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SfM applications for 3D reconstruction from 2D avionics industrial inspection
videos

Arbër Demi, Yancong Lin, Jan C. van Gemert
Delft University of Technology

Abstract

Structure-from-Motion (SfM) and Neural Radiance
Fields (NeRFs) have significantly advanced 3D reconstruc-
tion in multi-view scenarios. Despite their success in
handling non-repetitive, texture-rich scenes, applying such
techniques to real-world scenarios with texture-less and
repetitive structures remains challenging. One such case
is in industrial inspection processes, specifically the recon-
struction of aircraft engine blades. The goal is to build a
3D model of all the engine blades from a single video. We
explore the application of SfM in modeling repetitive and
texture-less blades, identify common causes of failure, and
improve upon the default SfM by replacing the commonly
used exhaustive match with sequential match to handle am-
biguity stemming from repetitiveness. Sequential matching
enables more precise pose estimation and better 3D recon-
struction in our scenario. In addition, we explore the im-
portance of choosing the correct camera model and provide
a comparative look at the existing 3D mesh reconstruction
solutions, presenting tweaked versions that result in better
performance. This work lays the foundation for 3D recon-
struction of repetitive and texture-less objects by proposing
sequential matching, enabling better 3D modeling of engine
blades compared to classic SfM pipelines.

1. Introduction
The inspection process for aircraft engines and their

blades is commonly done manually through the use of
borescopes, which are optical tools used to view areas that
are hard to reach. The use of the borescopes allows for more
freedom in camera motion in the tight spaces of aircraft en-
gine interiors, which is highly useful for the inspecting en-
gineers [38]. Footage obtained can be used in more ways
than manual inspection, with this paper following the foot-
steps of BladeNeRF [11] and taking a closer look at 3D
reconstruction of the engine blades for automatic defect de-
tection. The data used for this work is obtained through a
static camera which is constantly pointing towards the ro-
tating blades at some angle and distance, a similar context

to [11]. For our context, we interpret this as our camera
rotating while taking footage of static blades, as shown in
Fig. 1.

Figure 1. Camera of a borescope following a circular pattern
while facing the blades. image from [11].

The constraints of camera motion, together with the often
texture-less surfaces of the engine blades, create a challeng-
ing setup for accurate sparse, dense and mesh 3D recon-
struction. This setup poses more technical challenges for
evaluation due to the lack of ground-truth camera poses.
Our work is concerned with photo-realistic 3D reconstruc-
tion of the aircraft engine blades using the footage obtained
from the inspection camera, following the main goal of
BladeNeRF [11]. Differing from BladeNeRF, the focus
of this paper is on the Structure-from-Motion (SfM) tech-
niques [26, 27], which heavily rely on visual features, such
as SIFT [19] to calculate camera poses and reconstruct a
sparse 3D model.

In [11], the SfM techniques are pushed aside due to the
texture-less surface of the aircraft engine blades. This be-
comes a more challenging problem when considering that
most SfM pipelines default to exhaustive matching of fea-
tures in an attempt to use as much information as possible.
In our case, however, exhaustive matching hurts the perfor-
mance of SfM by matching together distinct blades due to
their visual similarity.

There are also many other issues in this setting as shown
in [16, 20], one of which is the lack of camera intrinsics.
Among those intrinsics is the distortion information.
Many borescopes have lenses that introduce some radial
distortion. Without the correct camera model to estimate
the distortion, or the correct distortion coefficients, the
camera pose estimation and quality of sparse reconstruction
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suffers, as shown in [20].

In this work, we take a look at some changes that im-
prove the SfM pipeline, allowing it to produce consistent
3D reconstructions of repetitive engine blades. A popular
piece of software that provides a full SfM pipeline imple-
mentation is COLMAP, which includes work on both sparse
and dense reconstruction [25, 26]. Hierarchical Localiza-
tion [23, 24] builds on top of COLMAP, having code ab-
stractions that lead to easier experimentation of feature ex-
traction and matching, which is why we use Hierarchical
Localization as foundation for our work.

The availability of numerous feature extractors and
matchers, such as DISK [30] and LightGlue [18], makes
SfM a more viable solution for sparse reconstruction and
camera pose estimation. We make an attempt at the 3D re-
construction of engine blades using a combination of both
DISK and LightGlue.

In addition, we resolve the issues resulting from exhaus-
tive matching by using sequential matching only on a col-
lection of neighboring frames. Despite its simplicity, it
proved useful for video footage of engine blades.

Lastly, we test numerous camera models with the goal
of finding the best one for accurate reconstruction of the
camera path and the shape reconstruction of a blade fan.

