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Abstract—Low-power event-based analog front-ends (AFE)
are a crucial component required to build efficient end-to-end
neuromorphic processing systems for edge computing. Although
several neuromorphic chips have been developed for implementing
spiking neural networks (SNNs) and solving a wide range of
sensory processing tasks, there are only a few general-purpose
analog front-end devices that can be used to convert analog sensory
signals into spikes and interfaced to neuromorphic processors.
In this work, we present a novel, highly configurable analog
front-end chip, denoted as “SPAIC” (signal-to-spike converter
for analog AI computation), that offers a general-purpose dual-
mode analog signal-to-spike encoding with delta modulation and
pulse frequency modulation, with tunable frequency bands. The
ASIC is designed in a 180 nm process. It supports and encodes
a wide variety of signals spanning 4 orders of magnitude in
frequency, and provides an event-based output that is compatible
with existing neuromorphic processors. We validated the ASIC
for its functions and present initial silicon measurement results
characterizing the basic building blocks of the chip.

Index Terms—Neuromorphic, Analog Front-End (AFE), En-
coder, Spiking Neural Network (SNN)

I. Introduction

Spiking Neural Networks (SNNs) represent a powerful

low-power event-based processing computing paradigm for

processing streaming data on the edge [1].

To best exploit this novel emerging computing paradigm and

build a robust end-to-end SNN sensory processing pipeline,

designing efficient event-based analog front-ends is paramount.

Fig. 1 illustrates such an end-to-end pipeline. There are various

methods of encoding analog signals to spikes [2], [3]. On the

hardware front, several analog-to-spike encoders have been

developed and demonstrated on silicon, either using Delta

Modulation (DM) schemes [4], thereby encoding the temporal

changes in the original signal with spike timing, or with

Pulse-Frequency Modulation (PFM) schemes [5]–[7], thereby

encoding the amplitude of the signal with spike rates. However,

these encoders were always optimized for a specific application

and for the corresponding frequency bands.

To the best of our knowledge, no general-purpose solution

has been proposed to allow exploration and prototyping with

existing SNN neuromorphic computing platforms. In this

This work received funding from the European Union’s H2020 research
and innovation programme under the H2020 BeFerrosynaptic (871737), MeM-
Scales (871371) projects.

Fig. 1: Illustration of sensory signal processing pipeline using

a general purpose analog front end and SNN.

work, we present a highly configurable analog front-end ASIC,

denoted as “SPAIC” (signal to spike converter for analog AI

computation), which is compatible with existing neuromorphic

processors [8]–[12], and which offers a general-purpose dual-

mode (DM and PFM) analog-to-spike encoding with tunable

frequency bands (see Fig. 2 for the chip micrograph).

II. ASIC architecture

SPAIC comprises 16 identical analog channels feeding a

common Address Event Representation (AER) interface as

shown in Fig. 3. Each channel has four stages: a low noise

amplifier section (LNA), a fourth-order flipped voltage follower

(FVF) bandpass filter, a programmable gain stage (PGA),

Fig. 2: SPAIC chip micrograph.
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Fig. 3: Architecture of SPAIC Analog Front-End ASIC.

and the encoding stage. The LNA amplifies weak signals

with tunable gain of 0 to 24dB. The FVF BPF filters the

amplified signal with a tunable center frequency and Q [13].

The PGA further amplifies the filtered signal with a tunable

gain up to 24dB. The amplified signal is then split in two

mutually exclusive paths where either the asynchronous delta

modulator encodes the temporal derivative of the amplified

signal, or the integrate and fire neuron [14] is enabled and the

signal is encoded as a pulse-frequency-modulated spike train.

All configurations to the chip are provided in three ways: a

configurable on-chip bias generator that generates the necessary

bias currents for all circuits in the analog front-end, an 8-bit

capacitor DAC (CDAC) to tune the filter parameters and a

voltage DAC (VDAC) to set the UP and DN thresholds for

the Asynchronous Delta Modulator (ADM). All three of these

DACs are configurable via Serial Peripheral Interface (SPI)

protocol.

III. Circuit implementation

The SPAIC ASIC was designed and fabricated in a bulk

180 nm technology node. The chip dimensions including the

seal ring are 2.5 mm×2.5 mm. The circuit implementation of

the major building blocks is described hereafter.

