

Delft University of Technology

Delft Students on Software Architecture
DESOSA 2016
van Deursen, Arie; Aniche, M.; Aué, Joop

DOI
10.5281/zenodo.57924
Publication date
2016
Document Version
Final published version
Citation (APA)
van Deursen, A., Aniche, M., & Aué, J. (2016). Delft Students on Software Architecture: DESOSA 2016.
Delft University of Technology. https://doi.org/10.5281/zenodo.57924

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.5281/zenodo.57924
https://doi.org/10.5281/zenodo.57924

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

Table	of	Contents
Introduction

Atom

BigBlueButton

Bootstrap

CKAN

CodeCombat

D3.js

Ember.js

GitLab

Guava

Habitica

Karma

Mopidy

Neo4j

OpenCV

OpenTripPlanner

Ruby	on	Rails

Sonic	Pi

TensorFlow

Terasology

Wildfly

Youtube-dl

2

Delft	Students	on	Software	Architecture:
DESOSA	2016
Arie	van	Deursen,	Maurício	Aniche	and	Joop	Aué.
Delft	University	of	Technology,	The	Netherlands,	May	11,	2016,	Version	1.1

We	are	proud	to	present	Delft	Students	on	Software	Architecture,	a	collection	of	21
architectural	descriptions	of	open	source	software	systems	written	by	students	from	Delft
University	of	Technology	during	a	master-level	course	taking	place	in	the	spring	of	2016.

In	this	course,	teams	of	3-4	students	could	adopt	a	project	of	choice	on	GitHub.	The	projects
selected	had	to	be	sufficiently	complex	and	actively	maintained	(one	or	more	pull	requests
merged	per	day).	The	systems	are	from	a	wide	range	of	domains,	including	web
development	(Ember,	D3,	Ruby	on	Rails),	machine	learning	(TensorFlow),	music	(SonicPi),
and	gaming	(Terasology).

During	a	10	week	period,	the	students	spent	one	third	of	their	time	on	this	course,	and
engaged	with	these	systems	in	order	to	understand	and	describe	their	software	architecture.

Inspired	by	Brown	and	Wilsons'	Architecture	of	Open	Source	Applications,	we	decided	to
organize	each	description	as	a	chapter,	resulting	in	the	present	online	book.

This	book	is	the	second	in	volume	the	DESOSA	series:	The	first	DESOSA	book	resulted
from	the	2015	edition	of	the	course,	and	contained	architectural	descriptions	of	ten	(different)
open	source	systems.

Recurring	Themes
The	chapters	share	several	common	themes,	which	are	based	on	smaller	assignments	the
students	conducted	as	part	of	the	course.	These	themes	cover	different	architectural
'theories'	as	available	on	the	web	or	in	textbooks.	The	course	used	Rozanski	and	Woods'
Software	Systems	Architecture,	and	therefore	several	of	their	architectural	viewpoints	and
perspectives	recur.

The	first	theme	is	outward	looking,	focusing	on	the	use	of	the	system.	Thus,	many	of	the
chapters	contain	an	explicit	stakeholder	analysis,	as	well	as	a	description	of	the	context	in
which	the	systems	operate.	These	were	based	on	available	online	documentation,	as	well	as
on	an	analysis	of	open	and	recently	closed	issues	for	these	systems.

Introduction

3

https://avandeursen.com
https://github.com/mauricioaniche
https://github.com/joopaue
http://www.studiegids.tudelft.nl/a101_displayCourse.do?course_id=35212
http://emberjs.com/
https://d3js.org/
http://rubyonrails.org/
https://www.tensorflow.org/
http://sonic-pi.net/
http://terasology.org/
http://aosabook.org/
https://delftswa.github.io/
http://www.viewpoints-and-perspectives.info/
http://www.viewpoints-and-perspectives.info/home/viewpoints/
http://www.viewpoints-and-perspectives.info/home/perspectives/
http://www.mindtools.com/pages/article/newPPM_07.htm
http://www.viewpoints-and-perspectives.info/home/viewpoints/context/

A	second	theme	involves	the	development	viewpoint,	covering	modules,	layers,
components,	and	their	inter-dependencies.	Furthermore,	it	addresses	integration	and	testing
processes	used	for	the	system	under	analysis,	and	often	includes	an	assessment	of	the
presence	of	technical	debt.

A	third	recurring	theme	is	variability	management.	Many	of	today's	software	systems	are
highly	configurable.	In	such	systems,	different	features	can	be	enabled	or	disabled,	at
compile	time	(flags)	or	at	run	time	(toggles).	Using	techniques	from	the	field	of	product	line
engineering,	several	of	the	chapters	provide	feature-based	variability	models	of	the	systems
under	study.

First-Hand	Experience
Last	but	not	least,	the	chapters	are	also	based	on	the	student's	experience	in	actually
contributing	to	the	systems	described.	As	part	of	the	course	over	75	pull	requests	to	the
projects	under	study	were	made,	including	refactorings	(Ember	13088,	Rails	24198),	bug
fixes	(Terasology	2235),	new	features	(Karma	1983),	test	cases	(Sonic-Pi	1054),	translations
(OpenTripPlanner	2232),	and	documentation	(OpenCV	4375).	Many	projects	had	issues
explicitly	marked	as	"good	for	new	contributors",	making	it	easier	for	students	to	find	a	good
starting	point.

Through	these	contributions	the	students	often	interacted	with	lead	developers	and
architects	of	the	systems	under	study,	gaining	first-hand	experience	with	the	architectural
trade-offs	made	in	these	systems.

Feedback
While	we	worked	hard	on	the	chapters	to	the	best	of	our	abilities,	there	will	be	plenty	of
omissions	and	inaccuracies.	We	value	your	feedback	on	any	of	the	material	in	the	book.	For
your	feedback,	you	can:

Open	an	issue	on	our	GitHub	repository	for	this	book.
Offer	an	improvement	to	a	chapter	by	posting	a	pull	request	on	our	GitHub	repository.
Contact	@delftswa	on	Twitter.
Send	an	email	to	Arie.vanDeursen	at	tudelft.nl.

Acknowledgments
We	would	like	to	thank:

Introduction

4

http://www.viewpoints-and-perspectives.info/home/viewpoints/
http://link.springer.com/book/10.1007/978-3-642-37521-7
https://github.com/emberjs/ember.js/issues/13088
https://github.com/rails/rails/pull/24198
https://github.com/MovingBlocks/Terasology/pull/2235
https://github.com/karma-runner/karma/pull/1983
https://github.com/samaaron/sonic-pi/pull/1054
https://github.com/opentripplanner/OpenTripPlanner/pull/2232
https://github.com/Itseez/opencv/issues/4375
https://github.com/delftswa2016/desosa2016/
https://github.com/delftswa2016/desosa2016/
https://twitter.com/delftswa

Our	guest	speakers:	Alex	Nederlof,	Felienne	Hermans,	Johan	den	Haan,	Tobias
Kuipers,	Huub	Bakker,	Hans	van	Dongen,	Daniele	Romano,	Maikel	Lobbezzo.
Valentine	Mairet	who	created	the	front	cover	of	this	book.
Michael	de	Jong	and	Alex	Nederlof	who	were	instrumental	in	the	earlier	editions	of	this
course.
All	open	source	developers	who	helpfully	responded	to	the	students'	questions	and
contributions.
The	excellent	gitbook	toolset	and	gitbook	hosting	service	making	it	easy	to	publish	a
collaborative	book	like	this.

Further	Reading
1.	 Arie	van	Deursen,	Alex	Nederlof,	and	Eric	Bouwers.	Teaching	Software	Architecture:

with	GitHub!	avandeursen.com,	December	2013.
2.	 Nick	Rozanski	and	Eoin	Woods.	Software	Systems	Architecture:	Working	with

Stakeholders	Using	Viewpoints	and	Perspectives.	Addison-Wesley,	2012,	2nd	edition.
3.	 Sven	Apel,	Don	Batory,	Christian	Kästner,	Gunter	Saake.	Feature-Oriented	Software

Product	Lines:	Concepts	and	Implementation.	Springer-Verlag,	2013.
4.	 Eric	Bouwers.	Metric-based	Evaluation	of	Implemented	Software	Architectures.	PhD

Thesis,	Delft	University	of	Technology,	2013.
5.	 Amy	Brown	and	Greg	Wilson	(editors).	The	Architecture	of	Open	Source	Applications.

Volumes	1-2,	2012.
6.	 Arie	van	Deursen	and	Rogier	Slag	(editors).	Delft	Students	on	Software	Architecture:

DESOSA	2015.	delftswa.github.io,	2015.

Copyright	and	License
The	copyright	of	the	chapters	is	with	the	authors	of	the	chapters.	All	chapters	are	licensed
under	the	Creative	Commons	Attribution	4.0	International	License.	Reuse	of	the	material	is
permitted,	provided	adequate	attribution	(such	as	a	link	to	the	corresponding	chapter	on	the
DESOSA	book	site)	is	included.

Cover	image	credits:	TU	Delft	library,	TheSpeedX	at	Wikimedia;	Owl	on	Emojipedia	Sample
Image	Collection	at	Emojipedia;	Feathers	by	Franco	Averta	at	Flaticon.

Introduction

5

https://github.com/valmai
https://github.com/GitbookIO/gitbook-cli
https://www.gitbook.com/
http://avandeursen.com/2013/12/30/teaching-software-architecture-with-github/
http://www.viewpoints-and-perspectives.info/
http://link.springer.com/book/10.1007/978-3-642-37521-7
http://repository.tudelft.nl/view/ir/uuid:6b65c5f5-398c-4a41-8806-31c638b1891c/
http://aosabook.org/
https://delftswa.github.io/
http://creativecommons.org/licenses/by/4.0/
https://www.gitbook.com/book/delftswa/desosa2016/details
https://commons.wikimedia.org/wiki/File:Library_TUDelft.jpg
http://emojipedia.org/emojipedia/sample-images
http://emojipedia.org/emojipedia/sample-images/owl
http://www.flaticon.com/authors/franco-averta
http://flaticon.com
http://creativecommons.org/licenses/by/4.0/

Atom	-	the	hackable	text	editor
By	Rowan	Bottema,	Ruben	Koeze,	Robbert	van	Staveren	and	Freek	van	Tienen
Delft	University	of	Technology

Abstract
Atom	is	an	open	source	hackable	text	editor,	developed	by	GitHub	but	also	by	other
contributors.	In	this	chapter	everything	concerning	Atom	in	the	development	and	testing	is
dissected.	First,	all	stakeholders	involved	in	or	with	Atom	will	be	discussed.	After	this,	the
structure	and	organization	of	Atom	is	dissected:	how	Atom	is	build	and	what	methods	are
used.	In	the	third	part,	an	overview	of	all	features	that	can	extend	Atom	is	given,	as	well	as
the	relationships	between	these	features.	Lastly,	in	the	functional	view,	all	the	elements
delivering	the	functionalities	of	Atom	are	broken	down	into	pieces.

Table	of	contents
Introduction
Stakeholders
Context
Development	View
Variability
Functional	View
Conclusion
References
Appendix:	Contributions

Introduction

Atom

6

https://github.com/rbottema
https://github.com/roebenk
https://github.com/robbertvs
https://github.com/fvantienen

Atom	is	an	open	source	text	editor,	designed	to	be	hackable	to	the	core.	It	started	as	a	side
project	of	Github	founder	@defunkt	in	2008,	then	called	Atomicio[1].	Because	he	was	mainly
busy	with	the	GitHub	platform,	Atomicio	was	put	on	hold	for	a	couple	of	years.	Then	in	2011,
when	GitHub	was	already	getting	bigger,	they	upgraded	it	to	an	official	GitHub	project	called
Atom.	Currently,	it	has	more	than	a	million	active	users	and	over	28,000	commits	have	been
committed	to	the	main	repository,	with	many	more	committed	to	related	repositories.	It	is
mainly	developed	by	the	company	GitHub,	but	at	the	same	time	almost	300	people
contributed	to	the	main	repository,	indicating	a	big	open	source	community.	These	aspects
make	the	Atom	architecture	an	interesting	object	of	study.

Stakeholders
Because	Atom	is	an	open	source	project	and	evolved	a	lot	over	time,	there	are	many
stakeholders	involved	in	the	project.	Below	is	an	overview	of	the	most	important
stakeholders	from	Rozansky	and	Woods[2]:

Developers:	Consist	mainly	of	GitHub	Staff,	but	there	are	other	active	persons	not
related	to	GitHub	who	also	contribute	a	lot	to	the	Atom	project.	The	GitHub	staff	wants
to	invite	new	developers	into	the	project	and	gives	them	a	lot	of	support.	One	of	the
ways	they	try	to	get	this	done	by	giving	some	issues	the	“beginner”	label,	which	means
the	issue	is	simple	enough	for	a	beginning	developer	to	pick	up.	It	is	interesting	to	note
that	Facebook	also	holds	stakes	in	Atom,	as	they	develop	their	Nuclide	IDE	on	top	of
Atom.	This	is	evidenced	by	4	of	the	5	top	contributors	of	Nuclide	being	in	the	top	50
contributors	of	Atom[6].

Users:	Consist	mainly	of	highly	advanced	computer	users	like	programmers	and
system	administrators.	Atom	is	also	preferred	by	users	when	an	IDE	is	not	available	or
too	much	work	to	set	up.

Maintainers:	Atom	is	maintained	by	the	core	developers,	but	GitHub	is	the	main	driver
in	keeping	the	project	alive.	They	make	sure	that	there	are	enough	developers	for	the
Atom	project	and	invest	time	and	money	in	making	sure	the	Atom	project	stays	alive.

Support	staff:	Consists	mainly	of	a	lot	of	volunteers,	but	next	to	that	also	the	GitHub
staff	and	core	developers.	This	is	done	by	responding	to	issues,	triaging	issues	and	pull
requests,	closing	bugs	as	duplicate	or	filed	on	the	wrong	repository,	and	much	more.
Also	the	Forum	and	Slack	are	used	for	quick	support	to	the	end	users	and	developers.
Lee	Dohm	is	the	main	community	manager	and	manages	all	supporting	staff.

Testers:	The	main	users	test	the	system	and	report	bugs	to	the	issue	tracker	on
GitHub.	There	is	no	special	test	team	available	although	the	core	developers	test	most
pull	requests	before	merging.

Atom

7

http://github.com/defunkt
http://blog.atom.io/2016/03/28/atom-reaches-1m-users.html
https://github.com/atom/atom/commits/master
https://github.com/lee-dohm

Production	Engineers:	All	tools	like	GitHub,	the	Forum,	Slack	and	the	build	servers
are	maintained	by	the	GitHub	team.	They	make	sure	it	is	running	and	invest	time	in
updates	or	setting	up	new	tools.

Assessors:	The	core	development	team	of	Atom	oversees	the	conformance	of	the
programming	standards.	They	check	each	pull	request	with	multiple	people	and	also
check	if	it	is	still	in	line	with	the	future	planning.

Context
To	get	an	overview	of	what	is	happening	with	and	around	Atom,	a	context	view	is	created.
The	context	view	shown	below	will	be	shortly	discussed.

Atom's	context	view

Software	dependencies

Atom

8

Atom	depends	on	a	few	technologies,	shown	in	the	Software	dependencies	box.	Atom	is
built	in	CoffeeScript	and	LESS,	which	is	compiled	to	JavaScript	and	CSS	[3].	All	this	is	built
on	top	of	Electron,	a	Node.js	package	that	interprets	and	runs	these	languages.	Last	but	not
least,	Git	can	be	used	directly	from	the	editor,	and	is	therefore	bundled	with	the	editor.

Developers

Atom	is	being	developed	by	multiple	parties.	These	will	be	discussed	in	the	next	paragraphs.

Main	Developer:	GitHub

It	is	important	to	notice	GitHub's	role	in	the	development	of	Atom.	As	shown	in	the	Context
View,	GitHub	is	used	for	version	control	&	issue	tracking.	This	is	the	platform,	or	website,
GitHub.com.	In	addition	to	the	platform,	GitHub	is	also	mentioned	as	a	company.

Other	developers

A	lot	of	different	people	that	do	not	work	at	GitHub	are	working	on	Atom.	Most	of	these
people	are	not	constant	contributors,	but	two	people	could	be	identified	as	main	contributors.
Wliu	and	mnquintana	are	active	in	numerous	issues	and	pull	requests.	Important	to	notice	is
that	these	two	are	not	the	only	contributors,	but	that	these	serve	merely	as	example.

Main	competitors

There	are	some	important	differences	between	Atom	and	its	main	competitors	competitors.

Sublime	text:	Sublime	text	is	not	an	open	source	editor,	unlike	Atom.	And	even	though
Sublime	can	be	used	free,	they	urge	you	to	pay	licensing	fee.	Sublime	is	similar	to	Atom
in	that	it	is	extendable	in	much	the	same	way	as	Atom.

Notepad++:	Notepad++	is	a	widely	used	text	editor	which	exists	since	2003.	The	main
"problem"	with	Notepad++	is,	that	it	is	Windows	only,	whereas	Atom	can	be	used	on
Windows,	Mac	and	Linux.

Brackets:	Brackets	is	most	like	Atom.	It	is	open	source,	and	also	written	in	the	web
languages	HTML,	CSS	and	JavaScript.	The	main	difference	with	Atom	is	that	the	focus
of	Brackets	lies	on	web	development	only,	whereas	Atom	does	not	focus	on	one
programming	field	in	particular.

Support

Atom

9

https://github.com/50Wliu
https://github.com/mnquintana

Support	of	Atom	is	given	via	multiple	channels.	The	feedback	is	given	by	GitHub	and	other
developers.	The	main	platform	for	getting	feedback	is	the	Atom	forum.	Atom	tried	to	switch
to	Slack	as	main	support	platform.	After	discovering	that	in	Slack	only	10.000	messages	can
be	read	back	when	using	the	free	version,	the	decision	was	made	to	use	the	forum	and
Slack	side	by	side.	Finally,	GitHub	is	used	for	issue	tracking	and	getting	feedback.

Continuous	integration

Two	tools	are	used	for	continuous	integration	on	GitHub:	Travis	CI	and	AppVeyor	Travis	CI
is	used	for	testing	if	the	build	runs	on	Linux	and	Mac	OS.	AppVeyor	is	the	CI	client	for
running	the	build	test	on	Windows.	Important	to	notice	is	that	Travis	CI	also	runs	the	specs,
but	only	on	Mac	OS.

Development	View
According	to	Rozanski	and	Woods[2],	the	development	view	concerns	"code	structure	and
dependencies,	build	and	configuration	management	of	deliverables,	systemwide	design
constraints,	and	system-wide	standards	to	ensure	technical	integrity".	As	stated	in	the	Atom
Flight	Manual,	Atom	is	developed	as	a	very	approachable	and	hackable	text	editor.	This
combination	raises	high	standards	for	the	code	structure	and	standardization,	as	the	code
needs	to	be	understandable	enough	to	be	easily	hackable,	but	well	structured	enough	to	be
approachable.

Our	goal	is	a	zero-compromise	combination	of	hackability	and	usability:	an	editor	that
will	be	welcoming	to	an	elementary	school	student	on	their	first	day	learning	to	code,
but	also	a	tool	they	won’t	outgrow	as	they	develop	into	seasoned	hackers.

Overview

Atom	achieves	its	goal	of	hackability	by	being	very	modular	in	its	set-up.	It	consists	of	more
than	4000	packages	and	themes,	which	can	be	divided	in	two	categories:	Core	packages,
about	90	packages	and	themes	that	are	bundled	with	Atom	and	Community	packages,
extensions	developed	by	the	Atom	community.

Atom

10

https://travis-ci.org/atom/atom
https://ci.appveyor.com/project/Atom/atom
http://flight-manual.atom.io/getting-started/sections/why-atom/

Development	View

This	image	gives	a	very	high	level	approach	to	the	dependency	organisation	of	Atom.	It	has
been	very	simplified,	as	with	this	large	amount	of	packages	it	is	intractable	to	display	every
dependency	present	in	Atom.

The	Atom	core	package	contains	the	most	basic	editor	functionality.	The	contribution	guide
of	Atom	mentions:

The	core	editor	component	is	responsible	for	basic	text	editing	(e.g.	cursors,	selections,
scrolling),	text	indentation,	wrapping,	and	folding,	text	rendering,	editor	rendering,	file
system	operations	(e.g.	saving),	and	installation	and	auto-updating.

All	other	functionality	present	in	Atom,	even	one	might	consider	as	the	most	basic	for	a	text
editor,	is	achieved	with	packages,	every	functionality	typically	belonging	to	its	own	package.
This	is	represented	in	the	following	image,	where	the	core	package	is	shaded	blue,	and
other	functionality	is	shaded	green	and	tagged	with	the	package	name.

Atom

11

https://github.com/atom/atom/blob/master/CONTRIBUTING.md

Core	package	overview[4]

This	approach	enables	a	highly	flexible	developing	approach,	where	large	refactorings	of	a
single	functionality	will	not	impact	other	functionality.	Atom	also	enables	packages	to	depend
on	other	packages,	replacing	the	need	for	redundant	work	with	a	simple	dependency
statement.

Standardization

As	an	open	source	project	that	welcomes	contributors,	Atom	has	a	great	need	for
standardization.	Without	it,	contributions	might	not	be	developed	or	checked	properly,
leading	to	a	messy	codebase	and	bugs.

One	way	Atom	fulfills	this	need	is	by	the	contribution	guide.	This	is	a	document	setting	a
large	amount	of	guidelines	for	every	type	of	contribution,	from	bug	reports	to	code
contributions	to	commit	messages,	along	with	a	clear	explanation	and	pointers	to	more
information.

In	addition,	Atom	is	tested	using	the	Jasmine	testing	framework,	which	is	required	for	all	new
functionality.	In	order	to	improve	this	process,	Atom	uses	Continuous	Integration	tools	to	do
a	test	build	for	each	new	pull	request,	including	running	the	entire	test	suite.

Furthermore,	pull	requests	are	in	almost	all	cases	merged	by	someone	other	than	the	pull
request	initiator,	which	will	ensure	that	some	other	set	of	eyes	checked	the	code	before	it	is
merged.

Atom

12

https://github.com/atom/atom/blob/master/CONTRIBUTING.md
http://jasmine.github.io/

Codeline	organization

The	approach	of	using	packages	to	build	up	the	editor	automatically	has	as	a	consequence
that	the	code	is	divided	over	different	packages	with	dependencies.	Every	package	has	a
clear	description	and	name,	and	all	the	files	in	a	package	are	specifically	for	that	package.

The	dependencies	and	versions	of	Atom	are	managed	by	the	Atom	Package	Manager,
which	is	based	on	the	Node	Package	Manager.	The	Atom	Package	Manager	is	therefore
fully	compatible	with	the	Node	Package	Manager,	and	packages	from	the	Node	package
Manager	can	be	included	in	the	Atom	project.	To	make	sure	that	all	the	dependencies	are
using	the	latest	software	Atom	uses	David.	David	shows	outdated	dependencies	and	when
possible	also	the	difference	between	versions	in	packages.

The	Atom	core	itself	consists	of	about	130	source	code	files,	not	counting	build	&
configuration	files,	styles	and	tests.	Only	10	of	these	are	not	in		src		folder,	giving	Atom	a
very	flat	architecture.	While	the	filenames	are	quite	clear,	there	are	multiple	files	starting	with
	git-	,		gutter-	,		panel-	,		pane-	,		menu-	,	all	in	the	same	directory.	This	suggests	the
structure	could	be	improved	by	splitting	these	into	folders.	Lee	Dohm	disagrees:

They're	not	really	grouped	by	having	the	same	prefix,	they're	grouped	because	that's
what	the	class	name	is	inside	them.	For	example:		panel.coffee		->		class	Panel		...
	panel-container.coffee		->		class	PanelContainer	.

When	you	get	used	to	using	the	fuzzy-finder	to	open	files,	it	doesn't	really	matter	what
directory	things	are	in.	Also,	let's	say	we	wanted	to	rename		Panel.*		to		Foozle.*	.
Right	now,	all	we	have	to	do	is	change	the	names	of	the	classes	and	rename	the	files.	If
we	had	them	in	a		panel		subdirectory	and		panel*		filenames,	then	we	need	to	change
the	name	of	the	subdirectory	too	and	that	leads	to	all	kinds	of	clicking	around	to	find
things.	Having	worked	on	Java	projects	where	it	is	customary	to	have	deeply	nested
namespaces	where	each	directory	is	a	namespace	component,	it	makes	refactoring
tons	harder.

The	Atom	core	is	tested	by	about	80	files	containing	test	code,	not	including	the	large
amount	of	fixtures	used	as	test	cases.	These	files	with	test	code	are	again	almost	entirely
bundled	into	one	folder	named		spec	.

Technical	debt

Technical	debt	is	an	important	property	to	examine	in	every	software	system,	as	a	large
amount	of	technical	debt	can	make	the	software	resistant	to	change	until	it	is	resolved.	The
debt	is	mostly	introduced	by	'dirty	fixes':	quick	solutions	that	do	not	adhere	to	the	coding
styles,	are	not	tested	properly	or	are	not	documented	properly.

Atom

13

https://github.com/atom/apm
https://www.npmjs.com
https://david-dm.org/atom/atom

The	definition	of	technical	debt	is	analogous	to	monetary	debt:	you	'borrow'	time	to	develop
the	dirty	fix,	but	you	will	have	to	repay	that	at	a	later	date,	with	interest	[5].	For	example,
when	a	new	change	is	not	tested	properly,	the	action	of	testing	this	change	becomes	debt.
When	this	debt	is	not	repaid	quickly,	the	knowledge	may	be	lost,	the	change	will	break
unexpectedly	or	other	changes	will	be	built	on	top	of	it,	all	increasing	developer	time	needed,
representing	interest	paid	over	the	debt.

A	system	with	a	large	technical	debt	is	hard	to	properly	maintain,	because	for	there	is	an
outstanding	debt	to	be	paid	with	each	change.	A	common	sight	in	such	systems	is	a	simple
change	requiring	a	lot	of	refactoring	work.

Current	technical	debt

Technical	debt	reveals	itself	when	simple	bug	fixes	and	feature	requests	take	a	long	time	to
implement,	because	large	refactoring	is	needed	before	it	is	even	possible	to	introduce	the	fix
or	the	new	feature.	As	such,	the	issues	are	the	first	place	to	look	when	assessing	the
technical	debt	of	the	system.

The	Atom	repository	currently	has	1700	open	issues	and	even	4282	open	issues	across	the
entire	Atom	organization.	The	oldest	issues	are	over	3	years	old	(for	reference,	Atom	was
only	released	to	the	public	2	years	ago),	which	might	indicate	a	large	amount	of	technical
debt.	A	closer	inspection	of	these	old	issues	shows	this	is	not	the	case:	the	developers
simply	have	given	priority	to	other	issues	or	the	issue	has	disappeared	from	the	radar.

A	signal	of	technical	debt	can	be	found	in	the	performance	issues	Atom	is	experiencing.	The
Atom	repository	currently	has	51	open	issues	with	the		performance		label,	some	reported	as
early	as	2013.	Additionally,	a	quick	estimation	gives	that	about	three	new	issues	about
performance	are	created	each	week	(which	are	quickly	closed	as	duplicates	of	the	existing
issues),	indicating	the	problem	is	still	present.	The	Atom	organization	has	indicated	multiple
times	(for	example	here	and	here)	performance	is	a	big	issue,	not	shying	away	from
allocating	extra	resources.	Despite	those	efforts,	the	performance	issues	still	remain.	This
suggests	there	is	a	lot	of	technical	debt	to	repay	before	being	able	to	fix	the	performance
issues.	However,	it	has	also	been	suggested	that	the	performance	issues	remain	simply
because	it	is	a	hard	problem	to	solve,	especially	on	the	web-based	architecture	of	Electron.
Which	of	these	two	issues	cause	the	main	performance	issues	can	not	be	determined
conclusively.

Dealing	with	technical	debt

The	Atom	developers	have	many	ways	of	dealing	with,	and	most	importantly	avoiding,
technical	debt.	In	this	section	a	quantitative	and	a	qualitative	approach	will	be	taken	to
examine	this.

Atom

14

https://github.com/atom/atom/issues
https://github.com/issues?utf8=%E2%9C%93&q=is%3Aopen+is%3Aissue+user%3Aatom
http://blog.atom.io/2014/02/26/introducing-atom.html
https://github.com/atom/atom/issues?utf8=%E2%9C%93&q=is%3Aissue+is%3Aopen+label%3Aperformance
https://github.com/atom/atom/issues/979
https://github.com/atom/atom/issues/979#issuecomment-151140004
https://github.com/atom/atom/issues/2654#issuecomment-57530631
https://github.com/atom/atom/issues/3673#issuecomment-155246765
https://discuss.atom.io/t/why-is-atom-so-slow/11376/45

Quantitative	approach

Atom's	contribution	guide	suggests	adding	emoji	to	a	commit	message	in	order	to	make	it
clearer	what	a	certain	commit	is	supposed	to	do,	opposed	to	simply	adding	more	features.
Examples	include	 	for	improving	the	structure	of	the	code,	 	for	adding	documentation
and	 	for	upgrading	dependencies.

For	this	quantitative	approach,	all	commit	messages	from	commits	made	between	1
February	2015	and	1	March	2016	will	be	examined.	This	point	has	been	chosen	as	such	to
give	a	large	sample	of	commits	in	which	the	emoji	guide	did	not	change.	In	this	period	6613
commits	have	been	made	containing	a	total	of	2215	emoji's.	The	following	table	lists	some
of	those.

Emoji # Usage

	(+) 200 improving	the	format/structure	of	the	code

62 improving	performance

150 writing	docs

131 removing	code	or	files

60 fixing	the	CI	build

1409 upgrading	dependencies

The	most	notable	emoji	is	 ,	being	used	a	total	of	1409	times.	When	any	of	the	Atom
packages	Atom	depends	on	is	updated,	the	maintainers	make	sure	to	immediately	update
the	package	in	the	core,	to	avoid	technical	debt	caused	by	outdated	dependencies.
Additionally,	they	use	seperate	tooling	(David)	to	keep	an	eye	on	all	external	dependencies.

Qualitative	approach

A	sampling	of	issues	and	pull	requests	reveals	that	the	Atom	maintainers	keep	a	close	eye
on	technical	debt	and	try	to	avoid	it.	Some	notable	examples	will	be	shown	in	this	section.

The	maintainers	explicitly	refrain	from	adding	'hacks'	to	code	to	temporarily	fix	a	problem
they	believe	lies	elsewhere.	Also	for	important	performance	issues,	they	prefer	to	fix	it
properly,	instead	of	relying	on	a	hack	to	get	it	done.

The	Atom	team	themselves	use	the	term	technical	debt	as	something	that	should	be
avoided	and	actively	discuss	ways	to	avoid	it.	They	explicitly	compare	short	term	and	long
term	solutions	where	they	juxtapose	the	added	speed	of	a	simple	hack	to	the	resulting
technical	debt	it	will	cause.	When	technical	debt	is	spotted,	the	Atom	team	does	not	shy
away	from	large	refactorings	in	order	to	eliminate	it.

Atom

15

https://github.com/atom/atom/blob/master/CONTRIBUTING.md#git-commit-messages
https://github.com/atom/atom/commits/master/CONTRIBUTING.md
https://david-dm.org/atom/atom
https://github.com/atom/atom-keymap/issues/35
https://github.com/atom/atom/issues/4293#issuecomment-102284752
https://github.com/atom/atom/pull/8968
https://github.com/atom/atom/issues/9165
https://github.com/atom/atom/pull/8968

Additionally,	when	new	features	are	introduced	or	even	when	changing	parts	of	the	public
API	that	may	break	something	in	another	package	the	team	makes	sure	the	changes	are
properly	tested	before	merging.

When	we	asked	Lee	Dohm,	Atom	Community	Manager	at	GitHub,	about	technical	debt	he
stated	he	considered	the	large	backlog	of	issues	as	a	sign	of	popularity	of	the	project,	and
not	of	technical	debt	(he	added	that	they	are	working	on	tools	to	better	manage	the	backlog).
In	addition,	Lee	stated	that	a	good	process	is	in	place	for	avoiding	technical	debt:

We	have	smart	people	that	communicate	well.	Anything	that	requires	redesigning,	we
involve	many	people	in	things	and	go	back	and	forth	on	it	until	we	come	up	with	a	good
solution.	Even	simplistic	code	is	generally	well-factored,	which	makes	it	easier	to
change	later

In	conclusion,	the	Atom	project	is	very	aware	of	technical	debt	and	actively	deals	with	it.	An
inspection	of	the	repositories	linked	to	Atom	did	not	reveal	many	signals	of	technical	debt,
indicating	that	the	source	code	is	in	good	health.

Variability
Atom	has	a	vast	amount	of	features	which	can	extend	the	basic	functionality	of	the	Editor.	In
the	next	sections	we	will	give	an	overview	of	these	features	and	to	explain	the	relationships
between	those	features.

Atom's	strategy	on	features

As	Atom	states	on	atom.io:

Atom	is	a	text	editor	that's	modern,	approachable,	yet	hackable	to	the	core—a	tool	you
can	customize	to	do	anything	but	also	use	productively	without	ever	touching	a	config
file.

To	achieve	this	various	ways	of	implementing	variability	can	be	seen	in	the	feature	model.
The	most	accessible	variability	are	changing	settings	in	the	settings	menu	and	downloading
packages	or	themes.	Users	do	not	need	knowledge	about	the	underlying	system	to	change
these.

More	advanced	users	can	change	some	more	advanced	settings,	like	altering	key	bindings
or	customizing	themes	in	the	user	stylesheet.	Most	software	developers	can	alter	these	files
without	help.

Atom

16

https://github.com/atom/atom/pull/9853
https://github.com/atom/atom/pull/10930
https://atom.io/

If	a	user	wants	to	go	further	than	this,	he	can	create	his	own	packages	or	change	the	init	file.
To	make	this	level	of	customization	approachable	there	is	an	extensive	explanation	with
example	in	the	flight	manual.

Features

Atom	has	an	extreme	amount	of	variability	and	thus	also	a	lot	of	features.	To	put	this	into
perspective	Atom	already	has	3727	packages	and	1120	themes	at	this	moment	of	writing.
But	Atom	not	only	has	these	packages	and	themes	as	possible	variability	features,	there	are
for	example	also	settings,	snippets,	init	script	settings,	etc.

Feature	Overview

In	this	section,	we	will	give	an	overview	of	the	variability	features	of	Atom.	A	model	of	these
features,	created	in	FeatureIDE,	is	seen	in	the	following	Figure:

Feature	model	of	Atom

Atom

17

https://atom.io/packages
https://atom.io/themes
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/

Most	of	Atom's	default	functionality	comes	with	the	77	Core	Packages.	These	are
packages	bundled	with	Atom	and	each	contain	a	specific	part	of	the	functionality,	such
as	the	find	and	replace	functionality	or	JavaScript	language	support.

Atom	can	be	further	extended	by	installing	additional	Community	Packages.	These
contain	additional	features	not	present	with	the	default	installation,	for	example	adding	a
code	minimap	or	add	different	icons	for	different	types	of	files	in	the	tree-view.	Packages
can	also	be	extended	by	other	packages,	for	example	by	adding	highlighting	to	selected
rows	in	the	code	minimap.

While	every	package	can	have	its	own	settings	(not	shown	in	the	model	for	simplicity),
Atom	itself	also	has	its	own	settings.	These	are	individual	toggles	or	input	fields	to
change	small	amounts	of	functionality.	Additionally,	all	keybindings	can	be	modified.

The	look	and	feel	of	Atom	is	also	fully	customizable	through	themes.	Atom	is	bundled
with	a	set	of	12	themes	and	users	can	install	a	theme	from	the	community,	as	with
packages.	The	themes	are	split	into	two	types,	UI	themes	and	Syntax	themes.
Additionally,	users	can	customize	everything	using	a	custom	stylesheet.

Atom	is	supported	for	Windows,	Mac	OS	and	Linux.

Users	can	specify	custom	functionality	to	run	at	start-up	using	the	init	script.

Atom	can	be	started	in	Safe	Mode,	disabling	user	installed	functionality	for	the	purpose
of	debugging.

Core	packages

The	Core	packages	of	Atom	are	by	default	bundled	with	the	Atom	editor.	These	packages
create	the	main	functionalities	of	the	Atom	editor.

Atom	has	many	of	these	core	packages,	for	example	tree-view	which	adds	the	overview	of
files	in	the	project	directory.	But	also	packages	like	autocomplete+	are	part	of	the	core	and
adds	the	autocompletion	for	different	languages	while	typing.

Automatic	updates	are	done	in	run	time	without	need	for	local	compilation.	Only	when	a
developer	changes	the	source	code	locally	it	needs	to	be	recompiled.

Community	packages

The	community	packages	are	extensions	which	are	developed	mainly	by	the	Atom
community.	They	can	extend	the	default	Atom	functionality	in	many	ways.

Atom

18

https://atom.io/packages/tree-view
https://atom.io/packages/autocomplete-plus
https://atom.io/packages

For	example	a	package	adding	a	minimap	with	the	outline	of	a	document.	Which	can	then
again	be	extended	by	minimap-selection	which	adds	features	that	show	the	selected	text	in
this	minimap.	But	there	are	also	packages	like	merge-conflicts	which	help	you	resolve	git
merge	conflicts	inside	the	editor.

Like	the	core	packages,	community	packages	bind	at	run	time	except	for	local	source	code
changes.	To	ensure	packages	work	immediately	after	installing	them	Atom	uses	lazy
loading.	In	contrast	to	core	packages,	updates	for	community	packages	need	to	be
confirmed	by	the	user.

Settings

Although	some	features	can	be	enabled	by	downloading	extra	packages,	some	features	are
properties	of	the	core	packages.	These	features	can	be	altered	in	the	settings	menu.	Some
examples	are:	adjustable	line	height,	key	bindings,	non-visible	character	handling.	All
changes	in	the	settings	are	bound	at	run	time.

Themes

Besides	packages,	themes	can	be	installed	as	well.	These	themes	are	installed	the	same
way	as	packages.	A	theme	can	change	the	look	of	the	editors	UI,	but	also	the	syntax
highlighting.	While	there	are	a	lot	of	themes	available,	these	themes	do	not	have	any
dependencies.	While	some	of	the	themes	look	better	with	certain	languages	or	have	specific
stylings	for	packages,	they	do	not	require	these	languages	or	packages.

Themes	can	be	divided	into	two	categories:	Core	themes	and	Community	themes.	While
core	themes	are	bundled	with	Atom	and	can	be	chosen	from	the	settings	directly,	the
community	themes	must	first	be	installed	trough	the	Atom	package	Manager.	After
installation	themes	work	instantly.

Platforms

Atom	is	currently	available	on	Windows,	Mac	OS	and	Linux.	Atom	has	always	been
available	for	Mac	OS	from	the	beginning.	In	July	2014,	Windows	support	was	announced.
This	supported	was	extended	with	a	proper	installer	in	December	2014.	In	November	2014,
Linux	support	was	announced.	Nowadays,	every	feature	is	supposed	to	be	working	on	every
platform,	as	evidenced	by	the	Contributing	guide	explicitly	mentioning	to	avoid	platform
specific	code	and	continuous	integration	tools	running	on	all	three	platforms.

Because	of	the	underlying	Electron	architecture,	there	are	very	few	differences	in	the
functionality	on	the	different	platforms.	Only	some	small	differences	exist,	because	some
features	make	more	sense	on	some	platforms	than	others.	For	example,	the	items	in	the

Atom

19

https://atom.io/packages/minimap
https://atom.io/packages/minimap-selection
https://atom.io/packages/merge-conflicts
https://github.com/atom/apm
http://blog.atom.io/2014/07/09/hello-windows.html
http://blog.atom.io/2014/12/10/a-windows-installer-and-updater.html
http://blog.atom.io/2014/11/05/linux-packages.html
https://github.com/atom/atom/blob/master/CONTRIBUTING.md#pull-requests
https://github.com/atom/electron

menu	bar	are	divided	differently	on	different	platforms	because	the	different	platforms	have
different	standard	practices	for	the	menu	bar.	This	sometimes	results	in	small	issues,	such
as	the	one	fixed	in	our	first	pull	request.

In	addition,	some	community	packages	work	only	on	specific	platforms.	This	largely	is
because	the	functionality	itself	is	specific	to	a	certain	platform,	such	as	the	replace-notepad
package	which	tweaks	the	Windows	registry	to	replace	Notepad,	or	the	spotify-linux
package	which	speaks	to	Linux's	Spotify	client.

Init	script

The	Atom	editor	has	a	special	initialization	script	called		init.coffee		which	can	be	opened
trough	the	Atom	menu.	This	initialization	script	is	run	when	the	Atom	editor	is	opened.	It
enables	the	functionality	to	run	specific	CoffeeScript	code	to	further	extend	the	functionalities
of	the	Atom	editor.

To	give	an	example	where	the	init	script	could	be	used:

atom.workspace.observeTextEditors	(editor)	->

		editor.onDidSave	->

				console.log	"Saved!	#{editor.getPath()}"

This	CoffeeScript	code	adds	a	logging	message	in	the	development	console	whenever	a	file
is	saved.	This	enables	a	developer	to	better	debug	a	problem	with	the	saving	of	files.
Changes	in	the	init	script	will	bind	on	the	next	startup	of	Atom.

Safe	Mode

Atom	can	be	started	in	Safe	Mode	with	the		atom	--safe		command.	When	started	in	this
mode,	Atom	disables	three	things:	all	community	packages,	all	community	themes	and	the
user's		init.coffee	.	Safe	Mode	is	mostly	used	for	debugging	purposes,	as	it	provides	an	as
clean	as	possible	environment	to	reproduce	behavior.

Relationships	between	features

The	core	of	Atom	is	that	most	features	are	independent	which	greatly	improves	the
extensibility	and	reliability	of	Atom.	Still	there	are	some	features	with	dependencies,	but	this
is	mostly	because	these	features	extend	the	functionality	of	the	features	which	they	depend
on.

For	example	tree-view	depends	on	atom-space-pen-views,	which	enables	the	functionality	to
create	views.	These	views	are	needed	to	show	the	tree-view	in	the	GUI.

Atom

20

https://github.com/atom/atom/tree/master/menus
https://github.com/atom/welcome/pull/47
https://atom.io/packages/replace-notepad
https://atom.io/packages/spotify-linux
https://discuss.atom.io/t/what-does-safe-mode-do/22229
https://atom.io/packages/tree-view
https://github.com/atom/atom-space-pen-views

But	also	many	packages	depend	on	coffeelint	during	development,	which	adds	the	ability	to
check	coding	style.	This	makes	sure	that	the	coding	style	across	different	packages	is	clean
and	consistent.

Functional	View
Atom	has	a	lot	of	functionalities	build	which	are	available	in	the	editor.	For	the	functional
view	of	Atom	we	first	look	into	the	Capabilities	Atom	has.	Then	we	will	show	what	interfaces
Atom	uses	and	finally	we	will	show	how	this	is	structured.

Capabilities

Every	package	in	Atom	adds	functionalities	to	the	Atom	editor.	To	analyze	the	functional
capabilities	of	Atom	we	look	into	the	most	important	packages	and	their	functions.

Package Function

core Package	API	and	main	text	editor

tree-view Folder	structure	overview	from	working	directory

tabs Multiple	text	views	in	tabs	to	switch	between	files

notifications This	shows	messages	and	error	boxes

settings-view Shows	settings	and	makes	them	editable	in	a	view

autosave Makes	sure	files	are	saved	in	the	background

find-and-replace Find	and	replacing	text	in	a	file

status-bar Shows	status	of	the	current	file	and	cursor

Next	to	these	above	mentioned	core	functionalities	there	are	a	lot	of	functionalities	available
which	are	optional.	Some	of	these	functionalities	are	also	included	into	the	Atom	core	but
most	of	them	are	available	as	Community	packages.

External	interfaces

Atom	has	two	main	interfaces,	the	interface	for	the	user	to	interact	with,	and	the	interface	for
packages	to	interact	with	the	Atom	core.

User-interface

Atom

21

http://www.coffeelint.org/

The	user-interface	is	a	Graphical	User	Interface,	or	GUI.	This	interface	has	all	core	elements
that	exist	in	the	core	package,	this	is	what	makes	sure	that	Atom	is	consistent	in	the	GUI.
But	the	user-interface	can	be	extended	with	different	packages,	that	add	functionality	and
user-interface	elements.

Package-interface

When	developing	packages	for	Atom,	communication	between	the	Atom	core	and	the
package	that	is	being	developed,	is	needed.	This	is	done	via	an	API.	This	API	is	the
package-interface	that	can	be	used	to	use	functionalities	that	already	exist	in	the	Atom	core.
With	this	come	a	lot	of	functionalities.	A	few	of	these	functionalities	are	for	example:

	Notification		and		NotificationManager		provide	the	functionality	to	create	and	manage
notifications	that	need	to	be	shown	to	the	user.

	TooltipManager		manages	the	tooltips	that	can	be	shown	to	the	user.

	Emitter		handles	all	the	events	happening	in	the	code.	It	is	not	only	for	emitting	events,
as	the	name	suggests,	but	also	for	handling	them.

Internal	structure

The	capabilities	of	Atom	are	realized	by	coffeescript	files	in	the	src	folder.	The	src	folder	of
each	package	contains	all	functionalities	for	the	editor.	When	building	a	package	these
coffeescript	files	are	compiled	into	javascript	files.

The	API	is	created	automatically	when	building.	From	the	user-interface	the	functionalities	of
the	API	can	be	called	by	using	shortcuts	as	defined	in	the		keymap	,	using	the	command	as
defined	in		register-default-commands		or	using	the	visual	interface.	For	the	visual	interface
the	bootstrap	environment	offers		click	,		hover		and		focus		options	that	can	be	used	and
linked	to	actions	by	packages.

Conclusion
This	chapter	has	shown	that	Atom	is	a	text	editor	with	a	lot	of	functionalities.	Because	of	this
extreme	amount	of	functionalities	in	Atom,	they	divided	the	code	into	separate	packages.
This	enables	users	to	easily	extend	the	functionalities	of	the	Atom	text	editor.	Besides	these
functionalities	we	also	discussed	the	involved	stakeholders	and	analyzed	the	context	of
Atom.	We	also	looked	at	the	technical-debt	of	the	Atom	project,	which	they	seem	to	deal
with	very	well.	After	all	these	extensive	analysis	of	the	Atom	project	we	come	to	the
conclusion	that	Atom	really	holds	up	is	promise	of	a	hackable	text	editor.

Atom

22

References
1.	 http://blog.atom.io/2015/06/25/atom-1-0.html.	Atom	1.0.	@benogle	(2015).
2.	 Rozanski,	N.,	&	Woods,	E.	(2012).	Software	systems	architecture:	working	with

stakeholders	using	viewpoints	and	perspectives.	Addison-Wesley.
3.	 https://atom.io/
4.	 https://github.com/atom/atom/blob/master/CONTRIBUTING.md.	Contributing.
5.	 http://martinfowler.com/bliki/TechnicalDebt.html
6.	 https://github.com/facebook/nuclide/graphs/contributors

Appendix:	Contributions
During	the	analysis	of	the	architecture	of	Atom,	we	additionally	made	some	contributions	to
Atom.

Pull	requests

1.	 Change	menu	names	for	different	platforms	fixes	the	text	in	the	welcome	screen	of
Atom	for	different	platforms.

2.	 Add	zero	to	hexadecimal	numbers	below	F	(16)	fixes	the	problem	with	the	color
picker	generating	incorrect	hexadecimal	numbers.

3.	 Add	defaults	on	focus	adds	the	functionality	that	defaults	of	settings	are	entered	on
focusing	the	input	field.

4.	 Add	summary	chapter	3	adds	missing	documentation	to	the	Atom	Flight	Manual.

Others

1.	 Atom	hangs	for	~30s	when	pasting	a	large	text	block	into	a	new	tab	is	an	issue
where	we	were	able	to	add	more	information	by	reproducing	and	profiling	the	error.

2.	 Uncaught	RangeError:	Maximum	call	stack	size	exceeded	is	an	issue	created	by	us
which	we	found	by	trying	to	reproduce	the	above	issue.

3.	 editor:select-to-end-of-line	should	work	similarly	to	editor:move-to-end-of-line	is
an	issue	for	which	we	did	some	initial	development.

Atom

23

http://blog.atom.io/2015/06/25/atom-1-0.html
https://github.com/benogle
https://atom.io/
https://github.com/atom/atom/blob/master/CONTRIBUTING.md
http://martinfowler.com/bliki/TechnicalDebt.html
https://github.com/facebook/nuclide/graphs/contributors
https://github.com/atom/welcome/pull/47
https://github.com/atom/atom/pull/11099
https://github.com/atom/settings-view/pull/748
https://github.com/atom/docs/pull/171
https://github.com/atom/atom/issues/10855
https://github.com/atom/autocomplete-plus/issues/679
https://github.com/atom/atom/issues/7159

BigBlueButton:	High-quality	on-line
education
By	Michail	Anastasakis,	Pietro	Frigo,	Manuel	Valle	Torre	and	Kristín	Fjóla	Tómasdóttir
Delft	University	of	Technology

Abstract

BigBlueButton	is	an	open	source	web	conferencing	system	for	on-line	learning.	The	system
has	been	in	development	for	nearly	10	years	now	with	a	strong	group	of	core	developers
with	a	special	focus	on	the	stability	and	modularity	of	the	system.	For	people	interested	in
software	architecture,	it	is	insightful	to	study	the	structure	of	such	a	well	established	software
project	like	BigBlueButton.	Hereafter,	a	number	of	views	and	perspectives	are	used	to
demonstrate	important	aspects	of	BigBlueButton's	internal	and	external	structure.	This
chapter	provides	a	description	of	the	people	and	systems	involved,	the	developing	process
and	architecture,	the	various	features	of	the	software	along	with	its	variability	and
possibilities	to	evolve.

Table	of	Contents

1.	 What	is	BigBlueButton?
2.	 Who	cares	about	BigBlueButton?
3.	 How	is	it	made?

Development	process	and	releases
The	world	outside	BigBlueButton
The	world	inside	BigBlueButton

4.	 What	does	it	offer?
Features

Teacher	features
Student	features
Shared	features

Modules
Module	communication

BigBlueButton

24

5.	 Is	it	implemented	well?
What	does	SonarQube	say?
What	did	we	find	out?

6.	 How	would	you	customize	a	big	blue	button?
7.	 How	can	it	evolve?

Past	and	future
Ease	of	evolution	and	tradeoff

8.	 But,	hey!	I	want	to	contribute	as	well
9.	 Aaand...we	are	done
10.	 References

What	is	BigBlueButton?
Before	starting	the	itinerary	throughout	the	whole	architecture	of	BigBlueButton	(BBB)	it	is
useful	to	understand	what	the	system	does.	So,	let's	begin.

Quoting	their	website:

BigBlueButton	is	an	open	source	web	conferencing	system	for	on-line	learning.

The	project	originally	started	at	the	Carleton	University	in	a	program	for	innovation	and
entrepreneurship	in	engineering	[5].	The	program	was	already	using	a	commercial
conferencing	system	for	their	international	students	but	it	was	too	expensive.	A	student	of
the	innovation	program,	Richard	Alam,	received	a	challenge	from	the	director	of	the	program
to	replace	the	current	system.	Today,	BigBlueButton	is	a	well	established	software	which	is
widely	used	and	integrated	into	many	popular	systems	[6]	[7].	Their	vision	is	that	every
student	should	have	access	to	a	high-quality	online	education.

BBB	has	traditional	conference	system	features	such	as	a	chat	and	webcam	sharing	for
users	to	be	able	to	interact	in	a	meeting,	and	a	deskshare	functionality	for	the	presenter	to
share	his	desktop	with	the	audience.	However,	the	drive	of	BBB	is	education	so	there	are
two	main	characters	in	that	environment:	teachers	and	students.	To	satisfy	the	modern
technology	that	these	two	groups	require,	features	such	as	an	interactive	whiteboard	is	also
present	to	aid	the	learning	process.	Another	cornerstone	is	the	recording	system	that	allows
the	students	to	watch	the	recordings	whenever	they	prefer,	removing	the	time	constraints
imposed	by	normal	lectures.	These	functionalities,	amongst	others,	will	be	analyzed	more	in
detail	in	later	sections,	along	with	the	structure	around	their	implementations.

Who	cares	about	BigBlueButton?

BigBlueButton

25

http://bigbluebutton.org

A	software	is	made	by	people	for	people.	There	is	usually	a	group	of	people	contributing	to
the	software	project	and	taking	interest	in	its	development.	The	software	itself	is	also	made
to	meet	the	requirements	of	some	other,	or	even	the	same,	group	of	people.	These	people
who	are	somehow	involved	in	the	software	or	take	interest	in	it	are	called	stakeholders.	It	is
therefore	very	important	to	identify	them	in	order	to	understand	how	the	software	should	be
implemented.

Blindside	Networks	is	by	far	the	most	evident	and	important	stakeholder	of	BigBlueButton.	It
is	the	company	that	started	the	BBB	project	and	provides	hosting	for	it	along	with
commercial	support.	The	company	is	crucial	for	the	project	since	no	revenue	comes	from
selling	the	product	(since	it	is	open	source)	but	only	from	providing	hosting	and	support	[16].
Based	on	the	types	of	stakeholders	that	Rozanski	and	Woods	suggest	[11],	Blindside
Networks	can	be	considered	as	Acquierers,	Assessors,	Communicators,	Developers,
Maintainers,	Support	staff	and	Testers.	Its	two	founders	are	Richard	Alam	and	Fred	Dixon,
which	are	the	most	influential	people	in	the	system.	Alam	was	the	first	developer	of	the
project	and	is	still	today	the	lead	architect	along	with	being	the	CTO	of	Blindside	Networks
[5][25].	Dixon	joined	him	after	the	first	release	was	made	public	and	is	the	project	manager
of	BigBlueButton	and	the	CEO	of	Blindside	Networks.	They	are	both	still	active	developers
and	manage	all	aspects	of	the	development.

There	are	other	important	groups	of	stakeholders	that	can	be	categorized	in	the	following
types:

Developers
Contributing	to	the	BigBlueButton	project	on	GitHub	there	are	61	developers	which
includes	a	number	of	about	20	very	active	members	[26].	The	major	commiters	are
again	Richard	Alam	(3691	commits)	and	Fred	Dixon	(694	commits).	Other	important
developers,	especially	for	the	1.0-beta	release,	are	Tiago	Jacobs	from	iMDT	who
develops	for	the	Red5	media	server	which	is	used	by	BigBlueButton,	Felipe	Cecagno
working	for	MConf	on	the	client,	Chad	Pilkey	who	contributes	from	the	Seneca	College
working	also	on	the	client	and	Calvin	Walton	who	is	a	part	of	Blindside	Networks	[27].

Communicators
The	role	of	communicators	is	to	explain	the	system	to	other	stakeholders.	For
BigBlueButton	these	are	the	people	responsible	of	writing	the	documentation,	writing
blog	posts	and	those	that	are	taking	care	of	answering	questions	on	the	mailing	lists
available	for	users,	developers	and	setup.	Blindside	Networks	put	a	lot	of	effort	into
making	a	good	community	around	BBB,	especially	by	upholding	the	mailing	lists	[16].	All
three	forums	are	very	active	with	many	people	offering	their	help,	but	most	commonly	it
is	Fred	Dixon	that	answers	the	forum	posts	and	sometimes	the	hosting	company
HostBBB	which	mainly	answer	questions	about	its	service.	Another	communication

BigBlueButton

26

http://blindsidenetworks.com
https://github.com/ritzalam
https://github.com/ffdixon
https://github.com/bigbluebutton/bigbluebutton
https://github.com/ritzalam
https://github.com/ffdixon
https://github.com/tdj-br
http://international.imdt.com.br/
https://github.com/fcecagno
http://mconf.org
https://github.com/capilkey
https://github.com/kepstin
http://docs.bigbluebutton.org
http://bigbluebutton.org/blog
https://groups.google.com/forum/#!forum/bigbluebutton-users
https://groups.google.com/forum/#!forum/bigbluebutton-dev
https://groups.google.com/forum/#!forum/bigbluebutton-setup
http://hostbbb.com

method	is	the	BigBlueButton	summit	which	is	held	once	or	twice	per	year	since	2012
where	developers	gather	to	discuss	further	improvements	and	workshops	are
conducted	as	well.

Customers
The	users	of	the	system	have	been	mentioned	before	to	be	teachers	and	students.	The
customers	of	BBB	are	however	not	these	users	but	instead	the	companies	that	adopt
the	system.	These	customers	do	not	pay	for	the	usage	of	the	software	since	it	is	open
source,	but	they	might	pay	a	company	like	Blindside	Networks	for	hosting	and	support.
These	customers	are	mostly	schools	and	universities	(such	as	Boston	College),	but	also
companies	that	integrate	BBB	into	their	Learning	Management	System	(LMS)	and
system	of	e-learing	(such	as	Schoology	and	Moodle)	[7][28].	Another	important	user
that	adopted	the	system	in	2015	is	the	Defense	Information	Systems	Agency	(DISA),
extending	the	user	community	to	governmental	institutions	as	well	[29].

To	identify	which	stakeholders	are	necessary	to	manage	closely	it	can	be	helpful	to	place
them	in	a	Power/Interest	grid	as	can	be	seen	in	Figure	1:

BigBlueButton

27

https://twitter.com/BC_CTE/status/689859706370686980
https://www.schoology.com/
https://moodle.com/2015/07/06/moodle-launches-moodlecloud-free-hosting-for-educators/
http://www.c4isrnet.com/story/military-tech/disa/2015/02/11/disa-to-save-12m-defense-collaboration-services/23238997/

Figure	1:	Power/Interest	grid	of	stakeholders

The	Power/Interest	grid	is	divided	into	four	blocks	based	on	the	level	of	power	and	interest
[15].	The	stakeholders	in	the	lower-left	corner	should	only	be	monitored,	the	ones	in	the
lower-right	corner	kept	informed,	the	top-left	corner	kept	satisfied	and	the	top-right	corner
should	be	managed	closely.	Additional	stakeholders	are	present	in	the	grid	which	are
competitors	such	as	VSee,	OpenMeetings	and	OnWebinar	along	with	some	software	that
the	system	relies	on	such	as	Tomcat	and	Ubuntu.	The	most	important	stakeholders	are
placed	in	the	top	right	part	of	the	grid	which	are	in	this	case	Blindside	Networks,	the	core
developers	and	the	hosting	company	HostBBB.

How	is	it	made?

BigBlueButton

28

https://vsee.com
http://openmeetings.apache.org
http://www.onwebinar.com
http://tomcat.apache.org
http://www.ubuntu.com

The	BigBlueButton	team	treats	the	project	as	a	product	by	having	a	standardized
development	process	and	release	cycle	along	with	upholding	a	solid	architecture	[16].
Hereafter	we	will	describe	their	development	process,	how	the	software	is	constructed	and
what	components	they	use.

Development	process	and	releases

The	BigBlueButton	group	puts	a	lot	of	effort	in	making	good	quality	software,	both	for	users
and	developers.	For	the	users	their	focus	is	mainly	on	stability	and	usability,	also	with	an
emphasis	on	features	[4].	For	developers	they	try	to	keep	their	technical	debt	low	by
focusing	on	modularity	and	with	refactoring	in	each	release.	Additionally,	they	keep	up
excellent	documentation	and	uphold	good	code	quality.	There	are	certain	conventions	for	the
developers	to	follow	regarding	the	code	such	as	Java	Coding	Conventions	by	Oracle,	AsDoc
format	for	Flex/ActionScript	code	and	JavaDoc	for	documenting	methods.

Code	and	issue	management	is	entirely	done	on	GitHub	while	most	discussions	occur	on
the	dev	mailing	list.	A	typical	occurrence	is	that	a	BBB	developer	creates	an	issue	on	GitHub
for	a	bug	or	an	improvement	and	Dixon	(being	project	manager)	assigns	it	to	an	appropriate
developer.	Once	the	issue	has	been	solved,	a	pull	request	is	made	by	that	developer	where
he	links	it	to	the	issue.	Finally	the	pull	request	content	is	reviewed	and	merged	by	some
other	developer,	often	by	Dixon	or	Alam.

Since	the	first	release	in	June	2009,	there	have	been	14	releases	with	the	latest	one	in
October	2015	(release	1.0-beta).	Each	release	has	a	well	defined	development	cycle	as	can
be	seen	in	Figure	2.

Figure	2:	Development	process	for	BBB

1.	 Planning:	The	development	cycle	starts	with	deciding	on	the	main	features	that	the
BigBlueButton	team	wants	to	implement	in	that	release.

2.	 Design:	For	each	feature,	issues	related	to	them	are	created	and	specifications	are
published	by	the	lead	developers	for	the	bigger	and	more	complex	ones.

3.	 Development:	During	this	phase,	developers	start	working	on	their	own	forks	and	make
pull	requests	(PR)	against	the	master	branch.	Every	commiter	is	responsible	for	the	PR
to	be	compatible	with	the	master	branch	but	it	should	always	be	reviewed	by	another
developer	with	some	experience	in	the	context	of	the	PR.	If	the	experienced	reviewer
considers	the	PR	to	negatively	effect	the	stability	or	usability	of	the	project	he	or	she	will
reject	it.	If	the	PR	gets	accepted	it	will	be	tested	with	usage	by	other	developers	until	a
release	is	published.

BigBlueButton

29

https://github.com/bigbluebutton/bigbluebutton
https://groups.google.com/forum/#!forum/bigbluebutton-dev

4.	 Beta	Testing:	Before	releasing	the	software	is	heavily	tested	by	going	through	at	least
one	beta	stage	and	sometimes	tested	by	the	community	for	months.	In	this	period	every
bug	that	is	found	is	fixed.

5.	 Release	Candidate:	In	this	step,	the	label	of	the	build	is	changed	to	be	a	release
candidate	and	the	core	developers	wait	for	more	feedback	from	the	community,	to	fix
the	last	possible	bugs.

6.	 General	Release:	When	there	are	no	bugs	left	and	the	version	is	completely	stable	(this
usually	means	two	weeks	of	no	reported	bugs)	the	tag	is	changed	and	the	general
release	is	published.

These	steps	construct	the	development	process	in	BigBlueButton	and	what	is	interesting	to
notice	is	that	the	release	is	never	planned	for	a	specific	date	but	only	requires	the	system	to
be	stable.	As	mentioned	before,	this	highlights	the	focus	on	stability	that	the	development
team	exhibits.

The	world	outside	BigBlueButton

It	is	important	to	identify	how	BigBlueButton	works	with	other	components	in	order	to
develop	and	maintain	the	software.	The	external	entities	that	are	connected	to	BBB	are
displayed	in	Figure	3.

BigBlueButton

30

Figure	3:	Context	view	of	BBB

BigBlueButton	is	an	open	source	project	and	as	a	result	needs	help	by	the	community	to
grow.	Developers	and	users	discuss	about	issues	and	new	features	through	GitHub	and
mailing	lists	(community).	For	developing	the	software,	many	languages	and	frameworks	are
used	such	as	Java,	ActionScript	and	Grails	(development	tools)	[17].	In	order	to	make	the
system	run,	BigBlueButton	decided	to	operate	through	external	entities	such	as	Red5,
Tomcat	and	redis	who	provide	their	structure	and	implementation	(service	providers).	In
order	for	a	project	like	BigBlueButton	to	grow	it	needs	financial	and	operational	support.	In
the	past	BBB	received	support	from	the	WebFWD	program	and	nowadays	Blindside
Networks	is	the	main	support	provider	(commercial	support)	[5].	The	customers	of
BigBlueButton	can	be	separated	into	two	different	categories,	the	direct	customers	who
include	universities	like	Boston	College	or	even	the	Defense	Information	Systems	Agency
and	third	parties	that	integrate	BigBlueButton	into	their	own	system	with	the	most	famous
being	Drupal	and	WordPress	(customers)	[7].	Finally,	as	with	all	software	there	are
competitors	to	BigBlueButton	with	some	of	them	being	VSee	and	ONwebinar	(competitors).

BigBlueButton

31

The	world	inside	BigBlueButton

The	architecture	of	the	system	is	split	into	layers	and	modules.	The	main	layers	in	BBB	are
Client,	Server,	Database	and	Configuration.	Inside	them,	the	different	closed	and	open
source	projects	interact	across	the	platform	as	can	be	seen	in	Figure	4.

Figure	4:	Architecture	of	BBB

Client	Layer:	The	first	layer	of	BigBlueButton	is	where	the	user	performs	the	most	activities.
We	can	find	the	Red5	Apps	that	provide	the	functionalities	for	media	sharing	and	streaming
such	as	chat,	board,	presentation,	voice,	video,	as	well	as	FreeSWITCH	which	is	the	voice
capability	for	conference	[18].	This	is	all	connected	to	the	BBB	Web	API	which	enables	the
use	of	other	3rd	party	applications	such	as	Drupal	and	Wordpress.	The	client	itself	consists
of	various	modules	which	serve	different	features	of	the	software.	Finally,	there's	the	Akka
apps	that	put	together	all	the	elements	on	the	client	side	for	a	smooth	real-time	experience.

Server	Layer:	For	the	next	layer,	the	first	component	is	the	Redis	Pubsub	which	acts	as	a
channel	between	server	applications,	connecting	the	main	BBB	Server	and	side	applications
for	a	unified	performance.	The	HTML5	Server	is	not	depicted	since	it	is,	as	mentioned
before,	in	process	of	implementation.	The	other	part	of	the	server	level	is	the	Recordings
part	of	conferences,	which	manages	all	the	events	such	as	slides,	videos,	webcam	and
desktop,	separately.

BigBlueButton

32

Database/Configuration	Layer:	For	the	final	layer,	we	have	the	the	Redis	Database	which
is	used	for	saving	all	the	data	of	a	conference	session,	which	is	then	processed	by	the
Recording	Processor.	On	the	configuration	part	of	the	layer	we	have	the	BBB	Client	Config
file.	The		config.xml		file	includes	the	settings	of	all	the	modules	that	integrate	with	the
BigBlueButton	application,	the	logging	system	configuration	and	configuration	settings
concerning	the	servers	IP	and	permissions.

What	does	it	offer?
In	the	introduction	a	few	features	have	been	presented	only	to	give	a	small	idea	of	what
BigBlueButton	button	is.	Now	it's	time	to	go	more	in	depth.	The	implementation	of	these
features	is	divided	into	the	separate	modules	in	the	client.	These	modules	will	be	discussed
after	describing	the	various	features	of	the	software.

Features

As	already	said	the	two	main	categories	of	users	are	teachers	and	students.	Therefore,	it	is
logical	to	analyze	the	functionalities	of	the	system	based	on	these	two	roles.

Teacher	features

The	teacher	is	able	to	upload	his	slides	so	that	everyone	taking	part	in	the	class	can	see
them	[23].	He	is	then	aided	in	his	presentation	by	an	interactive	whiteboard	that	shares	his
pointer	and	notes	on	the	slides,	making	it	easier	for	students	to	follow.	The	teacher	is	also
able	to	share	his	own	desktop	in	order	to	go	beyond	the	presentation	itself	or	to	fix	a	specific
layout	to	have	the	students	focus	on	a	specific	aspect	of	the	lecture.	When	he	wants	to
make	the	lectures	more	interactive	he	has	the	possibility	to	have	a	student	presenting	the
lecture.	This	means	that	the	student	whiteboard	will	be	shared	for	that	specific	timespan.
Moreover,	he	is	also	able	to	set	up	polling	sessions	or	to	split	the	students	into	breakout
rooms	for	group	projects.	Finally,	for	students	that	are	not	present	in	the	class,	the	teacher
has	the	opportunity	to	choose	to	record	the	lecture.

Student	features

Students	are	able	to	set	a	reaction	to	the	lecture	with	emojis	next	to	their	name,	giving	a
possibility	for	the	teacher	to	understand	the	prevalent	reaction	of	the	class	to	the	lecture	[24].
These	emojis	include	a	raised	hand	that	allow	them	to	ask	questions.	The	students	are	then
able	to	take	notes	on	the	slides	so	that	they	can	avoid	to	lose	important	parts	of	the	lectures

BigBlueButton

33

and	they	are	even	able	to	share	a	common	notepad	between	multiple	students	where
everybody	can	contribute	to	the	notes.	In	the	case	that	the	teacher	decided	to	record	the
lectures	they	are	even	able	to	watch	them	back	whenever	they	want.

Shared	features

The	system	has	also	a	few	functionalities	that	are	shared	among	all	the	users.	One	is	a
WebChat	on	which	everyone	has	the	possibility	to	have	private	conversation	with	specific
users	or	publicly	interact	with	all	the	others	taking	part	in	the	class	[31].	There	is	also	a
WebCam	and	a	Voice	over	IP	(VoIP)	system	that	makes	the	communication	more	natural.

Modules

The	system	has	been	implemented	with	a	modular	structure	in	order	to	decouple
functionalities	as	much	as	possible.	Modularity	is	in	fact	one	of	the	main	goals	in	the
development	of	BigBlueButton	[9].	Each	module	is	responsible	of	a	few	of	the	functionalities
listed	above.	In	Figure	5	these	modules	are	represented	showing	the	dependencies	between
each	of	them.

Figure	5:	Modules	of	BBB	and	their	dependencies

There	are	also	two	additional	modules	currently	under	development	[9].	These	are	a	closed
captioning	module	that	has	the	purpose	of	enhancing	the	accessibility	of	the	system	[21]	and
a	synchronized	playback	module	for	external	media	[22].

Module	communication

BigBlueButton

34

In	order	for	the	modules	to	work	efficiently	and	coordinated,	a	shared	structure	and
communication	is	required.	For	that	reason	a	specific	design	pattern	is	followed	when
modules	are	constructed.	The	communication	of	modules	is	implemented	by	messages
being	broadcasted	and	handled	by	each	module	for	every	action	in	the	system.	Furthermore,
every	module	has	a	similar	folder	structure	with	each	folder	being	responsible	for	a	different
aspect	of	the	module	functionalities.

More	specifically,	every	module	has	a	Service	folder	that	provides	the	Message	Receiver
and	Message	Sender	which	are	classes	responsible	for	handling	the	various	event
messages	broadcasted	by	the	module.	Moreover,	the	Events	folder	includes	the	specific
events	related	to	the	module	and	the	Managers	folder	includes	the	manager	who	is
responsible	for	the	initiation	and	termination	of	the	module.	Finally	the	Models	folder
includes	the	different	module	configurations	(Figure	6).

Figure	6:	Internal	structure	of	the	modules	of	BBB

Is	it	implemented	well?
For	a	project	to	evolve	efficiently,	it	is	important	to	take	into	consideration	future
consequences	during	development.	If	these	consequences	are	not	considered,	developers
might	introduce	technical	debt	which	could	slow	down	future	development.	Like	stated
before,	the	developers	of	BigBlueButton	try	to	keep	the	technical	debt	low	by	enhancing
modularity	in	the	system	and	refactoring	for	every	release.	To	investigate	the	technical	debt
in	BBB	we	applied	the	SonarQube	tool	on	the	project	along	with	some	manual	analysis.

What	does	SonarQube	say?

BigBlueButton

35

https://en.wikipedia.org/wiki/Technical_debt
http://www.sonarqube.org

SonarQube	bases	its	measures	of	technical	debt	on	the	SQALE	methodology	[19].	Every
time	a	code	breaks	a	rule	an	issue	is	raised	and	is	categorized	as	a	blocker,	critical,	major,
minor	or	just	an	info	which	is	not	considered	as	a	flaw	but	merely	a	finding.	All	these	issues
are	converted	into	a	measure	for	technical	debt	which	is	described	in	time	units.	We	applied
the	SonarQube	tool	on	the	BBB	project,	analyzing	all	code	written	in	Java,	ActionScript	and
JavaScript	which	accounts	for	82.3%	of	the	code.

The	results	from	the	analysis	show	a	passing	grade	of	A	which	means	that	it	has	low
technical	debt.	The	amount	of	technical	debt	was	reported	to	be	387	days	and	32.534	issues
with	most	of	them	being	major	or	minor.	Furthermore,	looking	into	the	files	that	have	the
most	technical	debt	(the	highest	six	files)	we	see	that	they	are	all	external	files	(not	written
by	BBB	developers)	like		jquery-ui.js	,		jq-ui.js		and		sip.js	.	For	internal	files,	instead,
the	number	of	issues	per	file	is	relatively	low	and	the	classes'	size	is	not	too	big	depicting	a
high	quality	project.	In	Figure	7	some	of	the	project's	files	are	visible	where	the	size	of	the
circles	reports	the	technical	debt	with	the	number	of	issues	on	the	y	axis	and	file	size	on	the
x	axis.	All	circles	outside	the	dense	lower-left	corner	are	classes	from	external	sources.

Figure	7:	Technical	debt	of	files	in	BBB

What	did	we	find	out?

Based	on	the	work	by	Cairns	and	Allen	[1]	we	analyzed	the	project	in	regards	to	its	velocity
rate,	stressful	releases,	aging	libraries,	defects	and	automated	test	coverage.

BigBlueButton

36

1.	 From	the	GitHub	repository	we	observe	the	graph	in	Figure	8	depicting	the	number	of
commits	from	March	2015	up	to	February	2016	[30].	It	is	evident	that	the	velocity	rate	is
decreasing	which	might	be	an	indicator	that	too	much	technical	debt	has	piled	up	and	is
now	impairing	development	productivity.	It	might	also	be	because	of	other	reasons,	like
less	features	being	added	now	than	before.

2.	 If	the	team	always	experiences	stressful	releases	or	if	bugs	accumulate	in	the	system	it
might	very	well	indicate	technical	debt.	Like	described	earlier	the	BBB	team	states	that
they	take	their	time	with	releases	where	they	make	sure	that	they	have	fixed	every
single	bug	that	has	been	introduced.	However,	looking	at	the	issues	on	their	GitHub
repository	(at	the	time	of	this	being	written),	out	of	the	336	open	issues	there	are	155,
almost	half	of	them,	with	the	label		Defect		which	still	have	to	be	fixed.

3.	 On	the	aspect	of	aging	libraries	there	are	not	any	issues	since	all	libraries	used	are	up-
to-date.

4.	 Without	being	able	to	analyze	test	coverage	due	to	the	multi-language	nature	of	the
project,	there	seems	to	be	a	serious	deficit	of	automated	tests.	They	heavily	test	the
software	before	a	release	but	that	is	almost	entirely	done	with	usage	by	the	community
[18].

Figure	8:	Commit	history	of	BBB	2015-2016

Finally,	by	looking	at	the	analysis	above	it	is	evident	that	the	BBB	developers	try	to	keep	the
technical	debt	low	and	that	they	succeed	in	doing	so.	By	doing	that	they	minimize	the
development	time	for	each	release	since	technical	debt	does	not	stand	in	their	way.

How	would	you	customize	a	big	blue	button?
As	explained	when	talking	about	functionalities,	the	configurable	client	features	of
BigBlueButton	are	split	into	different	modules	that	can	be	loaded	at	startup	[2].	There	is	a
	config.xml		file	that	includes	each	loaded	module	along	with	all	their	configurations	and	all
their	dependencies	[3].

BigBlueButton

37

https://github.com/bigbluebutton/bigbluebutton/issues

<module	name="WhiteboardModule"	url="http://HOST/client/WhiteboardModule.swf?v=VERSION"

				uri="rtmp://HOST/bigbluebutton"

				dependsOn="PresentModule"

				baseTabIndex="601"

				whiteboardAccess="presenter"

				keepToolbarVisible="false"

/>

Above	we	can	see	an	example	of	the		config.xml		structure	where	the	WhiteBoardModule	is
declared.	Here	the	module	has	a		dependsOn		field,	which	means	that	the	WhiteBoardModule
cannot	be	loaded	unless	PresentModule	has	already	been	loaded.	An	example	of	a
configurable	item	is	the		keepToolbarVisible		which	can	be	set	to		true		or		false	.

The	usage	of	an	xml	file	allows	enough	flexibility	to	the	customer	adopting	the	platform.	In
fact,	this	design	choice	does	not	ask	the	administrator	of	the	system	to	edit	the	source	code
in	order	to	enable	or	disable	functionalities	but	only	requires	work	on	a	human-readable	XML
file.	These	configuration	settings	are	although	intended	to	be	used	by	the	system
administrator,	and	not	by	users	like	teachers	or	students.	All	these	configurations	are	loaded
at	startup	time	which	means	that	the	program	will	not	load	new	modules	(or	changes	to	the
current	ones)	dynamically	at	runtime.	However,	at	the	same	time,	it	will	not	require	a	full
recompilation	of	the	code	to	process	the	changes.	This	policy,	from	a	customer	perspective,
can	be	considered	as	a	good	tradeoff	in	order	to	have	a	system	that	can	change	semi-
dynamically.	Apart	from	this	strategy	not	many	other	expedients	are	used	for	aiding
variability	and	evolution	of	the	system.	When	it	comes	to	using	these	configurations,
methods	use		if		checks	to	verify	the	settings	specified	in	the	XML	file.	This	makes	it	more
difficult	to	edit	pre-existing	modules	but	at	the	same	time	leaves	space	for	future	expansions
with	new	features.	In	fact,	building	a	new	module	requires	just	to	add	a	new		<module>	
section	to	the		config.xml		file.	A	final	remark	on	customization	is	the	branding	allowed	by
BBB,	where	the	skin	of	the	system	can	be	modified	in	a	CSS	file	that	is	also	compiled	before
running	the	client	side,	where	logos	or	color	schemes	can	be	added	[20].

How	can	it	evolve?
BigBlueButton	as	an	Open-Source	Software	is	intrinsically	subject	to	change.	Furthermore,
as	a	project	dedicated	to	education,	it	has	to	be	able	to	adapt	to	different	and	upcoming
needs	that	may	appear.	The	main	team	of	developers	at	BBB	are	fully	responsible	for	the
assessment,	planning	and	management	of	change	but	it	is	mostly	triggered	by	outside
factors.

BigBlueButton

38

Past	and	future

The	BBB	project	has	been	in	development	for	nearly	10	years	and	has	evolved	a	great	deal
over	that	period.	New	features	have	been	introduced	in	many	of	their	14	releases	but	also
with	some	of	the	releases	only	focusing	on	stability	and	improvements	[8].	The	biggest
milestones	in	evolution	have	come	from	explicit	or	implicit	user	needs,	as	well	as	strategic
decisions	by	the	team.	Early	additions	to	the	software	in	2009	includes	packaging	the
software	into	a	virtual	machine	in	order	to	make	it	easy	for	users	to	set	up	BBB	[12].	A	big
feature	was	then	introduced	in	2011	that	enabled	Record	and	Playback	which	had	been
widely	requested	by	the	community	[13],	which	required	extensive	rework	on	the	server
architecture	[5].	Later	on,	the	team	added	accessibility	support	with	screen	readers	for	users
with	sight	disabilities.	The	focus	of	the	year	2015	was	mostly	dedicated	to	providing	users
with	world	class	quality,	such	as	having	an	excellent	audio	experience.	The	future	goals	for
BBB	include	support	for	users	with	hearing	disabilities	(Closed	Captioning),	adding	unit
testing	to	core	modules	and	creating	a	HTML5	client	(which	is	currently	under	development)
[9].	The	HTML5	client	will	give	users	an	option	to	join	a	session	without	having	to	use	Flash,
like	it	is	required	at	this	moment	[10].	The	reason	why	Flash	has	been	used	so	far	is
because	of	the	previous	limitations	of	HTML5	regarding	capturing	webcam	and	audio	[14].

Ease	of	evolution	and	tradeoff

Systems	can	be	designed	to	be	highly	flexible	and	easy	to	change	or	simpler	in	the	way	that
they	meet	the	original	requirements	and	might	need	extensive	refactoring	for	later	changes
[11].	BigBlueButton	is	somewhere	there	in	between	but	closer	to	being	a	flexible	software.

The	BBB	team	has	taken	into	consideration	certain	aspects	that	make	future	evolution
easier.	The	internal	structure	of	the	system	and	the	various	modules	that	are	part	of	it
facilitate	the	evolution	and	new	features.	Every	implemented	new	feature	is	related	to	a
module	and	as	a	result	is	integrated	with	a	reliable	existing	base.	When	we	interviewed	Fred
Dixon	on	this	subject	he	said:

The	client	was	always	modular	and	we	kept	that	modularity	through	the	development	of
the	client	(this	is	making	it	easy	for	us	to	add	Closed	Captioning,	a	feature	planned	for	a
future	release).

This	modularity	has	therefore	been	a	part	of	the	structure	from	the	beginning.	As	a	part	of
the	internal	structure	of	the	modules,	they	include	services	that	communicate	with	each
other	through	broadcasted	messages.	As	a	result	when	new	features	are	added,	they	can
take	advantage	of	all	the	events	that	are	already	broadcasted	from	the	messages	and	build
on	them.	Another	way	that	eases	evolvability	is	implementing	parts	of	the	system	using	third
party	softwares.	It	is	very	cost	and	time	efficient	and	allows	the	team	to	focus	on	the	core

BigBlueButton

39

functionalities,	but	also	leads	to	dependencies	on	these	external	softwares.	Furthermore,
with	an	iterative	approach	with	many	releases	the	BBB	team	allows	its	users	to	take
advantage	of	new	features	as	soon	as	they	are	ready	and	stable.

However,	there	are	a	few	aspects	of	the	system	that	can	be	considered	as	obstacles	for
evolution.	Currently	development	is	mainly	supported	on	Ubuntu	machines.	The	VM
integration	on	non-Ubuntu	machines	can	be	a	problem	for	developers	and	slow	down	the
evolution	of	the	system.	Moreover,	the	BigBlueButton	client	is	built	on	Flash	using
ActionScript.	ActionScript	is	becoming	outdated	and	there	are	some	problems	with	the
development	of	the	client	side	related	to	the	usage	of	Flash	such	as	a	difficulty	of	logging.

In	general,	the	BBB	team	uses	modularity	to	ease	future	evolution	but	also	tackle	some
problems	when	they	appear,	all	in	all	with	a	main	goal	of	keeping	the	system	completely
stable.