On top of the Structure-from-Motion techniques, we
need dense and mesh reconstruction techniques to repre-
sent the detail required for defect detection. These tech-
niques often require the sparse reconstruction and camera
poses as prior information to function. Neural Radiance
Fields (NeRF) [21] is a technique that is commonly used
for this purpose, specifically for synthesizing novel views
of a scene. NeRF overfits a multi-layer perceptron (MLP)
to a scene and uses volume rendering techniques with color
and density projection for image rendering. A known limi-
tation of NeRF is its performance with limited numbers of
input views. Although it can correctly render images that
follow alongside the given camera poses during training,
any deviations from those poses show errors, and the 3D
volume extracted from the model is incorrect. Meanwhile,
DS-NeRF [8] makes use of sparse reconstructions coming
from techniques such as SfM to add depth supervision to
NeRF. This leads to much better results for the 3D geome-
try of reconstruction. We test NeRF and DSNeRF through
their performance in modeling 3D engine blades from a sin-
gle video.

A different type of dense reconstruction comes in the
form of Multi-View Stereo [12, 25], with Poisson Recon-
struction [13] allowing for full surface reconstruction from
a given point cloud. These approaches can produce very
detail rich results, however small issues exits in parts of the
pipeline that require more work to be able to produce full vi-
sualisations. We also use Poisson Reconstruction to model

3D blades and compare it with NeRF-based reconstruction.
In summary, this work presents these contributions:

• We propose a novel SfM pipeline, featured by sequen-
tial matching, that enables 3D reconstruction of repet-
itive engine blades.

• We test the capabilities of NeRF and its variants in
modeling blades from a single video sequence, cap-
tured by a front-facing camera and we unveiled the
common failure cases of NeRF models.

• We provide a comparative analysis between different
dense/mesh reconstruction methods.

2. Related works
Structure from Motion. SfM has gone through many

changes over the years, prompting a couple of main meth-
ods to take the forefront. Global SfM [7, 29] was the first
approach which followed the original proof of SfM hav-
ing a solution [31]. This approach attempted to solve the
problem by using the 2D coordinate information from the
extracted features. These coordinates are then grouped to-
gether in one large matrix alongside the camera centers we
need to estimate, and solved in a sparse linear system. One
recent work did an in-depth study on the effect of differ-
ent visual features used during the SfM pipeline [2], with
the conclusion that SIFT features are still the most reliable.
Among the feature matchers and extracters compared is Su-
perGlue [24], a neural network that matches features by
both finding correspondences and rejecting points that don’t
match, similarly to its lighter version LightGlue [18]. Both
networks use SuperPoint [9] for feature extracting. How-
ever, the focus in [2] remains on the global SfM method,
while assuming that the camera intrinsics used are of good
quality, which is not the case for our study. Adding to that,
the data used is not similar to our blade data, as it is not
texture-less or focusing on secluded objects. For these rea-
sons, we keep using the default from Hierarchical Localiza-
tion; a combination of DISK [30] and LightGlue [18].

Not long after global approaches were developed, incre-
mental approaches [4,28] were proposed as well, where im-
ages are registered one after the other instead of simultane-
ously. This approach has often been proven more robust
than the global version. Later, there were follow-up devel-
opments on error-correcting processes like bundle adjust-
ment, triangulation, or outlier rejection, all of which can be
seen in [26].

Neural Radiance Fields (NeRF). A well-known tech-
nique for recovering 3D scenes from multiple views of im-
ages is NeRF [21], which encodes the 3D scene through a
fully connected network. Many follow-up works of NeRF
[3,5,8,14] are dependent on pre-calculated camera poses to
function, while other NeRF works handle the camera pose
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estimation process on their own. BaRF [17] uses a fine-
to-coarse positional encoding for camera pose optimiza-
tion, while NeRF– [34] jointly optimizes both the NeRF
model and camera parameters by minimizing the photomet-
ric reconstruction errors. Unfortunately, NeRF and many
of its simpler variants have failed to provide high-quality
3D reconstructions when encountering texture-less scenes
[34, 36] or limited numbers of views.

Depth-aware solutions. DSNeRF [8] is one of the
works that makes use of the sparse reconstruction infor-
mation that commonly accompanies the camera poses from
processes like SfM. This is done by adding a depth loss on
top of the photometric loss NeRF uses. NerfingMVS [35]
adopts a similar strategy, but uses sparse depth informa-
tion to train a depth network that provides better adapted
depth priors for supervising NeRF. NerfingMVS is using
not only the information from the SfM process, but also
Multi-View Stereo from COLMAP [25] (MVS). There are
also many non-NeRF related solutions for 3D reconstruc-
tion, with NeuS [32] trying to solve issues present in NeRF
by introducing a new volume rendering method to remove
the geometric bias present in NeRF. 3D Gaussian Splatting
[14] on the other hand, continues the use of pre-computed
sparse points in order to help represent the scene with 3D
Gaussian functions. In general, making use of the sparse
reconstruction information from SfM has shown to con-
sistently improve performance of these methods. We use
DSNeRF and MVS + Poisson Reconstruction to show the
importance of depth information for 3D dense and mesh re-
construction of engine blades.