A. Low noise amplifiers

For modularity reasons, both amplifiers in the analog front-

end (LNA and PGA) are built on the same Operational

Tranconductance Amplifier (OTA) core with minor changes

adapted for noise and power. The structure of the OTA is

based on a well-known wide input range current-mirror-type

transconductance amplifier [15]. The primary reason for this

design choice was to accommodate for large input changes that

may or may not be present depending on the input sensor. The

amplifiers are operated in a closed loop as capacitive feedback

amplifiers with a DC-Servo loop (DSL) implemented with

tunable pseudo resistors as shown in Fig. 3. The capacitance

ratio of the feedback to input capacitance determines the overall

closed-loop gain. This gain configuration is implemented as a

4-bit binary weighted capacitance DAC, leading to 16 distinct

gain values. The gains as well as the noise performance were

validated on silicon and are described in Section IV.

B. Flipped Voltage Follower-based bandpass filter

Every AFE channel has a 4th-order BPF with tunable center

frequency and Q. The FVF-based filter topology shown in Fig. 3

helps achieve better noise performance due to the inherent

current reuse present in the architecture.

The filter’s center frequency (l0) is tunable with the on-chip

bias generator. The capacitors of this filter are implemented

as an 8-bit CDAC. By configuring �1 and �2, the Q and the

center frequency can be adjusted in a precise manner with a

resolution of �1,2/256 steps, as described in Eq. (1).

l0 =

√

6<1 · 6<2

�1 · �2

, & =

√

6<2 · �2

6<1 · �1

(1)

As each filter’s center frequency and Q are programmable,

they can be configured as a parallel filter bank or as identical

parallel electrode interface channels. The frequency response,

when configured as a filter bank, measured from the functional

silicon is shown in Fig. 6, Section IV.

C. Asynchronous Delta Modulation encoder

The ADM is designed based on the foundation of a

level-crossing ADC. The amplified and conditioned signal is
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Fig. 4: Measurement setup of the ASIC with a Teensy

microcontroller, communicating via a 4-phase asynchronous

handshaking protocol.

compared with two known voltage thresholds (an up threshold

and a down threshold) set by an on-chip voltage DAC. When the

signal crosses the up threshold, an "UP" spike is generated and

similarly, in the other direction a "DOWN" spike is generated

when the signal goes below the set down threshold. The DACs

were simulated running Monte Carlo analysis and the absolute

accuracy (3f) of the voltage thresholds was found to be ≈ ±

900 `+ . The comparator used in this ADM was designed with

hysteresis [16], [17] to avoid false triggering due to fluctuations

in the signal path arriving at the input of the comparator.

D. Pulse Frequency Modulation encoder

The PFM encoder was designed using a leaky integrate and

fire neuron (LIF) circuit [14] which inherently encodes the

amplitude of the input current into pulse frequency. Therefore,

before being encoded into spikes, the input signal is half-

wave rectified and converted into current by a wide-range

transconductance amplifier. The output current of this amplifier

flows into the input of the neuron which generates a spike when

the input current crosses an externally set spiking threshold of

the neuron.

IV. Silicon validation and measurement results

A custom evaluation board with a Teensy microcontroller

was designed to evaluate the functionality of the ASIC. The

setup is shown in Fig. 4. The microcontroller communicates

with the ASIC and programs its internal registers via an SPI

communication protocol. The two separate encoding paths are

fully independent of each other and have their own AER cir-

cuitry. The AER circuitry operates based on a well-established

four-phase hand-shaking mechanism described in Fig. 4 [18].

The asynchronous nature of the AER interface ensures sparse

event-driven communication with other asynchronous devices.

The frequency response of the amplifiers and the noise

power spectral density (Noise-PSD) measurement of the AFE

are shown in Fig. 5. The plots show the noise PSD in the 1 Hz-

1 kHz band, which is mainly dominated by flicker noise. The

input-referred noise is 1.4 `+ measured at the output of the first

LNA GAIN = 1

LNA GAIN = 4

LNA GAIN = 10

LNA

LNA+BPF+PGA

Fig. 5: Frequency Response of LNA (top) noise power spectral

density (PSD) measurement (bottom).
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100HZ Octave Spaced Channels 
CH10