But,	hey!	I	want	to	contribute	as	well
The	BigBlueButton	community	is	very	inviting	for	new	developers	to	contribute	to	their
project	[14].	In	order	to	uphold	the	quality	of	their	development	they	require	certain	things
from	contributors	and	for	them	to	apply	a	certain	workflow	[4].	They	require	contributors	to
first	study	the	architecture	of	the	system	and	fully	understand	it	before	adding	or	modifying
any	code.	Before	making	a	contribution	it	is	also	advised	to	have	participated	in	the	dev
mailing	list	on	Google	Groups	by	showing	understanding	of	the	system	and	to	build	trust	with
the	community.

When	choosing	what	kind	of	contribution	to	make	it	is	advised	to	tackle	an	open	issue	or	if
the	contributor	is	not	a	developer,	to	submit	translations	for	localization	or,	to	help	others	with
the	installation	and	configuration	of	a	BBB	server.

If	contributing	with	code,	it	is	required	to	first	sign	a	CLA	and	to	announce	your	intent	on	the
issue	itself	on	GitHub	or	on	the	dev	forum	and	receive	positive	feedback.	When	submitting
the	contribution	it	is	necessary	to	follow	a	certain	workflow	on	GitHub	by	forking	the
repository,	creating	a	topic	branch	and	submitting	a	pull	request	from	that	branch.	If	the
patch/feature	is	big	it	is	also	necessary	to	a	accompany	the	PR	with	test	cases	and	to	follow
certain	coding	conventions.

Aaand...we	are	done
In	this	chapter	we	have	analyzed	the	architecture	of	BigBlueButton	based	on	different	views
and	perspectives,	so	readers	can	have	a	broad	understanding	of	the	software	and	its
structure.

BigBlueButton

40

https://groups.google.com/forum/#!forum/bigbluebutton-dev
https://github.com/bigbluebutton/bigbluebutton/issues

In	conclusion,	BigBlueButton	is	an	open	source	on-line	conference	system	for	education,
where	its	developers	strive	to	provide	excellent	tools	and	features	for	high	quality	remote
learning.	There	is	a	strong	community	around	the	project	where	the	core	developers	make
an	effort	to	reply	quickly	to	the	active	mailing	lists.	Even	though	it	is	an	open	source	project
the	managers	of	BBB	treat	it	as	a	product,	having	specific	development	and	release
processes	and	focusing	on	good	code	quality.	New	contributors	are	highly	welcomed	and
the	core	developers	go	out	of	their	way	to	make	the	environment	good	by	having	excellent
documentation	available	and	good	support	on	the	mailing	lists.	The	BBB	team	focuses	on
having	the	software	very	stable	in	each	release	which	has	attracted	some	heavyweight
customers	and	third	party	integrations	such	as	WordPress,	Moodle	and	The	Defense
Information	System	Agency	(DISA).

The	structure	of	the	code	is	very	modular	which	eases	evolution	and	helps	to	minimize
technical	debt.	Many	external	components	are	used	which	allows	the	BBB	developers	to
focus	more	on	the	client	side	of	the	project.	As	a	part	of	keeping	the	project	stable,	it	is
heavily	tested	by	the	community	before	each	release	but	they	lack	automated	tests.

Analyzing	this	project	has	proven	beneficial	for	us	to	learn	about	how	a	good	structured
software	is.	We	got	the	opportunity	to	take	part	in	a	great	open	source	community	by	making
small	contributions	to	the	project	where	we	were	welcomed	with	inviting	and	helpful
communication	with	the	project	manager	Fred	Dixon.	This	was	a	very	valuable	experience
where	we	learned	how	to	approach	an	open	source	project	and	it	provided	a	good	way	to
learn	about	the	system's	architecture.	For	other	developers	or	people	interested	in	open
source	projects,	it	is	very	interesting	to	study	such	a	well	established	and	stable	project,	and
we	hope	this	analysis	can	help	with	that.

References
1.	 18f,	https://18f.gsa.gov/2015/10/05/managing-technical-debt
2.	 Client	Config,	http://docs.bigbluebutton.org/dev/client-

configuration.html#Client_Configuration_
3.	 config.xml,	https://github.com/bigbluebutton/bigbluebutton/blob/master/bigbluebutton-

client/resources/config.xml.template
4.	 BigBlueButton	Documentation	FAQ,	http://docs.bigbluebutton.org/support/faq.html
5.	 BigBlueButton	History,	http://bigbluebutton.org/history
6.	 BigBlueButton	downloads	in	July	2012,

http://bigbluebutton.org/2012/07/06/bigbluebutton-is-a-global-project/
7.	 BigBlueButton	Open	Source	Integrations,	http://bigbluebutton.org/open-source-

integrations
8.	 BigBlueButton	Release	Notes,	http://docs.bigbluebutton.org/support/release-notes.html

BigBlueButton

41

https://18f.gsa.gov/2015/10/05/managing-technical-debt
http://docs.bigbluebutton.org/dev/client-configuration.html#Client_Configuration_
https://github.com/bigbluebutton/bigbluebutton/blob/master/bigbluebutton-client/resources/config.xml.template
http://docs.bigbluebutton.org/support/faq.html
http://bigbluebutton.org/history
http://bigbluebutton.org/2012/07/06/bigbluebutton-is-a-global-project/
http://bigbluebutton.org/open-source-integrations
http://docs.bigbluebutton.org/support/release-notes.html

9.	 BigBlueButton	Road	Map,	http://docs.bigbluebutton.org/support/road-map.html
10.	 http://docs.bigbluebutton.org/labs/html5-overview.html
11.	 Rozanski	and	Woods.	Software	Systems	Architecture:	Working	With	Stakeholders

Using	Viewpoints	And	Perspectives.	Upper	Saddle	River	NJ:	Addison-Wesley,	2012.
12.	 BigBlueButton	talk	at	Carleton	University,	https://www.youtube.com/watch?

v=FXNeNZqVwsQ
13.	 Response	to	a	request	for	Recording	on	the	user	forum,

https://groups.google.com/forum/#!searchin/bigbluebutton-
users/record$20and$20playback%7Csort:date/bigbluebutton-
users/c6fCmD4Lc3M/gcQrmrI1-dsJ

14.	 Floss	Weekly,	Interview	with	Fred	Dixon,	https://twit.tv/shows/floss-weekly/episodes/147
15.	 Bright	Hub	Project	Management,	What	Is	the	Power/Interest	Grid?,

http://www.brighthubpm.com/resource-management/80523-what-is-the-powerinterest-
grid

16.	 Technology	Innovation	Management	Review,	Lessons	from	an	Open	Source	Business	-
Fred	Dixon,	http://timreview.ca/node/441

17.	 BigBlueButton	Open	Source	Components,	http://bigbluebutton.org/components
18.	 BigBlueButton	Architecture,	http://docs.bigbluebutton.org/overview/architecture.html
19.	 SQALE	http://www.sqale.org
20.	 BigBlueButton	Branding,	http://docs.bigbluebutton.org/dev/branding.html
21.	 BigBlueButton	GitHub	issue	2517,

https://github.com/bigbluebutton/bigbluebutton/issues/2517
22.	 BigBlueButton	GitHub	issue	973,

https://github.com/bigbluebutton/bigbluebutton/issues/973
23.	 Moderator/Presenter	Tutorial	(0.9.0),	https://www.youtube.com/watch?

v=J9mbw00P9W0
24.	 Viewer	Overview	(0.9.0),	https://www.youtube.com/watch?v=LS2lttmPi6A
25.	 Interview	with	Fred	Dixon	via	email
26.	 BigBlueButton	Contributors,

https://github.com/bigbluebutton/bigbluebutton/graphs/contributors
27.	 BigBlueButton	Blog	http://bigbluebutton.org/blog/
28.	 Boston	College	STE	Tweet	https://twitter.com/BC_CTE/status/689859706370686980
29.	 C4ISR&Networks,	DISA	to	replace	DCO	with	new	collaboration	services	tool,

http://www.c4isrnet.com/story/military-tech/disa/2015/02/11/disa-to-save-12m-defense-
collaboration-services/23238997/

30.	 BigBlueButton	GitHub	Commits
https://github.com/bigbluebutton/bigbluebutton/graphs/commit-activity

31.	 BigBlueButton	Overview	http://bigbluebutton.org/overview/

BigBlueButton

42

http://docs.bigbluebutton.org/support/road-map.html
http://docs.bigbluebutton.org/labs/html5-overview.html
https://www.youtube.com/watch?v=FXNeNZqVwsQ
https://groups.google.com/forum/#!searchin/bigbluebutton-users/record$20and$20playback%7Csort:date/bigbluebutton-users/c6fCmD4Lc3M/gcQrmrI1-dsJ
https://twit.tv/shows/floss-weekly/episodes/147
http://www.brighthubpm.com/resource-management/80523-what-is-the-powerinterest-grid
http://timreview.ca/node/441
http://bigbluebutton.org/components
http://docs.bigbluebutton.org/overview/architecture.html
http://www.sqale.org
http://docs.bigbluebutton.org/dev/branding.html
https://github.com/bigbluebutton/bigbluebutton/issues/2517
https://github.com/bigbluebutton/bigbluebutton/issues/973
https://www.youtube.com/watch?v=J9mbw00P9W0
https://www.youtube.com/watch?v=LS2lttmPi6A
https://github.com/bigbluebutton/bigbluebutton/graphs/contributors
http://bigbluebutton.org/blog/
https://twitter.com/BC_CTE/status/689859706370686980
http://www.c4isrnet.com/story/military-tech/disa/2015/02/11/disa-to-save-12m-defense-collaboration-services/23238997/
https://github.com/bigbluebutton/bigbluebutton/graphs/commit-activity
http://bigbluebutton.org/overview/

BigBlueButton

43

Bootstrap
By	Patrick	van	Hesteren	and	Floris	Verburg
Delft	University	of	Technology

Bootstrap	is	an	easy-to-use	and	powerful	front-end	framework	for	faster	and	easier	web
development	and	it	is	the	most	popular	HTML,	CSS,	and	JS	framework	for	developing
responsive,	mobile	first	websites.	In	this	chapter,	the	Bootstrap	project	is	analyzed	by	means
of	architectural	views	and	perspectives.	The	context	view,	development	view	and	functional
view	are	provided,	just	as	the	evolution	perspective	and	usability	perspective.	Lastly,
possible	improvements	to	the	Bootstrap	project	are	mentioned.

Introduction
Bootstrap	is	a	sleek,	intuitive,	and	powerful	front-end	framework	for	faster	and	easier	web
development.	Bootstrap	was	created	by	Mark	Otto	and	Jacob	Thornton	at	Twitter	mid-2010.
Before	it	was	a	successful	open-sourced	framework,	Bootstrap	was	known	as	Twitter
Blueprint.	During	the	first	Hack	Week	of	Twitter,	after	Bootstrap	was	a	few	months	into
development,	the	project	exploded	because	developers	of	all	skill	levels	jumped	in	without
any	external	guidance.

The	first	official	release	of	Bootstrap	was	on	the	19th	of	August,	2011.	Bootstrap	has
released	over	20	releases	since	then,	including	two	major	rewrites	with	version	2	and
version	3.	The	fourth	version	of	Bootstrap	had	its	first	alpha	release	on	the	19th	of	August,
2015	while	the	development	of	Bootstrap	v4	is	still	in	progress.	Nowadays,	Bootstrap	is	the
most	popular	HTML,	CSS,	and	JS	framework	for	developing	responsive,	mobile	first	projects
on	the	web	[7].

Bootstrap	is	maintained	by	the	founding	team,	Mark	Otto	and	Jacob	Thornton,	together	with
the	core	development	team	and	with	the	support	and	involvement	of	the	Bootstrap
community.	The	Bootstrap	community	consists	of	various	people	contributing	to	the	project.
The	founding	team	and	core	team	decide	the	direction	Bootstrap	is	going.	The	core	team
and	the	community	implement	the	functionalities	together.

In	this	chapter,	the	insights	of	the	Bootstrap	project	are	given.	We	will	give	some	background
on	the	different	stakeholders,	architectural	views,	architectural	perspectives	and	possible
improvements	to	the	project.

Stakeholders

Bootstrap

44

https://github.com/Pvanhesteren
https://github.com/florisverburg

Stakeholders	are	the	people,	groups	and/or	organizations	that	have	interest	or	concern	in	an
organization.	Stakeholders	can	affect	or	be	affected	by	the	organization's	actions,	objectives
and	policies.	Rozanski	and	Woods[2]	discuss	11	types	of	stakeholders	in	their	book.	The
most	important	ones	for	Bootstrap	are	listed	below:

Acquirers	oversee	the	procurement	of	the	system	or	product.	The	people	that	are
involved	in	this	stakeholder	class	are	Mark	Otto	and	Jacob	Thornton.
Assessors	oversee	the	system's	conformance	to	standards	and	legal	regulation.	Mark
Otto	is	the	only	assessor	in	the	Bootstrap	project.
Communicators	explain	the	system	to	other	stakeholders	via	its	documentation	and
training	materials.	Persons	involved	in	this	class	are	W3Schools,	Chris	Rebert	and
random	GitHub	contributors.
Developers	construct	and	deploy	the	system	from	specifications,	or	lead	the	teams	that
do	this.	The	core	team	develop	the	sytem	and	are	the	only	people	that	can	merge	pull
requests.	Furthermore,	random	GitHub	contributors	are	involved	in	this	class.
Maintainers	manage	the	evolution	of	the	system	once	it	is	operational.	The	core	team
are	involved	in	this,	mostly	Chris	Rebert.
Testers	test	the	system	to	ensure	that	is	is	suitable	for	use.	The	core	team	and	random
GitHub	contributors	write	the	test	suite	for	Continuous	Integration.	All	tests	are
automatically	run	upon	committing	to	the	repository.
Users	define	the	systems'	functionality	and	ultimately	make	use	of	it.	Companies	and
web	developers	use	Bootstrap	as	framework	for	their	website.	A	small	selection	of	large
companies	that	use	Bootstrap	is:	Twitter,	Walmart,	NBA,	Codecademy.

Power/Interest	Grid

A	widely	used	method	to	classify	stakeholders	is	Mendelow's	power/interest	grid[1].	On	this
grid,	the	interest	of	the	stakeholder	is	shown	on	the	horizontal	axis	and	the	power	of	the
stakeholder	is	shown	on	the	vertical	axis.	The	higher	the	power	of	the	stakeholder,	the	more
important	it	is	the	stakeholder	is	satisfied	in	the	decision	making.	The	higher	the	interest	of
the	stakeholder,	the	more	the	stakeholder	would	like	to	be	kept	informed.	The	stakeholders
with	high	power	and	interest	must	be	managed	closely	and	the	stakeholders	with	low	power
and	interest	must	be	monitored	but	with	minimum	effort.	The	power/interest	grid	of	the
Bootstrap	project	is	shown	below.

Bootstrap

45

https://github.com/mdo
https://github.com/fat
https://github.com/mdo
http://www.w3schools.com/bootstrap/
https://github.com/cvrebert
https://github.com/orgs/twbs/people
https://github.com/orgs/twbs/people
https://github.com/cvrebert
https://github.com/orgs/twbs/people
https://www.quora.com/What-are-some-famous-websites-using-Twitter-Bootstrap/

	Bootstrap's	Power
Interest	Grid

The	person	with	the	highest	interest	and	power	is	Mark	Otto,	one	of	the	founders	of
Bootstrap	and	still	one	of	the	most	active	developers	of	the	project.	Someone	close	to	him	is
Chris	Rebert,	he	is	not	one	of	the	founders	but	he	is	the	person	from	the	core	development
team	that	is	most	active	and	he	reviews	and	handles	most	of	the	pull	requests.

Jacob	Thornton	is	also	one	of	the	founders,	so	he	still	has	quite	a	lot	power	but	he	is
currently	not	so	active	anymore.	Therefore,	he	has	less	interest	in	the	project.

The	core	development	team	is	also	a	stakeholder	with	high	interest	and	power.	These	are
the	people	that	actively	contribute	to	and	maintain	the	project	and	have	write	permissions	to
the	project.

The	companies	that	use	Bootstrap	-	especially	the	big	ones	-	are	important	to	keep	satisfied.
If	these	companies	are	no	longer	satisfied,	they	will	stop	using	Bootstrap.	If	no	one	uses
Bootstrap	anymore,	the	project	will	lose	its	value.	Therefore,	it	is	important	for	Bootstrap	to
keep	these	stakeholders	satisfied.

Stakeholders	like	W3Schools	and	jQuery	have	high	interest	in	the	project.	It	is	important	for
Bootstrap	to	keep	these	stakeholders	informed.	W3Schools	is	a	source	of	information	about
Bootstrap	that	a	lot	of	users	use.	jQuery	and	also	for	example	html5shiv,	are	also	important

Bootstrap

46

http://www.w3schools.com/
https://jquery.com/

to	keep	informed.	Because	Bootstrap	depends	on	these	stakeholders,	the	stakeholders	must
know	if	Bootstrap	wants	to	change	anything	that	depends	on	for	example	jQuery.

Context	view
The	context	view	of	a	system	defines	the	relationships,	dependencies	and	interactions
between	the	system	and	its	environment.	This	environment	includes	the	people,	systems
and	external	entities	with	which	it	interacts.	It	defines	what	the	system	does	and	what	the
system	does	not	do	[2].

Context	Model

Bootstrap's	context	model	is	visualized	in	the	following	figure	and	will	be	explained	in	depth
in	the	following	section.

Bootstrap's	context	model

Bootstrap

47

Next	to	the	code	written	by	the	contributors	of	the	project	(purple),	Bootstrap	is	built	using
the	jQuery	library	(yellow)	and	the	coupling	with	this	library	is	very	strong.	If	a	backwards
incompatible	change	is	made,	it	requires	a	fair	bit	of	work	to	support	the	new	version.
Bootstrap	does	its	dependency	management	through	Grunt,	which	depends	on	Node.js.
Grunt	builds	Bootstrap,	the	tests	and	the	documentation.	The	framework	itself	is	built	using
Meteor,	npm,	Composor	or	Bower	and	the	documentation	is	built	using	Jekyll	and	Rouge
(green).

On	the	testing	side,	the	Bootstrap's	unit	tests	are	written	in	QUnit	(yellow).	This	dependency
is	fairly	strong	as	migrating	away	from	QUnit	(and	having	maintainable	tests)	would	be	a	fair
bit	of	work.	The	automated	testing	infrastructure	(grey)	consists	of	Travis	CI	running	the
tests	on	PhantomJS.	It	also	runs	JSHint	for	code	analysis.	This	dependency	is	not	as	strong
as	it	is	in	the	infrastructure	instead	of	the	code.

One	of	the	functions	of	Bootstrap	is	to	abstract	away	the	differences	between	different
platforms	and	browsers	(blue).	This	makes	all	of	the	supported	combinations	an	external
dependency.	When	a	backwards	incompatible	change	is	made,	Bootstrap	has	to	adjust	to
support	the	change.	Bootstrap	is	a	framework	that	supports	all	large	browsers	and	mobile
platforms.

For	the	users	of	Bootstrap	looking	for	support,	StackOverflow	and	Slack	are	used,	which	are
part	of	the	community	of	Bootstrap	(red).	These	are	only	loosely	coupled	with	the	project	and
different	platforms	could	be	substituted	in	easily.

Bootstrap's	source	code	is	also	licensed	(orange)	under	the	MIT	license.	Its	documentation
is	licensed	under	creative	commons	3	with	the	notable	exception	of	the	code	fragments,
which	are	licensed	under	the	MIT	license.

Development	view
The	development	view	provides	an	insight	in	the	way	Bootstrap	is	being	developed.	The
development	view	is	the	view	that	addresses	the	specific	concerns	of	the	software
developers	and	testers.	First	we	will	explain	the	architecture	of	the	project	and	thereafter,	we
will	discuss	the	technical	debt.

Dependencies

In	order	to	reduce	the	amount	of	dependencies,	Bootstrap	aims	to	be	modular	by	introducing
new	functionalities	as	plugins.	As	described	in	the	development	view	section,	Bootstrap
hardly	has	any	dependencies	between	the	models,	which	indicates	low	coupling.	In	the	case

Bootstrap

48

https://jquery.com/
http://gruntjs.com/
https://nodejs.org/en/
https://qunitjs.com/
https://travis-ci.org/
http://phantomjs.org/
http://jshint.com/

of	Bootstrap,	this	does	not	lead	to	a	high	cohesion,	as	is	usually	the	case	with	large	projects,
since	all	components	are	stand-alone.

Source	code	modularization

Bootstrap	is	designed	in	a	modular	way	in	order	to	reduce	the	total	amount	of	dependencies
within	the	system.	Bootstrap	is	built	using	two	different	components:	the	logic	layer	and	the
view	layer,	which	are	explained	below.	We	can	summarize	Bootstrap's	architecture	as	a
view-view-controller	architecture.	On	the	one	hand,	we	have	the	views,	which	are	used	for
visual	display.	On	the	other	hand,	we	have	the	view-controller	that	describes	the	behavior	of
all	visual	components	(e.g.	disabling	a	button	after	it	has	been	clicked).	When	creating	a
webpage	with	Bootstrap,	designing	it	in	the	popular	Model-View-Controller[3]	way	would
make	the	most	sense.	When	using	Bootstrap	within	a	web	application	using	the	Model-View-
Controller	design	principle,	Bootstrap	will	serve	as	the	view	component.

View	layer

The	view	layer	consists	of	6	different	modules:	the	core	variables	(blue),	reset	styles	(gray),
core	(yellow),	components	(red),	utilities	(purple)	and	finally	the	mixins	(green).	The
architecture	of	the	view	layer	can	be	seen	below.

The	architecture	of	the	view	layer

The	core	variable	module	consists	of	a	style	file	that	loads	all	different	global	styles	that
are	used	within	Bootstrap.
The	reset	styles	module	has	the	purpose	of	resetting	or	overriding	the	default	browser
styles	to	ensure	that	a	Bootstrap	page	looks	similar	across	all	different	device/browser
combination	styles	that	may	occur	when	accessing	a	webpage	built	using	Bootstrap.
The	core	module	consists	of	the	backbone	of	Bootstrap	and	contains	functionality	that	is

Bootstrap

49

generally	used	within	all	webpages	built	using	Bootstrap.
The	components	module	consists	of	commonly	used	components	within	webpages	that
are	not	available	in	HTML	by	default.	All	components	have	been	built	independently	and
are	only	dependent	on	the	core	module.
The	utilities	module	is	responsible	for	one	of	the	most	popular	features	of	Bootstrap:	it's
responsiveness	and	Mobile	First	way	of	designing.
The	mixins	module	does	provide	a	way	to	quickly	generate	simple,	semantic	layouts.
Mixins	are	built	on	top	of	the	core	and	components	and	reuse	these	to	generate	the
semantic	layouts	which	can	be	adjusted	by	overriding	their	properties.

Logic	layer

The	logic	layer	provides	the	logic	that	all	visual	aids,	the	Bootstrap	components,	require.	The
architecture	of	the	logic	layer	can	be	seen	below.

The	architecture	of	the	logic	layer

The	logic	layer	consists	of	12	different	components	that	each	provide	a	different	functionality
for	a	different	corresponding	visual	aid.	All	different	components	rely	on	the	Bootstrap	core,
which	verifies	that	the	jQuery	dependency	is	loaded	and	provides	CSS	transition	support.

As	shown	in	the	diagrams	above,	all	modules	have	been	built	as	independent	as	possible	in
order	to	reduce	technical	debt.	While	downloading,	Bootstrap	includes	all	modules	by
default.	It	is	also	possible	to	manually	remove	these	from	the	includes	in	order	to	reduce
resource	usage	within	the	web	application.

Bootstrap

50

Technical	debt	in	Bootstrap

The	absence	of	a	clear	definition	and	model	for	technical	debt	can	exacerbate	the	challenge
of	its	identification	and	adequate	management.	It	can	further	prevent	the	realization	of
technical	debt’s	utility	as	a	conceptual	and	technical	communication	device[5].

Technical	debt	can	be	divided	into	multiple	dimensions:	code	debt,	design	and	architectural
debt,	environmental	debt,	knowledge	distribution	and	documentation	debt	and	testing
debt[5].	We	have	measured	Bootstrap's	technical	debt	using	these	dimensions.	Measuring
the	technical	debt	from	Bootstrap	differs	from	other	projects	as	it	is	built	on	the	idea	of
providing	independent	plugins.	Furthermore,	CSS	files	cannot	be	measured	in	terms	of
complexity.

Code	debt

Code	debt	has	to	do	with	unnecessary	code	duplication	and	complexity,	bad	style	that
reduces	the	readability	of	code	and	poorly	organized	logic	that	makes	it	easy	for	a	software
solution	to	break	when	updated	at	a	future	point	in	time.	We	have	ran	the	JavaScript	source
files	against	complexity-report.	This	produces	the	following	metrics:

Mean	per-function	logical	LOC	(lower	is	better):	5.865373712711182
Mean	per-function	parameter	count	(lower	is	better):	0.6435881047084829
Mean	per-function	cyclomatic	complexity	(number	of	cycles	in	the	program,	lower	is
better):	1.867627071212864
Mean	per-function	Halstead	effort	(effort	required	to	write	the	program):
2373.7342178742506
Mean	per-module	maintainability	index	(-infinity	-	171,	higher	is	better):
117.82584093099538
First-order	density	(percentage	of	all	possible	internal	dependencies	that	are	actually
realized	in	the	project,	lower	is	better):	0%
Change	cost	(percentage	of	modules	affected,	on	average,	when	one	module	in	the
project	is	changed,	lower	is	better):	3.8461538461538463%
Core	size:	(percentage	of	modules	that	are	both	widely	depended	on	and	themselves
depend	on	other	modules,	lower	is	better):	0%

All	metrics	are	defined	on	a	linear	scale,	apart	from	the	maintainability	index	which	is	defined
on	a	logarithmic	scale.	While	there	is	no	such	thing	as	a	'normal'	score	for	these	metrics,
since	every	project	is	composed	very	different,	it	is	however	immediately	show	that
Bootstrap	has	a	very	low	amount	of	dependencies	and	changing	a	module	would	hardly
require	any	changes	to	be	made	to	other	modules.	Furthermore,	we	see	that	there	is	no
unnecessary	complexity	introduced	(low	amount	of	parameters	in	functions,	low	amount	of

Bootstrap

51

https://www.npmjs.com/package/complexity-report

lines	of	code	per	function,	low	amount	of	cyclomatic	complexity),	which	eases	the
maintainability	of	Bootstrap.	It	is	clear	that	there	is	hardly	any	code	debt	in	the	Bootstrap
project.

Design	and	architectural	debt

Design	debt	has	to	do	with	upfront	design	with	a	lack	of	focus	on	for	example	maintainability
and	adaptability.	Architectural	debt	has	to	do	with	sub-optimal	solutions,	such	as	the	usage
of	superseded	technologies	or	patterns.

Bootstrap	works	with	an	extensive	issue	and	shipping	list.	While	the	issues	are	created	ad-
hoc,	the	shipping	list	is	defined	months	in	advance.	New	features	are	thought	of	in	advance
and	all	changes	that	are	made	to	the	system	are	verified	to	be	in	line	of	the	upcoming
releases	(e.g.	issue	#19303).	New	features	can	be	implemented	at	once,	but	will	however
not	be	added	to	pre-defined	shipping	lists.	Instead,	they	will	be	added	into	feature	releases.
Bootstrap	has	chosen	to	work	with	technologies	that	are	stable	and	supported.	If	better
solutions	become	available,	a	switch	is	made	in	the	next	release.

Overall,	the	design	and	architectural	debt	of	Bootstrap	is	very	minimal,	as	we	have	not
stumbled	upon	any	outstanding	issues	that	would	have	impact	on	the	design/architecture	of
the	upcoming	or	current	releases.

Environmental	debt

Environmental	debt	of	an	application	has	to	do	with	the	environment	in	which	the	application
is	hosted	or	developed,	especially	the	manual	tasks	and	the	frequency	in	which	they	occur.
Since	Bootstrap	is	a	framework	and	is	not	deployed	on	its	own,	there	are	hardly	any	manual
or	incidental	tasks	that	need	to	be	performed	within	the	environment	in	order	to	keep
developing	the	framework.	Since	most	of	the	issues	are	created	by	random	contributors	and
most	bug-fixes	and	feature	implementations	are	made	by	them	as	well,	the	Bootstrap	core
team	has	chosen	to	take	up	an	overseeing	role.	Since	a	lot	of	issues	and	pull	requests	are
created	every	day,	all	must	be	verified	according	to	code	standards	and	checked	whether	or
not	the	changes	made	are	in	line	with	feature	releases.

We	see	that	the	Bootstrap	core	team	has	to	invest	a	lot	of	time	in	maintaining	and	informing
the	community	about	the	changes.	The	environmental	debt	of	Bootstrap	is	as	minimal	as	it
can	be	and	is	mostly	caused	by	the	popularity	of	Bootstrap,	since	this	triggers	a	lot	of
community	involvement	that	needs	to	be	managed	properly.	This	cannot	be	reduced	unless
the	core	team	will	start	to	implement	more	features	themselves.

Knowledge	distribution	and	documentation	debt

Bootstrap

52

https://github.com/twbs/bootstrap/issues/19303

Knowledge	distribution	and	documentation	debt	has	to	do	with	the	way	the	knowledge	and
documentation	of	the	project	is	spread	/	maintained	over	time.	Bootstrap	has	an	extensive
documentation	and	in	general,	each	of	the	different	components	of	the	framework	is
described	with	all	different	options	plus	working	examples.	The	documentation	is	available
via	GitHub	and	via	the	official	Bootstrap	website,	making	it	very	accessible	for	knowledge
sharing.	The	community	actively	contributes	to	the	documentation,	especially	to
documentation	for	new	features	that	have	not	been	documented	properly	yet.	Since
Bootstrap	has	a	lot	of	random	contributors,	it	has	an	extensive	documentation	on	how	to
build	and	contribute	to	the	project.	The	knowledge	distribution	and	documentation	debt	of
Bootstrap	is	therefore	very	minimal.

Testing	debt

Testing	debt	measures	the	extent	to	which	an	application	is	tested	properly	in	order	to
ensure	that	the	application	keeps	functioning	when	changes	are	made.

We	ran	BlanketJS	on	the	QUnit	test	suite	of	Bootstrap	in	order	to	measure	the	code
coverage	of	the	JavaScript	files.	Below,	you	can	find	the	results.

JavaScript	code	coverage	of	Bootstrap

We	notice	that	while	there	is	some	room	for	improvement,	all	JavaScript	files	are	covered
quite	well	and	there	is	no	real	testing	debt	here.

In	addition,	there	are	some	visual	tests	containing	predefined	webpages	that	should	look
correct	when	testing	the	project.	These	need	to	be	ran	manually	though.

The	test	pyramid	[6]	as	described	by	Martin	Fowler	is	however	not	properly	adhered	to.
While	we	admit	that	the	majority	of	the	framework	consists	of	CSS	files	which	are	hard	to
test,	one	could	however	easily	automate	the	testing	of	the	proper	scaling	of	the	grid	system
when	resizing	a	webpage	using	Nightwatch	for	example.	Also,	the	integration	of	different
components	should	be	tested	better,	as	Bootstrap	is	only	tested	at	unit	level	and	very
basically	at	a	visual	level.

Bootstrap

53

https://getbootstrap.com/
http://blanketjs.org/
http://nightwatchjs.org/

Prevention	of	technical	debt

Contributors	need	to	be	are	aware	of	the	fact	that	they	are	not	the	only	one	using	and/or
contributing	to	the	system	and	that	there	is	a	common	baseline	to	which	all	contributions
must	adhere	in	order	to	reduce	technical	debt.	Only	by	introducing	technical	debt
measurements,	a	project	like	Bootstrap	will	remain	maintainable.	Next	to	the	measurements
regarding	the	source	code,	which	are	explained	below,	the	documentation	also	has	its	own
guidelines.

Code	guidelines

The	Bootstrap	project	uses	HTML,	CSS	and	JavaScript,	which	each	have	different	code
guidelines.	Mark	Otto,	one	of	the	creators	of	Bootstrap,	has	provided	standards	for
developing	flexible,	durable,	and	sustainable	HTML	and	CSS	where	contributors	of	the
project	must	adhere	to.	This	code	guide	can	be	found	here.	In	this	code	guide,	the	preferred
syntax	of	HTML	and	CSS	are	defined,	just	as	some	rules	the	code	must	abide	by.	Next	to
this	code	guide,	Bootstrap	provides	its	own	guidelines	for	every	language.

Test	guidelines

If	a	contribution	to	the	project	contains	JavaScript	code,	a	set	of	relevant	unit	tests	must	also
be	provided.	Each	Bootstrap	plugin	of	the	project	has	its	own	dedicated	test	suite.

Next	to	these	unit	tests	for	each	Bootstrap	plugin,	the	project	also	has	third-party	testing-
related	code,	which	are	written	for	QUnit	and	jQuery.	And	lastly,	the	project	has	"visual"
tests,	which	are	run	interactively	in	real	browsers	and	require	manual	verification	by	humans.

Automated	Testing	Infrastructure

In	order	to	be	able	to	ensure	the	quality	and	integrity	of	the	Bootstrap	project	throughout	the
entire	development	phase,	Bootstrap	also	uses	automated	testing	through	continuous
integration.	The	different	parts	of	the	continuous	integration	are	Travis	CI	and	Hound	CI.

Travis	CI

Travis	CI	is	a	continuous	integration	service	that	is	used	to	build	and	test	software	projects
that	are	hosted	on	GitHub.	Every	time	a	pull	request	is	opened	or	something	is	pushed	to	a
branch	in	the	Bootstrap	project,	Travis	CI	automatically	runs	all	the	unit	tests	of	the	project.
First,	the	framework	and	documentation	are	both	generated.	Then	each	of	them	is
validated/tested.

Bootstrap

54

http://codeguide.co/
https://travis-ci.com/

Hound	CI

In	addition	to	Travis	CI,	Hound	CI	is	also	automatically	triggered	when	a	pull	request	is
opened.	Hound	CI	is	a	hosted	service	that	comments	on	style	violations	in	GitHub	pull
requests.	This	allows	the	project	contributors	to	better	review	and	maintain	a	clean
codebase.	This	is	done	in	order	to	emphasize	care	and	team	communication	and	it
encourages	other	developers	working	in	the	code	to	keep	the	campground	clean.	It	also
avoids	unnecessary	debate	during	code	reviews.

Variability	perspective
The	extent	to	which	a	project	can	be	configured	of	varied	is	called	the	variability	of	a	project.
In	this	section,	an	analysis	of	the	variability	of	the	Bootstrap	project	is	provided.

Since	Bootstrap	is	a	framework,	it	cannot	be	configured	like	other	software	projects.	We	will
therefore	describe	how	each	of	the	features	makes	use	of	other	features	and	how	they	can
be	configured	throughout	the	framework	and	describe	the	variability	perspective	from	the
users'	point	of	view.

Variability	/	configuration	strategy

As	we	have	mentioned	before,	all	Bootstrap	functionality	has	been	built	on	the	idea	of
providing	plugins	that	can	be	enabled/disabled	based	on	the	user's	preferences.	While	by
default	Bootstrap	will	contain	all	functionality,	it	is	possible	to	customize	Bootstrap	to	your
needs	in	order	to	make	your	website	use	less	resources	and	save	user's	bandwidth	in	the
end.	While	it	is	possible	to	compile	the	project	on	its	own,	it	is	also	possible	to	customize	and
download	your	Bootstrap	configuration	via	the	customize	page.	This	page	is	made	available
for	less	experienced	users	and	eases	the	configuration	of	the	framework.

Configuring	the	features

The	configuration	of	Bootstrap	differs	from	most	project	in	the	sense	that	it	is	a	framework
and	not	so	much	a	stand-alone	project.	Therefore,	the	configuration	opportunities	lie	within
using	(or	not	using)	certain	components	in	a	certain	way	that	suits	your	goals.

The	customize	page	allows	users	to	determine	the	features	available	throughout	the	project
and	to	customize	them.	This	page	splits	them	up	into	two	types:	the	style	files	and	the
jQuery	plugins.	One	should	of	course	make	sure	to	exclude	both	the	style	sheet	and	the
jQuery	plugin	when	excluding	a	feature.

Bootstrap

55

https://houndci.com/
https://getbootstrap.com/customize/
https://getbootstrap.com/customize/

One	is	also	able	to	exclude	plugins	or	style	sheets	by	recompiling	the	project	after	altering
the	style	sheets	or	removing	the	mappings	of	the	source	folder	to	the	distribution	folder	for
both	the	style	sheets	and	the	plugins.

Relationships	and	dependencies	between	the	different
features

Bootstrap	is	very	loosely	coupled	and	just	as	with	the	source	code	modularization	there	are
not	many	features	that	are	dependent	on	one	another.	While	in	theory	Bootstrap	has	been
built	on	the	idea	of	providing	plugins	that	can	be	enabled	or	disabled,	one	cannot	simply	use
a	single	plugin	and	neglect	the	rest	of	the	plugins	while	still	maintaining	the	intended
functionality	of	the	Bootstrap	developers.	The	following	diagram	visualizes	the	dependencies
among	the	different	features,	which	are	explained	below.	Please	note	that	this	diagram	has
been	drawn	as	seen	from	the	intended	use	of	the	Bootstrap	developers.

Dependencies	among	different	features

The	key	features	(yellow)	are	the	features	that	most	other	features	are	dependent	on.
These	include	the	basic	Bootstrap	styles	(typography)	and	the	grid	system.
The	navigation	bar	and	the	responsive	utilities	(green)	are	dependent	on	both	key
features	as	they	both	make	use	of	the	grid	system	and	basic	styles.
Most	components	are	modular	(blue)	in	the	sense	that	they	have	almost	no
dependencies,	apart	from	the	basic	Bootstrap	style.	In	addition,	we	see	that	the	input
groups	are	dependent	on	the	forms	feature	as	the	input	groups	are	to	be	used	within	the
forms.
Finally,	the	tooltip	and	popover	(red)	are	dependent	on	almost	every	other	modular

Bootstrap

56

component	(blue).	While	they	do	not	depend	on	all	components	at	once,	the	tooltip	and
popover	features	can	only	be	used	in	combination	with	any	of	the	modular	components.

Evolution	perspective
Throughout	the	years,	Bootstrap	has	evolved	a	lot.	At	this	moment,	the	project	has	36
releases,	from	the	release	of	v1.0.0	on	August	18	2011	to	the	v4.0.0-alpha.2	release	on
December	8	2015.	Between	all	of	those	releases,	a	lot	of	features	has	been	added,	as	is
also	reflected	by	the	increased	size	of	the	project.	In	the	next	figure,	the	additions	and
deletions	per	week	are	shown.

Additions	and	deletions	per	week

As	can	be	seen	in	this	figure,	there	are	a	lot	of	peaks	in	the	additions	and	deletions.	These
peaks	correspond	to	the	releases	of	the	Bootstrap	project.	The	large	peak,	around
February/March	2013	can't	be	explained	through	one	of	the	releases,	but	there	was
probably	a	change	in	project	structure	or	some	mistake	was	made.	The	other	peaks	are
explained	one	by	one	below:

1.	 The	first	release	of	Bootstrap,	v1.0.0.	This	was	the	most	basic	version	with	only	the	key
CSS	features	and	minor	documentation.

2.	 The	release	of	v1.3.0.	In	this	version,	the	first	JavaScript	plugins	were	added	and	the
documentation	was	improved	a	lot.

3.	 The	release	of	v2.0.0.	This	was	basically	an	entire	rewrite	of	the	library.	Also,	additional
responsive	CSS	for	nearly	all	components	was	added.

4.	 Releases	of	v2.0.4	until	v2.2.2.	In	these	releases,	the	documentation	and	HTML	and
CSS	were	improved	and	the	support	of	Travis	CI,	the	continuous	integration,	was

Bootstrap

57

added.
5.	 The	addition	of	some	features,	the	shift	from	global	to	local	dependencies	and	the

addition	of	the	changelog	in	the	repository.
6.	 Release	of	v2.3.2.	The	large	amount	of	added	and	deleted	lines	of	code	is	mainly

caused	by	the	update	of	the	jQuery	dependency.
7.	 The	release	of	version	3	of	Bootstrap.	In	this	version,	Bootstrap	introduced	a	new,	flat

design.	Also,	Bootstrap	is	from	version	3	on,	thanks	to	a	massive	redesign	and	rebuilt,
mobile	first	and	always	responsive.	Also,	the	grid	system	is	improved	a	lot	in	order	to	be
optimized	for	different	screen	sizes	and	the	JavaScript	plugins	are	rewritten.

8.	 Releases	of	v3.1.0	and	v3.2.0.	The	most	important	changes	in	these	releases	were	the
change	of	build	system	and	packaging	and	the	deprecation	of	some	classes.
Furthermore,	responsive	embeds	and	responsive	utility	classes	were	added,	just	as	an
extra	bot	checking	live	code	examples	in	issues	and	pull	requests	on	GitHub.

9.	 The	release	of	v3.3.0.	In	this	release,	another	extra	bot	was	added	for	checking	new
pull	requests	for	common	mistakes.	Also,	some	Less	variables	were	added	for	easier
customization	and	the	accessibility	of	some	plugins	was	improved.

10.	 A	release	of	Bootstrap	with	mostly	bug	fixes.
11.	 A	release	of	Bootstrap	with	mostly	bug	fixes.
12.	 Release	of	v3.3.6.	This	is	the	current	release	of	Bootstrap.

Since	mid-2014,	less	additions	and	deletions	are	done	compared	to	earlier.	This	is	because
in	the	first	few	years,	the	framework	had	to	be	developed	from	scratch.	Nowadays,	the
framework	is	well	developed	and	has	a	lot	of	features.	However,	bug	fixes	are	still	applied
and	new	features	are	still	added.

Bootstrap	4	is	currently	in	development.	But	because	this	isn't	committed	to	the	master
branch,	this	isn't	visible	on	the	graph.	This	is	an	example	that	the	framework	continuously	is
improved	according	to	the	new	standards	in	programming.	While	doing	this,	Bootstrap
ensures	a	high	quality	framework	with	up	to	date	dependencies.	All	of	this	ensures	that
Bootstrap	continues	to	adapt	while	keeping	in	mind	accessibility,	making	it	an	excellent
choice	for	a	web-development	framework,	also	in	the	years	to	come.

Usability	perspective
Applying	the	usability	perspective	ensures	that	the	system	allows	those	who	interact	with	it
to	do	so	effectively	[2].	The	only	place	users	may	interact	with	the	system	is	when	a	user
creates	a	website	with	the	Bootstrap	framework.	This	interaction	only	happens	via
computers,	because	users	don't	develop	websites	on	their	mobile	phones.	Furthermore,

Bootstrap

58

HTML,	CSS	and	JavaScript	can	be	executed	on	every	operating	system,	so	Bootstrap
doesn't	need	to	cope	with	the	variation	in	bandwidth,	hardware	capabilities,	and	rendering
software	issues.

The	interaction	between	the	user	and	Bootstrap	doesn't	occur	via	a	user	interface,	but	via
predefined	HTML,	CSS	and	JavaScript	notations.	Therefore,	Bootstrap	is	a	framework	that
supports	all	large	browsers	as	well	as	mobile	platforms	in	order	to	be	available	to	as	many
users	as	possible.

The	only	touch	point	for	the	Bootstrap	project	is	the	development	of	websites,	which	has	a
comprehensive	touch	point	interaction.	The	user	builds	his	website	with	Bootstrap	and
mainly	the	use	of	the	grid	system	requires	some	knowledge	in	order	to	be	able	to	use.
Furthermore,	the	different	components	can	require	quite	some	time	to	adapt	to	your	needs
as	well.	Bootstrap	tackles	possible	implementation	problems	with	its	extensive
documentation.

Bootstrap	users	vary	from	unexperienced	web	developers	to	very	experienced	web
developers.	This	can	cause	problems,	because	the	unexperienced	users	want	to	develop
their	website	as	easy	as	possible,	while	the	more	experienced	users	want	to	tweak	the
Bootstrap	framework.	The	Bootstrap	framework	can	be	used	without	any	tweaks,	but	can
also	be	adapted	by	the	users	to	fit	their	needs.	Components	of	Bootstrap	can	be	excluded
from	the	resources	and	a	minified	version	of	Bootstrap	is	available	as	well	in	order	to
minimize	the	resource	usage	and	bandwidth,	as	is	also	explained	in	the	variability
perspective.

Possible	improvements
Based	on	our	research	on	the	Bootstrap	project,	we	have	have	come	up	with	some
suggestions	to	further	improve	the	project.	In	order	to	make	the	project	even	more
accessible,	we	suggest	that	the	following	changes	are	made	to	the	project.	These
suggestions	have	also	been	submitted	to	the	issues	list	of	the	Bootstrap	project.

Extending	the	annotations	of	the	style	sheets	and	their
implications	#19418

To	allow	for	manual	adjustment	to	the	developers	needs,	we	recommend	that	all	style	sheets
and	their	implications	are	documented	so	that	developers	become	aware	of	the	changes
they	are	making	and	the	possible	implications	they	may	have.

Development	of	a	real-time	implications	view	#19419

Bootstrap

59

https://github.com/twbs/bootstrap/issues/19418
https://github.com/twbs/bootstrap/issues/19419

Often	developers	will	want	to	change	some	styling	specifically	for	a	certain	use	case	on	their
website.	The	Bootstrap	customize	page	allows	for	these	changes	to	be	made,	but	when
making	these	changes	the	implications	are	not	shown.	Bootstrap	should	allow	developers	to
upload	their	webpage	and	to	make	the	changes	on	the	styling	in	split	screen.	On	the	left
side,	changes	can	be	made,	whereas	on	the	right	side	their	webpage	will	update	accordingly
so	that	changes	can	be	made	more	easily.

Conclusion
The	goal	of	this	research	was	to	study	the	stakeholders,	architecture,	configurability	and
usability	of	the	well-known	Bootstrap	framework.	Mark	Otto,	Chris	Rebert	and	the	Bootstrap
core	team	belong	to	the	most	influential	stakeholders,	but	companies	using	Bootstrap,
jQuery	and	W3Schools	are	also	important	stakeholders	of	the	project.

All	Bootstrap	functionality	has	been	built	on	the	idea	of	providing	plugins	that	can	be
enabled/disabled	based	on	the	user's	preferences.	It	is	very	loosely	coupled	and	there	are
not	many	features	that	are	dependent	on	one	another.	Bootstrap	can	be	styled	and
customized	using	the	customize	page	or	via	editing	the	source	files	and	recompiling	the
project.	This	ensures	the	framework	is	accessible	for	both	experienced	and	unexperienced
users.

There	is	hardly	any	technical	debt	in	Bootstrap,	although	the	integration	of	different
components	could	be	tested	better.	Bootstrap	aims	to	reduce	technical	debt	using	its
automated	testing	infrastructure	which	uses	Travis	CI,	Grunt,	Sauce	Labs,	Amazon	C3	and
Hound	CI.	Furthermore,	it	provides	a	set	of	code	and	documentation	guidelines.

Bootstrap	has	evolved	a	lot	throughout	the	years.	The	last	time,	less	additions	are	done,
because	Bootstrap	is	a	full	grown	framework	nowadays.	This	doesn't	mean	the	framework
isn't	maintained	or	is	slowly	dying.	Still	a	lot	of	bugfixes	are	applied	and	features	are	added.

To	conclude,	Bootstrap	is	a	robust	framework	that	allows	developers	to	create	responsive
web	applications	in	a	very	easy	way.	With	many	more	features	to	come	in	the	upcoming
release,	Bootstrap	will	continue	to	ease	web	development	for	years	to	come,	so	it	remains
an	excellent	choice	for	a	web-development	framework.

References
1.	 Olander,	Stefan,	and	Anne	Landin.	"Evaluation	of	stakeholder	influence	in	the

implementation	of	construction	projects."	International	journal	of	project	management
23.4	(2005):	321-328.

2.	 Nick	Rozanski	and	Eoin	Woods.	2011.	Software	Systems	Architecture:	Working	with

Bootstrap

60

https://getbootstrap.com/customize/
https://getbootstrap.com/customize/

Stakeholders	Using	Viewpoints	and	Perspectives.	Addison-Wesley	Professional.
3.	 Burbeck,	Steve.	"Applications	programming	in	smalltalk-80	(tm):	How	to	use	model-

view-controller	(mvc)."	Smalltalk-80	v2	5	(1992).
4.	 Sven	Apel,	Don	Batory,	Christian	Kästner,	Gunter	Saake.	Feature-Oriented	Software

Product	Lines.	Springer,	2013.
5.	 Tom,	E.,	Aurum,	A.,	&	Vidgen,	R.	(2013).	An	exploration	of	technical	debt.	Journal	of

Systems	and	Software,	86(6),	1498-1516.
6.	 TestPyramid.	(n.d.).	Retrieved	March	27,	2016,	from

http://martinfowler.com/bliki/TestPyramid.html.
7.	 Official	Bootstrap	website,	http://getbootstrap.com.

Bootstrap

61

http://martinfowler.com/bliki/TestPyramid.html
http://getbootstrap.com

CKAN:	The	open	source	data	portal
By	Andy	Chiu,	Boyang	Tang,	Jihong	Ju,	Bo	Wang

Delft	University	of	Technology

Abstract
Pirates	value	gold	as	much	as	researchers	value	data.	They	crawl	through	the	entire	web
driven	by	their	unsatisfying	hunger	for	more	data.	Every	once	in	a	while,	they	find	a	CKAN
instance	which	is	a	wonderful	treasure	trove	filled	with	data,	free	for	everyone	to	take.	As
part	of	the	Delft	Students	on	Software	Architecture	book,	we	provide	an	in-depth	analysis	of
CKAN	the	open	source	data	portal.	This	is	done	by	identifying	key	stakeholders	and	putting
them	into	context.	Followed	by	the	software	architecture	and	how	to	contribute.	Finally,	we
end	with	an	evolution	perspective	and	information	viewpoint.

Table	of	Contents
Introduction
Usability	Perspective
Stakeholders
Putting	into	context
Modules
Common	Processing
Codeline	Organization
Information	Viewpoint
Variability
Technical	Debt
Conclusion

CKAN

62

Introduction
As	a	researcher	you	can	never	have	enough	data,	especially	when	facing	socio-economic
problems.	Technological	advancement	has	created	the	opportunity	to	make	data	freely
available	to	everyone.	Collaborating	by	sharing	data	on	a	world-wide	scale	is	one	step
towards	a	unified	front	for	meeting	the	challenges	of	tomorrow.	Open	data	is	the	formalized
definition	of	this	idea.	In	practice,	most	data	is	kept	under	control	by	both	public	and	private
organizations	due	to	commercial	interest.	Advocates	of	open	data	argue	that	these
restrictions	are	against	the	communal	good	and	that	these	data	should	be	made	available
without	restriction	or	fee.	Furthermore,	they	should	be	re-usable	without	requiring	permission
so	that	we	can	build	upon	earlier	work.

The	Open	Knowledge	Foundation	introduced	CKAN,	the	open	data	portal.	Since	its	release
it	has	been	deployed	by	many	governments,	organizations	and	companies	to	make	their
data	open	and	available.	It	is	a	powerful	data	management	system	that	provides	the	tools	for
publishing,	sharing,	finding	and	using	data.	There	exist	other	data	hub	software	that	can
contain	collections	of	data	from	multiple	sources,	but	they	do	not	provide	the	same	degree	of
freedom	and	flexibility	as	CKAN.	The	latter	is	an	open	source	initiative	that	lets	you	avoid
long-term	lock-in	and	the	code	is	freely	adaptable.	Furthermore,	it	contains	a	rich	set	of
features	that	helps	gathering	data	from	multiple	sources,	faceted	search,	machine	interface
to	data	and	metadata,	and	sharing	public	data	with	other	CKAN	instances.

One	of	the	many	CKAN	websites	is	data.gov.uk,	they	are	also	part	of	the	Steering	Group
that	drives	the	CKAN	project	forward.	The	purpose	for	launching	data.gov.uk	is	to	help
people	understand	how	the	government	works	and	how	effective	policies	are	made	by
releasing	public	data.	Over	19000	data	sets	have	been	published	so	far	by	various	UK
departments.	They	encourage	technical	users	to	create	useful	applications	out	of	raw	data
that	can	benefit	society,	or	investigate	how	effective	policy	making	changes	over	time.

In	this	chapter	of	Delft	Students	on	Software	Architecture	we	will	provide	an	in-depth
overview	of	the	people	involved	in	the	CKAN	project,	the	development	process,	how	CKAN
evolves	over	time	and	its	information	management.

Usability	Perspective
A	CKAN	instance	serves	as	a	place	where	data	can	be	published	and	searched.	The
success	of	the	system	depends	on	the	effectiveness	of	these	tasks.	Therefore,	applying	the
usability	perspective	can	ensure	that	the	system	is	well	suited	to	user	needs.	This
perspective	will	also	give	the	reader	an	impression	of	how	a	CKAN	instance	looks	like	by
introducing	several	key	features	and	how	these	facilitate	high	usability.	CKAN	features	can
be	either	accessed	by	an	intuitive	web	interface	or	by	other	machines	through	a	common

CKAN

63

https://data.gov.uk/
https://data.gov.uk/

API	,	here	we	mainly	discuss	the	web	interface.	It	is	important	to	point	out	that	there	is	a
clear	separation	of	the	user	interface	and	the	functional	processing.	Figure	1	presents	a
screenshot	from	data.gov.uk,	an	exemplary	data	portal	powered	by	CKAN.	Visitors	for	such
a	website	are	mostly	researchers	or	individuals	with	intermediate	computer	experience.

Figure	1,	CKAN	interface

Publish	and	Manage	Data

The	web	interface	allows	data	publishers	to	easily	upload	and	update	their	datasets	in	a
distributed	authorisation	model	called	'Organizations'.	Each	'Organization'	can	manage	its
own	access	rights	instead	of	a	central	admin.	There	is	an	organization	admin	page	for
managing	members,	datasets	and	dataset	access.

Search	Data

CKAN	provides	a	rich	search	experience	based	on	keywords,	tags	and	browsing	between
related	datasets.	Other	options	like	Fuzzy-matching	and	Faceted	search	are	able	to	allow
users	to	search	for	datasets	without	an	exact	keyword	match.	CKAN's	search	is	powered	by
SOLR,	an	open	source	search	platform.

Display	Data

Data	can	be	displayed	by	numerous	previewing	tools	without	downloading	the	data.	This
makes	it	easier	for	the	user	to	inspect	the	data	using	an	appropriate	previewing	tool	for	a
certain	file	type.

CKAN

64

https://data.gov.uk/

Theming

Each	CKAN	instance	can	be	themed	to	match	the	design	of	a	certain	organization.	CKAN
pages	are	generated	from	Jinja2	template	files	which	can	be	modified.	The	design	can	then
incorporate	any	messages	or	workflow	that	best	suit	the	visitors.

Stakeholders
Making	decisions	regarding	the	CKAN	project	involves	multiple	stakeholders,	each	with
different	interests,	requirements	and	needs.	It	is	one	of	the	most	important	tasks	to	correctly
identify	the	stakeholders	in	order	for	the	project	to	succeed,	though	this	is	often	neglected	in
practice.	In	the	following	we	discuss	the	different	stakeholders	based	on	Rozansky	and
Woods	surrounding	the	CKAN	project.	First,	a	high-level	diagram	is	shown	that	presents	a
simple	overview.	This	is	complemented	by	a	more	detailed	description	of	each	stakeholder
and	their	influence.

Figure	2,	CKAN	stakeholders

Stakeholder	Description

CKAN

65

http://jinja.pocoo.org/
https://books.google.nl/books/about/Software_Systems_Architecture.html?id=ka4QO9kXQFUC

The	eventual	users	of	CKAN	are	the	governments,	organization,	and	communities	that	wish
to	publish	or	collaborate	with	data.	Their	interests	and	needs	lie	in	the	usability	and
functionality	of	a	data	portal.	They	require	control	of	data	that	gets	published	and	is
accessible	most	of	the	time.	An	extensive	list	of	CKAN	instances	around	the	world	can	be
found	on	their	website.	CKAN	is	open	source	and	is	free	to	download	and	install	for	any	kind
of	use.	The	Open	Knowledge	Foundation	has	a	professional	team	that	provides	paid	CKAN
services	to	assist	in	deployment,	setup,	hosting	and	support.	This	team	belongs	to	Open
Knowledge	Services	and	can	be	categorized	as	stakeholders	of	the	type	production
engineers,	system	administrator,	suppliers	and	support	staff	with	the	Open	Knowledge
Foundation	as	their	supplier.

The	CKAN	project	started	as	an	initiative	of	the	Open	Knowledge	Foundation	and	is	today
overseen	and	managed	by	the	CKAN	association,	independent	and	with	its	own
governance.	The	steering	group	consists	of	key	stakeholders	who	are	committed	to	oversee
and	steer	the	CKAN	association	forward.	Their	main	responsibilities	are	to	oversee	finance
and	activities	within	other	groups	including	the	legal	and	administrative	aspects.	The
Steering	group	communicates	with	the	advisory	group	which	consists	of	members	and
representatives	that	support	CKAN.	The	latter	gives	advice	and	expresses	the	needs	of	the
community,	but	it	does	not	have	decision-making	authority	for	the	CKAN	association.	Both
groups	belong	to	the	class	acquirers	and	assessors.	The	community	and	communications
team	of	the	association	are	of	the	communicators	stakeholder	type.	Its	responsibility	lies	in
informing	key	users,	communities	and	the	press	trough	meetings	and	online	content	with	the
purpose	of	increasing	engagement.	Finally,	the	technical	team	provides	technical	vision,
makes	major	architectural	decisions	and	has	many	more	responsibilities	regarding	the
software.	Privileges	like	getting	a	vote	on	core	changes	and	setting	the	technical	direction	of
CKAN	make	it	a	very	influential	stakeholder.	It	is	the	core	CKAN	developer	and	maintainer.
In	addition,	there	are	voluntary	contributions	to	the	code	from	around	the	world.

Apart	from	the	stakeholders	defined	in	Figure	2,	we	identify	the	sponsors	which	are	the
members	of	the	CKAN	association.	Membership	is	a	way	for	individuals,	companies	and
organizations	to	support	the	CKAN	Project	and	be	recognized	for	doing	so.	They	contribute
resources	by	providing	money	and	and-kind	resources	such	as	staff-time.	The	level	of
contribution	varies	between	the	different	tiers	of	membership.

Power/Interest	Grid

To	achieve	a	better	understanding	of	the	different	stakeholders,	we	present	a	power/interest
grid.	that	provides	a	simple	view	of	how	influential	each	stakeholder	is	and	the	degree	of
interest.	Identifying	key	stakeholders	that	are	authorized	to	make	decisions	is	essential	for
any	architect.

CKAN

66

http://ckan.org/instances/
http://ckan.org/about/steering-group/
http://ckan.org/about/steering-group/
http://ckan.org/about/community-and-communication-team/
http://ckan.org/about/technical-team/
http://ckan.org/about/members/
https://www.mindtools.com/pages/article/newPPM_07.htm

Figure	3,	power-interest	grid

From	Figure	3	It	is	clear	that	the	Steering	Group	has	the	most	power	that	makes	all	major
decisions,	but	it	does	receive	input	from	the	Advisory	Group.	The	technical	Team	is	in
charge	of	software	and	the	architecture	with	the	privilege	to	vote	on	core	changes.

Putting	into	context
With	the	service	provided	by	CKAN,	dataset	owners	are	able	to	store	and	publish	the	raw
data	and	metadata	in	well-structured	and	manageable	ways.	The	users	can	then	search	for
datasets	of	interest	through	both	the	website	and	APIs.	CKAN	also	allows	various
extensions	and	plugins	developed	by	third-party	developers	to	enrich	the	functionalities	of
CKAN.

The	context	diagram	presents	the	context	of	CKAN	as	well	as	the	scenarios	in	which	CKAN
can	be	used.	The	CKAN	Project	is	sponsored	by	the	Advisory	Group	members	who
contribute	resources,	either	through	contributing	money	or	providing	in-kind	resources	such
as	staff	time,	for	the	development	of	CKAN.	Some	of	the	advisory	group	members,	for
example	Open	Knowledge,	also	provide	technical	support	to	other	CKAN	instances	such	as
UK	open	data	protal.	The	data	published	on	CKAN	instances	can	be	used	for	research
purposes,	commercial	exploitation	or	individual	interests.	The	Technical	Team	takes	charge

CKAN

67

https://github.com/delftswa2016/team-ckan/blob/D6/d4/sub-documents/data.gov.uk

of	code	contributions,	technical	documentation	and	all	other	technical-related	issues	using
Github,	testci	and	many	other	developing	tools.	Volunteer	Developers	are	people	who	are
interested	in	the	project	and	willing	to	contribute	to	some	coding	area,	for	example	fixing
bugs	and	writing	extensions	for	the	CKAN	platform.	Finally,	CKAN	is	not	the	only	open	data
solution,	competitors	like	FiscalNote	and	Socrata	are	playing	the	game	as	well.

Figure	4,	context	view	of	ckan

Modules
We'll	now	have	a	look	at	the	architecture	of	the	CKAN	project.	These	include	the	high	level
modules	that	provide	CKAN's	functionality	and	any	architectural	design	that	is	system-wide
implemented.	Each	module	is	categorized	in	a	layer	for	which	the	dependencies	between
the	different	layers	are	shown.

Pylons

CKAN

68

https://github.com/
https://www.fiscalnote.com/
https://www.socrata.com/

CKAN's	internal	structure	is	adapted	to	the	structure	of	the	Pylons	Web	Framework.	This
framework	works	a	little	differently	than	many	other	web	frameworks.	Normally,	an	entire
framework	is	loaded	first	and	then	it	searches	for	any	project	code	to	execute.	Pylons	does
the	opposite	by	importing	objects	while	running	the	code,	assembling	a	so	called	WSGI
Application	and	returning	it.	This	is	done	to	achieve	a	higher	degree	of	flexibility	and
customizability	in	building	a	web	application.	Pylons	applies	a	Model-View-Controller	(MVC)
architectural	design	pattern.	They	have	extended	this	slightly	by	not	having	the	Controller
directly	interpret	the	client's	request,	it	only	acts	to	determine	the	appropriate	way	to
assemble	data	from	the	model	and	render	it	with	the	correct	template.	In	other	words,	the
Controller	calls	portions	of	the	model	and	view	as	necessary	to	fulfil	the	request.

Module	Organization

In	order	to	gain	understanding	of	the	architecture,	we	present	a	module	structure	diagram.
Three	different	layers	can	be	identified:

1.	 Controller	layer
2.	 Model	Layer
3.	 View	Layer

CKAN

69

http://www.pylonsproject.org/

Figure	5,	modules	of	CKAN

Controller	Layer

When	an	HTTP	request	is	being	send	by	a	client,	the	controller	layer	intercept	this	since	this
is	how	the	Pylon	framework	handles	requests.	The	purpose	of	the	Config	module	is	to	apply
middleware	to	the	request.	These	can	add	additional	functionality	to	the	base	application
depending	on	the	request.	For	example,	the	RoutesMiddleware	parses	the	request	URL	to

CKAN

70

see	if	it	has	a	matching	controller,	the	information	of	the	controller	to	be	called	is	stored	in
the	request.	It	then	attempts	to	locate	the	class	with	a	similar	scheme	in	the	Controller
module.

Module	Layer

The	model	contains	all	the	necessary	modules	to	perform	non-trivial	operations	on	datasets,
organizations	and	users.	The	Logic	module	is	most	abstract	which	accepts	calls	from	the
controller	to	access	data.	Eventually,	data	are	stored	as	atomic	values	in	PostgreSQL,	a
relational	database.	This	makes	it	harder	to	retain	conceptual	information	that	is	present	in
objects	when	using	an	object-orientated	programming	language.	SQLAlchemy	comes	to	the
rescue	by	taking	care	of	the	translation	from	objects	to	relational	database	entries	and	vice
versa.	For	this	purpose,	the	modules	Dictization	and	Models	are	used.	Search	functionality
is	made	possible	by	the	Search	module,	which	in	turn	will	call	the	third-party	SOLR	library
that	will	perform	the	actual	search.

View	Layer

The	data	retrieved	from	the	model	layer	is	display	neutral,	meaning	that	no	formatting	has
been	applied.	CKAN	uses	a	Render	module	which	is	responsible	for	generating	templates
with	the	requested	data	from	the	model.	Jinja2	is	a	designer-friendly	template	language	that
is	imported	by	the	render	module.

Common	Processing
Identifying	common	processing	elements	is	necessary	for	any	large	system,	not	only
because	it	helps	avoid	code	duplication	but	also	because	it	can	improve	the	overall	technical
coherence	and	reduce	the	risk	of	falling	into	intricate	programming	traps.	This	is	where	a
common	design	model	is	needed.	A	clearly	defined	common	design	model	also	makes	it
easier	for	the	developers	to	understand,	upgrade	and	maintain	the	system.	In	this	section,
we	will	provide	an	introduction	to	the	common	processes	in	CKAN	and	how	it	benefits	from
these	design	choices.

1.	 Message	Logging

CKAN	uses	the	Python	standard	library’s	logging	module	to	log	messages.	For	different
messages	with	different	levels	of	destinations,	the	logging	module	supports	writing	to
files,	HTTP	GET/POST,	SMTP	service,	sockets	or	some	OS-specific	logging
mechanisms.	The	log	messages	should	be	short	and	concise,	accompanied	with	proper

CKAN

71

http://www.postgresql.org/
http://www.sqlalchemy.org/
http://lucene.apache.org/solr/
http://jinja.pocoo.org/docs/dev/
http://docs.python.org/2.6/library/logging.html

log-level	(DEBUG,	INFO,	ERROR,	WARNING	or	CRITICAL,	see	Python’s	Logging
HOWTO).	Well	formulated	logging	messages	help	CKAN	developers	and	maintainers
trace	bugs	easily	without	wasting	effort	on	identifying	the	code	causing	the	problem.

2.	 Internationalization

All	user-facing	strings	in	CKAN	code	are	internationalized	so	that	the	translator	could
automatically	localize	the	strings	and	translate	them	for	various	supported	languages	by
CKAN.	"Internationalization"	here	basically	means	passing	the	string	to	the	translation
platform,	Transifex.

CKAN	uses	urls	to	determine	which	language	is	used.	For	example,		/fr/dataset		will
be	shown	in	French.	For	now,	CKAN	already	supports	numerous	languages.	A	list	of
supported	languages	can	be	seen	here.	The	default	language	of	a	CKAN	site	can	be
simply	changed	by	setting	the	ckan.locale_default	option	in	the	config	file	to	desired
language.

CKAN's	language	support	was	contributed	by	a	great	number	of	volunteers,	they	work
together	in	Transifex	to	create	translations	for	CKAN.	This	resulted	in	the	support	of	62
different	languages.	The	translation	team	includes	4	admins,	178	coordinators,	31
reviewers	and	460	translators.

3.	 Documenting	the	parameters,	exceptions	and	returns	of	functions

CKAN	requires	developers	to	document	the	parameters	and	return	values	of	functions.
All	the	CKAN	code	should	also	properly	document	exceptions,	including	the	type	of
exception	and	conditions.	This	informs	other	developers	about	the	behavior	of	a
particular	function	so	that	they	know	what	to	expect	when	using	it.

4.	 Third-party	libraries

CKAN	is	developed	with	dozens	of	third-party	libraries	such	as	the	Pylons	Web
Framework,	the	database	ORM	toolkit	SQLAlchemy,	the	Bootstrap	front-end	framework,
python	standard	library,	etc.	These	libraries	can	be	commonly	used	among	different
code	modules	consistently	for	solving	one	specific	problem.	For	instance,	Pylons	can
provide	solutions	to	session	encryption	while	SQLAlchemy	contains	encryption	module
for	the	database.	The	use	of	third-party	libraries	saves	developers'	efforts	from	solving
trivial	problems	with	existing	solutions.	However,	these	libraries	might	also	limit	the
flexibility,	leading	to	a	tit-for-tat	strategy.

5.	 CKAN	Library

In	addition	to	the	external	libraries,	CKAN	has	an	internal	library	that	contains:

Common	Helper	functions.

CKAN

72

http://docs.python.org/2/howto/logging.html
https://www.transifex.com/okfn/ckan/
https://www.transifex.com/okfn/ckan/
https://www.transifex.com/okfn/ckan/

Security:	User	Authentication	and	Security	such	as	Captcha.
Data	Management:	Data	dictization,	Package	Search,	Package	data	dumper,
Resource	saver	etc.
User	Interface:	Email	Notification,	Emails	reader	and	sender,	Date	Formation,
Webpage	paginator	etc.

These	functions	are	isolated	from	the	other	modules	to	avoid	circular	dependencies	and
are	easy	to	use	by	importing	the	corresponding	modules.	These	functions	help	isolate
common	processes	like	dictizing	data,	dumping	packages,	and	avoid	code	duplication.

6.	 Logic	functions

High-level	functions	like	create,	delete,	search	for	and	get,	patch	and	update	data	from
CKAN	are	available	from	the	logic	module	in	the	Model	Layer.	Controllers	are	able	to
call	them	with		ckan.logic.action.get	.	For	each	logic	action,	there	is	an	authentication
function	to	authorize	the	action.	Besides,	controllers	can	also	validate	external	datasets
in	other	formats	and	convert	them	to	the	proper	format.	These	functions	enable
controllers	to	manage	their	actions	in	high	level	without	considering	how	these	actions
are	implemented	in	detail.

7.	 Testing

All	new	modules	of	code	or	changes	to	existing	code	should	have	passed
corresponding	tests	before	being	merged	into	master.	The	test	modules	in	CKAN	are
maintained	independently	from	the	module	being	tested.	They	can	be	shared	by	many
code	modules.	Therefore,	developers	can	re-use	the	existing	test	modules	instead	of
writing	tests	for	every	new	change.	We	will	also	cover	content	about	testing	standards	in
testing	standerds.

Codeline	Organization
CKAN's	source	code	structure,	coding	standard	and	testing	standard	are	discussed	in	this
section.

Source	Code	Structure

Figure	6	illustrates	the	general	structure	of	CKAN.	Folder	ckan	contains	the	key	modules	of
CKAN,	including	models,	views,	controllers	(the	MVC	pattern),	data	migration	module,	test
module	etc.	Folder	ckanext	holds	the	user	libraries.	Other	folders	contain	configuration	files,
bins	or	documentation.

CKAN

73

https://github.com/delftswa2016/team-ckan/blob/D6/d6/sub-documents/MVC

Figure	6,	code	structure	of	CKAN

Code	Test	Standardization

For	CKAN,	all	new	code	or	changes	to	existing	code	should	have	new	or	updated	tests
before	being	merged	into	master.	Nowadays	CKAN	maintains	2	test	styles	named
	ckan.test.legacy		and		ckan.tests	.	Both	the	legacy	tests	and	the	new	tests	need	to	pass
before	merging	into	the	master	branch.

CKAN

74

Release	Process

The	process	of	a	new	release	starts	with	the	creation	of	a	new	release	branch.	A	release
branch	is	the	one	that	will	be	stabilized	and	eventually	become	the	actual	released	version.
Beta	releases	are	branched	of	a	certain	point	in	master	and	will	eventually	become	stable
releases.	Once	the	release	branch	has	been	thoroughly	tested	and	is	stable	we	can	do	a
final	release.	A	detailed	release	process	can	be	found	in	Figure	7.

Figure	7,	release	process	of	CKAN

Information	Viewpoint

Importance	of	an	information	system

An	information	system	is	defined	as	an	organized	system	for	the	collection,	organization,
storage	and	communication	of	information.	As	we	have	already	discussed	in	the	previous
chapters,	CKAN	is	an	open	data	management	system.	It	allows	data	owners	to	streamline
publishing,	sharing,	finding	and	using	data.	The	essence	of	CKAN	is	an	information	system.
Therefore,	it	could	be	interesting	if	we	have	a	look	at	the	information	model	of	CKAN	and
how	it	satisfies	the	requirements	of	CKAN's	features.

In	order	to	get	a	taste	of	CKAN's	information	system,	it	could	be	helpful	if	we	start	with	a
brief	overview	of	CKAN	features	regarding	data	management.	Data	nowadays	usually	come
in	large	volume	and	is	in	various	formats.	The	data	management	system	should	be	able	to
store	these	data	properly	in	an	efficient	and	flexible	manner.	Besides,	data	needs	to	be
easily	accessed	through	web	interface	and	APIs.	Data	should	be	indexed	and	searchable	so
that	users	are	able	to	find	data	of	interest	conveniently.	It	might	not	be	wise	give	everyone

CKAN

75

authorization	to	data,	so	fine-grained	access	control	is	needed	in	the	system.	In	addition,
data	should	be	spatially	and	temporally	consistent	to	users	accessed	from	different	locations
or	at	different	times.

Information	Model

For	these	purposes,	CKAN	developed	the	following	structures	to	manage	scalability,
flexibility,	availability,	consistency,	persistency	and	safety	of	data:

Datasets	and	Resources

CKAN	uses	so-called	"datasets"	or	"packages"	as	basic	unit	to	store,	publish	and	edit	data
parcels.	Datasets	can	be	temperature	records	from	various	weather	stations	or	any	other
data.	Each	dataset	consists	of	"resources"	which	is	the	data	itself.	In	addition	there	is
information	about	the	data,	referred	to	as	"metadata".	Resources	can	be	stored	as	relational
database	entries	or	separate	files	(XML	files,	images,	linked	data	in	RDF	format).	Different
storage	metrics	allow	CKAN	to	manage	data	in	various	formats.	For	the	structured	data,
each	individual	data	elements	are	accessible	and	querible	with	SQL	queries.	For	the
unstructured	data,	files	are	atomic,	meaning	that	there	is	no	way	to	access	or	query	parts	of
that	file	(see	CKAN	Documentation:	Datasets	and	Resources).

The	use	of	packages	also	improve	the	scalability	of	the	information	system.	One	can
manipulate	only	the	part	of	interest	without	considering	the	size	of	the	whole	data.	Users	can
find	the	packages	efficiently	using	provided	search	tools.

Different	from	other	Cloud	services	like	Netflix,	CKAN	does	not	use	a	distributed	data	store,
because	multi-user	concurrency	is	not	an	important	requirement	for	CKAN's	information
system.	Instead,	the	integrity	of	data	is	usually	favored	by	data	publishers	to	avoid	data
conflicts.	Therefore,	CKAN	decided	to	implement	central	data	storage	to	satisfy	their	needs.

Users,	Organizations	and	Authorization

As	mentioned	in	Section	Usage	Perspective,	CKAN	users	are	structured	based	on
"organizations",	for	example	Environment	Agency	from	the	UK	government.	Users	within
organizations	can	create,	edit	and	publish	datasets	depending	on	their	authorization	level
which	can	be	configured	by	the	system	administrators.	When	an	action	is	taken,	the
parameters	passed	to	CKAN	are	validated	against	a	schema.	The	schema	contains	a	list	of
functions	that	will	validate	the	value	of	the	corresponding	parameters	like	the	existence	of
datasets,	the	user	permissions,	etc.	These	schemas	are	customizable	by	the	system
administrator.

CKAN

76

http://docs.ckan.org/en/latest/user-guide.html#datasets-and-resources

Data	Flow

Figure	8.	CKAN	data	flow

We	have	seen	the	static	structure	in	the	previous	two	subsections.	In	this	part,	we	change
our	perspective	to	the	dynamic	flow	in	CKAN's	information	system.	Figure	8	presents	the	life
cycle	of	a	dataset.	It	is	first	created	(registered)	by	the	users	within	an	organization.	Datasets
can	be	updated	during	its	life	time.	Every	time	it	is	updated,	the	old	version	gets	added	to	the
history	of	all	edits	and	dataset	metadata	using	the	Open	Knowledge	Foundation's	Versioned
Domain	Model	(VDM).	The	latest	dataset	version	is	available	for	users	before	being	deleted
and	added	to	trash.	Datasets	are	usually	accessed	via	various	APIs.	The	web	interface	is
also	build	on	top	of	these	APIs.	Version	control	helps	recover	from	corrupt	data.	It	simplifies
making	changes	and	enhances	collaboration	among	multiple	editors	within	one	organization.

Variability
Many	of	CKAN's	features	can	be	enabled	by	downloading	the	corresponding	plugins	and
include	them	in	a	configuration	file.	These	add	additional	functionality	to	the	CKAN	core.	The
configuration	file	also	contains	settings	for	toggling	certain	features,	some	are	dependent	on
one	another.	For	example,	specifying	a	default	resource	view	requires	that	the
corresponding	plugin	is	loaded.	Also,	if	datasets	don't	have	to	belong	to	an	organization	then
creating	unorganized	users	must	also	be	enabled.	A	conflict	between	features	can	arise	if
both	simple	and	faceted	search	is	enabled.	Finally,	a	language	must	be	specified	in	the
Locales	Offered	setting	before	it	can	be	set	as	Locale	Default	or	included	in	Local	Order.	A

CKAN

77

https://pythonhosted.org/vdm/

diagram	from	FeatureIDE	is	shown	in	Figure	9	that	visualizes	some	features	and	their
dependencies.	To	keep	the	size	manageable,	only	a	selection	of	features	are	included	that
have	some	dependency.

Figure	9,	CKAN	feature	IDE

These	configurable	features	can	be	changed	at	different	binding	times.	we	classify	these
features	into	two	categories:	boot	time	features	and	runtime	features.

Boot-Time	Features

CKAN	configuration	options	are	generally	defined	before	starting	the	web	application	(boot-
time),	these	options	can	be	modified	via	configuration	files	or	environment	variables.

These	are	generally	low-level	critical	settings	needed	when	setting	up	the	application,	like
the	database	connection,	the	SOLR	server	url,	etc.	Sometimes	it	can	be	useful	to	define
them	as	environment	variables	to	automate	and	orchestrate	deployments	without	having	to
first	modify	the	configuration	file.	These	options	are	only	read	at	startup	time	to	update	the
config	object	used	by	CKAN,	but	they	won’t	be	accessed	any	more	during	the	lifetime	of	the
application.

Run-Time	Features

A	limited	number	of	configuration	options	can	also	be	edited	during	runtime.	This	can	be
done	on	the	administration	interface	or	using	the		config_option_update()		API	action.	Only
sysadmins	can	edit	these	runtime-editable	configuration	options.	Changes	made	to	these
configuration	options	will	be	stored	in	the	database	and	persists	when	the	server	is
restarted.	In	addition,	Extensions	can	add	(or	remove)	configuration	options	to	the	ones	that
can	be	edited	at	runtime.

Configurable	Feature	Evolution

CKAN	has	already	been	developed	for	years	and	open-sourced	from	the	very	beginning.	A
full	changelog	with	detailed	descriptions	starting	from	2009	(v0.10)	is	available	for	the
evolution	history	and	a	ideas	and	roadmap	is	set	for	the	direction	of	CKAN's	evolution.

CKAN

78

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
http://docs.ckan.org/en/latest/changelog.html
https://github.com/ckan/ideas-and-roadmap/issues

These	help	a	lot	for	our	analysis	of	the	evolution	of	CKAN's	variability	mechanisms	and
features.	In	Figure	10	we	will	highlight	some	of	the	most	important	configurable	features	as
examples	of	the	evolution.

Figure	10,	several	example	configurable	features	evolution	of	CKAN,	for	example,	search
configuration,	API	configuration,	authorization	configuration	and	sysadmins	configuration

Technical	Debt
Technical	debt	is	a	metaphor	referring	to	the	eventual	consequences	of	any	system	design,
software	architecture	or	software	development	within	a	codebase.	Technical	debt	is	not
necessarily	a	bad	thing,	and	sometimes	it	is	required	to	move	projects	forward.	But	if
technical	debt	is	not	repaid,	it	could	continue	accumulating,	making	the	system	hard	to
maintain	and	implement	changes	later	on.

Coding	Language	and	Test	Suite	Update

CKAN

79

One	of	the	biggest	consequences	of	technical	debt	CKAN	now	faces	is	to	maintain	and
update	the	old	code	base.	Since	CKAN	uses	many	different	development	tools	and	coding
languages,	it	has	to	keep	the	code	up	to	date	to	accomodate	the	latest	version	of	each	tool.
Issue#2772	is	an	example	that	CKAN	wants	to	update	its	CSS	pre-processor.	These	kinds
of	updates	usually	mean	rewriting	a	lot	of	code	and	may	cause	some	compatibility	issues.

Lack	of	Documentation

This	open	source	project	was	build	and	developed	by	multiple	developers.	Documentation	is
an	essential	part	for	understanding	each	other's	work.	CKAN	has	created	a	doc	folder	to
store	all	documents.	But	this	folder	is	not	well	structured	and	can	be	hard	for	user	to	find
relevant	information.	Also,	most	of	the	files	lack	description	about	their	usage.

Defects

While	developing,	some	pieces	of	code	may	not	work	as	intended.	Bugs	are	inevitable	even
with	a	strict	test	process.	The	accumulation	of	defects	may	cause	technical	debt.	There	are
a	lot	of	issues	that	report	defects	and	some	of	them	remain	unsolved.

Figure	11	illustrates	the	analysis	result	returned	by	SonarQube.	The	majority	of	CKAN's
technical	debt	is	focused	on	efficiency	and	maintainability.	These	kinds	of	technical	debt	are
mainly	caused	by	non-standard	code.	SonarQube	gave	CKAN	a	score	of	A	and	the	technical
debt	ratio	was	1.0%.	Results	indicate	that	code	duplications	account	for	2.6%	of	CKAN	files,
which	exists	in	108	blocks	and	23	files.

Figure	11,	technical	debt	of	CKAN

With	the	help	of	the	ideas	and	roadmap,	the	CKAN	team	is	able	to	identify	the	features,
functionalities,	services	or	apps	to	be	discussed.	Estimation	of	effort	can	be	made	for	each
of	the	issues.	The	development	schedule	is	then	made	based	on	the	discussions.	This
mechanism	of	development	management	can	help	the	developers	identify	the	technical
problems	in	advance	and	reasonably	allocate	their	effort	so	that	unnecessary	technical

CKAN

80

https://github.com/ckan/ckan/issues/2772
https://github.com/ckan/ckan/issues?q=bug+label%3ABug
http://docs.sonarqube.org/
https://waffle.io/ckan/ideas-and-roadmap

debts	can	be	avoided.	In	addition,	developers	will	also	benefit	from	this	clear	development
roadmap	when	they	have	to	make	an	inevitable	technical	debt	by	adding	the	debt	to	the
Backlog	and	coming	back	to	it	when	it	gains	higher	priority.