3. Methodology

3.1. Incremental Structure from Motion

To obtain a sparse reconstruction alongside estimated
camera poses from our video, we rely on Incremental
Structure-from-Motion (Fig. 2) techniques.

Figure 2. An overall view of incremental structure from motion [26].
After feature extraction and matching, geometric verification assists with
quality control of matches. The reconstruction is then initialized with two
images, with new images being registered past that. Triangulation, bundle
adjustment and outlier filtering follow to obtain the best camera pose esti-
mates and reduce reprojection error. The process repeats until all images
are registered.

We build our model on top of the Hierarchical Localiza-
tion repository [23], which uses COLMAP for 3D recon-
struction through python bindings [10].

Due to the constraints imposed by our data, such as total
lack of camera information and texture-less blade surfaces,
we end up having a couple of problems:

• Lack of object texture - SfM defaults to exhaustive
matching, which makes SfM think two distinct blades
are the same.

• Lack of proper camera intrinsics (mainly distor-
tion) - SfM is sensitive to even small errors in intrin-
sics, which will botch camera pose estimation and 3D
sparse reconstruction.

To handle these problems, we make several changes to
incremental SfM. One of the first changes made to the
pipeline was ensuring the use of sequential matching over
exhaustive matching. Regardless of the feature extractor
used, blades that are hundreds of frames apart could have
a considerable amount of feature overlap between them,
leading to incorrect matches when using exhaustive match-
ing. The two main reasons to use sequential over exhaustive
matching is to exploit the real-time nature of the video and
to mitigate issues caused by the texture-less surfaces of the
blades by only matching nearby views.

The second change we made is in handling radial distor-
tion, which is commonly found in borescope footage. The
camera models we use are SIMPLE RADIAL, RADIAL
and OPENCV FISHEYE [1]. The key difference between
them is their ability to model radial distortion.

For an isolated look at the effect of modeling the camera
distortion wrongly, smaller segments of the video are com-
pared between the distorted and undistorted versions of the
data. Distortion is first modeled with SIMPLE RADIAL,
RADIAL and OPENCV FISHEYE, then the images are
undistorted through COLMAP.

We use DISK [30] and LightGlue [18] to extract and
match features for the SfM process. After obtaining the
sparse reconstruction and camera poses from the SfM pro-
cess, we continue to dense and mesh reconstruction.

3.2. Dense/mesh reconstruction

To obtain the dense and mesh reconstruction, NeRF,
DSNeRF, and Multi View Stereo + Poisson Reconstruction
are used.

For NeRF and DSNeRF, different data segments are used
to test the consistency of meshes extracted from the trained
NeRF models. The lengths of the segments are chosen for
shorter training times and smaller meshes, while still keep-
ing some growing distance to emphasize differences be-
tween results.

A modified version of the NeRF implementation 1 is
used as a baseline for this study, while keeping the perfor-
mance of the base NeRF implementation. To extract meshes

1This modified implementation can be found at the NeRF pl repository
[22].
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from the NeRF and DSNeRF models, an existing script
from the NeRF pl [22] repository is used, with marching
cubes used for the mesh and vertex normals to aid color ex-
traction.

For DSNeRF we test its general performance, and sim-
ilarly to NeRF, we take a closer look at the effect in the
end result of the mesh when using different data segment
lengths. We also test the effect of putting a larger and
smaller emphasis on the depth loss introduced by DSNeRF
by varying its weight.

Multi View Stereo and Poisson Reconstruction are used
without any changes from the default COLMAP implemen-
tation.

4. Experiments

The impact of our proposed changes is tested through
simple visual comparisons of the reconstruction results
from the following aspects: pre-processing of data, sequen-
tial matching, radial distortion, performance of NeRF and
DSNeRF and performance of Multi View Stereo alongside
Poisson Reconstruction.

The images used below will be a mix of fully colored
and solid colored images, as part of the results are obtained
in COLMAP or visualized from Hierarchical Localization
(fully colored) while some are viewed in MeshLab (solid
colored) [6].