100 kHZ

CH11-15 

INACTIVE

IN OCTAVE

FILTER 

MODE

Fig. 6: Frequency Response of the bandpass filter bank

LNA. Fig 6 shows a measurement where the bias currents were

programmed in octaves to obtain center frequencies spaced in

octaves. When the filter channels are octave-spaced, 11 channels

can cover a range of 100 Hz-100 kHz. When used as identical

channels, all 16 curves roughly overlap each other. The filter

has a dynamic range superior to 40dB, however, reducing the

gain of the first amplification stage helps to avoid distortion in

the filtering stage. The silicon measurement of signal-to-noise

and distortion ratio (SNDR) of a single AFE channel reveals

a dynamic range of 42dB at the output of PGA as shown in

Fig. 7. The encoding functionality of both ADM and PFM were

measured on the silicon. A 100 Hz pure tone was encoded with

ADM and the UP and DOWN events were recorded. To validate

the encoding, the signal was reconstructed from the spikes and

is shown in Fig. 8. A finer or coarser signal reconstruction can
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Fig. 7: SNDR Measurement of an AFE Channel.
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Fig. 8: ADM spiking response to a 100Hz signal and recon-

struction of the signal from spikes.

be achieved depending on the configured voltage thresholds.

The final encoding accuracy is further determined by the input

referred offset of the comparators. Similarly, the functionality

of the neuron as a PFM encoder was validated by physical

measurement of its membrane potential in response to a 100Hz

pure tone as shown in Fig. 9. The red trace in Fig. 9 shows the

response to a 100mV input and blue trace to a 400mV input.

The almost linear relationship of the spiking frequency to input

amplitude shown in Fig. 10 confirms the intended functionality

of the block.
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Fig. 9: Neuron’s membrane potential response for different

amplitudes of the input signal of the AFE. Red (100mV), Blue

(400mV).
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Fig. 10: Spike frequency response to different input amplitudes.

Table I compares the performance of this work with

similar event-based analog front-ends. This design can cover

a programmable range from 100 Hz to 100 KHz. The AFE

TABLE I: Comparision with prior work

This Work [6] [4] [7]

Technology [nm] 180 180 180 90

Feature Analog to Analog to Analog to Analog to
Events Events Events Events

Channels 16 16 64x2 16

Bandwidth [Hz] <100-100K 100-5K 8-20K 75-5K

Power/Channel [nW] <800@100KHz 24 430 380

Normalized Power 1[nW] 532 88 821 1500

Input Referred Noise [`+A<B] 1.4@LNA 8.3 30 32.5

Dynamic Range [dB] 55@LNA 40@IAF 55@BPF 45@LNA
40@PGA

Area/Channel [<<2] 0.09 0.1 0.26 0.13

Functional Building LNA LNA LNA LNA
Blocks BPF BPF BPF BPF

PGA FWR PGA FWR
ADM IAF ADM LPF

OTA+AdExpI&F

1Normalized to 5kHz using equation (8) in reference [4]

consumes about 800 nW with the channel processing at the

highest frequency (100 kHz) enabled. All other lower-frequency

channels consume proportionally lower power. The power

consumption was normalized to 5kHz and the normalized

power for SPAIC AFE is about 532 nW.

V. Conclusions

In this paper, we proposed a highly configurable general-

purpose signal-to-spike encoding ASIC with a dual-mode en-

coding scheme, designed and fabricated in 180 nm technology.

We demonstrated a generic signal conditioning and dual-

way encoding scheme that one can pair with a spiking neural

network to build an event-based neuromorphic sensing system.

The design is comparable to the state-of-the-art in terms of

dynamic range and silicon area and is better in terms of the

operating range across a larger frequency range and noise

performance.

Future work includes quantitatively benchmarking the en-

coding schemes with a few selected applications such as low-

frequency biomedical signals to auditory signals and high-

frequency ultrasonic signals and quantifying the normalized

power consumption for any selected application.

This work represents a key enabler for building an end-to-

end signal acquisition pipeline for edge computing nodes with

spiking neural networks.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 01,2024 at 07:58:26 UTC from IEEE Xplore.  Restrictions apply. 



References

[1] C. Bartolozzi, G. Indiveri, and E. Donati, “Embodied

neuromorphic intelligence,” Nature Communications,

vol. 13, no. 1024, pp. 1–14, 2022.

[2] W. Guo, M. E. Fouda, and N. Eltawil Ahmed M.and

Salama Khaled, “Neural coding in spiking neural net-

works: A comparative study for robust neuromorphic

systems,” Frontiers in Neuroscience, vol. 15, 2021.