Conclusion
In	this	chapter,	we	provided	an	overall	view	for	an	open	source	data	management	portal
named	CKAN	together	with	various	detailed	perspectives.

The	key	features	of	CKAN	are	publishing	data	and	making	them	easily	searchable	by
anyone	that	is	interested.	Since	its	release,	many	governments,	organizations	and
communities	have	launched	a	data	portal	powered	by	CKAN.	This	can	be	considered	a
success	and	a	major	step	towards	realizing	the	idea	of	Open	Data.	The	steering	group,
advisory	group	and	techincal	team	are	the	most	important	stakeholders.	They	will	keep
steering	CKAN	in	the	right	direction.	CKAN's	internal	structure	resembles	an	MVC-model
where	functionality	is	clearly	separated	from	the	interface.	Common	processing	and	codeline
organization	help	the	development	team	to	remain	consistent.	CKAN	developers	made	a	lot
of	effort	to	make	sure	that	each	CKAN	instance	has	customizable	configuration	options	to
satisfy	their	user's	needs.	Still,	there	is	not	much	dependency	between	the	different	features.
Since	its	birth	in	2010,	CKAN	has	evolved	to	a	mature	project	where	improved	authorization
and	support	for	multiple	data	views	are	notable	changes.	However,	changes	came	at	a	cost
and	have	introduced	technical	debt	primarily	in	maintainance	and	efficiency	due	to	non-
standard	coding.

We	are	grateful	for	having	the	chance	to	study	a	well-developed	open	source	project.	In	this
process,	we	have	learned	a	lot	about	the	exterior	and	interior	of	CKAN.	Stakeholders	play	an
important	part	and	it	is	key	to	consider	their	needs	throughout	the	development	process	and
evolution	of	the	system.

CKAN

81

CodeCombat:	learn	how	to	code	by
playing	a	game.

Maikel	Langezaal,	Yu	Liang,	Chengxin	Ma	and	Martijn	Cligge.

Delft	University	of	Technology,	2016

Abstract
CodeCombat	is	an	online	multiplayer	game	designed	for	users	to	learn	how	to	code.	This
chapter	gives	an	overview	of	the	software	architecture	of	CodeCombat	by	adopting	multiple
views	and	perspectives.	The	system	is	analyzed	from	shallow	to	deep.	It	starts	off	with	some
more	high-level	analyzes,	like	a	feature	and	stakeholder	analysis.	After	that,	a	more
technical	analysis	of	the	architecture	has	been	made,	like	a	development	view	and	a
variability	analysis.	One	of	the	findings	of	this	analysis	is	that	the	system	is	well	organized
but	lacks	some	standardization.	Lastly,	the	technical	debt	of	the	system	has	been	analyzed.
This	presented	some	aging	libraries	and	inadequate	documentation.	Overall,	CodeCombat
is	a	structured	system	with	many	features	and	it	is	continuously	being	improved	by	many
stakeholders.

Table	of	content
1.	Introduction
2.	What	is	it	CodeCombat?	-	The	start	of	your	coding	adventure
3.	Functional	view	-	What	functions	does	the	system	perform?
4.	Who	is	involved?	-	The	builders	of	the	empire

4.1	Stakeholder	analysis
4.2	Power-interest	matrix

CodeCombat

82

https://codecombat.com
https://github.com/Maikdani
https://github.com/jessicaly
https://github.com/MaChengxin
https://github.com/mecligge

5.	Context	view	-	The	Context	of	CodeCombat
5.1	System	scope	and	responsibilities
5.2	External	entities
5.3	Context	view	diagram

6.	Development	View	-	The	building	blocks	of	the	empire
6.1	Modular	structure
6.2	Common	design	models	-	The	laws	of	the	empire
6.3	Codeline	organization

7	Usability	perspective	-	Interaction	with	the	user
7.1	Users
7.2	Touch	points

8.	Variability	perspective	-	Variability	of	the	features
8.1	Feature	model
8.2.	Features	binding

9.	Technical	debt	-	How	well	is	the	system	implemented?
10.	Conclusion
References
Appendix

1.	Introduction
Coding	is	becoming	more	and	more	important	in	the	modern	day	world.	Some	people	even
say	that	coding	should	be	a	mandatory	class	in	school	and	most	companies	nowadays
require	their	employees	to	have	some	basic	coding	skills.	Coding	can	be	really	useful	in
many	situations,	for	example	building	an	innovative	application	or	solving	a	complex
mathematical	problem.

So,	imagine	that	you	are	inspired	by	all	the	things	you	could	do	with	coding,	which	options
are	available	to	learn	how	to	code?	You	could	start	by	reading	coding	books	and	doing
boring	exercises,	ending	up	scratching	the	head	and	staying	up	late	night	after	night.	But	if
you	are	interested	in	a	more	fun	and	interactive	way	of	learning,	CodeCombat	might	be	an
option.	CodeCombat	is	an	online	multiplayer	game	where	people	can	learn	how	to	code	by
playing.	The	game	is	set	in	the	dark	ages	and	the	user	plays	the	role	of	a	knight.
CodeCombat	is	created	with	a	mission;	it	intends	to	be	an	integral	part	of	the	programming
community	where	newcomers	can	learn	how	coding	can	be	fun	and	programmers	of	higher
skill	level	can	play	to	challenge	and	expand	their	skills.	CodeCombat	was	founded	in	2013
by	Nick	Winter	and	has	more	than	five	million	active	players.	The	source	code	of	the	system
is	publicly	available	via	its	repository	on	Github.

CodeCombat

83

http://time.com/2881453/programming-in-schools/
https://github.com/nwinter
https://github.com/codecombat/codecombat

Four	TU	Delft	students	from	the	DESOSA	(Delft	Students	on	Software	Architecture)	group
have	made	an	in-depth	analysis	of	the	architecture	of	the	CodeCombat	system.	The	analysis
is	based	on	different	architectural	views	and	perspectives.	The	chapter	starts	with	a	feature
description,	followed	by	a	functional	view.	After	that,	a	stakeholder	analysis	will	show	who	is
involved	in	the	development	of	the	game.	Subsequently,	a	context	view	has	been	made	to
discover	the	interactions	between	the	system	and	its	environment.	The	development	view
will	elaborate	more	on	the	modular	structure	of	the	system	while	the	usability	perspective
shows	how	the	user	interacts	with	the	system.	The	variability	perspective	will	show	how
variability	is	handled.	Lastly,	the	technical	debt	analysis	will	describe	how	well	the	system	is
implemented.

2.	What	is	it	CodeCombat?	-	The	start	of	your
coding	adventure
CodeCombat	is	a	feature	rich	web-based	game	and	is	compatible	with	most	mainstream
browsers,	such	as	Chrome,	Firefox,	Safari,	and	Internet	Explorer.	The	game	is	available	in
multiple	natural	languages	and	is	therefore	easily	accessible	for	international	players.	The
user	can	learn	six	different	programming	languages	by	playing	the	game	(Javascript,
Python,	CoffeeScript,	Clojure,	Lua,	and	Io).	To	get	started,	the	first	thing	a	user	has	to	do	is
create	an	account.	The	user	can	log	into	his	personal	account	via	its	Google,	Facebook,	or
CodeCombat	account.	There	are	different	type	of	accounts	available;	there	is	an	account
type	made	for	teachers,	one	for	students	and	one	for	normal	players.	The	students	can
choose	of	6	different	courses	which	can	teach	them	specific	programming	skills,	and
teachers	can	manage	these	courses	via	their	account.

Now	the	coding	journey	can	start!	The	player	can	either	start	playing	a	level	created	by	him-
/herself	(Yes!	It	is	possible	to	create	levels	by	the	players	themselves!)	or	choose	one	from
the	campaign	levels.	After	the	level	selection,	a	user	has	to	choose	a	game	character	and
attach	items	to	this	character,	like	a	sword	or	some	type	of	clothes.

But	how	do	these	levels	look	like?	In	the	screenshot	in	figure	1	the	user	interface	of	the
game	is	shown.	The	game	character	can	be	seen	on	the	left,	and	is	controlled	with	the	code
editor	on	the	right.	An	example	of	this	is	command		this.moveRight()		which	moves	a	game
character	to	the	right.	In-game	settings	(like	the	sound	volume,	zoom	in/out,	and	full-screen
mode)	and	code	editor	settings	(like	enabling	autocompletion	of	codes)	can	be	configured	by
the	user.

CodeCombat

84

Figure	1	A	screenshot	of	the	game

Besides	playing	the	regular	game,	CodeCombat	offers	users	the	option	to	create	their	own
levels	and	game	characters.	This	is	done	by	two	features:	the	level	editor	and	the	thang
editor.

Users	can	create	their	own	level	via	the	level	editor.	The	level	editor	is	based	on	the	Thang
Component	System.	Different	items	(like	barrels,	a	background,	and	walls)	can	be	added	to
the	level	via	the	level	design	section.	Additionally,	scripts	(defining	what	is	happening	in	the
level,	what	the	goals	of	the	level	are	and	which	programming	language	the	user	can	learn),
sample	codes	(coding	hints	for	the	code	editor),	so-called	systems	(defines	how	the	level
renders),	and	some	other	small	details	(like	a	name	for	the	level)	can	be	added	to	the	level.

To	motivate	user's	creativity,	game	characters,	and	items	(both	called	Thangs)	can	be
customized	via	the	Thang	editor.	The	behavior	and	the	characteristics	of	a	game	character
(for	example	if	a	character	can	jump,	or	have	certain	fight	strength)	can	be	modified	in	the
components	section.	Users	can	change	the	name	of	their	Thang	and	edit	the	general
configuration	of	their	Thang	like	the	color,	type	of	body	parts,	sounds	it	makes	and
animations	of	movement.	Lastly,	users	can	choose	to	modify	or	create	items,	like	a	sword	or
shoes.	These	items	can	be	used	later	while	playing	the	game.

3.	Functional	view	-	What	functions	does	the
system	perform?
All	of	the	previously	described	features	perform	certain	functions.	The	functional	view	of
CodeCombat	demonstrates	how	the	system	performs	these	functions.	It	is	expressed	in	the
fashion	of	a	Boxes-and-Lines	Diagram.

The	diagram	in	figure	2	shows	the	functional	view	of	the	system	with	functional	elements.
A	functional	element	is	a	software	code	module,	an	application	package,	a	data	store,	or
even	a	complete	system.	Each	functional	element	holds	some	responsibilities.	The

CodeCombat

85

https://github.com/codecombat/codecombat/wiki/Thang-Component-System

functional	elements	are	derived	from	the	features	of	CodeCombat,	as	seen	in	Table	1.	In
CodeCombat,	a	functionality	can	be	as	concrete	as	"enlarging	the	editor	size	by	a	factor	of
150%",	or	as	abstract	as	"editing	self-defined	levels".	To	make	the	model	simple	and	clear,
functional	elements	in	the	diagram	stay	at	an	abstract	level.

Functional	elements Feature

User	Information	System
Log	in
User	types
Account	settings

UI	Language	Selector Internationalization

Course	System Courses

Programming	Language	Selector Programming	languages

Level	Editor

Level	editor-Level	design
Level	editor-Level	script
Level	editor-Sample	code
Level	editor-documentation
Level	editor-Systems

Thang	Editor
Thang	editor-Components
Thang	editor-General	Configurations
Thang	editor-Item	Editor

Multiplayer	Mode Multiplayer	levels

Game	Play	Core

Game	version
Game	characters
Game	items
Game	campaign	levels

In-Game	Tweak	Tool
General	game	settings
Editor	settings

Table	1	Functional	elements	and	their	features.

In	the	center	of	the	diagram	the	core	part	of	the	game	is	shown,	i.e.	the	game	play	function.
This	function	depends	on	the	programming	language	selection,	user	interface	language
selection,	(optional)	use	of	editors,	in-game	tweak	tool,	and	user	information	system.	Also
other	functions,	including	the	course	system	and	the	multiplayer	mode,	depend	on	this	game
play	core.	The	direction	of	the	arrows	indicates	the	dependency	among	the	function
elements.

CodeCombat

86

Figure	2	CodeCombat	functional	view	diagram

This	brief	overview	showed	that	CodeCombat	is	a	very	feature-rich	game	with	many	different
functions.	Developing	a	game	with	many	different	features	requires	a	diverse	development
team.	In	the	following	section,	the	development	team	of	the	game	will	be	discussed.

4.	Who	is	involved?	-	The	builders	of	the
empire

4.1	Stakeholder	analysis

To	get	to	know	the	people	who	are	responsible	for	the	CodeCombat	project,	a	stakeholder
analysis	has	been	made.	The	book	Software	architecture	of	Rozanki	&	Woods	(2012)
provides	a	handy	overview	to	identify	different	type	of	stakeholders.	The	stakeholders	are
identified	by	looking	at	pull	requests	and	issues	on	their	Github	page,	and	by	looking	at	the
website	of	the	game.	The	complete	set	of	stakeholders	is	shown	in	figure	3.	Some	of	the
most	important	are	discussed	below.

CodeCombat

87

http://www.viewpoints-and-perspectives.info/home/stakeholders/
https://github.com/codecombat/codecombat
https://codecombat.com/

Figure	3	Complete	overview	of	stakeholders

Developers	and	testers

Developers	and	testers	are	the	ones	who	develop	a	product/system	from	specifications	and
then	test	it.	Their	main	activities	include	coding	and	testing.

The	pull	request	and	issue	analysis	shows	that	Imperadeiro98,	nwinter,	differentmatt	and
Scott	Erickson	are	the	most	active	developers	and	testers	on	the	repository	of	CodeCombat.
They	made	and	merged	most	of	the	pull	requests	and	raised	most	of	the	issues.	But,	there
are	many	more	developers	and	testers	can	be	found	on	the	Github	contributors	tab	and	their
website	(see	figure	4	for	Github	users,	and	figure	3	for	developers	on	website).

Figure	4	Github	contributors

CodeCombat

88

https://github.com/Imperadeiro98
https://github.com/nwinter
https://github.com/differentmatt
https://github.com/sderickson
https://github.com/codecombat/codecombat/graphs/contributors

Acquirers,	accessors,	and	maintainers

Acquirers	oversee	the	procurement	of	the	system	while	maintainers	oversee	the	evolution	of
the	entire	system	once	it	is	operational.	Accessors	oversee	the	system's	coherence	on
standards	and	legal	regulations.

Firstly,	the	acquirers	are	Nick	Winter	(CEO)	and	Scott	Erickson	(CTO),	the	founders	of
CodeCombat.	Secondly,	the	pull	request	and	issue	analysis	showed	that	the	both	of	them
are	also	taking	care	of	most	of	the	technical	issues	and	the	overall	evolution	of	the	system,
so	they	can	also	be	identified	as	the	maintainers	of	the	system.	Lastly,	the	assessors	are
Nick	Winter,	Scott	Erickson,	and	Github	user	Imperadeiro98.	Nick	Winter	focuses	more	on
the	intellectual	property	issues,	which	are	a	key	factor	in	developing	software	projects	to
avoid	getting	involved	into	legal	problems	while	Scott	Erickson	and	Imperadeiro98	have	the
responsibility	to	check	if	commits	on	Github	comply	with	the	standards	used	in	the
CodeCombat	repository.

The	communicators	and	supporting	staff

Since	CodeCombat	is	an	open	source	project,	communication	with	the	community	is	very
important.	Communicators	provide	documentation	while	the	supporting	staff	provides
support	to	the	users.

On	Github,	Popey	Gilbert	edits	the	Wiki	page	of	the	CodeCombat	repository	and	is	therefore
the	main	communicator.	CodeCombat	provides	additional	documents	about	other
information	on	their	website	and	blog.	The	website	and	the	blog	function	both	as
documentation-and	support	tool.	Nick	Winter	is	posting	messages	on	this	blog	and	Michael
Gradin	updates	their	website.	So,	Nick	and	Michael	can	be	identified	both	as	support	staff,
as	well	as	communicators.

Another	kind	of	support	staff	are	the	translators,	whose	responsibility	is	to	translate	the
game	into	other	natural	languages.	These	translations	are	being	made	most	by	a	variety	of
Github	users.

Users

The	user	group	mainly	consists	of	students	who	want	to	learn	to	code,	teachers	who	use	it
as	educational	material,	and	general	users	who	just	want	to	play	a	game.

Others

CodeCombat

89

https://github.com/nwinter
https://github.com/sderickson
https://github.com/nwinter
https://github.com/sderickson
https://github.com/Imperadeiro98
https://github.com/popey456963
https://codecombat.com/community
http://blog.codecombat.com/

Other	stakeholders	include	the	Funder	of	the	project,	Y	combinator.	Competitors	like	Code
School	and	Codingame,	system	administrators	like	Matt	lott,	and	suppliers	like	server
providers.

4.2	Power-interest	matrix

A	rich	set	of	stakeholders	is	the	result	of	the	stakeholder	analysis.	To	get	a	more	structured
overview	of	the	set	of	stakeholders	with	their	power,	a	power	interest	matrix	has	been	made
(see	in	figure	5).

Figure	5	Power-interest	matrix

The	stakeholder	analysis	showed	that	Scott	Erickson,	Nick	Winter	are	the	most	important
people	who	are	responsible	for	the	development	of	the	game.	To	get	to	know	the
environment	of	the	game	and	the	interactions	between	CodeCombat	and	its	environment,	a
context	view	has	been	made	(again	based	on	Rozanki	&	Woods	(2012)).

CodeCombat

90

https://www.ycombinator.com/
https://www.codeschool.com/
https://www.codingame.com/
https://github.com/differentmatt
http://www.viewpoints-and-perspectives.info/home/viewpoints/

5.	Context	view	-	The	relationships	between
CodeCombat	and	its	environment
Now	it	is	time	for	a	more	technical	analysis	of	the	system!	The	context	view	of	a	system
defines	the	relationship	between	the	system	and	its	environment.

5.1	System	scope	and	responsibilities

System	scope	and	responsibilities	of	CodeCombat	define	what	the	system	should	do	in
order	to	fulfill	its	objective,	which	in	this	case	is	providing	users	an	environment	where	they
can	learn	to	code	by	playing	a	game.	As	mentioned	in	the	section	of	functional	view,	the
scope	and	responsibilities	of	the	system	include	the	following:

Enabling	the	users	to	register,	login,	and	edit	their	personal	accounts
Enabling	users	(specifically	teachers)	to	create	classes	or	users	(specifically	students)
to	join	classes
Providing	a	forum	where	users	can	discuss	the	game
Providing	game	related	aspects	(like	game	level	selecting,	game	role	choosing,	and
game	coding	language	choosing)
Providing	different	language	options	(Both	natural	languages	and	programming
languages)

5.2	External	entities

There	are	ten	external	entities	in	the	CodeCombat	system,	and	together	they	make	up	the
environment	where	CodeCombat	resides.	The	ten	external	entities	are	listed	below:

Supported	browsers:	mainstream	browsers	like	Chrome,	Firefox,	Internet	Explorer,	and
Safari
Developing	language:	CoffeeScript,	Jade,	Sass,	and	HTML
Server	side	support:	the	backend	support	of	the	system,	including	system	server
(Node.js),	database	used	to	store	the	data	(mongoDB),	the	web	framework	(Express.js),
and	libraries	used	on	the	server.	More	details	about	the	libraries	can	be	found	here:
Third	party	software	and	services
Browser	side	support:	third	party	software	like	sitewide	libraries,	gameplay	libraries,	and
services	(e.g.	Box2D,	a	physics	engine).	More	details	about	the	libraries	can	be	found
here:	Third	party	software	and	services
System	testing	tools:	Karma,	Jasmine,	and	BrowserStack
Developing	and	maintaining	platform:	Github
Continuous	integration	tool:	Travis	CI	(which	ensures	the	testing	of	every	pull	request
on	the	Github	before	merging)

CodeCombat

91

http://coffeescript.org/
http://jade-lang.com/
http://sass-lang.com/
http://www.w3schools.com/html/html_intro.asp
https://nodejs.org/en/
https://www.mongodb.com/
http://expressjs.com/
https://github.com/codecombat/codecombat/wiki/Third-party-software-and-services
http://box2d.org/
https://github.com/codecombat/codecombat/wiki/Third-party-software-and-services
https://karma-runner.github.io/0.13/index.html
http://jasmine.github.io/
https://www.browserstack.com/
https://github.com/
https://travis-ci.org/

Communication	tools:	Discourse	(a	forum	software)	and	SETT	(a	high-engagement
blogging	software)
License	support:	MIT	license

5.3	Context	view	diagram

The	diagram	below	in	figure	6	shows	the	context	view	of	CodeCombat.	The	context	view
diagram	shows	the	system	scope	and	responsibilities,	external	entities,	as	well	as	the	most
important	stakeholders	of	section	4.	

Figure	6	The	context	view	diagram

6.	Development	View	-	The	building	blocks	of
the	empire.
The	context	view	showed	how	the	environment	and	the	interaction	with	the	environment
looked	like.	But	how	does	“inside”	of	the	game	itself	looks	like?	In	other	words,	how	is	the
game	built,	which	modules	are	used	and	how	are	these	modules	developed?	A	development
view	(based	on	Rozanki	&	Woods	(2012))	can	give	answers	to	these	questions.

6.1	Modular	structure

CodeCombat

92

https://www.discourse.org/
http://sett.com/
https://opensource.org/licenses/MIT

CodeCombat	is	a	single-page	web	application	and	consists	of	a	client	side	and	a	server
side.	The	client	side	follows	the	Model-View-Controller	(MVC)	pattern	using	Backbone.js.
The	choice	of	MVC	results	in	an	arhcitecture	where	new	features	can	be	added	easily.
The	server	side	follows	the	framework	provided	by	Express.js.	In	figure	7,	a	modular
structure	model	is	displayed.

Figure	7	Modular	structure	of	CodeCombat

The	presentation	layer	provides	users	with	the	final	view	of	the	CodeCombat	web
application	via	a	graphical	user	interface.	It	is	dependent	on	the	lower	layers	in	the	model.

The	client	side	consists	of	three	layers	and	follows	the	structure	of	MVC	pattern.	The	model
layer	contains	model	components	of	the	CodeCombat	client	side.	The	controller	layer
interacts	with	models	and	renders	the	view.	The	view	layer	is	used	for	producing	the	web
pages	for	the	presentation	layer.

The	server	side	consists	of	two	layers.	The	route	layer	determines	how	CodeCombat
responds	to	client	requests	to	particular	endpoints.	The	handler	layer	consists	of	two
modules.	The	middleware	module	is	used	for	pre-processing	of	the	requests	from	the	clients
and	the	handler	module	is	responsible	for	processing	the	requests	when	certain	routes	are
matched.

The	utility	layer	provides	utilities	and	configuration	files	that	can	be	used	in	other	layers.	An
example	of	such	a	configuration	module	is	the	config	coffee	module.

Dependencies	between	layers	are	denoted	by	arrows	in	figure	7.	The	presentation	layer	has
dependencies	on	the	view	layer,	the	controller	layer,	and	the	utility	layer.	The	view	layer
produces	the	web	pages	for	the	presentation	layer.	The	controller	layer	is	responsible	for
rendering	the	view.	The	route	layer	has	a	dependency	on	the	handler	layer	because	the

CodeCombat

93

https://nl.wikipedia.org/wiki/Model-view-controller-model
http://backbonejs.org
http://expressjs.com

route	layer	determines	how	CodeCombat	responds	to	client	requests	to	particular	endpoints,
while	handler	layer	provides	functions	when	the	route	is	matched.	The	utility	layer	provides
support	for	other	layers.

6.2	Common	design	models	-	The	laws	in	the	empire

Now	that	it	is	clear	how	the	modular	structure	looks	like,	it	is	important	to	know	what
guidelines	maintain	this	structure.	Many	developers	are	working	on	the	game,	so	some
common	design	models	are	necessary	to	keep	the	structure	of	the	system	consistent.

Logging,	Internationalization	and	Database	interaction

The	developers	make	use	of	the	following	levels	of	logging	messages:		console.log	,
	console.info	,		console.warn		and		console.error	.	Most	of	the	logging	is	done	with	the
standards	library	of	Javascript	but	at	the	server	level,	Winston	is	used.

Internalization	is	to	implement	the	game	in	a	certain	way	so	it	can	easily	be	adapted	to
specific	natural	languages.	CodeCombat	does	not	want	to	be	dependent	of	natural
languages,	and	therefore	uses	the	i18next	tool	to	deal	with	translations.

CodeCombat	combines	many	data	from	the	server	together	to	form	the	game.	Because
users	are	allowed	to	make	their	own	characters	and	levels,	there	is	a	risk	that	there	is	a	data
overload.	Therefore,	they	use	GridFS	for	storing	this	data	when	interacting	with	the
database.	GridFS	stores	data	not	into	single	documents,	but	divides	it	into	parts	or	so-called
chucks.	Therefore,	they	can	interact	with	their	data	with		Pathmetadata	,	instead	of	interacting
with	a	whole	document.

Standardization	of	Design

The	project	consists	mainly	of	CoffeeScript	files,	and	contributors	are	therefore
recommended	to	follow	the	CoffeeScript	Style	Guide.	The	guide	presents	a	collection	of
best-practices	and	coding	conventions	for	the	CoffeeScript	programming	language.	They
also	follow	the	CSS	Style	Guide	from	Primer.	Additional	to	these	style	guides,	there	are
some	other	guidelines	developed	by	the	founders	of	the	CodeCombat	team	on	the
CodeCombat	wiki.	For	the	use	of	third-party	tools	it	is	recommended	to	have	a	look	at	the
currently	used	third-party	tools	and	use	one	of	these	instead	of	adding	another	a	new	one.

Standardization	of	Testing

Testing	is	something	that	can	be	really	helpful	in	open	source	projects	to	establish	a	robust
source	code.	Unfortunately,	CodeCombat	has	no	guidelines	on	testing.	But,	CodeCombat
does	some	testing	without	general	guidelines.	The	CodeCombat	Github	account	is	hooked

CodeCombat

94

https://github.com/winstonjs/winston
https://github.com/polarmobile/coffeescript-style-guide
http://primercss.io
https://github.com/codecombat/codecombat/wiki/Coding-Guidelines

up	to	TravisCI	which	runs	all	the	server	and	client	side	tests	for	each	commit	and	pull
request.	Also,	there	are	some	third-party	tools	used	for	testing.	The	tools	used	include
Request	and	Jasmine.	Request	is	used	to	test	query	to	the	test	server.	Jasmine	is	a
behavior-driven	development	framework	for	testing	CoffeeScript.

Overall,	the	guidelines	for	both	testing	and	design	appear	simple	and	are	quite	abstract.	For
a	system	where	some	many	different	people	are	working	on	it	is	important	to	have	some
standards	for	a	consistent	system	design.

6.3	Codeline	organization

Figure	8	shows	an	overview	of	the	directory	structure	of	the	CodeCombat	directory	on
Github.	It	shows	the	main	folder	structure	as	well	as	the	connections	between	those	folders.
The	app	and	server	folders	are	the	core	of	the	CodeCombat	application,	where	the	server
folder	runs	the	code	on	the	server.

The	server	folder	contains	many	subfolders,	and	only	some	of	them	are	shown	in	the
figure.
The	folder	app	contains	the	client	application	source	and	runs	in	the	browser	of	the
user.
The	folder	test	contains	all	the	files	used	for	testing.
Third	party	resources	are	located	in	the	vendor	folder.
The	bin	folder	contains	the	development	bash	utility	scripts	and	the	folder	of	scripts
contain	information	of	the	status	of	the	system.
Lastly,	the	spec	folder	contains	mostly	files	for	testing	and	support.

Figure	8	Codeline	Organization	model

Now	that	some	more	technical	guidelines	have	been	analyzed	in	this	section,	it	is	also
important	to	focus	on	some	more	high-level	guidelines	which	focus	on	the	user	interface.
since	many	different	types	of	users	interact	with	the	game.

CodeCombat

95

https://travis-ci.org
https://www.hurl.it
http://jasmine.github.io
https://www.hurl.it
http://jasmine.github.io
https://github.com/codecombat/codecombat
https://github.com/codecombat/codecombat/tree/master/server
https://github.com/codecombat/codecombat/tree/master/app
https://github.com/codecombat/codecombat/tree/master/test
https://github.com/codecombat/codecombat/tree/master/vendor
https://github.com/codecombat/codecombat/tree/master/bin
https://github.com/codecombat/codecombat/tree/master/spec

It	is	therefore	important	that	the	system	is	user-friendly,	especially	since	younger	students
are	working	with	the	game.	In	the	usability	perspective	this	aspect	of	the	system	will	be
analyzed.

7.	Usability	perspective	-	Interaction	with	the
user
The	usability	perspective	states	that	the	desired	quality	of	a	system	is	that	it	allows	for	an
effective	interaction	between	the	user	and	the	system.	The	major	aspects	that	are	covered
include	the	usability	and	interaction	of	the	user	interface.

7.1	Users

The	type	of	users	(as	described	in	earlier	sections)	are	students,	teachers	and
programmers.	Each	user	has	a	different	level	of	experience.	Most	users	use	the	system	as	a
final	product,	but	there	are	some	users	who	make	contributions	to	the	project.	These
contributions	are	for	example	designing	levels	and	objects	via	the	editors,	or	contributing	to
the	source	code	on	GitHub.	Those	type	of	users	are	more	experienced	with
coding/computers	since	this	might	be	a	bit	more	complicated	than	just	playing	the	game.

7.2	Touch	points

So,	how	should	the	user	interface	manage	all	these	different	types	of	user	requirements?
Firstly,	because	of	diverse	level	of	user	experience,	the	systems’	user	interfaces	should	be
simple	to	use	and	easy	to	navigate	through.	Secondly,	it	has	to	take	into	account	the
different	type	of	users	(e.g.	non-students	should	not	have	to	interact	with	the	student	section
page).
Thirdly,	since	the	game	is	used	all	over	the	world	the	game	should	be	translated	into	many
different	languages.

To	make	it	easier	for	the	user	to	navigate	to	the	right	page	the	general	systems	user
interface	can	be	divided	into	three	parts;	the	homepage	of	CodeCombat,	the	game	and	the
editors	page.	This	results	in	the	following	setup:

Homepage
Account
Info

Game
Menus

Editor

CodeCombat

96

http://codecombat.com/contribute

Page	layout
Editors

The	first	user	interface	is	the	homepage	(see	figure	9).	On	this	page,	the	users	can	easily
navigate	to	their	desired	pages,	namely	the	teacher	page,	the	student	page	,	and	the	regular
player	page.	On	all	of	these	pages	only	very	little	options	are	available	for	the	users.	This
results	in	an	easy	navigation	for	all	of	the	users,	whether	they	are	experienced	or	not.

Figure	9	The	homepage	interface

The	second	user	interface	(see	figure	10)	the	user	can	interact	with	is	the	in-game	interface.
This	interface	helps	the	user	by	pointing	out	where	to	navigate	by	showing	a	pointer	to	the
next	level.	The	most	buttons	in	the	in-game	interface	are	straightforward,	but	some	of	them
are	not	explained	beforehand.	This	results	in	that	the	users	have	to	figure	out	the	meaning	of
the	buttons	themselves.	Nonetheless,	in	the	first	level	of	the	game	a	tutorial	is	given	on	how
to	use	the	system.

CodeCombat

97

Figure	10	The	in-game	interface	with	the	tutorial

The	third	user	interface	(see	figure	11)	the	user	can	interact	with	is	the	editors	page.	The
editors	page	user	interface	is	not	easy	to	understand	for	most	users	and	therefore	requires
some	additional	reading	on	the	wiki,	or	simply	some	trial	and	error.	Furthermore,	it	is	difficult
to	locate	to	editors	page	itself,	since	to	get	there	the	user	has	to	navigate	to	the	bottom	of
the	homepage	and	find	the	small	‘community’	link.	This	link	directs	the	user	to	the	editor
page.	The	name	of	this	link	is	not	straightforward	and	easy	to	understand.

Figure	11	The	editor	page	user	interface

CodeCombat

98

http://codecombat.com/community

The	overall	concept	of	CodeCombat	is	about	teaching	users	how	to	code.	The	interface	of
the	system	takes	into	account	the	variety	of	users	by	the	ease	of	use	and	the	thorough
explanation	at	the	first	time	using	the	game.	Generally,	the	interfaces	can	be	considered	as
self-explanatory,	but	some	interfaces	are	less	straightforward,	like	the	editor	page.

8.	Variability	Perspective	-	Variability	of	the
features

8.1	Feature	model

Some	of	the	features	described	in	section	2	of	this	chapter	have	a	high	variability.	The
features	and	their	variability	are	displayed	in	figure	12.

Figure	12	Feature	model.

The	model	displays	the	settings	feature	variability	on	the	left	side,	which	consists	of	game
settings	and	account	settings.	Game	settings	mainly	includes	the	chosen	game	character
and	items,	the	settings	of	the	editor	(the	part	of	the	UI	where	the	user	enters	code	to	control
the	game	character),	and	the	chosen	programming	language.	Account	settings	include	user
type	and	game	version.	The	game	has	special	environments	for	the	different	user	types
(teacher	or	student)	and	offers	a	free	and	paid	version.

The	support	homepage	variability	consists	of	the	internationalization	feature	(there	are	over
40	different	natural	languages	available),	login	options	(Google,	Facebook,	or	CodeCombat
itself)	and	courses.	The	feature	courses	is	meant	for	both	the	teachers	and	students	and
consists	of	different	classes_	where	various	programming	skills	can	be	learned	and	taught.

The	game	campaign	levels	feature	variation	depends	on	the	chosen	level.	As	described
earlier,	CodeCombat	works	with	the	Thang	Component	System	(see	section	2).
Each	level	consists	of	different	thangs	,	components	,	scripts	and	systems.	All	of	these	items
together	form	a	level	in	which	the	user	can	play.

All	these	aspects	can	be	modified	via	the	feature	editors,	as	described	in	section	2.

8.2	Features	binding

CodeCombat

99

http://codecombat.com
http://codecombat.com/play
https://github.com/codecombat/codecombat/wiki/Thang-Component-System

How	is	variability	configurated?	Different	implementation	techniques	to	determine	the
different	binding	times	of	features	are	discussed	in	this	section.

During	compile-time	binding

In	CodeCombat	features	are	implemented	independently	without	class	refinement,	but	rather
with	class	extensions.	Almost	all	models	in	the	folder		codecombat/app/models/		extend	from
the	CocoModel.	For	example,		Level.coffee		in	the	folder		codecombat/app/models/		focuses
on	the	feature	GameCampaignLevels	and	extends	from	the	class
	codecombat/app/models/CocoModel.coffee	,	which	is	also	a	subclasses	from	Backbone.Model.
Therefore,	codecombat	does	not	hold	the	two	compile-time	variabilities,	preprocessor,	and
feature-oriented	programming.

Furthermore,	CodeCombat	is	mainly	written	in	CoffeeScript,	which	means	it	requires
precompilation	to	javascript.	The	precompilation	can	be	involved	with	some	compile-time
feature	binding,	in	which	decisions	are	made	about	which	files	to	include	to	generate
javascript.

During	load-time

Load-time	binding	involved	with	command-line	parameters	and	configuration	files.	Variations
are	available	after	compilation	and	before	deployment.	An	example	of	the	load-time
variability	of	feature	internationalization	is	implemented	in	server_setup.coffee	file,	which	can
be	found	in	the	repository	in	CodeCombat.	The	code	below	(figure	13)	realizes	the	feature
Internationalization	according	to	the	country	code	of	domain	name.	For	example,	the
language	of	codecombat	china	with	country	code	cn	is	set	to	be	Chinese.

CodeCombat

100

setupCountryRedirectMiddleware	=	(app,	country="china",	countryCode="CN",	languageCode=

"zh",	serverID="tokyo")	->

		shouldRedirectToCountryServer	=	(req)	->

				speaksLanguage	=	_.any	req.acceptedLanguages,	(language)	->	language.indexOf	langu

ageCode	isnt	-1

				unless	config[serverID]

						ip	=	req.headers['x-forwarded-for']	or	req.connection.remoteAddress

						ip	=	ip?.split(/,?	/)[0]		#	If	there	are	two	IP	addresses,	say	because	of	CloudF

lare,	we	just	take	the	first.

						geo	=	geoip.lookup(ip)

						#if	speaksLanguage	or	geo?.country	is	countryCode

						#		log.info("Should	we	redirect	to	#{serverID}	server?	speaksLanguage:	#{speaksL

anguage},	acceptedLanguages:	#{req.acceptedLanguages},	ip:	#{ip},	geo:	#{geo}	--	so	re

directing?	#{geo?.country	is	'CN'	and	speaksLanguage}")

						return	geo?.country	is	countryCode	and	speaksLanguage

				else

						#log.info("We	are	on	#{serverID}	server.	speaksLanguage:	#{speaksLanguage},	acce

ptedLanguages:	#{req.acceptedLanguages[0]}")

						req.country	=	country	if	speaksLanguage

						return	false		#	If	the	user	is	already	redirected,	don't	redirect	them!

		app.use	(req,	res,	next)	->

				if	shouldRedirectToCountryServer	req

						res.writeHead	302,	"Location":	config[country	+	'Domain']	+	req.url

						res.end()

				else

						next()

Figure	13	Example	of	source	code	during	load	time

During	run-time

With	run-time	bindings,	decisions	can	be	changed	during	execution	time.	Since	the	features
implemented	at	run-time	binding	follows	the	same	pattern	set	by	MVC,	in	this	section	only
several	features	have	been	analyzed	in	detail.

The	feature	Login	enables	users	to	sign	in	their	user	account	with	their	CodeCombat
account,	Facebook	account,	or	Google	account.	When	users	try	to	log	in	codecombat	from
browser	side,	the	server	will	first	load	the	three	account	selections	for	users.	After	the
selection,	the	request	is	sent	from	the	browser	to	the	server	to	enable	access	token	of
different	login	methods	for	users.

The	feature	Game	Characters	enables	users	to	choose	a	game	character	from	various
game	characters.	With	requests	from	the	users	and	responses	from	the	server,	users	can
change	game	characters	during	running	time.

CodeCombat

101

Now	that	the	whole	system	has	been	analyzed,	it	is	interesting	to	look	at	how	the	system	is
put	into	practice.	This	is	done	by	looking	at	the	technical	debt.	Technical	debt	is	a	metaphor
used	to	describe	legacy	problems	that	need	to	be	solved	or	obsolete	components	that	needs
to	be	updated.

9.	Technical	Debt	-	How	well	is	the	system
implemented?
The	technical	debt	analysis	focuses	on	aging	libraries,	documentation,	defects,	and
refactoring.	The	identified	technical	debts	are	as	follows:

Aging	Libraries

Using	aged	libraries,	especially	no	longer	maintained	ones,	is	exposing	the	system	to	risks
and	the	vulnerability	of	the	system	will	naturally	increase.	In	table	2	an	overview	of	all	of	the
aging	libraries	is	shown.

Libraries Version	Used Latest	Version

Backbone.js 1.1.0 1.2.3

jQuery 2.1.4 2.2.1

moment.js 2.5.1 2.11.2

i18next 1.7.3 v2

d3 3.4.13 3.5.16

Modernizr 2.8.3 3.3.1

Firebase 1.0.24 2.4.1

Table	2	Aging	libraries

It	can	be	concluded	that	some	important	libraries	are	outdated.	Using	software	like	Bundler,
improves	the	overall	insight	in	the	status	of	the	used	libraries	for	developers.	Therefore,
CodeCombat	is	strongly	advised	to	use	such	a	service.

Documentation

Documentation	is	a	great	assistant	to	a	number	of	stakeholders	(e.g.	users,	developers,	and
maintainers).	However,	the	documentation	of	CodeCombat	is	not	centralized	in	one	place
and	far	from	sufficient,	because	most	of	the	documentation	available	describes	the	system
very	briefly.	This	brings	difficulty	to	playing,	developing,	and	maintaining	the	game.

CodeCombat

102

Defects

The	most	easy	technical	debt	to	find	is	the	defects	in	the	code,	which	are	listed	on	GitHub
issue	tab.	Some	bugs	are	reported	more	than	two	years	ago	but	still	unfixed,	like	issue	#28
and	issue	#311.	They	indicate	the	presence	of	technical	debt	and	need	to	be	fixed	as	soon
as	possible.

Refactoring

By	looking	at	some	pull	request,	one	could	conclude	that	CodeCombat	refactors	their	code.
In	pull	request	#1394	and	pull	request	#1379	rubenvereecken	did	some	refactoring.	This	is
only	an	example	of	one	refactoring	of	code,	and	since	there	is	not	much	discussion	on	the
pull	request,	it	is	hard	to	draw	a	conclusion	of	their	refactoring	policy.

10.	Conclusion	and	recommendations
The	architectural	analysis	results	in	some	interesting	findings.	CodeCombat	is	a	game	with
many	different	features	and	functionalities,	which	teaches	users	how	to	code	by	playing	the
regular	game	and	also	enable	users	to	create	their	own	content	via	the	editors.	The
functional	view	shows	that	the	core	functionality	of	CodeCombat	is	the	regular	game	play,
which	depends	on	various	functional	elements	with	different	responsibilities.	The	context
view	shows	the	outside	environment	of	the	system	without	which	CodeCombat	cannot	be
successfully	built,	tested,	and	operated.

Many	different	types	of	stakeholders	are	involved	in	the	development	of	the	system.	The
most	important	stakeholders	are	the	founders,	Nick	Winter	and	Scott	Erickson.	They	are	still
involved	in	the	development	of	the	game	by	merging	most	of	the	pull	requests.	There	are
also	many	contributors	actively	contributing	to	the	system	on	the	Github	repository.	These
contributors	all	have	different	ways	of	working,	which	therefore	require	some	guidelines	to
realize	a	consistent	design	of	the	system.	The	development	view	shows	that	although
CodeCombat	makes	use	of	some	design	and	testing	guidelines,	the	level	of	detail	of	these
guidelines	could	be	improved.	However,	the	development	view	presented	also	a	good
aspect	of	the	system;	the	system's’	modular	structure	with	a	MVC	architecture	is	well
organized.

The	usability	perspective	showed	that	most	of	the	interfaces	are	user-friendly,	but	the	editor
interface	lacks	some	user-friendliness	since	the	interface	is	sometimes	messy	and	unclear.
The	variability	perspective	shows	that	features	presented	to	the	users	are	mainly	configured
in	the	run-time.	Furthermore,	technical	debt	is	another	aspect	that	needs	the	attention	of

CodeCombat

103

https://github.com/codecombat/codecombat/issues/28
https://github.com/codecombat/codecombat/issues/311
https://github.com/codecombat/codecombat/pull/1394
https://github.com/codecombat/codecombat/pull/1379
https://github.com/nwinter
https://github.com/sderickson?tab=activity

developers.	Some	examples	of	technical	debt	are	aging	libraries	and	inadequate
documentation.	These	problems	need	to	be	solved	since	it	would	potentially	bring	obstacles
to	the	development	of	the	system.

All	in	all,	CodeCombat	is	a	structured	project	which	has	attracted	a	large	amount	of	users.
Developers	who	want	to	contribute	to	the	project	could	focus	on	standardization,	technical
debt	and	the	usability	of	some	of	the	interfaces.

References
[1]	Nick	Rozanski	and	Eoin	Woods.	2012.	Software	Systems	Architecture:	Working	with
Stakeholders	Using	Viewpoints	and	Perspectives.	Addison-Wesley	Professional.

[2]	Apel,	Sven,	Don	S.	Batory,	Christian	Kästner,	and	Gunter	Saake.	Feature-oriented
Software	Product	Lines:	Concepts	and	Implementation.	Retrieved	on	5-3-2016	from
http://link.springer.com/book/10.1007/978-3-642-37521-7

[3]	CodeCombat	Homepage.	Retrieved	on	18-2-2016	from	https://codecombat.com/

[4]	CodeCombat	GitHub	Repository.	Retrieved	on	5-3-2016	from
https://github.com/codecombat/codecombat

[5]	CodeCombat	Blog.	Retrieved	on	18-02-2016	from	http://blog.codecombat.com/

[6]	CodeCombat	Facebook	Page.	Retrieved	on	5-3-2016	from
https://www.facebook.com/codecombat

[7]	CodeCombat	Wiki	Home.	Retrieved	on	18-2-2016	from
https://github.com/codecombat/codecombat/wiki

[8]	Why	Basic	Coding	Should	Be	a	Mandatory	Class	in	Junior	High.	Retrieved	on	30-3-2016
from	http://time.com/2881453/programming-in-schools/

[9]	Managing	technical	debt.	Retrieved	on	5-3-2016	from:
https://18f.gsa.gov/2015/10/05/managing-technical-debt/

Appendix

Contributing	to	CodeCombat

Besides	learning	how	to	code	by	using	CodeCombat,	users	can	also	learn	how	to	code	by
contributing	to	it.	This	way	it	is	possible	to	code	coding	while	working	on	a	real	project	and
this	makes	CodeCombat	even	better.

CodeCombat

104

http://link.springer.com/book/10.1007/978-3-642-37521-7
https://codecombat.com/
https://github.com/codecombat/codecombat
http://blog.codecombat.com/
https://www.facebook.com/codecombat
https://github.com/codecombat/codecombat/wiki
http://time.com/2881453/programming-in-schools/
https://18f.gsa.gov/2015/10/05/managing-technical-debt/

How	to	start	contributing

Making	contributions	can	be	done	in	several	ways,	but	is	mostly	done	by	forking	the	Github
repository	and	work	on	issues.	Another	way	is	by	using	one	of	the	editors	that	are	integrated
on	the	CodeCombat	web	page.	For	more	information	about	the	editors	it’s	best	to	look	at	the
wiki	page	of	CodeCombat.

Before	any	contribution	can	be	made	the	user	has	to	sign	the	Contributor	License
Agreement.	After	this	the	user	can	set	up	the	CodeCombat	environment	and	start	making
contributions.

For	working	on	translations	for	CodeCombat	users	can	also	go	to	the	Diplomat	page	and	go
to	the	translation	page	for	translating	the	levels	or	select	the	language	they	want	in	the	list	of
languages	to	translate	the	interface	and	website.	Selecting	a	language	from	the	list	brings
them	to	the	respective	file	for	that	language	on	GitHub,	where	they	can	edit	it	online	and
submit	a	pull	request	directly.

CodeCombat

105

http://codecombat.com/contribute
http://codecombat.com/editor
https://github.com/codecombat/codecombat/wiki/
https://codecombat.com/cla
https://github.com/codecombat/codecombat/wiki/Archmage-Home
http://codecombat.com/contribute/diplomat
http://codecombat.com/i18n

	D3.js	-	Data-Driven	Documents
Authors:	M.	Dunnewind,	P.	Gupta,	S.	van	Schooten	and	P.	van	der	Veeken

Abstract
D3.js	is	a	JavaScript	library	which	enables	developers	to	manipulate	a	website's	HTML,
DOM	and	CSS	styling.	The	core	strengths	of	the	library	are	the	specialized	manipulation
functionalities	which	allow	for	binding	DOM	elements	to	a	dataset.	This	data-binding,	along
with	a	multitude	of	additional	functionality,	makes	it	easy	to	create	beautiful,	interactive
visualizations.	The	library	is	a	long	standing	and	proven	project	which	is	used	by	developers,
data	scientists	and	journalists	alike	to	create	a	diverse	range	of	different	visualizations	about
all	kinds	of	topics.	In	order	to	stay	future-proof,	relevant	and	to	keep-up	with	new
developments,	constant	work	is	done	on	the	architecture.	A	prime	example	of	this	continued
development	is	the	upcoming	release	of	version	4.0.	This	release	features	a	rewrite	of	the
entire	library	structure,	to	make	it	completely	decoupled	and	suitable	for	extensive
customization.

Table	of	Contents
Introduction
D3.js
Stakeholders
Architecture
Evolution
Conclusion

Introduction
D3.js	(Data-Driven	Documents)	is	a	long	standing	and	widely	used	visualization	library
written	in	Javascript.	It	enables	developers	to	easily	manipulate	a	webpage's	HTML	DOM
(Document	Object	Model)	and	CSS	styling	to	create	stunning	visualizations.	The	central

D3.js

106

concept	on	which	the	library	is	built,	is	that	it	should	be	possible	to	easily	bind	data	to	DOM
elements.	This	data-binding,	along	with	a	multitude	of	additional	functionality,	makes	it	easy
to	create	beautiful,	interactive	visualizations.

The	library	has	existed	for	several	years	now,	and	during	its	lifetime	it	has	went	through
several	major	version	changes.	These	changes	range	from	architectural	modifications	to
natural	evolution	in	order	to	keep	up	with	the	changing	needs	of	the	library's	users.	This
becomes	most	obvious	when	looking	at	the	upcoming	major	version	change,	in	which	the
structure	of	the	library	is	completely	overhauled	to	make	it	more	modular	and	customizable.

In	this	chapter	we	will	try	to	demonstrate	how	powerful	and	well-suited	D3.js	is	for	visualizing
data.	Additionally,	we	will	detail	how	the	library	has	evolved	throughout	the	years,	how	the
underlying	architecture	of	the	library	functions	and	who	the	different	people	and
organizations	are	who	have	a	vested	interest	in	this	library.

D3.js
Before	we	dive	deeper	into	the	architectural	intricacies	of	this	visualization	library,	you	as	a
reader	should	first	gain	a	better	understanding	of	how	D3.js	is	used	by	hundreds	of
thousands	of	developers	around	the	world	to	create	breathtaking	visualizations.	This	section
will	attempt	to	give	an	insight	into	the	ways	D3.js	facilitates	creating	these	visualizations	and
what	the	general	workflow	is	for	doing	so.

Creating	Visualizations	with	D3.js

D3.js	works	by	allowing	its	users	to	easily	attach	data	to	DOM	elements.	By	harnessing	the
power	of	CSS,	SVG	and	HTML,	it	becomes	possible	to	create	stunning,	interactive
visualizations.

Ben	Fry	has	described	the	process	of	creating	visualizations	from	data	as	a	series	of
subsequent	steps	[9]:

1.	 Acquire
2.	 Parse
3.	 Filter
4.	 Mine
5.	 Represent
6.	 Refine
7.	 Interact

Step	1	will	not	be	very	relevant	to	using	D3.js,	because	acquiring	an	actual	dataset	of	which
to	create	a	visualization	is	something	the	user	needs	to	themselves,	obviously.

D3.js

107

Parse

Datasets	are	commonly	formatted	as	either	comma-separated	values	or	tab-separated
values.	For	both	these	formats	D3.js	provides	functionality	to	parse	them.

A	concrete	example:	imagine	that	the	grades	of	participants	of	the	software	architecture
course	are	stored	in	a	file	called	grades.csv	which	is	structured	in	the	following	manner:

group_name,	language,	members,	grade

Team-d3,	Javascript,	4,	9

....

We	now	want	to	visualize	if	the	choice	of	language	is	correlated	with	a	group's	grade.	The
first	step	is	then	to	parse	the	grades.csv	file.	Which	is	done	like	so:

var	grades	=	[]

d3.csv("grades.csv",	function(data)

{

				/*data	is	now	an	array	of	json	objects	containing	the	data	

				from	the	csv*/

				data.forEach(function(d))

				{

								/*each	d	is	one	line	of	the	csv	file	represented	as	a	

								json	object*/

								grades.push({

								"group":d.group_name,	

								"language":d.language,	

								"members":d.members,	

								"grade":	d.grade});

				})

});

Notice	in	the	code	example	above,	how	seamless	the	transition	is	from	parsing	a	dataset	to
mapping	the	resulting	data.

Filter

When	a	dataset	is	parsed,	it	is	rarely	the	case	that	it	contains	only	the	data	one	is	interested
in.	In	such	cases,	the	data	needs	to	be	filtered	in	order	to	trim	away	the	irrelevant	entries.
D3.js	provides	its	users	with	the	powerful		filter()		function	for	doing	exactly	that.

Continuing	with	the	example	above,	say	we	are	only	interested	in	the	languages	Javascript,
C++	and	Ruby,	then	we	need	to	filter	out	all	the	other	languages.	Furthermore,	for	the
visualization	we're	creating,	the	group's	name	and	number	of	members	are	not	very
relevant,	therefore	we	need	to	filter	those	out	as	well.

D3.js

108

grades	=	grades.filter(function(d)

{

				//Filter	for	only	our	desired	languages

				var	lang	=	d.language;

				if(lang	==	"Javascript"	||	lang	==	"C++"	||	lang	==	"ruby")

				{

								//Return	only	the	fields	we're	interested	in

								return	{"language":d.language,	"grade":d.grade};

				}

});

`

We	now	have	an	array	of	filtered	data	containing	only	the	variables	we're	going	to	use	for	a
visualization.

Mine

The	nest	feature	of	D3.js	allows	for	elements	in	an	array	to	be	grouped	in	a	tree	structure
much	like	the	GROUP	BY	operator	in	SQL.	Unlike	the	SQL	operator	though,	Nests	allow	for
multiple	levels	of	grouping.	Mining	data	is	all	about	extracting	useful	information	from	a
dataset.	Nests	make	it	effortless	to	categorize	data	in	any	way	the	user	wants,	and	for	this
reason	D3.js	is	a	powerful	tool	to	use	for	the	mining	step	in	creating	a	visualization.

An	example:	The	data	obtained	from	the	filter	example	above,	now	looks	something	like	this:

var	grades	=	[

				{language:"Javascript",	grade:9,

				{language:"C++",	grade:8},

				{language:"Ruby",	grade:5},

				{language:"Javascript",	grade:7},

				{language:"C++",	grade:6},

];

We	now	want	to	group	the	data	by	programming	language	and	then	order	by	grade,	to	see	if
the	choice	of	programming	language	has	an	influence	on	the	grade	of	a	team.	This	is	done
easily	with	the	following	code:

var	nest	=	d3.nest()

				.key(function(d)	{	return	d.language;})

				.key(function(d)	{	return	d.grade;}).sortKeys(d3.descending)

				.entries(grades);

which	produces	formatted	data,	like	so:

D3.js

109

var	nest	=	[

				{key:	'Javascript',	values:	[

												{key:	'9',	values:

																[{language:	'Javascript',	grade:	9}]

												},

												{key:	'7',	values:	[

																{language:	'Javascript',	grade:	7}]

												}]

				},

				{key:	'C++',	values:	[

												{key:	'8',	values:	

																[{language:	'C++',	grade:	8}]

												},

												{key:	'6',	values:	

																[{language:	'C++',	grade:	6}]

												}]

				},

				{key:	'Ruby',	values:	[

												{key:	'5',	values:	

																[{language:	'Ruby',	grade:	5}]

												}]

				}];

This	example	might	be	a	bit	trivial,	but	it	should	be	clear	that	grouping	data	in	this	way	is
exceptionally	useful	when	working	with	large	datasets	with	a	lot	of	variables.

Represent

In	this	step	of	the	visualization	process,	one	is	supposed	to	choose	in	what	way	they	want	to
represent	the	data.	Common	representations	are	graphs,	lists,	trees,	etc.	Whatever	choice
the	user	decides	to	make,	d3.js	will	provide	a	framework	which	will	make	the	most	common
obstacles	(i.e	creating	scales,	interpolating	points)	of	each	representation	less	of	a	chore.

The	author	of	D3	maintains	a	gallery	which	showcases	a	great	diversity	of	the	types	of
visualizations	[17].	An	important	take-away	from	this	gallery	is	that	visualizing	data	is	most-
definitely	not	restricted	to	just	charts	and	graphs,	but	can	instead	be	done	in	so	many
different	ways.	With	the	most	important	rule	being:	Explain	and	convey	information	in	the
simplest	way	possible,	but	not	simpler.

Refine

Refinement	entails	making	the	chosen	representation	as	comprehensive	and	unambiguous
as	possible.	D3.js	doesn't	necessarily	make	this	step	easier	because	refinement	is	mostly	a
subjective	step,	however	it	does	make	applying	colour	scales,	formatting	timestamps	or
easing	lines,	for	example,	trivial.

D3.js

110

Interact

D3.js	provides	a	whole	host	of	functionality	to	create	transitions	and	animations	easily.	It	is
therefore	at	this	step	that	D3.js	is	arguably	at	its	most	effective.	An	outstanding	example	of
how	interactivity	can	make	a	visualization	more	effective,	is	the	scatter	matrix	as	can	be
seen	in	image	1.

Image	1:	click	image	to	go	to	interactive	visualization

Peripheral	technologies

The	D3	library	doesn't	exist	in	a	vacuum,	it	relies	on	some	fundamental	technologies	and
standards	without	which	it	couldn't	exist.	These	technologies	and	standards	are:

HTML(5)

D3.js

111

http://benjiec.github.io/scatter-matrix/demo/demo.html

As	mentioned	above,	D3.js	works	by	allowing	users	to	attach	data	to	DOM	elements.	The
DOM	is	an	integral	part	of	the	HTML	standard	and	as	such,	D3.js	is	inextricably	entwined
with	it.

CSS(3)

D3.js	makes	use	of	CSS-style	selectors	to	pick	elements	on	which	to	operate.	Furthermore,
the	idiomatic	way	of	styling	elements	in	a	visualization	created	with	D3,	is	by	applying	CSS
rules	to	them.	For	these	reasons,	D3.js	couldn't	exist	without	the	CSS	core	technology.

SVG

D3	is	at	its	best	when	rendering	visuals	as	Scalable	Vector	Graphics.	SVG	is	a	text-based
image	format.	Meaning,	you	can	specify	what	an	SVG	image	should	look	like	by	writing
simple	markup	code,	not	unlike	HTML	tags.	SVG	code	can	even	be	included	directly	within
any	HTML	document.

For	example,	drawing	a	circle	can	be	done	by	embedding	SVG	code	directly	into	HTML,	like
so:

<svg	height="50"	width="50">

				<circle	cx="25"	cy="25"	r="25"	fill="#FF3D00"	/>

</svg>

Which	results	in	an	image	as	displayed	in	image	2.

	Image	2

Users	of	D3	are	not	required	to	use	SVG	with	D3,	but	nearly	everyone	agrees	that	SVG
provides	a	range	of	visual	opportunities	that	aren’t	possible	with	regular	HTML	elements.

Performance

Since	D3.js	is	built	upon	a	series	of	injectors	(see	the	architecture	section),	the	length	and
complexity	of	the	injection	chain	is	one	of	the	main	variables	in	terms	of	performance.	To
define	how	much	a	visualisation	costs	performance-wise,	certain	aspects	have	to	be
measured	for	that	specific	case,	such	as	response	time	(time	to	process	a	single	element),
throughput	(time	after	another	element	can	be	processed,	or	the	'wait'	time)	and	latency	(the
time	between	a	change	in	the	dataset	and	the	first	form	of	output).	Based	on	these	metrics
more	optimized	solutions	can	be	created	which	might	even	take	advantage	of	internal
patterns	for	acceleration.

D3.js

112

There	are	four	main	components	that	play	a	part	in	the	processing	chain	of	D3.js:

Input	data:	collection	of	entries	that	contain	the	information	that	is	needed	to	create	the
visualisation.
Element	binding:	the	informal	relation	between	a	data	entry	and	an	element	in	the
DOM.
Method	chain:	the	method	chain	that	extracts	element	parameters	based	on	the	data.
DOM	(Document	Object	Model):	the	document	elements	that	the	entries	are	bound	to
through	the	element	binding.

These	processes	are	easier	to	understand	when	visualized	as	in	image	3.

	Image	3

As	can	be	seen	in	the	diagram,	the	method	chain	is	invoked	on	every	action,	where	entries
are	either	edited,	created	or	removed.	This	means	that	this	is	the	first	location	in	which	to
look	for	possible	speed-ups.	The	method	chain	is	unique	for	every	visualisation,	so	the
metrics	defined	above	(response	time,	throughput	and	latency)	can	not	be	compared	with
other	visualisations	without	taking	the	difference	in	the	chain	into	account.	For	simpler
examples,	the	response	time	can	be	fairly	linear	on	the	size	of	the	input,	meaning	that	this
metric	is	(at	least	partially)	uncorrelated	with	the	input	size.	Though	sometimes	the	complete
dataset	has	to	be	analysed	at	some	(or	multiple)	point(s)	in	the	chain,	this	will	cause	a	more
exponential	behaviour.	The	same	goes	for	the	throughput,	though	memory	and	data
organisation	might	be	more	important	here.	The	latency	is	affected	by	almost	all	elements	in
the	processing	chain,	since	it	is	measured	from	input	event	to	first	binding
modification/instantiation,	though	the	overlap	is	not	complete.

All	in	all,	this	means	the	performance	for	a	given	visualisation	mostly	depends	on	the
complexity	and	length	of	the	method	chain,	input	size	and	hardware	available	to	the	browser
for	rendering.	This	is	mainly	due	to	the	fact	that	most	of	the	injectable	methods	in	the	chain
have	a	fairly	linear	runtime.	Combining	certain	non-linear	ones	will	result	in	a	non-linear
performance	as	expected.	However,	when	dealing	with	very	large	amounts	of	data,	the
browser	rendering	performance	will	start	being	a	bigger	and	bigger	issue,	since	that	has
actual	physical	limitations	in	contrast	to	the	runtime	limitations	of	the	method	chain.

Stakeholders

D3.js

113

The	owner	and	maintainer	of	the	D3.js	library	is	Michael	Bostock	[7],	whose	vision	it	was	to
utilize	DOM	manipulation	for	creating	visualizations.	His	work	on	D3.js	was	for	a	large	part
influenced	by	his	previous	work	on	Protovis	(based	on	JQuery)	and	his	advisor’s	prior
visualisation	toolkits,	Prefuse	and	Flare.	The	inspiration	behind	D3.js	was	to	extend	the	limits
of	visualization	and	empower	developers	with	full	access	and	control	to	the	DOM,	thereby
allowing	them	to	communicate	their	gathered-data	and	analysis	efficiently.	Bostock	[8]
argues	that	“visualisation	is	more	than	a	tool	for	finding	patterns	in	data.”	And	so	D3.js	was
developed	to	serve	as	an	enabler	for	effective,	interactive	and	meaningful	visualisation	of
statistical	and	analytical	data,	rather	just	than	an	eye-catching	graphical	representation.

A	majority	of	the	contributions	to	D3.js	come	from	Michael	Bostock	and	Jason	Davies,
furthermore	an	active	network	comprising	of	D3	communities	on	Github,	Stack-Overflow	and
Google	Groups	have	made	D3	much	more	accessible	and	welcoming	to	the	external
contributors.	In	the	words	of	Michael	Bostock[2],	“I	think	D3	needs	a	better	story	around
extensibility	and	external	contributors.	This	is	part	of	the	motivation	for	breaking	it	up	into
smaller	modules	for	4.0.”	From	this	statement	it	becomes	evident	that	Michael	is	considerate
towards	the	immense	support	and	help	pouring	in	(also	in	the	form	of	tutorials,	examples,
books	etc)	from	D3	practitioners.	D3	4.0	is	thus	aimed	to	increase	reuse	and	external
contributions,	which	is	a	must	for	making	an	open-source	platform	sustainable.

D3	enjoys	widespread	popularity	with	an	average	of	9000	downloads	[4]	per	week.	This
prominence	is	a	cumulative	output	of	extensive	documentation	and	examples,	great
community	support	and	the	approachability	of	Michael	Bostock	himself.	The	target	audience
is	an	ever-increasing	number	of	web-developers,	data-visualisation	practitioners,	small
companies	and	start-ups	aiming	for	a	big	leap	in	their	knowledge	and	growth.	In	conjunction
with	these,	there	are	various	market	giants	[2].	like	Microsoft	(Microsoft	BI	makes	use	of	D3)
which	have	employed	D3	for	interactive	data	visualisation.	What	makes	D3	an	attractive
choice	for	numerous	companies	is	its	graphical	flexibility	in	data	representation	and	its	ability
to	take	up	various	roles.	Several	tools,	such	as	exploratory	tools,	data	mining	tools,
communication	tools	and	analytics	tools	can	be	designed	with	it	as	basis.	Mentioned
below[3][6]	are	the	companies	whom	are	making	extensive	use	of	D3.js	in	media
visualizations,	fashion	reports	and	much	more

Open	Street	map:	Editing	open	street	maps
Dataviz:For	communication	and	business	tools
Chart.io	:	Providing	Business	Dashboard	solutions
Plotly	:	Rendering	Plots
DataMeer	:	Representing	Big	data	exploration
New	York	Times	:Rendering	Graphs	and	statistical	analysis.

D3.js

114

https://github.com/mbostock/d3
http://stackoverflow.com/questions/tagged/d3.js
https://groups.google.com/forum/#!topic/d3-js/aRKFtUaE5h4
http://bl.ocks.org/ninjaPixel/7f244063ca7171fc9a67
http://dataviz.rennesmetropole.fr/quisommesnous/en/
http://chart.io/
https://plot.ly/javascript/
http://www.datameer.com/product/data-visualization.html
http://www.nytimes.com/interactive/2012/02/13/us/politics/2013-budget-proposal-graphic.html?_r=0

Considering	the	Large	scale	visualization	capacity[5]	of	D3.js	(which	can	be	utilized	in
visualizing	Bigdata	workflow),	it	is	of	huge	interest	for	the	Big	data	companies	like	Datameer,
SAP	HANA,	Palatfora	Clear	Story,	Trifacta	etc.	An	example	of	BigQuery	Big	Data
Visualization	implemented	using	d3.js	can	be	found	here.	D3.js	can	also	serve	as	a	real-time
visualization	tool	for	ambitious	projects	like	Human	Genome	Projects	and	DOPA
implementations.

In	summary,	D3.js	stakeholders	can	be	classified	into	below	mentioned	categories	as	per
Roznaski	and	Woods[10]	which	is	shown	in	image	4.

D3.js

115

http://blog.vida.io/2014/07/06/bigquery-big-data-visualization-with-d3-dot-js/

D3.js

116

Image	4

Competitors

D3.js	is	undoubtedly	one	of	the	best	data	visualization	libraries	in	the	current	scenario.	As
per	a	notable	data	visualisation	specialist	Moritz	Stefaner[15],no	one	is	as	good	as	D3.js
especially	in	the	case	of	SVG	based	data	visualization	.There	are	several	other	worth-
mentioning	data	visualization	tools	and	java	script	libraries	in	competition	like	Tableau,	RAW,
Leaflet,	Chart	JS,	Timeline	JS	etc.	The	only	downside	of	D3.js	(which	is	ironically	the
strongest	attribute	as	well)	would	be	the	complete	freedom	given	to	the	data	visualizer,	there
is	nothing	to	recommend	or	suggest	from	the	D3.js	end.	In	the	case,	when	users	are	looking
for	specific	data	visualization	services	,then	tools	like	GEPHI,	for	network	visualization	and
Chart	JS	for	precise	control	over	charts	might	come	handy	[16].	Tableau,	another	popular
visualisation	toolkit	which	does	matrix	based	visualizations	differs	significantly	from	D3.js
which	a	general	purpose	visualization	framework..	While	D3.js	relies	on	the	inherent
properties	of	the	browser,	then	in	the	situations	where	browser	does	not	offer	extensive
functionalities,	usage	of	D3.js	might	not	offer	a	pleasant	experience.	Also,	initially	it	might
seem	more	interesting	to	programmers	than	common	users	as	writing	a	code	to	create	a
graph	can	be	a	cumbersome	approach	for	them.	Although	,the	users	who	are	willing	to
migrate	to	D3.js	,	they	are	motivated	to	experience	an	amazing	user	interaction	and
advanced	visualization	provided	by	D3.js.

Architecture
Since	D3.js	is	a	framework	with	which	you	can	build	your	own	visualizations,	it	is	mostly
comprised	of	functions	and	modules	that	create	elements	in	a	visualization	or	modify	them	in
one	way	or	another.	The	basis	is	a	core	module	that	offers	document-data	binding	methods,
where	the	other	modules	plug	into	to	create	the	desired	graphics.	By	binding	the	data
elements	to	elements	in	the	document,	D3.js	can	seamlessly	create	these	visualizations	with
low	overhead.	The	browser	handles	the	rendering	in	the	same	manner	as	a	regular
HTML/SVG	document	and	is	thus	very	fast.

Inner	workings

Since	D3.js	is	a	visualization	library	and	not	an	application,	D3.js	depends	on	certain
modules	and	elements.	As	will	be	mentioned	later	in	this	section,	D3.js	is	in	the	middle	of	a
big	restructuring	which	completely	changes	its	underlying	architecture.	From	a	functional
viewpoint[10],	we	will	be	focussing	on	the	new	structure	rather	than	the	old	one,	because	it
will	be	relevant	much	longer.

D3.js

117

From	Software	Systems	Architecture,	chapter	16:	"Functional	capabilities	define	what	the
system	is	required	to	do—and,	explicitly	or	implicitly,	what	it	is	not	required	to	do."	[10].
Because	D3.js	does	so	many	different	things,	each	module	of	D3.js	(as	of	Version	4)	will
have	its	own	short	description	in	the	table	below.

Module Description Dependencies

d3-array

The	module	responsible	for
transforming	data	into	information,
since	D3.js	can	only	bind	data	in	array
form.

None.

d3-axis Alleviates	the	need	to	manually	create
axis	for	charts	and	tables.

d3-scale,	d3-selection,	d3-
transition

d3-
collection Offers	more	complex	data	structures. None.

d3-color
Provides	a	wide	collection	of	color
manipulation	and	representation
methods.

None.

d3-
dispatch

Event	emitting	and	listening	module	for
more	decoupled	code	creation. None.

d3-dsv Parser	module	for	delimiter	separated
values,	such	as	CSV	and	TSV. None.

d3-ease Providing	easing	functions	for
transitions	and	animations. None.

d3-format Number	formatting	made	easy. None.

d3-
interpolate

Exposes	a	number	of	methods	for
interpolating	two	values. d3-color

d3-path Easy	path	rendering,	similar	to	path
drawing	on	canvasses. None.

d3-
polygon

Applying	geometric	operations	on	two-
dimensional	polygons. None.

d3-
quadtree

A	module	dividing	data	using	a
quadtree:	a	two-dimensional	recursive,
spatial	subdivision.

None.

d3-
random

Exposes	a	number	of	random	number
generation	methods. None.

d3-
request

Conveniency	wrapper	for
XMLHttpRequest. d3-dsv,	d3-dispatch

d3-scale Encoding	for	abstract	to	concrete	data
mapping.

d3-array,	d3-collection,	d3-
color,	d3-format,	d3-
interpolate,	d3-time,	d3-time-
format

D3.js

118

d3-
selection

DOM	transformation	by	selecting	and
joining	data.

None.

d3-shape Graphical	primitives,	such	as	lines	and
areas. d3-path

d3-time A	calculator	that	can	cope	with	the
human	readable	time	definitions. None.

d3-time-
format Date	parser. d3-time

d3-timer
A	low	overhead	queueing	mechanism
for	managing	thousands	of	concurrent
updates	and	animations.

None.

d3-
transition

Animated	transitions	for	D3.js
selections.

d3-ease,	d3-timer,	d3-
interpolate,	d3-selection

d3-
voronoi

Voronoi	computation	for	a	set	of	two-
dimensional	points. None.

d3-brush Wrapper	for	easy	selection	of	data
points	in	a	graphical	manner. d3-scale,	d3-selection

d3-
hierarchy

Layouting	algorithms	for	visualizing
hierarchical	data. None.

d3-geo Wrapper	for	geographical	calculations
and	projections. None.

Current	status	(v3.5)

As	is	mentioned	above,	the	current	state	is	based	on	a	core	module	and	(mandatory)
plugins,	all	wrapped	in	one	large	package.	Though	it	is	possible	to	compile	you	own	library
with	only	the	plugins	needed,	this	option	is	not	offered	or	even	documented.	The	current
architecture	is	based	on	modules	and	dependencies,	which	are	visualized	in	image	5.

D3.js

119

Image	5:	modules	and	dependencies

It	is	obvious	that	D3.js	uses	an	architecture	that	is	easily	expandable	and	improvable.	Each
module	in	the	graph	above	has	a	responsibility	that	can	be	clearly	derived	from	the	module
name.	The	archetypes	(or	boundaries)	are	depicted	above	the	name	to	indicate	more	implicit
relations	between	the	modules.	Creating	certain	kinds	visualizations	requires	certain
modules,	which	have	to	be	used	in	a	manner	and	order	that	allows	the	injection	into	other
modules.	This	order	has	to	be	in	accord	with	the	way	build-up	of	a	visualisation	is	intended.

Most	of	these	modules	will	return	functions	that	can	be	applied	and	chained	to	create
whatever	desired	effect	the	developer	wishes.	The	modules	are	built	as	a	system	of
injectors,	which	is	a	software	design	pattern	that	resolves	dependencies	in	an	inverse
manner	[1],	resulting	in	an	easy	to	comprehend	and	pluggable	library.

Upcoming	release	(v4.0)

With	the	upcoming	release,	the	biggest	change	will	be	the	fact	that	the	library	is	pluggable.
This	means	less	overhead	and	faster	loading	times,	due	to	the	fact	that	only	the	modules
which	are	actually	used,	are	loaded.	The	plugins	load	themselves	into	the	already	loaded	d3

D3.js

120

global	variable,	which	makes	a	module's	functionalities	available	to	the	end-user.	The	only
requirement	for	this	system	to	function,	is	that	the	d3	core	is	initialized	first,	and	that	then	all
the	plugins	(in	no	particular	order)	are	loaded.

Although	this	new	architecture	reduces	cost	and	overhead,	it	does	increase	the	number	of
dependencies	of	a	any	given	project.	However,	this	downside	can	also	be	viewed	as	an
invitation	for	a	developer	to	write	their	own	injectors	and	use	them	as	d3	plugins.	When	a
certain	structure	or	organisation	is	used	a	lot	in	a	project,	it	is	a	viable	possibility	to	roll	their
own	plugin	which	pre-injects	d3	with	their	own	definitions,	removing	the	need	to	re-
implement	certain	functionality.

One	of	the	biggest	up-sides	of	the	restructuring	will	not	be	for	the	end-users,	but	for	the
developers;	testing	and	building	will	not	fail	or	result	in	monolithic,	modules	and	the	core	can
be	bundled	using	something	like	WebPack.	Modules	can	be	used	separately	as	injectors	for
other	systems,	so	you	can	use	the	advanced	color	scale	generation	methods	for	other
projects	too.	Along	with	the	upgrade	to	EcmaScript	6,	d3	has	become	much	friendlier	to
extend	and	use.

Evolution
In	this	section	we	will	detail	the	evolution	of	the	D3.js	library.	The	evolution	cycle	is	the
process	which	a	system	undergoes	in	order	to	adapt	to	changes	in	the	software
development	process.	As	discussed	in	Rozanski	and	Woods,	a	flexible	system	should	be
able	to	deal	with	all	the	possible	types	of	changes	that	it	may	experience	during	its	lifetime
[10].	Just	like	the	previous	section,	this	section	will	for	one	part	focus	on	the	current	version
(v3.5)	and	for	the	other	part	on	the	upcoming	version	(v4.0).

Evolution	Needs

D3.js	is	a	continuously	developed	visualization	framework	based	of	Michael	Bostocks	PhD
thesis,	it	was	first	registered	as	open	source	project	on	Github	in	late	2010.	At	that	time	the
Google	Closure	Compiler	[11]	was	still	used	to	optimize	the	different	code	parts	and	combine
them	into	a	single	source	file.	However	the	popularity	of	D3.js	grew	quickly	and	so	did	the
demand	for	a	compiler	which	would	generate	smaller	and	more	performant	source	files.	In
March	2011	the	team	switched	to	using	UglifyJS	[12]	for	their	build	process.	This	change
was	the	only	noteworthy	alteration,	other	updates	consisted	mainly	of	tweaking
functionalities	and	ironing	out	small	bugs.

With	a	growing	amount	of	D3.js	users,	the	development	kept	going	forward	as	well.	In
August	2011	the	first	major	version	change	was	released:	v2.0	[13].	It	addressed	the	users'
need	for	more	concise	code	by	eliminating	code	duplication,	additionally	it	introduced

D3.js

121

https://webpack.github.io/
http://es6-features.org/

selector	functions,	transparent	transitions,	prototype	injection	and	a	lot	of	other	incremental
improvements.	Version	2	was	also	the	version	in	which	a	testing	suite	was	introduced	to	the
library	with	the	goal	of	guaranteeing	the	correctness	of	the	core	functionality.	The	addition	of
a	testing	suite	is	a	clear	example	of	an	adaptation	in	response	to	a	need	of	providing	a
stable	and	predictable	library	to	the	growing	D3.js	community.	The	release	included	1,200+
tests	covering	90%	of	the	library's	functionality.

From	that	point	onward	it	took	another	1,5	year	before	the	next	major	version	v3.0	[14]	was
released	on	December	2012.	This	release	saw	the	introduction	of	a	powerful	new
geographic	projection	system,	new	plugins	and	improved	transitions.	Furthermore,	a	whole
host	of	performance	and	bug	fixes	were	released.	The	main	focus	seemed	to	be	on	making
it	easier	for	developer	to	use	the	library.	One	change	that	should	be	mentioned	is	the	so
called	chaining	of	transition	functions.	Instead	of	listening	to	an	"end"	event,	the	next
function	would	automatically	be	applied.	The	evolutional	need	addressed	in	this	release,	was
the	developers'	need	for	the	library	to	keep	up	with	smart	and	easy	ways	of	using	the	library.

Future	release

D3.js	is	currently	undergoing	a	restructuring	and	refactoring	phase	of	the	entire	codebase
which	will	most	likely	be	released	this	year	as	version	4.0.	The	new	release	won't	introduce
much	in	the	way	of	new	functionality,	but	will	instead	focus	on	making	the	library	much	more
modular	and	easier	to	maintain.	In	its	current	form,	D3.js	is	massive	monolithic	library	which
users	have	to	include	in	its	entirety,	even	if	they	need	only	a	small	part	of	the	library's
functionality.	Version	4.0	seeks	to	address	this	by	making	everything	a	module	with	little	to
no	dependencies.	Because	the	whole	library	has	become	a	set	of	low-dependency	modules,
maintenance	and	contributing	has	also	become	much	easier.	If	a	bug	arises	in	some
module,	that	bug	will	only	affect	that	specific	module	and	won't	interfere	with	the	functioning
of	the	other	parts	of	the	library.

The	need	for	easier	to	maintain,	low-dependency	modules	is	a	clear	evolutional	need.	As
can	be	seen	with	other	JavaScript	libraries,	there	is	a	shift	to	making	everything	an
exhaustively	tested	independent	module.	Furthermore,	by	switching	to	the	node	package
manager	(NPM)	as	its	main	source	of	distribution,	developers	can	pick	and	choose	only	the
functionality	they	desire,	with	little	to	no	overhead.	With	the	use	of	NPM	it	is	also	becomes
easier	to	create	plugins	and	add-ons	that	provide	a	certain	visualization	functionality.	This
specific	module	will	have	build	in	dependencies	to	D3.js	modules,	making	it	much	easier	for
developer	who	only	want	to	include	certain	common	visualizations.

Trade-offs

D3.js

122

While	version	4.0	will	see	a	lot	of	improvements,	there	are	also	some	possible	to	downsides
to	this	modularization.	For	newcomers	to	D3.js	it	will	probably	be	a	lot	more	confusing	as	to
what	modules	they	need	in	order	to	create	visualizations.	Furthermore,	some	modules	which
have	been	created	are	rather	low	on	functionality,	which	brings	up	the	question	if	the	library
was	not	split	in	too	much	modules.

Conclusion
This	chapter	has	hopefully	shown	that	D3.js	provides	a	wide	range	of	tools	for	not	only	data
visualization,	but	also	for	complex	filtering	and	creating	user	interactions.	This	makes	D3.js
to	a	lot	of	developers	a	powerful	and	useful	library	suited	for	a	wide	range	of	applications.
Besides	the	functionality,	also	the	library's	stakeholders,	background,	architecture	and
evolution	were	discussed.	From	these	discussions	it	can	be	concluded	that	D3.js	uses	a
solid	architectural	model	which	is	also	constantly	being	improved	upon.	Finally,	the	evolution
and	future	plans	showed	that	D3.js	is	ready	for	the	future.	As	such,	our	final	conclusion	on
D3.js	is	that	it	is	a	well-built	and	decently	constructed	library	which	is	exceptionally	well-
suited	for	what	it	is	created	for.