4.1. Pre-processing data

Given a video as input, we extract frames at a rate of
30 frames per second, resulting in 3632 frames of moving
blades. All frames are cropped to 480 x 360 pixels, and the
empty black borders around the image are removed.

Figure 3. The original frame extracted from the video. The small
black square on the bottom left is replacing a small transparent
icon in the full video.

We split the data into segments of different lengths for
3D reconstruction. At first, a segment of 40 frames is used
to obtain early results as it is approximately the amount of
frames a blade needs to go out of view while a new blade
comes into view (without fully overlapping the previous po-
sition). Later, we also use segments of 250, 400, 990, 1300,
and 3632 frames for denser and complete reconstruction.

The matching window is set to 15 neighboring frames
(15 frames ahead, and if that is not possible, 15 frames be-
hind).

Part of the structure shown in the video does not move
alongside the blades. We remove it from the frame infor-
mation after seeing the effect it had on the reconstruction, as
shown in Fig. 4 and Fig. 5. There is a large gap between the
blades and the background from the image, which is notice-
able in the left section of Fig. 5 and is not present in the im-
age itself. Larger segments tested (250-400 frames) failed
reconstruction completely. Therefore this error in depth can
affect the rest of the decisions made throughout the SfM
process.

Figure 4. On the left is the original frame extracted from the video,
on the right is the cropped frame, with the static part blacked out.

Figure 5. Two 80 frame segments are shown with no color. On the left a
sparse reconstruction from images with the static information included, on
the right it is removed. The arrow on the left shows the distance between
the blades and the static information.

In addition, much more noise is introduced in the re-
construction, and the time for the reconstructions shown
in Fig. 5(using default parameters by COLMAP) is much
slower when using the frames with background informa-
tion, at 7.2 minutes for reconstruction, compared to 2.1
minutes without the background information on a single
NVIDIA 3070 Ti GPU. This is attributed mainly to bundle
adjustment being able to converge faster due to less con-
flicting information per image.

Lastly, two more important remarks about the data: the
blades stop moving for about 100 frames midway, which
are removed from the frames used for the experiments, as
they do not present any new information. Alongside that,
this particular video presents some out-of-plane shifting in
several sections of the video. The camera shakes slightly,
causing the image to shift inwards or backwards momentar-
ily in a few moments in the video. This may be a cause for
some of the issues seen later with spiraling (Fig. 12).
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4.2. Sequential matching instead of exhaustive
matching

The default setup of the SfM sparse reconstruction is ex-
haustive matching, as creating matches between all possible
images is beneficial in most real-world cases. However, for
the given setup, it is harmful. This is mainly due to the
texture-less and repetitive surface of the blades, which, as
mentioned in Section 3, is a problem for matches. These
problems are shown in Fig. 6 and Fig. 7.

Given the same data segment, if we instead use sequen-
tial matching, the obtained results match more closely our
expectations (Fig. 8). These results are achieved with a 15-
frame matching window. Notably, similar results can be
obtained with values anywhere in the range of 5-20.

Figure 6. Pictures show different perspectives of the same 400-frame
reconstruction using exhaustive matching. A large amount of scattered
noise can be seen, with varying colors. On top of that, we see only 2
blades, where 400 frames should show 10 blades.

Figure 7. The red frustums represent the estimated camera poses, where
there is visible overlap between frames, even though there are no repeated
sections in the 80-frame segment used for this reconstruction. Blades over-
lap in a cycle of approximately 40 frames.

Figure 8. Picture a) shows a 400 frame segment sparse recon-
struction using sequential matching, where all 10 blades can be
seen, and there is little noise. Picture b) shows a closer look at the
cameras in an 80 frame segment, where the poses are not overlap-
ping and follow a proper line.

4.3. Camera models and camera intrinsics

In pursuit of a full reconstruction, we observe issues due
to the lack of proper camera intrinsics.

Figure 9. A full reconstruction from all 3624 frames. The camera
path and the blades are spiraling out of plane and creating seem-
ingly 2 circles, instead of one closed circle. With blue is marked
the starting point of the reconstruction process, and green the end.

Larger reconstructions (Fig. 9) reveal that there are sig-
nificant errors propagating throughout the reconstruction
process. This can be seen more closely while going through
the reconstruction path from the start. At the section near
the blue mark there are more consistently angled blades,
however as time goes on, they angle more towards the inner
side of the circle.

As borescopes are known to have radial distortion, one
of the first failure points experimented with is the camera
model. Different camera models show us that the distortion
level we are working with requires more distortion coeffi-
cients to model accurately. If we use the distortion parame-
ters estimated from camera models:

• SIMPLE RADIAL (has one distortion coefficient,
made for simple/low distortion)

• RADIAL (has two distortion coefficients, can model
higher levels of distortion)

• OPENCV FISHEYE (has four distortion coefficients,
can model much higher levels of distortion)

we can undistort the images and then feed them back to the
sparse reconstruction process, where we see wildly varying
results.