[3] E. Forno, V. Fra, R. Pignari, E. Macii, and G. Urgese,

“Spike encoding techniques for iot time-varying signals

benchmarked on a neuromorphic classification task,”

Frontiers in Neuroscience, vol. 16, 2022.

[4] M. Yang, C.-H. Chien, T. Delbruck, and S.-C. Liu,

“A 0.5v 55`w 64×2-channel binaural silicon cochlea

for event-driven stereo-audio sensing,” in 2016 IEEE

International Solid-State Circuits Conference (ISSCC),

2016, pp. 388–389.

[5] F. Corradi and G. Indiveri, “A neuromorphic event-

based neural recording system for smart brain-machine-

interfaces,” Biomedical Circuits and Systems, IEEE

Transactions on, vol. 9, no. 5, pp. 699–709, 2015.

[6] M. Yang, C.-H. Yeh, Y. Zhou, et al., “A 1`w voice

activity detector using analog feature extraction and

digital deep neural network,” in 2018 IEEE International

Solid - State Circuits Conference - (ISSCC), 2018,

pp. 346–348.

[7] K. Badami, S. Lauwereins, W. Meert, and M. Verhelst,

“24.2 context-aware hierarchical information-sensing in a

6`w 90nm cmos voice activity detector,” in 2015 IEEE

International Solid-State Circuits Conference - (ISSCC)

Digest of Technical Papers, 2015, pp. 1–3.

[8] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A

scalable multicore architecture with heterogeneous mem-

ory structures for dynamic neuromorphic asynchronous

processors (dynaps),” IEEE Transactions on Biomedical

Circuits and Systems, vol. 12, no. 1, pp. 106–122, 2018.

[9] M. Davies, N. Srinivasa, T.-H. Lin, et al., “Loihi: A

neuromorphic manycore processor with on-chip learning,”

IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[10] C. Frenkel and G. Indiveri, “ReckOn: A 28 nm sub-

mm2 task-agnostic spiking recurrent neural network

processor enabling on-chip learning over second-long

timescales,” in 2022 IEEE International Solid-State

Circuits Conference Digest of Technical Papers (ISSCC),

IEEE, 2022, pp. 468–470.

[11] C. Mayr, S. Hoeppner, and S. Furber, “Spinnaker 2: A

10 million core processor system for brain simulation

and machine learning,” arXiv preprint arXiv:1911.02385,

2019.

[12] C. Frenkel, M. Lefebvre, J.-D. Legat, and D. Bol, “A

0.086-mm2 12.7-pj/SOP 64k-synapse 256-neuron online-

learning digital spiking neuromorphic processor in 28-

nm CMOS,” IEEE Transactions on Biomedical Circuits

and Systems, vol. 13, no. 1, pp. 145–158, 2019.

[13] Y. Xu, J. Muhlestein, and U.-K. Moon, “A 0.65mw

20mhz 5th-order low-pass filter with +28.8dbm iip3

using source follower coupling,” in 2017 IEEE Custom

Integrated Circuits Conference (CICC), 2017, pp. 1–4.

[14] A. Rubino, C. Livanelioglu, N. Qiao, M. Payvand, and

G. Indiveri, “Ultra-low-power fdsoi neural circuits for

extreme-edge neuromorphic intelligence,” IEEE Transac-

tions on Circuits and Systems I: Regular Papers, vol. 68,

no. 1, pp. 45–56, 2021.

[15] R. Harrison, “A low-power, low-noise cmos amplifier

for neural recording applications,” in 2002 IEEE Interna-

tional Symposium on Circuits and Systems. Proceedings

(Cat. No.02CH37353), vol. 5, 2002, pp. V–V.

[16] D. Allstot, “A precision variable-supply cmos compara-

tor,” IEEE Journal of Solid-State Circuits, vol. 17, no. 6,

pp. 1080–1087, 1982.

[17] P. Allen and D. Holberg, CMOS Analog Circuit De-

sign (The Oxford Series in Electrical and Computer

Engineering). OUP USA, 2011, isbn: 9780199765072.

[18] J. Lazzaro, J. Wawrzynek, M. Mahowald, M. Sivilotti,

and D. Gillespie, “Silicon auditory processors as com-

puter peripherals,” IEEE Transactions on Neural Net-

works, vol. 4, pp. 523–528, 1993.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 01,2024 at 07:58:26 UTC from IEEE Xplore.  Restrictions apply. 