References
1.	 Dhanji	R	Prasanna.	Dependency	injection.	Manning	Publications	Co.,	2009.
2.	 M.	Bostock,	"Hi!	I’m	Mike	Bostock,	creator	of	D3.js	and	a	former	graphics	editor	for	The

New	York	Times",	Reddit,	8	September	2015.	[Online].	Available:
https://www.reddit.com/r/dataisbeautiful/comments/3k3if4/hi_im_mike_bostock_creator_
of_d3js_and_a_former/.	Accessed	on:	20	March	2016

3.	 Multiple	(mainly	Shawn	Allen,	Chris	Viau),	"What	companies	are	using	d3.js	in
production?",	Quora,	24	February	2012.	[Online].	Available:
https://www.quora.com/What-companies-are-using-d3-js-in-production.	Accessed	on:	31
March	2016

4.	 Mike	Bostock,	"d3",	NPM,	February	2016.	[Online].	Available:
https://www.npmjs.com/package/d3.	Accessed	on:	31	March	2016

5.	 Online	discussion	-	users	of	D3.js,	"D3JS	to	visualizae	BIG	DATA",	Google	groups,	18
April	2013.	[Online].	Available:	https://groups.google.com/forum/#!topic/d3-
js/aRKFtUaE5h4.	Accessed	on:	17	March	2016

6.	 Peter	May,	"Companies	using	d3.js?",	Data	Discourse	-	Experfy,	18	November	14.
[Online].	Available:	https://data.experfy.com/t/companies-using-d3-js/296.	Accessed	on:
31	March	2016

7.	 M.	Bostock,	"D3.js	-	Data-Driven	Documents",	d3.js,	2015.	[Online].	Available:
https://d3js.org.	Accessed	on:	30	March	2016

D3.js

123

https://www.reddit.com/r/dataisbeautiful/comments/3k3if4/hi_im_mike_bostock_creator_of_d3js_and_a_former/
https://www.quora.com/What-companies-are-using-d3-js-in-production
https://www.npmjs.com/package/d3
https://groups.google.com/forum/#!topic/d3-js/aRKFtUaE5h4
https://data.experfy.com/t/companies-using-d3-js/296
https://d3js.org

8.	 Liam	Andrew,	"Mike	Bostock	wants	us	to	visualize	algorithms,	not	just	the	data	that
feeds	into	them",	NiemanLab,	26	June	2014.	[Online].	Available:
http://www.niemanlab.org/2014/06/mike-bostock-wants-us-to-visualize-algorithms-not-
just-the-data-that-feeds-into-them/.	Accessed	on:	31	March	2016

9.	 B.	Fry.	Visualizing	data.	Beijing:	O'Reilly	Media,	Inc.,	2008.
10.	 Nick	Rozanski	and	Eoin	Woods.	Software	Systems	Architecture:	Working	with

Stakeholders	using	Viewpoints	and	Perspectives.	Addison-Wesley,	2012.
11.	 Google,	"Closure	Compiler",	Google	Developers,	13	February	2016.	[Online].	Available:

https://developers.google.com/closure/compiler/.	Accessed	on:	29	March	2016
12.	 Jason	Davies,	"Replace	Google's	closure	compiler	with	UglifyJS.",	github/mbostock/d3,

25	March	2011.	[Online].	Available:
https://github.com/mbostock/d3/commit/1dfd3350dcd78ce29f76f4f15da0f94ca219ffad.
Accessed	on:	31	March	2016

13.	 Mike	Bostock,	"2.0	Enter	and	Update",	github/mbostock/d3,	23	August	2011.	[Online].
Available:	https://github.com/mbostock/d3/releases/tag/v2.0.0.	Accessed	on:	29	March
2016

14.	 Mike	Bostock,	"3.0	Baja",	github/mbostock/d3,	21	December	2012.	[Online].	Available:
https://github.com/mbostock/d3/releases/tag/v3.0.0.	Accessed	on:	30	March	2016

15.	 Luke	Dormehl,	"The	Five	Best	Libraries	For	Building	Data	Visualizations",	Fast
Company,	28	April	2014.	[Online].	Available:	http://www.fastcompany.com/3029760/the-
five-best-libraries-for-building-data-vizualizations.	Accessed	on:	31	March	2016

16.	 Nishith	Sharma,	"The	14	best	data	visualization	tools",	TheNextWeb,	April	2015.
[Online].	Available:	http://thenextweb.com/dd/2015/04/21/the-14-best-data-visualization-
tools/#gref.	Accessed	on:	30	March	2016

17.	 Mike	Bostock,	"D3	Wiki	Gallery",	github/mbostock/d3.	[Online].	Available:
https://github.com/mbostock/d3/wiki/Gallery.	Accessed	on:	30	March	2016

D3.js

124

http://www.niemanlab.org/2014/06/mike-bostock-wants-us-to-visualize-algorithms-not-just-the-data-that-feeds-into-them/
https://developers.google.com/closure/compiler/
https://github.com/mbostock/d3/commit/1dfd3350dcd78ce29f76f4f15da0f94ca219ffad
https://github.com/mbostock/d3/releases/tag/v2.0.0
https://github.com/mbostock/d3/releases/tag/v3.0.0
http://www.fastcompany.com/3029760/the-five-best-libraries-for-building-data-vizualizations
http://thenextweb.com/dd/2015/04/21/the-14-best-data-visualization-tools/#gref
https://github.com/mbostock/d3/wiki/Gallery

Ember:	A	framework	for	creating
ambitious	web	applications

Andri	Rahmadhani,	Jesse	Kaptein,	Sambit	Praharaj	and	Shashwat	Verma

Delft	University	of	Technology,	2016

Abstract

Ember,	the	brainchild	of	Yehuda	Katz	(@wycats),	is	maintained	by	a	large	community	of
developers	and	consumers	always	striving	for	novelty	and	simplicity.	It	allows	developers	to
build	scalable	web	applications	and	is	used	by	major	websites	such	as	Yahoo!	and	LinkedIn.
Currently,	it	is	run	by	thousands	of	contributing	members	from	all	over	the	world.	This
chapter	will	describe	the	Ember	framework	according	to	multiple	perspectives,	including	the
context	view,	which	describes	the	interaction	with	its	environment.	The	development	view,
then,	describes	Ember's	different	modules	and	layers.	Subsequently,	Ember's	features	and
functionalities	are	discussed	in	the	feature	list	and	deployment	view.	Finally,	the	evolution
perspective	carves	the	roadmap	for	future	releases.

Table	of	Contents

Introduction:	Starting	the	Expedition
Ember	Basics:	Getting	started	with	the	framework
Stakeholders:	The	team	behind	Ember

Core	Team	Members	and	Contributors
Users	&	Suppliers

Context	View:	Interacting	with	Ember's	environment

Ember.js

125

https://github.com/xflash
https://github.com/JesseKaptein
https://github.com/sambit2
https://github.com/shashwat91
https://github.com/wycats

Development	View:	The	Foundations	of	the	Ember.js
Modular	Design:	Ember’s	MVC	Design	Pattern
Module	Organization:	Dependencies	and	Interactions
Standardization	of	Design	and	Testing
Codeline	Organization

Features	from	different	Perspectives
Users:	Data	Model,	Routing,	Rendering	Engine	&	Configuration	of	Application
Developers	&	Users:	Configuration	of	New	Features

Deployment	View:	The	Operational	Environment
Third	Party	Software	Requirements
Network	Requirements

Evolution:	How	has	Ember	become	the	framework	it	is	today?
So,	why	does	Ember	change?
Change	management	in	theory:	different	variability	mechanisms	in	Ember.js
Change	management	in	practice:	from	one	version	to	another

Technical	Debt:	Consequences	of	System	Choices
Evolution	Trade	Offs
Technical	debt	in	detail

Ember.js:	Keep	Improving	Performance
Conclusion:	Ending	the	Expedition
References

Introduction:	Starting	the	Expedition
Ember.js	is	an	open-source	JavaScript	web	framework,	based	on	the	Model-View-Controller
(MVC)	pattern.	It	allows	developers	to	create	scalable	web	applications	by	incorporating
common	idioms	and	best	practices	into	the	framework.	Ember.js	is	used	on	many	popular
websites,	including	Yahoo!	and	LinkedIn.	Although	primarily	considered	a	framework	for	the
web,	it	is	also	possible	to	build	desktop	and	mobile	applications	in	Ember.	The	best-known
example	of	this	is	Apple	Music.	Note	that	Ember.js	is	only	one	product	of	a	complete	front
end	stack	built	and	supported	by	Ember.	Examples	of	other	products	are	Ember	Data,
Ember	Inspector	and	Liquid	fire.

Over	the	past	few	weeks,	team-Ember,	from	the	Delft	Students	on	Software	Architecture
(DESOSA)-group,	have	dived	into	the	framework	by	stepping	through	its	various
components	from	different	perspectives	and	views.	With	these	insights,	we	hope	to
contribute	to	the	framework	by	both	solving	issues	and	make	it	accessible	for	readers	to
contribute	too.	These	issues	can	vary	from	bugs	to	potential	new	features.	In	the	end,	we	will

Ember.js

126

bring	all	the	different	views	and	perspectives	together	to	examine	whether	Ember's
architecture	is	robust	or	if	particular	components	have	to	be	improved	or	extended.	Before
doing	so,	first,	we	will	guide	the	reader	through	Ember's	basics.

Ember	Basics:	Getting	Started	with	the
Framework
As	described,	Ember	is	built	for	developers	to	create	web	applications	effectively	and
efficiently.	However,	before	one	can	start	writing	any	Ember	code,	it	is	a	good	idea	to	get	an
overview	of	how	an	Ember.js	application	works.	The	framework	itself	consists	of	a	couple	of
basic	concepts,	namely	[1]:

Router:	The	router	translates	a	URL	into	series	of	templates,	each	backed	by	a	model.
As	the	templates	or	models	change,	Ember	automatically	keeps	the	URL	in	the
browser's	address	bar	up-to-date.	This	means	that	a	developer	is	always	able	to	modify
its	application,	without	disturbing	the	user	that	much;
Route	(handler):	A	route	is	an	object	that	tells	the	template	which	model	it	should
display.	This	is	simply	done	by	linking	user	events	(e.g.	mouse	click)	to	other	templates;
Models:	A	model	is	an	object	that	stores	persistent	state.	Templates	are	responsible	for
displaying	the	model	to	the	user	by	turning	it	into	HTML;
Templates:	A	template	describes	the	user	interface.	Each	template	is	backed	by	a
model,	and	the	template	automatically	updates	itself	if	the	model	changes;
Components:	A	component	is	a	custom	HTML	tag.	They	allow	developers	to	create
reusable	controls	that	can	simplify	other	templates;

Figure	1	presents	the	described	relations	between	the	router,	routes,	models,	templates	and
components	[1].

Ember.js

127

Figure	1:	The	way	in	which	Ember's	core	concepts	interrelate	with	each	other

Stakeholders:	The	Team	behind	Ember
The	Ember	society	consists	of	a	large	community	of	thousands	of	software	developers,
architects,	users,	and	testers,	with	most	of	them	having	another	job	and	working	voluntarily
on	the	Ember.js	project.	The	search	for	detecting	the	most	relevant	stakeholders	led
immediately	to	Ember's	Core	Team	Members.	It	appeared	that	only	a	limited	group	of	Core
Members	were	actively	involved	in	approving	or	denying	potential	contributions.

For	a	detailed	presentation	of	the	community	behind	Ember.js,	see	Figure	2.	For	a	clear
interpretation	and	explanation	of	terms,	please	consider	Rozanski	&	Woods	(2011).

Ember.js

128

https://github.com/emberjs/ember.js/network/members
http://emberjs.com/team/
http://www.viewpoints-and-perspectives.info/home/stakeholders/

Figure	2:	An	oversight	of	all	relevant	stakeholders	in	the	Ember	framework	and	their	roles

Core	Team	Members	and	Contributors

The	core	team	behind	Ember.js	is	relatively	small	and,	therefore,	they	are	considered	to	be
both	developers,	maintainers,	testers,	communicators	and	assessors	within	the	community.
Currently,	the	core	team	consists	of	thirteen	members,	of	which	we	will	describe	the	most
important:

Yehuda	Katz	(@wycats),	founding	father	of	the	Ember	framework	and	still	mainly
responsible	as	a	developer	and	system	administrator;
Robert	Jackson	(@rwjblue)	&	Stefan	Penner	(@stefanpenner),	both	one	of	the	most
active	members	in	the	Ember.js	GitHub	repository;
Tom	Dale	(@tomdale),	important	developer	and	tester	of	the	Ember	framework	and
again	there	from	the	start	in	2011;
Kris	Selden	(@krisselden),	important	production	engineer	of	the	Ember	framework.

Based	on	GitHub	activities	as	seen	in	Figure	3,	one	can	conclude	that	mainly	Robert
Jackson,	Stefan	Penner,	Tom	Dale	and	Kris	Selden	are	involved	in	approving	or	denying
contributions	to	the	Ember	framework.

Ember.js

129

http://emberjs.com/team/
https://github.com/wycats
https://github.com/rwjblue
https://github.com/stefanpenner
https://github.com/tomdale
https://github.com/krisselden

Figure	3:	Ember.js	Github	activities

Users	&	Suppliers

Ember	is	used	on	many	popular	websites,	including	Yahoo!	and	LinkedIn.	Some	of	these
larger	users	support	the	framework	financially.	Other,	smaller	users,	can	help	improve	the
framework	by	reporting	bugs,	performance	issues	or	proposing	new	features.	Therefore,
many	of	the	fixed	bugs	are	dedicated	to	users.	Furthermore,	small	users	can	also	make
donations	to	the	project,	buy	unique	Ember.js	gear	or	participate	in	Ember.js	courses	and
conferences,	to	support	future	development	of	the	framework.

Context	View:	Interacting	with	Ember's
environment
By	developing	a	broader	view,	the	frameworks	relationships,	dependencies,	and	interactions
with	other	systems	and	parties	will	appear.	In	Figure	4	such	a	context	diagram	is	presented.
In	this	figure,	we	see	that	Ember.js	is	(technically)	based	on	a	couple	of	software	packages
and	languages.	To	install	and	configure	Ember.js,	one	should	have	Node.js	and	npm
package	manager.	To	build	templates	and	make	use	of	Ember’s	vast	library,	though,
understanding	of	both	Handlebars	and	jQuery	are	required.	For	creating	modules,	the	ES6
module	standards	are	used,	whilst	the	technical	core	is	based	on	JavaScript	Model-View-
Controller	pattern	in	combination	with	HTML.

Ember.js

130

Figure	4:	Ember.js	context	view	diagram

To	maintain	and	help	the	large	Ember	community,	a	couple	of	third	party	platforms	are	used.
For	user	support,	Ember	uses	StackOverflow.	Other	channels	for	user	support	can	be	found
in	the	Ember	Community	on	Slack,	the	IRC	channel	on	Freenode	IRC	or	within	Google
Groups.	For	Ember	learning	resources	(podcasts,	videos,	blog	posts,	books	and	so	on)
almost	all	Core	Team	Members	have	public	channels	on	either	YouTube	or	Vimeo.	Most	of
these	platforms	are	also	able	to	give	feedback	for	future	development.	Finally,	for
developers,	Ember’s	source	code	is,	of	course,	available	on	GitHub.

Lastly,	the	figure	shows	that	Ember	applications	can	be	built	on	a	cross-platform	server
running	Node.js,	such	as	Windows,	OSX,	Linux,	and	FreeBSD.	The	framework	can	be
rendered	on	multiple	web	browsers	like	Google	Chrome,	Firefox,	Opera,	and	Safari.	Also,
Ember	uses	an	efficient	deployment	technique	using	Redis	and	Amazon	S3,	which	will	be
discussed	in	the	later	section.

Development	View:	The	Foundations	of	the
Ember.js

Ember.js

131

http://stackoverflow.com/questions/tagged/ember.js
https://webchat.freenode.net/
http://emberwatch.com/

As	a	framework,	Ember.js	makes	use	of	the	Model-View-Controller	(MVC)	design	pattern	for
the	users	to	build	their	applications.	MVC	is	used	for	relating	user	interface	to	the	underlying
model,	providing	several	advantages,	such	as	[2]:	clean	separation	of	concerns,	simplified
testing,	improved	scalability,	easier	maintenance,	reuse	of	code	and	decoupling	of
application	layers.	The	different	modules	and	components	of	Ember’s	framework	are
presented	in	Figure	5	[1].

This	section	starts	discussing	the	modular	design	that	forms	the	foundations	of	Ember.js	to
gain	a	deeper	understanding	of	Ember’s	architecture.	Furthermore,	some	standardization
aspects	and	Ember’s	codeline	organization	are	considered.

Figure	5:	Architectural	View	of	MVC	Design	Pattern	Provided	by	Ember.js

Modular	Design:	Ember’s	MVC	Design	Pattern

Firstly,	in	Figure	4,	the	yellow	block	describes	Ember’s	models.	Models	represent	the
underlying	data	that	an	application	presents	to	the	user.	There	is	no	doubt	that	models	can
vary	heavily	through	different	apps.	A	photo	sharing	application	might	have,	for	example,	a
	Photo		model	to	show	a	specific	photo,	whilst	a		PhotoAlbum		represents	a	group	of	pictures.
Contrary,	a	shopping	website	would	probably	have	other	models,	such	as		ShoppingBag		or
	Payment	.	Note	that	each	model	testable	in	isolation	and	can	easily	be	changed	or	replaced.

Ember.js

132

They	work	with	the	router	by	a		find(id)		command.	Thus,	each	module	has	its	identity	(id)
which	is	inside	its	store.	The	REST	adapter	loads	and	saves	the	various	records.	As
presented,	data	flows	from	models	to	templates	in	top-down	fashion	via	bindings.

Secondly,	controllers	are	shown.	In	recent	versions	of	Ember.js,	controllers	are	being
replaced	by	components,	making	them	less	important	in	the	framework.	The	controller
module	is	only	being	used	to	pass	user	actions	through	the	different	layers	when	moving
from	components	to	routes.	Note	that	they	are	also	testable	in	isolation.	Controllers	consist
of	object	controllers	and	array	controllers.	Array	controller	contain	lists	of	elements	and	also
interact	with	object	controller.

Thirdly,	views	render	HTML	elements	and	manage	the	user	interface.	In	this,	DOM
(Document	Object	Model)	helps	with	event	interactions,	like	mouse	overs	and	key	ups.
Handlebars	are	just	like	HTML	bars	which	are	self-updating	templates.	Note	that	controllers
need	views	to	work.

Fourthly,	templates	are	more	or	fewer	components	of	the	view	module.	They	more	or	less
boost	the	app’s	user	interface.	They	consist	of	the	bound	expressions,	firing	events,
conditions,	scope	of	the	code	and	nesting	(like	nested	loops).	It	helps	in	firing	events	from
the	view	to	the	router.	Thus,	it	defines	the	basic	building	blocks	for	the	app’s	(front-end)
structure.

Finally,	routers	update	the	model	based	on	the	templates	(events)	and	the	controller.	It
consists	of	the	application	state,	URL,	and	different	route	classes.	The	URL	interacts	with
the	application	state	and	the	route	classes	to	forward	the	events	to	the	model.

Module	Organization:	Dependencies	and	Interactions

As	a	complex	system,	Ember.js	source	code	can	be	classified	into	several	modules	as	seen
in	Figure	6.	Whilst	Ember’s	design	pattern	for	developers	is	modular	and	easy	to	interpret,
the	application’s	source	code	is	not.

Ember.js

133

Figure	6:	Ember.js	modules

It	is	difficult	to	group	and	partition	modules	in	Ember.js	into	different	layers	as	they	form	a
complex	dependency	pattern	(see	Figure	7;	this	figure	is	constructed	by	visualizing
Ember.js’s	source	code	through	GraphViz).	Some	of	these	modules	interact	with	third	party
modules	as	well,	making	the	interaction	pattern	even	more	complex.	The	relatively	clear
defined	modules	prevent	develop	functions	multiple	times	and	make	it	easy	to	localize	bugs
and	performance	issues,	though.	However,	the	dependencies	between	the	different	modules
make	it	hard	to	change	specific	components,	because	it	can	be	hard	to	predict	its
consequences	for	other	modules.	Subsequently,	this	has	a	negative	impact	on	both
scalability	and	maintainability	of	the	Ember.js	framework.	This	is	in	particular	true	for	ember-
metal,	ember-runtime	and	ember-views.

Ember.js

134

http://www.graphviz.org

Figure	7:	Ember.js	modules	and	their	dependencies

Standardization	of	Design	and	Testing

Ember's	internals	and	most	of	the	code	we	will	write	in	our	applications	takes	place	in	a	run
loop.	The	core	codebase	of	Ember	uses	ES6	modules	which	help	in	improving	the	runtime
i.e.	if	we	have	things	set	up	properly	in	our	development	environment,	then	we	can	import
just	the	parts	of	Ember.js	that	we	want	to	use.

For	developers,	Ember	team	provides	JavaScript	style	guide,	which	gives	best	practices	for
new	contributors	and	developers.	It	makes	the	code	more	readable	and	maintainable.	Also,
Ember	team	provides	a	guideline	for	developers	and	contributors	to	add	new	features
through	an	RFC	process.	Ember	uses	Configuration	to	configure	dependencies	and	other
things	for	developing	Ember.js.

Ember.js

135

https://github.com/emberjs/ember.js/blob/master/STYLEGUIDE.md
https://github.com/emberjs/ember.js/blob/master/CONTRIBUTING.md

Every	developer	and	contributor	should	perform	a	unit	test,	typically	using	Qunit,	before
submitting	a	PR	(Pull	Request)	which	potentially	changes	parts	of	the	code.	Ember.js
implements	a	continuous	integration	platform	called	Travis	CI.	It	is	used	to	test	each	PR
before	it	is	merged.	When	developers	submit	a	modification	of	code,	Travis	will	automatically
be	launched	and	a	note	will	be	added	to	the	PR.

Codeline	Organization

The	term	codeline	is	mainly	used	to	describe	the	arrangement	of	the	source	code	files.
Ember’s	codeline	can	be	organized	into	a	well-defined	structure	as	shown	in	Figure	8.

Figure	8:	Directory	structure

The	Ember.js	directory	consists	of	main	folders	like	bin,	ember.js	and	packages.	In	the	root
directory,		bower.json		and		ember-cli-build.js		are	the	most	important	files.		bower.json		is
a	Bower	package	manager	file	which	helps	managing	dependencies,	whilst		ember-cli-
build.js		is	the	build	configuration	to	be	used	by		ember-cli	.	In	bin	folder,	the		changelog	
keeps	track	of	the	changes	in	version	and	the	commits.	Packages	consist	of	the	main
modules	which	have	been	described	in	the	Ember’s	Module	Organization.	The	config	folder
contains	the	configuration	files	that	handle	the	mapping	of	a	specific	configuration	with
corresponding	files.	Generators	contain	the		license		and	lib	consists	of	the	configurations	of
packages.

Ember.js

136

https://qunitjs.com
https://travis-ci.org/emberjs/ember.js/pull_requests

Features	from	different	Perspectives
This	section	provides	a	generic	insight	in	the	main	features	of	the	Ember.js	framework	along
with	the	perspective	of	the	different	stakeholders	(see	Figure	2).	We	have	seen	that	there
are	two	important	stakeholder	groups,	namely	the	actual	users	of	the	framework	and	its
developers	team.	It	appears	that	Ember.js	has	dozens	of	features,	mainly	for	their	users.
Here,	a	couple	of	relevant	features	for	users	and	one	important	feature	for	both	users	and
developers	are	discussed.

Users:	Data	Model,	Routing,	Rendering	Engine	&
Configuration	of	Application

Ember	provides	a	robust	data	model	using	Ember	Data.	It	retrieves	models	from	the	server
as	JSON,	save	updates	to	the	server	and	create	new	models	in	browsers.	Ember	Data	can
be	configured	to	connect	with	different	types	of	backends	without	writing	any	networking
code	by	accomodating	a	relevant	adapter	provided	in	the	Ember	Data	Adapters	collection.
Users	can	easily	extend	the	default	Adapter	if	they	work	with	non-standard	backend	using
	DS.JSONAPIAdapter	.

Secondly,	Ember	uses	routers	as	the	URL	routing	mechanism.	It	has	four	options,	namely:
	history		(uses	the	HTML5	History	API),		hash		(uses	anchor-based	URLs),		auto		(uses
history	if	supported	by	the	user's	browser	and	falls	back	to	hash	otherwise)	and		none	
(doesn't	update	the	URL).	This	option	can	be	configured	by	users	in		config/environment.js	
under		ENV.locationType	.	Ember	uses	also	controllers	that	allow	developers	to	decorate
models	with	display	logic.	Ember	Controller	has	two	different	types:	either		automatic		or
	custom	.	They	can	be	selected	and	configured	using		ember-cli	.	The		custom		controller
provides	flexibility	to	users	to	extend	the	behavior	of	one	of	the	automatically	generated
controller.

Thirdly,	Glimmer	is	used	as	the	latest	rendering	engine	of	Ember.js.	It	differentiates	between
static	and	dynamic	components,	because	of	expressiveness	of	Handlebar's	templates	[3].
Glimmer	can	be	configured	through	feature	list	during	the	build	process.

Finally,	Ember	users	can	configure	their	application	in	a	configuration	file	located	in
	config/environment	.	This	is	a	default	file	generated	by	Ember	CLI.	Here,	the	users	can
change	the	default	environment	by	defining		ENV		object,	which	is	currently	limited	to	three:
development,	test	and	production	[1].

To	conclude,	users	can	benefit	from	Ember’s	flexibility	by	choosing	between	three	different
environments.	The	users	can	disable	and	enable	features	in	each	of	environments
depending	on	requirements	they	have.	Ember	users	can	configure	Ember	CLI	by	adding
configuration	codes	to	the		.ember-cli		file	in	the	application	root.

Ember.js

137

https://github.com/emberjs/data
http://emberobserver.com/categories/ember-data-adapters

Developers	&	Users:	Configuration	of	New	Features

Ember	uses	Features	Flag	that	manages	Ember.js	features	used	in	a	project.	Ember	users
can	enable	or	disable	the	features	listed	in		features.json		file,	which	is	located	in	the	root	of
the	Ember.js	project,	by	changing	the	application	configuration	file	as	stated	in	the	previous
section.	The		features.json		file	displays	all	new	features	and	their	current	status.	A	feature
can	have	one	of	a	three	flags	[1]:

	true		-	The	feature	is	present	and	enabled:	the	code	behind	the	flag	is	always	enabled
in	the	generated	build.
	null		-	The	feature	is	present	but	disabled	in	the	build	output.	It	must	be	enabled	at
runtime.
	false		-	The	feature	is	entirely	disabled:	the	code	behind	the	flag	is	not	present	in	the
generated	build.

The	description	of	newly-flagged	features	can	be	found	in		FEATURES.md		file	located	in	master
branch	on	Github.	In	this	file,	developers	explain	what	certain	features	do	and	the	link	to	the
original	pull	request	is	given.	This,	so	that	users	get	knowledge	regarding	how	the	feature	is
implemented	in	Ember.js.

Newly-flagged	features	have	a	Feature	Life-Cycle,	starting	from	Canary,	Beta,	to	Release
phase.	In	Beta	phase,	Ember’s	Core	Team	will	evaluate	each	of	new	features	that	come
from	Canary	phase.	When	the	features	are	considered	to	be	stable,	they	are	made	available
in	the	next	beta	phase	and	enabled	by	default.	As	the	beta	cycle	completed,	the	features	will
available	in	the	release	phase	and	becomes	part	of	Ember	framework	[1].

An	example	of	a	newly-flagged	feature	is	Glimmer	rendering	engine,	which	is	still	in	Beta
phase.	Glimmer	potentially	is	a	significant	improvement	to	the	Ember.js	framework,	as	can
be	seen	in	pull	request	#10501.	For	this	reason,	this	feature	is	flagged	as		null		in
	features.json		file.

Deployment	View:	The	Operational
Environment
Considering	the	vast	use	of	Ember.js,	it	is	important	to	describe	the	deployment	of	software
to	guarantee	its	operation	in	different	environments,	as	defined	in	Rozanski	&	Woods	[4].
The	deployment	viewpoint	applies	to	any	system	with	a	required	deployment	environment
that	is	not	immediately	obvious	to	all	of	the	interested	stakeholders.

Third	Party	Software	Requirements

Ember.js

138

https://github.com/emberjs/ember.js/pull/10501

Identifying	third-party	software	requirements	are	essential	for	both	developers	and	users.
For	developers,	requirements	make	it	clear	what	tools	or	libraries	to	use.	On	the	other	hand,
for	users	can	understand	what	is	needed	to	apply	software	in	their	environment.	Fortunately,
as	Ember.js	works	with	JavaScript,	it	requires	only	a	handful	of	third	party	tools.

Each	software	element	in	Ember.js	imposes	requirements	for	specific	versions	of	third	party
software.	Most	of	these	require	separate	installation	as	they	do	not	come	in	one,	complete
package.

For	Ember.js,	the	following	tools	are	required	for	configuration:

npm:	This	manages	dependencies	for	an	application	running	on	it.	It	is	also	written	in
JavaScript	and	is	maintained	via	GitHub.	Required	version	v2.4+;
Node.js:	This	is	an	open-source,	cross-platform	runtime	environment	for	developing
server-side	web	applications	[5].	Required	version	v4.x+;
Bower:	Bower	is	a	package	management	system	for	client/developer	side	programming
on	the	internet.	It	depends	on	Node.js	and	npm.	It	has	to	be	v1.0+;
Browser	support:	After	v2.0	Ember	does	not	support	IE8	or	below	to	render	its
applications.

These	version	requirements	are	not	related	to	Ember.js,	but	we	found	them	out	when
building	it	in	our	environment.

Network	Requirements

Ember.js	runs	a	state	manager	and	reverse	proxy	on	the	web	server.	The	node	in	the
system	can	be	divided	into	two	categories:	server	and	client.	On	the	server	side,	Ember.js
has	limits	on	version	issue	which	get	deployed	after	a	certain	version	has	passed
deployment	tests.	These	limits	are	in	place	to	protect	services	from	both	accidental	and
untimely	crashes.	On	the	client	side,	the	network	requirements	are	not	specified.

Evolution:	How	has	Ember	become	the
framework	it	is	today?
To	deal	with	the	variability	of	an	ever	changing	environment,	Ember	has	adopted	a	six-week
release	cycle,	inspired	by	the	rapid	release	cycle	of	Google	Chrome	[6].	As	described,	this
approach	allows	newly	developed	features	to	be	carefully	released	when	the	community
considers	them	ready	to	use.	For	versioning,	Ember	uses	the	semantic	versioning
convention	[6].	It	means	that	new	features	and	fixes	for	small	bugs	are	added	by	point
releases	(1.1,	1.2,	...),	whilst	breaking	changes	are	only	introduced	at	major	version
numbers	(1.0,	2.0,	...).	The	complete	version	history	can	be	seen	in	Figure	9.

Ember.js

139

https://github.com/npm/npm

Figure	9:	Ember.js	version	history

So,	why	does	Ember	change?

In	general,	the	issues	and	pull	requests	in	GitHub	show	a	couple	of	reasons	why	changes	in
the	Ember.js	framework	are	needed.	It	turns	out	that	major	changes	in	the	framework	are
caused	by	developments	in	both	its	supporting	languages	and	supported	web	browsers.
Both	languages	like	JavaScript	and	web	browsers	keep	developing	themselves.	To	remain
compatible	with	those	newer	versions,	Ember.js	releases	new	versions	as	well.

Note	that	pull	requests	for	new	features	are	not	expected	in	the	GitHub	repository	because
they	move	to	Ember	RFC	(Request	for	Comment)	for	discussion	purposes.	Furthermore,
new	versions	are	also	released	because	of	new	(or	improved)	documentation	and
depreciation.	It	means	that	for	simplicity	purposes,	not	all	web	browsers,	plugins,	features	or
add-ons	are	supported	anymore.	Support	for	Internet	Explorer	8,	for	example,	is	available	up
to	version	1.13,	but	is	dropped	from	release	2.0	onwards	#11313.	For	a	complete	oversight
of	all	changes	made	to	the	Ember	framework	since	2012,	please	consider	the	Ember
Changelog.

Change	management	in	theory:	different	variability
mechanisms	in	Ember.js

Dealing	with	ever	changing	software	is	not	easy.	Therefore,	Ember	has	installed	several
variability	mechanisms	to	adapt	to	the	changing	environment.	To	denote	variability
mechanisms,	a	slightly	changed	definition	derived	from	Puhlmann	et	al.	(2005)	[7]	is	used:

Ember.js

140

https://github.com/emberjs/rfcs
https://github.com/emberjs/ember.js/pull/11313
https://github.com/emberjs/ember.js/blob/master/CHANGELOG.md

"Variability	mechanisms	denote	techniques	for	the	derivation	of	software	from	software
models".	Puhlmann	et	al.	also	describes	some	commonly	used	variability	mechanisms,	to
which	will	be	referred.	Note	that	we	only	looked	at	changes	at	runtime	level,	which
comprises	of	adjustments	done	whilst	the	software	product	is	already	implemented.	This	is
in	contrary	to	product	time	changes,	which	refer	to	types	of	variability	that	are	resolved
during	the	implementation	of	a	software	product.

Document	changes	are	the	simplest	to	deal	with.	Because	of	Ember's	open-source	nature,
all	documentation	is	publicly	accessible.	If	document	changes	are	needed,	one	can	open	a
pull	request	to	do	so.	The	"old"	documentation	module	will	simply	be	replaced	by	a	new	one,
when	the	request	is	approved.	Puhlmann	et	al.	denote	this	as	replacement	of	components.	If
new	documentation	modules	are	needed	because	of	the	adoption	of	recent	features,	new
documentation	is	simply	added	(addition	of	components).	Note	that	"old"	documentation	is
still	being	saved	(see	Ember	Guide).

Ember.js	manages	new	features	in	three	different	ways:

1.	 If	new	features	are	classified	as	irrelevant	to	be	incorporated	in	new	releases,	then	the
community	relies	upon	third	parties	to	create	add-ons	to	make	use	of	the	suggested
features.	This	may	be	the	case	if	the	feature	is	useful,	but	only	for	a	limited	amount	of
users.	Puhlmann	et	al.	denote	this	as	delegation:	the	functionality	of	an	object	can	be
extended	by	delegating	the	calculations	the	object	cannot	perform	to	another	object
encapsulating	the	(varying)	functionality	for	performing	the	respective	calculations;

2.	 If	new	features	can	be	incorporated	by	extending	some	of	the	modules	upon	which
Ember.js	is	based,	a	point	release	will	be	launched.	Puhlmann	et	al.	refer	to	this	as
extension	points	of	modules.	Due	to	the	modular	structure,	Ember’s	framework	can
easily	adopt	such	changes;

3.	 If	new	features	can	be	incorporated	by	adjusting	the	modular	structure	or	adding	new
modules,	a	new	release	will	be	launched.	Puhlmann	et	al.	denote	this	as	the	addition	of
components.

Compatibility	issues	are	using	the	same	variability	mechanisms	as	described	above.	If
compatibility	issues	are	not	important,	then	Ember	relies	upon	the	community	to	develop
add-ons.	If	the	issues	are	important	enough,	then	they	will	be	incorporated	in	future
releases.	Note	that	bug	fixes	are	being	dealt	with	only	the	last	two	mentioned	variability
mechanisms.	Unimportant	bug	results	in	the	closing	of	the	pull	request.	Finally,	if	the
framework	is	going	to	be	deprecated,	particular	modules	will	simply	be	omitted,	or	parts	of
the	modules	will	be	adjusted.	Puhlmann	et	al.	refer	this	to	omission	of	components.

Change	management	in	practice:	from	one	version	to
another

Ember.js

141

https://guides.emberjs.com/v2.4.0/

Ember.js	uses	an	interesting	version	change	technique,	namely	S3+	Redis	deployment	(also
called	as	lightning	deployment),	which	was	introduced	about	a	year	ago.	With	this	technique,
developers	can	push	static	assets	(version	upgrade	components)	to	Amazon	S3	anytime,
see	Figure	10.

Figure	10:	S3+	redis	deployment	in	Ember.js

Amazon	S3	allows	developers	to	have	different	versions	of	App.js	anytime.	However,	only
one	of	these	versions	is	used	in	production,	which	is	determined	by		index.html		in	Redis.
This	allows	to	release	a	new	version	of	Ember.js	when	it	is	ready	to	be	shipped,	and	this	can
be	done	easily	by	pushing	the	corresponding		index.html		into	Redis.	This	new	version	of
	index.html		is	recognized	by	Reverse	proxy,	which	picks	up	the	corresponding	asset	from
S3	and	transfers	the	contents	to	the	browser.	This	deployment	technique	switches	versions
lightning	fast	without	any	noticeable	downtime	for	users.

Technical	Debt:	Consequences	of	System
Choices
Developers	have	roughly	two	options	to	implement	new	features	in	their	applications.	One	is
to	do	it	quick	and	dirty,	which	has	its	impact	on	future	changes.	The	other	option	is	to	do	it
smart	and	robust,	but	this	will	cost	money	and	time.	Technical	debt	is	a	metaphor	regarding
the	eventual	choice	of	the	implementation	and	its	consequences	[8].

Evolution	Trade	Offs

Ever	since	the	development	of	Ember.js	back	in	2011,	efforts	were	undertaken	to	manage
and	control	technical	debt	of	the	Ember.js	framework.	To	manage	technical	debt,	for	the
development	team,	it	was	crucial	to	create	a	community	to	develop,	build,	and	test	Ember.js
applications	in	an	efficient	way	and	make	peer	reviews	possible	using	pull	requests	and
issues.	To	do	this,	they	first	created	Ember	App	Kit	(EAK).	EAK	is	eventually	replaced	by

Ember.js

142

ember-cli,	which	is	a	faster,	more	user-friendly	command	line	tool	that	made	testing	and
peers	reviewing	even	more	efficient.	Even	so,	technical	debt	is	still	present	in	the	Ember
framework	today.

Ever	since	the	development	of	Ember.js	back	in	2011,	efforts	were	undertaken	to	manage
technical	debt	of	the	Ember	framework.	As	Stefan	Penner	called	it	in	his	presentation	at	the
2014	Ember	conference:	"We	want	to	build	applications	that	are	stable,	fast	and	extensible,
oh	and,	your	product	feature	is	due	on	Tuesday!"	[9].	To	manage	technical	debt,	it	was
crucial	to	create	a	community	to	develop,	build,	and	test	Ember.js	applications	and	make
peer	reviews	possible	using	pull	requests	and	issues.	To	do	this,	they	first	created	Ember
App	Kit	(EAK).	EAK	is	eventually	replaced	by	ember-cli,	which	is	a	more	user-friendly
command	line	tool	that	made	testing	and	peer	reviewing	simpler.	Even	so,	technical	debt	is
still	present	in	both	the	Ember	framework	today.	Stefan	Penner	also	outlined	a	couple	of
frequently	made	trade-offs	that	has	led	to	technical	debt	for	Ember	developers,	namely:

Coupling	&	complexity:	to	build	web	applications	quickly,	Ember	uses	Inversion	of
Control	(IoC).	This	means	that	for	the	flow	of	control,	a	generic,	reusable	library	is	used.
The	(dis)advantage	of	this	is	that	it	hides	complexity,	which	is	a	good	thing	for
interpretation	purposes,	but	can	also	lead	to	tremendous	technical	debt	if	things	go
wrong.	To	manage	this,	the	Ember	framework	uses	both	containers,	that	abstracts	away
coupling,	and	resolvers,	that	abstracts	the	way	to	find	code;
Building	time	&	usability:	sometimes,	if	you	have	to	do	things	quickly,	one	may	write	a
single,	large	code	in	which	loading	the	code	becomes	dependent	upon	the	order	of
lines.	"This	is	totally	crazy",	according	to	Penner	[9].	To	manage	this	form	of	technical
debt,	Ember	uses	modules	based	upon	ES6	module	syntax.	This	makes	testing	easier
and	the	application	independent	of	the	order	of	lines.

Technical	debt	in	detail

SonarQube	is	used	to	analyze	technical	debt	in	the	Ember.js	framework	in	more	detail.	Only
the	source	code	inside	the		lib		and		packages		folder	are	analyzed,	as	these	folders	contain
the	core	files.	SonarQube	will	raise	an	issue	whenever	a	code	violates	certain	rules	of
programming	language	used,	as	seen	in	Figure	11.

Ember.js

143

https://github.com/ember-cli/ember-cli
https://github.com/ember-cli/ember-cli
http://www.2ality.com/2014/09/es6-modules-final.html
http://www.sonarqube.org/

Figure	11:	Technical	debt	info	generated	using	SonarQube

Fortunately,	no	blocking	issues	were	found.	Blocking	issues	are	issues	with	high	probability
to	severely	impact	the	behavior	of	the	application	in	production.	However,	there	still	exists
several	critical	and	major	issues,	mostly	about	unused	variables	and	functions.	The	critical
issue	represents	either	a	bug	with	a	low	probability	to	affect	the	system	or	security	flaws,
whilst	major	issues	deal	with	quality	flaws,	which	can	negatively	impact	developer
productivity	[10].	Overall,	Ember.js	has	got	a	low	technical	debt	ratio,	which	means	that	the
project	is	well-maintained.	This	conclusion	is	reinforced	by	the	analysis	of	code	duplication,
which	yields	a	low	percentage	of	the	total	code	duplication	(14.3%).	The	code	duplication	for
each	component	is	depicted	in	Figure	12.

Figure	12:	Code	duplication	portion	for	each	component

Another	interesting	fact	is	that	relatively	most	of	the	issues	come	from	the	code	that	handles
routing	as	presented	in	Figure	13.	Note	that	the	size	of	the	circle	represents	the	technical
debt.

Ember.js

144

Figure	13:	Technical	debt	on	files

The		link-to.js		file	is	located	inside	ember-routing-views	package.	It	has	the	highest
issues,	moderate	technical	debt,	yet	has	few	lines	of	code	whereas		basic_test.js	,	which	is
part	of	ember	route	testing	package,	has	the	highest	technical	debt	and	lines	codes,	but	has
a	moderate	number	of	issues.	This	could	be	a	good	opportunity	for	a	new	contributor	to
collaborate	to	resolve	routing	issues.

Ember.js:	Keep	Improving	Performance
Significant	effort	has	been	made	by	Ember	to	improve	boot,	rendering,	and	build
performance.	In	addition	to	creating	a	performance	subteam,	the	infrastructure	work	is
starting	at	a	pace	to	allow	Svelte	Builds—builds	of	Ember	that	have	all	code	related	to
deprecated	features	removed.	This	allows	developers	who	have	eliminated	the	deprecation
warnings	in	their	code	to	benefit	from	a	significantly	reduced	file	size.

The	basic	advantage	of	Ember	is	that	it	has	slowly	become	a	stable	core	on	top	of	which
developers	can	build	web	applications.	Much	effort	is	put	into	the	“Stability	without
Stagnation"	concept	behind	Ember	and	the	Ember	community	demonstrates	that,	unlike
other	open	source	projects,	Ember	is	mostly	developed	by	the	consumers	instead	of	a	giant
corporation.	So,	the	developmental	stability	remains	without	halt	due	to	contribution	from
multiple	users.

Ember.js

145

While	low-level	API	gives	developers	maximum	flexibility,	it	does	not	always	make	it
pleasant	to	build	large	apps.	However,	these	building	blocks	have	unlocked	frameworks	and
libraries	like	jQuery,	Ember,	Angular,	and	React.	By	focusing	first	on	raw	capabilities	before
ease-of-use,	the	scope	is	constrained.	It	allows	Ember	developers	to	ship	features	faster,
and	by	exposing	just	the	building	blocks,	the	experimentation	in	the	ecosystem	can	continue
with	the	help	of	developers	without	hampering	backward	compatibility.	The	same	thing	is
starting	to	happen	in	Ember.	Two	illustrative	examples	are	FastBoot	and	Engines.

Conclusion:	Ending	the	Expedition
The	end	of	the	expedition	has	led	to	the	conclusion	that	the	Ember.js	framework	has	an
interesting,	but	complex	architecture.	We	believe	that	our	chapter	can	help	the	reader	to
contribute	to	the	Ember.js	framework	by	structuring	the	(architectural)	complexity,	showing
its	functionalities	and	deployment	and	reveal	its	potential	weaknesses.

Starting	with	the	involved	stakeholders,	we	clearly	showed	that	there	are	two	important
stakeholder	groups	within	the	framework,	namely	users	-	the	developers	that	use	and
support	the	framework	to	build	their	own	web	applications	-	and	developers,	those	who
continuously	improve	the	framework.	For	contributions,	within	the	last	mentioned	group
Robert	Jackson	(@rwjblue),	Stefan	Penner	(@stefanpenner),	Tom	Dale	(@tomdale)	and
Kris	Selden	(@krisselden)	are	the	most	important	to	contact	in	Ember’s	Core	Team.	By
developing	a	broader	view,	the	frameworks	relationships,	dependencies	and	interactions
with	other	systems	and	parties	appeared.	Ember.js	benefit	from	numerous	of	third	party
software	to	support	their	framework,	compatibility,	community	and	developers.	Furthermore,
it	is	shown	that	as	a	framework,	Ember.js	makes	use	of	the	Model-View-Controller	(MVC)
design	pattern,	which	mainly	relies	upon	models,	controllers,	views,	templates	and	routes.
We	have	also	shown	that	Ember’s	modules	are	clearly	defined,	but	have	extremely	complex
interactions	with	each	other.	Moreover,	a	generic	insight	in	the	main	features	of	the
framework	along	with	the	perspective	of	the	stakeholders	is	presented.	It	appears	that
Ember.js	has	dozens	of	features,	mainly	for	their	users.	Finally,	we	have	shown	the	way
Ember.js	is	deployment,	its	evolution,	why	the	framework	changes	and	how	it	manages	the
changes	over	time.	It	comes	out	that	Ember	changes	because	of	adjustments	in	both
supporting	languages	and	supported	web	browsers.

After	analysing	Ember.js	from	different	viewpoints	and	perspectives,	it	can	be	clearly	seen
that	the	framework	has	improved	over	time.	Though,	there	are	still	points	of	concern	left.	The
dependencies	within	the	modular	organization	make	it	hard	to	change	specific	components
because	it	can	be	difficult	to	predict	its	consequences	for	other	modules.	This	clearly	has	a
negative	impact	on	both	scalability	and	maintainability	of	the	Ember.js	framework.	In
addition,	the	technical	debt	analysis	showed	that	fortunately	no	blocking	issues	were	found.

Ember.js

146

https://github.com/rwjblue
https://github.com/stefanpenner
https://github.com/tomdale
https://github.com/krisselden

However,	there	still	exists	several	critical	and	major	issues,	mostly	about	unused	variables
and	functions.	Another	fact	is	that	relatively	most	of	the	issues	come	from	the	code	that
handles	routing	and	testing.	To	conclude,	we	believe	that	in	both		link-to.js	,		route.js	
(both	handle	routing)	and		basic_test.js		there	is	still	major	room	for	improvement	and
contributions.

Though,	from	the	intensive	study,	we	are	convinced	that	collaborating	online	on	a	large
framework	like	Ember.js	really	moves	the	framework	forward.	Ember.js	has	hundreds	of
passionate	and,	above	all,	very	intelligent	contributors	and	warmly	welcomes	new
contributors	and	developers.	GitHub	contributes	to	this	as	well,	by	supporting
communication,	cooperation	and	a	structured	way	of	working.	To	conclude,	if	you	are	going
to	build	a	web	application	using	the	Ember.js	framework,	we	hope	that	we	have	encouraged
you	to	make	contributions.	It	is	worth	trying,	however,	small	it	may	be.

References
1.	 Ember.js	Guides	and	Tutorials.	(2016).	Retrieved	from:	https://guides.emberjs.com/
2.	 Rouse,	M.	(March,	2011).	MVC	Design	Pattern.	Retrieved	from:

http://whatis.techtarget.com/definition/model-view-controller-MVC
3.	 Peyrott,	S.	(2015).	React	Virtual	DOM	vs	Incremental	DOM	vs	Ember’s	Glimmer.

Retrieved	from:	https://auth0.com/blog/2015/11/20/face-off-virtual-dom-vs-incremental-
dom-vs-glimmer/

4.	 Rozanski,	N.,	&	Woods,	E.	(2012).	Software	systems	architecture:	working	with
stakeholders	using	viewpoints	and	perspectives.	Addison-Wesley.

5.	 Node.js	Wikipedia	Page.	(March	24,	2016).	Retrieved	from:
https://en.wikipedia.org/wiki/Node.js

6.	 Ember.js	Blog.	(2016).	Retrieved	from:	http://emberjs.com/blog/
7.	 Puhlmann,	F.,	Schnieders,	A.,	Weiland,	J.	&	Weske,	M.	(2005).	Variability	Mechanisms

for	Process	Models:	Process	Family	Engineering	in	Service-Oriented	Applications
(PESOA).

8.	 Cunningham,	W.	(January	22,	2011).	Ward	Explains	Debt	Metaphor.	Retrieved	from:
http://c2.com/cgi/wiki?WardExplainsDebtMetaphor

9.	 Penner,	S.	(April	21,	2014).	EmberConf	2014	Software	Productivity	and	Ember:	Ember
CLI	by	Stef	Penner.	Retrieved	from:	https://www.airpair.com/ember.js/expert-stefan-
penner

10.	 Campbell,	A.	(May	7,	2015).	SonarQube	Issues.	Retrieved	from:
http://docs.sonarqube.org/display/SONAR/Issues

Ember.js

147

https://guides.emberjs.com/
http://whatis.techtarget.com/definition/model-view-controller-MVC
https://auth0.com/blog/2015/11/20/face-off-virtual-dom-vs-incremental-dom-vs-glimmer/
https://en.wikipedia.org/wiki/Node.js
http://emberjs.com/blog/
http://c2.com/cgi/wiki?WardExplainsDebtMetaphor
https://www.airpair.com/ember.js/expert-stefan-penner
http://docs.sonarqube.org/display/SONAR/Issues

Ember.js

148

GitLab:	Code,	Test	&	Deploy	Together

Abstract

GitLab

149

GitLab	is	a	web-based	source	control	manager.	It	focuses	on	documenting,	managing	and
enhancing	the	workflow	of	software	projects.	GitLab	distinguishes	itself	from	similar	systems
by	providing	out	of	the	box	continuous	integration	and	self-deployment.	The	system	is
created	with	Ruby	on	Rails,	PostgreSQL	and	Git	to	implement	an	MVC-based	architecture.	It
delegates	tasks	to	specialised	services	such	as	Redis	and	Nginx,	for	performance
optimisation.	Deployment	and	distribution	are	done	with	the	GitLab	Omnibus	package,	which
makes	setting	up	a	GitLab	instance	easy.	GitLab's	open	and	decentralised	business
philosophy	(its	community	edition	is	open-source),	results	in	the	need	for	good
documentation,	communication	and	a	well-structured	architecture.

Gitting	Started
In	the	last	decade	software	projects	have	become	increasingly	more	complex	as	a	reaction
to	the	high	demand	of	functionality.	This	resulted	in	larger	teams	having	to	maintain	and
improve	the	software.	In	order	for	a	software	project	to	succeed,	it	is	essential	to	have	good
version	control	and	a	clear	process	on	how	to	contribute	to	the	software	without	breaking	it.
GitLab	provides	a	web-based	solution	to	source	control	with	Git	and	aims	to	solve	these
problems	by	allowing	developers	to	work	together	in	a	structured	manner.	Examples	of
features	that	GitLab	provides	are:	a	dedicated	project	wiki,	customised	continuous
integration	(CI)	and	the	ability	to	host	GitLab	on	your	own	private	servers.

This	chapter	gives	an	overview	of	what	GitLab	is,	the	development	process	and	its
architecture.	To	better	understand	GitLab	we	interviewed	GitLab	employee	Jacob	Vosmaer,
who	has	been	the	fourth	employee	for	GitLab	and	has	helped	making	GitLab	to	a	success.
Jacob	is	one	of	the	core	implementers	of	the	GitLab	Omnibus	and	became	senior	developer
in	2013.	He	helped	us	to	improve	our	story	and	add	valuable	information.

GitLab

150

History

GitLab	is	a	rather	young	company,	it	will	celebrate	its	5th	anniversary	this	year.	The	amount
of	downloads	is	growing	exponentially	and	multiple	Fortune	500	companies	are	using	GitLab
for	source	control.

A	brief	history	of	GitLab	can	be	seen	in	Figure	1.	The	company	has	been	founded	in	2011
and	has	been	growing	ever	since.	Since	August	2013	a	paid	Enterprise	Edition	was	made
available	next	to	the	already	existing	Community	Edition.	According	to	Jacob	Vosmaer	the
initial	strategy	of	GitLab	was	to	grow	slowly.	However	after	joining	the	Y	Combinator	(a
company	that	provides	seed	money	and	advice	for	startup	companies)	in	March	2015	they
made	a	switch	and	speeded	up	their	development.

The	amount	of	commits	is	increasing	by	the	year.	The	source	code	of	GitLab	is	being
mirrored	and	is	available	at	GitHub	and	GitLab.

Features

GitLab	provide	a	lot	of	features	that	are	useful	when	doing	a	software	project.	The	features
discussed	in	this	section	are	thought	to	be	the	most	important	to	GitLab.

Sufficient	documentation	is	important	in	every	software	project	that	multiple	people
collaborate	on.	GitLab	provides	a	dedicated	project	wiki	that	can	be	accessed	through
the	web	interface.	The	wiki	can	inform	users	on	how	to	build,	use	or	learn	about	the
software.	Because	the	wiki	is	mainly	edited	in	the	web	interface,	GitLab	provides	a
feature	which	allows	users	to	edit	files	(including	the	wiki).
Two	main	features	are	related	to	authentication	within	GitLab.	It	is	possible	to	use

GitLab

151

https://about.gitlab.com/2016/02/11/gitlab-retrospective/
https://about.gitlab.com/features/#enterprise
https://about.gitlab.com/features/#community

LDAP	and	two	factor	authentication.	Two	factor	authentication	adds	a	layer	of	security
and	LDAP	is	enabling	to	log	in	with	existing	external	accounts.
There	are	multiple	process	management	features	that	together	help	with	managing	a
GitLab	project.	For	example	adding	weights	to	issues	and	the	ability	to	view	an	activity
stream	provide	useful	insight	of	what	is	being	done	and	what	has	to	be	done.	Another
feature	that	can	enhance	management	of	a	GitLab	project	is	adding	an	external	JIRA
issue	tracker.	When	migrating	between	different	platforms	this	can	provide	better
portability.
There	are	also	features	that	together	enhance	the	workflow	of	developers.	For
example,	the	ability	to	fork	or	mirror	repositories	both	enhance	the	ability	to	let
developers	work	with	a	repository	without	touching	the	original	repository.	The	ability	to
merge	builds	automatically	(if	no	errors	are	found)	together	with	the	feature	that	allows
for	reverting	commits	both	enhance	the	experience	and	workflow	that	developers	have
when	working	with	GitLab.	Also	the	ability	to	do	code	reviews	is	an	enhancement.
One	of	GitLab's	unique	features	is	that	it	can	be	run	for	free	on	a	user's	private
server,	opposed	to	something	like	GitHub.	The	code	never	leaves	the	customers
environment	which	is	valuable	for	companies	like,	NASA,	ING,	CERN	and	Alibaba.
There	are	multiple	features	that	improve	the	ability	to	do	Continuous	Integration.	The
feature	of	integrating	Docker	on	GitLab	requires	the	GitLab	Runner	feature	to	be	able	to
work.	GitLab	Triggers,	GitLab	Artifacts	and	custom	build	scripts	all	enhance	the	ability	of
doing	CI.

Stakeholders

In	Figure	3,	four	important	people	are	displayed	that	are	important	to	the	company	GitLab.
Dmitriy	Zaporozhets	is	the	founding	father	of	GitLab,	he	has	made	the	most	commits	and	is
the	biggest	contributor.	At	the	right	top	there	is	Jacob	Vosmaer,	who	shared	useful	insights
with	us	about	the	way	GitLab	works.	Sytse	Sijbrandij	is	the	CEO	of	the	company	and	played
a	vital	role	in	bringing	this	idea	to	the	market.	Kamil	Trzciński	is	the	lead	of	CI	which	is	a
unique	feature	to	GitLab.	Kamil	first	started	contributing	and	later	got	hired	by	GitLab.	So
from	contributor	he	turned	into	an	employee	after	doing	some	significant	contributions.	Most
of	the	top	contributors	are	employed	by	Gitlab.

GitLab

152

https://nl.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://gitlab.com/u/dzaporozhets
https://gitlab.com/u/jacobvosmaer
https://gitlab.com/u/sytses
https://gitlab.com/u/ayufan

As	can	be	seen	Dmitriy	is	contributing	a	lot.	This	made	that	GitLab	used	to	have	a	high
busfactor.	A	lot	of	knowledge	was	centered	with	Dmitriy,	however	throughout	time	the
busfactor	slowly	decreased.	The	organisation	attracted	more	employees	and	expertise
spread	through	the	sharing	of	knowledge.

Besides	the	employees	there	is	a	big	GitLab	community	that	also	contributes.	A	special
page	at	GitLab	is	showing	an	overview	of	all	the	1109	contributors	(31st	of	March).

GitLab	is	not	the	first	to	offer	a	Git-based	source-control	system,	there	is	tough	competition.
One	of	the	most	well	known	and	used	is	GitHub.	One	of	the	main	differences	is	that	GitLab
is	a	complete	white	box	by	offering	the	source	code	to	the	customers.	This	is	not	the	case	at
GitHub,	they	are	more	of	a	black	box.	GitLab	has	gained	a	lot	of	traction	in	the	past	few
years,	with	self	deployment	being	one	of	its	unique	features.	As	has	been	mentioned	before
the	GitLab	repository	is	also	shared	on	GitHub	so	the	competition	is	helping	GitLab	get	more
exposure	and	growth.	The	competition	interested	in	the	developments	at	GitLab	however
don’t	have	direct	power	to	change	things.

As	GitLab	is	used	to	host	the	source	of	other	systems,	their	customers	heavily	depend	on	it
functioning	properly.	If	GitLab	does	not	function	well,	development	of	a	system	that	utilises	it
will	be	hard.	Things	such	as	issue	management	and	code	review	are	tasks	that	are
facilitated	by	GitLab	and	make	developing	less	of	a	chore.

There	are	multiple	investors	that	have	enabled	GitLab	to	grow	further.	Khosla	ventures,	500
startups	and	Crunch	Fund	have	supported	GitLab	with	$5,5	million,	so	they	have	the	best
interest	in	GitLab	and	also	have	power	to	change	things.

GitLab	makes	use	of	different	open	source	programs.	GitLab	is	dependent	on	these
suppliers	and	therefore	they	have	power	since	changes	at	the	suppliers	affect	GitLab.	From
these	programs	there	is	however	a	low	interest	in	GitLab.	The	suppliers	will	be	discussed	in
further	detail	in	the	context	section.

GitLab

153

http://contributors.gitlab.com

The	Decentralised	Nature	of	GitLab

GitLab	is	very	open	about	their	internal	and	external	processes.	Since	GitLab	is	a
decentralised	organization	their	employees	often	are	working	in	different	time	zones.	In	the
interview	with	Jacob	Vosmaer	he	made	clear	that	sufficient	documentation	is	essential	since
they	often	cannot	contact	their	colleagues	because	of	time	differences.	After	their	rapid
exponential	growth	they	are	still	able	to	stay	open	towards	the	community	and	are	still
working	decentralised.	All	documentation	can	be	found	on	their	website.

Context
In	this	chapter	the	relationships	and	interactions	with	the	system's	environment	(such	as
third	party	applications)	are	described.	The	context	view	provided	in	this	chapter	is	based	on
the	book	by	Rozanski	and	Woods.

GitLab	tries	to	achieve	the	aforementioned	goals	with	an	architecture	that	contains	several
external	entities.	Some	are	necessary	for	the	system	to	run	properly,	while	others	are
optional.

The	systems	architecture	can	be	sectioned	into	two	groups	that	give	a	clearer	view	on	how
GitLab	interacts	with	its	external	entities,	namely:

Integral	external	entities

GitLab

154

http://doc.GitLab.com/ce/
http://www.viewpoints-and-perspectives.info/

Optional	external	entities

In	Figure	5	this	overview	can	be	seen.	This	figure	excludes	the	optional	external	entities,	as
they	are	not	a	necessity	for	the	system	to	run	and	including	them	would	create	a	too	chaotic
view	on	the	architecture.	These	will	be	elaborated	upon	below.

Integral	External	Entities

Development	tools	used	to	create	GitLab	are	Git,	Ruby	on	Rails	and	MySQL/PostgreSQL.

Git	is	both	used	as	a	development	tool	and	as	a	main	feature	of	GitLab.	Git	is	a	source
control	tool	and	facilitates	users	in	creating	a	more	efficient	workflow.	As	GitLab	itself	is	a
Git-based	source	version	control	application,	Git	also	has	to	be	integrated	in	the	application
itself	besides	being	used	as	a	development	tool.	It	is	one	of	the	most	important	components
of	GitLab.

The	system	is	built	in	Ruby	on	Rails,	which	is	a	popular	web	application	framework	that	was
chosen	as	most	of	GitLab's	initial	developers	were	experienced	in	this	framework.	It	is	used
to	create	applications	that	are	based	on	the	MVC	(model-view-controller)	architecture.

Databases	used	to	store	basic	information	are	either	MySQL	or	PostgreSQL,	which
stimulates	portability.

GitLab	also	provides	their	own	CI	tool.	This	is	a	very	distinguishing	feature	as	most	CI	tools
are	paid	services.	GitLab	makes	use	of	this	tool	during	development.	Besides	their	own	tool
they	also	use	Semaphore	CI	for	some	tasks.

GitLab

155

Service	providers	used	by	GitLab	mostly	provide	server	software	that	try	to	separate	the
workload	and	make	the	application	run	more	efficient.	For	GitLab	to	function	properly	these
servers	need	to	be	installed,	with	frameworks	and	applications	that	talk	to	them.	In	Figure	6
a	diagram	can	be	found	that	gives	a	better	understanding	of	the	main	architecture	behind
GitLab	and	its	surrounding	systems.	Below	that	figure	a	more	thorough	analysis	will	be
conducted.

Sidekiq	is	a	background	processing	framework	for	Ruby.	It	is	used	for	job	processing	tasks
such	as	queueing	and	job	prioritisation.

Sidekiq	makes	use	of	the	Redis	as	a	database	backend.	It	contains	job	information,	meta
data	and	incoming	jobs.	Redis	is	a	fast	data	structure	server,	that	lives	in	the	RAM	memory.
This	makes	it	great	for	job	caching	and	working	with	Sidekiq	to	do	the	job	processing.

GitLab	repositories	are	accessible	via	two	front	end	systems:	GitLab-shell	and	Nginx.

The	GitLab-shell	is	an	add-on	provided	by	GitLab	that	gives	a	terminal	like	environment	to
handle	Git	commands.	It	communicates	with	Sidekiq	via	Redis	to	give	Git	commands.

Regarding	the	latter,	Nginx	is	a	web	server	that	can	handle	a	high	number	of	connections
and	specialises	in	load	balancing.	It	can	be	accessed	via	HTTP(S)	and	can	serve	static	files
very	well.	Nginx	functions	as	a	first	entry	point	to	all	web	requests	and	is	used	to	access	the
Unicorn	application	server.

Unicorn	is	an	application	server	that	contains	the	main	Rails	application.	It	processes
requests	received	and	filtered	through	Nginx	and	GitLab	Workhorse	and	returns	a	response
to	the	users.

GitLab	Workhorse	stands	between	Unicorn	and	Nginx.	It	is	used	to	handle	large	HTTP
requests	such	as	file	transfers	and	Git	push	and	pull	requests.	Other	requests	are	passed	to
Unicorn	to	handle.

GitLab	can	be	run	on	multiple	server	distributions.	These	include	Red	Hat	Linux,	Debian,
Ubuntu	and	CentOS.

GitLab

156

Optional	External	Entities

The	external	entities	described	in	this	section	are	optional	to	include	in	the	system.	GitLab	is
unique	in	comparison	to	its	competitors	in	the	sense	that	it	has	support	for	external	entities
out	of	the	box	(the	integration	is	implemented	by	GitLab	itself).	A	competitor	such	as	GitHub
can	integrate	these	entities	too,	but	the	integration	initiative	needs	to	be	taken	by	the
companies	that	provide	these	entities	themselves.	Below	a	list	is	given	on	these	entities	and
what	they	are	used	for.

Continuous	integration:	even	though	GitLab	provides	its	own	CI	tool,	it	is	possible	to	use
external	CI	systems,	including:

Atlassian	Bamboo	CI
Buildkite
Drone	CI
JetBrains	TeamCity	CI

Project	management	and	issue	tracking:	it	is	possible	to	use	tools	to	enhance	project
management.	Codeline	managing,	bug	tracking,	issue	tracking,	task	tracking	etc.	can	be
done	by	integrating	the	following	tools:

Assembla
PivotalTracker
RedMine
JIRA

Deployment:	deployment	can	be	facilitated	by	using	e.g.	one	of	the	services	listed	below:

GitLab

157

Docker
Heroku

GitLab	facilitates	integrating	a	lot	of	services.	The	ones	mentioned	above	were	deemed
most	important,	as	they	make	certain	cumbersome	tasks	a	lot	easier	when	integrated	with
GitLab.	Other	services	include	spam	protection,	dependency/vulnerability	tracking,
authentication,	communication,	metrics	and	avatar	integration.	On	the	GitLab	website	a	full
list	can	be	found.

Development
This	development	view	presents	an	analysis	of	how	GitLab	is	structured,	how	the	code	is
organised	and	it	describes	the	most	important	processes	and	resources	related	to
developing	and	testing	GitLab.

Codeline	Organisation

GitLab	mainly	uses	the	Model-View-Controller	(MVC)	architecture.	MVC	is	a	design	pattern
often	used	in	software	architecture.	It	separates	the	system	into	three	interconnected	parts,
namely	a	model,	view	and	controller.	The	model	represents	the	business	domain,	where
data	can	be	stored	and	retrieved.	The	view	is	used	for	presentation	to	the	user.	The
controller	is	the	communication	link	between	the	model	and	the	view.	It	manipulates	the
model	by	sending	commands.	Commands	can	also	be	sent	to	the	view	so	that	the	right
information	is	displayed.

According	to	the	book	by	Rozanski	and	Woods,	source	code	can	be	organised	into	modules
that	contain	related	code.	Though	MVC	gives	a	clear	view	of	the	global	structure	of	a
system,	it	does	not	encompass	all	of	the	modules	in	GitLab.	A	module	structure	diagram	is
therefore	created	that	takes	MVC	and	all	of	the	modules	into	account.	In	Figure	7	a	module
structure	model	is	given	to	show	the	dependencies	between	these	modules.

GitLab

158

http://doc.gitlab.com/ce/project_services/project_services.html

MVC	is	implemented	making	use	of	Ruby	on	Rails,	a	web	application	framework	that	purely
focuses	on	this	design	pattern.	Therefore	most	GitLab	modules	can	be	separated	according
to	how	Ruby	on	Rails	modules	are	organised.	We	separate	modules	into	three	layers:

Presentation	Layer:	Contains	modules	that	create	the	view	of	the	system.	Views	in	the
presentation	layer	are	shown	to	a	user	through	a	browser	or	console.	Furthermore
assets	that	are	needed	for	the	view	are	contained	in	the	presentation	layer,	i.e.	images,
stylesheets,	javascript	files	for	interaction	and	fonts.
Application	Layer:	Contains	modules	that	contain	the	main	functionalities	of	the	system.
It	furthermore	directly	speaks	to	the	data	access	layer	to	extract,	write	to	and
manipulate	data.	Following	an	overview	of	each	of	these	modules:

Controllers:	Process	requests	to	show	certain	views	to	the	user	or	to	access	the
correct	data	from	the	data	access	layer.	It	directly	receives	its	requests	from	the
user.
Helpers:	Used	to	support	controllers.	By	default	in	Ruby	each	controller
automatically	includes	all	helpers.	GitLab	has	around	fifty	helper	modules,	which
focus	on	supporting	the	controller	modules	through	for	example	a	SearchHelper
module	that	contains	autocomplete	methods	for	searches.

Mailers:	Allows	sending	emails	from	the	system.	An	example	is	the	Groups
module	that	focuses	on	sending	and	managing	group	emails.

Services:	Contain	basic	functionalities	of	GitLab	such	as	the	MergeRequests

GitLab

159

module	that	executes	merges.
Finders:	Mostly	used	for	sorting	and	finding	modules.
Uploaders:	Used	for	managing	files	in	directories.
Validators:	Contains	modules	that	validate	certain	properties	of	the	system,	such	as
an	url_validator	module	which	validates	each	uploaded	url.
Workers:	Contain	background	workers	that	are	needed	for	background	processing
after	certain	actions	are	performed.	Most	of	the	worker	modules	include	a	Sidekiq
module	for	job	queueing	their	background	processes.

Data	Access	Layer:	Contains	implementation	of	the	domain	model.

Resources

Since	GitLab	has	so	many	external	dependencies,	getting	started	with	developing	for	GitLab
could	be	hard.	GitLab	facilitates	developing	by	providing	the	GitLab	Development	Kit	(GDK)
for	various	operating	systems.	The	GDK	provides	an	isolated	environment	for	developers
that	is	easy	to	setup	up	and	eliminates	the	hassle	of	setting	up	a	lot	of	services	and
dependencies	to	get	started	with	GitLab	development.	Additionally,	it	accompanies	the
process	of	updating	between	different	versions,	including	for	example	database	migrations.
It	is	unique	in	the	sense	that	it	encourages	the	use	of	Ruby	and	dependencies	installed
natively	on	your	OS,	rather	than	in	a	virtualised	environment.	Due	to	lots	of	IO	operations,	a
virtualised	solution	would	be	much	slower	for	running	and	testing	the	system.

Since	GitLab	is	a	continuously	evolving	system,	no	specific	time	constraints	are	set.
Additionally,	it	seems	like	the	organisation	does	not	have	specific	budget	constraints.	There
is	budget,	as	provided	by	the	investors	and	customers,	which	is	used	the	pay	employees
and	evolve	the	system	as	quickly	as	possible.	The	only	self-imposed	time	constraints	that
exist	are	prescribed	by	the	monthly	release	schedule.

The	main	resources	that	are	used	to	develop	the	system	are	developers.	There	are	two
types	of	developers	that	build	the	system:	GitLab	employees	and	open	source	contributors.
The	GitLab	employees	are	mainly	remote	workers	and	get	paid.	The	open	source
contributors	provide	free	contributions	where	GitLab	benefits	from.

GitLab	provides	a	free	distributed	Community	Edition	of	their	system,	available	for	dedicated
installation	for	developers	the	use	for	their	own	projects.	This	distribution	requires	hardware
in	the	form	of	servers.	When	a	consumer	decides	to	run	an	instance	of	the	GitLab
community	edition	itself,	hardware	is	required.	Additionally,	hardware	is	required	for	the	so
called	GitLab	runners,	the	workers	that	execute	CI	builds.	GitLab	also	provides	free	CI
runners.	In	practice,	these	are	slow	and	real	customers	would	probably	decide	to	add	extra
resources	by	dedicating	servers	for	building	their	GitLab	CI	builds.

GitLab

160

https://gitlab.com/gitlab-org/gitlab-development-kit

Probably	the	most	important	form	of	development	resources	is	the	documentation.	GitLab
focuses	on	openness	and	transparency	in	communication.	This	is	reflected	in	the	amount	of
effort	that	is	put	in	online	discussions,	guides	and	management	of	issues	and	merge
requests.	This	empowers	employees	and	contributors	to	quickly	get	started	with	contributing.
Additionally,	extensive	feedback	on	proposed	changes	helps	keeping	quality	high.	The
descriptions	and	guidelines	of	internal	processes	are	also	open.

GitLab	is	mainly	written	in	Ruby	and	its	current	version	uses	about	173	external	gems.
Gems	are	basically	libraries	that	are	written	in	Ruby	and	can	be	installed	by	the	gem
command	which	will	automatically	download	them	from	a	source.	Reusing	code	is	often	a
good	idea	since	it	saves	development	time	and	costs,	often	also	providing	a	more
specialised	solution.	However	since	the	external	gem	files	are	hosted	on	the	rubygems.org,
GitLab	is	dependent	on	the	behavior	of	rubygems.org.	If	the	owner	of	a	gem	decides	to
remove	a	gem	from	rubygems.org	that	GitLab	uses,	it	will	create	issues	when	building
GitLab.	A	good	alternative	would	be	if	GitLab	mirrors	all	gem	files	on	its	own	servers	so	that
they	are	not	dependent	on	rubygems.org.

Source	Code	Evolution

We	measured	the	volume	of	the	GitLab	codebase	over	time.	The	measurement	is	performed
on	major/minor	versions	(x.x.0).	The	results	are	visualised	and	analysed	below.	The	graphs
in	the	proceeding	sections	visualises	the	evolution	of	GitLab’s	codebase	over	time.

In	Figure	8	we	see	that	the	overall	(normal	and	test)	code	volume	increases	gradually.	For
version	8.5.0,	it	increased	with	a	factor	more	than	3	relative	to	6.4.0.	Additionally,	we	see
that	the	amount	of	test	code	relative	to	normal	code	increases	over	time.	For	version	6.4.0,
the	amount	of	normal	code	is	1.24	times	more	than	the	test	code.	At	version	8.5.0	it	is	less:
0.97.	This	could	indicate	that	GitLab's	focus	on	testing	is	increasing.

GitLab

161

https://about.gitlab.com/handbook/

With	the	visualisation	in	Figure	9	we	see	that	the	growth	of	the	overall	codebase	is	spread
across	most	modules.	There	are	no	single	modules	that	increase	substantially	more	than
others.	Most	modules	are	present	from	the	beginning	till	the	current	lifecycle	and	no	splitting
of	modules	can	be	identified.	This	could	be	a	sign	that	good	architectural	decisions	were
made	at	an	early	stage,	since	there	was	no	need	for	big	refactoring	afterwards.

Continuous	Integration

GitLab	performs	CI	using	two	systems,	namely	Semaphore	and	their	self	created	GitLab	CI.
Via	these	systems	it	is	made	easy	to	do	automatic	software	testing	and	deployment	to	the
cloud.	Extensive	automated	testing	increases	quality	during	development.	As	we	have	seen
in	the	Source	Code	Evolution	Analysis,	this	is	of	big	importance	for	GitLab.	This	is	supported
by	one	of	the	contribution	acceptance	criteria,	which	states	that	all	contributions	should
contain	proper	tests.

GitLab	builds	itself	using	their	own	tool.	This	is	a	nice	demonstration	of	one	of	their	own
prominent	features,	CI	within	the	GitLab	environment.	CI	builds	are	parallelised	and	sped	up
by	dividing	the	complete	build	job	into	several	dependant	and	independant	smaller	jobs.	If	a
job	fails,	jobs	depending	on	such	a	job	will	not	get	executed	to	save	resources.

Additionally,	CI	is	applied	using	Semaphore	for	targeting	tests	with	specific	setups	that
GitLab	does	not	support	itself,	yet.	This	mainly	consists	of	tests	using	PostgreSQL	as	a
database.

GitLab

162

https://gitlab.com/gitlab-org/gitlab-ce/blob/master/CONTRIBUTING.md#contribution-acceptance-criteria
https://gitlab.com/gitlab-org/gitlab-ce/builds

Deployment
Interestingly	enough,	since	GitLab	is	a	piece	of	software	itself,	it	is	used	as	the	main	tool	for
coding,	testing	and	deploying	itself.	In	this	section	we	will	focus	on	the	deployment	part.

The	GitLab	Omnibus

GitLab	deploys	and	distributes	its	system	to	consumers	in	a	package	that’s	called	the	GitLab
Omnibus,	which	was	one	of	the	big	factors	that	allowed	GitLab	to	grow.	Since	GitLab	relies
on	a	variety	of	external	services	like	databases,	servers,	etc.,	setting	the	system	up	could	be
a	hassle.	The	Omnibus	package	solves	this	by	packaging	required	configuration	options	and
updating	and	maintaining	features	into	a	single	resource	that	users	can	install	on	various
operating	systems	to	get	started	quickly	in	minimal	time.	Initially,	GitLab	was	mainly
supporting	Ubuntu	12,	which	was	the	most	recent	stable	Ubuntu	release	back	then.
However,	because	larger	companies	often	used	Red	Hat	as	their	Linux	distribution,	it	often
caused	minor	issues	when	following	the	manual	installation	and	configuration	steps.

Jacob	Vosmaer	played	a	significant	role	in	the	creation	of	the	GitLab	Omnibus.	In	our
interview	with	him	he	explained	to	us	that	creating	the	GitLab	Omnibus	decreased	the	time
necessary	to	invest	in	technical	support	since	most	users	did	not	have	to	do	any	manual
configuration	steps	anymore.	The	user	could	simply	install	the	GitLab	Omnibus	package.
Upgrading	your	current	GitLab	configuration	can	also	be	done	by	using	single-set	Omnibus
operations,	which	removes	the	need	for	manual	configurations	when	a	new	version	has
been	released.

The	GitLab	Omnibus	is	largely	based	on	CHEF,	because	CHEF	is	easy	to	configure	for
multiple	platforms.	Currently	the	GitLab	Omnibus	contains	Nginx,	LDAP,	PostgreSQL,	Redis,
Unicorn	and	more	systems	required	for	running.

Monthly	Releasing

Since	October	2011,	GitLab	has	consequently	released	a	new	version	on	the	22nd	of	each
month	(excluding	patches	and	security	releases).	It	is	the	22nd	of	the	month	because	just
the	last	release	before	GitLab	decided	to	start	releasing	monthly	was	on	the	22nd,	and	they
decided	to	stick	with	that.

The	philosophy	of	GitLab	prescribes	that	there	should	be	no	single	point	of	failures.	We	can
see	this	in	the	release	process,	where	there	is	the	role	of	a	Release	Manager.	This	is	a	role
that	is	being	passed	on	to	a	different	person	every	month.	The	two	main	takeaways	of	this
method	in	the	deployment	is	improved	reliability	(the	busfactor	is	decreased)	and	a	better

GitLab

163

http://doc.gitlab.com/omnibus/
https://www.chef.io/
https://about.gitlab.com/2015/12/17/gitlab-release-process/

process.	It	gets	a	refreshing	look	every	month	and	documentation	is	stimulated.	This
enabled	GitLab	to	release	monthly	without	exceptions,	while	working	with	mostly	remote
developers	that	do	not	have	frequent	physical	meetings.

Variability
GitLab	is	built	to	be	very	configurable.	Projects	have	different	demands	and	therefore	also
have	a	need	for	different	features.	The	variability	points	that	are	of	main	importance	to
GitLab	will	be	discussed	in	this	section.

Community	vs.	Enterprise	Edition:	The	product	is	distributed	in	two	different	ways:	a
free	Community	Edition	(CE)	and	a	paid	Enterprise	Edition	(EE).	Selling	the	EE
generates	the	main	source	of	income	for	GitLab.	It	varies	from	the	CE	in	the	sense	that
it	has	extra	features	that	are	developed	by	GitLab	and	is	mainly	targeted	at	bigger
organisations.	Those	features	include	advanced	authentication	and	authorization
options,	extended	workflow	and	project	management,	etc.	However	all	contributions
made	by	the	open	source	community	are	always	added	to	CE	and	will	never	be	made
only	available	for	the	EE.	Another	difference	between	the	CE	and	EE	is	that	EE	includes
customer	support	whereas	CE	does	not.	GitLab	itself	maintains	an	extensive	list	on	their
website	viewing	the	differences	between	CE	and	EE.
Authentication	and	Authorization:	While	GitLab	contains	a	basic	authentication
system,	the	authentication	system	can	be	configured	to	a	project's	needs.	GitLab	can
be	configured	to	make	use	of	multiple	LDAP	servers,	two	way	authentication	or
Kerberos	user	authentication.	Two	factor	authentication	can	be	used	together	with	other
forms	of	authentication.
Project	Settings:	GitLab	provides	various	project	supporting	features	out-of-the-box
which	are	automatically	enabled	(like	issues,	continuous	integration),	but	some	users
possibly	are	not	interested	in	using	those	features	at	all.	Therefore,	these	features	can
be	disabled	on	a	per-project	basis.	This	is	being	done	by	either	disabling	the	feature	in
the	web	interface	or	by	adding	the	configuration	options	in	the	GitLab.rb	configuration
file	which	can	be	found	in	every	GitLab	setup.
Operating	System	(OS):	GitLab	deploys	its	system	either	via	the	Omnibus	package	or
by	doing	a	manual	installation.	By	using	the	Omnibus	GitLab	was	able	to	provide	more
support	for	different	platforms.	Whereas	at	the	start	GitLab	was	only	available	on
Ubuntu,	it	can	now	run	on	a	variety	of	platforms	including	CentOS	and	Red	Hat	Linux.

Conclusions

GitLab

164

https://about.gitlab.com/features/#compare

The	main	goal	of	GitLab	is	to	code,	test	and	deploy	together.	It	tries	to	achieve	this	by
providing	a	web	application	that	integrates	Git	repository	management,	code	review,	issue
tracking,	project	reporting,	continuous	integration	and	deployment.

GitLab	distinguishes	itself	from	similar	applications	such	as	GitHub	in	the	sense	that	it
makes	self	deployment	possible	and	easy.	It	delivers	an	out-of-the-box	experience	with	its
GitLab	Omnibus	and	includes	CI	to	make	development	and	testing	even	more	accessible.

GitLab	has	a	culture	and	philosophy	that	embraces	openness	and	transparency,	which	is
necessary	as	they	are	a	company	that	functions	mostly	decentralised.	This	results	in	the
need	for	proper	documentation,	good	communication	and	a	strong	architecture.

The	main	architecture	created	using	Ruby	on	Rails	makes	GitLab	a	well	organised	system,
that	facilitates	integrating	external	entities	such	as	Redis	and	Nginx.	Integrating	them	makes
the	system	faster	by	dividing	time	consuming	tasks	over	specialised	services.

Currently	GitLab	is	getting	a	lot	of	traction.	They	have	received	several	large	investments	in
the	past	few	years	and	GitLab	is	becoming	more	popular	due	to	their	free	features	of	CI	and
self	deployment.	In	upcoming	years	it	hopes	to	grow	more	and	invest	more	in	these
distinguishing	features.

As	indicated	by	Jacob	Vosmaer,	the	focus	in	the	near	future	will	be	on	extending	CI
functionalities.	In	the	past	few	releases,	new	technologies	like	the	programming	language
Go	are	introduced.	These	two	moves	and	their	impact	on	the	evolution	of	GitLab	will	be
interesting	to	follow.

GitLab

165

Guava	-	As	it	Currently	is
Bastiaan	Reijm,	Marco	di	Biase,	Qianqian	Zhu,	Luca	Pascarella

Delft	University	of	Technology

Abstract
Guava	is	a	Collections	and	Utility	library,	focusing	on	complementing	the	Java	Standard
library.	We	present	the	current	state	of	Guava	for	newcomers	and	interested	parties.	We
look	at	what	Guava	is	and	elucidate	the	architecture	by	analysing	several	key	viewpoints
and	perspectives.	Furthermore	we	present	the	current	plans	for	Guava	so	that	contributors
and	users	know	in	which	direction	the	project	is	going.	We	briefly	discuss	what	to	do	when
contributing.	Finally	we	look	at	our	own	work	and	experiences	at	we	gathered	while
analysing	this	project.	Our	aim	is	to	provide	an	outside	perspective	of	Guava.

Table	of	Contents
Introduction
What	is	Guava?