Fig. 10 shows 4 reconstructions of a 990 frame segment,
which is approximately 98 degrees out of a 360 degree cov-
erage, which we use as our ground truth. Accuracy of re-
sults is being measured in angles to compare to our ground
truth in Tab. 1.

Fig. 11 shows a reconstruction with distorted data along-
side one with undistorted data. Even though there is no
actual scale based on real world values, the size within
the model is more consistent with the reconstruction using
undistorted data.
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Figure 10. Picture a) shows a reconstruction with SIMPLE RADIAL camera model, using distorted images as they were extracted from the original video.
Picture b) is also using SIMPLE RADIAL, however the images have been undistorted using the estimated distortion coefficient from SIMPLE RADIAL.
Following the use of undistorted images, Picture c) shows a reconstruction using RADIAL camera model, and Picture d) shows a reconstruction using the
OPENCV FISHEYE camera model. Each reconstruction is accompanied with an example of the data used.

Reconstruction Camera model Angle measured (degrees) ↓

Reconstruction a) SIMPLE RADIAL 290
Reconstruction b) SIMPLE RADIAL 175
Reconstruction c) RADIAL 107
Reconstruction d) OPENCV FISHEYE 102
Ground truth Unknown 98

Table 1. Comparison of angles between the four different reconstructions
in Fig. 10, with a), b), c) and d) representing four reconstructions. a) is ob-
tained through distorted images, and b), c) and d) through undistorted ones
with distortion coefficients extracted through SIMPLE RADIAL, RADIAL
and OPENCV FISHEYE camera models accordingly. Reconstruction d) is
the most accurate one.

Figure 11. Picture a) shows a reconstruction using distorted data
while Picture b) uses undistorted data. Both reconstructions use
OPENCV FISHEYE camera model. The distance between the two ends
in b) with 0.080 is much less than in a) with 0.2809.

Our results show that having the correct camera model
to estimate intrinsics is very important for this type of
data, and in our case SIMPLE RADIAL with one coeffi-
cient and RADIAL with two coefficients are not enough to

correctly model the distortion, while OPENCV FISHEYE
is much better. Unfortunately, using OPENCV FISHEYE
with undistorted data and increasing the amount of frames
for full reconstructions does not produce a circular shape
(Fig. 12).

Figure 12. Reconstruction of the full video using
OPENCV FISHEYE camera model with undistorted images.
Start of reconstruction is on the right side of the picture, with it
degrading by a large amount very quickly around the 1/4th of the
way.

It is worth noting that the angle of the section that looks
to be more correct (the right side) is not similar to recon-
struction d) from Fig. 10, which is not expected behaviour
since we achieved much better results with a smaller data
segment.

Further experimentation with different 990 frame seg-
ments showed that the results were depending on more out-
of-view variables. A similar behavior to Fig. 13 can be seen
with all camera models, leading to the conclusion that there
are still errors propagating throughout the SfM pipeline.
These errors create a similar spiraling and size inconsis-
tency effect as was seen in Fig. 12. It is still unclear why
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Figure 13. Reconstruction of the second batch of 990 frames from
the video using OPENCV FISHEYE camera model. A clear dis-
parity can be seen between the size of the blades on the left side
compared to the right side.

exactly this inconsistency occurs, however it is likely to do
with the camera intrinsics not being estimated properly or
perhaps the out-of-plane shift mentioned earlier in 4.1.

We did a short experiment to verify the effect of the
out-of-plane shift, by testing two data segments that con-
tain different levels of shift. One has minimal levels, while
the other has a considerable amount. Unfortunately, the ex-
periment was inconclusive and had inconsistent results, and
therefore we leave this to future work.

Regardless of the issues, between the camera models
OPENCV FISHEYE has less angular errors and size incon-
sistency.

Although the results have not provided a full correct re-
construction, the SfM pipeline has proved capable of creat-
ing consistent sparse reconstructions under the correct con-
ditions. Future work on this topic can likely solve the issues
presented here through more testing.

4.4. NeRF and Depth-supervised NeRF perfor-
mance

Assuming we have a correct sparse reconstruction, how
good are the options we have for 3D dense/mesh reconstruc-
tion? We take NeRF [22] as our baseline. The sparse re-
construction and camera pose information fed to NeRF and
DSNeRF [8] are obtained through SIMPLE RADIAL cam-
era model with distorted images from the original video.

