y t e _ t e s t : 2 , = , by te1 , 42 , r e l a t i v e ;
b y t e _ t e s t : 2 , = , by te0 , 44 , r e l a t i v e ;
b y t e _ t e s t : 2 , = , by te1 , 46 , r e l a t i v e ;
b y t e _ t e s t : 2 , = , by te0 , 48 , r e l a t i v e ;
b y t e _ t e s t : 2 , = , by te1 , 50 , r e l a t i v e ;
c o n t e n t : ! " | 0 0 0 0 | " ; d e p t h : 3 0 ; h t t p _ c l i e n t _ b o d y ;
c o n t e n t : " | 0 0 0 0 | " ; o f f s e t : 3 4 ; d e p t h : 2 ; h t t p _ c l i e n t _ b o d y ; f a s t _ p a t t e r n ;
c o n t e n t : " | 0 0 0 0 | " ; d i s t a n c e : 2 ; w i t h i n : 2 ; h t t p _ c l i e n t _ b o d y ;
c o n t e n t : " | 0 0 0 0 | " ; d i s t a n c e : 2 ; w i t h i n : 2 ; h t t p _ c l i e n t _ b o d y ;
m e t a d a t a : f o r m e r _ c a t e g o r y TROJAN ;
r e f e r e n c e : md5 , be312 fdb94f3a3c783332ea91e f00ebd ;
c l a s s t y p e : t r o j a n − a c t i v i t y ;
s i d : 1 0 0 0 3 4 3 3 ;
r e v : 1 ;
m e t a d a t a : a f f e c t e d _ p r o d u c t Windows_XP_Vis ta_7_8_10_Server_32_64_Bit , a t t a c k _ t a r g e t

↪→ C l i e n t _ E n d p o i n t , dep loyment P e r i m e t e r , t a g Banker , s i g n a t u r e _ s e v e r i t y Major ,
↪→ c r e a t e d _ a t 2018 _08_07 , ma lware_ fami ly Tinba , p e r f o r m a n c e _ i m p a c t High ;

)
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B.1. ORGANIZATION AND IP BLOCK MAPPING FLOWCHART
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B.2. SHAP DECISION PLOTS
This appendix contains decision plots for several of the model’s predictions at specific points in time. The vertical gray line indicates
the expected value (i.e., the mean of the data) at the moment that prediction was made.
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Figure 2: Decision plot of an inaccurate high risk incident prediction. The actual high risk incident
count is 0.
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Figure 3: Decision plot of a cluster of successful hack attacks corresponding to the same organization.
Even though the incident counts remain elevated throughout this period, the model is not able to
perform accurate or consistent predictions.
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B.3. LIST OF FEATURES

Table 1: All 338 features extracted and used.

Feature Count Feature Count

Malicious activity 180 - Netcore/Netis Router Vulnerability
Scan Report

1

- Number of IPs in spam datasets for each day in time window 60 - Accessible SSL Report 1
- Number of IPs in phishing datasets for each day in time window 60 - Open Proxy Report 1
- Number of IPs in misc. malicious activity datasets for each day in time window 60 - Outdated DNSSEC Key Report 1
Persistence 72 - Accessible ADB Report 1
- Magnitude of persistence in good region of spam datasets in time window 1 - Accessible AFP Report 1
- Magnitude of persistence in normal region of spam datasets in time window 1 - Accessible Apple Remote Desktop

(ARD) Report
1

- Magnitude of persistence in bad region of spam datasets in time window 1 - Accessible CharGen Report 1
- Normalized magnitude of persistence in good region of spam datasets in time window 1 - Accessible CoAP Report 1
- Normalized magnitude of persistence in normal region of spam datasets in time window 1 - Open CWMP Report 1
- Normalized magnitude of persistence in bad region of spam datasets in time window 1 - Open DB2 Discovery Service 1
- Average duration of persistence in good region of spam datasets in time window 1 - Accessible DNS Report 1
- Average duration of persistence in normal region of spam datasets in time window 1 - Open Elasticsearch Report 1
- Average duration of persistence in bad region of spam datasets in time window 1 - Accessible FTP Report 1
- Frequency at which time series enters good region of spam datasets in time window 1 - Accessible Hadoop Report 1
- Frequency at which time series enters normal region of spam datasets in time window 1 - Accessible HTTP Report 1
- Same features, spam datasets, but for last 14 days of time window 12 - Vulnerable HTTP Report 1
- Same features, phishing datasets 12 - Open IPMI Report 1
- Same features, phishing datasets, but for last 14 days of time window 12 - Open IPP Report 1
- Same features, misc. malicious datasets 12 - Vulnerable ISAKMP Report 1
- Same features, misc. malicious datasets, but for last 14 days of time window 12 - Open LDAP TCP Report 1
Mismanagement symptoms 15 - Open LDAP Report 1
- Number of open recursive resolvers in time window 1 - Open mDNS Report 1
- Maximum and mean open recursive resolvers in time window 2 - Open Memcached Report 1
- Maximum and mean open recursive resolvers in last 14 days time window 2 - Open MongoDB Report 1
- Same features for TLS configuration errors 5 - Open MQTT Report 1
- Same features for TLS certificate errors 5 - Open MS-SQL Server Resolution

Service Report
1

Live hosts 3 - Open NAT-PMP Report 1
- Number of unique IPs with open ports in time window 1 - NTP Version Report 1
- Number of open ports in time window 1 - NTP Monitor Report 1
- Number of TLS-enabled services in time window 1 - Open QOTD Report 1
Types of services 3 - Accessible Radmin Report 1
- Number of reasonable services in time window 1 - Accessible RDP Report 1
- Number of neutral services in time window 1 - Accessible MS-RDPEUDP 1
- Number of risky services in time window 1 - Open Redis Report 1
ShadowServer features (IPs present in report) 65 - Accessible Rsync Report 1
- Blacklist report 1 - Accessible SMB Report 1
- Block list report 1 - Open SNMP Report 1
- Drone/Botnet-Drone Report 1 - Open SSDP Report 1
- CAIDA IP Spoofer report 1 - SSL FREAK Report 1
- Command and Control Report 1 - SSL POODLE Report 1
- Accessible Cisco Smart Install Report 1 - Accessible Telnet Report 1
- Compromised Website Report 1 - Open/Accessible TFTP 1
- Sandbox URL Report 1 - Open Ubiquiti Report 1
- Darknet Report 1 - Accessible VNC Report 1
- Amplification DDoS Victim Report 1 - Accessible XDMCP Service Report 1
- DNS Open Resolvers Report 1 - Sinkhole DNS report 1
- Brute Force Attack Report 1 - Sinkhole HTTP Drone Report 1
- Honeypot HTTP Scanner Events Report 1 - Spam URL Report 1
- Honeypot ICS Scanner Events Report 1 - Vulnerable Exchange Servers Spe-

cial Report
1

- Microsoft Sinkhole Report 1
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