Where	is	it	used?
The	Architecture	of	Guava

Stakeholders
Context	Viewpoint
Development	Viewpoint

Module	Organisation
Standardisation	of	Design	and	Testing

Information	Viewpoint
Evolution	Perspective
Security	Perspective

Comparison	to	Apache	Commons	Collections

Guava

166

https://github.com/breijm
https://github.com/mardibiase
https://github.com/qianqianzhu
https://github.com/lucapascarella

What's	Next	for	Guava?
Plans	for	Guava	20	and	21
Usage	Statistics	and	Phenomenon

Conclusion
References

Introduction
The	Guava	project	[1]	is	one	of	the	many	libraries	written	to	expand	and	simplify	the	use	of
the	Java	Standard	Library	(JSL).	This	chapter	about	Guava	is	an	academic	study	conducted
to	analyse	this	project	and	show	it	from	multiple	angles.	What	is	it?	Who	is	involved?	Why
use	it?	How	to	contribute?	All	these	are	valid	questions	and	this	chapter	attempts	to	answer
these	questions	and	provide	resources	for	further	investigation	on	that	project.

First	off,	who	this	chapter	written	is	for.	Often	it	is	hard	for	an	outsider	to	get	insight	on	the
working	of	a	tool	or	how	a	project	is	organised;	it	requires	a	substantial	amount	of	effort.	The
Guava	wiki	[2]	is	an	excellent	place	to	start	however	its	main	focus	is	usage	and	the	features
that	Guava	has.	We	take	a	different	approach.	We	started	as	outsiders	to	this	project	and
now	that	we	know	more	about	this	project	we	present	our	findings	so	that	anyone	in	the	near
future	can	gain	a	similar	understanding	of	Guava	without	expending	a	similar	amount	of
effort.

With	the	previously	elaborated	idea	in	mind,	the	chapter	is	organised	as	follows.	First	we
start	by	looking	at	what	Guava	actually	is	from	both	a	conceptual	as	well	as	an	architectural
point	of	view.	In	these	sections	we	explore	in	details:	the	stakeholders,	the	context	viewpoint,
the	information	viewpoint	and	the	evolutionary	and	security	perspective.	The	previous
analysis	are	also	the	starting	point	to	propose	a	little	comparison	with	similar	projects	like
Apache	Commons	Collections.	Then	we	discuss	the	future	plans	of	Guava	and	some
phenomenon	related	to	its	real-world	usage.	Finally	we	conclude	this	chapter	by	reflecting
on	our	own	work	and	the	lessons	we	learned.

What	is	Guava?
In	the	simplest	terms,	Guava	is	a	Java	library.	Specifically	it	is	a	Collections	and	Utilities
library	that	adds	functionality	to	the	Java	Standard	Library	(JSL).	It	is	not	a	separate
language	and	it	does	not	attempt	to	be	a	replacement	of	the	JSL.	Rather	it	provides	features
and	functionality	that	are	either	non-existent	or	cumbersome	in	Java.

Where	is	it	used?

Guava

167

As	with	any	product,	the	proof	is	in	the	usage.	Guava	is	used	in	several	scenarios	of
everyday	Java	programming.	When	dealing	with	common	Java	development,	enhanced
functionalities	on	top	of	JSL	are	needed.	For	instance,	dealing	with		null		values	is	a	hassle.
Guava	provides	a	way	to	handle	this.	Giving	it	a	name,	increases	readability	in	the	first	place
and	forces	developers	to	think	about	the	cases	when	a	method	might	return	a	null	value.

	Optional		[3]	replaces	a	nullable	reference	with	a	non-null	value.	An	Optional	may	be
present	or	absent.

Optional<Integer>	possible	=	Optional.of(5);

possible.isPresent();	//	returns	true

possible.get();	//	returns	5

Returning	Optional	makes	it	impossible	for	callers	to	forget	that	case,	since	they	have	to
unwrap	the	object	themselves	for	their	code	to	compile.

Another	key	example	of	additional	functionality	is	for	Strings.	Strings	in	Java	are	used	in	a
multitude	of	scenarios.	Guava	provides	enhanced	functionalities	in	order	to	join,	split,	match
characters	and	use	specific	charsets.	For	instance,	using	Guava		Splitter.split		[4]	allows
to	control	over	the	confusing	behaviour	of		String.split		when	dealing	with	trailing
separators	or	empty.	This	is	just	the	beginning,	because	string	splitters	is	much	more
powerful.	For	instance:

MapSplitter	splitter	=	Splitter.on("	").withKeyValueSeparator(":");

splitter.split("a:1	b:2");	//	=>	Map	{a=1,	b=2}

creates	a	Map	starting	from	a	string,	defining	a	custom	splitter	and	key-value	separator.

Java	collections	are	very	useful,	but	Guava	expands	classic	Maps	and	Sets	with		Multiset	,
	Multimap	,		BiMap		and		Table	.	These	have	specific	features	that	are	useful	in	a	multitude	of
scenarios.	For	example,	JSL		Map<K,	Set<V>>		is	the	typical	way	to	have	an	non-labeled
directed	graph.	Accessing	it	though,	is	not	trivial.	Guava's	Multimap	(and	in	particular	for	this
scenario	a		SetMultimap		[5])	makes	it	easier	to	map	one	key	to	multiple	values.	A	Multimap
is	a	general	way	to	associate	keys	with	arbitrarily	many	values.

Finally,	Guava		Iterable		[6]	is	another	useful	utility	class	that	provides	utility	methods	that
operate	on	or	return	objects	of	type	Iterable.	All	of	the	iterables	produced	in	this	class	are
lazy,	which	means	that	their	iterators	only	advance	the	backing	iteration	when	absolutely
necessary.	This	is	extremely	useful	when	a	collection	is	not	actually	stored	in	main	memory
(for	instance	retrieved	from	a	database)	and	does	not	support	operations	like	size	without
actually	grabbing	all	of	the	elements.

These	are	just	a	few	of	the	large	number	of	functionalities	made	available	with	Guava.

Guava

168

The	Architecture	of	Guava

This	book	is	about	Software	Architectures	of	Open	Source	Systems	thus	we	find	it
appropriate	to	include	some	factors,	viewpoints,	and	perspectives	that	relate	to	the
architecture	of	Guava.

Stakeholders

The	very	first	thing	of	understanding	the	Guava's	architecture	is	to	identify	and	understand
the	role	of	stakeholders.	Since	stakeholders,	who	have	interests	in	the	system,	play	a	vital
role	in	the	realisation	of	the	system.	They	explicitly	or	implicitly	determine	the	main	features
of	the	system	to	satisfy	their	needs.

To	start	with,	a	brief	background	information	about	Guava.	In	2007,	Guava	started	out	as	the
"Google	Collections	Library".	In	2010,	Guava	released	its	first	version	on	GitHub.	For	now,
Guava	has	6,734	usages	according	to	the	statistic	is	shown	in	Maven	Repository	website
[7].	Meanwhile,	Guava	has	1,002	copy	repositories	(forks)	by	other	GitHub	users	[8].	In	one
sentence,	Guava	is	an	open	source	project	while	it	is	also	a	collection	of	APIs	referenced
throughout	the	internal	Google	codebase.	The	two	keywords,	Google	and	open	source,
determines	the	distribution	of	Guava's	primary	stakeholders.

First	of	all,	Google,	as	the	owner	of	Guava,	develops,	tests,	maintains,	supports	and	uses
Guava	project.	Thus,	in	this	case,	staff	from	Google	consists	of	the	central	part	of	the
stakeholders.	Google,	of	course,	is	one	of	the	biggest	users	and	suppliers	of	Guava.
Acquirers	are	mainly	senior	managers	from	Google.	Production	Engineers	are	members
from	Google	that	provide	development	and	test	environment	for	Guava.	Assessors	are	from
Google's	quality	control	or	conformance	departments.

Among	the	developers,	testers,	communicators,	support	stuff	and	maintainers	are	Java
Core	Libraries	team	members	at	Google	[9].	They	communicate	with	and	provide	support	to
users	in	user	community	while	they	develop,	test,	and	maintain	Guava	project.	The	most
important	developers	that	have	contributed	to	guava	are	@cpovirk,	@kluever,	@cgdecker
and	@lowasser.	Each	one	of	them	has	more	than	150	commits	on	the	repository,	and	more
than	40k	of	lines	of	code	written.

Meanwhile,	open	source	means	the	public	has	access	to	Guava	and	they	can	use	it;
possibly	make	contributions	the	project.	In	this	case,	third-party	organisations	and	the
members	of	the	pubic	consist	of	users.	The	third-party	organisations	include	Spring,
Hadoop,	Reflections,	GlassFish,	Play,	Solr	[7]	and	Netflix	[10].	The	members	of	the	public
include	web	application	developers,	Java	programmers,	distribution	application	developers

Guava

169

https://github.com/cpovirk
https://github.com/kluever
https://github.com/cgdecker
https://github.com/lowasser

and	CSP	programmers.	These	users	can	also	act	as	the	external	developers	via	GitHub.
They	sometimes	can	also	fill	in	the	role	of	accessor	(pr	#2247)	and	communicators	(pr
#2248).

To	date	we	have	not	identified	any	system	administrators	in	the	Guava	project,	since
Guava	serves	as	a	core	library	and	no	need	to	run	this	system	additionally.

The	stakeholders	diagram	below	shows	the	overview	of	Guava's	stakeholders	as	mentioned
above.

Guava	has	a	large	and	diverse	set	of	stakeholders;	both	the	community	and	Google	actively
contribute	to	this	project.

Context	Viewpoint

Guava

170

https://github.com/google/guava/pull/2247
https://github.com/google/guava/pull/2248

If	we	would	like	to	summarise	in	one	sentence	what	Guava	wants	to	achieve,	we	could	say
don’t	reinvent	the	wheel	[2].

Creators	and	Advisors

The	former	Google	Collections	Library	was	born	due	to	the	necessity	to	extend	some	core
Java	functionalities	in	order	to	improve	the	structure.	Two	engineers	at	Google,	Kevin
Bourrillion	and	Jared	Levy,	decided	to	step	in	and	write	an	extension	to	the	standard	JDK,
which	included	productive	features	such	as	hashing,	functional	programming	and	so	on.
Apache	Commons	Collection	was	in	the	game,	but	unluckily	was	not	enough	for	the	kind	of
structures	and	operations	that	these	two	people	were	looking	for.

Two	big	names	were	prominent	in	the	original	design	of	Guava	[14]:	one	is	Joshua	Bloch,
the	original	lead	designer	of	the	Java	Collections	framework.	The	other	is	Doug	Lea,	one	of
the	lead	designers	of	concurrency	utilities	in	JDK.	They	both	advised	and	reviewed	this
library’s	design	and	preliminary	implementation.

Guava	is	a	Java	library	that	lets	any	project	to	import	it	and	make	use	of	its	features.	In
contrast	to	the	JDK,	Guava	deprecates	and	eventually	deletes	unwanted	features	over	time.
The	changes	are	made	in	order	to	make	sure	that	no	actual	system	that	uses	it	gets	broken.
New	components	are	also	very	important	as	well,	and	they	are	marked	with	the	tag	@Beta.
They	receive	the	same	treatment	as	normal	component,	regarding	for	instance	the	testing
aspect.	If	Beta	component	are	to	be	deleted,	they	are	deprecated	one	release	before.

Internal	organisation

From	Guava's	codebase,	we	found	it	consists	of	four	projects:		guava	,		guava-gwt	,		guava-
testlib		and		guava-tests	.	We	will	provide	further	analysis	of	Guava	internal	organisation
dependencies	in	Development	Viewpoint	section.

External	dependencies

From	Guava's	maven	build	file,	we	identified	the	several	external	dependencies.	Firstly,
Guava	depends	on	Java	basic	packages	JDK	and	Javax.	Secondly,	some	web	server	tools
are	also	required	such	as	Jersey,	GWT.	Thirdly,	Guava	injects	dependencies	with	Guice[30].
Fourthly,	Guava's	testing	related	dependencies.	Apache.common.math	package	is	used	to
conduct	benchmark	testing.	Junit	is	used	to	conduct	the	unit	testing.	Several	Java	bytecode
generators,	such	as	cglib	and	ASM,	is	also	used	for	testing.	In	addition,	Joda-Time,	which
provides	a	quality	replacement	for	the	Java	date	and	time	classes,	is	also	adopted	in	Guava.

User	and	Community

Guava

171

The	users	can	get	supports	and	helps	via	User	Community.	The	main	websites	are	GitHub,
Google	Groups	and	StakeOverflow.	Public	users	can	post	questions,	feature	requests	or
potential	patches	in	the	community.	The	developers	are	also	involved	in	the	discussions.

Version	control	and	build	management	tools

Guava	is	a	open	source	project	and	it	mainly	uses	GitHub	as	its	version	control	tools.	Travis
CI,	as	a	popular	companion	with	GitHub	for	open	source	project,	is	adopted	to	build	and	test
projects	Guava	also	uses	Maven	and	Gradle	for	build	automation.

The	context	model	is	presented	below	(context	model	diagram).	The	context	model	diagram
summaries	the	above	content	and	also	includes	information	from	stakeholders	analysis.	In
conclusions,	Guava's	context	model	is	relatively	simple,	since	Guava	is	a	Java	library	and
does	not	involve	much	common	processing.

Development	Viewpoint

Guava

172

The	development	view	gives	more	information	about	the	organisation	of	the	project,	in
particular	regarding	its	source	code.	This	view	focuses	on	the	technologies	that	are	used	in
building,	testing	and	releasing	a	software	product.

Module	Organisation

Once	you	set	up	a	local	clone	of	Guava	on	your	machine,	you	will	find	the	current	version
(version	19)	of	Guava	consists	of	four	projects:

Project Purpose

	guava	 the	main	source	of	Guava

	guava-

gwt	

the	GWT-compatible	super-source	that	helps	make	Guava	GWT-
compatible

	guava-

testlib	

the	test	suite	builders	that	assemble	customised,	exhaustive	test	suites	for
collection	implementations

	guava-

tests	
the	tests	for	Guava

Since		guava		project	represents	the	main	source	of	Guava,	we	further	analyse	the		guava	's
module	organisation.	The	project		guava		consists	of	16	packages.	Guava	Dependencies
Figure	generated	by	using	STAN4j	Eclipse	plugin	displayed	the	inside	dependencies.

Based	on	the	package	dependencies	and	functionalities,		guava		project	can	be	further
clustered	into	four	layers:

Guava

173

http://stan4j.com/

Layer Package(s) Functionality

The	corest
of	the	core

	base	

provides	with	fundamental	utility
libraries	and	interfaces	for	other
modules.

Utilities
Module

	primitive	,		escape	,		math	,		html	,
	xml	,		io	,		net	,		concurrent	,
	collect	,		cache	,		eventbus	,
	hash	,		reflect	

each	functionality	can	refer	to
Guava's	API	documentation	[12].

Annotation
Module

	annotation	

served	as	an	independent
module	which	provides	common
annotation	types	throughout	the
whole	project.

Public
Suffix
Module

	thirdparty.publicsuffix	

accessing	to	public-suffix
information	(public	suffix	can
refer	to	[13]).

Standardisation	of	Design	and	Testing

The	participation	of	two	well-known	Java	fundamental	designers,	that	are	Joshua	Bloch	and
Doug	Lea,	implies	that	design	standards	in	Guava	are	quite	elaborate	and	strict.	Based	on
Guava's	wiki	documents	as	well	as	the	previous	investigations	of	Google	Java	code
guidelines,	we	conclude	that	several	design	strategies	are	split	into	the	following	parts:

best	solution
intuitive	semantics	of	methods	and	classes	(details	refer	to	good	code	style	[15])
focus	on	generic	use	cases
emphasis	on	maintainability:

most	exposed	classes	should	be		final	
conservative	attitudes	towards		AbstractXXX		classes

compatibility:
introduction	of		@Beta		annotation	which	indicated	the	related	features	are	not	ready
to	freeze

Furthermore,	Guava	also	has	been	battle-tested	in	production	at	Google.	For	now,	the
guava-tests	package	includes	more	than	600,000	individual	test	cases	which	achieve
thorough	testing	coverage.	Guava	also	has	additional	benchmark	tests	(in		guava-
tests/benchmark		subfolder)	to	check	the	real	performance.

From	the	wiki	and	codebase,	we	identify	that	Guava	has	used	at	least	three	test	tools:

JUnit:	unit	testing	framework
Maven,	Gradle:	build	tools	manager	for	Java
Travis	CI:	automatic	test	execution

Guava

174

Information	Viewpoint

From	an	Information	Viewpoint	Guava	has	a	rather	simplistic	architecture.	Guava	itself
inherently	does	not	have	any	information;	there	is	neither	a	database	nor	a	configuration	file
for	Guava.	Guava	does	not	have	the	common	ownership,	mapping,	volatility,	and
consistency	problems	that	other	systems	have.	Guava	is	not	even	a	complete	system,	rather
it’s	a	utility	library.	Therefore	in	this	viewpoint	we	focus	on	information	purpose,	usage,	flow,
quality,	consistency	in	the	context	of	what	does	Guava	do	to	try	to	help	with	these	aspects.

A	good	example	of	how	Guava	is	more	than	just	a	wrapper	for	the	JSL	is	the	Input	and
Output	(IO)	[16].	Guava	uses	a	paradigm	commonly	found	in	graph	theory,	namely	sources
and	sinks.	Information	is	read	in	by	a	Source	and	written	out	by	a	Sink.	To	facilitate	this
paradigm,	abstract	classes	are	provided	that	support	this	concept	and	aim	to	help
developers	write	more	consistent	code	with	ease.

IO	certainly	is	not	the	only	part	where	Guava	provides	useful	features.	Among	the	more
mature	and	popular	parts	of	Guava	—	according	to	the	wiki	[17]	—	Guava	provides	extra
functionality	with	regards	to	working	with	collections.	For	example,	Guava	provides
functionality	to	take	the	cartesian	product	of	two	sets.	Remember	that	the	cartesian	product
is	the	set	of	all	the	pairs	that	can	be	created	by	picking	one	element	from	each	set.	This
functionality	is	not	available	in	the	Java	8	or	lower.	While	this	is	a	rather	trivial	example,
Guava	provides	much	more	functionality	like	this	for	Collection	types.

Another	significant	area	that	Guava	targets	is	data	consistency,	it	does	so	in	the	form	of
caches	[18].	Caches	in	Guava	provide	ways	to	manage	data	eviction	strategies	so	that
caches	limit	their	memory	footprints.	These	caches	are	most	useful	when	memory	can	be
traded	in	for	processing	speed,	data	will	be	queried	more	than	once,	and	the	entire	cache
can	be	loaded	into	memory.	Guava	caches	are	local	in-memory	data	structures	that	neither
write	data	nor	persist	over	multiple	applications	runs.

Guava	as	a	project	is	of	low	complexity	from	an	Information	Viewpoint	simply	because	it
does	not	store	data,	it	only	facilitates	the	processing	of	data.	This	functionality	comes	in	the
form	of	IO	handling,	collections	manipulation,	and	in-memory	data	management.

Evolution	Perspective

Like	most	software	systems	and	libraries,	Guava	has	changed	over	time.	The	project	started
as	the	internal	collections	library	for	Google	and	became	known	as	the	Google	Collections
API.

The	major	architectural	changes	are	always	discussed	with	the	community,	however	seeing
these	changes	in	action	is	a	different	story.	Google	maintains	Guava	with	input	from	the
community.	Google	maintains	an	internal	issue	list	and	has	internal	pull	requests	[19].	Thus

Guava

175

changes	are	added	to	the	internal	repository,	tested,	and	mirrored	out.	In	theory	this	model
safeguards	the	reliability	of	the	changes	though	we	have	no	of	measuring	this	effect.	It	also
seems	to	increase	the	timescale	for	changes	since	discussions	on	the	forum	can	be	quite
elaborate,	involving	many	stakeholders.	The	discussion	about	how	to	handle	Java	8	started
in	July	2014	and	the	release	that	is	scheduled	to	adopt	these	changes	will	become	available
in	early	to	mid	2016.

Java	is	a	major	external	factor	driving	changes	in	Guava’s	implementation	and	design.	Java
8	introduces	duplications	of	functionality,	incompatible	features,	and	the	need	to	separate
Guava	into	several	versions	[20].	Not	only	do	major	languages	changes	to	Java	affect
Guava	but	so	do	minor	security	updates.	When	Java	7	update	51	was	released,	a	small
security	fix	was	introduced	that	directly	affected	Guava	and	had	to	be	fixed	in	a	timely
manner.	Issue	#1635	elucidates	the	details	of	this	issue	and	the	fact	that	this	only	took	24
hours	to	fix.

Smaller	updates	and	additions	offered	up	by	the	community	take	much	more	effort	to	be
included.	Feature	requests	are	actively	discussed	but	seem	to	rarely	make	it	into	production
code	and	if	they	do,	it's	only	at	major	releases	when	the	Google	team	is	content	with	the
stability	of	the	system.	The	pull-requests	tell	a	similar	story,	many	of	them	are	simply	waiting
to	be	merged	[21].

Guava	is	managed	by	Google	and	ultimately	this	relationship	causes	changes	of	smaller
magnitude	and	a	seemingly	longer	timescale	for	most	changes.	It	has	much	active
discussion	and	many	interesting	challenges	such	as	that	a	large	part	of	the	evolution	of
Guava	is	the	evolution	of	Java.

Security	Perspective

Guava,	as	mentioned	several	times	before,	is	a	utility	library.	It	does	not	have	it’s	own
system	state	and	it	does	not	have	to	directly	protect	any	sensitive	assets.

Guava	itself	may	not	need	many	security	features	but	maybe	surprisingly	does	not	provide
security	oriented	features.	Why	is	this	the	case?	It	seems	that	the	community	simply	is	not
interested	in	security	features.	For	example,	according	to	the	exchange	between	a
community	developer	and	a	google	engineer	about	the	escaping	of	html	characters,	the
google	engineer	states	that	they	simply	have	seen	any	demand	to	justify	changing	the
current	implementation	issue	#1887.	Less	than	1%	of	all	the	issues	are	security	related	and
of	the	98	pull	requests	not	one	of	them	is	security	related.	Similarly	less	than	0.5%	of	the
messages	posted	to	the	google	groups	forum	are	security	related.	Due	to	the	lack	of	any
substantial	communication	related	to	security	we	conclude	that	the	Guava	community	is	not
a	security	oriented	one,	thus	Guava	does	not	provide	extra	security	oriented	functionality.

Guava

176

https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!searchin/guava-discuss/java$208/guava-discuss/fEdrMyNa8tA/jxvkaPauPfkJ
https://github.com/google/guava/issues/1635
https://github.com/google/guava/issues/1887

Guava	does	however	use	one	narrow	facet	of	the	security	features	provided	by	the	JSL.	In
order	to	efficiently	store	and	access	data,	objects	are	often	assigned	a	number	(a	hash)	in	a
process	called	hashing.	Guava	allows	developers	to	more	easily	create	hashes	using
cryptographically	strong	algorithms	that	specialise	in	uniformly	distributing	these	hashes
[22].	The	advantage	is	that	data	can	be	retrieved	faster	if	fewer	objects	are	assigned	the
same	hash.	As	such	the	security	features	are	used	because	they	are	also	advantageous	in
increasing	the	efficiency	of	collections.

As	for	the	most	important	asset	in	the	Guava	ecosystem,	the	source	code,	it	is	secured
against	malicious	code	injections.	In	order	for	malicious	code	to	be	intentionally	added	to	the
code	base,	a	pull	request	would	have	to	be	approved	by	a	google	team	member	and	pass
internal	testing	before	being	mirrored	out	the	public	repository.	This	mirroring	and
internalisation	process	means	that	Google	can	check	the	quality	and	functionality	of	the
code	before	it	ever	reaches	the	general	public.	Another	important	security	measure	is	that
releases	are	available	on	the	Maven	Central	Repository	and	are	protected	using	checksums
to	verify	the	identity	of	the	packages	(see	issue	#354).

Guava,	in	our	opinion,	is	a	low	risk	project	with	respect	to	security.	Inherently	it	does	not
have	any	sensitive	assets	other	than	the	source	code.	Standard	security	measures	to
ensure	the	integrity	of	this	code	base	are	in	place	and	the	internalisation	of	contributed	code
allows	for	security	audits	before	the	code	is	made	public.	Since	it	builds	on	the	JSL	general
security	flaws	in	the	JSL	and	JVM	will	also	affect	Guava.	We	also	conclude	that	the	Guava
community	and	Guava	as	it	currently	is,	do	not	have	security	as	a	main	focus.

Comparison	to	Apache	Commons	Collections
Some	of	you	readers	may	be	familiar	with	the	Apache	Commons	Collections	(ACC),	this	is	a
similar	project.	However,	Guava	has	some	distinct	advantages.

First	and	foremost	Guava	has	had	more	recent	activity	than	ACC.	As	of	this	writing	11	major
versions	have	been	released	with	a	median	release	frequency	of	133	days	as	measured	in
the	last	5	years	[23].	ACC	in	comparison	has	had	1	major	release	in	that	time	period
because	the	project	was	not	actively	maintained	for	a	period	of	7	years.	[24]

As	thoroughly	explained	on	StackOverflow	[25],	and	referenced	by	a	presentation	by	Google
[26],	Guava	greatly	benefits	from	the	Java	5	features:	generics,	varargs,	enums,	and
autoboxing.	Generics	is	one	of	the	reasons	Google	chose	to	create	a	new	library	instead	of
improving	Apache	Commons,	as	said	here.

The	code	is	full	of	best	practices	and	useful	patterns	to	make	the	API	more	readable,
discoverable,	performant,	secure,	and	thread-safe.	These	patterns	are	everywhere	in	the
code	and	they	are	not	only	for	the	show,	they	have	a	real	value:	the	API	is	a	pleasure	to	use,

Guava

177

https://github.com/google/guava/issues/354
https://code.google.com/archive/p/google-collections/wikis/Faq.wiki

easier	to	learn,	more	efficient,	many	classes	are	simpler	and	thread-safe	due	to	their
immutability.

As	for	translating	ACC	to	Guava,	please	refer	to	the	Guava	wiki	here.

What's	Next	for	Guava
Guava	is	still	under	active	development,	what	are	the	plans	for	the	future?

Plans	for	Guava	20	and	21

The	big	discussion	for	the	last	two	years	has	been	the	discussion	about	how	to	support	Java
version	8.	Complicating	the	process	is	that	Java	8	includes	classes	that	are	very	similar	to
Guava	classes.	Furthermore,	Java	8	includes	lambdas	which	are	not	supported	yet	by
Guava	and	more	importantly	neither	does	Android.	The	crux	of	the	problem	is	therefore	that
Guava	needs	to	be	updated	while	still	holding	on	to	the	philosophy	of	compatibility	of
previous	Java	versions.

We	are	confident	that	backwards	compatibility	with	previous	Guava	versions	is	the	best
way	forward	for	us	and	for	our	users.	I'm	hesitant	to	estimate	a	timeframe	for	an	official
release,	largely	because	we're	somewhat	constrained	by	the	rest	of	Google.	[27]

In	December	2015,	it	was	announced	that	support	for	Java	8	would	introduced	soon.

Guava	20	(to	be	released	in	early	2016)	will	be	the	final	Guava	release	to	support	Java
6,	or	even	Java	7.	Guava	21	(ideally	mid-2016)	will	require	Java	8.	So,	if	you're	unable
to	upgrade	to	8,	you	may	be	using	20	for	a	while.	We	don't	expect	to	issue	patch
releases	except	for	relatively	serious	issues.	[28]

How	does	this	affect	Android?

With	version	21	we	will	also	kick	off	a	new	fork,	presumably	called	guava-android.	It	will
maintain	Java	6	compatibility,	allowing	it	to	be	used	for	Android	apps	supporting	a
minimum	version	of	Gingerbread.	[28]

Usage	Statistics	and	Phenomenon

In	terms	of	usage	in	the	development	world,	few	Java	oriented	projects	rival	Guava.	Just	to
get	an	idea	as	to	how	popular	Guava	is,	an	analysis	that	was	done	in	2013	[29]	showed	that
it	was	the	8th	most	used	external	library	from	over	10,000	GitHub	projects.	In	a	further	work
done	in	2015	[30],	based	on	40,000	Java	projects	hosted	on	GitHub,	Guava	is	the	5th	most
used	API.

Guava

178

https://github.com/google/guava/wiki/ApacheCommonCollectionsEquivalents

Guava	currently	(March	2016)	has	8150	stars	on	GiHub	which	according	to	Borgus	et	al	[31]
makes	it	minimally	a	top-10%	project	in	terms	of	followers.

According	to	a	study	done	in	2015	[32],	Guava’s	most	popular	version	(29%	of	the	users)	is
14.0.1	even	though	Guava	18	was	the	most	current	version	at	the	time.	Furthermore,	no
major	version	after	14	is	in	the	top	5	most	used	versions.	What	is	even	more	surprising	is
that	9.6%	of	the	methods	(and	classes)	are	ever	used	by	clients.	Since	Guava	has	an	active
depreciation	policy,	it	seems	likely	that	the	remaining	methods	and	classes	are	used	inside
Google	for	various	projects.

In	general,	Guava’s	overall	popularity	is	increasing	but	the	current	user	base	is	slow	to	adopt
new	versions.

Conclusion
The	Guava	project	is	a	library	used	to	expand	the	Java	Standard	Library.	In	this	chapter	we
studied	the	architectural	structure	of	the	project	from	multiple	viewpoints	and	perspectives.
Each	of	the	following	parts:	context	viewpoint,	information	viewpoint,	the	evolutionary
perspective	and	the	security	perspective	are	highlighted	and	reported	in	the	appropriate
paragraphs	of	the	current	work.	Moreover	we	actively	contributed	to	the	Guava	project
proposing	a	feature	improvement	in	the	source	code	aim	to	add	a	missing	functionality	in	the
Guava	library.

The	purpose	of	our	project	was	to	analyze	the	architecture	of	the	Guava	library	from	different
viewpoints	and	perspectives.	The	first	step	we	took	was	the	stakeholders	analysis.	In	this
part	we	discovered	that	the	main	contributors	are	members	of	the	Google	team.	The	Guava
project,	like	other	libraries,	does	not	have	well	defined	stakeholders.	They	will	be	defined	or
inherited	after	the	integration	of	the	library	in	a	project.

Then	was	the	Context	Viewpoint	analysis	in	which	we	found	the	differences	with	JDK
approach	and	the	use	of	the	Beta	features.	The	third	step	was	Development	Viewpoint
analysis.	In	that	case	we	studied	the	module	organization	and	the	way	how	testing	and
design	are	done.

Next	was	the	Information	Viewpoint	analysis	in	which	we	found	a	simplistic	architecture.	The
reason	is	in	the	design	of	the	library.	The	basic	idea	in	the	Input	and	Output	case	is	manage
the	information	in	Source	and	Sink	stream.

In	the	evolution	perspective	we	found	that	the	major	changes	come	after	the	community
discussion	but	at	same	time	the	team	has	an	internal	requests	list	to	guarantee	an	high
grade	of	quality.	This	approach	is	a	starting	point	to	guarantee	a	good	security	level.	In

Guava

179

addition	due	to	the	nature	of	the	project	the	security	is	often	an	external	problem	linked	to
the	host	project.	The	Guava	community	simply	does	not	have	security	as	a	priority	for	this
reason.

The	last	step	in	our	analysis	we	comapred	Guava	with	the	Apache	Commons	Collection
project.	Guava	has	some	key	advantages	including	a	more	frequent	release	cycle.

Finally,	what	did	we	learn	from	this	experience?	Guava	is	a	well-established	project	with	a
concise	philosophy	and	thriving	community.	Though	the	project	is	maintained	by	Google,	the
community	is	actively	involved	in	its	development	especially	in	the	form	of	discussions.
These	various	stakeholders	define	many	aspects	of	the	architecture	from	how	Guava
processes	data	to	its	lack	of	security	oriented	features;	they	even	define	the	development
speed	and	style.	Viewing	a	real-world	project	has	given	us	a	deeper	appreciation	for	the
architecture	of	software.	Source	code	is	just	a	fraction	of	the	story,	it	is	the	entire	ecosystem
surrounding	Guava	that	makes	it	the	project	it	is.

References
1.	 "Google	Core	Libraries	for	Java	6+",	GitHub,	2016.	[Online].

Available:	https://github.com/google/guava.
[Accessed:	30-Mar-2016].

2.	 "Google	Core	Libraries	for	Java	6+	Wiki",	GitHub,	2016.	[Online].
Available:	https://github.com/google/guava/wiki.
[Accessed:	30-Mar-2016].

3.	 "com.google.common.base.Optional",	Google.github.io,	2016.	[Online].
Available:
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/base/Opt
ional.html.
[Accessed:	30-Mar-2016].

4.	 "com.google.common.base.Splitter",	Google.github.io,	2016.	[Online].
Available:
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/base/Spit
ter.html.	[Accessed:	30-Mar-2016].

5.	 "com.google.common.collect.SetMultimap",	Google.github.io,	2016.	[Online].
Available:
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/S
etMultimap.html.	[Accessed:	30-Mar-2016].

6.	 "com.google.common.collect.Iterables",	Google.github.io,	2016.	[Online].

Guava

180

https://github.com/google/guava
https://github.com/google/guava/wiki
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/base/Optional.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/base/Splitter.html
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/SetMultimap.html

Available:
http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/It
erables.html.	[Accessed:	30-Mar-2016].

7.	 "Maven	Repository:	com.google.guava",	Mvnrepository.com,	2016.	[Online].
Available:	http://mvnrepository.com/artifact/com.google.guava/guava.
[Accessed:	27-Mar-2016].

8.	 "Search	result	of	'Guava'	in	GitHub",	GitHub,	2016.	[Online].
Available:	https://github.com/search?q=guava.
[Accessed:	27-Mar-2016].

9.	 "(AMA)	We're	the	Google	team	behind	Guava,	Dagger,	Guice,	Caliper,	AutoValue,
Refaster	and	more	--	ask	us	anything!",	reddit,	2014.	[Online].
Available:
https://www.reddit.com/r/java/comments/1y9e6t/ama_were_the_google_team_behind_g
uava_dagger.
[Accessed:	27-Mar-2016].

10.	 K.	Bourrillion,	"Guava	for	Netflix	slides",	googlecode.com,	2010.	[Online].
Available:	https://guava-libraries.googlecode.com/files/Guavafor_Netflix.pdf.
[Accessed:	27-Mar-2016].

11.	 "Artifacts	using	Guava:	Google	Core	Libraries	For	Java",	Mvnrepository.com,	2016.
[Online].
Available:	http://mvnrepository.com/artifact/com.google.guava/guava/usages.
[Accessed:	27-Mar-2016].

12.	 "Guava:	Google	Core	Libraries	for	Java	19.0	API",	Google.github.io,	2016.	[Online].
Available:	http://google.github.io/guava/releases/19.0/api/docs/.
[Accessed:	27-Mar-2016].

13.	 "Learn	more	about	the	Public	Suffix	List",	Publicsuffix.org.	[Online].
Available:	https://publicsuffix.org/learn/.
[Accessed:	27-Mar-2016].

14.	 G.	Wielenga,	"What	is	the	Google	Collections	Library?",	Javalobby.org,	2007.	[Online].
Available:	http://www.javalobby.org/articles/google-collections/.
[Accessed:	27-Mar-2016].

15.	 "Google	Java	Style",	Google.github.io,	2014.	[Online].
Available:	https://google.github.io/styleguide/javaguide.html.
[Accessed:	27-	Mar-	2016].

16.	 "IO	Explained",	GitHub,	2016.	[Online].

Guava

181

http://google.github.io/guava/releases/snapshot/api/docs/com/google/common/collect/Iterables.html
http://mvnrepository.com/artifact/com.google.guava/guava
https://github.com/search?q=guava
https://www.reddit.com/r/java/comments/1y9e6t/ama_were_the_google_team_behind_guava_dagger
https://guava-libraries.googlecode.com/files/Guava_for_Netflix_.pdf
http://mvnrepository.com/artifact/com.google.guava/guava/usages
http://google.github.io/guava/releases/19.0/api/docs/
https://publicsuffix.org/learn/
http://www.javalobby.org/articles/google-collections/
https://google.github.io/styleguide/javaguide.html

Available:	https://github.com/google/guava/wiki/IOExplained.
[Accessed:	30-Mar-2016].

17.	 "Collection	Utilities	Explained",	GitHub,	2016.	[Online].
Available:	https://github.com/google/guava/wiki/CollectionUtilitiesExplained.
[Accessed:	30-Mar-2016].

18.	 "Caches	Explained",	GitHub,	2016.	[Online].
Available:	https://github.com/google/guava/wiki/CachesExplained.
[Accessed:	30-Mar-2016].

19.	 "Guava	commit	convention",	groups.google.com,	2016.	[Online].
Available:	https://groups.google.com/forum/#!searchin/guava-discuss/anand/guava-
discuss/gsgfYUJrxYk/jQzGbIxprVEJ.
[Accessed:	30-Mar-2016].

20.	 "Guavate	-	Guava	and	Java	8",	groups.google.com,	2016.	[Online].
Available:	https://groups.google.com/forum/?
utm_medium=email&utm_source=footer#!msg/guava-
discuss/oWv4ee0BCHc/2UO4Yg2dqHgJ.
[Accessed:	30-Mar-2016].

21.	 "Pull	Requests",	GitHub,	2016.	[Online].
Available:	https://github.com/google/guava/pulls.
[Accessed:	30-Mar-2016].

22.	 "Hashing	Explained",	GitHub,	2016.	[Online].
Available:	https://github.com/google/guava/wiki/HashingExplained.
[Accessed:	30-Mar-2016].

23.	 "Releases",	GitHub,	2016.	[Online].
Available:	https://github.com/google/guava/releases.
[Accessed:	30-Mar-2016].

24.	 "Apache	Commons	Collections",	Mvnrepository.com,	2016.	[Online].
Available:	http://mvnrepository.com/artifact/commons-collections/commons-collections.
[Accessed:	30-Mar-2016].

25.	 "What	are	the	big	improvements	between	guava	and	apache	equivalent	libraries?",
StackOverflow,	2016.	[Online].
Available:	http://stackoverflow.com/questions/4542550/what-are-the-big-improvements-
between-guava-and-apache-equivalent-libraries.
[Accessed:	30-Mar-2016].

26.	 "An	Overview	of	Guava	Devoxx	FR	April	2012",	guava-libraries.googlecode.com,	2016.

Guava

182

https://github.com/google/guava/wiki/IOExplained
https://github.com/google/guava/wiki/CollectionUtilitiesExplained
https://github.com/google/guava/wiki/CachesExplained
https://groups.google.com/forum/#!searchin/guava-discuss/anand/guava-discuss/gsgfYUJrxYk/jQzGbIxprVEJ
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/guava-discuss/oWv4ee0BCHc/2UO4Yg2dqHgJ
https://github.com/google/guava/pulls
https://github.com/google/guava/wiki/HashingExplained
https://github.com/google/guava/releases
http://mvnrepository.com/artifact/commons-collections/commons-collections
http://stackoverflow.com/questions/4542550/what-are-the-big-improvements-between-guava-and-apache-equivalent-libraries

[Online].
Available:	https://guava-
libraries.googlecode.com/files/AnOverviewofGuavaDevoxxFRApril2012.pdf.
[Accessed:	30-Mar-2016].

27.	 "Guava	and	JDK	8	/	Java	8",	groups.google.com,	2016.	[Online].
Available:	https://groups.google.com/forum/#!searchin/guava-discuss/Java/guava-
discuss/fEdrMyNa8tA/jxvkaPauPfkJ.
[Accessed:	30-Mar-2016].

28.	 "News	about	Guava	and	Java	8",	groups.google.com,	2016.	[Online].
Available:	https://groups.google.com/forum/#!topic/guava-discuss/ZRmDJnAq9T0.
[Accessed:	30-Mar-2016].

29.	 T.	Weiss,	"We	Analyzed	30,000	GitHub	Projects	-	Here	Are	The	Top	100	Libraries	in
Java,	JS	and	Ruby",	blog.takipi.com,	2013.	[Online].
Available:	http://blog.takipi.com/we-analyzed-30000-github-projects-here-are-the-top-
100-libraries-in-java-js-and-ruby/.
[Accessed:	30-Mar-2016].

30.	 "Guice	Getting	Started",	GitHub	Wiki,	2014.	[Online].	Available:
https://github.com/google/guice/wiki/GettingStarted.	[Accessed:	30-Mar-2016].

31.	 Sawant,	A.	A.,	&	Bacchelli,	A.	(2015,	May).	A	dataset	for	API	usage.	In	Proceedings	of
the	12th	Working	Conference	on	Mining	Software	Repositories	(pp.	506-509).	IEEE
Press.

32.	 Borges,	H.,	Valente,	M.	T.,	Hora,	A.,	&	Coelho,	J.	(2015).	On	the	Popularity	of	GitHub
Applications:	A	Preliminary	Note.	arXiv	preprint	arXiv:1507.00604.

33.	 Sawant,	A.	A.	(2015).	fine-GRAPE:	fine-Grained	APi	usage	Extractor	An	Approach	and
Dataset	to	Investigate	API	Usage	(Doctoral	dissertation,	TU	Delft,	Delft	University	of
Technology).

Guava

183

https://guava-libraries.googlecode.com/files/AnOverviewofGuavaDevoxxFRApril2012.pdf
https://groups.google.com/forum/#!searchin/guava-discuss/Java/guava-discuss/fEdrMyNa8tA/jxvkaPauPfkJ
https://groups.google.com/forum/#!topic/guava-discuss/ZRmDJnAq9T0
http://blog.takipi.com/we-analyzed-30000-github-projects-here-are-the-top-100-libraries-in-java-js-and-ruby/
https://github.com/google/guice/wiki/GettingStarted

by	Andrea	Lorenzo	Pallini,	Philipp	Kogelnik,	David	van	Es,	Jaroslav	Ševčík

Delft	University	of	Technology

Abstract
Habitica	is	an	open-source,	cross-platform,	role-playing	game.	It	is	designed	to	gamify	reality
to	help	build	positive	habits	and	organize	daily	personal	activities.	The	goal	of	this	project	is
to	analyze	the	architecture	of	the	software	from	different	viewpoints.	At	first,	we	give	an
analysis	of	the	stakeholders	involved	and	the	context	view	of	the	system.	Next	we	analyze
the	development	and	information	view	and	identify	technical	debt.	Then	we	perform	a
feature	analysis	and	from	this	describe	the	variability.	Lastly	we	look	at	the	level	of
Internationalization	present	in	Habitica.	In	conclusion,	we	share	our	experiences	with
contributing	to	the	project	and	look	to	the	future	of	Habitica.

Table	of	Contents
1.	 Introduction
2.	 Stakeholder	Analysis
3.	 Context	View
4.	 Development	View
5.	 Information	View
6.	 Internationalization	Perspective
7.	 Contributions
8.	 Conclusion
9.	 References

1.	Introduction

Habitica

184

In	February	2012	Tyler	Renell	wanted	to	limit	his	personal	consumption	of	cigarettes,	beer,
coffee,	junk	food	and	excessive	internet	use.	As	a	gamer,	he	felt	that	he	could	combine	his
struggle	to	curb	his	bad	habits	and	his	love	of	video	games.	He	started	working	on	a
program	that	would	allow	him	to	track	his	daily	tasks,	build	good	habits,	and	reward	him	for
good	behavior	by	treating	life	as	a	video	game:	thus	Habitica	was	born.	An	early	open-
source	version	went	live	on	GitHub	at	the	beginning	of	2013.	Over	time,	as	interest
accumulated,	the	project	grew	and	Tyler	was	joined	by	several	other	enthusiasts	to	form	the
core	of	Habitica's	staff.	To	boost	the	project	further,	Tyler	started	a	crowdfunding	campaign
and	raised	almost	$50K	-	twice	the	target	amount.	Nowadays	Tyler	has	accepted	the	CTO
role,	leaving	the	coding	to	others.	Habitica	is	still	going	strong	and	growing,	with	an	active
developer	community	and	hundreds	of	thousands	of	players.

Habitica	is	inspired	by	the	popular	fantasy	role-playing	game	genre.	When	they	first	start	the
game,	a	new	player	creates	an	avatar,	a	virtual	representation	of	themselves.	By	fulfilling
user	defined	tasks,	they	are	rewarded	with	gold	and	experience.	This	allows	them	to
improve	their	avatar	with	new	specializations,	abilities,	equipment	or	buy	a	cute	pet.	They
can	also	form	a	party	with	other	players	to	co-operate	with	them	to	fight	terrifying	monsters,
like	the	infamous	Basi-List,	together.	There	are	also	many	guilds	which	players	can	join	to
debate	with	like-minded	Habiticans	or	get	advice	from	more	experienced	players	or	even	the
staff	members	themselves.	For	a	more	exhausting	list	of	game	features	visit	their	web	page
[10].

2.	Stakeholder	Analysis
In	this	section	we	take	a	look	at	the	people,	systems	and	organizations	involved	in	Habitica
and	categorize	them	according	to	the	Rozanski	&	Woods	book	Software	Systems
Architecture	[1],	with	some	additions.	This	book	serves	as	the	basis	for	most	of	the	analysis
we	have	done.	The	stakeholder's	names	we	use	throughout	the	document	refer	to	their	in-
game	or	GitHub	nicknames.

The	staff

Habitica

185

Lefnire Lemoness Redphoenix SabreCat Paglias Viirus

Original
creator,
CTO

Community
manager,	runs
social	media

CEO,	legal developer developer mobile
developer

The	staff	is	the	main	organ	of	the	Habitica	project.	They	are	responsible	for	decisions	about
the	present	and	future,	solving	legal	issues	and	raising	the	money	for	the	survival	of	the
game.	The	staff	consists	of	the	six	people	in	the	table	above:	Lefnire,	Lemoness,
Redphoenix,	SabreCat,	Paglias	and	Viirus.	The	particular	relationships	of	the	members	to
the	types	of	stakeholders	can	be	found	in	the	next	section.

Stakeholders

Role Stakeholders

Acquirers Lefnire	(Tyler	Renelle),	Redpheonix	(Vicky	Hsu)

Assessors Redpheonix

Communicators Lemoness	(Siena	Leslie),	Breadstrings,	Alys

Support
Lemoness,	Redpheonix,	Alys,	SabreCat	(Sabe	Jones),	Viirus	aka
vliRuS	(Phillip	Thelen),	Blade	aka	Crookedneighbour	(Blade
Barringer)

Moderators Lemoness,	Redpheonix,	Alys,	beffymaroo,	Breadstrings,	Cantras,
deilann,	Megan

Suppliers MongoDB,	ExpressJS,	AngularJS,	Heroku,	Amazon	Web	Services

Developers,
Maintainers

Lefnire,	SabreCat,	Paglias	(Matteo	Pagliazzi),	Viirus,	Blade,	Alys,
Lemoness

Users General	public,	Companies,	Premium	users

Funders Kickstarter	backers,	Donators,	Premium	users

Acquirers	oversee	the	procurement	of	the	system	or	product.	As	the	original	creator	of
Habitica	and	founder	of	the	Kickstarter	campaign	Lefnire	can	be	classified	as	an	acquirer.
He	was	responsible	for	raising	the	funds	required	to	make	the	entire	project	possible.	When
Lefnire	became	CTO	of	the	project	Redpheonix	took	up	the	mantle	of	main	CEO.

Habitica

186

Besides	being	the	CEO	Redpheonix	is	also	the	main	assessor	of	Habitica.	Assessors
oversee	the	system’s	conformance	to	standards	and	legal	regulation.	Redpheonix	is	the
legal	advisor	who	'handles	all	of	the	terrifying	paperwork	and	business	planning'.

A	very	important	group	of	stakeholders	for	satisfying	existing	user	and	the	acquisition	of	new
users	are	the	communicators.	They	explain	the	system	to	other	stakeholders	via	its
documentation	and	training	materials.	There	are	several	communication	channels	like	wiki,
Facebook,	Twitter	or	email.	The	wiki	page	is	the	main	channel	used	by	Habitica	for	learning
about	the	gameplay	and	introduce	the	project	to	new	users	and	developers.	Habitica	is	also
a	game	with	an	emphasis	on	friendly	social	interaction.	For	this	purpose,	the	in-game	Tavern
and	the	Newbies	Guild	in	particular	are	also	top	learning	resources,	where	new	players	can
ask	all	the	questions	they	want	without	fear	of	being	ridiculed.	The	administrators	of	the	wiki
are	the	main	communicators,	as	is	the	Habitica	staff	and	all	players	who	actively	participate
in	the	guilds.

The	group	of	communicators	is	partially	coupled	with	the	support	staff	of	Habitica.	This
group	provides	support	to	users	for	the	product	or	system	when	it	is	running.	Some	of	them
are	helping	mainly	with	in-game	content	-	Lemoness,	Redphoenix,	whereas	others	are
focusing	on	technical	issues	-	Alys,	SabreCat,	Blade,	Viirus.	It	can	be	seen	that	Lemoness
and	Alys	are	reponsible	for	giving	support	to	existing	users	and	communicating	the	game	to
the	outside.	They	use	many	different	channels	for	communication	like	GitHub,	in-game	chat
or	email.

Another	type	of	stakeholders	related	to	the	communication	in	the	game	are	the	moderators.
This	group	supervises	the	communication	in	Habitica.	They	have	the	right	to	delete
inappropriate	posts.	They	are	also	recognized	persons	and	their	advice	can	have	an
influence	on	many	staff	decisions.

Suppliers	for	this	project	build	and/or	supply	the	hardware,	software,	or	infrastructure	on
which	the	system	will	run.	The	software	and	technologies	used	to	build	Habitica	are	roughly
divided	into	five	sections:	Server-side,	Client-side,	Testing,	Services,	and	Other	(mobile
developing	and	GitHub).	External	services	like	the	hosting	provider	apply	some	constraints
regarding	availability	to	the	project.	Habitica	has	no	internal	hardware	resources.	For	this
reason,	they	highly	rely	on	those	external	services.	If	there	are	downtimes	at	these	services
the	Habitica	system	is	not	able	to	run	any	more.

Then	there	are	the	stakeholders	who	are	responsible	for	implementing	the	features	which
should	excite	the	users.	The	role	of	the	developer	is	to	construct	and	deploy	the	system
from	specifications	and	maintainers	manage	the	evolution	of	the	system	once	it	is
operational.	Habitica	is	an	open	source	project	and	the	lines	between	the	developers	and
maintainers	are	blurred.	There	is	a	core	staff	who	is	ultimately	responsible	for	all	these
issues	with	their	roles	overlapping.	Habitica	is	based	on	a	concept	which	potentially	allows
everyone	to	contribute	to	it	and	become	a	developer.	However,	some	of	the	staff	members

Habitica

187

and	few	others	are	the	ones	who	do	most	of	the	work	from	designing,	coding,	testing	to
acceptance	(merging	of	pull	requests)[4][6].	The	team	also	manages	the	main	evolution	of
the	system,	for	this	reason	they	also	belong	to	the	maintainers	group.	The	staff	members	are
not	the	only	"good	stakeholders"[1]	in	the	system,	there	are	also	a	few	very	active
contributors	who	support	the	staff	in	development	and	maintenance.	They	acquired
information	and	experience	during	the	collaboration	period	("informed"),	and	have	also
acquired	the	responsibility	to	make	important	and	difficult	decisions	with	the	right	to	speak
on	behalf	of	Habitica	or	merge	pull	requests	("committed"	and	"authorized").[7][8]	The
developers	responsible	for	accepting	new	contributions	are	the	first	five	people	in	the	table.
Lemoness	is	the	main	pixel	artist	responsible	for	the	appearance	of	the	game.

Very	important	stakeholders	for	an	exciting	game	are	the	users	themselves.	They	are	the
people	making	use	of	the	system,	so	the	functionalities	are	designed	to	satisfy	their	needs.
They	also	have	the	opportunity	to	request	new	features.	The	users	come	from	the	following
groups:	The	public:	people	who	may	have	problems	with	daily	tasks,	time	management,	bad
habits	and	like	fantasy	RPG.	Companies:	They	can	encourage(force)	employees	to	use
Habitica	in	order	to	increase	their	motivation	and	productivity.	Families,	health	and	wellness
groups:	leaders	of	these	groups	want	to	help	their	members	change	their	behaviors.
Premium	users:	users	that	want	to	support	Habitica	in	exchange	for	in	game	currency.

The	group	of	users	highly	overlaps	with	the	funders	of	the	project.	Funders	are	users	who
support	Habitica	with	spending	money	on	the	project.	This	includes	all	the	people	who
backed	Habitica	through	the	Kickstarter	campaign,	the	premium	users	and	the	donators.

Power/Interest	Graph

Each	and	every	stakeholder	has	a	different	level	of	interest	in	the	project,	and	a	certain
amount	of	power	to	influence	it.	The	stakeholders	can	be	categorized	into	the	following	four
groups:

Low	power	and	low	interest
The	power	of	common	users	is	limited	but	still	they	can	convince	the	staff	(through
in-game	chat	or	GitHub	issue)	to	change	or	add	functionalities.

Low	power	and	high	interest
Premium	users	are	very	interested	in	Habitica,	they	are	strictly	involved	in	the
game.	Developers	are	active	in	discussions	but	they	still	need	the	staff	approval.

High	power	and	high	interest
The	staff	is	part	of	this	group.

Habitica

188

Figure	1:	Power/Interest	graph

3.	Context	View
Habitica	is	reliant	on	and	communicates	with	many	different	systems.	The	context	view
model	gives	an	overview	of	the	most	important	systems	that	Habitica	interacts	with.	The
purpose	of	this	view	is	to	see	the	big	picture:	how	does	Habitica	fit	in	to	the	larger	universe
around	it.

Habitica

189

Figure	2:	Context	Diagram

A	major	platform	for	the	development	process	is	GitHub.	It	is	used	for	code	management,
solving	issues	and	merging	pull	requests	for	updates	or	bug	fixes.	GitHub	is	also	used	as	a
customer	support	platform:	users	with	problems	are	encouraged	to	create	an	issue	for	any
bugs	or	defects	they	may	encounter	while	playing.	TravisCI	complements	the	functionalities
of	GitHub.	It	is	used	as	a	continuous	integration	platform	and	is	the	main	platform	for
performing	tests.

In	addition	to	the	GitHub	issues	a	big	part	of	the	communication	with	the	community	goes
through	either	in-game	chat	rooms,	the	wiki,	or	through	their	social	media	pages.	Habitica
has	pages	on	Facebook,	Twitter	and	Tumblr.	In	addition,	Facebook	is	also	used	as	a	login
provider,	allowing	users	to	use	their	facebook	accounts.

Habitica	uses	Heroku	and	Amazon	Web	Service	(AWS)	as	hosting	service	providers	for	the
whole	project	to	handle	all	1,000,000	players.	In	the	beginning	they	just	used	Heroku,	but	in
the	moment	they	are	moving	the	project	towards	AWS.	For	tracking	the	performance	of	the
system	and	the	user	interaction	there	are	two	service	providers	which	are	used	in	this
project:	New	Relic	and	Amplitude.

Habitica	also	provides	public	API	for	the	creation	of	external	extensions.	Therefore,	there
can	be	many	external	applications	(like	the	Data	Display	Tool)	interacting	with	the	system.
The	exact	nature	of	these	interactions	depends	on	the	nature	of	the	extension	itself.

Habitica

190

4.	Development	View

Module	structure	model

The	Development	view	attempts	to	capture	all	aspects	of	the	system	relevant	to	the
development	of	the	project.	Habitica	is	composed	of	two	main	components:	the	client-side
and	the	server-side.	These	components	communicate	via	an	API	provided	by	the	server-
side.

Habitica

191

Habitica

192

Figure	3:	Development	view	structure	model

The	code	on	the	server-side	is	divided	into	several	layers	and	modules	in	accordance	with
the	framework	used	(Express	JS).	In	the	“controllers“	layer	there	are	mainly	modules	dealing
with	routing.	In	the	“middlewares”	layer	there	are	modules	dealing	with	preprocessing	of
requests	and	responses.	In	the	third	layer,	“models”,	there	are	the	business	logic,	utility
libraries,	handling	of	database	access	and	some	shared	resources	useful	for	the	multiple
Habitica	repositories.	All	the	dependencies	go	in	the	direction	controllers	->	middlewares	->
models.

The	code	on	the	client-side	is	divided	as	a	pure	MVC	in	accordance	with	the	Angular	JS
framework.	This	pattern	separates	the	view	from	the	business	logic,	which	increases	the
reusability	of	code.	The	“view”	layer	contains	the	Jade	files.	These	files	are	compiled	into	the
HTML	code.	We	also	added	the	filters	scripts	here,	because	they	only	transform	the
displayed	data	a	little	(for	example	displaying	the	date	properly).	The	“controllers”	layer
contains	one	explicitly	declared	Angular	JS	module	called	habitrpg.	All	the	other	“modules”
are	defined	as	an	extensions	of	it.	These	dependencies	are	omitted	from	the	diagram	for
clarity.	These	modules	are	responsible	for	routing	and	dynamic	rendering	of	the	parts	of	the
view.	The	services	represent	the	“model”	layer	here.	They	are	substitutable	objects	used	to
share	code	across	the	application	and	they	handle	the	communication	with	server-side.

Common	design	model

There	are	some	parts	of	the	system	where	common	processing	rules	are	imposed.	The	first
and	probably	one	of	the	most	important	points	from	the	perspective	of	the	system	users	is
the	internationalization.	All	strings	in	the	system	must	be	localized	and	stored	in	the	locale
files	in	the	directory	"common/locales/".	Another	principle	of	the	project	that	can	be	seen
after	a	closer	look	at	the	source	files,	is	to	use	an	existing	framework	whenever	possible.	If
this	principle	is	satisfied	the	developers	can	fully	concentrate	on	the	core	features	which
cannot	be	covered	with	external	libraries.	For	the	database	there	should	be	model	classes
which	are	able	to	hold	the	data,	store	it	and	retrieve	it.

The	concrete	implementation	of	external	libraries	should	be	hidden	to	the	developers.	In	the
project	this	is	done	with	the	facade	pattern	[12].	This	ensures	that	the	developer	can	use	the
functionalities	of	external	libraries	without	having	to	care	for	changes	of	the	interfaces	if	one
of	the	libraries	gets	exchanged	by	another	one.	The	logging	part	of	the	software	is	done	with
different	logging	providers.	For	this	reason	the	common	interface	is	not	implemented	as	a
facade,	but	as	a	mediator	[12].	The	mediator	aggregates	the	functionality	of	different	logging
providers	and	makes	it	easier	to	add	new	ones	without	influencing	other	parts	of	the	code.

The	most	important	design	approach	for	the	whole	project	is	the	usage	of	the	model-view-
controller	(MVC)	pattern.

Habitica

193

There	are	also	some	parts	of	common	software	used	in	this	project.	For	the	separation	of
the	layers	on	the	client	side	the	framework	AngularJS	is	used.	The	database	interaction	with
MongoDB	is	done	with	an	object	data	mapper	(ODM)	called	Mongoose.	For	the	internal
logging	the	Winston	framework	is	used,	which	can	be	extended	to	log	to	many	different
destinations	(database,	plain	text	file,	xml	file,	...).	For	the	internationalization	part	the	self-
written	i18n	functionality	should	be	used.	It	parses	the	translations	directory	and	stores	the
translations	for	the	user	language	in	the	memory.	This	component	ensures	a	fast	retrieval
time	for	the	needed	texts.

Configuration	strategy

There	are	several	different	approaches	to	configure	the	application.	The	more	technical
configurations	like	logging	or	choosing	an	analytics	provider,	that	serves	particularly	to
developers	and	operators,	are	managed	via	a	configuration	file	or	by	commenting	parts	of
code.	The	setting	of	user	preferences	is	handled	through	a	database	variable	that	points	to	a
relevant	file	on	a	disk.	Then	there	are	various	intrinsic	or	third	party	extensions	that	are
installed	separately	from	the	game,	as	a	browser	add-on,	web	page	widget,	bookmarklet	or
desktop	application,	and	cooperate	with	it	via	provided	API.	Other	types	of	extensions	just
amend	the	appearance	of	the	web	site	without	any	direct	interaction	with	it.	They	usually
need	the	Stylish[11]	web	browser	add-on.	To	differentiate	the	appearance	of	the	web
application	on	desktop	and	mobile	devices,	CSS	media	queries	and	JavaScript	conditions
are	used.	Lastly,	for	some	mobile	devices	(Android,	iOS)	there	are	native	applications
replacing	the	client	side	of	the	system	completely.	However,	they	lack	many	features	of	the
web	application	(as	of	March	3,	2016).

As	identified	above,	a	variety	of	different	mechanisms	is	used	to	add	variability	to	Habitica.
After	a	closer	analysis	of	pull	requests	and	issues	on	GitHub,	we	found	that	the	variability
mechanism	didn't	change	over	time,	but	it	differs	among	different	developers.	Some
configuration	possibilities	were	not	part	of	the	initial	versions,	but	were	added	in	later	stages
of	the	development.

5.	Information	View
The	purpose	of	any	information	system	is	to	manipulate	data	in	some	form.	Habitica	stores
data	persistently	in	a	database	managment	system	using	MongoDB.	MongoDB	is	one	of	the
most	popular	NoSQL	databases.

Habitica

194

Figure	4:	Static	information	structure	model

The	diagram	presented	in	Figure	4	shows	the	logical	relationship	between	the	principal
entities	in	the	game.	The	two	main	entities	are	the	user	and	the	task.

The	user	is	personalized	by	the	equipment	chosen,	the	skills	developed	during	the	game
and	his	own	pets/mounts.	Moreover,	the	user	can	create	or	participate	in	parties	and	guilds
with	their	friends.

The	tasks	are	the	most	important	element	in	Habitica.	Every	user	must	complete	them	in
order	to	increment	his	own	game-level	and	earn	gold.	Each	task	is	associated	with	a	single
user.	Habitica	gives	the	possibility	to	create	challenges	among	the	players.	A	challenge	is	a
collection	of	tasks	which	are	automatically	assigned	to	all	the	participants.

However,	the	logical	view	mentioned	above	doesn't	directly	map	to	the	database	structure.	It
is	partially	because	of	the	use	of	the	NoSQL	DB,	which	doesn't	have	a	fixed	structure.
Another	reason	is	the	use	of	a	second	storage	-	a	JavaScript	file.	We	will	explain	the
persistent	representation	of	the	main	entities	and	the	relationships	among	them.

In	the	database	there	are	three	core	document	types:	User,	Group	and	Challenge.	The	User
document	contains	all	of	the	information	related	to	a	concrete	player.	It	contains	the	user
information,	tasks,	customization	references,	gold,	equipment,	pet	references,	UI
preferences,	private	messages,	etc.	The	Group	document	represents	all	the	parties	and
guilds	with	their	chat	logs	and	quests.	The	Challenge	represents	a	group	of	tasks	for	the
participants	to	fulfill,	the	list	of	participants	themselves	and	the	prize	for	the	winners.

Habitica

195

In	addition	to	the	database	storage	there	is	information	stored	in	JavaScript	files.	In	these
files	all	of	the	various	items	and	appearances	you	can	have	as	a	player	are	stored.	For
example,	the	equipment,	spells,	haircuts,	etc.	These	items	are	then	referenced	from	the
database	document.

Notable	Characteristics

How	Habitica	deals	with	old	data

With	the	increasing	number	of	users	the	staff	of	Habitica	worked	a	lot	on	the	improvement	of
server's	performance.	One	key	issue	is	the	reduction	of	database	storage	requirement.	This
is	the	main	reason	why	Habitica	does	not	keep	all	historical	data	for	all	tasks.	Instead,	older
data	are	averaged	and	only	the	average	is	included	in	the	data	exports	(data	export	is	a
feature	which	allows	players	to	retrieve	data	about	completed	Habits	and	Dailies,	as	well	as
personal	user	data).	The	further	back	in	time	the	data	goes,	the	more	data	is	combined
together	into	a	single	average.	For	example,	a	data	export	might	include	several	data	points
for	the	current	week,	one	data	point	for	each	of	the	previous	few	weeks,	one	data	point	for
each	of	the	previous	few	months,	and	only	one	data	point	per	year	for	previous	years.	As	a
(probable)	side	effect	of	this,	when	players	examine	their	exported	data	for	Habits,	they	will
see	at	most	one	data	point	for	each	Habit	per	day,	i.e.	they	will	not	see	every	click	they
made	on	the	Habits'	plus	and	minus	buttons.	This	has	been	logged	as	issue	3079	but	it	is
not	currently	known	whether	this	behavior	is	deliberate	or	a	bug.	In	addition,	for	non-
subscribers,	completed	To-Dos	are	automatically	deleted	after	30	days	to	regain	database
storage	space.	For	subscribers,	completed	To-Dos	are	automatically	deleted	after	90	days.	If
a	player	uses	the	"Delete	Completed"	button	in	the	To-Dos'	Completed	tab,	all	completed	To-
Dos	will	be	permanently	removed.	Because	older	task	history	is	severely	limited,	players
who	want	to	keep	a	full	history	of	tasks	should	export	their	data	regularly.

Static	Information	Storage

One	of	the	most	interesting	parts	in	the	information	flow	is	the	transfer	of	static	information	to
the	database.	All	information	about	equipment,	quests,	pets	and	spells	is	stored	as	JSON
objects	in	JavaScript	files	which	are	located	in	/common/script/content/.	When	a	user	buys
equipment,	the	information	from	the	file	is	set	as	a	reference	in	the	user's	document	in	the
database.	For	example	if	a	user	buys	a	new	instance	of	a	shield,	the	information	of	the
shield	is	looked	in	the	related	JavaScript	file.	Then	the	identifier	of	the	shield	is	copied	to	the
database	entry	of	the	user.	The	identifier	includes	the	class	of	the	user	(rogue,	warrior	etc.),
the	type	of	the	equipment	and	a	sequential	number.	The	attributes	of	the	equipment,	like
strength	boost,	are	still	looked	up	in	the	JavaScript	file.

Habitica

196

A	similar	process	where	the	data	is	copied	to	the	database	entry	of	the	user	is	the	challenge
system.	A	user	can	create	a	challenge	which	consists	of	different	habits,	dailies,	todos	and
rewards.	Other	users	can	join	these	challenges	and	get	the	included	tasks	transferred	to
their	personal	task	list.	The	challenges	are	stored	in	a	separate	document	collection	in
MongoDB	and	include	all	the	information	which	is	needed.	When	a	new	user	joins	the
challenge,	the	information	from	the	challenge	is	copied	to	the	database	entry	of	the	user.
This	means	that	the	personal	task	is	independent	from	the	challenge	task.	There	is	just	a
reference	to	the	challenge	kept	to	keep	track	of	the	challenge	progress.

6.	Internationalization	Perspective
In	order	for	a	system	to	become	truly	international	it	must	not	overly	depend	on	any	one
language,	country,	or	cultural	group.	Habitica	is	a	game	that	could	potentially	be	enjoyed	by
people	from	all	cultures	or	different	parts	of	the	world.	To	make	sure	that	the	absolute	widest
range	of	people	is	targeted	there	are	some	common	concerns	that	need	to	be	looked	at.

A	place	where	a	person	interacts	with	the	system	is	called	a	touch	point.	To	obtain	a	good
level	of	internationalization	it	is	first	necessary	to	go	through	the	system	and	locate	all	the
touch	points.	Then,	for	each	touch	point	each	concern	can	be	checked.	This	gives	a	good
indication	of	what	the	current	level	is	and	also	how	much	work	is	yet	to	be	done.

The	concerns	we	will	address	are	the	support	for	the	following	items:

Multiple	character	sets
Differently	oriented	text	presentation
Multiple	languages
Different	cultural	norms	(i.e.	units	of	measurement)
Financial	differences
Cultural	neutrality

Figure	5:	Touch	points

Touch	Point	Analysis

Habitica's	main	touch	points	are	the	game	itself,	the	wiki,	GitHub	and	Trello.	For	the	game
this	would	include	all	screens,	buttons,	pictures,	dialog	boxes	etc.

The	Wiki	is	available	in	six	different	languages:	English,	German,	Spanish,	French,	Polish,
Brazilian	Portugese,	and	Russian.	However,	the	English	version	contains	much	more
information	than	the	wiki	versions	offered	in	other	languages.	A	lot	of	new	users	will	come
into	contact	with	the	Wiki	and	will	use	it	to	learn	game	basics.	Therefore	the	most	important
pages,	such	as	how	to	play	guides	etc.,	are	given	priority.

Habitica

197

Language Pages	(as	of	March	30,	2016)

English 576

German 91

Spanish 206

French 141

Polish 3

Brazilian	Portuguese 34

Russian 143

The	game	itself	offers	support	for	a	lot	more	languages.	There	are	translations	in	24
languages	(including	the	much	overlooked	Pirate	English),	in	various	states	of	completion.	In
some	cases	the	translators	have	not	yet	completely	finished	their	work	and	the	American
English	version	overrules	the	translation.	Also,	as	Habitica	has	frequent	updates	and	on	top
of	this	also	has	seasonal	in-game	events,	it	is	unlikely	that	the	newest	content	will	have	been
translated	when	it	is	just	released.

The	game	and	wiki	all	support	multiple	character	sets	and	has	no	problem	representing
symbols	such	as	icons	or	chinese	texts.	Habitica	tries	to	take	into	account	different	cultural
norms.	For	example,	the	way	dates	are	represented	vary	across	the	world	and	this	can	be
customized	to	match	the	players	preference.

The	financial	differences	are	not	completely	taken	into	account.	The	prices	for	gems	are	still
all	listed	in	American	Dollars.	However,	these	differences	are	mostly	resolved	through	the
use	of	the	external	payment	providers	PayPal,	Amazon	or	Stripe	which	will	automatically
give	the	conversion.

For	the	developer	side	of	things	there	are	two	main	touch	points:	GitHub	and	Trello.
Historically,	English	has	been	the	go-to	language	in	computer	science	related	fields	with	the
most	popular	programming	languages	using	English	naming	conventions	for	keywords	and
the	like.	Likewise,	in	Habitica	all	the	code	is	in	English.	Furthermore,	all	discussions,	issues,
bug	reports	and	feature	reviews	are	typically	done	in	English.

Like	with	many	open	source	projects	getting	things	done	essentially	relies	on	enthousiastic
hobbyists	to	put	in	the	required	effort.	Such	is	also	the	case	with	all	of	Habitica's	translations.
That	means	that	there	is	somewhat	of	a	chicken	and	egg	problem	in	that	users	of	Habitica
who	would	like	to	see	it	in	their	native	language	must	first	help	to	translate	it.

7.	Contributions

Habitica

198

Habitica	is	a	project	which	relies	on	help	from	external	contributors.	The	manpower	in	the
staff	is	limited,	and	they	rely	mainly	on	volunteers.	For	this	reason,	the	staff	is	very
welcoming	when	new	people	want	to	contribute.	Work	can	be	done	in	numerous	different
ways.	Writers	can	update	the	wiki	entries	or	translate	the	game	in	new	languages.	Designers
can	create	new	images	for	new	equipment	or	pets.	Software	developers	are	able	to	create
new	features,	fix	bugs	or	contribute	to	the	test	coverage.	But	also	people	without	knowledge
in	those	areas	can	contribute	to	the	project	in	suggesting	new	features	or	reporting	bugs.

The	main	focus	of	our	team	is	the	software	development	part	of	Habitica.	In	the	beginning	it
can	be	very	hard	to	find	a	starting	point	for	contributions	in	such	a	big	project.	Fortunately,
the	staff	and	main	contributors	of	Habitica	label	all	features	according	to	their	importance
and	complexity.	With	these	labels	we	found	some	issues	on	which	we	could	work	on.	We
provided	a	pull	request	which	got	updated	some	days	later	(#6736).	We	were	added	to	the
Hall	of	Heroes	of	Habitica	and	got	the	Tier	1	contributor	award.	This	is	a	very	interesting
approach	for	motivating	contributors	and	reward	them	for	their	work.

Our	confidence	grew	after	this	first	pull	request	and	luckily	we	found	our	own	bug	in	the
project	just	a	few	days	later.	We	opened	the	issues	and	started	working	on	it	by	ourselves.	A
few	days	later	our	second	pull	request	got	merged	(#6740).

One	big	problem	of	the	Habitica	project	is	the	low	test	coverage	for	client	side	code.
According	to	coveralls.io,	just	52%	(as	of	March	30,	2016)	of	the	code	is	covered	by	different
tests.	This	could	be	a	serious	problem	when	new	features	are	introduced,	because	nobody
knows	if	the	old	features	are	still	functional.	For	this	reason,	we	wanted	to	create	new	unit
tests	for	the	project,	to	increase	this	metric.	After	a	closer	investigation	of	the	project,	we
found	some	rudimentary	experiments	with	end	to	end	tests	with	the	Protractor	framework.
Our	focus	switched	a	bit	and	we	wanted	to	focus	on	creating	a	test	suite	which	is	based	on
the	page	object	pattern	[9].	As	of	March	26,	2016,	we	are	still	working	on	the	test	suite	to
make	it	compliant	to	the	testing	strategy	of	the	Habitica	team.	(#6868	and	#6876)

8.	Conclusion
In	this	project	we	have	analyzed	Habitica	from	a	Software	Architecture	perspective.	We	have
found	that	Habitica	is	built	and	maintained	by	a	core	set	of	staff	who	fulfill	multiple	roles	and
are	largely	responsible	for	overseeing	the	whole	project.	Like	many	open	source	projects,
they	rely	heavily	on	external	contributors:	enthusiastic	volunteers	who	are	willing	to	help
them	fix	bugs,	add	features,	and	help	out	in	general.

The	architecture	is	stuctured	nicely	into	different	layers	with	a	single	page	application	for	the
client	side	and	backend	services	accessible	through	an	API.	They	develop	the	project	using
very	flexible	technologies	that	allow	the	developers	to	quickly	make	changes	to	existing

Habitica

199

https://github.com/HabitRPG/habitrpg/issues/6736
https://github.com/HabitRPG/habitrpg/issues/6740
https://github.com/HabitRPG/habitrpg/pull/6868
https://github.com/HabitRPG/habitrpg/pull/6876

features.	For	example	the	use	of	MongoDB	and	JavaScript.	They	also	put	great	effort	into
making	the	process	of	getting	involved	as	easy	as	possible	for	new	developers	by	using
popular	technologies	and	providing	"Getting	Started"	guides.	This	was	especially	helpful	to
us	as	it	allowed	us	to	jump	in	without	too	much	effort.

The	biggest	issue	that	we	encountered	was	the	low	test	coverage.	Our	group	tried	to
improve	this	by	adding	our	own	end	to	end	tests	for	the	tasks	page	and	the	user
customization	features.

The	future	looks	bright	for	Habitica.	They	are	currently	at	the	next	stage	of	developement
with	the	imminent	introduction	of	the	API	v3.	With	this,	and	the	increased	focus	on	improving
testing	and	code	quality	the	overall	quality	of	the	application	will	likely	become	even	better.

We	are	glad	to	have	been	able	to	get	some	insight	into	a	big	open	source	project	and	are
very	happy	to	have	contributed	to	Habitica.	We	hope	that	Habitica	continues	growing	and
that	thousands	of	players	keep	getting	the	most	out	of	the	gamification	of	life!

9.	References
1.	 Nick	Rozanski	and	Eoin	Woods.	(2011).	Software	Systems	Architecture:	Working	with

Stakeholders	Using	Viewpoints	and	Perspectives.	Addison-Wesley	Professional.
2.	 Habitica	staff.	Guidance	for	Blacksmiths.

http://habitica.wikia.com/wiki/Guidance_for_Blacksmiths,	2016
3.	 Wikipedia.	Habitica.	https://en.wikipedia.org/wiki/Habitica,	2016
4.	 Habitica	staff.	Staff	presentation.	http://blog.habitrpg.com/who,	2016
5.	 Habitica	staff.	User	plans.	https://habitica.com/static/plans,	2016
6.	 Habitica	staff.	Staff.	http://habitica.wikia.com/wiki/Staff,	2016
7.	 Habitica	staff.	Community	guidelines.	https://habitica.com/static/community-guidelines,

2016
8.	 Habitica	staff.	Moderators.	http://habitica.wikia.com/wiki/Moderators,	2016
9.	 Arie	van	Deursen.	Beyond	page	objects.	http://avandeursen.com/2015/06/25/beyond-

page-objects/,	2016
10.	 Habitica	staff.	Habitica.	https://habitica.com,	2016
11.	 Jason	Barnabe.	userstyles.org.	https://userstyles.org/,	2016
12.	 Gamma,	E.	,	Helm,	R.,	Johnson,	R.,	Vlissides	J.:	Design	Patterns:	Elements	of

ReusableObject-Oriented	Software.	Addison-Wesley,	1996

Habitica

200

http://habitica.wikia.com/wiki/Guidance_for_Blacksmiths
https://en.wikipedia.org/wiki/Habitica
http://blog.habitrpg.com/who
https://habitica.com/static/plans
http://habitica.wikia.com/wiki/Staff
https://habitica.com/static/community-guidelines
http://habitica.wikia.com/wiki/Moderators
http://avandeursen.com/2015/06/25/beyond-page-objects/
https://habitica.com
https://userstyles.org/

Karma:	the	JavaScript	test	runner

Figure	1.	Karma	Logo

By:	Lu	Dai,	Wesley	van	der	Lee,	Mourad	el	Maouchi	and	Liu	Yiran	
Delft	University	of	Technology,	2016

Abstract

Building	online	applications	coincides	with	continuous	testing.	Testing	these	applications	on
all	available	browsers	and	platforms	seems	cumbersome.	Karma	stimulates	Test	Driven
Development	(TDD)	of	JavaScript	applications	by	providing	a	productive	testing	environment
where	developers	can	just	write	the	code	and	get	instant	feedback	from	their	tests.	In	order
to	facilitate	this	environment	a	lot	of	logic	requires	to	be	implemented	into	the	Karma	system.
This	chapter	studies	the	Karma	system	by	discussing	different	viewpoints	and	perspectives
on	Karma’s	environment	and	internal	structure.	We	discovered	that	Karma	has	been	built	by
a	large	community	of	developers,	which	now	also	includes	us.

Table	of	Contents

Introduction
What	is	Karma?
Stakeholder	Analysis

Identification
Interests	and	Influences

Environment	Analysis
Internal	Environment
External	Environment
Impact	on	the	Environment

Functionalities	in	Karma
Design	Philosophy
Functional	Structure	Model

Variability
Main	Features
Relationships
Strategy

Development	View

Karma

201

https://github.com/ludai0106
https://github.com/wesleyvanderlee
https://github.com/moumi
https://github.com/liuyiran13

Modules
Code	Standards

Standardization	of	Design
Standardization	of	Testing

Technical	Debt
Management	of	Technical	Debt

Performance	Perspective
Performance	Model

Conclusion

Introduction
Web	applications	have	become	a	part	of	the	average	person's	everyday	life.	They	fulfill	an
unlimited	number	of	purposes,	which	may	range	from	social	interacting	through	invoicing	or
playing	games.	Due	to	its	flexibility	and	browser	support,	JavaScript	has	become	one	of	the
dominant	languages	to	create	these	applications	in.	Building	online	applications	coincides
with	continuous	testing	and	hence	requires	a	way	to	easily	enable	a	Test	Driven
Development	(TDD)	approach,	to	safeguard	the	correctness	of	the	implemented
applications.	This	is	where	Karma	comes	into	play.	Karma	supports	this	TDD	approach	by
providing	a	productive	testing	environment	where	developers	can	write	the	code	and
immediately	see	the	test	results.

In	this	chapter,	we	provide	a	comprehensive	architectural	analysis	of	the	Karma	system.
First,	Karma	is	explained	in	short.	Next,	relevant	stakeholders	and	their	interests	will	be
identified.	Afterwards,	the	environment	of	Karma	is	discussed.	Next,	the	functionalities
provided	by	Karma	are	introduced	with	afterwards	the	features	supporting	these	features.
Moreover,	a	development	view	is	provided	with	the	technical	debt	for	the	system.	At	the	end,
a	performance	perspective	is	provided	with	a	conclusion	regarding	the	architectural	analysis.

What	is	Karma?
Karma	is	the	Spectacular	Test	Runner	for	JavaScript,	which	in	essence	is	a	tool	that	allows
test	execution,	of	JavaScript	applications,	in	real	browsers.	Karma	itself	is	also	written	in
JavaScript.	Karma	started	off	as	a	Master	Thesis	project	by	Vojta	Jína,	carried	out	at	the
Czech	Technical	University	in	Prague.

The	main	goal	of	Karma	is	to	enforce	TDD	by	providing	a	productive	testing	environment	to
developers.	In	this	environment,	the	developers	should	not	have	to	set	up	tons	of
configurations,	but	rather	a	place	where	developers	can	write	test	code	and	get	instant

Karma

202

https://github.com/karma-runner/karma/blob/master/thesis.pdf
https://github.com/vojtajina

feedback	from	their	tests.	Getting	rapid	feedback,	is	what	makes	a	developer	productive	and
creative	at	the	end.

From	the	official	website	of	Karma[2],	explaining	the	purpose	of	Karma:

"Things	should	be	simple.	We	believe	in	testing	and	so	we	want	to	make	it	as	simple
as	possible."

Stakeholder	Analysis
Stakeholders	are	an	important	element	for	every	software	system.	This	also	equals	for
Karma.	Within	the	Karma	environment,	there	is	a	various	amount	of	stakeholders.	Each	of
these	stakeholders	is	concerned	with	one,	or	multiple,	aspects	of	Karma.	To	be	able	to
understand	the	architecture	and	the	current	state	of	the	Karma	system,	firstly,	the
stakeholders	and	their	interests	and	influences	are	analyzed.

In	the	first	subsection,	the	identified	of	the	stakeholders	is	elaborated	on.	Next,	the	interests
and	influences	of	those	stakeholders	are	discussed.	In	addition,	we	discuss	the	stakeholders
in	the	early	stage	and	in	the	current	stage	of	Karma.

Identification

Instead	of	identifying	the	stakeholders	as	individuals,	they	are	grouped	together	and
categorized.	The	categorization	is	based	on	the	9th	chapter	produced	by	Rozanski	and
Woods	[1],	which	states	that	software	systems	have	corresponding	assessors,
communicators,	developers,	maintainers,	suppliers,	etc.	In	the	following	table,	Table	1,	the
stakeholder	types	are	provided	with	the	corresponding	stakeholders	in	Karma.