Implementation details. Parameters are kept as default
for NeRF pl as the baseline [22]. We use the Adam opti-
miser [15] and a learning rate of 5×10−4. A scheduler con-
trols the learning rate, with a γ of 0.5 affecting the learning
rate every 10 steps, with 30 epochs in total used for training.
Every run of NeRF needs around 8 hours of computation
time on a single NVIDIA 3070 Ti GPU.

DSNeRF extends the main NeRF implementation
through consideration of extra depth supervision through an
additional loss variable, as can be seen in figure 14. This
mitigates issues in depth with few input views, a known
failure point of NeRF models. The information used for
this loss comes from the known location of the sparse 3D
points from the SfM pipeline.

For DSNeRF, we randomly sample 1024 rays and take
64 samples for each ray. We again use the Adam optimizer,
and a learning rate of 5 × 10−4. The learning rate decays
exponentially every 1000 steps, where we are training for
50k iterations per 40 frames used. Every 50k iterations need
around 8 hours of computation time on a single NVIDIA
3070 Ti GPU.

Both NeRF and DSNeRF are tested with segments of 40,
80, 150, 250, and 400 frames length. DSNeRF was further
tested by either increasing the weight of the depth loss from
0.1 (default) to 0.4 and 0.8 for more emphasis on depth, or
removing it entirely to showcase its importance.

Figure 14. The added depth loss alongside the color loss used in
the base NeRF paper [8].

Evaluation criteria. To evaluate the RGB reconstruc-
tions, we use PSNR, LPIPS [39] and SSIM [33] on top of
manual mesh evaluation.

Results. Our results for NeRF are presented in Tab. 2,
with example rendered images shown in Fig. 15 and a closer
look at the meshes extracted in Fig. 16. Results for DSNeRF
are presented in Tab. 3, example rendered image in Fig. 17
and meshes extracted in Fig. 18.

Results Tab. 2 show that the fidelity of the rendered im-
ages lowers with more data used to train the base NeRF
model. Although results from smaller data segments show
good detail Fig. 15, the accompanying meshes extracted
Fig. 16 show the weakness of NeRF when there is a lack
of different view points. The meshes are not geometrically
consistent with what we expect compared to the sparse re-
construction, showing that NeRF is not a viable option for
generating 3D meshes from this type of data.

In the meantime, DSNeRF results show less image de-
tail but the depth supervision from the sparse reconstruction
has a very noticeable effect on the depth extracted from our
DSNeRF model, more clearly seen in the meshes extracted
in Fig. 18, where we see results that are more consistent
with the sparse reconstructions. The meshes shown can be
extracted at higher quality with some tuning of the march-
ing cubes method used, however we are more interested in
knowing whether the results match with the sparse recon-
struction.
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Data segment PSNR ↑ LPIPS ↓ SSIM ↑

40 frames 36.2 0.1321 0.9414
80 frames 34.4 0.1457 0.9192
150 frames 32.8 0.1778 0.8985
250 frames 31.3 0.2857 0.8619
400 frames 26.9 0.4223 0.7664

Table 2. Data segments used to train NeRF models with their reported
PSNR. Models with larger data segments were trained for more iterations
to account for the static batch size used. The NeRF model trained with 40
frames performs best in these metrics.

Figure 15. Picture a) is the original image extracted from the
video. Pictures c) to d) are the renders of NeRF models trained on
80, 250 and 400 frames respectively. These renders are from the
estimated camera pose by SfM for the frame in Picture a).

Figure 16. Meshes extracted from trained NeRF models. On the
left is a reconstruction from 80 frames, while on the right one from
400 frames. No clear shape can be distinguished that matches the
expected results compared to the sparse reconstruction.

In an attempt to achieve higher fidelity we initialized the
base 250 frame model with the weights of the fully trained
40 frame DSNeRF model. This did not show a significant
increase in rendered image quality.

There are not very significant differences shown when
comparing the meshes extracted from the trained DSNeRF
models with a higher focus on depth, however there is a
very noticeable difference between the ones using the depth
loss and the one without (Fig. 18). With higher resolution
parameter tuning for marching cubes, and color added on

Figure 17. Rendered image from the baseline DSNeRF model trained
on 250 frame segment and initialized with weights of a 40 frame trained
model. The render is slightly blurry and not very smooth.