Karma

203

http://karma-runner.github.io/0.13/index.html

Stakeholder
Type Identified	Stakeholders

Assessors
This	exists	out	of	the	community	that	discusses	if	an	issue	or	pull
request	is	in	line	with	the	standards.	This	can	not	be	categorized	to	a
few	individuals,	as	the	community	is	too	large	for	this.

Communicators Friedel	Ziegelmayer,	with	the	help	of	the	community.

Developers
There	is	a	total	of	219	contributors	(as	of	29th	of	March)	of	the
Karma	project.	The	main	ones	are	Vojta	Jína,	Friedel	Ziegelmayer
and	Christian	Budde	Christensen.

Maintainers

Greenkeeper,	Friedel	Ziegelmayer	and	Christian	Budde	Christensen.
Greenkeeper	keeps	updating	plugin	version,	Friedel	manages	most
issues	and	PRs	and	Christian	was	invited	to	become	a	maintainer
due	to	his	rich	amount	of	contributions.

Suppliers The	compatible	browsers,	plugins	and	additional	tools	that	Karma
uses.

Support	staff Friedel	Ziegelmayer.	However,	the	community	that	uses	and	helps
develop	the	project	can	also	be	seen	as	the	support	staff.

Testers
For	every	new	feature,	the	developer	who	created	that	feature	has	to
submit	tests	to	it,	before	it	gets	merged.	However,	Friedel
Ziegelmayer	has	the	responsibility	to	create	the	main	tests.

Users
There	is	a	huge	amount	of	users	that	make	use	of	Karma.	jQuery,
AngularJS	and	a	lot	of	internal	Google	Projects	use	it.	This	has	been
told	to	us	by	Friedel.

Community Two	communities	are	present	for	Karma:	Karma	Users	and	Karma
Runner.

Table	1.	Stakeholders.	

Interests	and	Influences

As	mentioned	before,	Karma	has	started	off	as	a	Master	Thesis	project.	Hence,	during	the
early	development,	the	stakeholders	of	Karma	differ	compared	to	the	current	situation.

Early	Stages

During	the	early	stages	of	Karma,	there	were	mainly	three	stakeholders.	One	of	which	were
the	JavaScript	developers	the	system	was	made	for.	The	other	two	stakeholders	were	Jína
himself	and	his	supervisor	from	the	university.	In	that	stage,	it	was	easier	and	relatively
faster	to	make	changes	that	satisfied	all	the	needs	of	the	stakeholders.	The	JavaScript

Karma

204

https://github.com/dignifiedquire
https://github.com/karma-runner/karma/graphs/contributors
https://github.com/vojtajina
https://github.com/dignifiedquire
https://github.com/budde377
https://github.com/greenkeeperio-bot
https://github.com/dignifiedquire
https://github.com/budde377
https://github.com/dignifiedquire
https://github.com/dignifiedquire
https://jquery.com/
https://angularjs.org/
https://groups.google.com/forum/#!forum/karma-users
https://gitter.im/karma-runner/karma

developers	did	not	practice	any	influence	to	the	development	but	were	taken	into
consideration.	The	supervisor,	and	Jína	himself,	were	the	only	stakeholders	with	influences
to	the	development	of	the	system.	In	the	current	stage,	this	is	very	different.

Current	Situation

In	the	current	stage,	Karma	is	highly	dependent	on	the	open	source	community.	The
stakeholders	that	perform	a	type	of	influence	and	have	their	interest	in	the	system	are
identified	in	Table	1.	The	user	community	has	a	very	high	interest	in	the	functional
correctness	of	the	system,	as	they	primarily	use	it.	This	user	community	exists	from	regular
persons	to	entire	organizations	such	as	Google,	with	their	AngularJS	project,	as	some
internal	projects.

To	depict	the	interest	and	influences	of	these	stakeholders,	they	are	best	depicted	in	the
form	of	a	Power-Interest	Grid	(see	Figure	2).	This	grid	contains	the	important	stakeholders
and	their	interests	in	the	system.

Karma

205

Figure	2.	Power-Interest	Grid

On	the	bottom-left	corner	of	the	Power-Interest	Grid	are	tools	that	are	used	by	Karma	for	the
own	development	of	it.	It	is	hosted	on	GitHub	and	uses	Continuous	Integration	tools.	Next,	in
the	top-left	corner	are	the	plugin	suppliers	which	have	low	interest	in	Karma,	but	have	high
power.	This	results	out	of	the	fact	that	Karma	launches	real	browsers	and	makes	advantage
of	various	testing	frameworks	to	execute	the	tests.	On	the	bottom-right	corner,	the	general
community	and	Karma	users	are	depicted	which	has	high	interest,	as	they	aid	in	the
development	and	wanted	tools,	but	do	not	have	high	power.	The	last	group,	on	the	top-right
corner,	contains	the	main	developers	and	the	two	organizations	that	have	both	high	interest
and	high	power.

Environment	Analysis

Karma

206

The	stakeholders	are	identified	with	their	corresponding	interests	and	influences.	In	this
section	the	environment	within	and	surrounding	Karma	is	discussed	to	gain	more
understanding.	Next,	the	impact	on	the	environment,	during	the	development	of	Karma,	is
discussed.

In	order	to	better	understand	the	influences	and	impacts	on	Karma,	or	even	from	Karma	on
the	surrounding	environment,	it	is	important	to	gain	knowledge	of	what	that	environment
consists	of.	The	environment	analysis	has	been	separated	into	two	parts,	the	internal
environment	and	the	external	environment.

Internal	Environment

The	internal	elements	can	be	separated	in	three	layers.	These	layers	consist	of	the	client,
library	and	server	layer.	Below,	the	three	layers	are	discussed.

Client:

Most	user	actions	are	available	through	the	client	layer	where	a	user	can	carry	out
command	line	operations,	web	browser	testing	and	debugging.	The	tests	are	performed
in	real	browsers.

Library:

The	library	layer	acts	as	a	bridge,	connecting	the	client	and	server.	Karma	uses	a
considerable	amount	of	internal	and	external	libraries	to	guarantee	its	performance.	The
reporter	and	logger	provide	relevant	information	and	the	gathered	test	results	to	the
client.	The	middleware	delivers	the	needs	from	the	clients	to	the	servers,	such	as
informing	the	server	to	run,	stop	or	perform	a	retry.	Socket.io	is	one	main	external	library
used	in	Karma	to	guarantee	web	browser	connection.	The	watcher	keeps	an	eye	on	the
files,	specified	in	the	configuration,	and	signals	Karma	to	run	with	the	help	of	the
middleware	once	one	of	those	files	changes.

Server:

The	Karma	server	controls,	runs	and	stops	processes.	The	runner	can	perform	testing
based	on	the	configuration	file	or	command	line	options.	The	latter	are	delivered	by
middleware.	When	the	server	runs,	the	library	supports	it	with	necessary	files	and	the
tests	are	run	in	the	client	layer.

Figure	3	depicts	the	internal	environment	of	the	Karma	system.

Karma

207

Figure	3.	The	Internal	Environment

External	Environment

In	order	to	explain	and	depict	the	system's	interactions	with	the	external	environment,	a
context	model	is	made.	This	model	is	used	to	explain	what	the	system	does,	and	does	not
do.	It	presents	an	overall	picture	of	the	system’s	interactions	with	the	outside	world,	and
summarizes	the	roles	and	responsibilities	of	the	participants	in	these	interactions.

Karma

208

Figure	4.	Context	Model

Impact	on	the	Environment

Now	that	is	known	what	the	overall	environment	consists	of,	the	impact	on	the	environment
will	be	discussed.	The	impact	of	the	Karma's	deployment	on	the	aforementioned
environment	is	addressed	in	this	part.	According	to	Rozanski	and	Woods,	addressing	the
impact	on	the	environment	includes:

1.	 Systems	that	contain	dependencies	on	Karma	and	may	require
functional	changes,
interface	changes,
performance	improvements,
security	improvements;

2.	 Systems	that	will	be	decommissioned	as	a	result	of	Karma's	deployment;
3.	 Any	data	that	will	be	migrated	into	Karma.

The	continuance	of	this	subsection	will	discuss	each	of	the	aforementioned	concerns
regarding	the	impact	on	the	environment.

Dependent	Systems

Karma	is	a	test	runner	which	integrates	testing	frameworks.	Especially	for	the	purpose
of	continuous	integration.	Since	Karma	is	often	used	as	an	end-to-end	test	runner
(running	independently	of	the	rest	of	the	framework),	other	systems	do	not	depend	on
the	way	Karma	works.	Other	systems	integrate	Karma	by	running	the	Karma	program

Karma

209

and	edit	Karma's	configuration	options,	in	order	to	have	matching	interfaces.	As	Karma
provides	this	functionality,	other	systems	are	dependent	on	whether	or	not	Karma	will
implement	the	configuration	interface.	This	is	the	case	for	all	levels	of	dependency:
functional,	interface,	performance	and	security.

Decommissioned	Systems

There	are	several	possible	scenarios	where	systems	will	be	decommissioned.	This
might	not	always	be	the	case,	and	when	systems	will	be	decommissioned	due	to	a	fault
in	Karma,	it	will	be	noticeable.	Karma	will	not	decommission	many	systems,	because	of
Karma's	end-to-end	characteristics.	Karma	is	well	known	for	its	enormous	amount	of
plugins	and	its	flexibility.	So,	it	aims	to	prevent	the	decommissioning	of	systems.	In	case
systems	get	decommissioned,	this	might	have	an	(in)direct	effect	on	the	plugins	and
other	functionalities	within	Karma.

Data	Migration

With	regard	to	data	migration,	Karma	takes	in	JavaScript	tests	created	by	the	end	user.
Since	this	type	of	data	is	often	of	a	universal	template,	Karma	does	not	influence,	nor
have	a	large	impact	on	the	way	data	is	migrated	into	Karma.

Functionalities
Karma's	environment	shows	a	large	number	of	actors.	Moreover,	the	previous	section
discussed	several	systems	who	are	dependent	on	Karma	or	may	even	be	decommissioned
once	Karma	stops	working.	In	order	to	understand	more	clearly	on	which	processes	are
relied	on	by	other	systems,	the	functionalities	of	Karma	will	be	discussed.	The	main	goal	of	a
system	can	in	general	be	derived	from	the	sum	of	its	functionalities.	The	main	goal	for
Karma	is	"to	bring	a	productive	testing	environment	to	developers"	[2].	The	central	functional
capability	provided	by	Karma	is,	therefore,	the	ability	to	run	different	(types	of)	tests.	There
exist	five	main	functionalities	which	are	identified,	and	elaborated	on,	in	the	following	table:

Karma

210

Functionality Description

Running	tests The	ability	to	run	tests	on	a	various	amount	of	different	browsers	and
operating	system	platforms.

Remote
control

Controlling	the	entire	workflow	either	through	the	command	line	or	the
IDE.

Testing
framework
integration

Integration	with	testing	frameworks,	which	can	be	used	to	generate
test	descriptions.	Some	testing	frameworks	are:	Jasmine,	Mocha	or
QUnit.

CI	integration Integration	with	Continuous	Integration	servers	like	Jenkins,	Travis	or
Semaphore.

Easy
debugging

Possibility	to	directly	debug,	in	an	easy	way,	from	the	IDE	(like
WebStorm)	or	Google	Chrome.

Table	2.	Functionalities	and	their	corresponding	description.	

Design	Philosophy

The	stakeholders	identified	in	the	environment	analysis	should	be	taken	in	mind	and
continuously	kept	satisfied	during	the	endless	development	cycle	of	Karma.	Each	type	of
stakeholder	has	different	requirements	in	terms	of	Karma's	software	architecture.	The
stakeholders	influence	the	design	philosophy,	which	is	translated	in	terms	of	design	qualities
and	their	appliance	to	the	system.	These	design	qualities	and	their	appliance	are	elaborated
on	in	the	following	table:

Design
Quality Appliance

Separation
of
Concerns

Karma	has	been	made	in	such	a	way	that	elements	are	separated	from
each	other.	In	this	way,	elements	can	be	grouped	together	depending	on
their	task.	The	result	is	that	it	is	much	easier	to	support	Karma.

Cohesion

The	Karma	system	has	a	high	cohesion	available.	The	strength	of	the
relationship	between	pieces	of	functionality	within	a	given	module	is	high.
Within	the	middleware	part	of	Karma,	functionalities	are	grouped	together
since	they	all	contribute	to	a	single,	well-defined	task.

Coupling

Karma	provides	the	ability	to	create	plugins	for	different	tasks.	This	is
done	to	ensure	loose	coupling	between	certain	system	components.
Since	the	system	is	loosely	coupled,	it	provides	the	ability	to	easier	build,
support	and	enhance	the	system.

Functional
flexibility

With	the	functional	capabilities	in	mind,	it	is	difficult	for	Karma	to	have	a
high	functional	flexibility.	It	is	the	core	of	the	system	and	the	additional
parts	have	been	developed	as	plugins.	Changing	the	functional	elements
would	result	in	breaking	(multiple)	other	components.

Table	3.	Design	qualities	and	their	appliances.	

Karma

211

http://jasmine.github.io/
https://mochajs.org/
https://qunitjs.com/
http://jenkins-ci.org
https://travis-ci.org
https://semaphoreci.com
https://www.jetbrains.com/webstorm/

Functional	Structure	Model

Figure	5	depicts	the	functional	structure	model	of	the	Karma	system.	Different	functionalities
are	illustrated	as	end	nodes	in	the	diagram,	pointed	to	by	an	arrow.	These	functionalities
include,	for	example,	the	functionality	of	CI	Integration	or	Test	Results.	Different	interfaces
are	required	in	order	to	reach	a	certain	functionality.	These	interfaces	are	either	internal,
provided	by	the	Karma	system,	or	external,	provided	by	means	of	dependencies	or	separate
installation.	One	could,	for	example,	clearly	see	that	in	order	to	gain	CI	Integration
functionality,	one	requires	the	server-interface	from	within	the	Karma	system	as	well	as	other
external	testing	frameworks	like	Jasmine	or	Cucumber.	These	frameworks,	are	not	provided
from	within	the	Karma	system	and	are	thus	said	to	be	external	interfaces.

Figure	5.	Functional	Structure	Model

Variability
Features	are	needed	to	aid	the	existence	of	the	main	functionalities	of	Karma.	These
features	do	not	only	aid	the	functionalities,	but	may	also	affect	the	variability	and	flexibility	of
the	system.	In	order	to	identify	the	variability	of	the	system,	these	features	are	required	to	be
identified	at	first.	With	these	features,	it	is	possible	to	deduct	the	flexibility	of	the	system.	The
variability	aspects	described	in	this	section,	all	aim	to	keep	the	technical	debt	as	low	as
possible.

Main	Features

The	main	advantage	of	using	Karma	as	a	test	runner	is	to	gain	instant	testing	feedback	from
test	code,	while	in	the	meanwhile,	freedom	on	customizing	Karma	is	also	allowed	to	fit	the
user's	preferences.	The	most	important	features	are	listed	below	in	Table	4.

Karma

212

http://jasmine.github.io/
https://cucumber.io/

Feature Description

Cross-
Platform

Karma	is	platform	independent	and	hence	supports	different	OS
(Windows,	Linux,	MacOS)and	devices	(desktop,	mobile,	tablets).

Plugin
Many	external	products	(browser-launchers,	testing	frameworks,
preprocessors,	reporter,	etc.)	can	be	integrated	with	Karma	via	plugins,
which	maximizes	Karma's	abilities.

Configuration

Configuration	enables	customize	Karma's	running	behaviors.	In	this
file,	users	specify	wanted	plugins,	customize	browser	options,	decide
how	to	handle	testing	files	and	basic	settings	like	color	of	logging
information	etc.

CLI
Karma	can	be	run	directly	through	the	command	line	and	command
line	arguments	have	ability	to	overridden	settings	predefined	in	the
configuration	file.

Public	API
Karma	API	provides	users	the	ability	to	call	Karma	programmatically
from	different	Node	modules	and	in	the	meanwhile	enable	users	to
write	customized	plugins	to	connect	existing	testing	libraries.

Easy
Debugging

Debugging	directly	from	Chrome	or	your	IDE	via	WebStorm.	After	each
modification	users	can	see	the	test	output	directly	in	the	IDE	and	do
not	need	to	switch	to	the	terminal.

Auto	Watch
Karma	triggers	tests	automatically	once	a	file	is	saved	w.r.t
corresponding	changes.	It	enables	automatic	debugging	and	provides
real-time	test	results	to	users.

Test
Approaches

Client,	unit	and	e2e	tests	approaches	help	users	focus	on	certain
aspects	they	want	when	performing	tests.

Table	4.	Features	with	their	corresponding	description.	

Relationships

Sometimes	one	feature	can	not	arise	without	the	existence	of	another	feature	or	features.
This	generates	feature	dependency	or	even	feature	interdependency.	A	dependency	in
Karma	is	the	browser-launcher,	which	relies	on	the	type	of	operating	system	and
corresponding	devices.	The	easy	debugging	attribute	depends	a	lot	on	the	Chrome-
launchers	and	IDE-plugins.	Remote	control	is	realized	in	the	existence	of	CLI	and	other
IDE(s).	Recovery	feature	appears	partially	due	to	the	reconnection	and	timeout	features	of
browser	setting.	Other	than	these,	much	more	of	such	situations	are	detectable	in	the	case
of	Karma.

Considering	the	respectable	amount	of	features,	the	most	important	features	are	classified
into	four	categories	according	to	their	properties	with	relation	to	their	relationships.	The
classification	consists	of:	development	features,	function	features,	user	settings	and	testing

Karma

213

attributes.	Most	of	the	identified	features	and	their	relationships	are	illustrated	in	the	feature
model	below.

Karma

214

Karma

215

Figure	6.	Feature	Model

Strategy

In	order	to	flexibly	provide	these	features	to	the	large	number	of	individual	preferences
originating	from	different	kinds	of	developers,	Karma	is	highly	configurable.	Karma	also
integrates	with	popular	continuous	integration	packages	and	has	excellent	plugin	support.
Karma's	success	is	mainly	due	to	its	variability,	configurability	and	thus	its	flexibility.	To	be
able	to	keep	this	up,	a	strategy	is	of	importance	to	apply	to	the	system	to	keep	it	successful.
Below,	three	aspects	are	summed	up	which	aid	this	variability,	configurability	and	provide	the
flexibility	which	aid	this	strategy.

Configuration	File

Users	of	Karma	are	able	to	modify	the	configuration	file	to	fit	their	needs.	This
configurability	ranges	from	changing	a	port	number	to	the	plugins	used	within	the
system.	There	are	mainly	five	sections	of	the	configuration	file	that	influence	the
configurability	of	Karma	the	most:	testing	framework,	preprocessors,	browsers	and	files
handling.	The	configuration	file	exists	with	default	values	set	which	are	changeable.
Karma	extracts	this	information	and	applies	it	throughout	the	system,	without	any	further
need	of	modification.

Plugin

As	aforementioned,	Karma	provides	the	ability	to	use	plugins	in	the	system.	This
provides	variability	to	the	users	of	the	system.	The	wanted	plugins	are	set	inside	the
configuration	file	and	loaded	at	the	start	of	Karma.	Depending	on	the	functionality	of	the
plugins,	they	are	loaded	at	the	appropriate	parts	of	the	system.	A	simple	example	is	the
use	of	a	different	browser.	This	is	loaded	as	a	plugin,	and	in	case	it	is	found,	that
browser	is	also	run	during	the	testing	process.

Note:	It	is	advised	to	perform	an		npm	install		to	install	plugins	which	are	not	present
yet.

Design	Patterns

To	provide	users	with	more	variability,	Karma	provides	some	files	which	can	be
specialized	by	means	of	inheritance.	In	the	Karma	project,	these	files,	or	variable
functions,	start	with	the	word		base	.	An	example	of	such	a	file	that	can	be	used	to	apply
inheritance	on,	is	the	BaseReporter.	The	use	of	inheritance	in	the	project	makes	it
possible	for	users	to	specify	in	more	depth	what	they	need.	In	case	a	certain	file/module
does	not	provide	the	needed	functionality,	this	makes	it	easier	for	them	to	change.
Especially	the	messages,	output	by	Karma,	can	be	changed	easily	in	this	manner.

Karma

216

Development	View
Now	that	a	higher	overview	of	Karma	is	gained,	this	section	dives	deeper	into	the
development	process.	Complex	systems	such	as	Karma	are	often	built	in	several	modules.
These	modules	are	organized	in	a	specific	way.	This	section	addresses	the	aspects	which
support	the	software	development	process	and	starts	first	of	all	by	identifying	all	different
modules	and	lastly	provides	a	discussion	on	the	existence	of	code	standards.

Modules

Karma	consists	of	a	large	number	of	different	source	files,	which	for	maintainability	have
been	logically	organized	into	several	different	modules.	The	following	modules	have	been
identified	in	Table	5.

Karma

217

Module Description File
amount

Size
(bytes)

Runner Makes	it	possible	to	run	Karma	from	the
command	line 1 50

Client Provides	the	client	shown	to	the	user	when
Karma	starts 7 11k

Documentation Documentation	of	the	Karma	project 29 80k

Library Overall	library 49 142k

Library	-
General

Provides	general	functionality	for	the	server,
loading	plugins	etc. 28 100k

Library	-
Initialization

Questions	regarding	for	the	installation	of
Karma	(the	configuration) 3 8k

Library	-
Launcher

Contains	parent	launchers,	these	can	be
extended	for	custom	launchers 4 9k

Library	-
Middleware

Creates	the	communication	for	the	Karma
client.	Serving	files	and	proper	setup	of	the
HTML-pages.

7 20k

Library	-
Reporter

Reporters	for	the	Karma	client.	Both	for	tests
and	the	debug	view. 7 8k

Node	Modules
Contains	all	the	modules	used	by	Karma.	E.g.
test	frameworks,	browser	launchers,	server
sockets	etc.

N/A N/A

Static Static	HTML-files	shown	in	the	browser. 4 11k

Tasks Provides	initialization	for	the	development
environment	and	ability	to	perform	grunt	tests 2 2k

Tests Contains	the	tests	for	Karma 77 250k

Tests	-	Client Client	tests	and	the	karma	configurations. 6 23k

Tests	-	Unit Unit	tests	for	specific	parts	of	the	system. 33 21k

Tests	-	E2E End-to-end	tests	for	expected	behavior	and
data	integrity. 36 205k

Table	5.	Modules	of	Karma.	

All	modules	contribute	to	the	end-to-end	functionality	and,	therefore,	require	interconnection.
The	following	figure,	Figure	7,	shows	Karma's	Module	Structure	Model.	Within	this	figure,
the	interaction	between	these	modules	is	depicted.

Karma

218

Figure	7.	Module	Structure	Model

Code	Standards

With	the	aforementioned	modules,	what	kind	of	standards	does	Karma	apply	to	its
development	process?	Most	software	systems,	and	especially	systems	that	rely	on	the	open
source	community,	are	developed	by	multiple	people	rather	than	individual	persons.	In	order
to	collaborate	effectively,	it	is	best	practice	to	adhere	to	standardized	key	aspects	of	design
and	testing.

Standardization	of	Design

Most	of	the	functionality	of	the	Karma	system	is	implemented	using	three	layers,	as	seen	in
Figure	3.	Karma's	main	functionality	is	running	tests	as	Karma	is	called	a	test	runner.	The
tests	are	specifically	run	on	the	server,	whereas	the	results	are	all	reported	to	one	main
client,	which	prompts	the	user	with	the	test	results.	The	bridge	is	provided	by	the	library
layer,	which	is	in	essence	the	backbone	of	Karma.	So,	this	layered	approach	is	a
standardization	of	their	design.

Standardization	of	Testing

Karma	uses	three	general	approaches	to	test	Karma's	internal	functionality	and	integrity.	The
test	approaches	are:	client,	unit	and	e2e	(end-to-end).	Certain	frameworks	have	been	used,
which	each	enforce	some	standardization	of	test	implementation.	Table	6	summarizes	these
test	components.

Karma

219

Approach Framework Explanation

Unit Jasmine	and
Sinon Small	tests,	testing	low-level	method	functionality.

Client Jasmine	and
Sinon

Larger	tests,	testing	higher-level	system
functionality.

E2E Cucumber Full	feature	tests.

Table	6.	Standardization	of	Testing	in	Karma.	

Technical	Debt
With	knowledge	of	the	development	view,	the	existence	of	technical	debt	can	be	analyzed.
Software	developers	sometimes	derogate	quality	in	order	to	ship	changes	fast.	This	always
leads	to	technical	debt,	because	the	future	effort	is	required	in	order	to	recover	the	initial
quality.	As	can	be	deducted	from	the	section	about	variability,	this	all	helps	to	reduce	the
technical	debt.	The	following	section	describes	how	the	technical	debt	can	be	managed
especially	for	Karma.

Management	of	Technical	Debt

In	order	to	manage	the	technical	debt,	while	also	reassuring	code	quality,	Karma's	issues
and	pull	requests	on	GitHub	[3,	4]	have	been	studied.	By	assessing	this,	each	task	has	a
brief	description	of	the	technical	change	to	be	made,	why	this	technical	change	is	important
for	the	project	and	in	which	part	of	the	code	the	technical	change	has	to	be	performed	(if
known).

According	to	Frank	Buschmann's,	To	Pay	or	Not	to	Pay	Technical	Debt	[5],	one	could	either
repay	the	debt,	converse	the	debt	or	pay	the	interest.

Which	option	to	choose	should	be	decided	by	the	stakeholders,	since	we	need	to	see	the
project	in	business	perspective	and	consider	many	aspects.	In	the	case	of	Karma,	the	third
option	is	adopted	in	general:	pay	the	interest.	Karma	relies	on	the	developers	in	the	open-
source	community	to	solve	issues	and	provide	pull	requests.	However,	not	all	the	bugs	in
issues	are	solved	by	developers,	some	of	the	issues	are	actually	solved	by	users	and	some
of	the	issues	are	just	left	there	unsolved.

Throughout	the	issues	of	Karma,	the	general	choice	of	implementing	new	features	is	done
by	is	by	providing	a	clean	and	smart	solution.	This	takes	longer,	but	makes	changes	easier
in	the	future	[6].	An	example	of	such	a	situation	is	issue	#1976.	To	solve	this	issue,	it	is
"quite	intricate	and	will	involve	a	good	amount	of	changes	inside	the	code	base"	[7].

Karma

220

http://jasmine.github.io/
http://sinonjs.org/
http://jasmine.github.io/
http://sinonjs.org/
https://cucumber.io/
https://github.com/karma-runner/karma/issues/1976

So,	to	manage	the	technical	debt,	Karma	focuses	on	keeping	the	variability	within	the
system	and	take	their	time	to	implement	new	features	to	have	a	good	solution.	There	may
exist	many	issues	and	PRs	for	Karma	at	the	moment,	but	this	is	done	to	have	the	best
solution	for	the	issue.	This	will	keep	the	technical	debt	as	low	as	possible.

Performance	Perspective
With	all	the	previous	sections	in	mind,	this	section	aims	to	analyze	Karma's	performance	in
terms	of	possible	workload	and	how	Karma	handles	increased	processing	volumes.	To	be
more	precise,	this	section	includes	performance	analysis	on	the	most	valuable	components
of	the	system.	Below,	five	elements	are	summed	up	which	encapsulate	concerns	regarding
the	performance	of	a	system	[1].	Next,	Karma	is	put	to	a	test	to	deduct	and	visualize	the
response	time	to	create	a	performance	model.

Response	Time

One	of	the	main	issues	for	a	JavaScript	developer	is	the	time	of	testing.	This	often	takes
several	minutes	which	slows	down	the	developer	in	his	process.	This	results	in	a	long
and	ineffective	process.	One	of	the	goals	of	Karma	is	to	tackle	this	problem.	Thus,	fast-
speed	has	become	one	of	the	main	properties	of	Karma	as	it	provides	instant	feedback
to	users.	This	is	further	discussed	and	depicted	in	the	following	subsection.

Throughput

Throughput	is	defined	as	the	amount	of	workload	the	system	is	capable	of	handling	in	a
unit	time	period.	Throughput	and	response	time	have	a	complex	interrelationship	in
most	systems	and	so	it	is	in	Karma.	In	general,	the	shorter	transaction	processing	time
in	Karma,	the	higher	the	throughput	Karma	can	achieve.	This	is	an	important	aspect	as
it	influences	the	speed	of	the	amount	of	tests	capable	of	being	run.

Scalability

Scalability	is	the	ability	of	Karma	to	handle	the	increasing	and	short	burst	of	workload.
This	may	be	due	to	an	increase	in	the	number	of	files	or	an	increase	in	the	complexity	of
tasks.	Since	Karma	watches	the	files	and	performs	tests	the	moment	they	have	been
changed/saved,	this	makes	the	workload	not	so	high	and	aids	the	scalability	of	the
system.	Furthermore,	Karma	is	able	to	run	browsers	concurrently,	spreading	the
workload.	This	all	aids	the	scalability	aspect	of	the	system.

Predictability

Karma

221

In	a	system,	predictability	is	also	of	importance.	Regardless	of	when	a	certain	task	is
executed,	the	task	should	execute	in	a	very	similar	time.	This	is	the	case	for	Karma.
However,	during	the	first	initial	run	of	Karma,	it	seems	that	little	is	cached,	resulting	in
the	fact	that	it	takes	a	longer	time	than	subsequent	runs.	This,	in	overall,	makes	the
system	predictable.

Hardware	Resource	Requirement

With	much	flexibility,	Karma	works	on	multiple	platforms	(Windows,	Linux,	Mac	etc.).
The	tests	can	even	be	captured	on	several	hardware	components,	such	as	the	desktop,
mobile,	tablets	etc.	This	has	an	effect	on	the	throughput	and	the	response	time	of	the
system.	Nevertheless,	Karma	aims	to	keep	this	cross-platform	functionality	going	and
makes	sure	to	have	it	working	on	the	most	known	platforms.

Performance	Model

The	model	below	shows	the	most	valuable	work	components	within	Karma.	In	order	to
elaborate	on	the	performance	more	precisely,	tests	have	been	carried	out	to	get	the
response	time	data	on	different	functional	parts.	From	Figure	8	can	be	seen	that	most	steps
in	Karma	have	an	'instant'	response	time,	which	are	usually	within	2	seconds.	As
aforementioned,	the	first	run	of	Karma	takes	more	time,	probably	because	nothing	has	been
cached	in	memory	yet.	Furthermore,	the	reporter	may	take	up	to	5	seconds	due	to	the	length
of	reports.	The	overall	performance,	in	terms	of	response	time,	can	all	be	seen	in	the	figure.

Figure	8.	Performance	Model

Karma

222

Conclusion
The	main	goal	for	Karma	is	to	bring	a	productive	testing	environment	to	JavaScript
developers.	The	environment	being	one	where	they	don't	have	to	set	up	loads	of
configurations,	but	rather	a	place	where	developers	can	just	write	the	code	and	get	instant
feedback	from	their	tests.

The	number	of	stakeholders	in	Karma	is	quite	big,	but	there	are	only	a	few	developers	that
frequently	work	on	karma.	The	feature	of	Karma	is	abundant	due	to	its	rich	number	of
configuration	files,	this	character	offers	the	user	various	choices	and	makes	Karma	one	of
the	most	popular	JS	test	runners.

Karma	is	the	preferred	test	runner	for	projects	written	with	AngularJS	and	is	well	on	its	way
to	larger	acceptance	within	the	JavaScript	community.	Its	plugin	architecture	makes	it	easily
adaptable	to	other	test	suites	and	reporters,	all	of	which	add	value	to	the	core	of	Karma.	In
agile	or	continuous	integration	environments,	Karma	shines	as	an	indispensable	tool	to
development	teams,	providing	an	easy	and	reliable	way	to	modify	existing	code	and	craft
new	code.

In	conclusion,	with	its	amount	of	functionalities,	variability,	low	technical	debt	and	the	great
performance,	it	is	a	great	tool	to	achieve	the	goal	it	was	made	for.	To	bring	a	productive
testing	environment	to	JavaScript	developers.

References
1.	 Rozanski,	Nick,	and	Eóin	Woods.	Software	systems	architecture:	working	with

stakeholders	using	viewpoints	and	perspectives.	Addison-Wesley,	2012.

2.	 The	official	Karma	website:	http://karma-runner.github.io/

3.	 Karma's	issue	page:	https://github.com/karma-runner/karma/issues

4.	 Karma's	pull	request	page:	https://github.com/karma-runner/karma/pulls

5.	 Buschmann,	Frank.	"To	pay	or	not	to	pay	technical	debt."	Software,	IEEE	28.6	(2011):
29-31.

6.	 Fowler,	M.	(2016).	Martinfowler.com.	Retrieved	27	March,	2016,	from
http://martinfowler.com/bliki/TechnicalDebt.html

7.	 Ziegelmayer,	F.	(2016).	Retrieved	27	March,	2016	from	https://github.com/karma-
runner/karma/issues/1976#issuecomment-194349020

Karma

223

https://angularjs.org/
http://karma-runner.github.io/
https://github.com/karma-runner/karma/issues
https://github.com/karma-runner/karma/pulls
http://martinfowler.com/bliki/TechnicalDebt.html
https://github.com/karma-runner/karma/issues/1976#issuecomment-194349020

Karma

224

Mopidy	–	An	extensible	music	server
By	Yuzhu	Yan,	Lina	He,	Yuchen	Huang,	Chang	Yan

Delft	University	of	Technology

Abstract
Mopidy	is	an	extensible	music	server	written	in	Python.	In	this	research,	the	software
architecture	of	Mopidy	is	analyzed	through	the	stakeholders	and	various	viewpoints
including	the	context	viewpoint,	developer	viewpoint	and	deployment	viewpoint.
Sequentially,	the	perspectives	of	variability	and	usability	are	provided	to	address	the	quality
properties,	which	will	have	a	positive	impact	on	the	improvement	of	Mopidy.	From	the
analysis	of	viewpoints	and	perspectives,	it	can	be	seen	that	Mopidy,	as	an	open	source	API,
still	need	to	be	enhanced.

Contents
Introduction

General	Understanding
Specific	Understanding

Stakeholder	Analysis

Types	of	Stakeholders
Power-Interest	Grid

Context	Viewpoint

Developer	Viewpoint

Module	Organization
Common	Design	Model
Codeline	Organization
Technical	Debt

Deployment	Viewpoint

Variability	Perspective

Feature	Identification
Feature	Relationships

Mopidy

225

https://github.com/yuzhuY
https://github.com/linahe93
https://github.com/OSerHuang
https://github.com/mokieyue

Binding	Time
Evolution	History

Usability	Perspective

Conclusion

References

Introduction
Mopidy	is	an	extensible	music	server.	It	allows	users	to	connect	their	favorite	MPD	or	web
client	to	the	multiple	cloud	services	like	Spotify,	SoundCloud	and	Google	Play	Music.	The
users	can	add	new	music	source	easily	and	control	the	music	from	any	phone,	tablet,	or
computer.

Team-Mopidy,	from	the	Delft	Students	on	Software	Architecture	group	(DESOSA	2016),	has
analyzed	the	architecture	of	Mopidy	based	on	the	theory	about	software	architecture	over
the	past	few	weeks.	From	these	analysis,	we	want	to	do	some	contribution	to	the
development	of	Mopidy.	This	chapter	is	divided	into	various	viewpoints	and	perspectives
about	Mopidy.	First	of	all,	there	is	a	brief	introduction	about	Mopidy	from	general	and	specific
understanding.

General	Understanding

No	matter	frontends	or	backends,	so	far,	there	are	more	than	10	extensions	for	Mopidy.	With
the	help	of	extensions,	music	from	cloud	service,	like	Spotify,	SoundCloud,	and	Google	Play
Music	can	be	easily	added.	Through	Vanilla	Mopidy,	music	from	your	local	disk	and	radio
streams	could	also	be	enjoyed.

Mopidy

226

	Cloud	services	of
Mopidy

Mopidy	is	just	a	server

	The
Interface	of	Mopidy

As	an	application	written	in	Python,	Mopidy	not	only	have	network	connectivity,	audio	output,
but	also	support	multiple	operating	systems	and	device,	from	linux,	Mac	OS	X	to	Raspberry
Pi.	Out	of	box,	Mopidy	takes	a	role	of	server	for	MPD	and	HTTP.	Additional	frontends	for
controlling	Mopidy	can	be	installed	from	extensions.

Everybody	uses	their	favourite	client

Mopidy

227

	Clients	of
Mopidy

You	are	not	just	a	beneficiary,	but	also	a	contributor.	You	and	people	around	you	could
connect	their	favorite	MPD	or	web	client	to	the	Mopidy	server	to	search	music	and	manage
playlist	together.	By	making	use	of	a	browser	of	MPD	client,	which	is	available	for	all	popular
operating	systems,	control	music	form	any	phone,	tablet	or	computer	is	not	a	imagination
any	more.	[1]

Specific	Understanding

The	main	function	of	Mopidy	is	to	make	multiple	frontends	capable	of	using	multiple
backends.	The	overall	architecture	of	Mopidy	as	shown	below	is	organized	based	on	the
frontends	and	backends.

Mopidy

228

	Architecture	of
Mopidy

The	multiple	frontends	present	the	resource	from	Mopidy	to	user.	They	can	implement	a
server	for	protocols	such	as	HTTP,	MPD	as	well	as	MPRIS.	The	core	contains	several
controllers	for	different	functionalities.	The	core	actor	gets	the	requests	from	the	frontends
and	calls	out	to	one	or	more	backends.	The	responses	from	backends	will	be	combined	into
a	single	response	and	sent	to	the	requesting	frontend.	In	this	way,	the	multiple	backends	are
able	to	work	as	one.	Another	function	of	the	core	is	keeping	track	of	the	tracklist.	In	the
backends,	there	are	a	set	of	providers	having	different	functionalities	to	provide	various
music	sources.	Additionally,	the	audio	is	built	around	GStreamer	for	backends	to	play	audio.
Mixer	is	used	for	the	volume	control.[1]

Stakeholder	Analysis

Types	of	Stakeholders

Mopidy

229

Stakeholders	of	Mopidy

Mopidy	is	developed,	maintained	and	tested	by	Mopidy	Group	mainly	composed	by	8
people.	They	made	great	contributions	and	gave	life	to	Mopidy.	They	are	not	only	the
authors	of	Mopidy,	but	also	the	acquirers	and	administrators.	Some	of	them	@Jodal	and
@Adamcik	also	play	the	role	of	the	system	communicators	and	supporting	staffs.	Mopidy	got
sponsored	by	Fastly,	GlobalSign	and	Rackspace.	Also	Mopidy	is	assessed	by	Apache	which
supports	a	number	of	open-source	software	projects.	Mopidy	has	many	suppliers	such	as
raspberry	pi,	Spotify	and	SoundCloud.	Furthermore,	Mpd	clients	and	Mpd	graphical	clients
are	its	main	users.

Power-Interest	Grid

Mopidy

230

https://github.com/orgs/mopidy/people
https://github.com/jodal
https://github.com/adamcik

Power-Interest	Grid	of	Mopidy

Given	the	power	and	interest	in	Mopidy,	the	stakeholders	are	prioritized	as	shown	in	the
Power-Interest	grid.	In	this	figure,	the	high	power	and	interest	stakeholders	like	Jodal	and
Adamcik	are	placed	on	the	top	right,	while	stakeholders	with	both	lower	power	and	interest
including	some	of	the	testers,	maintainers	and	suppliers	are	in	the	bottom	left	corner.	Other
places	in	this	grid	show	stakeholders	with	either	high	power	or	high	interest	such	as	our	four
team	members	who	has	high	interest	but	low	power	in	Mopidy.

Context	Viewpoint

Mopidy

231

Context	Viewpoint	of	Mopidy

Mopidy	is	a	completely	open	source	project	and	GitHub	is	the	main	platform	in	which	the
Mopidy	is	developed.	Like	any	project	hosted	in	GitHub,	the	developers	come	from
everywhere	as	long	as	they	are	interested	in	Mopidy	and	are	willing	to	contribute.
Developers	who	has	made	great	contribution	to	the	project	may	be	invited	in	the	Mopidy
member	team.	Those	people	are	the	core	developers	of	the	Mopidy.	Mopidy	originally
supports	local	disk	and	Spotify,	other	stream	source	and	additional	functions	can	be
achieved	by	some	third	party	extensions.	As	an	open	source	project,	users	can	easily
download	the	source	code	and	build	the	program	from	GitHub.	Not	only	personal	users,
there	also	some	software,	such	as	Parity,	use	the	code	from	Mopidy	project	with	their	own
UI.	Mopidy	can	run	on	PC	with	OS	X	and	Linux,	the	support	for	Windows	and	smart	phones
is	also	on	the	way.	Competitors	like	PulseAudio	from	freedesktop.org	can	also	provide	the
similar	function.

Developer	Viewpoint
When	developing	the	system,	the	Mopidy	developers	have	to	consider	a	lot,	such	as	the
code	structure,	dependencies,	configurations,	constraints	and	design	standards,	to	ensure
the	integrity	and	feasibility	of	the	system.	In	this	part,	there	is	an	analysis	about	the
development	architecture	of	Mopidy	during	the	whole	development	process.

Module	Organization

Mopidy

232

Before	writing	the	source	code,	the	developers	will	consider	the	element	of	Mopidy	to	form
an	extensible	music	server.	In	this	part,	the	module	organization	is	introduced	to	achieve	the
main	functionalities	of	Mopidy.

UML	Module	Structure	of	Mopidy

The	module	structure	of	Mopidy	is	presented	as	a	UML	package	diagram.	In	this	diagram,
there	are	five	layers	from	presentation	layer	to	third	party	layer.

Presentation	Layer:	The	presentation	layer	is	the	frontends	directly	providing	the
resource	for	user	and	can	implement	server	for	protocols	such	as	HTTP,	MPD	as	well
as	MPRIS.

Domain	Layer:	The	domain	layer	contains	several	controllers	for	different	functionalities
like	keeping	track	of	the	tracklist	and	etc.

Mopidy

233

Database	Layer:	In	the	database	layer,	there	are	a	set	of	providers	having	different
functionalities	to	provide	various	music	sources.

Utility	Layer:	The	utility	layer	contains	many	modules	used	by	other	layers.

Third	party	layer:	The	third	party	layer	has	several	platforms	which	are	imported	to
achieve	the	a	set	of	functionalities.

The	before-mentioned	five	layers	depend	on	each	other	to	some	extent.	The	layers
connected	by	arrows	mean	that	the	dependency	of	modules	in	these	layers	are	allowed,	for
example,	the	modules	in	presentation	layers	are	allowed	to	depend	on	the	utility	layer,
domain	layer	and	third	party	layer.

Common	Design	Model

Define	a	set	of	design	constraints	that	apply	when	designing	the	system’s	software	elements
helps	increase	the	system’s	overall	technical	coherence	and	makes	it	easier	to	understand,
operate,	and	maintain.	It	can	reduce	risk	and	duplication	of	effort	by	identifying	standard
approaches	to	be	used	when	solving	certain	types	of	problems	as	well.	The	definition	of
common	design	model	can	be	specialized	into	three	parts:	common	processing,	standard
design	approaches	and	common	softwares.

The	Common	Processing

Standardizing	how	the	system	logs	messages	and	handles	configuration	parameters	can
significantly	simplify	its	administration.	Common	processing	provides	a	standard	approach
across	all	system	elements	that	can	benefit	a	lot	and	directly	contributes	to	the	overall
technical	coherence	of	the	system.

Message	Logging

Use	mopidy	–v	or	mopidy	–vv	or	mopidy	–vvv	to	print	debug	log.	All	three	options	will
give	you	debug	level	output	from	Mopidy	and	extensions,	while	–vv	and	–vvv	will	give
you	more	log	output	from	their	dependencies	as	well.
The	console	log	always	based	on	log	level,	defaults	to	true
The	config	file	that	overrides	all	logging	config	values.	The	console	format	used	for
informational	logging.	The	debug	format	used	for	debug	logging.	See	the	Python
logging	docs	for	details	on	the	format.
The	file	to	dump	debug	log	data	to	when	Mopidy	is	run	with	the	mopidy	–save-debug-
log	option.	It	will	save	the	log	equivalent	with	–vvv	to	the	file	mopidy.log	in	the	directory
you	ran	the	command	form.
During	development	or	debugging,	the	loglevels	config	section	can	be	used	to	change
the	log	level	for	specific	parts	of	Mopidy.	But	each	key	in	the	config	section	must	match

Mopidy

234

https://docs.python.org/2/library/logging.config.html

the	name	of	a	logger.	The	value	is	the	log	level	to	use	for	that	logger,	one	of	debug,	info,
warning,	error	or	critical
During	development	or	debugging,	the	logcolors	config	section	can	be	used	to	change
the	log	color	for	specific	parts	of	Mopidy.	Each	key	in	the	config	section	should	match
the	name	of	a	logger.	The	value	is	the	color	to	use	for	that	logger,	one	of	black,	red	,
green,	yellow,	blue,	magenta,	cyan,	white.

The	Configuration

For	the	initialization,	Mopidy	has	a	lot	of	config	values	you	can	tweak,	but	you	only	need	to
change	a	few	to	get	up	and	running.	When	you	have	created	the	configuration	file,	open	it	in
a	text	editor,	and	add	the	config	values	you	want	to	change.	You	can	see	the	config	by
typing	mopidy	config.	All	extensions	bring	additional	configuration	values	with	their	own
defaults.	You	can	check	the	core	config,	logging	config,	audio	config	and	proxy	config	and
change	them	as	you	want.	All	configuration	sources	are	merged	together	to	show	the
effective	document.	For	termination	and	restart	of	operation,	Mopidy	has	its	commands	on
mopidy	and	commands	on	extensions.

The	Standard	Design	Approaches

Standardization	of	Testing

Mopidy	has	quite	good	test	coverage,	and	all	new	code	going	into	Mopidy	are	advised	to
come	with	tests.	Mopidy	team	provides	many	effective	and	practical	test	tools.	“tox”,	for
example,	a	command	that	could	run	all	tests,	including	all	branches	and	pull	requests.	This
is	the	ultimate	test	command	before	pushing	to	Github.	Pytest	as	a	test	runner	suffices
people	who	want	just	want	to	run	a	test	in	a	single	directory	to	save	time.	And	with	the	help
of	the	pytest-cov	plugin,	you	can	even	check	ten	slowest	tests	with	aim	of	speeding	up.	All
the	codes	modifications	are	welcomed	written	in	the	suggesting	code	style.	As	a
convenience,	Mopidy	team	also	provides	a	directory	named	tests	on	Mopidy	Github	root
directory.	Developers	could	see	detailed	test	in	this	file.

Testing	Tools

Testing	tools	which	are	available	for	Mopidy	includes:	Travis	CI,	Tox,	pytest,	flake8.

Codeline	Organization

As	an	open	source	project,	it	is	highly	important	to	keep	the	source	code	in	order	so	that
other	developers	can	easily	understand	and	make	contribution	to	it.	Codeline	organization	is
considered	to	be	the	way	to	store	source	code	in	a	directory	structure,	managing	it	via

Mopidy

235

https://docs.mopidy.com/en/latest/codestyle/#codestyle

configuration,	building	and	testing	the	system	regularly.	Testing	and	configuration	has	been
discussed	in	the	previous	model,	this	part	is	mainly	focused	on	the	source	code	structure
and	the	build	and	release	regulation.

Codeline	Organization	of	Mopidy

Under	the	root	directory,	Mopidy	is	divided	into	four	subdirectories,	docs,	extra,	mopidy	and
tests	respectively.	The	docs	folder	contains	the	reStructuredText	files	for	manuals	and	other
important	information.	The	manuals	are	also	separated	to	different	folders	according	to	their
content.	The	mopidy	subdirectory	contains	the	source	code	for	the	actual	implementation	of
the	Mopidy	server.	As	we	have	discussed	before,	Mopidy	is	well	organized	by	dividing	its
functionalities	into	different	modules.	The	structure	of	the	mopidy	subdirectory	is	also	based
on	the	modulation	of	the	whole	system’s	design.	Each	module	has	its	own	directory	to	store
its	source	code.	This	keeps	all	the	source	code	in	order	and	makes	it	easier	for	developers
to	analyse	each	module.	The	tests	folder	is	also	parted	to	subfolders.	Each	of	them	only
tests	its	counterpart	under	the	mopidy	folder.

As	Python	is	an	interpreted	programming	language,	Mopidy	is	not	necessary	need	to	be	built
before	it	gets	released.	Developers,	as	well	as	users,	only	need	to	type	the	command
mopidy,	then	the	system	will	be	automatically	built	and	run.

In	order	to	reduce	the	project’s	dependency	on	key	individuals	and	to	automate	the	process,
release	procedures	are	well	defined:

1.	 Update	changelog	and	commit	it.
2.	 Bump	the	version	number	and	update	the	test	case.
3.	 Merge	the	release	branch	into	maser.
4.	 Install/upgrade	tools	used	for	package.
5.	 Build	package	and	test	it	manually	in	a	new	virtual	environment.
6.	 Tag	the	release.
7.	 Push	to	GitHub.
8.	 Upload	the	previously	built	and	tested	sdist	and	bdist_wheel	packages	to	PyPI.

Mopidy

236

9.	 Merge	master	back	into	develop	and	push	the	branch	to	GitHub.
10.	 Make	sure	the	new	tag	is	built	by	Read	the	Docs,	and	that	the	latest	version	shows	the

newly	released	version.
11.	 Spread	the	word	through	the	topic	on	#mopidy	on	IRC,	@mopidy	on	Twitter,	and	on	the

mailing	list.
12.	 Update	the	Debian	package.

Technical	Debt

During	the	process	of	software	development,	there	will	be	more	or	less	some	work	which
needs	to	be	completed	before	a	particular	job	but	is	neglected	by	the	developers.	These
neglected	work	will	cause	plenty	of	technical	debt	which	will	block	the	development	of	the
project.	Actually,	there	are	many	causes	of	technical	debt	like	the	business	pressures	and
lack	of	understanding.	We	believe	that	some	technical	debt	may	be	caused	by	Mopidy
developers,	so	in	this	section	we	use	a	tool	to	identify	the	technical	debt	in	Mopidy.[4]

Technical	debt	involved	in	Mopidy

We	examined	Mopidy	code	files	by	using	SonarQube,	an	open	source	software	used	for
quality	management.	Whenever	a	code	violates	basic	rule	of	the	programming	language,
SnoerQube	propose	an	issue.	By	using	this	software,	we	received	the	following	results.

	Technical	debt
illustration

From	above	consequence,	we	can	see	there	is	no	blocker	in	Mopidy	codes.	Five	critical
issues	are	showed,	which	are	caused	by	rename	aiming	for	avoiding	misunderstanding.
Class	methods	lead	to	major	issues.	Furthermore,	minor	issues	are	raised	up	due	to	rename
methods.	Luckily,	technical	debt	ratio	is	showed	as	1.0%,	which	means	Mopidy	is	well-
organized	and	maintained.

Mopidy

237

	Technical	debt
of	files

One	circle	represents	a	file	of	Mopidy.	The	size	of	circle	represents	the	number	of	issues	in	a
file,	which	means,	the	more	issues	exist,	the	larger	circle	is.	The	horizontal	axis	stands	for
lines	of	code	in	a	file.	So	we	can	conclude	that	the	top	right	circle	should	contain	highest
number	of	issues	and	largest	amount	of	codes.	This	circle	is	the	file	of	test_music_db.py,
which	includes	57	lines	of	code,	102	issues	and	25	hours	technical	debt.

Deployment	Viewpoint
According	to	the	definition	in	book	"Software	Systems	Architecture",	the	definition	of
deployment	viewpoint	describes	the	environment	into	which	the	system	will	be	deployed,
including	the	dependencies	the	system	has	on	its	runtime	environment.

So	far,	Mopidy	is	supported	by	the	following	operating	systems,	Debian/Ubuntu,	Arch	Linux,
OS	X,	Raspberry	Pi.	For	Debian/Ubuntu,	the	packages	of	Mopidy	are	built	for:

Debian	wheezy	(oldstable),	which	also	works	for	Raspbian	wheezy	and	Ubuntu	12.04
LTS.
Debian	jessie	(stable),	which	also	works	for	Raspbian	jessie	and	Ubuntu	14.04	LTS	and
newer.

The	packages	are	available	for	multiple	CPU	architectures:	i386,	amd64,	armel,	and	armhf.
For	Arch	Linux,	package	size	of	Mopidy	2.0.0-2	is	3.0MB,	the	installed	size	is	9.6MB.	Mopidy
runs	on	all	versions	of	Raspberry	Pi.	However,	note	that	Raspberry	Pi	2	B’s	CPU	is

Mopidy

238

approximately	six	times	as	powerful	as	Raspberry	Pi	1	and	Raspberry	Pi	Zero,	so	Mopidy
will	be	more	joyful	to	use	on	a	Raspberry	Pi	2.	Furthermore,	in	order	to	ensure	the
developers	know	what	software	will	be	available	for	them	and	to	make	the	system
administrators	know	what	needs	to	be	installed	and	managed	on	each	piece	of	hardware,
third-Party	Software	requirements	must	be	clearly	identified.	The	dependencies	of	Mopidy
varies	from	different	operating	systems.	All	of	these	information	is	showed	in	the	following
table.

Table1	The	operation	systems	and	third-party	software

Operating
Sytems Third-Party	Software

Debian/Ubuntu GStreamer,	Gst-plugins-ugly,	Gst-python2

Arch	Linux

gst-plugins-good,	gst-plugins-ugly,	gst-python2,	gstreamer,	python2,
python2-pykka>=1.1,	python2-requests,	python2-setuptools,	python2-
tornado>=2.3,	mopidy-mopify	(virtual)	(optional)	-	Web	client	with
Spotify-inspired	interface,	mopidy-scrobbler	(virtual)	(optional)	-
Last.FM	scrobbler,	mopidy-soundcloud	(virtual)	(optional)	-
Soundcloud	backend,	mopidy-spotify	(virtual)	(optional)	-	Spotify
backend,	python2-sphinx	(make)

OS	X Xcode,	XQuartz,	Homebrew,	Python

Raspberry	Pi GStreamer,	Gst-plugins-ugly,	Gst-python2

Variability	Perspective
As	an	extensible	music	server	written	in	Python,	developers	of	Mopidy	devoted	all	their
attention	to	attract	different	clients	and	people	who	are	using	different	kinds	of	devices,	in	a
range	of	Linux,	Mac	OS	X,	Raspberry	Pi,	normal	people,	music	fans	etc.	As	a	result,
developers	must	take	variability	as	an	important	element	into	account	when	they	are
designing	and	developing	this	API.

Feature	Identification

The	Mopidy,	as	a	music	server,	can	be	divided	into	some	modules	and	each	module	has
plenty	of	features	for	different	types	of	stakeholders.	In	this	part,	the	features	of	Mopidy	are
identified.

Frontends：Mopidy	provides	many	API	for	different	types	of	frontends	like	HTTP,	MPD,
MPRIS	and	Scrobbler.	The	user	can	set	up	the	API	configuration	about	the	specific
frontend	to	make	Mopidy	suitable	for	this	frontend.	For	example,	The	Mopidy-HTTP	can

Mopidy

239

be	used	for	a	web	client	to	control	Mopidy	through	HTTP	and	WebSockets.	The
features	in	frontends	are	mainly	related	to	the	Mopidy	user	such	as	MPDroid	and
Partify.

Core：The	core	contains	several	controllers	for	different	functionalities.	The	core	actor
gets	the	requests	from	the	frontends	and	calls	out	to	one	or	more	backends.	It	has
many	configurations	for	user	to	control	the	paths	and	the	tracklist	length.

Backends：In	the	backend	module,	there	are	a	set	of	suppliers	like	local,	Spotify,
stream	and	Soundcloud	providing	various	music	sources.	These	music	sources	can
connect	Mopidy	and	user	can	configure	many	parameters.

Audio:	The	audio	is	the	interface	around	GStreamer	for	some	specifc	cases.	The	default
playback	provider	is	used	when	the	backend	is	able	to	simply	set	the	URI	of	the
resource.	But	sometimes	for	example	the	raw	audio	data	is	delivered	outside	of
GStreamer,	the	audio	is	needed	to	execute	some	additional	functions.	Furthermore,	The
audio	is	able	to	control	the	volume	of	default	mixer.

Logging：Logging	is	used	for	user	to	inspect	the	running	status	of	Mopidy.	There	are
many	parameters	can	be	set	up	to	change	the	attribute	of	console	log,	debug	results
and	get	the	configuration	file.

Proxy：It	is	used	for	users	or	suppliers	on	locked	down	networks.	So	far	not	all	parts	of
Mopidy	and	Mopidy	extensions	respect	the	proxy	server	configuration.

Language	and	OS：The	language	feature	for	Mopidy	is	English.	It	is	relevant	to	all
stakeholers.	And	Mopidy	is	compatible	for	two	operation	systems(OS):	Linux	and	MAC
OS	X.	This	feature	is	bound	up	with	the	suppliers.

Feature	Relationships

Product	line	is	defined	by	its	features.	Their	relationship	and	a	specific	product	is	identified
by	a	subset	of	features,	this	process	is	called	a	feature	selection.	Generally,	there	could	be
many	possible	limitations	when	the	developers	are	defining	feature	selection.	The	constraint
of	feature	selection	named	feature	dependency.	As	a	result,	we	define	a	feature	selection	is
valid	if	and	only	if	it	fulfills	all	feature	dependencies.	After	identifying	basic	feature
dependencies,	subsets	of	features	can	be	decided,	from	which	we	can	derive	the	feature
model	which	can	be	regarded	as	a	formalism	to	describe	features	and	their	constraints[3].

For	Mopidy,	we	did	domain	analysis	and	derive	the	following	domains:	operating
system(OS),	language,	frontends,	core,	backends,	audio,	logging	and	proxy.	We	derive	the
following	Feature	variability	model	of	Mopidy	and	constructed	it	by	FeatureIDE.

Mopidy

240

	Feature	Variability	Model	of	Mopidy

Mopidy

241

Notes:	In	order	to	make	the	model	concise,	well-organized	and	accommodate	more
information,	we	use	summarized	feature	instead	of	a	class	of	features.

feature	debug	indicates	debug_file	and	debug_format
feature	HTTP__	_profile	indicates	hostname	and	port
feature	scan	indicates	scan_format,	scan_flush,	and	scan_follow_symlinks

Binding	Time

Like	we	introduced	above,	Mopidy	can	run	on	different	systems	and	devices.	This	really	offer
great	convenience	for	users,	however,	conflicts,	lack	of	hardware	and	many	other	issues
emerge.	So	how	Mopidy	cope	with	incompatible	problems	is	a	critical	point	for	Mopidy
development.	Luckily,	so	far,	these	variabilities	are	solved	during	Build	Time.

Build	Time

A	feature	during	Build	Time	means	it	can	be	regarded	as	a	static	binding.	This	is	because	it
occurs	before	run	time	and	remains	unchange	throughout	program	execution.	Examples	of
this	are	OS	and	frontends	for	Mopidy.	An	operating	system	should	be	determined	before
installing	Mopidy,	and	can	never	be	changed	during	the	run	time	unless	you	use	it	on
another	device	or	install	Mopidy	again.	It	is	similar	to	frontends.	Compared	to	OS,	you	have
more	options	of	frontends	and	it	is	more	flexible	because	it	is	unecessary	to	uninstall	Mopidy
if	you	want	an	alternative	frontend.	The	only	thing	you	need	to	do	is	adding	some
configuration	in	the	configuration	file	of	Mopidy	like	the	code	fragment1.	But	it	have	to	be
noticed	that	this	feature	can	only	be	initialised	during	build	time.

[http]

enbaled=true

hostname	=	127.0.0.1

port	=	6680

static_dir	=

zeroconf	=	Mopidy	HTTP	server	on	$hostname

Code	fragment	1:	Shows	the	variable	features	during	build	time.

It	can	be	seen	that	http/enabled	decides	if	HTTP	extension	be	used	or	not.	And	the
hostname	listens	on	IPv4/IPv6	loopback	interfaces.	And	http/port	shows	which	TCP	port	the
HTTP	server	should	listen	to.	The	developers	of	Mopidy	deprecated	http/static__	_dir	and
said	this	will	be	removed	in	a	future	version	of	Mopidy.	For	the	last	item,	http/zeroconf,
means	the	name	of	the	HTTP	service	when	published	through	Zeroconf.	The	variabiles
$hostname	and	$port	can	be	used	in	the	name.

Mopidy

242

Similar	to	frontends,	Mopidy	also	provides	multi	functions.	Through	modifying	configurations
in	configuration	file	of	Mopidy,	user	can	combine	different	functions	and	get	a	'Unique
Mopidy'.	And	users	can	also	set	different	configurations	in	logging	file	to	select	partial
logging	information.	All	above	mentioned	features	only	work	after	restarting	Mopidy.	So	we
define	these	as	build	time	variabilities.

It	is	interesting	that	the	relationship	of	cost	and	the	variability	is	like,	a	trade	off.	Developing
the	simplest	system	probably	costs	less	at	start	because	the	system	is	simpler	and	quicker
to	deliver,	but	each	later	change	is	likely	to	cost	more	because	developers	have	no	existing
mechanism	for	implementing	the	change.	How	to	balance	the	cost	and	variable	features	is
obviously	the	most	important	issue	which	need	to	be	concerned	about	during	the
development	of	Mopidy.

Evolution	History

The	evolution	history	of	the	variability	mechanism	and	configurable	features	is	summarized
based	on	the	changelog	provided	by	the	Mopify	document.	The	version	history	of	Mopidy	is
showed	in	the	following	picture.[1]

Mopidy	version	history

Pull	requests	and	issues	show	a	power	influence	when	deal	with	the	variability	of	the	Mopidy
project.	For	example,	in	issue	#1409	and	pull	request	#1442,	a	bug	was	caused	by	the	fixed
buffer	size	and	now	the	buffer	size	is	configurable.	Another	example	is,	in	pull	request	#901,
the	compatibility	issues	of	Python	3	were	almost	fixed,	users	now	can	build	Mopidy	by
Python	3	instead	of	the	old	version.	This	is	also	a	response	to	issue	#779.

Mopidy

243

https://github.com/mopidy/mopidy/issues/1409
https://github.com/mopidy/mopidy/pull/1442
https://github.com/mopidy/mopidy/pull/901
https://github.com/mopidy/mopidy/issues/779

Usability	Perspective
The	usability	perspective	mainly	focus	on	the	end	users	of	the	system	and	any	others	who
interact	with	the	system	directly	or	indirectly	[2].	The	usability	cannot	be	ignored	for	the
implementation	and	development	of	a	system.	It	significantly	affects	the	usage	experience	of
the	users	and	other	interactors.	In	Mopidy,	the	users,	maintainers	and	suppliers	are	relevant
to	the	usability.	Taken	these	stakeholders	into	consideration,	the	usability	of	Mopidy	is
analyzed	in	this	part	for	the	sake	of	efficiency	of	the	interactions.

The	first	step	for	the	usability	perspective	is	to	identify	touch	points.	Touch	points	are	the
places	for	people	to	interact	with	the	system.	Mopidy	is	a	server	to	connect	multiple
backends	and	the	frontend.	So	users	interact	with	Mopidy	only	through	the	terminal	in	OS	X
or	Linux	as	FigureThe	Interface	of	Mopidy	shown.

The	users	can	operate	Mopidy	in	the	terminal	by	many	commands	to	achieve	install,	start,
stop	the	system	and	etc.	They	can	also	change	the	config	values	directly	in	the	configuration
file	named	mopidy.conf	to	set	up	Mopidy	like	hostname	and	other	parameters	of	each
modules.	And	users	can	run	mopidy	or	run	Mopidy	as	a	service.

Mopidy	is	an	internal	system,	which	is	tightly	to	be	controlled	and	managed.	It	can	only	be
operated	through	commands	on	the	terminal.	So	the	users	should	know	how	to	operate	the
OS	(Operating	System)	in	the	terminal.	It	is	not	easy	for	the	majority	of	people	because
people	are	accustomed	to	use	graphical	user	interface	like	Windows.	This	will	have	a
significantly	negative	impact	on	the	usability	of	Mopidy.

Conclusion
Mopidy	is	a	server	to	allow	you	to	play	music	from	local	disk,	Spotify,	SoundCloud	and	other
sources.	This	project	started	at	2010	and	the	development	of	Mopidy	is	completely	based	on
GitHub.	With	more	and	more	people	contribute	to	Mopidy,	now	it	has	evolved	to	the	version
v2.0.0.	Although	the	active	evolution	makes	Mopidy	increasingly	powerful,	it	is	still	far	from
completion.	A	lot	of	functions	which	are	originally	intended	to	be	added	in	are	still	empty.	And
also,	the	compatibility	becomes	a	severe	problem.	Deprecated	APIs	cannot	be	removed	due
to	the	extensions	which	are	still	using	them.	All	these	problems	give	us	opportunities	and
challenges	to	provide	our	contribution	to	Mopidy.

References
1.	 Stein	Magnus	Jodal,	Johannes	Knutsen,	Thomas	Adamcik.	Mopidy	documentation

Mopidy

244

https://docs.mopidy.com/en/latest/installation/
https://docs.mopidy.com/en/latest/config/
https://docs.mopidy.com/en/latest/running/
https://docs.mopidy.com/en/latest/service/
https://www.mopidy.com/

2.	 Nick	Rozanski,	Eoin	Woods.	Software	Systems	Architecture

3.	 Sven	Apel,	Don	Batory,	Christian	Kästner,	Gunter	Saake.	Feature-Oriented	Software
Product	Lines

4.	 D.	Sculley,	G.	Holt,	D.	Golovin,	E.	Davydov,	T.	Phillips,	D.	Ebner,	V.	Chaudhary,	M.
Young,	and	J.-F.	Crespo.	"Hidden	technical	debt	in	machine	learning	systems".	In
Neural	Information	Processing	Systems	(NIPS).	2015.

Mopidy

245

http://www.viewpoints-and-perspectives.info/
http://link.springer.com/book/10.1007/978-3-642-37521-7

Neo4j	-	A	Graph	Database

Kangliang	Chen,	Manoj	Krishnaraj,	and	Tom	Peeters

Delft	University	of	Technology

Abstract

This	chapter	gives	a	brief	overview	of	Neo4j's	architecture	by	focusing	on	three	fundamental
concepts:	stakeholders,	viewpoints,	and	perspectives	as	defined	in	the	book	by	Rozanski
and	Woods[1].	The	stakeholder	analysis	section	details	the	types	of	influencer's	who	have
an	impact	the	Neo4j's	architecture.	The	context	view	explains	the	interactions	between
Neo4j	and	its	environment;	the	development	view	and	deployment	views	describe	the
software	development	process	and	the	runtime	environment	respectively.	Following	this,	the
evolution,	variability,	performance	&	scaling	perspectives	of	Neo4j	are	analyzed.	Through
these	multiple	viewpoints	and	perspectives,	the	software	architecture	of	Neo4j	can	be	easily
discerned.

Table	of	Contents
Introduction
Stakeholder	analysis
Context	View
Development	View
Deployment	View
Evolution	Perspective
Variability	Perspective
Performance	and	Scalability	Perspective
Conclusion
Bibliography

Introduction

Neo4j

246

http://neo4j.com
https://github.com/kangliangc
https://github.com/manojpkr
https://github.com/tompeeters368
http://tudelft.nl

In	the	early	2000s	the	scalability	of	relational	databases	hit	a	ceiling,	further	increases	in
performance	became	difficult.	These	performance	problems	led	to	the	conceptualization	of
graph	database	by	its	creator,	Emil	Eifrem,	on	an	airplane	flight.	As	in	a	graph	structure,
graph	databases	use	nodes	and	edges	to	represent	and	store	data.	Semantic	queries	can
be	easily	performed	as	the	data	stored	in	the	nodes	are	interconnected	with	related	nodes
via	edges.	Neo4j	is	based	on	the	above	principles	of	a	graph	database.	Neo4j	is	named	after
the	Latin	word	for	new	(neo)	and	is	partly	inspired	by	the	character,	Neo,	in	the	movie	Matrix.
The	first	version	of	graph	database	was	deployed	in	2003	and	its	source	was	made	public	in
2007.	The	important	milestones	in	Neo4j's	history	are	depicted	in	Figure	1.

Figure	1:	Timeline	of	important	events	in	Neo4j's	history

Neo4j	is	an	open	source,	NoSQL	graph	management	system	written	using	Java	and	Scala.
Neo	Technologies	sponsors	and	oversees	the	development	of	Neo4j	and	has	a	huge
influence	on	its	development	roadmap.	Neo4j	is	one	of	the	very	few	ACID	compliance
NoSQL	databases	as	it	uses	a	proprietary,	labeled	property	graph	data	model	to	represent
and	store	data	both	in	memory	and	at	the	storage	level.

Some	use	cases	for	Neo4j	include	fraud	detection,	analytics,	social	networks,
recommendations,	scientific	research,	and	routing.	Since	being	made	open	source	in	2007,
the	popularity	of	Neo4j	has	increased	steadily	and	has	been	downloaded	more	than	a	million
times.	Well	written	guides,	video	tutorials,	and	online	documentation	makes	it	easy	for	new
developers	to	adopt	Neo4j.	The	following	sections	in	this	chapter	will	give	insights	into
Neo4j's	architecture	and	will	help	in	the	transition	from	a	user	to	a	contributor.

Stakeholder	Analysis
"A	stakeholder	is	a	person,	group,	or	entity	with	an	interest	in	or	concerns	about	the
realization	of	the	software	architecture	of	a	system.[1]"	This	section	indentifies	the	important
stakeholders	who	have	a	profound	impact	on	the	development	of	Neo4j	followed	by	an
analysis	of	their	associated	levels	of	power	and	interest.

Neo4j

247

https://neo.com

The	main	stakeholder	is	Neo	Technology,	Inc.	The	organization	and	its	employees
exclusively	fulfill	the	roles	of	four	of	the	eleven	classes	of	stakeholders	defined	by	Rozanski
and	Woods[1]:-	Assessors,	Acquirers,	Communicators,	and	Maintainers.	The	most
important	decisions	including	architectural	design,	roadmap,	releases	are	authoritatively
taken	by	the	leadership	team	of	Neo	Technology,	Inc.	spearheaded	by	its	CEO,	Emil	Eifrem.
The	other	stakeholders	applicable	to	Neo4j	are	listed	in	Table	1	and	Figure	2

Stakeholder Description

Developers
and	Testers

Most	of	the	developers	and	testers	are	the	employees	of	Neo4j.
Employees	of	major	customers	including	Google,	ThoughtWorks,
GraphAware	are	among	the	top	contributors	and	focus	on	contributing
to	specific	features	to	fulfill	their	requirements.	The	individual	users	are
more	adept	at	raising	concerns	and	fixing	minor	bugs.

Suppliers

Though	Neo4j	supplies	the	software	packages	for	deployment	as
downloads,	other	suppliers	provide	the	whole	infrastructure	as	a
service.	GrapheneDB	specializes	in	the	delivery	of	managed
deployments	of	Neo4j	suitable	for	most	end	users.	IaaS	providers	like
Heroku,	Microsoft	Azure	supply	solutions	tailored	to	meet	large	scale
deployments	of	Neo4j

OEM
Partners

OEM	partners	specialize	in	design,	optimization	and	delivery	of	both	the
hardware	and	software	together.	The	solutions	provided	by	the	OEM
Partners	offer	the	best	performance.

Support
Neo	Technology's	customer	support	portal	provides	support	for	licensed
customers.	Free	support	is	extended	to	all	via	Stackoverflow	and
Google	group

Users
The	users	are	anyone	who	uses	the	graph	functionality	of	Neo4j.	The
broad	spectrum	of	users	includes	individual	software	developers,
students,	educational	institutions,	government	organizations,	and
enterprises	including	Linkedin,	Walmart,	eBay,	and	Cisco.

Table	1:	Other	stakeholders	of	Neo4j.

Neo4j

248

http://neo.com
http://neo4j.com/staff/
https://twitter.com/emileifrem
https://support.neo4j.com/access/
http://stackoverflow.com/questions/tagged/neo4j
https://groups.google.com/forum/#!forum/neo4j

Figure	2:	Stakeholders	for	Neo4j

The	power	interest	graph	depicted	in	Figure	3	gives	a	visualization	of	the	measure	of	the
power	that	a	stakeholder	wields	in	the	system	compared	to	their	interest.	The	bottom-left
quadrant	has	the	least	power	and	interest	where	as	the	top-right	quadrant	has	the	most.	The
remaining	quadrant	on	top-left	and	bottom-right	bias	towards	more	power	and	interest
respectively.

As	the	major	stakeholder,	Neo	Technology,	Inc.	has	the	most	power	and	interest.	Though	the
OEM	Partners	and	the	Suppliers	have	slightly	lesser	interest	and	power,	they	are	still	placed
in	top-right	quadrant	along	with	Neo4j.	The	enterprise	customers	are	vital	for	the	success	of
Neo4j	and	have	high	power	with	relatively	low	interest	and	are	placed	in	the	top-left
quadrant.

The	end	users	of	the	system	and	DevOp	specialists	have	considerably	low	power	and
interest	and	are	placed	in	the	bottom-left	quadrant.	The	bottom-right	quadrant	consists	of
occasional	contributors	from	the	community,	regular	contributors	with	relatively	more	power
than	the	occasional	contributors	and	the	competitors.	Though	the	competitors	wield	no
power,	their	interest	is	very	high	as	they	do	regular	market	and	competitor	analysis	to	keep
in	line	with	Neo4j's	new	features.

Neo4j

249

Figure	3:	Power/Interest	grid	for	Neo4j

Context	View
The	context	view	describes	the	relationships,	dependencies,	and	interactions	between	the
system	and	its	environment.	To	this	end,	this	section	will	determine	the	scope	of	Neo4j,
analyze	the	external	entities	and	services	that	interact	with	it	and	finally	visualize	the
relationships	uncovered.

System	Scope
Databases	are	used	by	virtually	every	company	to	securely	store	information	in	a	scalable
manner.	As	databases	are	set	up	entirely	by	the	users	according	to	their	own	needs	a
database	must	be	able	to	fulfil	many	different	functions.
In	order	to	be	competitive	to	widely-used	existing	databases,	such	as	MySQL,	Neo4j	must
be	able	to	meet	their	standards.	However,	Neo4j	must	also	provide	something	that	other
databases	do	not.	Neo4j	does	this	by	utilizing	its	graph	database	structure	in	order	to	model
relationships	and	store	inconsistent	data	types	in	far	more	effective	manners.

Neo4j

250

Thus,	the	scope	of	Neo4j	is	to	provide	unique	capabilities	and	performance	in	regards	to
relationship	modelling	and	inconsistent	data	type	handling,	as	well	as	providing	all
functionalities	already	present	in	existing	databases.

External	entities	and	interfaces
Neo4j	is	a	fast	growing	database	software	with	a	dedicated	company,	Neo4j	Technologies,
sponsoring	its	development.	As	can	only	be	expected,	there	are	many	external	libraries	and
systems	in	use	to	assist	in	the	development	and	a	great	deal	of	interest	from	third	parties.
Additionally,	Neo4j	has	many	challenges	it	must	live	up	to	as	it	needs	to	support	a	multitude
of	operating	systems	and	greatly	varying	requirements.	Below,	we	detail	these	relationships
and	visualize	them	in	Figure	4.

Written	in	Java	and	Scala	using	Eclipse	and	IntelliJ

Built	using	Maven	and	continuous	delivery	using	TeamCity

GitHub	is	the	platform	used	for	hosting	and	maintaining	the	source	code	as	well	as	the
tracking	of	issues

Supports	distributions	for	Windows,	Linux	&	OS	X

Technical	help	for	Neo4j	use	is	supplied	on	StackOverflow,	but	developers	can	also	be
reached	on	Slack	or	even	Twitter

Neo4j	has	support	for	drivers	in	various	programming	languages	including	Java,
JavaScript,	Ruby,	Python	and	.NET

Dependence	on	libraries	such	as	JUnit,	Mockito,	Jetty	and	Guava,	AngularJS,	Grunt,
Bower,	D3.js

Competes	with	MongoDB,	OrientDB,	Titan,	Oracle	and	more

Dual	licences-	commercial	license	for	enterprises	and	open	sourced	with	AGPL3

Used	by	small,	and	large	organizations	including	Cisco,	Walmart,	National	Geographic
and	more.

Partnered	with	providers	like	Heroku,	Microsoft	Azure,	GrapheneDB,	ActiveState	to
provide	customized	solutions

Neo4j

251

Figure	4:	Visualization	of	Neo4j's	Context	View

Development	View
The	development	view	of	a	system	describes	the	architecture	that	supports	the	software
development	process.	The	following	section	address	the	concerns	of	a	developer	like
module	organization,	common	processes,	standardization	of	design	and	testing,	and
codeline	organization.	Finally	the	technical	debt	of	Neo4j	is	discussed.

Module	organization
The	module	structure	model	deals	with	the	organization	of	system's	source	code	in	terms	of
modules[1].	The	components	of	the	two	distributions	of	Neo4j-	community,	and	enterprise
are	organized	in	distict	folders.	Logically,	the	enterprise	edition	encapsulates	all	the	modules
in	community	edition	in	addtion	to	a	few	extra	components.	This	section	focusses	on
structure	and	organization	of	the	code	for	community	edition	of	Neo4j	in	three	abstract	layers
as	shown	in	Figure	5.

The	different	components	of	Neo4j	community	edition	can	be	organized	three	logical	layers
as	seen	in	Figure	5	in	distinct	layers

Neo4j

252

Figure	5:	Module	organization	of	community	edition

1.	 Access	layer	-	Provides	external	interfaces	to	the	database	system	including	cypher
query	language,	bolt	protocol,	shell	and	graphical	visualization.

2.	 Intermediate	layer	-	core	functionalities	of	the	graph	system	including	server	APIs,
graph	engine,	graphing	algorithms,	data	collector,	lucene	index.

3.	 Core	layer	-	made	of	internal	components	that	are	not	accessable	outside	the	system.
Kernel	forms	the	core	of	the	Neo4j	platform	priving	access	to	storage	and	memeory.
This	layer	consists	of	components	like	io,	csv,	function	primitives,	and	unsafe	memory
access.

Common	Processing
Neo4j	is	highly	modulazired	with	minimal	code	duplication.	Some	common	modules	that
reduce	the	code	duplication	include		csv	,		io	,		collections	,	and	finally		common	.	The
	common		foler	contains	most	of	the	reused	code	and	greatly	helps	in	code	maintainance.

Standardization	of	design
Being	an	opensource	project,	Neo4j	has	a	set	of	strict	guidelines	for	making	contributions.

The	contributor	must	sign	CLA.
Use	Eclipse	or	IntelliJ	for	development
Standardized	templates	are	available	for	raising	issues	in	GitHub.
The	code	should	strictly	adhere	to	style	checks	defined	and	available	for	Eclispe	or
IntelliJ	IDEs.
The	commits	must	be	squashed	down	and	rebased	without	any	merges.

Neo4j

253

http://neo4j.com/developer/cla/

Documentation	should	be	updated	for	any	code	changes.

Standardization	of	testing
The	maven	build	process	automatically	triggers	and	executes	all	tests	defined	in	Neo4j's
source	code.	Code	contributions	are	allowed	to	be	merged	only	if	the	tests	succeed.	Tests
are	written	using	Junit	and	mockito.	Continuous	integration	is	achieved	by	using	TeamCity.
Following	guidelines	must	be	adhered	for	a	Pull	request	to	be	successfully	merged:

All	tests	must	succeed.
Code	coverage	computed	by	cobertura	is	within	acceptable	limit.
TeamCity	integration	tests	succeed	and	no	issues	are	raised	by	CI	process.

Codeline	Organization
Codeline	model	defines	the	overall	structure	of	the	codeline	and	ensures	that	order	is
maintained	in	the	organization	of	the	system's	code[1].	The	source	code	of	both	the	editions
are	maintained	in	the	same	github	repository.	In	Figure	6,	the	top	level	folders	are	displayed
in	swim	lanes	along	with	their	components	in	respective	lanes.

The	important	folders	at	the	root	of	the	Neo4j	repository	are		community	,		enterprise	,
	manual	,		packaging	,	and		tools	.		manual		contains	documentation	of	Neo4j	in	AsciiDoc
format.	It	can	also	extract	documentation	from	source	code.		packaging		contains	the	various
utilities	for	packaging	and	distribution	of	the	Neo4j	releases	for	different	operating	systems.
Each	component	inside	the	community	or	enterprise	folder	has	a	maven		pom.xml		file	in
addition	to		src		folder	consisting	of	Java	or	Scala	source	code	in		main	,	along	with		tests	,
and		docs	.

Figure	6:	Swimlane	view	of	important	directories	of	Neo4j

The	main	components	of	the	Neo4j	distribution	are	listed	in	table	2.

Neo4j

254

Directory Description

cypher Cypher	execution	engine	to	support	cypher	query	language

graph-
matching Graph	pattern	matching	APIs

graphviz Visualization	of	graph	data.

kernel Core	of	Neo4j	that	contains	the	storage	system,	embeded	API,	traversal
API,	batch	processing,	configuration,	locking	and	other	utilities.

shell Provides	a	command	line	interface	to	Neo4j

backup Create	backup	of	Neo4j	database	over	the	network

ha Enables	fault-tolerant	database	architecture	and	supports	replicas	as
slaves.

metrics Modules	to	expose	and	report	Neo4j	metrics

Table	2.	Important	components	of	the	Neo4j

Technical	Debt
Technical	debt	describes	the	occurrence	of	using	quick	and	cheap	methods	of	fixing	bugs	or
implementing	features,	methods	which	are	typically	not	thought	through	well.	In	essence,	the
problem	with	performing	such	actions	lies	in	the	manner	in	which	they	make	future	work
more	difficult.	This	is	because	this	manner	of	work	typically	does	not	follow	the	existing
architecture	or	system	design,	making	it	more	difficult	to	oversee	the	functionality	of	the
system	as	a	whole	and	create	future	changes.

Analysis	of	Neo4j's	technical	debt	yields	very	good	metrics;	only	0.5%	of	classes	have	flaws
in	them.	Interestingly,	the	two	classes	with	the	highest	cumulative	class	flaws	are	both	test
classes,	namely		PageCacheTest		and		NeoStoresTest	.	The	largest	package	in	Neo4j	kernel,
	impl		package	has	likely	gotten	too	convoluted	over	time	and	many	problems	occur	within
it.

Technical	debt	is	typically	differentiated	using	'Reckless'	vs	'Prudent'	and	'Deliberate'	vs
'Inadvertent',	forming	a	total	of	4	quadrants	together.	Neo4j	contains	relatively	few	flaws,
leading	us	to	categorize	Neo4j	as	'Prudent'.	Additionally,	the	area	that	is	most	flawed
appears	to	be	the	a	part	of	the	core	functionality.	This	is	likely	a	result	of	many	years	of
development	despite	best	attempts	to	avoid	it,	leading	us	to	also	categorize	Neo4j	as
'Inadvertent'.

Neo4j

255

Figure	7:	Technical	debt	quadrant

Deployment	View
Database	systems	are	a	thing	which	every	modern	company	requires.	This	makes	it	all	the
more	important	that	database	software	is	simple	to	deploy	and	does	not	impose	too	many
constraints	on	its	users.	Neo4j	works	towards	this	from	the	very	beginning	by	utilizing	Java
and	Scala,	which	can	run	on	any	Operating	System,	allowing	users	to	choose	the	Operating
System	which	they	are	most	comfortable	working	with.	Additionally,	the	hardware
requirements	are	very	lenient,	being	able	to	work	with	as	little	as	2	GB	of	RAM	and	10	GB	of
disk	space.	In	this	section,	we	will	look	further,	however,	and	analyze	third-party	software
requirements	as	well	as	network	requirements	which	Neo4j	needs	to	function.

Third-Party	Software	Constraints

The	installation	of	Neo4j	requires	no	third	party	software	other	than	Java	runtime	7	or	8
(preferred).	However,	there	are	several	third-party	programs	which	Neo4j	natively	supports
and	that	a	user	may	want	to	install.	Below,	these	programs	are	highlighted.

Neo4j

256

It	is	recommended	to	install	software	that	can	visualize	the	graph	database.	Neo4j
recommends	the	use	of	commercial	product	Linkurious.	However,	open-source	software
Gephi	is	frequently	used	for	this	as	well.
Though	it	is	possible	to	interface	to	a	Neo4j	server	using	the	Neo4j	Shell,	the
recommended	method	is	to	use	an	internet	browser	such	as	Google	Chrome,	which
allows	it	to	use	the	D3.js	library	to	visualize	data	to	the	user.
Neo4j	supports	the	use	of	Docker,	a	program	that	can	wrap	another	piece	of	software	in
a	complete	filesystem.	Using	Docker	it	becomes	simpler	to	get	Neo4j	servers	running
on	multiple	systems,	as	it	can	store	the	image	of	the	software	and	install	it	on	another
computer	with	no	further	hassle.	The	software	on	both	systems	will	be	identical.

Network	Requirements

Neo4j	itself	uses	native	messaging	and	does	not	have	any	specific	requirements	other	than
interfacing	with	it	using	Neo4j	Shell	or	an	internet	browser.	However,	the	High	Availability
module,	which	is	responsible	for	database	replication	in	a	master-slave	configuration,	does
impose	certain	network	capacity	requirements.	As	this	module	is	responsible	for	ensuring
identical	data	across	several	Neo4j	servers,	this	synchronization	can	put	strain	on	a	network.
However,	Neo4j	has	numerous	settings	to	manage	the	functionality	of	the	High	Availability
module.	For	example,	the		ha.pull_interval		setting	determines	how	frequently	slaves	pull
updates	from	the	master.	Because	this	module	can	be	fully	configured	as	per	the	needs	of
the	user	this	module	has	no	exact	network	requirements,	but	should	be	taken	into
consideration	when	designing	and	running	your	database.

Evolution	Perspective
In	order	to	study	the	evolution	of	Neo4j's	configuration	and	variability[1],	we	analyzed
changelogs	and	release	notes	available	at	Neo4j's	GitHub	wiki.	Neo4j's	evolution	history	in
regards	to	configuration	and	variability	has	been	fairly	minimal,	with	the	only	major	changes
actually	being	in	recent	history.	The	following	section	details	the	changes	to	configurations	in
the	most	recent	releases	of		2.2		and		2.3	,	and		3.0	.	For	the	purpose	of	keeping	the	lists
clean	and	concise,	bug	fixes	related	to	settings	are	not	included.

Evolution	in	version	2.2

Query	log	file	rotation	was	added	using	the		dbms.querylog.rotation.threshold		option
(this	is	the	option	mentioned	earlier	in	the	feature	identification).
	dbms.querylog.filename		was	changed	to	specify	a	filename	rather	than	a	directory,	as
would	be	expected	from	the	name.	Additionally,	the	default	value	was	changed	to

Neo4j

257

http://linkurio.us
https://gephi.org/
https://www.google.com/chrome/
https://www.docker.com
https://github.com/neo4j/neo4j/wiki/Changelog

	null	,	meaning	the	query	logger	is	disabled	by	default.
	logical_log_rotation_threshold		default	value	was	changed	from	1MB	to	250MB.
	mapped_memory_total_size		was	renamed	to		dbms.pagecache.memory	.

Evolution	in	version	2.3

The	default	setting	of		dbms.pagecache.memory		was	changed	from	75%	to	50%	of	free
system	memory
As	a	result	of	the	Object	cache	being	removed	the	following	settings	were	removed:
	cache_type	,		node_cache_size	,		relationship_cache_size	,		node_cache_array_fraction	,
	relationship_cache_array_fraction	,		cache.memory_ratio	,
	high_performance_cache_min_log_interval	

Evolution	in	version	3.0

In	the	latest	release,	version		3.0.0-M04	,	a	change	was	made	to	the	way	in	which	the
configuration	was	loaded.	The	old	functionality	had	two	configuration	files,
	neo4j.properties	,	and		neo4j-server.properties	.	However,	as	the	difference	between
these	was	sometimes	vague,	as	well	as	the	two	separate	files	being	rather	clumsy,	it	was
merged	into	the	singular		neo4j.conf		that	was	mentioned	last	section.
In	the	process	of	this	update,	a	number	of	system	properties	which	Neo4j	used	to	find	the
configuration	file(s)	were	changed,	as	well	as	the	developers	taking	the	liberty	to	remove
various	deprecated	configuration	settings	from	older	versions	(primarily	version		2.2).
Furthermore,	the	following	changes	occurred:

The	cypher	pre-parsing	query	planner	option		greedy		was	removed
The	cypher	pre-parsing	update	strategy	option		eager		was	added.
The	setting		org.neo4j.server.database.location		was	removed.
The	setting		dbms.active_database		was	added,	more	or	less	a	relocation	of	the	former
setting.
The	setting		dbms.directories.data		was	added,	to	specify	where	the	database	stores	its
data.

To	conclude,	while	there	are	certainly	changes	in	the	configuration	options	of	each	Neo4j
version,	considering	the	release	timeline	there	is	a	fairly	minimal	amount.	This	can	most
likely	be	attributed	to	a	large	part	that	Neo4j's	development	focuses	on	improving
performance	and	adding	new	features	(which	do	not	require	many,	if	any,	new	settings).
There	is	a	fairly	small	amount	of	deprecated	settings	as	most	modules	that	have	been	added
over	the	duration	of	Neo4j's	development	time	have	not	been	removed	or	replaced,	which
can	be	attributed	to	Neo4j	having	a	clear	and	detailed	design	architecture	which	the
developers	follow	closely.

Neo4j

258

Variability	Perspective
The	variability	of	a	system	is	an	important	characteristic	of	any	system.	Through
customization	of	the	settings	a	system	can	be	made	easier	to	work	with	for	users,
performance	of	the	system	can	be	increased	and	unused	or	unwanted	modules	can	be
disabled.	In	short,	by	providing	a	great	deal	of	customization	options	a	product	can	gain	a
competitive	advantage	over	similar	products.

Neo4j,	being	a	database	system,	has	a	particularly	high	need	for	variability.	It	serves	as	a
framework	for	users	of	Neo4j	to	store	all	data	they	deem	important	and	can	have	many
different	use	cases.	For	example,	a	bank	requires	their	database	to	have	features	and
options	to	tighten	security	and	confidentiality	as	much	as	possible,	where	as	a	cloud-service
requires	fast	responses	and	high	availability.

These	demands	can	be	met	using	variability,	which	is	especially	ideal	as	making	all	such
features	compulsory	would	mean	overburdening	users	that	have	no	need	for	such	advanced
features.	In	this	chapter	we	identify	and	analyze	the	work	that	Neo	Technologies	has	put
toward	variability	based	on	the	work	done	by	Apel	et.	al	in	their	book	Feature-Oriented
Software	Product	Lines[2].	We	analyze	the	ways	in	which	Neo4j	can	be	customized	by	its
users,	as	well	as	the	way	in	which	these	customizations	were	implemented	by	the
developers.

Feature	Identification

In	this	section	we	identify	a	number	of	the	configuration	options	(features)	available	in	Neo4j.
In	total	there	are	roughly	a	hundred	options,	ranging	from	basic	settings	such	as	specifying
the	location	of	the	database	directory,	to	more	advanced	optimization	options	such	as	buffer
and	cache	sizes.	Settings	are	either	general	settings	or	module-specific	settings.	This
section	gives	a	number	of	examples	of	both	general	settings	and	for	a	specific	module,	in
this	case,	Cypher	was	chosen.

General	settings

A	number	of	the	settings	available	in	Neo4j	do	not	belong	under	any	specific	module,	but	are
still	significant	settings	which	are	important	to	mention.	Below	a	number	of	these	are
highlighted.

Allow	File	URLs	-	A	server	setting	that	determines	whether	the	Cypher	API	will	accept
file	URLs	when	loading	data	using		LOAD	CSV	.
Read	Only	-	This	setting	determines	whether	users	are	allowed	to	write	new	data	or
update	existing	data	to	the	Neo4j	server	or	not.	This	is	a	useful	method	for	developers
to	protect	their	data	from	users	if	the	users	have	direct	access	to	the	server.

Neo4j

259

Index	Sampling	Update	Percentage	-	Determines	the	percentage	of	indexes	need	to
be	updated	before	sampling	of	an	index	is	triggered.
Internal	Store	Log	Level	-	Sets	the	verbosity	level	of	the	log.	Can	be	set	to	e.g.
	DEBUG	,		INFO	,		NONE		and	more.

Cypher	settings

Cypher	Query	Language	(CQL)	is	Neo4j's	custom	made	query	language,	similar	in	nature	to
the	more	well	known	SQL.	There	are	a	number	of	settings	specifying	how	cypher	queries
are	processed	and	handled,	expanded	upon	below.

Cypher	Parser	Version	-	Sets	the	language	version	to	use	of	the	Cypher	parser.	Must
be	either		2.3		or		default	.
Cypher	Planner	-	Sets	the	default	query	planner	to	use	which	determines	how	to
execute	and	optimize	the	query	given	to	Neo4j.	Should	be	either		COST		or		RULE	.
Cypher	Min	Replan	Interval	-	Determines	the	minimum	time	before	Neo4j	will	start
considering	to	re-plan	a	query	currently	in	execution.	This	is	typically	done	because	the
initial	plan	was	poorly	constructed	and	would	take	longer	than	re-planning	a	more
efficient	plan.
Query	Cache	Size	-	Determines	the	maximum	number	of	Cypher	query	execution
plans	that	the	server	keeps	in	cache.

Feature	Relationships
The	majority	of	features	in	Neo4j	possess	no	dependency	and	have	no	conflicts	with	each
other	besides	the	need	to	turn	their	respective	module	on.	For	example,	for	the	'Query	log
threshold'	setting	to	have	any	impact,	'Query	logging'	itself	must	be	turned	on.

Furthermore,	though	many	settings	are	mandatory	(i.e.	the	system	always	uses	them),	every
setting	has	a	default	value.	Most	of	the	time	this	default	value	need	not	be	changed.	In	fact,
in	case	of	the	'High	Availability'	module	it	is	recommended	that	you	do	not	change	anything.
As	such,	despite	there	being	a	great	deal	of	settings	the	amount	being	requested	of	the	user
is	very	minimal.

Figure	8	displays	the	relationship	between	a	large	number	of	features	present	in	Neo4j.
Unfortunately,	there	are	too	many	to	display	all	within	a	single	figure.

Neo4j

260

Figure	8:	Feature	relationships	in	Neo4j	based	on	[3]

Feature	Binding	Time	and	Variability	Strategy

All	Neo4j	configuration	options	have	a	binding	time	of	startup-time.	The	reason	behind	this
decision	is	most	likely	a	result	of	the	manner	in	which	databases	are	typically	used,	namely
as	long-running	programs,	often	being	active	for	days,	weeks	or	even	months	at	a	time
without	pause.	During	this	time	there	is	generally	no	need	to	change	settings,	hence	the
ability	to	do	so	was	not	considered	important.

The	strategy	for	implementing	these	settings	was	to	use	a	single	configuration	file.	All
settings	can	be	defined	in	a		neo4j.conf		file	which	is	located	within	the	base	directory	of	a
database.	This	configuration	file	is	read	upon	start-up	of	the	Neo4j	server	and	the	settings

Neo4j

261

are	then	stored	within	the	program	itself	as	a	global	object	for	quick	access	by	the	program.
As	such,	making	modifications	to	this	file	after	start-up	will	not	affect	the	server	until	Neo4j
has	been	restarted.

The	configuration	file	has	a	simple	structure,	in	which	settings	are	assigned	values	with
simple		=		statements	and	comments	can	be	placed	using		#	.	For	example,	below	is	what	a
possible	configuration	file	might	look	like:

#	Enable	shell	server	so	that	remote	clients	can	connect	via	Neo4j	shell.

remote_shell_enabled=true

#	The	network	interface	IP	the	shell	will	listen	on	(use	0.0.0.0	for	all	interfaces).

remote_shell_host=127.0.0.1

#	The	port	the	shell	will	listen	on,	default	is	1337.

remote_shell_port=1337

By	default	the	properties	file	is	empty,	meaning	that	each	setting	uses	its	default	value.	By
giving	each	setting	a	default	value	Neo4j	becomes	easier	to	use,	as	less	specific	information
is	requested	from	newly	starting	users.	The	default	values	that	are	used	for	each	setting	can
be	found	in	the	Neo4j	documentation,	which	also	features	a	description	of	each	setting	and
the	possible	input	values	(e.g.	value	ranges/enumerator	values).

Performance	and	Scalability	Perspective
The	performance	and	scalability	is	very	crucial	to	a	database.	One	of	the	most	important
characteristic	to	evaluate	the	performance	of	a	database	is	the	query	time.	Due	to	the
tremendous	rate	of	growth	of	data	in	the	present	day,	it	becomes	more	difficult	for	traditional
database	to	provide	real-time	feedback.	Furthermore,	the	increase	in	data	means	that
databases	should	have	be	highly	scalable	to	fit	the	needs.	The	graph	database	that	was
created	and	implemented	by	Neo4j	has	achieved	that	goal	in	its	current	situation.	However,
will	Neo4j	still	meet	the	performance	criteria	if	the	workload	increases	even	further	in	the
future?	The	following	sections	focus	on	further	discussion	of	the	performance	and	scalability
of	Neo4j.	Since	these	two	points	are	essential	to	this	software,	we	want	to	spend	some	time
to	analyze	it	on	a	number	of	points.

Performance

There	are	two	major	characteristics	of	performance:

1.	 Response	time
2.	 Throughput

Neo4j

262

The	Neo4j	is	known	as	high	performance	when	managing	a	huge	amount	of	different	data.
Relational	database	search	all	of	the	data	looking	for	anything	that	meets	the	search	criteria.
The	larger	the	set	of	data,	the	longer	it	takes	to	find	matches,	because	the	database	has	to
examine	everything	in	the	collection.	However,	a	graph	database	only	examines	at	nodes
that	are	directly	connected	to	other	nodes.	If	a	limit	is	given	on	how	many	steps	it	is	allow	to
make,	it	can	ignore	everything	further	away	for	additional	performance	boosts.

Figure	9:	Visualization	of	Neo4j's	node	routing

Figure	9	depicts	how	nodes	are	connected	within	Neo4j.	Only	the	blue	nodes	are	searched
during	a	query.	Neo4j	knows	where	it	is	at	any	time,	and	has	no	need	to	start	over	from	the
beginning	or	backtrack.

Response	time

This	leads	to	the	difference	in	response	time	compared	to	relational	databases.	Graph
databases	have	a	much	better	performance	if	the	data	is	not	identical.	The	average
response	time	will	be	hundreds	times	faster	than	the	relational	database.	Conversely,	it	will
be	slower	if	the	data	is	identical.

Throughput

The	throughput	of	Neo4j	will	vary	considerable	depending	on	the	data	type.	If	the	data	is
unique	and	the	steps	limit	is	set,	the	performance	will	be	quite	similar.	However,	the
performance	will	be	heavily	influenced	if	the	numbers	of	connections	between	two	nodes
increases	drastically.

Neo4j

263

Scalability

Scalability	can	mean	different	things	to	different	people.	Common	points	are:

1.	 Redundancy	to	failure
2.	 Managing	increasing	read	load
3.	 Managing	increasing	data	size
4.	 Managing	increasing	write	load

Figure	10:	Visualization	of	Neo4j's	Cluster	system

Redundancy	to	failure

Neo4j	offers	a	scalability	package	which	includes:

Online	backups	when	the	cluster	is	running
Global	cluster	for	data	locality
Disaster	recovery	for	data	center	redundancy
Reporting	instances	for	ad-hoc	reporting

In	a	Neo4j	cluster,	the	full	graph	is	replicated	to	each	instance	in	the	cluster.	All	the	data	is
safe	as	long	as	one	instance	remains	available.	A	single	instance	of	Neo4j	can	house	at
most	34	billion	nodes,	34	billion	relationships,	and	68	billion	properties,	in	total.

Managing	increasing	read	load

Read	operations	can	be	done	locally	on	each	slave.	This	allows	the	read	capacity	to
increase	linearly	with	the	number	of	servers.

Managing	increasing	data	size

Neo4j

264

A	graph	database	can	find	the	neighbors	of	any	node	without	going	through	the	all
relationships.	Thus,	as	the	data	size	increases,	the	query	time	will	remain	a	constant.
Additionally,	if	the	steps	limit	is	set	properly,	the	query	time	is	likely	within	a	very	small	range.
However,	the	performance	will	be	influenced	depending	on	whether	the	data	is	unique	or
not.

Managing	increasing	write	load

Neo4j	has	a	single	master	to	coordinate	all	write	operations,	and	it	limits	the	write	throughput
of	a	single	machine.	However,	there	are	few	scenarios	dealing	with	high	write	load.
Furthermore,	a	queuing	solution	could	be	implemented	to	handle	this	situation.	A	steady
manageable	stream	of	write	operations	can	be	serviced	by	the	cluster.

Conclusion
This	chapter	summarized	Neo4j	in	architectural	opinions.	The	stakeholder	analysis	was
discussed	followed	by	different	views	and	perspectives.	In	the	stakeholder	analysis,	who
they	are	and	what	they	do	were	discussed.	After	that,	there	were	three	views	introduced	the
software	in	context,	development	and	deployment.	At	the	last,	there	were	three	perspectives
introduced	the	software	in	evolution,	variability,	performance	and	scalability.

Companies	and	organizations	after	reading	this	chapter	can	get	more	insght	to	the	software.
Companies	and	organizations	today	not	only	need	to	store	the	large	amount	data,	but	need
to	get	an	insight	from	the	existing	data	as	well.	In	order	to	use	the	data	relationships,
companies	and	organizations	need	a	database	to	store	relationships	as	well.

Neo4j	is	a	new	approach	to	cope	with	the	increasing	data.	Also,	graphs	are	the	most
efficient	and	natural	way	to	represent	relationships.	It	gives	higher	efficiency,	faster
response,	easier	maintenance	and	safer	operations	comparing	to	the	conventional
database.

Bibliography
[1]	-	Rozanski,	Nick,	and	Eóin	Woods.	Software	systems	architecture:	working	with
stakeholders	using	viewpoints	and	perspectives.	Addison-Wesley,	2012.

[2]	-	Apel,	Sven,	et	al.	"Feature-Oriented	Software	Product	Lines."

[3]	-	Thüm,	Thomas,	et	al.	"FeatureIDE:	An	extensible	framework	for	feature-oriented
software	development."	Science	of	Computer	Programming	79	(2014):	70-85.

Neo4j

265

[4]	-	Neo	Technologies'	CEO,	Emil	Eifrem's	interview
https://twitter.com/emileifrem/status/712327903032188928

Neo4j

266

https://twitter.com/emileifrem/status/712327903032188928

OpenCV	(Open	Source	Computer	Vision
Library)
Bjarki	Johannsson,	Shruthi	Kashyap	and	Renukaprasad	Manjappa

Delft	University	of	Technology

Abstract
OpenCV	is	an	open	source,	cross-platform,	cross-language	computer	vision	library,	that	was
devised	in	order	to	create	a	common	infrastructure	for	computer	vision	applications	and	to
expand	the	usage	of	computer	vision	in	commercial	products.	The	library	consists	of	more
than	2500	optimised	algorithms	and	supports	hardware	accelerators	such	as	CUDA	and
SSE.	This	chapter	provides	a	concise	overview	of	the	OpenCV	project	by	presenting	an
analysis	of	the	project	through	multiple	perspectives	and	viewpoints	as	presented	in	the
book	by	Rozanski	and	Woods	[4].

Table	of	Contents
Introduction
Stakeholders
Context	View
Development	View

Module	Structure	Model
Module	Hierarchy
Software	Languages
Guide	for	Developers

Codeline	Model

OpenCV

267

Source	Code	Structure
Build	Approach
Release	Process
Configuration	Management

The	Evolution	Perspective
The	Evolution	of	OpenCV
The	Future	of	OpenCV

Deployment	View
The	Performance	and	Scalability	Perspective

The	Performance	Perspective
The	Scalability	Perspective

Conclusions
References

Introduction
Computer	vision	is	a	discipline,	that	deals	with	acquiring,	processing	as	well	as	analyzing
images.	Based	on	these	functions,	computer	vision	tries	to	extract	as	much	useful
information	out	of	the	images	as	possible,	which	can	be	used	to	make	decisions.	A
widespread	theme	has	been	the	search	for	methods	that	could	provide	computers	with
human-like	abilities	in	understanding	images	and	deducting	useful	information	out	of	it.
Computer	vision	is	frequently	used	in	autonomous	driving,	object	recognition	as	well	as
product	quality	management	amongst	others.	[15]

Computer	vision	has	gone	through	a	significant	growth	during	the	past	decades	and
nowadays	there	are	many	libraries	available	for	computer	vision	applications.	The
widespread	usage	of	computer	vision	has	been	made	possible	by	the	combination	of	more
capable	algorithms,	cheaper	and	more	powerful	hardware	and	better	cameras.	[3]

OpenCV	(Open	Source	Computer	Vision	Library)	is	a	widely	used	computer	vision	and
machine	learning	library	mainly	aimed	at	real-time	applications.	It	was	originally	developed
by	Intel	employees	in	a	research	center	in	Russia,	but	the	project	was	taken	over	by	a	non-
profit	foundation	in	2012.	[1,	2,	3]

The	library	is	written	in	C	and	C++,	but	it	is	intended	to	be	a	cross-platform,	cross-language
library,	therefore	supporting	languages	such	as	Python,	Java	and	operating	systems	such	as
Windows,	Linux,	Mac	OS	X,	Android	and	iOS	amongst	others.	The	algorithms	have	been
optimised	in	C	and	take	advantage	of	multi-core	processors	and	GPUs.	[1,	2,	3]

OpenCV

268

OpenCV	has	been	licensed	so	that	enterprises	can	use	it	in	their	products	without	providing
the	source	code	of	their	applications.	Therefore,	OpenCV	has	been	also	used	by	many
corporations,	such	as	Toyota,	Google	and	IBM.	[1,	3]

The	main	motivation	for	starting	the	OpenCV	project	back	in	1999	were	the	following	points
[3]:

Advance	the	computer	vision	field	by	providing	optimised	code.
Spread	knowledge	of	computer	vision	by	providing	a	common	library,	that	would	make	it
easier	to	develop	new	applications.
Make	commercial	applications	more	viable	by	making	the	optimised	code	free,	without
any	limiting	licenses.

The	chapter	has	been	divided	into	6	sections.	The	chapter	starts	with	an	analysis	of	the
stakeholders,	which	is	followed	by	the	context	view.	These	sections	provide	the	main
background	information	needed	to	understand	OpenCV.	The	development	view	and
evolution	perspective	provide	an	overview	of	the	source	code	structure	as	well	as	how	it	has
evolved	during	the	long	history	of	OpenCV.	Finally,	the	deployment	view	as	well	as	the
performance	and	scalability	perspective	describe	how	OpenCV	is	used	at	run-time,	what
features	it	uses	in	order	to	increase	performance	and	how	scalable	it	is.

Stakeholders
Stakeholders	are	the	individuals,	teams	or	organisations	that	have	an	interest	in	the
realization	of	a	software	system	[4].	We	have	found	5	types	of	stakeholders	applicable	to
OpenCV	out	of	the	11	types	presented	in	the	book	by	Rozanski	and	Woods	[4].	Most	of	the
stakeholders	are	not	applicable	to	OpenCV,	since	the	book	considers	the	design	of	a
corporate	web	application,	but	OpenCV	is	an	open	source	platform-specific	library.	The
OpenCV	stakeholders	are	presented	in	Table	1.

OpenCV

269

Stakeholder Description

Communicator Maksim	Shabunin	has	provided	systematic	work	on	documentation,
but	otherwise	it	is	maintained	by	the	whole	community.

Developer

Alexander	Alekhin,	Maksim	Shabunin,	Steven	Puttemans	are	the
main	developers,	but	more	than	533	users	in	total	have	contributed	to
the	project.	Most	of	the	developers	have	contributed,	because	they
have	encountered	an	issue	while	using	the	library	and	have	come	up
with	a	solution	to	fix	it.	They	take	action	in	order	to	influence	the	next
releases	as	well	as	to	help	other	developers	who	might	encounter	the
same	issues.

Tester

Testers	are	not	explicitly	used,	instead	the	developers	write	the	tests
when	implementing	new	functionality	and	an	automated	bot,	OpenCV
Pushbot,	is	used	to	run	the	automated	tests	when	an	integrator	has
approved	a	pull	request.

User

The	users	are	comprised	of	small	and	large	corporations,	government
agencies	and	software	engineers.	Some	examples	of	corporations
using	OpenCV	are	Google,	Intel,	IBM	and	Toyota,	but	the	total
number	of	downloads	has	been	estimated	to	more	than	7	million	[2].

Integrator

Alexander	Alekhin,	Maksim	Shabunin	and	Steven	Puttemans	are	the
integrators.	They	try	to	develop	the	project	in	a	systematic	manner
while	maintaining	the	code	quality,	code	style	and	the	architecture.	It
seems	that	they	are	clearly	struggling	with	invalid	and	duplicate
issues,	which	make	up	roughly	half	of	the	recently	closed	issues.

Table	1:	Stakeholders	within	the	OpenCV	project.

Context	View
The	context	view	defines	the	relationships,	interactions	and	dependencies	between	OpenCV
and	its	environment.	This	view	gives	a	broad	overview	of	the	whole	system	and	is	therefore
useful	for	all	stakeholders.	The	context	view	model	for	OpenCV	is	presented	in	Figure	1.

OpenCV

270

https://github.com/mshabunin
https://github.com/alalek
https://github.com/mshabunin
https://github.com/StevenPuttemans
https://github.com/opencv-pushbot?tab=activity
https://github.com/alalek
https://github.com/mshabunin
https://github.com/StevenPuttemans

Figure	1:	Context	view	model	for	OpenCV.

OpenCV	is	tightly	coupled	with	GitHub,	which	hosts	the	source	code	and	where	users	can
clone,	fork	or	download	it	from.	Issues	and	discussions	about	missing	or	faulty	functionality
also	take	place	on	GitHub.	Developers	can	contribute	to	the	project	by	making	pull	requests,
which	are	then	handled	by	the	integrators.	Documentation	is	provided	by	the	user
community	through	GitHub,	although	Maksim	Shabunin	is	the	main	contributor	in	this
category.	A	binary	distribution	is	provided	on	the	OpenCV	web	page	and	on	Sourceforge	for
developers	who	have	no	intentions	on	modifying	the	source	code.	All	of	the	stakeholders
discussed	in	the	Stakeholders	section	are	also	covered	in	the	context	view	model	and	all	of
them	make	use	of	GitHub	as	a	means	of	accessing	information	about	OpenCV.

OpenCV	is	a	real-time,	highly	optimised	library,	therefore	it	needs	to	have	support	for	many
hardware	accelerators	and	external	devices.	It	has	support	for	CUDA,	a	platform	for	parallel
computing	on	NVIDIA's	GPUs.	Over	375	million	CUDA-enabled	GPUs	are	present	in
modern	computers,	which	allow	the	developers	to	run	their	algorithms	on	GPUs.	OpenCV
also	supports	another	parallel	programming	library,	namely	OpenCL	(Open	Computing
Language),	which	is	an	open	source,	royalty-free	standard	for	parallel	programming	from	the
Khronos	Group.

OpenCV

271

https://github.com/mshabunin
https://www.opencv.org
http://www.sourceforge.net
http://www.nvidia.com/object/cuda_home_new.html
https://www.khronos.org/opencl

OpenCV	is	a	cross-platform,	multi-language	library	with	support	for	all	of	the	major	operating
systems	as	well	as	the	C++,	Java	and	Python	programming	languages,	therefore	it	has	to
make	extensive	use	of	many	third	party	libraries.	It	has	support	for	many	cameras,	which	are
the	main	data	sources	for	computer	vision	application	via	third	party	camera	interfaces	and
libraries.

Development	View
The	development	view	describes	the	architecture	of	OpenCV	as	well	as	the	surrounding
build,	release	and	configuration	management	procedures.	The	development	view	gives	a
broad	overview	of	the	source	code	and	is	therefore	mainly	oriented	towards	software
developers.

Module	Structure	Model

The	source	code	for	the	OpenCV	library	is	located	in	the	modules	folder	in	the	repository
structure	(refer	to	Source	Code	Structure	for	details	on	the	structure).	The	OpenCV	library	is
huge,	containing	support	for	more	than	2500	algorithms.	The	library	has	evolved	for	more
than	15	years	and	has	seen	a	tremendous	growth	in	size	during	this	period.

There	is	no	apparent	structure	amongst	the	modules,	which	could	be	detected	from
analysing	the	structure	of	the	files.	Nevertheless,	there	is	an	enormous	amount	of
dependencies	between	the	modules,	which	can	be	detected	from	the	CMakeLists.txt	files	in
each	module.	These	modules	together	with	their	dependencies	are	presented	in	Figure	2.

OpenCV

272

Figure	2:	Inter-module	dependencies	of	OpenCV.

Module	Hierarchy

Although	there	is	no	apparent	structure	between	the	modules,	it	can	be	easily	observed	that
the	common	modules	that	other	modules	depend	on	are	core,	python	and	java.

The	core	module	contains	the	main	algorithms	and	implementations,	which	are	used	the
most	in	the	library.	This	module	contains	most	of	the	common	design	models,	which	reduce
duplication.

The	OpenCV	algorithms	are	implemented	in	C++,	but	those	algorithms	can	also	be	called
from	Python	and	Java.	The	python	and	java	modules	are	used	to	automatically	create
wrapper	functions	for	Python	and	Java	from	the	C++	implementation.	Therefore,	these
modules	are	commonly	referenced	from	most	modules	[5].

OpenCV

273

Apart	from	the	core,	python	and	java	modules,	there	is	only	one	additional	module,	which
sees	widespread	usage	amongst	other	modules,	that	is	imgproc.	Other	modules	create	a
complex	network	of	a	few	dependencies	per	module,	that	are	hard	to	categorise	into	largely
used	common	models.

In	general,	there	is	no	layering	in	the	hierarchy	of	the	modules.	While	core,	python	and	java
are	the	common	modules,	there	isn't	a	clear	separation	above	them.	It	is	common	that	a
module	that	refers	to	the	core	module	also	refers	to	another	module	that	depends	on	the
core	module,	therefore	creating	a	very	complex	structure.

Software	Languages

The	total	number	of	source	code	lines	(excluding	blank	lines	and	comments)	in	the	modules
folder	was	451,756	at	the	time	of	writing,	and	1,452,059	in	the	whole	project.	The	most
widely	used	language	in	the	OpenCV	modules	themselves	is	C++,	as	can	be	seen	from
Figure	3,	which	depicts	the	languages	used	in	the	OpenCV	modules.	Nevertheless,	there	is
a	significant	amount	of	CUDA	and	OpenCL	as	well	as	Java	and	Python	code,	which	is
needed	to	improve	the	performance	or	portability.	Furthermore,	many	other	languages	are
used	only	for	very	specific	tasks.

Figure	3:	Software	languages	used	for	the	development	of	the	OpenCV	modules.

Surprisingly,	the	most	widely	used	language	when	considering	the	whole	project	is	XML,
which	has	667,276	lines	of	code.	Furthermore,	the	total	number	of	languages	used	in	the
project	is	28,	which	includes	a	significant	amount	of	XML,	YAML	and	CMake	amongst
others.	The	large	amount	of	XML	and	CMake	code	clearly	shows	the	significance	of
automation	in	the	OpenCV	project.	We	believe	that	this	variation	in	the	languages	used
makes	the	OpenCV	project	very	intriguing,	but	also	very	complex	for	newcomers	to	master.

Guide	for	Developers

The	OpenCV	coding	style	guide	[6]	describes	the	main	ideas	behind	the	file	and	folder
structure.	The	source	code	for	the	library	is	located	in	opencv/modules/moduleName/src,	the
headers	are	in	opencv/modules/moduleName/include/opencv2/moduleName	and	the	tests

OpenCV

274

are	located	in	opencv/modules/moduleName/test.	The	guide	suggests	creating	a	new
module	in	the	modules	folder,	whenever	it	seems	appropriate.	This	has	led	to	a	large
number	of	modules	in	the	library,	that	are	placed	in	parallel	in	a	single	folder.

Codeline	Model

The	codeline	model	deals	with	the	organisation	of	the	source	code	in	folders	as	well	as	the
build	and	release	procedures.

Source	Code	Structure

The	OpenCV	library	has	been	organised	into	9	folders,	which	are	depicted	in	Table	2	[7].

Folder Description

3rdparty Contains	third	party	libraries	used	by	OpenCV

apps Applications	used	for	development

cmake Contains	the	core	CMake	files,	that	are	used	for	configuration	management

data Contains	files	that	are	used	by	the	library,	demo	applications	and	testers

doc Contains	the	documentation,	that	is	also	available	on	the	OpenCV	web-
page

include List	of	included	modules

modules Contains	the	OpenCV	library

platforms Contains	the	tools	and	files	needed	for	cross-compilation

samples Contains	the	sample	code	for	library	usage

Table	2:	Source	Code	Structure.

Build	Approach

The	OpenCV	project	uses	CMake	to	manage	the	build	process.	Therefore,	the	library	is
highly	configurable,	allowing	the	developers	to	customize	the	library	by	excluding	unused
modules,	building	the	debug	or	release	version,	building	with	or	without	the	support	for
CUDA	and	OpenCL	etc.

The	binary	can	be	compiled	after	configuring	the	system	with	CMake	by	simply	executing
Make.	This	makes	the	build	process	straightforward,	therefore	limiting	the	amount	of	build
steps	although	this	is	a	multi-platform	library	[8].	OpenCV	can	also	be	cross-compiled	to
other	platforms.	This	has	been	automated	by	build	scripts	in	[9].

OpenCV

275

OpenCV	has	been	around	for	a	long	time	and	therefore	it	has	been	thoroughly	documented.
The	build	steps	for	most	platforms	can	be	found	from	[10].

Release	Process

There	is	no	concrete	documentation	about	the	release	procedure	of	the	OpenCV	library
available,	therefore	we	devised	a	description	of	it	based	on	the	source	code,	tags,	releases,
milestones	as	well	as	the	issues	and	their	corresponding	discussions.	The	frequency	of	new
releases	is	very	low,	there	have	been	only	3	new	releases	in	the	past	year	[11].	There	has
been	usage	of	milestones	[12],	but	its	usage	is	not	consistent	and	some	milestones	do	not
contain	a	single	issue.	It	seems	as	though	the	integrators	are	deciding	whether	to	create	a
new	release	or	not	based	on	their	experience	with	the	system.

There	have	been	3	major	releases	for	OpenCV:	1.X.X,	2.X.X	and	3.X.X.	As	can	be	seen
from	the	previous	list,	minor	revision	numbers	have	been	used	in	addition	to	the	major
revision	number.	Alpha,	Beta	and	RC	(release	candidate)	revisions	have	been	used	for	a
new	major	version	in	order	to	slowly	introduce	the	major	releases	and	increase	their
reliability	[13].

The	OpenCV	community	uses	GoogleTest	to	manage	the	testing	of	the	library.	A	separate
OpenCV	bot	is	used	to	run	the	tests	for	each	pull	request,	therefore	reducing	the	workload	of
the	developers.	The	testing	has	been	standardized	and	there	are	instructions	available	on
how	to	write	tests.

We	believe,	that	there	should	be	at	least	a	concise	description	of	release	testing	and
milestones	should	be	used	consistently.	This	would	make	it	easier	for	the	developers	to
decide	whether	to	risk	creating	a	private	release	or	wait	for	a	public	release.

Configuration	Management

The	OpenCV	community	uses	a	single	repository	for	all	platforms.	Furthermore,	a	single	tag
and	a	single	release	is	made	for	every	release,	therefore	the	binaries	for	all	platforms	can	be
compiled	from	a	single	tag.	The	branches	are	platform-independent	as	well,	since	there	are
only	3	active	branches:	master,	2.4	and	2.4.12.x-prep	[13].

This	means,	that	the	integrators	compile	different	release	versions	(for	multiple	platforms)
from	the	same	source	code	and	upload	the	new	versions	to	their	distribution	web-page	[11].
The	process	itself	is	not	described	in	the	documentation	of	OpenCV.

The	Evolution	Perspective

OpenCV

276

The	evolution	perspective	discusses	how	the	system	has	evolved	during	its	lifetime,	how
flexible	the	system	is	when	new	functionality	needs	to	be	added	and	how	maintainable	it	is.

The	Evolution	of	OpenCV

OpenCV	has	been	around	for	more	than	17	years	and	has	seen	an	enormous	growth	during
this	period.	Not	only	has	the	number	of	algorithms	increased,	but	there	have	been	a	lot	of
technological	advancements,	that	have	made	new	platforms	important	for	computer	vision
applications.	This	includes	the	widespread	use	of	Android	and	iOS	as	well	as	the
introduction	of	hardware	accelerators	such	as	CUDA	and	SSE.	These	factors	have	forced
the	developers	to	keep	up	constant	improvement,	the	results	of	which	are	presented	in	Table
3.	This	provides	an	overview	of	the	major	versions,	how	the	folder	structure	has	evolved	as
well	as	some	of	the	new	features	introduced.

Version Folder	Structure New	Features	&	Refactorings

1.0.0
There	is	almost	no	common
ground	in	comparison	to	the
current	version.

Very	little	functionality,	uses	Make.

2.0.0

The	functional	modules	are
grouped	in	a	single	src
directory.	A	separate	folder
for	third	party	libraries	is
created.

CMake	is	used	instead	of	Make.	No	new
features,	mainly	improvements.

2.1.0
A	folder	named	include	for
the	headers	is	created	in	the
root	directory.

No	new	features,	mainly	improvements.

2.2.0
The	library	has	been
reorganised	and	a	modules
folder	is	created.

core,	imgproc,	features2d,	objdetect,
calib3d,	ml,	highgui,	gpu,	contrib	and
python	modules	are	created.

2.3.0 -
A	new	module,	stitching,	has	been	added.
Also,	there	have	been	many	smaller
improvements	to	the	modules

2.4.X
A	separate	platforms	folder
for	operating	system
dependent	scripts.

There	are	12	minor	releases,	which	add	a
lot	of	new	algorithms	and	features,	GPU
functions	and	module	refactorings.	Added
support	for	OpenCL,	iOS	and	Android.

3.0.X - More	GPU	functions,	improved	Java
bindings.

3.1.X - Support	for	newer	operating	systems	and
tools,	a	lot	of	new	functionality.

Table	3:	Evolution	of	OpenCV.

OpenCV

277

Software	architecture	sometimes	has	to	be	changed	with	the	introduction	of	new	features.
This	can	be	seen	from	OpenCV,	which	has	seen	a	number	of	folder	restructurings,	module
refactorings	as	well	as	minor	refinements.	This	has	ensured	the	longevity	of	the	library,	since
it	would	be	almost	impossible	by	now	to	maintain	it	if	these	steps	would	have	been	skipped.

While	contributions	from	the	user	community	have	played	a	valuable	part	of	evolving	the
library,	care	must	be	taken	when	developers	from	all	around	are	allowed	to	contribute.	A	few
procedures	that	aim	to	reduce	technical	debt	issues	are	maintained	by	the	OpenCV
integrators.	A	coding	style	guide	is	maintained	and	all	contributors	are	urged	to	follow	this
guide.	A	similar	guide	on	how	to	contribute	is	also	presented	on	the	OpenCV	official	site.
Contributors	should	make	sure	the	problem	still	persists	before	submitting	something,	and
make	sure	that	nobody	else	is	working	on	the	same	issue,	thus	avoiding	parallel
development.

The	Future	of	OpenCV

It	is	hard	to	predict	the	future,	but	it	is	most	probable	that	OpenCV	will	continue	to	improve
its	performance,	add	new	functionality	and	provide	easier	to	use	interfaces.	A	book	on
OpenCV	[3]	proposes	six	main	areas,	which	will	see	major	attention	from	the	developers:

Applications	-	There	will	be	more	higher-level	applications,	that	can	be	easily	used	by
the	developers.	This	means	lowering	the	learning	curve	and	achieving	faster	time	to
market.
3D	-	There	will	be	more	support	for	camera-sensor	combinations,	that	enable	the
creation	of	3D	applications.
Dense	Optical	Flow	-	There	will	be	support	for	dense	optical	flows,	which	enable	the
detection	of	the	movement	of	whole	objects.
Features	-	There	will	be	a	framework	for	interchangeable	interest-point	detection	and
interchangeable	keys	for	interest-point	identification.
Infrastructure	-	The	environment	in	which	OpenCV	is	used	will	be	improved,	e.g.
documentation	improvements,	better	wrappers	and	better	support	for	operating
systems.
Camera	Interface	-	The	handling	of	cameras	will	become	easier	and	there	will	be
support	for	more	colors	per	channel.

Deployment	View
The	deployment	view	[4]	focuses	on	the	system's	runtime	environment,	including	the
required	hardware	and	mapping	of	software	elements	to	the	environment.	OpenCV	can	be
deployed	e.g.	on	mobile	devices	using	ARM	processors	running	iOS,	embedded	systems

OpenCV

278

running	Linux	or	expensive	workstations	which	include	many	CPUs	and	GPUs.	Due	to	the
extensive	possibilities	of	deploying	a	system	using	the	OpenCV	library,	we'll	focus	on	one
example	which	we'll	use	throughout	this	section.	To	cover	all	the	possibilities	is	perhaps
impossible,	at	least	the	material	could	easily	fill	a	whole	book.

The	subject	will	be	the	computer	vision	part	of	an	object	tracking	robot,	running	on	Ubuntu
using	ROS	(meta	operating	system	designed	for	robotics)	and	GPU	acceleration	through
CUDA.	For	simplicity	the	object	detection	is	color	based.	Table	4	shows	the	technology
dependencies	for	the	system	used	in	our	example.

Component Requires

Data	capture XIMEA	xiD	camera,	XIMEA	enabled

GPU	acceleration NVIDEA	GeForce	770	graphics	card,	CUDA	enabled

Data	routing ROS	Indigo	Igloo	w/vision_opencv	package

Meta-OS	(ROS) Ubuntu	14.04	LTS

Table	4:	Technology	dependency	model	for	the	example	robot.

The	hardware	and	OSs	were	chosen	to	represent	a	realistic	case	which	shows	how	OpenCV
can	be	used	as	a	part	of	a	system.	ROS	currently	only	has	install	packages	for	Ubuntu.
Although	ROS	can	be	used	to	capture	video	from	cameras,	our	example	uses	OpenCV
modules	for	this	task.	Along	with	the	hardware	requirements	listed	in	Table	4,	the	OpenCV
library	must	be	built	with	the	XIMEA	and	CUDA	options	enabled	to	allow	for	communications
with	the	camera	and	GPU	acceleration.

The	high-level	operation	of	the	robot	is	described	in	the	following	steps:

1.	 Get	frame
2.	 Send	frame	to	GPU
3.	 Detect	object
4.	 Report	results
5.	 Collect	data	from	other	sensors
6.	 Make	decision	based	on	results	and	data	from	sensors
7.	 Send	control	message	to	motor	controllers	based	on	decision
8.	 Goto	step	one

The	video	stream	from	the	camera	is	captured	using	OpenCV's	cap_ximea	module.	It	is	then
converted	to	a	GPU	video	object	and	sent	to	the	GPU	for	processing.	Sending	the	data	to
and	from	the	GPU	requires	processing	of	both	the	CPU	and	the	GPU.	The	image	processing
algorithm	is	handled	solely	by	the	GPU,	allowing	the	CPU	to	focus	on	other	tasks
meanwhile,	such	as	communications	with	other	sensors	and	control	calculations	for	the

OpenCV

279

motors.	Based	on	the	results	of	the	object	detection,	the	central	controller	decides	on	an
appropriate	message	to	the	motor	control.	Figure	4	provides	a	runtime	platform	model	for
the	robot,	with	focus	on	the	OpenCV	related	part.

Figure	4:	Runtime	model	for	the	example	robot.

The	Performance	and	Scalability	Perspective

The	Performance	Perspective

Performance	refers	to	the	capability	of	a	system	to	provide	desired	output	within	a	certain
response	time.	In	image	processing	libraries	such	as	OpenCV	that	deal	with	a	large	number
of	frames	per	second,	it	is	favorable	that	the	code	is	not	only	providing	the	correct	solution,
but	also	in	the	fastest	manner	possible.

OpenCV	provides	several	features	to	boost	performance	and	increase	productivity.	Many	of
these	optimizations	usually	differ	based	on	the	host	architecture,	operating	system	and	even
the	language	being	used.	For	instance	certain	optimization	features	can	only	be	used	on
Windows	running	on	an	Intel	chipset.	Performance	might	even	vary	for	certain	functions
depending	on	the	language	used.	In	the	following	section	we	discuss	certain	important
optimization	features	provided	by	OpenCV.	We	also	discuss	methods	to	benchmark	an
application	in	OpenCV	and	important	results	obtained.

Default	Performance	Optimizations	in	OpenCV

OpenCV

280

Many	of	the	OpenCV	functions	are	optimized	using	different	performance	optimization
features.	It	also	contains	unoptimized	code.	Exploiting	these	features	is	a	possibility	if	the
run-time	system	supports	them.	OpenCV	runs	the	optimized	code	if	it	is	enabled,	else	it	runs
the	unoptimized	code.	The	function		cv2.useOptimized()		can	be	used	to	check	if	it	is	enabled
or	disabled	and		cv2.setUseOptimized()		to	enable	or	disable	it.	Some	of	the	important
optimization	features	are	listed	in	Table	5.

Feature Description Availability

SSE2/3
Streaming	SIMD	Extensions	2,	is	one	of	the	Intel	SIMD
libraries.	These	instructions	allow	multiple	data	sets	to	be
operated	using	a	single	instruction.

Intel
chipsets

NEON
Specifically	designed	by	ARM	to	accelerate	multimedia	and
signal	processing	algorithms	such	as	video	encode/decode,
2D/3D	graphics,	gaming,	audio	and	image	processing.

ARMv6

IPP

Integrated	Performance	Primitives	(Intel®	IPP)	is	an
extensive	library	of	software	functions	for	developing	data
processing	and	communications	applications.	These
functions	are	highly	optimized	using	Intel®	Streaming	SIMD
Extensions.

OpenCV
3.0	on	Intel
Chipsets

OpenCL

Open	Computing	Language	(OpenCL)	is	an	open	standard
for	writing	code	that	runs	across	heterogeneous	platforms
including	CPUs	and	GPUs.	OpenCL	provides	applications
with	an	access	to	GPUs	for	non-graphical	computing
(GPGPU)	that	results	in	significant	speed-up.

All
platforms

CUDA
CUDA	is	a	parallel	computing	platform	and	application
programming	interface	(API)	model	created	by	NVIDIA,	to
perform	image	processing	on	NVIDIA	GPUs.

NVIDIA
GPUs

Table	5:	Performance	enhancing	features	in	OpenCV.

Some	of	the	profiling	results	measured	with	CUDA	show	a	significant	improvement	in
performance	for	many	OpenCV	functions,	as	is	depicted	in	Figure	5.

OpenCV

281

Figure	5:	Performance	enhancement	of	various	OpenCV	functions	with	CUDA	(Source:
OpenCV	official	website).

Measuring	Performance	with	OpenCV

In	OpenCV	the	performance	is	measured	by	counting	the	number	of	clock	ticks	between	the
start	and	the	end	of	an	OpenCV	function.	OpenCV	provides	API	functions	such	as
	cv2.getTickCount		which	provides	the	number	of	ticks	at	a	specific	point	in	time.	So	if	we	call
it	before	and	after	the	function	execution,	we	get	an	estimate	of	the	number	of	clock-cycles
used	to	execute	a	function.

The	Scalability	Perspective

Scalability	of	any	software	is	its	ability	to	handle	increased	workload	in	the	future	or	for	a
short	period	of	time,	while	continuing	to	meet	the	existing	throughput,	performance	and
responsiveness	of	the	system.	Also,	any	changes	made	to	the	system	must	ensure	that	the
system’s	capacity	to	handle	the	workload	is	not	affected.	Since	OpenCV	is	a	library	which	is
used	by	other	applications,	its	scalability	indirectly	influences	the	performance,	response	and
throughput	of	the	application	using	it.

To	analyse	the	scalability	of	OpenCV,	the	usage	of	the	library	in	real-time	computer	vision
applications	is	considered.	These	applications	are	characterized	by	firm	timing	constraints,
and	handle	varying	amount	of	data	at	different	points	in	their	execution.	Usually,	these
applications	deal	with	the	transformation	of	data	from	a	still	or	video	camera	into	either	a
decision	or	a	new	representation,	which	in	this	case	is	done	using	the	APIs	of	OpenCV
library.

OpenCV

282

http://opencv.org/platforms/cuda.html

The	amount	of	data	passed	to	the	APIs	(e.g.	the	size	of	the	images	or	frames)	affects	their
execution	time	and	hence	the	response	time	of	the	whole	system.	The	larger	the	data,	the
more	processing	time	is	required.	However,	the	OpenCV	algorithms	are	optimized	and	have
been	stabilized	over	the	years	to	handle	such	increased	workloads	and	to	ensure	good
responsiveness	and	performance.	Many	of	the	OpenCV	functions	are	optimized	using
SSE2,	AVX	etc,	and	are	enabled	by	default	while	compiling.	The	function
	cv2.useOptimized()		is	used	to	check	if	they	are	enabled/disabled	and	the	function
	cv2.setUseOptimized()		is	used	to	enable/disable	them.	If	these	optimizations	are	not
enabled,	the	unoptimized	code	of	the	OpenCV	will	run.	A	common	way	of	developing	is	to
have	optimizations	disabled	while	debugging	to	avoid	reducing	the	code	readability.

The	OpenCV	GPU	module	supports	NVIDIA	GPUs	in	order	to	utilize	the	parallel	computing
capabilities	of	GPUs.	However,	the	current	version	of	OpenCV	does	not	provide	assistance
in	utilizing	multiple	GPUs,	the	algorithms	can	only	use	a	single	GPU.	To	achieve	real-time
performance	while	processing	high	quality	videos,	using	a	single	GPU	may	not	suffice.
Therefore,	the	library	provides	APIs	that	allow	the	user	to	manually	distribute	the	work
between	multiple	GPUs	by	splitting	the	tasks	into	threads.	This	would	help	in	accelerating
the	application	during	increased	workload.

Similarly,	OpenCV	utilizes	only	one	CPU	core	at	a	time.	Multiple	cores	can	be	utilized	by
enabling	multithreading	using	OpenMP	(Open	Multi-Processing)	or	TBB	(Threading	Building
Blocks).	These	can	be	enabled	by	compiling	the	OpenCV	library	with		WITH_OPENMP		or
	WITH_TBB		options	enabled.

Currently,	most	of	the	APIs	in	OpenCV	support	only	image	formats	using	8	bits	per	colour
channel.	If	the	applications	using	the	library	use	newer	cameras	that	can	supply	10	or	12	bits
per	channel,	the	OpenCV	APIs	will	fail	to	process	the	data.	OpenCV,	in	the	coming	software
releases,	is	planning	to	support	more	seamless	handling	of	cameras	along	with	eventual
support	for	cameras	with	higher	dynamic	range.	The	higher	bit	depth	increases	the
throughput	of	data	to	be	processed	by	the	algorithms.

Conclusions
We've	made	an	effort	to	map	the	architecture	of	OpenCV	to	the	ideas	presented	in	[4].	This
has	proved	to	be	a	nontrivial	task	as	it	is	hard	to	identify	an	architectural	structure	in	the
library.	The	interdependencies	of	the	modules	are	numerous	and	hard	to	organize	into
categories.	The	size	of	the	integrators	group	for	the	project	is	very	small	relative	to	the
number	of	lines	of	code.	The	wide	support	for	operating	systems	and	hardware	further
increases	the	complexity	of	the	system.	A	good	portion	of	the	bugs	reported	on	the	library's
GitHub	page	are	related	to	more	recently	added	platform	support,	such	as	ARM	processors.

OpenCV

283

Nevertheless	OpenCV	has	done	a	good	job	during	its	lifespan	making	the	world	of	computer
vision	and	machine	learning	accessible	to	people,	providing	an	easy	to	use	interface	to	deal
with	complex	tasks,	without	requiring	the	expert	knowledge	needed	to	implement	the
algorithms.

OpenCV	provides	excellent	documentation	and	user	guides	for	regular	users	who	want	to
integrate	OpenCV	into	their	applications,	but	we	feel	that	the	documentation	for	the
developers	is	scarce	and	therefore	limits	the	amount	of	people	willing	to	contribute	to	the
project.	Communication	is	slow	and	limited,	which	can	also	be	attributed	to	the	limited
number	of	integrators.

References
1.	 About	OpenCV.	(2016).	Retrieved	February	29,	2016	from	http://opencv.org/about.html
2.	 OpenCV.	(2016).	Retrieved	February	29,	2016	from	http://en.wikipedia.org/wiki/OpenCV
3.	 Bradski	G.	and	Kaehler	A.	(2008).	Learning	OpenCV.	O’Reilly	Media,	Inc.
4.	 Rozanski	and	Woods.	(2012).	Software	Systems	Architecture,	2nd	edition.	Pearson

Education,	Inc.
5.	 How	OpenCV-Python	Bindings	Works?.	(2015).	Retrieved	March	12,	2016	from

http://docs.opencv.org/3.1.0/da/d49/tutorial_py_bindings_basics.html#gsc.tab=0
6.	 The	OpenCV	Coding	Style	Guide.	(2015).	Retrieved	March	2,	2016	from

https://github.com/Itseez/opencv/wiki/Coding_Style_Guide
7.	 Open	Source	Computer	Vision	Library.	(2016).	Retrieved	March	2,	2016	from

https://github.com/Itseez/opencv
8.	 Installation	in	Linux.	(2016).	Retrieved	March	2,	2016	from

http://docs.opencv.org/trunk/d7/d9f/tutorial_linux_install.html#gsc.tab=0
9.	 Platforms	in	OpenCV.	(2016).	Retrieved	March	7,	2016	from

https://github.com/Itseez/opencv/tree/master/platforms
10.	 Introduction	to	OpenCV.	(2016).	Retrieved	March	7,	2016	from

https://github.com/Itseez/opencv/tree/master/doc/tutorials/introduction
11.	 OpenCV	Downloads.	(2016).	Retrieved	March	12,	2016	from

http://opencv.org/downloads.html
12.	 OpenCV	Milestones.	(2016).	Retrieved	March	12,	2016	from

https://github.com/Itseez/opencv/milestones
13.	 OpenCV	Tags.	(2016).	Retrieved	March	12,	2016	from

https://github.com/Itseez/opencv/tags
14.	 OpenCV	Change	Logs.	(2016).	Retrieved	March	12,	2016	from

http://code.opencv.org/projects/opencv/wiki/ChangeLog
15.	 Computer	Vision.	(2016).	Retrieved	March	22,	2016	from

https://en.wikipedia.org/wiki/Computer_vision

OpenCV

284

http://opencv.org/about.html
http://en.wikipedia.org/wiki/OpenCV
http://docs.opencv.org/3.1.0/da/d49/tutorial_py_bindings_basics.html#gsc.tab=0
https://github.com/Itseez/opencv/wiki/Coding_Style_Guide
https://github.com/Itseez/opencv
http://docs.opencv.org/trunk/d7/d9f/tutorial_linux_install.html#gsc.tab=0
https://github.com/Itseez/opencv/tree/master/platforms
https://github.com/Itseez/opencv/tree/master/doc/tutorials/introduction
http://opencv.org/downloads.html
https://github.com/Itseez/opencv/milestones
https://github.com/Itseez/opencv/tags
http://code.opencv.org/projects/opencv/wiki/ChangeLog
https://en.wikipedia.org/wiki/Computer_vision

OpenCV

285

OpenTripPlanner:	A	multimodal	tripplanner

	
Marieke	van	der	Tuin,	Thom	Hubers	,	Piotr	Tekieli,	Aafke	Croockewit

Abstract
In	this	chapter,	a	multi-modal	and	multi-agency	journey	planner	is	analyzed:	Opentripplanner
(OTP).	OTP	is	an	open	source	platform,	following	a	client-server	model,	providing	several
map-based	web	interfaces	as	well	as	a	REST	API	for	use	by	third-party	applications.	Users
of	OTP	are	most	of	the	time	developers	of	the	project	as	well,	since	they	use	OTP	to	build
applications	and	fix	bugs	themselves.	In	collaboration	with	one	of	the	stakeholders	of	OTP,
Plannerstack,	contributions	have	been	made	to	the	project,	all	to	add	value	to	the	1.0.0
stable	release,	were	developers	are	currently	working	on.

Table	of	Contents
1.	 Introduction

History
2.	 Who	is	involved	in	OTP?

Users
Contributors
Integrators
Plannerstack	&	Conveyal

3.	 Context	View
4.	 Development	View

As-intended	development	view

OpenTripPlanner

286

https://github.com/mvandertuin
https://github.com/thomhubers
https://github.com/ergone
https://github.com/acroockewit

Layering	violations
Technical	debt

5.	 Features	of	OTP
System-wide	features
Graph	build	features
Run-time	features
Relationships
Feature	model	&	binding	time	of	features
Variability	strategy

6.	 Handling	of	itinerary	requests
7.	 OTP	going	international
8.	 Future	releases	of	OTP
9.	 Conclusion
10.	 References

Introduction

OpenTripPlanner	(OTP)	[4]	is	an	open-source	software	for	multimodal	trip	planning	and
transportation	network	analysis	that	allow	users	to	search	for	itineraries	including	pedestrian,
bike,	transit,	and	car	components.	The	project	is	used	as	routing	engine	in	both	commercial
and	open	source	projects.

This	chapter	informs	about	the	recent	development	of	OTP.	First,	the	stakeholders	are
examined,	followed	by	an	analysis	of	different	views	on	the	system.	These	views	provide
insight	into	the	inner	workings	of	OTP	itself	and	its	development	process.	The	insights
gained	with	this	analysis	are	combined	into	recommendations,	which	can	be	found	at	the
end	of	this	chapter.

History

OpenTripPlanner	was	created	in	2009	by	OpenPlans.	The	main	user	of	the	project	was	the
TriMet	[7]	regional	trip	planner.	TriMet	[8]	is	the	transport	authority	of	Portland,	USA.	At	the
end	of	2012,	OpenPlans	decided	to	stop	with	the	development	coordination.	However,	in	the
beginning	of	2013	members	of	OpenPlans	founded	Conveyal,	an	open	source	focused
transportation	consultancy.	They	continued	to	support	the	OTP	development.

Who	is	involved	in	OTP?

The	history	of	the	OpenTripPlanner	[9]	has	a	clear	impact	on	the	stakeholders	involved	[6].
The	people	involved	mostly	with	the	development	of	the	code	are	employees	of	Conveyal
[2].	Furthermore,	a	few	local	authorities	that	use	OpenTripPlanner	are	actively	involved	in

OpenTripPlanner

287

the	project	development.	For	example	Ruter#,	the	travel	agency	for	Southeastern	Norway
and	HSL	Finland	use	OpenTripPlanner	in	their	planning	tools.	Not	only	local	transport
authoritie,	but	also	some	individuals	are	working	with	OpenTripPlanner.	Most	of	them	use
OTP	to	built	apps,	such	as	AllyApp,	a	local	transport	planning	application	which	can	be	used
in	multiple	cities	(mainly	in	Germany).

Users

There	are	two	main	types	of	people	who	use	the	system.	There	are	the	users	who	built	an
app	or	website	using	OTP	(for	example	HSL	Finland),	and	there	are	users	that	extend	OTP
into	customer-based	solutions	(for	example	PlannerStack,	who	provided	an	OTP	solution	for
the	Dutch	Connexxion	bus	company).	The	latter	category	can	be	seen	as	providers	of	OTP
to	others.	Both	groups	can	be	further	categorized	into	developers	and	benefiters.
Developers	contribute	to	the	project	by	providing	new	features	and	bug	fixes.	Benefiters	only
make	use	of	the	system.	The	following	graph	shows	the	users	and	most	important	involved
companies	according	to	these	two	dimensions	(Figure	1).

At	last	the	end-users	have	to	be	mentioned.	The	end-users	will	use	the	app,	website	or	other
solution	build	on	top	of	OTP,	e.g.	to	plan	a	trip.	Because	this	group	of	users	is	not	directly
involved	in	OTP	(they	will	never	directly	use	OTP),	they	are	out	of	scope	for	this	chapter.

OpenTripPlanner

288

Figure	1:	Categorization	of	the	users

Contributors

It's	hard	to	make	a	distinction	between	different	types	of	contributors.	There	are	no	explicit
testers,	documentation	writers	or	maintainers.	Most	contributors	are	involved	through	their
company	or	an	application.	The	main	contributors	are	shown	below	with	their	profile
pictures,	names	and	GitHub	user	names	(Figure	2).	The	people	of	the	GitHub
OpenTripPlanner	organization	are	marked	with	a	red	square.	The	people	shown	at	the
bottom	of	the	picture	do	not	belong	to	a	larger	company,	but	all	have	made	an	app	or
website	incorporating	OTP.	

OpenTripPlanner

289

pictures,	names	and	GitHub	user	names	(Figure	2).	The	people	of	the	GitHub
OpenTripPlanner	organization	are	marked	with	a	red	square.	The	people	shown	at	the
bottom	of	the	picture	do	not	belong	to	a	larger	company,	but	all	have	made	an	app	or
website	incorporating	OTP.	

Figure	2:	Overview	of	the	main	contributors,	including	their	companies

Integrators:	Andrew	and	Laurent

Andrew	Byrd	(@abyrd)	is	the	overall	manager	of	OTP	and	acts	like	an	integrator.	He	decides
which	new	features	should	be	added	and	how	bugs	should	be	solved	properly	in	order	to
remain	the	ideas	behind	OTP.	On	GitHub	he	is	responsible	for	nearly	all	pull	request
merges.	His	role	as	a	manager	can	clearly	be	distinguished	at	issue	#2153.	He	shows	clear
understanding	of	the	ideas	behind	OTP	and	pushes	solutions	directly	to	the	codebase.	At
the	Mailing	Lists,	he	does	not	answer	questions	on	the	normal	usage	of	OTP,	but	he	does
read	through	the	discussions	and	tries	to	manage	the	resources	correctly	by	for	example
redirecting	discussions	towards	a	GitHub	issue	if	it	would	better	belong	there	(for	example	at

OpenTripPlanner

290

https://github.com/opentripplanner/OpenTripPlanner/issues/2153
https://groups.google.com/forum/#!topic/opentripplanner-dev/bCRtwdmUPoA
https://groups.google.com/forum/#!topic/opentripplanner-dev/a-bNRJpa1cA

of	some	one	else	claiming	it	still	does	not	work	or	a	new	bug	appeared.	Even	compilation
errors	sneak	through	(see	here)!	It	is	remarkable	that	a	manager	of	an	open	source	project
does	not	like	to	be	controlled	himself	while	requesting	this	from	the	other	contributors.

Plannerstack

Plannerstack	is	one	of	the	companies	(actually	a	foundation)	that	is	using	OTP	for	it's
projects.	The	developers	of	Plannerstack	are	improving	OTP	while	using	it.	The	foundation
does	also	offer	a	hosted	service	in	which	developers	can	use	the	service	without	the	need	of
a	server.

Interests	of	contributors

As	shown,	the	main	developers	are	working	for	their	own	companies	or	applications.	This
also	reflects	the	way	developers	maintain	the	code	and	add	new	features.	Bugs	are
encountered	by	users	of	the	system,	and	most	of	the	time	immediately	fixed	by	themselves.
For	example,	@sdjacobs	reports	an	issue	about	a	NullPointerException	(#2210)	and	gives
the	fix	himself	immediately	afterwards	in	a	pull	request	(#2211).

New	features	do	not	seem	to	be	added	a	lot	the	last	month.	This	might	be	due	to	the
upcoming	release	1.0.0,	the	first	stable	release	of	the	project.	There	are	a	few	new	features
identified	for	this	release	though.	An	example	of	a	new	feature	which	is	planned	to	be	added
is	the	Park	and	ride	option.	As	can	be	read	in	issue	#1330,	this	already	has	been
implemented	by	the	company	GoAbout	and	only	needs	to	be	merged.	We	suppose	that
GoAbout	needed	this	feature	for	their	own	project,	and	therefore	implemented	it.	This	seems
to	be	the	case	for	all	new	features	added:	they	are	implemented	by	contributors	because
their	own	application	needs	it.	OTP	can	then	benefit	from	those	features	built	for	others.

Context	View

Its	core	is	written	in	Java,	therefore	the	application	can	be	implemented	on	top	of	most	of
modern	operating	systems	supporting	JVM	technology,	including	a	variety	of	portable
solutions.	Each	running	instance	of	OTP	offers	a	customizable	web	interface	enabling
efficient	information	exchange	between	the	application's	server	and	its	users,	mainly	used
for	debugging	purposes	by	developers.	The	provided	API	interface,	on	the	other	hand,
allows	more	advanced	users	to	automate	their	OTP	implementations	with	scripts	written	with
Jython	or	Groovy.

The	development	of	OTP	relies	on	the	concept	of	open-source,	both	in	terms	of	application's
code,	as	well	as	implemented	data	standards.	General	Transit	Feed	Specification	(GTFS)
providing	schedule	data	of	public	transportation,	OpenStreetMap	(OSM)	delivering

OpenTripPlanner

291

https://github.com/opentripplanner/OpenTripPlanner/pull/2194
https://github.com/opentripplanner/OpenTripPlanner/issues/2210
https://github.com/opentripplanner/OpenTripPlanner/pull/2211
https://github.com/opentripplanner/OpenTripPlanner/issues/1330

The	development	of	OTP	relies	on	the	concept	of	open-source,	both	in	terms	of	application's
code,	as	well	as	implemented	data	standards.	General	Transit	Feed	Specification	(GTFS)
providing	schedule	data	of	public	transportation,	OpenStreetMap	(OSM)	delivering
information	regarding	street	networks	of	particular	zones,	and	NED	tiles	for	assuring	that	the
digital	elevation	model	is	applied	to	an	active	map,	are	the	examples	of	such,	which
successfully	substitute	their	commercial	counterparts.	The	main	distribution	of	application's
source	is	realized	by	GitHub,	which	additionally	allows	an	efficient	publication	and
management	of	software	related	issues	and	associated	pull	requests,	carrying	potential
changes	to	the	project	proposed	by	developers	or	community	itself.	The	remaining	project's
documentation	has	recently	been	outsourced	to	an	external	website	associated	with
project's	main	domain	[5].	To	allow	better	understanding	of	that	concept,	we	have	depicted
these	relations	on	the	graph	below	(Figure	3).

Figure	3:	Context	View	of	OpenTripPlanner

Development	View

This	document	gives	an	insight	into	the	development	process	and	architectural	structure	of
OpenTripPlanner	(OTP).	In	the	first	chapter,	a	description	of	general	development	process
can	be	found.	Consequently,	a	development	view	is	presented,	and	followed	by	some

OpenTripPlanner

292

Development	of	OpenTripPlanner

OpenTripPlanner	uses	Maven	for	building	the	project	and	managing	its	dependencies	(the
detailed	information	regarding	them	is	located	in	the	following	paragraphs).	It	can	be	easily
developed	with	the	use	of	IDEs	(Integrated	Development	Environment)	such	as	Eclipse,
IntelliJ	or	Netbeans.	In	case	someone	is	willing	to	contribute	to	the	project,	the	developer's
mailing	list	and	the	GitHub	repository	can	be	used	as	a	starting	point	for	the	process.	OTP
incorporates	the	aforementioned	mailing	list	mainly	for	modification	proposals	and	decision
processes.	GitHub,	on	the	other	hand,	is	used	as	the	main	code	repository,	place	for
publication	of	functionality	issues	and	the	maintenance	of	documentation.	Although	the
guidelines	specify	that	each	commit	should	be	based	on	a	certain	issue	[10],	this	does	not
happen	very	often	in	practice.	Most	Pull	Requests	are	correctly	linked	with	the
corresponding	issue,	but	direct	pushes	of	commits	do	not	usually	refer	to	them	(defined
issues)	(e.g.	this	commit).

The	project	uses	the	same	coding	conventions	for	Java,	as	those	that	are	included	in
GeoTools,	which	reflect	a	minor	variation	on	the	Sun	coding	convention.	This	convention	is	a
way	of	formatting	code	and	can	automatically	be	set	and	utilized	in	any	IDE	which	supports
the	import	feature	of	the	formatter.xml	file	(such	as	Eclipse).	This	file	is	positioned	in	the	root
folder	of	the	project's	repository.	Furthermore,	the	development	of	JavaDoc	is	required	for	all
new	methods,	classes	and	fields.	All	testing	components	are	written	with	the	use	of	JUnit.

The	code	itself	is	structured	neatly.	The	codebase	is	split	into	four	main	parts:	client	which
provides	user's	interface,	main	including	all	Java	code	for	processing	all	requests	and
responses,	the	scripts	which	can	be	used	to	run	OTP	with	a	default	set	of	parameters,	and
tests	which	provide	the	aforementioned	testing	modules	for	the	main	code.	The	utilization	of
of	Java	packages	within	main	and	test	parts	is	correct	and	well	justified,	which	reflects	the
sign	of	prior	thorough	planning	and	consideration	of	design	decisions.	Some	packages
include	a	separate	package-info	file,	explaining	what	the	package	is	responsible	for	and
which	other	packages	are	related	to	it.	The	testing	part	reveals	the	exact	package	structure
as	the	one	spotted	during	the	analysis	of	the	core,	which	makes	it	easy	to	find	the
corresponding	tests	for	certain	classes	and	methods.

As-intended	Development	View

OpenTripPlanner	operates	in	two	modes:	as	an	instance	running	via	Grizzly	server	(web
server),	which	is	suited	for	planning	trips,	and	an	analyst	mode	in	which	the	complete
network	can	be	analyzed.	Both	of	them	refer	to	the	same	core:	a	routing	Java	library	which
is	responsible	for	computing	the	multi	modal	transport	trips.	On	top	of	this	core,	several
services	are	built	which	call	its	internal	functions	[11].

OpenTripPlanner

293

https://github.com/opentripplanner/OpenTripPlanner/commit/53658c9797aac1656f2681255d3bea42a86b1d55

OpenTripPlanner	operates	in	two	modes:	as	an	instance	running	via	Grizzly	server	(web
server),	which	is	suited	for	planning	trips,	and	an	analyst	mode	in	which	the	complete
network	can	be	analyzed.	Both	of	them	refer	to	the	same	core:	a	routing	Java	library	which
is	responsible	for	computing	the	multi	modal	transport	trips.	On	top	of	this	core,	several
services	are	built	which	call	its	internal	functions	[11].

Here	are	presented	the	two	of	them	that	are	used	on	a	daily	basis.	The	first	one	is	Routing
API,	a	RESTful	(REST	is	Representational	State	Transfer)	web	service	which	responds	to
journey	planning	requests.	This,	with	the	an	appropriate	mapping	library	can	form	a	friendly
web	GUI	(Graphical	User	Interface)	that	provides	basic	planning	features.	The	other	one	is
Script	API,	that	introduces	users	the	ability	to	create	automation	mechanisms	and	functions
for	OTP	with	the	use	of	their	favorite	scripting	language.	At	that	moment	only	a	limited
number	of	these	is	supported.

The	Analyst	can	be	executed	in	two	configurations:	the	basic	Analyst	and	the	Batch	Analyst.
The	basic	Analyst	Web	Services	provide	basic	network	analysis	results,	while	the	Batch
Processor	handles	more	complex	examination	tasks.	It	allows	an	implementation	of	very
open-ended	configuration,	which	includes,	for	example,	an	information	regarding	terrain's
population	rates	and	therefore	provides	a	powerful	tool	for	visualizing	how	transport
networks	affect	access	to	urban	facilities.	Both	the	Analyst	and	Batch	Analyst	do	not	make
use	of	services,	but	rather	directly	call	methods	inside	the	core.

When	it	comes	to	the	core	itself,	it	incorporates	two	separate	services	for	its	proper
functionality:	OTP	Transit	Index	API	and	Graph	Builder.	The	Transit	Index	delivers
information	to	the	core,	recovering	them	from	GTFS	files,	which	specify	routes,	stops	and
frequencies	of	all	transit	lines.	The	Graph	Builder	composes	graphs	from	available
OpenStreetMap	(OSM)	databases,	which	handle	open	source	geographical	data.	These	are
created	mostly	by	community	and	available	to	anyone,	who	is	willing	to	utilize	them.

Additionally,	the	Graph	Builder	can	be	invoked	by	OTP	instance	via	Graph	Visualizer.	This
component	provides	a	basic	interface	for	recovering	edges	and	vertices's	metadata.

A	visualization	of	the	as-intended	development	view	has	been	composed	according	to	the
prior	description	and	depicted	on	the	graph	located	below	(Figure	4).

OpenTripPlanner

294

Layering	violations	in	OTP

Although	OTP	seems	to	have	a	clear	layering	approach	among	the	packages,	where	the
instance	invokes	core	function	utilizing	several	APIs	for	that	purpose,	this	matter	is
sometimes	violated.

The	example	of	such	violation	can	be	observed	while	the	OTP	Instance	directly	calls	the
core	to	create	a	new	RoutingRequest	parameter	configuration,	which	sets	available	modes
and	speed	limits.	We	suspect	that	those	are	probably	set	before	the	actual	execution	of	call,
since	different	modes	require	different	start-ups	of	the	core	itself.	All	other	parameters	are
correctly	set	using	the	Routing	API.

Furthermore,	it	would	seem	logical	in	the	structure	if	the	Analyst	also	used	APIs	to
communicate	with	the	core.	However,	this	is	not	the	case	here,	since	the	Analyst	always
directly	invokes	the	core.	What	seems	to	be	an	even	larger	violation,	is	that	the	Router	API
uses	constructs	defined	in	Analyst,	for	example	a	PointSet	(a	group	of	destinations).	A
neater	solution	would	involve	creating	a	service	which	defines	such	constructs,	which	is
called	by	both	the	Analyst	and	the	Router	API.

The	identified	violations	are	shown	on	a	package	dependency	graph	place	below	(Figure	5).

	
Figure	5:	Example	of	Layering	violations	in	OTP

Technical	debt	in	OTP

To	identify	if	there	is	technical	debt	in	the	system,	the	OTP	project	is	evaluated	in	terms	of
the	following	7	points	[12]:	slowing	velocity,	stressful	releases,	aging	libraries,	defects,	low
automated	test	coverage,	poor	score	on	code	quality	metrics,	presence	of	code	smells

Slowing	velocity	

Slowing	velocity	is	the	measurement	for	how	much	work	a	development	team	can
complete	during	a	particular	interval.	If	the	velocity	starts	to	slow	down,	it	can	be	a	sign
of	a	technical	debt.

OpenTripPlanner

295

	
Figure	5:	Example	of	Layering	violations	in	OTP

Technical	debt	in	OTP

To	identify	if	there	is	technical	debt	in	the	system,	the	OTP	project	is	evaluated	in	terms	of
the	following	7	points	[12]:	slowing	velocity,	stressful	releases,	aging	libraries,	defects,	low
automated	test	coverage,	poor	score	on	code	quality	metrics,	presence	of	code	smells

Slowing	velocity	

Slowing	velocity	is	the	measurement	for	how	much	work	a	development	team	can
complete	during	a	particular	interval.	If	the	velocity	starts	to	slow	down,	it	can	be	a	sign
of	a	technical	debt.

Since	the	beginning	of	2016	there	are	not	many	contributions	done	to	the	master	branch.
Although,	for	establishing	the	conclusion	that	inactivity	could	be	a	sign	of	technical	debt
here,	is	probably	too	soon.	To	justify	that,	we	would	like	to	mention	that	in	2015	the	project
was	provided	with	many	contributions.	Besides,	the	same	situation	happened	at	the	end	of
2014,	after	which	the	project	became	active	again.	Additionally,	about	10	PRs	have	already
been	merged	to	the	master	this	month.	All	of	them	were	provided	by	several	different
developers.

Stressful	releases	

The	stress	at	the	end	of	a	release	cycle	indicates	an	occurrence	of	a	possible	technical
debt,	which	impairs	the	development	productivity.

On	Google	Groups	and	docs.opentrippplanner	there	is	clear	communication	about	new
releases.	The	releases	seem	to	be	strictly	controlled	(in	a	good	manner)	mostly	by	Andrew
Byrd,	who	takes	the	responsibility	for	these	actions.	The	goals	that	are	set	are	concrete	and
realistic,	which	prevents	against	slipping	into	crunch	mode	[13].

Aging	libraries	

OpenTripPlanner

296

https://groups.google.com/forum/#!searchin/opentripplanner-dev/release
http://docs.opentripplanner.org/en/latest/Changelog/
http://mvnrepository.com/artifact/junit/junit
https://github.com/opentripplanner/OpenTripPlanner/issues?q=is%3Aopen+is%3Aissue

occur	not	only	at	the	beginning	and	end	of	a	trip,	but	also	at	transfers.	Many	months	have
been	spent	on	ensuring	this	requirement	is	met,	and	it	has	interfered	with	the
implementation	of	new	routing	algorithms	more	than	once.	This	clearly	shows	that	some
knowledge	was	not	there	yet	in	earlier	phases	of	the	project.	In	this	case	OTP	should	deal
with	bike	transit.	This	is	fitting	what	Ward	Cunningham	says	about	technical	debt:	“I	am	in
favor	of	writing	code	to	reflect	your	current	understanding	of	a	problem	even	if	that
understanding	is	partial.	Technical	debt	is	a	knowledge	deficit."

It	took	a	long	time	(“..many	months	have	been	spent..”)	to	implement	the	improvement,
according	to	AByrd	on	Google	Groups.

Test	coverage	

The	test	coverage	of	OpenTripPlanner	was	tested	using	the	tool	EclEmma.	

The	overall	test	coverage	of	OpenTripPlanner	is	55%,	which	is	quite	low.	But	the	Routing
package	which	contains	all	routing	algorithms,	has	a	test	coverage	of	75%,	which	is	pretty
good.	The	other	main	packages	used	by	the	core	of	OpenTripPlanner,	GTFS	and
OpenStreetMaps,	have	a	coverage	of	84%.	The	test	coverage	for	OTP	as	a	whole	is	good
enough.

OpenTripPlanner	uses	a	continuous	integration	sever.	Every	time	a	Pull	Request	is
submitted	or	a	change	pushed,	this	server	will	compile	and	test	the	new	code.	In	this	way,
the	code	is	continuously	tested	and	not	accidentally	broken	by	a	new	commit.	Therefore,
concerning	the	testing	no	technical	debt	occurs.

Poor	score	on	code	quality	metrics	
The	left	side	of	the	pyramid	(refer	to	figure	6)	shows	the	size	and	complexity	of	the	system,
showing	a	high	rate	for	the	number	of	methods.	This	means	there	is	room	for	improvement
for	the	number	of	methods	and	for	the	length	of	the	methods.	

OpenTripPlanner

297

http://c2.com/cgi/wiki?WardExplainsDebtMetaphor
https://groups.google.com/forum/#!searchin/opentripplanner-dev/longDistance%7Csort:relevance/opentripplanner-dev/32XP6zxTzG4/lD-uekkruxUJ

OpenTripPlanner	uses	a	continuous	integration	sever.	Every	time	a	Pull	Request	is
submitted	or	a	change	pushed,	this	server	will	compile	and	test	the	new	code.	In	this	way,
the	code	is	continuously	tested	and	not	accidentally	broken	by	a	new	commit.	Therefore,
concerning	the	testing	no	technical	debt	occurs.

Poor	score	on	code	quality	metrics	
The	left	side	of	the	pyramid	(refer	to	figure	6)	shows	the	size	and	complexity	of	the	system,
showing	a	high	rate	for	the	number	of	methods.	This	means	there	is	room	for	improvement
for	the	number	of	methods	and	for	the	length	of	the	methods.	