Data segment PSNR ↑ LPIPS ↓ SSIM ↑

250 frames (40 init) 28.94 0.2761 0.8331
250 frames (0.4 depth loss) 28.45 0.3112 0.8053
250 frames (0.8 depth loss) 27.59 0.3565 0.7861
250 frames (0 depth loss) 30.32 0.2096 0.8695

Table 3. Data segments used to train NeRF models with their reported
PSNR, LPIPS and SSIM. 250 frames (40 init) means that the network was
initialized with the weights of a 40 frame trained network.The less depth
is involved, the better the metrics report, however this does not take into
account the quality of the mesh.

Figure 18. Meshes extracted from trained DSNeRF models, trained on
250 frame data segments. Pictures a), b) and c) are using a depth loss
weight of 0.1, 0.4 and 0.8 respectively, while d) has a weight of 0. The
noise around the meshes can be filtered out using sparse reconstruction
coordinates in the future. The first three are nearly indistinguishable with
this resolution, however there is a clear difference between them and d),
where the surface of the blades has gaps and holes in it.

the mesh, the differences would be more noticeable.

4.5. MVS and Poisson Reconstruction

Similarly to NeRF before, we attempt to see how MVS
and Poisson Reconstruction performs under the assumption
that we have a correct sparse reconstruction.

MVS is a lengthy process, taking around 157 minutes
for a 990 frame data segment on a single NVIDIA 3070
Ti GPU. Meanwhile, after we get a dense reconstruction
through MVS, Poisson Reconstruction takes around 11
minutes for the same segment.

The results are shown in Fig. 20 for MVS dense recon-
struction and Fig. 21 for Poisson Reconstruction.
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Figure 19. The mesh shown is extracted from a DSNeRF model
trained on a 40 frame data segment. Compared to the meshes in
Fig. 18, the mesh is very inconsistent and the blades (at the center
of the image) are surrounded by too much noise.

Figure 20. Two separate partial (left) and one other full (right)
dense reconstructions are shown. The dense point cloud shows a
lot more detail than what was available in the sparse reconstruc-
tion, however more noise is introduced as can be seen by the points
far away from the reconstruction.

Figure 21. The left image shows a small Poisson reconstruction
which has more detail than the larger reconstruction on the right.
The base settings for Poisson reconstruction lead to larger inter-
polation and less detail, which can be changed for high quality
large reconstructions.

The results for MVS are reasonable considering the level
of detail shown, however the point cloud has patches of
missing information and is noisy, containing a lot of black
dots that were not present in the sparse reconstruction.
Looking at the depth maps generated and used by MVS
for the dense reconstruction in Fig. 22, a possible source
of this noise can be identified in the edges of the image. At-
tempts to replace the depth maps with externally extracted
ones (Fig. 23) that show no errors were unsuccessful due to
format mismatch (format used by COLMAP for depth map
storage compared to externally extracted depth maps).

Results for the Poisson Reconstruction are very promis-
ing with the detail shown, however the patches and noise in-
troduced in the dense reconstruction inevitably appear here

Figure 22. On both image pairs you can see a comparison be-
tween abnormalities in the depth maps and noise created in the
dense reconstructions. This noise did not appear in the sparse re-
constructions.

Figure 23. The left image shows a depth map extracted through
Depth Anything [37], the right image shows the depth map from
COLMAP.

as well, since the dense reconstruction is used as a starting
point for the mesh creation.

Both MVS and Poisson Reconstruction show great
promise for dense and mesh reconstruction accordingly,
however the depth maps generated and used are not appro-
priate. Further work to adapt external depth maps would
very likely solve the noise issues.

5. Discussion and Conclusion

We present a novel SfM pipeline for forward-facing air-
craft blade inspection footage benefiting mainly from the
use of sequential matching with a tight neighbouring match-
ing window. In addition, we show the importance of choos-
ing the correct camera models when estimating the intrin-
sics in order to achieve results comparable to the inspec-
tion video. Although the best performing camera model
showed promise with some partial sections, it was not able
to fully reconstruct a full 360 degree circle of blades, re-
vealing some remaining errors in the pipeline.

To address this performance, larger scale testing and pa-
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rameter tuning with camera models and other videos of dif-
ferent data could prove very insightful and possibly intro-
duce solutions. Testing with different types of data could
lead to a more robust camera calibration setup.

Most camera calibration procedures require access to the
camera in order to use checkerboard/chessboard like objects
for the calibration. As we assume that the camera is not
available, a possible route would use the blade-edge lines on
the sides and bottom of the blades to assist with the camera
calibration process, specifically using the parallel position-
ing of the lines. Another possible improvement would be
adding a new loss in the Structure-from-Motion pipeline, in
order to ensure all of the camera poses remain on the same
axis. This would be useful in cases where we know before-
hand that we are dealing with a video which contains all 360
degrees of the blades.

In addition, we present a comparison between NeRF and
DSNeRF for 3D mesh reconstruction alongside results from
the MVS dense + Poisson mesh Reconstruction duo. NeRF
is shown to follow results previously reported in literature,
with issues appearing due to the lack of variety in points
of views and the texture-less nature of our data. DSNeRF
proved to be much more useful for 3D mesh reconstruction,
with the extracted meshes following along the lines of the
sparse reconstruction used for supervision. The tuning of
the depth loss that is suited best for our data requires further
testing with higher resolution meshes, however the impor-
tance of the depth loss for our scenario is clearly shown
when comparing to the results without it. Future work
might follow up with more fine-tuning for DSNeRF and a
fully adapted mesh-extraction pipeline, alongside potential
results from more recent depth-aware work.

As for MVS + Poisson, we show promising results
mainly led by the high graphical fidelity for visualisation,
which are held back by erroneous depth maps used for the
dense point cloud reconstruction by MVS. Further work in
adapting externally extracted depth maps from works such
as Depth Anything [37] into the COLMAP MVS + Pois-
son (or any other MVS + mesh reconstruction combination)
could yield great results without the need for training mod-
els for scene representation.

In conclusion, our work demonstrates that Structure
from Motion is an approach that is worthwhile to pursue
further for 3D reconstruction of aircraft engine inspection
data, and simultaneously giving an overview and perfor-
mance analysis of some of the available methods for de-
tailed 3D visualization.
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Background information
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1
Background

Incremental SfM Pipeline. Incremental SfM (Fig. 1.1) starts with the feature extraction and matching

process. These distinctive visual features (commonly referred to as keypoints) are crucial for the follow-up

steps in the SfM pipeline. There is no one method that is best for visual feature extraction and matching,

however SIFT [1] is commonly used as a robust and simple method. Even so, in textureless scenarios like

our own data, more complex methods might prove more helpful. Some of these methods include feature

extractors such as DISK [2], SuperPoint [3] and feature matchers such as SuperGlue [4].

Figure 1.1: An overall view of incremental structure from motion [5]. After feature extraction and matching,

geometric verification assists with quality control of matches. The reconstruction is then initialized with two

images, with new images being registered past that. Triangulation, bundle adjustment and outlier filtering

follow to obtain the best estimates and reduce reproduction error. The process repeats until all images are

registered.

Assume we have a 3D point P and two 2D points:

x1, x2

which are the projections of X in image 1 and image 2, respectively, as seen in Fig. 1.2. The plane in

which the 3 points (X, x1, x2) lie, is called the epipolar plane. The relationship between these points can

be expressed using a the Fundamental Matrix F, which can be calculated through:

xT
1 Fx2 = 0

. A more simplified version derived directly from this formula can then be answered by solving the linear

least squares using Singular Value Decomposition (SVD), in the end obtaining an estimate of F.

However, all feature extractors come with some noise and outliers regardless of their robustness,

especially in our data conditions. In efforts to obtain a better estimate of F, some version of the RANSAC

[7] algorithm is used select the matrix with the maximum number of inliers.

The F estimate can then be used to find the relative camera poses between Image 1 and Image 2.

To do that, another matrix called the Essential Matrix E needs to computed, where

E = KTFK

3



4

Figure 1.2: A general view of epipolar geometry [6].

K being the camera calibration matrix, which contains information such as the optical centre of the camera

and focal length. This information is needed, as E assumes that the cameras obey the pinhole camera

model and that can be achieved with help from K.

E can be further decomposed into a matrix T corresponding to the translation, and a matrix R cor-

responding to the rotation between views. This is possible once again through SVD. To describe the

matrices, we take one of the cameras as a reference point to get projection matrices P1 and P2:

P1 = K1[I|0]

P2 = K2[R|T ]

These projection matrices can be used to compute the estimated 3D point coordinates from the image

positions of these points in our given views. This process is referred to as triangulation. It is commonly

associated with an error minimization step, as the 3D points obtained are usually not fully correct due to

ever-present measurement noise from previous steps.

Now that the camera poses and 3D point positions have been computed, we can refine both the

poses and points together through a process called bundle adjustment. This final stage tries to minimize

a cost function related to a weighted sum of squared reprojection errors. Bundle adjustment is often

repeated multiple times throughout a SfM process, both locally (taking into account a certain number of

views) and globally (taking into account all currently registered views).

For a multi-view application (more than 2 images), the process above repeats for each new image

added, however with a new pair. So for figure 1.3, if we started with image k-1 and k, we would next take

image k and k+1 together to register image k+1.



5

Figure 1.3: Multi-view setup from [8]. All cameras are looking at the same object, however not all can see

the same points due to their position.
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