Figure	6:	Code	quality	of	OTP

Presence	of	code	smells**	With	Infusion	Metrics	the	code	smell	is	analyzed.	OTP	has
133.099	lines	of	code.	The	system	has	360	Design	Flaws	and	the	QDI	is	36,9	(see	figure	7).
(The	Quality	Deficit	Index	is	a	positive,	upwards	unbound	value,	which	is	a	measure	of
"badness"	of	the	analyzed	system's	design	quality	respecting	the	overall	size	of	the	system.)

Figure	7:	Presence	of	code	smells

OpenTripPlanner

298

https://dzone.com/articles/jsf-component-libraries

2.	Graph	build	features

The	Graph	build	features	require	a	complete	graph	rebuild	if	they	are	changed.	They	can	be
specified	in		build-config.json	.	They	specify	options	which	should	not	be	changed	by	the
user	of	the	application	itself,	for	example	transit	fares.	Application	builders	or	transport
authorities	can	use	the	Graph	build	features	to	change	certain	parts	-	for	example	a	change
in	the	fares	-	without	any	need	to	restart	the	complete	application.	This	is	useful	since	a
restart	of	the	application	might	require	quite	some	time	due	to	the	time	consuming	loading	of
data.	Typically,	this	will	be	done	a	few	times	per	year	in	a	running	application.

3.	Run-time	features

A	geographical	area	with	specific	services	is	called	a	router.	OpenTripPlanner	can	deal	with
several	routers	at	the	same	time.	The	configurations	can	be	set	per	router,	at	run-time.
These	can	be	specified	in	a	separate		router-config.json		file,	but	most	of	the	time	the	user
interface	will	provide	options	for	changing	them.	The	run-time	features	include	user	specific
settings,	such	as	modes	to	use	and	maximum	walking	distance.

Relationships

Several	relationships	can	be	found	between	the	features.

If	a	certain	Mode	is	not	selected,	the	accompanied	options	are	not	taken	into	account,
such	as	Fares,	Speeds	and	Boarding	time.
If	cycling	is	added	as	a	selected	Mode,	walking	will	be	added	automatically	as	well,	with
a	high	Reluctance	for	walking.	This	was	implemented	to	model	walking	next	to	your
bike,	which	might	be	needed	to	reach	a	walk-only	accessible	area.
If	Wheelchair	accessibility	is	selected,	non-wheelchair	accessible	Mode	settings	will
not	be	used,	for	example	cycling.
If	the	Visualizer	is	started,	the	options	which	are	set	in	the	JSON	files	will	not	be	used.
Part	of	the	options	can	be	selected	in	the	visualizer	itself	by	selecting	checkboxes	in	the
user	interface,	as	can	be	seen	below	(figure	8).

OpenTripPlanner

299

Relationships

Several	relationships	can	be	found	between	the	features.

If	a	certain	Mode	is	not	selected,	the	accompanied	options	are	not	taken	into	account,
such	as	Fares,	Speeds	and	Boarding	time.
If	cycling	is	added	as	a	selected	Mode,	walking	will	be	added	automatically	as	well,	with
a	high	Reluctance	for	walking.	This	was	implemented	to	model	walking	next	to	your
bike,	which	might	be	needed	to	reach	a	walk-only	accessible	area.
If	Wheelchair	accessibility	is	selected,	non-wheelchair	accessible	Mode	settings	will
not	be	used,	for	example	cycling.
If	the	Visualizer	is	started,	the	options	which	are	set	in	the	JSON	files	will	not	be	used.
Part	of	the	options	can	be	selected	in	the	visualizer	itself	by	selecting	checkboxes	in	the
user	interface,	as	can	be	seen	below	(figure	8).

OpenTripPlanner

300

As	it	can	be	observed,	the	before	mentioned	list	has	been	created	and	divided	accordingly	to
the	binding	times	of	specific	features.	In	this	particular	software,	most	of	them	can	be
selected	or	altered	during	run-time	with	the	use	of	GUI	or	CLI	commands.	Those	which
cannot	be	configured	that	way	are	usually	defined	as	starting	parameters	for	each	OTP
instance.	The	analysis	of	source	code	has	not	revealed	any	compile-time	bounds	or	features
that	could	personalize	each	build.	The	graph	located	below	(figure	9)	depicts	a	simplified
view	on	the	structure	of	listed	features	along	with	their	dependencies	and	logical	constraints.
The	reason	for	this	simplification	lies	within	the	complexity	that	is	introduced	with	each
presentations	of	detailed	architectures.	In	order	to	make	this	graph	feasible	for	further
analysis,	and	understandable	to	each	stakeholder,	this	level	has	been	set	to	be	optimal,
meaning	-	without	additional	elements	that	has	not	been	described	in	the	prior	parts.

OpenTripPlanner

301

As	it	can	be	observed,	the	before	mentioned	list	has	been	created	and	divided	accordingly	to
the	binding	times	of	specific	features.	In	this	particular	software,	most	of	them	can	be
selected	or	altered	during	run-time	with	the	use	of	GUI	or	CLI	commands.	Those	which
cannot	be	configured	that	way	are	usually	defined	as	starting	parameters	for	each	OTP
instance.	The	analysis	of	source	code	has	not	revealed	any	compile-time	bounds	or	features
that	could	personalize	each	build.	The	graph	located	below	(figure	9)	depicts	a	simplified
view	on	the	structure	of	listed	features	along	with	their	dependencies	and	logical	constraints.
The	reason	for	this	simplification	lies	within	the	complexity	that	is	introduced	with	each
presentations	of	detailed	architectures.	In	order	to	make	this	graph	feasible	for	further
analysis,	and	understandable	to	each	stakeholder,	this	level	has	been	set	to	be	optimal,
meaning	-	without	additional	elements	that	has	not	been	described	in	the	prior	parts.

OpenTripPlanner

302

As	can	be	read	above,	OTP	is	not	very	variable.	There	are	a	lot	of	options	which	influence
the	routing	mechanism,	but	it's	hard	to	see	those	as	different	software	versions,	since	none
of	them	are	configured	at	compile-time	or	can	personalize	a	certain	build.	There	are	some
different	operational	modes:	normal,	script	and	analyst.	These	do	all	provide	a	different
subset	of	the	features	of	OTP	and	can	thus	be	seen	as	variants.	But	those	different	modes
are	never	being	shipped	separately	and	a	big	part	of	the	code	base	is	being	used	by	all
modes.

The	strategy	to	cope	with	variability	can	be	summarized	as	trying	to	have	as	less	variability
as	possible.	The	variables	(routing	parameters)	described	above	are	managed	by
configuration	files.	These	files	are	formatted	in	JSON,	which	makes	the	configuration
structured	and	easy	readable	by	both	humans	and	computers.	The	software	reads	these
files	and	applies	the	settings	on	its	working.	This	mechanism	makes	the	variability
manageable,	because	the	source	code	doesn't	need	to	be	adjusted	for	each	variety	in
functionality.	The	fact	that	the	configuration	files	are	shared	across	the	different	operation
modes	does	also	improve	the	manageability	of	the	different	features.

One	exception	to	this	solution	however,	is	the	way	that	options	are	covered	in	the	Graph
Visualizer.	The	visualizer	has	its	own	configuration	section	with	a	subset	of	the	options	of
OTP.	That	this	fragmentation	reduces	manageability	can	directly	be	seen,	since	the	layout	of
this	panel	is	broken	since	a	recent	update.

Evolution	history	of	variability	mechanism

The	way	variability	is	handled	within	the	OTP	project	has	not	been	changed	so	much	in	the
last	years.	Configuring	route	planning	software	with	configuration	files	is	a	common	way	to
do	this	and	the	people	who	built	the	software	chose	this	mechanism	at	the	beginning	of	the
development.	Since	it's	working	very	well	and	ensures	a	good	manageability,	this
mechanism	is	not	likely	to	change	a	lot	in	the	coming	versions.	A	good	next	step	might	be
that	the	current	approach	is	used	by	the	whole	system	and	that	exceptions	like	the	Graph
Visualizer	will	be	removed.	This	improves	clarity	and	manageability.

Handling	of	itinerary	requests

Dealing	with	itinerary	requests	is	the	main	functionality	of	OpenTripPlanner.	To	give	more
insight	on	the	internal	handling	of	these	requests,	a	functional	view	was	created	for	this
purpose	(see	figure	10).

OpenTripPlanner

303

As	can	be	read	above,	OTP	is	not	very	variable.	There	are	a	lot	of	options	which	influence
the	routing	mechanism,	but	it's	hard	to	see	those	as	different	software	versions,	since	none
of	them	are	configured	at	compile-time	or	can	personalize	a	certain	build.	There	are	some
different	operational	modes:	normal,	script	and	analyst.	These	do	all	provide	a	different
subset	of	the	features	of	OTP	and	can	thus	be	seen	as	variants.	But	those	different	modes
are	never	being	shipped	separately	and	a	big	part	of	the	code	base	is	being	used	by	all
modes.

The	strategy	to	cope	with	variability	can	be	summarized	as	trying	to	have	as	less	variability
as	possible.	The	variables	(routing	parameters)	described	above	are	managed	by
configuration	files.	These	files	are	formatted	in	JSON,	which	makes	the	configuration
structured	and	easy	readable	by	both	humans	and	computers.	The	software	reads	these
files	and	applies	the	settings	on	its	working.	This	mechanism	makes	the	variability
manageable,	because	the	source	code	doesn't	need	to	be	adjusted	for	each	variety	in
functionality.	The	fact	that	the	configuration	files	are	shared	across	the	different	operation
modes	does	also	improve	the	manageability	of	the	different	features.

One	exception	to	this	solution	however,	is	the	way	that	options	are	covered	in	the	Graph
Visualizer.	The	visualizer	has	its	own	configuration	section	with	a	subset	of	the	options	of
OTP.	That	this	fragmentation	reduces	manageability	can	directly	be	seen,	since	the	layout	of
this	panel	is	broken	since	a	recent	update.

Evolution	history	of	variability	mechanism

The	way	variability	is	handled	within	the	OTP	project	has	not	been	changed	so	much	in	the
last	years.	Configuring	route	planning	software	with	configuration	files	is	a	common	way	to
do	this	and	the	people	who	built	the	software	chose	this	mechanism	at	the	beginning	of	the
development.	Since	it's	working	very	well	and	ensures	a	good	manageability,	this
mechanism	is	not	likely	to	change	a	lot	in	the	coming	versions.	A	good	next	step	might	be
that	the	current	approach	is	used	by	the	whole	system	and	that	exceptions	like	the	Graph
Visualizer	will	be	removed.	This	improves	clarity	and	manageability.

Handling	of	itinerary	requests

Dealing	with	itinerary	requests	is	the	main	functionality	of	OpenTripPlanner.	To	give	more
insight	on	the	internal	handling	of	these	requests,	a	functional	view	was	created	for	this
purpose	(see	figure	10).

OpenTripPlanner

304

as	well	as	the	graph	and	transit	feeds.	If	requested,	the	real-time	feeds	for	transit	and
historical	data	on	traffic	speeds	is	included	in	the	Routing	Context	as	well.	The	Context	is
then	given	to	the	PathFinder.	The	PathFinder	is	responsible	for	actually	searching	possible
routes	from	origin	to	destination.	This	is	done	by	applying	the	A	star	algorithm.	Several
heuristics	are	used	in	this	algorithm	to	speed	up,	depending	on	the	type	of	request.	This
leads	to	a	ShortestPathTree	with	the	discovered	itineraries.	From	this	list	the	itineraries	are
taken	that	actually	arrive	at	the	wanted	destination,	also	called	States.	These	are	banned	by
the	PathFinder	from	the	considered	paths	for	the	next	searches,	to	create	more	variety	in	the
found	routes.	The	PathFinder	continues	iterating	until	a	certain	time	limit	is	reached	or	the
number	of	paths	found	is	sufficient.	Next,	the	found	paths	are	returned	to	the	user.

OTP	going	international

The	rapidly	growing	interest	in	digitalized	solutions,	including	software	and	hardware,	can
nowadays	be	observed	all	around	the	globe.	One	of	the	keys	to	such	a	product's	success
lies	within	its	ability	to	perform	efficient	communication	with	its	end-users	through	simplified
and	localized	interfaces.	Translation	is	a	very	important	factor,	appealing	to	potential
customers	to	buy	the	product	or	application,	once	it	tries	to	enter	and	win	the	market.
Despite	being	an	open	source	project,	the	OTP	is	equipped	with	a	convenient	and	easy
mechanism	for	providing	support	of	new	languages.	Our	analysis	has	shown	that	a	couple	of
localizations	already	exist,	in	most	cases	done	by	contributors	from	Europe.	Following	this
trend,	decided	was	to	include	the	support	of	one,	new	language	-	Polish	-	which	is	designed
to	become	a	decision-driving	factor	for	companies	which	originate	in	that	country,	but	still
hesitate	on	whether	to	choose	this	product	or	switch	to	commercial	competitors.

The	translation	process	of	the	web	interface	was	conducted	in	accordance	to	instructions
included	in	an	official	guide	written	by	OTP	developers.	The	first	step	was	connected	with	re-
using	a	dedicated	translation	template	with	English	phrases	as	a	base	for	new	localization
files.	This	was	done	with	the	help	of	POEdit	software,	which	is	a	good	solution	for	the
manipulation	of	gettext	(i18n)	content.	Since	the	software	uses	JSON	structures	for	its
provision	of	support	for	various	languages,	the	files	were	converted	and	saved	in	the	desired
format.	The	last	step	involved	the	adjustment	of	the	representation	of	units,	and	date	/	time
formats,	that	were	the	most	suitable	for	the	newly	generated	localization.	The	graphical
representation	of	the	following	steps	in	this	process	is	included	below.

OpenTripPlanner

305

as	well	as	the	graph	and	transit	feeds.	If	requested,	the	real-time	feeds	for	transit	and
historical	data	on	traffic	speeds	is	included	in	the	Routing	Context	as	well.	The	Context	is
then	given	to	the	PathFinder.	The	PathFinder	is	responsible	for	actually	searching	possible
routes	from	origin	to	destination.	This	is	done	by	applying	the	A	star	algorithm.	Several
heuristics	are	used	in	this	algorithm	to	speed	up,	depending	on	the	type	of	request.	This
leads	to	a	ShortestPathTree	with	the	discovered	itineraries.	From	this	list	the	itineraries	are
taken	that	actually	arrive	at	the	wanted	destination,	also	called	States.	These	are	banned	by
the	PathFinder	from	the	considered	paths	for	the	next	searches,	to	create	more	variety	in	the
found	routes.	The	PathFinder	continues	iterating	until	a	certain	time	limit	is	reached	or	the
number	of	paths	found	is	sufficient.	Next,	the	found	paths	are	returned	to	the	user.

OTP	going	international

The	rapidly	growing	interest	in	digitalized	solutions,	including	software	and	hardware,	can
nowadays	be	observed	all	around	the	globe.	One	of	the	keys	to	such	a	product's	success
lies	within	its	ability	to	perform	efficient	communication	with	its	end-users	through	simplified
and	localized	interfaces.	Translation	is	a	very	important	factor,	appealing	to	potential
customers	to	buy	the	product	or	application,	once	it	tries	to	enter	and	win	the	market.
Despite	being	an	open	source	project,	the	OTP	is	equipped	with	a	convenient	and	easy
mechanism	for	providing	support	of	new	languages.	Our	analysis	has	shown	that	a	couple	of
localizations	already	exist,	in	most	cases	done	by	contributors	from	Europe.	Following	this
trend,	decided	was	to	include	the	support	of	one,	new	language	-	Polish	-	which	is	designed
to	become	a	decision-driving	factor	for	companies	which	originate	in	that	country,	but	still
hesitate	on	whether	to	choose	this	product	or	switch	to	commercial	competitors.

The	translation	process	of	the	web	interface	was	conducted	in	accordance	to	instructions
included	in	an	official	guide	written	by	OTP	developers.	The	first	step	was	connected	with	re-
using	a	dedicated	translation	template	with	English	phrases	as	a	base	for	new	localization
files.	This	was	done	with	the	help	of	POEdit	software,	which	is	a	good	solution	for	the
manipulation	of	gettext	(i18n)	content.	Since	the	software	uses	JSON	structures	for	its
provision	of	support	for	various	languages,	the	files	were	converted	and	saved	in	the	desired
format.	The	last	step	involved	the	adjustment	of	the	representation	of	units,	and	date	/	time
formats,	that	were	the	most	suitable	for	the	newly	generated	localization.	The	graphical
representation	of	the	following	steps	in	this	process	is	included	below.

OpenTripPlanner

306

OTP	is	an	interesting	project	because	it’s	both	commercial	and	open	source.	This	means
that	there	is	a	community	that	is	involved	in	maintaining	and	improving	the	code,	but	this
community	is	small	at	the	same	time.	The	authors	are	not	very	clear	about	their	intentions
regarding	the	future	of	the	software.	From	a	technical	point	of	view,	the	project	works	quite
well.	Although	the	routing	engine	has	some	bugs,	none	of	these	are	show	stoppers	and	the
project	is	used	in	some	important	trip	planners.

If	the	project	owners	want	OpenTripPlanner	to	become	a	lively	open	source	project,	it	is
recommended	that	they	are	more	open	about	their	goals	for	the	future	and	involve	the
community	in	discussions	about	release	schedules	and	features.	Direct	undiscussed
commits	to	the	master	branch	are	not	recommended.	But	it’s	hard	to	keep	a	community
involved	and	deliver	software	to	clients	at	the	same	time.

References

1.	 Rozanski,	N.	&	Woods,	E.	(2012).	Software	systems	architecture	:	working	with
stakeholders	using	viewpoints	and	perspectives.	Upper	Saddle	River,	NJ:	Addison-
Wesley.

2.	 Conveyal	Consultancy	Official	Website	'http://conveyal.com'	
3.	 -	Google	Groups	Mailing	Lists

'https://groups.google.com/forum/#!forum/opentripplanner-users'	
4.	 OTP's	Official	Website,	'http://docs.opentripplanner.org/en/latest/'	
5.	 OTP's	Documentation,

'http://docs.opentripplanner.org/en/latest/Deployments/#opentripplanner-deployments-
worldwide'	

6.	 Software	Freedom	Consservancy	(SFC)	Official	Website	'http://sfconservancy.org/'	
7.	 Trimet	Trip	Planner	(https://ride.trimet.org/)	
8.	 Trip	Planner	by	Municipal	Transport	Company	of	Valencia

'http://www.emtvalencia.es/geoportal/?lang=en_otp'
9.	 http://www.opentripplanner.org/blog/2013/11/22/otp-joins-sfc/
10.	 http://docs.opentripplanner.org/en/latest/Developers-Guide/#contributing-to-the-project
11.	 http://docs.opentripplanner.org/en/latest/#basic-otp-architecture
12.	 https://18f.gsa.gov/2015/10/05/managing-technical-debt/
13.	 http://chadfowler.com/blog/2014/01/22/the-crunch-mode-antipattern/
14.	 http://verraes.net/2013/07/managed-technical-debt/

OpenTripPlanner

307

http://conveyal.com
https://groups.google.com/forum/#!forum/opentripplanner-users
http://docs.opentripplanner.org/en/latest/
http://docs.opentripplanner.org/en/latest/Deployments/#opentripplanner-deployments-worldwide
http://sfconservancy.org/
https://ride.trimet.org/
http://www.emtvalencia.es/geoportal/?lang=en_otp
http://www.opentripplanner.org/blog/2013/11/22/otp-joins-sfc/
http://docs.opentripplanner.org/en/latest/Developers-Guide/#contributing-to-the-project
http://docs.opentripplanner.org/en/latest/#basic-otp-architecture
https://18f.gsa.gov/2015/10/05/managing-technical-debt/
http://chadfowler.com/blog/2014/01/22/the-crunch-mode-antipattern/
http://verraes.net/2013/07/managed-technical-debt/

Ruby	on	Rails	-	Always	on	Track

Abstract
Ruby	on	Rails	is	a	web	framework,	focusing	on	making	the	development	of	web	applications
easier	and	more	fun.	This	framework	has	over	3,000	contributors,	700,000	users,	and
200,000	lines	of	code.	To	help	developers	understand	Rails,	we	first	analyse	the
stakeholders	of	Rails	and	provide	an	overview	of	where	Rails	stands	in	the	real	world.	We
then	describe	Rails	from	various	viewpoints	and	perspectives	to	understand	its	software
architecture.	Providing	these	insights	should	help	people	join	the	Rails	community	and
contribute	to	Rails,	and	give	Rails	members	a	description	of	their	system	from	an	outsider’s
perspective.

Introduction
Rails	is	a	Ruby	framework	designed	to	facilitate	web	development	and	to	develop	database-
backed	web	applications.	The	Rails	project	was	started	back	in	2004,	and	the	first	release	of
Rails	occurred	in	December	2005.	In	2008,	Rails	migrated	to	GitHub.	The	purpose	of	the

Ruby	on	Rails

308

https://www.ruby-lang.org/en/
https://github.com/

Rails	framework	is	to	make	the	development	of	web	applications	easier	and	before	all,	more
fun	[12].

As	of	today,	there	are	over	700,000	websites	built	with	Rails	[1],	3,000	contributors	to	the
Rails	project,	and	this	framework	contains	overall	200,000	lines	of	code.	From	seamless
database	integration	to	providing	a	REST	API;	from	emailing	support	to	rendering	HTML	with
embedded	Ruby	code	-	Rails	contains	anything	a	web	developer	needs.

The	Rails	core	development	team	meticulously	relies	on	two	concepts:	Convention	Over
Configuration	and	Don’t	Repeat	Yourself.	These	software	paradigms	ensure	the	uniformity	of
the	code	base	and	the	simplicity	of	development,	without	losing	flexibility.

For	the	Software	Architecture	2016	course,	we	chose	Rails	to	investigate	and	to	contribute
to.	For	our	contributions	to	Rails,	we	approached	the	core	developers	and	they	gave	us	a
task	to	help	them	for	the	next	release	of	Rais.	It	was	an	honour	to	assist	them,	and	we	got
offered	to	work	on	a	separate,	though	related,	Rails	project.

Concerning	our	research	upon	Rails,	we	report	our	findings	in	this	chapter.	We	start	off	a
with	a	stakeholder	analysis	to	inquire	upon	who	and	which	entities	have	an	interest	in	the
realisation	of	the	framework.	Then,	we	put	Rails	into	context	by	showing	where	it	stands	in
the	real	world.	We	then	approach	the	functionalities	of	Rails	and	describe	the	modules	that
make	up	the	framework.	We	investigate	the	variability	of	the	framework,	i.e.	how	Rails
facilitates	configurability.

Additionally,	as	security	is	an	important	aspect	of	the	Web,	we	investigate	how	Rails	deals
with	important	security	concerns.	Finally,	we	conclude	this	report	with	a	discussion	of	Rails
nowadays.

Stakeholder	Analysis
When	it	comes	to	designing	a	product	for	usage,	one	must	think	of	who	will	have	an	interest
in	this	particular	product,	even	when	we	speak	of	software.	These	entities	or	people	who
hold	a	stake	in	the	realisation	of	the	product	are	called	stakeholders.	Rails	has	many
stakeholders	that	we	have	identified	in	the	table	below.	We	have	sorted	them	according	to
the	eleven	types	proposed	by	Rozanski	and	Woods	[18].

Ruby	on	Rails

309

https://github.com/rails/rails/graphs/contributors

Type Stakeholder Description

Developers

Core
developers,
committer
team	and
contributors

The	core	developers	sets	policies	and	are	the
general	managers,	the	committer	team	helps	the
core	developers	with	pull	requests.

Acquirers Core
developers

The	core	developers	decide	on	the	overall	direction
of	Rails.	There	are	no	business	sponsors	for	Rails.

Assessors Developers
in	general

Developers	assess	the	conformance	to	standards
and	legal	regulations	themselves.

Communicators Teachers

Rails	is	taught	by	teachers	in	online	environments
by	means	of	instructive	movies	on	YouTube,
tutorials	on	the	web,	or	answering	questions	on
StackOverflow.	There	is	a	special	project	called
“Ruby	on	Rails	Guides”	[16],	which	provides
guidelines	“designed	to	make	you	immediately
productive	with	Rails”.

Maintainers
Core
developers,
contributors

The	overall	evolution	is	maintained	by	the	core
developers,	all	other	maintenance	tasks	by
contributors.

Product
Engineers

Users,
developers

The	users	are	the	engineers	of	Rails	products,	the
developers	manage	the	GitHub	repository	and	the
Rails	information	website.

Suppliers GitHub GitHub	is	a	supplier	for	the	Rails	repository.

Support	Staff Developers,
teachers

Support	for	the	development	of	Rails	is	done	by
developers	in	mailing	lists	and	on	GitHub.	The
teachers	provide	support	for	Rails	applications	on
platforms	such	as	StackOverflow.

System
Administrators

Core
developers,
committer
team

They	control	the	development	of	the	project.

Testers

Core
developers,
committer
team

They	are	responsible	for	the	testing	of	new
commits.

Users

Developers
and
organisations
that	use
Ruby	on
Rails

Examples	of	projects	that	are	built	with	Rails	are:
Basecamp,	GitHub,	Shopify,	Airbnb,	Twitch,
SoundCloud,	and	many	more.

Ruby	on	Rails

310

https://www.youtube.com/
http://stackoverflow.com/
https://basecamp.com/
https://github.com/
https://www.shopify.com/
https://www.airbnb.com/
https://www.twitch.tv/
https://soundcloud.com/

Additionally,	the	following	stakeholders	are	identified	but	do	not	fall	within	the	types	of
Rozanski	and	Woods.

Gem	Contributors:	Some	developers	develop	gems	that	can	contain	anything	from	libraries
to	self-contained	applications	that	are	useful	for	a	Rails	application.

End-Users:	End-users	are	the	people	who	view	and	use	Rails	website	as	consumers.	For
instance,	a	GitHub	visitor.

RailConf	Organisers:	There	is	a	yearly	Rails	conference	in	order	to	meet	people	of	the	Rails
community	in	real	life.

Bloggers:	a	blog	is	maintained	by	some	developers	that	share	news	on	the	progress	of	Rails
development.

Open	Source	Scientists:	The	TU	Delft	Software	Architecture	class,	and	other	academics
interested	in	open	source,	perform	research	on	the	Rails	community	and	the	Rails
repository.

Ruby:	Rails	is	written	in	the	Ruby	programming	language.	There	is	a	cyclic	dependency
between	the	language	and	the	framework,	hence	making	Ruby	a	stakeholder	of	Rails.

Context	Viewpoint
In	this	section,	we	describe	the	context	model	of	Rails.	This	model	describes	what	the
system	does	and	does	not	do	and	defines	the	relationships,	dependencies,	and	interactions
between	the	framework	and	its	environment	[18].

Ruby	on	Rails

311

Figure	1:	Context	model	of	Ruby	on	Rails.

In	Figure	1,	we	display	the	context	model	of	Rails.	For	external	entities	that	are	not	self-
evident,	we	explain	its	role	with	respect	to	Rails.

VCS	and	issue	tracker:	GitHub	and	Git	facilitate	collaboration	between	developers	using	the
pull-based	development	model.	Furthermore,	GitHub	is	used	as	an	issue	tracker.

Package	managers:	Ruby	comes	with	two	package	managers:	RubyGems	and	Bundler.	On
the	one	hand,	RubyGems	is	shipped	with	Ruby	and	is	normally	used	for	installing	packages,
known	as	gems,	on	system	level.	On	the	other	hand,	Bundler	is	usually	used	to	install

Ruby	on	Rails

312

https://rubygems.org/
http://bundler.io/

dependencies	based	on	a		Gemfile		which	is	included	in	almost	every	Ruby	project.	Note
that	Bundler	itself	is	a	gem,	which	can	be	installed	using	RubyGems.

Communication	tools:	The	Ruby	on	Rails	community	is	heavily	active	and	makes	use	of
different	communication	channels:	Google	Groups,	Freenode,	Stack	Overflow,	and	GitHub.
Google	Groups	is	used	to	discuss	the	core	functionality	of	the	framework.	GitHub	serves	as
a	mean	to	discuss	issues,	primarily	bugs	and	perform	code	reviews.

Testing	frameworks:	As	every	application	is	developed	to	satisfy	users'	need,	it	is	important
that	we	can	verify	and	validate	its	functionality.	To	facilitate	testing,	the	Ruby	community
developed	many	testing	frameworks	each	with	its	own	target	domain.

Supported	databases:	As	more	complex	applications	are	developed,	it	is	likely	that	one	is
required	to	store	data.	This	is	where	databases	play	an	important	role.	Databases	provide
means	to	read	and	write	data	to	a	storage	device.

Middleware:	Rack	provides	a	minimal	interface	between	web	servers	that	support	Ruby	and
Ruby	frameworks	[7].	It	specifies	a	communication	protocol	between	the	web	server	and	a
Ruby	framework,	such	that	the	Ruby	framework	can	work	with	an	HTTP	request,	and	that
the	web	server	can	construct	a	valid	HTTP	response	from	the	Ruby	framework	response	[2].

Web	servers:	A	web	server	processes	HTTP	requests	from	its	users	using	network
protocols.	Therefore,	to	make	an	application	accessible	from	the	Web,	one	will	need	to
deploy	a	Rails	application	using	Rack	and	a	web	server.

Functional	Viewpoint
The	functional	viewpoint	describes	the	system’s	runtime	functional	elements	and	their
responsibilities,	interfaces,	and	primary	interactions	[18].	The	functionalities	are	modeled	in
the	UML	diagram	of	Figure	2	and	further	described	in	this	paragraph.	Also,	a	common
development	scenario	is	described.	The	functionalities	were	extracted	from	the	Ruby	on
Rails	guides	[16].

Functionalities

Ruby	on	Rails

313

	Figure	2:
Functional	structure	model	of	Rails.

Rails	Router

The	Rails	router	has	the	responsibility	to	receive	HTTP	requests	and	to	recognize	URLs	and
dispatches	them	to	a	controller’s	action.	For	each	URL	path,	a	controller	and	action	is
defined.	When	an	HTTP	request	received	,	the	router	determines	which	controller	and	action
to	use.	Then,	an	instance	of	the	controller	is	made	and	the	action	method	is	called.

Application	Controller

The	application	controller	is	responsible	for	manipulating	the	business	logic	of	the
application,	initiating	the	create,	read,	update,	delete	(CRUD)	operations,	and	the	rendering
process.	Controllers	can	be	defined	and	are	interfaced	by	subclasses	of	the
	ApplicationController	.	The	methods	of	the	subclass	are	the	actions	of	the	controller.

Data	Modeler

The	data	modeler	has	the	following	responsibilities:

1.	 Represent	models	and	their	data.
2.	 Represent	associations	between	these	models.
3.	 Represent	inheritance	hierarchies	through	related	models.

Ruby	on	Rails

314

4.	 Perform	database	operations	in	an	object-oriented	fashion.

Models	are	interfaced	by	subclasses	of	the		ActiveRecord::Base		class.	The	attributes	of	the
class	are	mapped	to	the	columns	of	the	model	table.

Data	Validator

The	data	validator	has	the	responsibility	to	ensure	that	only	valid	data	is	stored	in	the
database	and	to	provide	ways	to	define	what	is	valid	data	and	what	is	not.	The	data
validators	are	also	defined	in	the	interface	for	the	models.	Attributes	of	the	subclass	that
represent	columns	in	the	table	of	the	model	can	be	validated	on	specific	criteria.	Each	time
data	is	created	or	updated	the	validation	criteria	are	checked.	If	the	validation	criteria	are	not
met,	the	operation	will	fail.

Database	Migrator

The	database	migrator	is	responsible	for	providing	ways	to	alter	the	database	schema	in	a
consistent	and	easy	way.	Migrations	can	be	interfaced	in	two	ways:

1.	 Manual	definition	in	a	ruby	domain	specific	language.
2.	 Automatic	generation	from	a	generator.	After	a	migration	is	defined	it	can	be	applied	by

calling	a	command	in	the	command	line.

Renderer

The	renderer	is	responsible	for	rendering	an	HTTP	response	body	and	to	give	the	HTTP
response.	The	render	method	that	is	called	from	a	controller	is	the	interface	to	the	various
rendering	techniques	used.	There	are	8	rendering	options	described	in	the	variability
overview.

Rails	Generators

The	generators	have	the	following	responsibilities:

1.	 Set	up	a	Rails	application.
2.	 Generate	boilerplate	code.
3.	 Set	up	user-defined	generators.
4.	 Perform	database	migrations.

The	generators	form	an	external	entity	that	needs	to	be	called	from	the	command	line.

Gem	integrator

Ruby	on	Rails

315

The	gem	integrator	has	the	responsibility	to	integrate	gems	into	Rails	applications.	Most
users	use	bundler	for	the	installation	gems.	Bundler	also	keeps	track	of	the	versions	and
dependencies	of	gems.	Gems	can	after	installation	be	added	to	the	application	by	using	the
‘require’	command	in	the	Ruby	code.

Debugger

The	debugger	is	responsible	for	logging	information	and	for	tracking	down	problems	and
issues	in	the	application	that	tests	do	not	spot.	There	are	three	interfaces	for	the	debugger.

1.	 There	are	methods	in	Rails	that	can	be	used	to	provide	debug	information.
2.	 Debug	information	can	be	sent	to	the	Rails	logger.
3.	 The	Byebug	gem	can	be	used	to	set	breakpoints	in	the	code	and	analyse	the	code	at

runtime.

Asset	provider

The	asset	provider	has	three	responsibilities:

1.	 Concatenate	CSS	and	JavaScript	assets.
2.	 Asset	minification	and	compression.
3.	 Provide	assets	to	end-users.

Assets	are	placed	and	interfaced	in	the		app/assets		directory.	The	sprocket	middleware
serves	the	files	by	default	in	that	directory.

Common	Developer	Scenario

To	show	how	the	system	behaves	we	walk	through	the	implementation	of	a	Ruby	on	Rails
forum	application.	The	requirements	for	this	application	are	simple.	There	are	multiple	users
that	log	into	the	system	and	can	post	messages	on	the	forum	board.	At	first,	the	application
is	created	by	using	a	Rails	generator.	The	application	router	contains	paths	for	the	login
screen	and	for	the	forum	board.	There	is	a		User		model	class	and	a		Message		model	class.
Validators	are	added	to	the	model	classes	to	check	that	the	message	and	username	fields
are	of	limited	length.	When	an	end-user	posts	a	message	the	router	instantiates	a	new
controller	instance	and	calls	an	action	method	of	that	controller.	In	the	method,	a	data
storage	operation	is	called.	However,	as	the	model	has	a	validator	on	the	message	column,
the	message	length	is	checked	prior	to	storing	the	data.	Then,	the	render	method	is	called
and	renders	an	HTML	response	based	on	the	forum	board	template	that	is	sent	to	the
browser.	The	browser	requests	CSS	assets	that	are	mentioned	in	the	HTML	template.
These	are	served	by	the	asset	pipeline.

Ruby	on	Rails

316

https://github.com/deivid-rodriguez/byebug

Development	Viewpoint
This	section	presents	the	development	viewpoint	of	the	Rails	framework,	providing
information	of	how	Rails	is	structured,	developed	and	released.

Module	Organization

Rails	uses	the	Model-View-Controller	(MVC)	architectural	pattern	to	enforce	maintainability
and	to	correctly	decouple	responsibilities	for	each	layer,	namely	the	model,	view,	and
controller	layers	[6].	Other	modules	that	are	not	part	of	the	MVC	layers	are	categorized	as
core	utility	or	utility.	The	module	structure,	in	Figure	3,	gives	an	overview	of	the	layers	and
their	interlayer	dependencies.

Figure	3:	Module	structure	model	of	Ruby	on	Rails	with	interlayer	dependencies.

1.	 The	model	layer	consists	of	modules	that	encapsulate	database	and	business	logic.
2.	 The	view	layer	contains	all	logic	related	to	view	template	lookup	and	rendering,	and

provides	view	helpers	that	assist	when	building	HTML	forms,	Atom	feeds	and	more	[8].
3.	 The	controller	layer	is	chiefly	responsible	for	routing	and	handling	web	requests.
4.	 The	core	utility	layer	contains	a	collection	of	utility	classes	and	standard	library

extensions	which	all	other	layers	depend	on.	The		railties		module	contains

Ruby	on	Rails

317

functionality	to	glue	all	modules	together	[11].
5.	 The	utility	layer	contains	utility	modules	that	provide	optional	functionality,	such	as

sending	and	receiving	emails,	running	background	tasks	and	WebSockets	integration.

Standardization	of	Design

In	this	section,	we	describe	the	common	components	and	design	of	major	modules,	e.g.
Action	Pack,	Action	View	and	ActiveRecord,	and	the	recommended	development	approach
to	get	contributors	started.

In	the	Module	Organization,	we	have	seen	that	every	module	depends	on	Railties	and	Active
Support.	For	this	reason,	we	clarify	the	role	of	these	two	modules	in	Rails.

Railties	is	responsible	for	gluing	all	frameworks	together.	[11]

Every	major	module	in	Rails	is,	in	fact,	a	Railtie.	Modules	define	their	own	initialization	and
generators	using	Railtie.	Furthermore,	Railties	is	responsible	for	managing	the	Rails
command-line	interface	[11].

Active	Support	is	a	collection	of	utility	classes	and	standard	library	extensions	that	were
found	useful	for	the	Rails	framework.	[10]

One	essential	utility	that	Active	Support	provides	is		ActiveSupport::Autoload	,	which	allows
developers	to	lazily	load	constants.

Rails	provides	developers	a	standard	development	environment,	which	can	be	installed
using	Vagrant	and	Virtualbox	and	a	contributing	guide	on	coding	style	conventions	Finally,
Batsov	has	written	an	extensive	style	guide	for	Rails.

Standardization	of	Testing

Rails	promotes	test-driven	development	(TDD)	[13].	To	enforce	this,	Rails’	Active	Support
module	provides	a	test	class,		ActiveSupport::TestCase	,	that	should	be	extended	by	every
other	test	class.	The		TestCase		class	utilizes	the	MiniTest	test	framework	and	defines
additional	or	enhancing	functionality,	such	as	assertions	and	fixtures.

Once	a	change	in	code	is	completed,	it	is	recommended	to	run	the	test	suite(s)	belonging	to
the	affected	module(s).	If	all	tests	pass,	one	is	allowed	to	make	a	pull	request	on	GitHub.
This	will,	then,	trigger	a	continuous	integration	service,	namely	Travis	CI,	to	ensure	that	the
proposed	changes	do	not	introduce	unexpected	failures	[13].

Instrumentation

Ruby	on	Rails

318

https://github.com/rails/rails-dev-box
https://www.vagrantup.com/
https://www.virtualbox.org/
http://guides.rubyonrails.org/contributing_to_ruby_on_rails.html#write-your-code
https://github.com/bbatsov/rails-style-guide
https://github.com/seattlerb/minitest
https://travis-ci.org/

Rails	provides	severals	means	for	source	code	instrumentation;	Logger,	Log4r,	Byebug,	and
more.

Rails	provides	the		ActiveSupport::Logger		class	to	log	information,	which	can	be	substituted
by	Log4r,	to	be	utilized	for	debugging	purposes.	Both	tools	provide	the	means	to	alter	the
level	of	detail	logging	for	messages,	which	can	improve	the	performance	of	a	system.

When	one	is	not	able	to	detect	a	bug	in	the	code	using	Logger	or	Log4r,	one	is	suggested	to
use	a	Byebug,	which	allows	developers	to	introduce	breakpoints	into	the	code.

Source	Code	Organization

In	this	section,	we	describe	the	structure	of	the	source	code,	which	specifies	how	code	is
structured,	built,	tested,	released,	and	deployed	[18].

The	code	structure	of	Rails	is	explained	in	the	Module	Organization.	However,	we	have	not
yet	described	the	structure	of	a	typical	module.	Each	module	contains	three	directories,
namely		bin	,		lib	,	and		test	.	The		bin		directory	contains	executable	Ruby	scripts.	The
	lib		directory	contains	source	code	for	the	module,	i.e.	functionality	is	implemented	in	this
directory.	The		test		directory	contains	all	test	code,	which	ensures	that	code	adheres	to	the
desired	functionality	[13].

Rails	uses	Rake	as	its	build	tool.	It	is	used	to	define	tasks	that	can	be	executed,	such	as
testing,	generating	documentation,	preparing	releases,	installing	gems,	and	more.	These
tasks	can	be	defined	in	a		Rakefile	.	Additionally,	Rails	uses	Bundler	to	manage	its
dependencies.	Dependencies	are	defined	in	a	so-called		Gemfile	,	which	enables	one	to
install	all	dependencies	using	one	command:		bundle	install	.

Once	a	developer	is	done	writing	code,	(s)he	has	to	test	the	written	code	and	check	for
regressions.	This	can	be	done	locally	using	Rake,	which	defines	a		test		task.
Subsequently,	if	the	tests	pass	locally,	one	can	push	the	changes	to	the	Rails	repository
hosted	on	GitHub	to	trigger	the	Travic	CI	service.	Also,	Rails	has	a	rails-bot	that
automatically	assigns	the	appropriate	developer	to	review	the	changes.	This	way,	Rails
attempts	to	ensure	that	the	changes	do	not	introduce	any	regression.

Finally,	Rails	has	defined	a	Rake	task	to	release	Rails	and	its	modules	on	RubyGems,	a
gem	hosting	service.	RubyGems	allows	Rails	to	define	metadata,	such	as	name	and
description,	and	its	dependencies	in	a		*.gemspec		file.	This	way,	Ruby	developers	can	install
a	module	and	its	dependencies	effortlessly	with	Bundler.	Further	information	about	releasing
can	be	found	in	the		RELEASING_RAILS.md		file.

Variability	Viewpoint

Ruby	on	Rails

319

http://guides.rubyonrails.org/debugging_rails_applications.html#the-logger
https://github.com/colbygk/log4r
https://github.com/deivid-rodriguez/byebug
https://github.com/ruby/rake
http://bundler.io/
https://github.com/
https://github.com/rails-bot
https://rubygems.org/
https://github.com/rails/rails/blob/master/RELEASING_RAILS.md

Variability	is	the	ability	to	tailor	the	system	in	different	ways,	according	to	different	needs.
Instead	of	making	a	software	according	to	stakeholder	requirements,	a	system	can	come	in
different	shapes	to	suit	its	stakeholders.

Rails	is	a	framework	for	the	many,	but	the	many	do	not	necessarily	want	the	same	thing.
Providing	variability	is	thus	an	important	goal	for	Rails,	to	suit	its	stakeholders’	needs.

Features

In	this	section,	we	have	chosen	a	set	of	configurable	features.	This	list	is	not	exhaustive	but
shows	an	accurate	example	of	Rails’	variability	and	modularity.

Web	Server

A	web	server	handles	HTTP	requests,	performs	calculations	and	returns	the	appropriate
response	to	the	client.

Rack	provides	an	interface	which	is	compatible	with	all	kinds	of	web	servers	[20,	19,	3]:

Passenger	has	built-in	deployment	error	resistance	and	has	both	an	open	source	and
enterprise	variant.
Puma	has	a	tiny	footprint	in	both	size	and	execution	resources,	most	importantly
memory,	consumption	and	supports	multiple	threads.
Thin	claims	to	be	the	most	secure,	stable,	fast	and	extensible	Ruby	web	server.
Unicorn	has	both	a	rich	set	of	features,	but	delegates	whatever	responsibilities	it	can	to
other	resources.
WEBrick	is	the	standard	for	a	new	Rails	project,	thus	very	simple	to	start	using	for
development.

The	choice	of	web	servers	can	be	found	in	the		Gemfile	.	The	decision	of	which	web	server
to	use	is	made	directly	after	the		rails	server		command	is	executed,	thus	the	binding	time
is	at	load-time.

Request	Handling

Web	request	and	responses	handling	in	Rails	is	done	by	the	Action	Dispatch	module	and
provides	a	range	of	middleware	components,	from	which	SSL	and	session	cookies	are	vital
when	it	comes	to	security.

ActionDispatch::SSL	contains	all	the	logic	to	enable	SSL	with	a	list	of	configuration	options,
like		config.force_ssl	,	the		secure		flag	and	HTTP	Strict	Transport	Security	(HSTS).	The
ActionDispatch::Cookies	component	sets	the	cookies	for	requests	and	contains	three	main
configuration	flags	regarding	cookie	signing	and	salting.

Ruby	on	Rails

320

https://www.phusionpassenger.com/
http://puma.io/
https://github.com/macournoyer/thin
http://unicorn.bogomips.org/
http://ruby-doc.org/stdlib-2.0.0/libdoc/webrick/rdoc/WEBrick.html
http://api.rubyonrails.org/classes/ActionDispatch.html
https://github.com/rails/rails/blob/master/actionpack/lib/action_dispatch/middleware/ssl.rb
https://github.com/rails/rails/blob/master/actionpack/lib/action_dispatch/middleware/cookies.rb

For	every	request	handled,	the	Rack		call		method	is	called	by	one	of	the	Action	Dispatch
components,	which	then	routes	the	request	to	the	correct	method	and	ensures	that	an
appropriate	response	is	sent	back	with	cookies	if	so	desired,	thus	the	binding	time	is	at	run-
time.

Object-Relational	Mapping

Object-Relational	Mapping	(ORM)	is	a	technique	that	connects	rich	objects	to	databases
[14].

Because	Rails	is	built	in	a	modular	manner,	it	can	be	used	with	many	ORM	frameworks:

Active	Record:	Default	ORM	shipped	with	Rails	and	thus	favors	conventions	over
configurations.
Sequel:	A	plugin-based	system,	allowing	plugins	to	extend	its	functionality	[5].
Ruby	Object	Mapper:	Advantageous	over	Active	Record	due	to	its	capabilities	to	use
data	providers	such	as	REST	API,	NoSQL	databases,	etc.
MongoMapper:	Maps	objects	to	a	NoSQL	database,	namely	MongoDB.
ActiveResource:	Similar	to	Active	Record,	as	it	follows	the	Rails	philosophy	but	is
specially	developed	for	a	REST	API.

Also,	Rails	applications	can	be	developed	without	an	ORM,	i.e.	developers	can	write	pure
database	queries.

The	ORM	variability	is	achieved	by	the	Active	Model	gem	that	provides	an	interface	which
external	ORM	developers	should	adhere	to,	such	that	their	ORM	can	be	integrated	into
Rails.	If	a	user	wants	to	use	another	ORM,	(s)he	should	indicate	in		Gemfile		and
	config/application.rb		which	ORM	they	want	to	use	by	including	a	custom	ORM	gem.	Due
to	the	fact	that	one	has	to	configure	an	ORM	in	configuration	files,	the	ORM	is	bound	at
load-time.

Database

Based	on	what	ORM	framework	is	used,	one	can	choose	a	database	system	that	suits	one’s
requirements	best:	SQLite,	PostgreSQL	or	MySQL.

Furthermore,	one	is	able	to	use	different	databases,	such	as	MongoDB	and	REST	web
services,	by	using	alternative	ORM	gems,	and	can	use	many	other	databases	with	Rails,
e.g.	one	can	install	Active	Record	adapters	for	Firebird,	DB2,	etc.	Note	that	one	is	also	able
to	use	Rails	without	a	database	and,	therefore,	will	only	be	able	to	store	data	in	memory.

Ruby	on	Rails

321

https://github.com/rails/rails/tree/master/activerecord
http://sequel.jeremyevans.net/
http://rom-rb.org/
http://mongomapper.com/
https://www.mongodb.org/
https://github.com/rails/activeresource
https://github.com/rails/rails/tree/master/activemodel
https://www.sqlite.org/
http://www.postgresql.org/
https://www.mysql.com/
http://www.firebirdsql.org/
http://www-01.ibm.com/software/data/db2/

The	user	defines	the	used	database	in	the		Gemfile		and		config/database.yml	,	a
configuration	file,	which	is	read	once	when	a	Rails	application	is	loaded,	resulting	in	binding
at	load-time.

Rendering

Rendering	is	the	process	of	turning	a	template	or	string	into	an	HTTP	response	with	the
appropriate	format	rendering,	being	one	of	the	following:	nothing,	ERB	template,	Builder
template,	text,	HTML,	JSON,	XML	or	Javascript.

The	rendering	is	started	by	calling	the		ActionController::Base#render		method.	The	user
decides	the	controller	logic	and	thus	when	a	render	method	is	called,	so	bound	at	run-time.

Caching

There	are	three	types	of	caching	in	Rails	for	templates:	page	caching	(always	done	on	disk),
action	caching	and	fragment	caching.	According	to	the	Rails	Guides	[15],	there	are	different
options	available	for	the	storage	of	action	and	fragment	cached	data:	Memory	store,	File
store,	MemCache	store,	Ehcache	store,	Null	store	and	Custom	store.

The	methods	in	the	cache	store	class	are	called	inside	Rails	to	interact	with	the	cache	store,
which	is	configured	at	the	start	of	the	application	and	thus	is	bound	at	load-time.

Asset	Pipeline

The	asset	pipeline	provides	tools	and	mechanisms	by	which	JavaScript	files,	stylesheets,
and	images	can	be	processed	and	prepared	for	use	by	the	browser	[4].

	Sprocket-rails		is	responsible	for	plugging	the	asset	pipeline	inside	a	Rails	application.
When	enabling	the	asset	pipeline	with	the		config.assets.enabled		flag,	the		uglifier	,		sass-
rails		and		coffee-rails		gems	are	installed	alongside.	Sprockets	concatenates	all
JavaScript	files	into	one		.js		file	and	all	CSS	files	into	one		.css		file,	and	additionally
provides	tools	for	compression.	When	it	comes	to	customising	the	pipeline	itself,	we	can	look
at	significant	features	that	can	be	configured.	CSS	and	JS	compression	can	be	done	by
setting		config.assets.css_compressor		and		config.assets.js_compressor		to	match	the
compressor	gem.

Developers	may	choose	different	languages	in	order	to	code	assets.	Supported	languages
include	Sass	for	CSS,	CoffeeScript	for	JavaScript,	and	ERB	for	both	by	default	[4],	which	all
have	to	be	preprocessed.

Ruby	on	Rails

322

http://guides.rubyonrails.org/asset_pipeline.html
http://www.rubydoc.info/gems/sprockets-rails
http://www.rubydoc.info/gems/uglifier
http://www.rubydoc.info/gems/sass-rails
http://www.rubydoc.info/gems/coffee-rails

The	languages	supported	by	Rails	are	precompiled	during	preprocessing	time,	before	the
loading	of	the	application.	However,	the	binding	precompilation	and	all	configurations
relating	to	ERB	files	or	compressions	tools	are	recorded	and	loaded	when	the	server	loads,
thus	the	binding	time	is	at	load-time.

Feature	Dependency	Analysis

Ruby	on	Rails

323

Figure	4:	Feature	model	of	Rails,	created	in	FeatureIDE.

Rails	is	built	in	a	modular	way,	allowing	the	user	to	interchange	most	components	in	the
system,	thus,	reduce	the	number	of	dependencies	between	features.	As	can	be	seen	in
Figure	4	There	is	a	dependency	between	Object-Relational	Mapping	frameworks	and

Ruby	on	Rails

324

database	systems.	ORM	frameworks	are	developed	in	such	a	way	that	they	only	support
particular	databases.	For	example,	using	MongoDB	is	facilitated	by	the	Mongo	Mapper
framework.	There	is	a	dependency	between	page	caching	and	rendering.	The	pages	or
fragment	of	pages	first	need	to	be	rendered	before	they	can	be	cached.	Moreover,	when
looking	at	the	asset	pipeline,	we	observe	that	it	used	to	be	a	direct	dependency	to	Action
Pack.	However,	it	is	now	a	separate	module	that	can	be	added	to	Rails	depending	on	the
developer’s	wishes.

Security	Perspective
When	developing	for	the	web,	one	of	the	first	concepts	that	should	come	to	mind	is	security.
Many	frameworks,	including	Rails,	provide	useful	helper	methods	that	ensure	certain
security	aspects,	but	security	ultimately	depends	on	the	people	using	the	frameworks	[17].

Security	is	defined	by	Rozanski	and	Woods	[18]	as	the	set	of	processes	and	technologies
that	allow	owners	of	resources	in	a	system	to	reliably	control	who	can	read,	change	or
execute	which	resources.	Resources	are	at	the	center	of	the	system’s	security,	and	security
mechanisms	enforce	the	policies	that	define	how,	and	by	which	principals,	these	resources
can	be	accessed.

Security	Concerns

Taking	a	look	at	the	security	perspective	defined	by	Rozanski	and	Woods	[18],	we	identify
how	the	system	under	analysis,	namely	Rails,	deals	with	the	most	important	concerns	this
perspective	addresses.	The	most	important	concerns	include:

Managing	and	securing	of	resources.
Access	rights	of	entities,	also	known	as	principals.
Designing	of	security	policies.
Security	threats	to	the	system.
The	CIA	triad	of	confidentiality,	integrity,	availability,	and	accountability.
Threat	detection	and	recovery	from	attacks.
Security	mechanisms.

Security	Concerns	and	Rails

Rails	is	a	framework	that	facilitates	building	web	applications.	We	can,	therefore,	argue	that
it	is	not	the	responsibility	of	Rails	to	ensure	the	security	of	resources,	authentication	and
authorization	of	principals,	and	the	design	of	security	policies.	However,	Rails	does	provide
its	users,	who	are	developers	of	Rails	applications,	with	tools	and	guidelines	on	how	to

Ruby	on	Rails

325

handle	these	aforementioned	concerns	in	their	applications	[17].	Policies	can	easily	be
designed	with	the	help	of	Rails	sessions,	provided	user	management	tools	and	admin
security.

Regarding	threats	that	may	arise	in	Rails	applications,	Rails	itself	keeps	in	mind	details
about	the	possible	attacks.	The	guides	provide	with	helper	methods	and	guidelines	on	how
to	protect	Rails	applications	against	e.g.	cross-site	request	forgery	attacks	(CSRF),	cross-
site	scripting	attacks	(XSS)	and	session	hijacking.	Since	Rails	was	designed	to	help
developing	database-backed	web	application,	SQL	injections	are	also	a	potential	threat.	It
also	gives	a	clear	definition	of	what	these	threats	are,	how	the	possible	attacks	are
performed,	and	how	to	identify	them.

Rails	attempts	to	make	it	possible	for	users	to	ensure	the	CIA	triad,	with	the	accountability
addition,	by	means	of	sessions	to	ensure	confidentiality	and	logging	to	ensure	integrity.
Additionally,	with	the	use	of	sessions,	an	action	can	be	traced	back	to	the	principal	who
performed	it,	therefore	ensuring	accountability.	Availability	is,	however,	another	story,	as	it	is
the	user’s	responsibility	to	make	sure	the	application	is	available	for	end-users,	Rails	has	no
say	in	this.	When	end-users	authenticate	on	Rails	applications,	they	will	have	their	personal
session	assigned	to	them,	with	information	only	divulged	to	the	specific	session	token.	Rails
provides	its	users	with	logging	tools	that	log	activities	inside	the	application,	which	is	useful
to	check	whether	data	was	inadvertently	changed.

Rails’	logging	system	is	a	good	tool	for	detecting	attacks	on	integrity	and	accountability,	as	it
makes	it	possible	for	Rails	developers	to	track	the	resource	flow	on	their	system.	However,
recovering	from	such	attacks	is	not	really	part	of	Rails.	There	are	no	security	monitoring
mechanisms	incorporated	in	Rails.

Conclusions	and	Discussions
After	this	deep	analysis	of	the	Rails	project,	it	is	worth	noting	the	following	three	points:

Rails	is	a	large	center	of	interest,	which	is	always	evolving	to	provide	better	or	newer
features	for	web	development.
Rails	has	a	large	and	friendly	community,	who	is	always	eager	to	welcome	new
contributors.
Convention	over	Configuration	is	what	makes	Rails	a	suitable	framework	to	start	with.

The	lesson	to	learn	from	this	is	that	Rails	is	easy.	This	is	why	so	many	people	and
companies	use	it;	this	is	why	GitHub	uses	it!	It	reduces	advanced	configurations	to	one	set
of	flags,	it	provides	immediate	database	support,	it	makes	it	possible	for	beginner
developers	and	startups	to	make	advanced	web	applications	that	kick	off	their	business
plan.

Ruby	on	Rails

326

http://guides.rubyonrails.org/security.html#sessions
http://guides.rubyonrails.org/security.html#user-management
http://guides.rubyonrails.org/security.html#intranet-and-admin-security

With	that	being	said,	there	is	one	thing	we	should	consider:	Rails	is	a	project	from	over	ten
years	ago.	Therefore,	it	is	reasonable	to	say	that	many	newer	frameworks	have	followed	in
the	footsteps	of	Rails,	and	have	made	their	approach	even	better.	Hence,	we	have	to	keep
in	mind	that	Rails	is	getting	old,	and	more	recent	advancements	in	web	development	are
slowly	replacing	it.

Moreover,	Rails	has	one	little	aspect	that	is	possibly	problematic:	the	Ruby	language.	Rails
lacks	performance	mainly	because	of	Ruby.	As	easy	to	understand	as	it	may	be,	Ruby
remains	an	interpreted	language,	which,	performance-wise,	is	not	efficient.

Are	you	new	to	the	open	source	community	and	interested	in	contributing	to	Rails?	Take	a
look	at	Rails	and	the	guidelines	to	contribute	to	the	Rails	project.	The	Rails	team	will
welcome	you	with	open	arms,	and	will	provide	extensive	feedback	on	even	the	smallest
contributions	you	make.

References
1.	 BuiltWith.	Ruby	on	Rails	Usage	Statistics.	URL:

http://trends.builtwith.com/framework/Ruby-on-Rails,	2016.
2.	 Chande,	G.	What	is	‘Rack’	in	Ruby/Rails?	URL:	http://blog.gauravchande.com/what-is-

rack-in-ruby-rails,	2013.
3.	 Engine	Yard.	Rails	Server	Throwdown:	Passenger,	Unicorn	or	Puma?	URL:

https://www.engineyard.com/articles/rails-server,	2016.
4.	 Launch	School.	Everything	You	Should	Know	About	the	Rails	Asset	Pipeline.	URL:

https://launchschool.com/blog/rails-asset-pipeline-best-practices,	2014.
5.	 Marohnić,	J.	Ode	to	Sequel.	URL:	https://twin.github.io/ode-to-sequel/,	2015.
6.	 Mejia,	A.	Ruby	on	Rails	Architectural	Design.	URL:

http://adrianmejia.com/blog/2011/08/11/ruby-on-rails-architectural-design/,	2011
7.	 Neukirchen,	C.	Rack:	a	Ruby	Webserver	Interface.	URL:	https://rack.github.io/,	2012.
8.	 Rails.	Action	View.	URL:

https://github.com/rails/rails/blob/master/actionview/README.rdoc,	2015.
9.	 Rails.	Active	Model	–	model	interfaces	for	Rails.	URL:

https://github.com/rails/rails/blob/master/activemodel/README.rdoc,	2015.
10.	 Rails.	Active	Support	–	Utility	classes	and	Ruby	extensions	from	Rails.	URL:

https://github.com/rails/rails/tree/master/activesupport,	2016.
11.	 Rails.	Railties	–	Gluing	the	Engine	to	the	Rails.	URL:

https://github.com/rails/rails/blob/master/railties/README.rdoc,	2014.
12.	 Rails.	Ruby	on	Rails.	URL:	http://rubyonrails.org/,	2016.
13.	 Rails	Guides.	A	Guide	to	Testing	Rails	Applications.	URL:

http://guides.rubyonrails.org/testing.html,	2016.

Ruby	on	Rails

327

https://github.com/rails/rails
https://github.com/rails/rails/blob/master/CONTRIBUTING.md
http://trends.builtwith.com/framework/Ruby-on-Rails
http://blog.gauravchande.com/what-is-rack-in-ruby-rails
https://www.engineyard.com/articles/rails-server
https://launchschool.com/blog/rails-asset-pipeline-best-practices
https://twin.github.io/ode-to-sequel/
http://adrianmejia.com/blog/2011/08/11/ruby-on-rails-architectural-design/
https://rack.github.io/
https://github.com/rails/rails/blob/master/actionview/README.rdoc
https://github.com/rails/rails/blob/master/activemodel/README.rdoc
https://github.com/rails/rails/tree/master/activesupport
https://github.com/rails/rails/blob/master/railties/README.rdoc
http://rubyonrails.org/
http://guides.rubyonrails.org/testing.html

14.	 Rails	Guides.	Active	Record	Basics.	URL:
http://guides.rubyonrails.org/active_record_basics.html,	2016.

15.	 Rails	Guides.	Caching	with	Rails:	An	overview.	URL:
http://guides.rubyonrails.org/caching_with_rails.html,	2016.

16.	 Rails	Guides.	Ruby	on	Rails	Guides.	URL:	http://guides.rubyonrails.org/,	2016.
17.	 Rails	Guides.	Ruby	on	Rails	Security	Guide.	URL:

http://guides.rubyonrails.org/security.html,	2012.
18.	 Rozanski,	N.	Woods,	E.	Software	Systems	Architecture:	Working	with	Stakeholders

Using	Viewpoints	and	Perspectives.	Addison-Wesley,	2012.
19.	 Tezer,	O.	S.	A	Comparison	of	(Rack)	Web	Servers	for	Ruby	Web	Applications.	URL:

https://www.digitalocean.com/community/tutorials/a-comparison-of-rack-web-servers-
for-ruby-web-applications,	2013.

20.	 The	Ruby	Toolbox.	Web	servers.	URL:	https://www.ruby-
toolbox.com/categories/web_servers.	2016.

Ruby	on	Rails

328

http://guides.rubyonrails.org/active_record_basics.html
http://guides.rubyonrails.org/caching_with_rails.html
http://guides.rubyonrails.org/
http://guides.rubyonrails.org/security.html
https://www.digitalocean.com/community/tutorials/a-comparison-of-rack-web-servers-for-ruby-web-applications
https://www.ruby-toolbox.com/categories/web_servers

Sonic	Pi	-	The	Live	Coding	Synth	for
Everyone

An	in-depth	analysis	by	Tom	den	Braber,	Jeroen	Castelein,	Michel	Kraaijeveld	and	Paul	de
Goffau,	February-March	2016.

Abstract
In	this	chapter	we	provide	an	analysis	of	Sonic	Pi.	Sonic	Pi	is	an	application	in	which	code
can	be	written	to	create	music.	Through	examining	the	source	code,	the	existing
documentation	and	by	contributing	to	the	system,	we	gained	insights	which	we	used	to
describe	a	set	of	relevant	views	and	perspectives.	These	views	and	perspectives	are	based
on	software	architecture	standards.	They	range	from	stakeholder	analysis,	to	user
functionalities,	to	the	inner	development	view.	We	round	off	with	a	small	section	on	our
experiences	with	contributing	to	the	project.

Table	of	Contents
Introduction
Functional	view
Stakeholders
Context	view
Development	view
Variability	perspective
Internationalization	perspective
How	to	contribute

Sonic	Pi

329

Conclusion
Appendix	A	-	Ruby	Gems
Appendix	B	-	Code	Smells	in	the	Sonic	Pi	system

Introduction
Sonic	Pi	is	a	free	offline	application	where	users	can	write	their	own	code	to	produce	music.
It	is	designed	to	provide	an	accessible	programming	platform	for	children	or	others	with	little
programming	experience.	Rather	than	having	to	create	your	first	Java	class	with		public
static	void	main(String[]	args)		(what?)	to	get	close	to	printing	your	first		Hello	World		to
the	screen,	all	you	have	to	do	is	write	down		play	60		to	hear	your	first	beep.	Not	impressed
yet?	Add	a	loop,	drum	samples	and	some	time	between	the	samples.	That's	all	you	need	to
get	your	first	never-ending	beat	rolling.	The	code	is	entered	within	the	Sonic	Pi	application.	A
screenshot	of	the	GUI	of	the	application	can	be	found	in	Figure	1.

Figure	1:	Screenshot	of	the	Sonic	Pi	application,	with	code	for	the	never-ending	beat

Educational	tools	helping	users	learn	how	to	code	are	provided	in	the	form	of	tutorials.
Experienced	users	have	been	able	to	write	existing	or	new	songs,	which	they	may	share
through	code	or	sound.	Another	feature	that	Sonic	Pi	is	proud	of,	is	live	coding.	By	creating	a
	live_loop	,	users	can	modify	their	code	on	the	go	without	having	to	stop	the	music	in
between.	This	allows	Sonic	Pi	to	be	used	for	live	performances,	and	a	small	group	of	artists
use	Sonic	Pi	to	perform	at	clubs	and	parties.	The	development	of	Sonic	Pi	is	done	on	GitHub
and	its	code	is	completely	open	source.	Here,	the	developers	come	together	to	discuss
issues,	new	features	and	changes	to	the	system.	In	the	rest	of	this	chapter,	we	present	our
analysis	of	Sonic	Pi.	We	offer	several	architectural	views	and	perspectives,	inspired	by	the
book	on	Software	Architecture	by	Rozanski	and	Woods	[1].	After	reading	this	chapter,	you
will	have	a	core	understanding	of	the	functionalities	of	Sonic	Pi,	its	context,	the	stakeholders
involved	and	the	design	choices	made.	On	top	of	that,	you	will	be	able	to	use	this	knowledge
to	start	contributing	to	the	project	yourself.

Sonic	Pi

330

Functional	view
Before	we	introduce	all	of	the	functionalities	Sonic	Pi	has,	it	is	good	to	mention	what	Sonic	Pi
aims	to	be.	This	can	be	learnt	from	the	'motto'	as	stated	on	the	official	website	[2]:

Learn	to	code	creatively	by	composing	or	performing	music	in	an	incredible	range	of
styles	from	classical	to	algorave.

Here,	we	already	have	a	large	portion	of	that	what	Sonic	Pi	wants	to	be	summed	up.	The
primary	goal	is	education:	Sonic	Pi	offers	a	method	for	learning	to	code.	However,	Sonic	Pi
also	strives	to	be	a	musical	instrument,	and	not	just	any	musical	instrument:	it	should	be
possible	to	make	any	kind	of	music	you	want	to	make,	no	matter	how	complex.	This	can	also
be	seen	in	the	repository	of	the	project	[3]:

In	addition	to	being	an	engaging	education	resource	it	has	evolved	into	an	extremely
powerful	and	performance-ready	live	coding	instrument	suitable	for	professional	artists
and	DJs.

Functional	Capabilities

Now	that	we	know	what	the	goals	of	Sonic	Pi	are,	we	can	see	which	functionalities	are
offered	to	reach	these	goals.	Because	some	functionalities	are	strongly	related	to	each
other,	we	categorize	them	into	four	categories:	education,	code,	music	and	accessibility.

Education

Sonic	Pi	provides	lessons	within	the	application.	Users	can	click	on	the	'Help'	button	in	the
GUI	and	the	tutorials	and	examples	are	shown	at	the	bottom	of	the	screen.	The	users	can
follow	these	lessons	to	learn	programming	and	learn	about	programming	concepts.	The
lessons	are	written	in	such	a	way	that	they	can	be	followed	by	aspiring	programmers,	even	if
those	aspiring	programmers	are	still	children.	An	example	of	such	a	lesson	can	be	seen	in
Figure	2.	In	this	specific	example,	the	student	can	learn	about	the	list	data	structure	and	how
it	can	be	used	in	Sonic	Pi.

Sonic	Pi

331

Figure	2:	An	example	of	a	lesson	that	can	be	found	within	Sonic	Pi

Code

Sonic	Pi	provides	its	own	Domain	Specific	Language	(DSL).	This	language	can	be	used	to
'describe'	sounds	and	subsequently	play	them.	The	Sonic	Pi	DSL	is	a	collection	of	functions
written	in	the	Ruby	programming	language.	Sonic	Pi	can	also	transform	the	code	that	is
written	into	sounds.	In	order	to	be	able	to	run	this	code,	Sonic	Pi	has	a	code	editor	in	which
code	from	the	DSL	can	be	inserted.	Within	the	GUI,	it	provides	some	standard	programming
tools:	users	will	see	the	exceptions	their	code	throws,	they	can	inspect	the	log-output	and
code	can	be	automatically	aligned.	The	code	editor	is	very	basic;	for	example,	it	does	not
contain	a	debugger.

Music

Although	being	able	to	write	code	in	Sonic	Pi	is	nice,	it	also	has	to	be	translated	into	music.
This	functionality	is	also	present,	making	Sonic	Pi	a	musical	instrument.	It	is	done	by
providing	a	number	of	synthesizers	and	some	functions	for	timing	and	concurrency.	Sonic	Pi
itself	does	not	actually	make	music:	it	uses	an	external	platform	called	SuperCollider	[4].
This	does	not	mean	that	Sonic	Pi	does	not	do	anything	concerning	the	playing	of	music.
Sonic	Pi	instructs	SuperCollider	on	how	and	what	it	should	play	in	terms	of	timing,	beats	per

Sonic	Pi

332

minute	and	what	instruments	to	play	among	others.	To	be	able	to	use	Sonic	Pi	for	'live
coding',	Sonic	Pi	is	able	to	keep	playing	music	while	the	code	changes,	and	smoothly	bring
the	changes	into	the	currently	playing	musical	composition.

Accessibility

The	accessibility	aspects	of	the	application	are	strongly	related	to	the	goal	concerning
education.	To	be	able	to	be	truly	educative,	it	is	also	important	to	be	easily	accessible	so	that
people	will	actually	use	the	software.	Therefore,	Sonic	Pi	provides	a	user	interface	which	is
internationalized	to	a	great	extent.	Almost	all	of	the	text	shown	in	the	GUI	is	loaded	at
runtime,	translated	to	the	default	language	of	the	computer	running	Sonic	Pi	if	available.
Another	aspect	of	accessibility	is	that	the	application	comes	with	an	installer,	which	is	very
easy	to	use.

As	the	name	of	Sonic	Pi	indicates,	one	of	the	core	goals	is	to	be	able	to	run	smoothly	on	a
Raspberry	Pi.	The	Raspberry	Pi	is	a	very	cheap	computer,	so	being	able	to	run	on	the
Raspberry	Pi	enlarges	the	possible	userspace	of	Sonic	Pi.	Sonic	Pi	can	however	be	run	on
all	major	platforms	to	make	it	possible	for	everyone	with	access	to	a	computer	to	learn
programming.

Internal	Structure

Now	that	it	is	clear	which	functionalities	Sonic	Pi	offers,	we	can	have	a	first	look	at	how
Sonic	Pi	implements	these	functionalities.	A	high-level	overview	can	be	seen	in	Figure	3.

There	are	two	non-obvious	choices	that	deserve	some	explanation:	the	choice	for	using
SuperCollider	as	synthesizer	tool	and	the	choice	for	the	overall	architecture	of	having	a
client	and	a	server.	The	choice	for	SuperCollider	can	be	explained	by	looking	at	another
project	where	Sam	Aaron,	the	founder	of	Sonic	Pi,	was	involved.	In	2010,	a	project	called
Overtone	[5]	was	founded,	which	also	heavily	relies	on	SuperCollider.	Sam	Aaron	is	also
one	of	the	main	contributors	of	Overtone	and	has	contributed	to	this	project	from	the	start
and	thus	already	had	experience	with	SuperCollider	when	starting	Sonic	Pi	in	2013.	It	is
likely	that	this	experience	lead	to	the	choice	for	using	SuperCollider	in	Sonic	Pi.	The	second
choice	can	possibly	be	explained	by	looking	into	the	future:	one	of	the	ideas	for	contributions
that	can	be	found	in	the	Sonic	Pi	repository	is	to	synchronize	multiple	instances	of	Sonic	Pi
over	the	internet	[6],	so	that	multiple	artists	can	form	an	'orchestra'.	The	client/server
architecture	could	be	a	first	step	towards	that	goal,	albeit	that	currently	every	client	has	an
own	dedicated	server.

Sonic	Pi

333

Figure	3:	Internal	structure	of	Sonic	Pi

The	GUI	takes	care	of	all	interaction	with	the	user.	The	Sonic	Pi	server	provides	all	the
business	logic:	the	parsing	of	the	DSL	and	sending	instructions	to	the	SuperCollider	server.

The	arrows	in	the	diagram	show	the	message	flow.	The	GUI	communicates	with	the	Sonic	Pi
server	over	TCP	or	UDP.	The	Sonic	Pi	server	communicates	with	the	SuperCollider	server
using	the	OSC	protocol.	This	protocol	can	be	used	for	networking	sound	synthesizers,
computers	and	other	multimedia	devices	[7].

Stakeholders
In	order	to	understand	why	certain	design	choices	have	been	made,	and	what	roles	people
have	taken	in	this	project,	we	will	describe	the	stakeholders	that	have	been	involved	in	the
project.	These	are	separated	into	five	groups:	developers,	suppliers,	communicators,	users
and	investors.

Developers

The	most	important	group	of	stakeholders	is	the	developers.	They	are	the	ones	who	actively
work	on	the	project	and	use	the	application	to	come	up	with	improvements	and	new	ideas.
The	team	of	developers	is	quite	small.	Sam	Aaron	is	by	far	the	main	contributor	and	he
responds	to	all	issues	and	merges	most	of	the	pull	requests.	Joseph	Wilk	(@josephwilk),
Xavier	Riley	(@xavriley),	Jeremy	Weatherford	(@jweather)	and	Hanno	Zulla	(@hzulla)	are
other	important	developers	that	often	join	the	development	discussions	or	create	issues/pull
requests.	They	are	mostly	active	in	collaboratively	thinking	of	a	solution,	after	which	it	is
implemented.	All	of	them	have	a	great	interest	in	Sonic	Pi,	whether	as	an	educational	tool	or
a	music	making	tool	which	motivates	them	to	develop	further.

Suppliers

Sonic	Pi	is	designed	to	run	on	the	Raspberry	Pi	platform.	The	low	price	of	the	Raspberry	Pi
allows	users	to	invest	little	money,	while	getting	all	of	the	features	that	Sonic	Pi	provides.	Its
small	size	also	allows	users	to	carry	it	along	easily.	This	is	what	makes	the	Raspberry	Pi

Sonic	Pi

334

https://github.com/samaaron
https://github.com/josephwilk
https://github.com/xavriley
https://github.com/jweather
https://github.com/hzulla

foundation	an	important	supplier.	Raspberry	Pi	has	also	included	the	Sonic	Pi	application	in
their	Jessie	distribution	[8].

The	SuperCollider	project	is	the	supplier	of	the	sound	for	Sonic	Pi,	as	it	turns	instructions
into	sound.

Communicators

This	group	consists	of	the	Raspberry	Pi	Foundation,	translators	and	guide	creators.	The
Raspberry	Pi	Foundation	has	supported	its	development	by	offering	learning	material	on
their	website	[9].	A	lot	of	people	are	involved	by	translating	the	tutorial	that	is	embedded	in
the	application.	Developers	help	each	other	by	creating	documentation.	The	most	useful
documentation	consists	of	guides	to	build	the	system	on	different	operation	systems.

Users

There	are	two	groups	of	users,	those	who	use	it	for	education	and	those	who	use	it	for	live
performance.

Education.	Teachers	use	Sonic	Pi	to	learn	their	students	how	to	code	interactively.	It	is
not	clear	how	many	teachers	do	this,	however	the	Raspberry	Pi	lessons	have	been
trialled	at	a	number	of	schools	as	part	of	the	Computing	curriculum	in	the	UK.	In	this
blog	by	one	such	teacher,	he	portrays	how	well	Sonic	Pi	is	received	by	his	students.
(Live)	musical	performance.	With	Sonic	Pi	and	live	coding,	Sam	Aaron	wants	to
introduce	the	computer	as	an	instrument.	He	frequently	performs	at	events	and	on
livestreams	where	he	codes	music.	This	is	well	received	by	the	audience	as	it	is	quite
impressive.	Other	artists	have	put	some	music	up	on	for	instance	SoundCloud.	It	is
interesting	to	see	that	also	source	code	is	uploaded.	An	example	is	the	start	of	the
famous	song	"Let	it	go"	from	Disney's	Frozen.

Both	of	these	groups	use	the	software	for	learning	and	enjoyment.	They	may	encounter
bugs	or	have	ideas	for	new	features,	at	which	point	they	can	approach	the	developers	by
creating	an	issue	on	GitHub.

Investors

The	Sonic	Pi	project	originates	from	a	project	funded	by	the	Broadcom	Foundation,
executed	by	Sam	Aaron	at	the	University	of	Cambridge	[10].	The	aim	of	this	project	was	to
create	a	product	that	would	help	teachers	use	the	Raspberry	Pi	to	teach	computer	science.

Sonic	Pi

335

http://supercollider.github.io/
http://www.suppertime.co.uk/blogmywiki/2016/03/teaching-sonic-pi/
https://www.livecoding.tv/samaaron/videos/BeBp3-live-coding-w-sonic-pi-303/
https://soundcloud.com/groups/sonicpi
https://gist.github.com/danreedy/a0f0aa1ec2eb275c55a2

As	time	went	by,	the	interest	for	Sonic	Pi	grew,	now	funded	by	the	Raspberry	Pi	Foundation.
They	decided	to	improve	Sonic	Pi	and	design	a	v2.0.	This	project	was	called	Sonic	Pi:	Live
and	Coding,	and	was	partnered	by	Cambridge	Junction	and	the	Raspberry	Pi	Foundation.
From	Nesta,	a	charity	located	in	the	UK	dedicated	to	support	ideas	that	can	help	improve
our	lives,	they	received	a	large	donation	to	realize	this	project.

Classification	of	stakeholders:	Power	vs.	Interest

All	these	stakeholders	and	their	interests	fit	into	a	power-interest	diagram,	which	can	be
seen	in	Figure	4.	Power	indicates	that	a	stakeholder	has	a	lot	of	influence	on	the	project.
Interest	indicates	that	a	stakeholder	has	a	high	interest	in	the	prosperity	of	the	project.	It	is
interesting	to	see	how	the	stakeholders	of	any	project	actually	interact	with	the	development,
should	they	be	satisfied	by	developers	or	should	the	developers	aim	to	accommodate	to
powerful	stakeholders.

The	stakeholders	are	placed	according	to	their	position	within	the	project:

The	developers	have	high	interest	and	high	power,	as	they	manage	the	whole	project
with	passion.	Their	ideas	and	effort	allow	Sonic	Pi	to	grow.
Sam	Aaron	is	on	payroll	at	Cambridge	University	where	he	is	a	research	associate.
The	Sonic	Pi	project	started	there,	but	after	that	they	were	never	too	involved	with	the
development	process.
SuperCollider	is	an	application	that	is	used	by,	but	does	not	rely	on,	Sonic	Pi.	It	has
little	influence	on	Sonic	Pi's	growth.
Stakeholders	with	low	power	and	high	interest	are	the	investors,	suppliers	and
translators.	They	want	to	use	the	application	itself,	or	want	to	see	it	flourish	because
they	think	it	might	be	interesting	for	the	society.

Sonic	Pi

336

http://www.junction.co.uk

Figure	4:	Power	interest	diagram	of	the	Sonic	Pi	stakeholders

Context	view
In	Figure	5	Sonic	Pi	is	depicted	in	relation	to	its	context.	You	can	see	the	two	groups	of
users,	students	and	music	performers,	depicted	at	the	right	of	the	diagram.	The	users	enter
code	into	the	GUI.	This	code	is	sent	to,	and	interpreted	by	a	server	that	runs	a	Ruby
interpreter.	The	server	calls	the	SuperCollider	application	to	play	sounds.	The	SuperCollider
application	processes	these	calls,	and	sends	the	required	sound	bits	to	the	local	sound
system.	This	sound	is	heard	by	the	user.	The	required	sounds	have	mostly	been	created	by
an	application	called	Overtone,	where	performers	can	create	new	music	samples.	The	Sonic
Pi	system	is	maintained	and	improved	by	the	developers.	These	developers	are	supported
by	documentation	made	by	the	communicators.	The	developers	are	funded	by	some
companies,	depicted	by	the	logos	of	Nesta	and	the	Broadcom	Foundation.	The	developers
base	their	maintaining	and	improvements	on	the	issues,	mostly	created	by	teachers	that
interact	with	their	students,	but	also	directly	by	the	students.	Recall	that	the	group	of	users
also	contains	performers	that	use	the	application	to	create	music.

Sonic	Pi

337

Figure	5:	Context	view

Development	view
The	development	view	describes	the	structure	of	the	Sonic	Pi	system	from	the	perspective
of	developers.	This	includes	the	different	modules	of	the	system,	the	testing	and	release
processes	and	an	analysis	on	technical	debt.

Module	structure	model

Sonic	Pi

338

The	Sonic	Pi	system	consists	of	two	parts:	a	GUI	and	a	server.	In	this	section,	the
organization	of	Sonic	Pi's	source	code	is	shown	by	giving	an	analysis	of	the	modules	and
their	interdependencies.	In	addition,	to	get	a	clear	overview	of	the	interactions,	the	modules
are	presented	in	layers.

GUI

We	start	by	analyzing	the	GUI,	of	which	the	main	task	is	to	make	interaction	with	the	actual
application	possible	via	graphical	elements;	it	should	enhance	the	user	experience.	This	can
also	be	seen	in	the	various	modules	that	were	identified.	The	following	modules	are
contained	in	the	GUI.

MainWindow:	The	main	code	source,	creates	the	GUI	that	is	visible	and	controls	most
of	the	user	interaction.
SonicPiOSCServer:	Handles	the	starting	and	stopping	of	the	listening	to	the	server	(the
other	part	of	the	system).
OscHandler:	Handles	all	the	messages	received,	executes	the	relevant	functions.
SonicPiAPIs:	Manages	auto-completion.
SonicPiLexer:	Colors	keywords	based	on	the	active	theme.
SonicPiLog:	Adds	messages	to	the	log	output	in	the	GUI,	colored	based	on	the	active
theme.
SonicPiScintilla:	Handles	all	the	text	coloring,	text	inserting,	layout,	etc.	on	the	main
coding	screen.
SonicPiTheme:	Implements	the	themes.
Help	&	doc:	Automatically	generated	files	for	the	tutorials	and	documentation	within	the
GUI.
Qt:	The	external	Qt	framework	that	the	GUI	is	built	upon.
Qscintilla:	A	port	to	Qt	of	the	Scintilla[11]	C++	editor	control.

In	addition,	you	can	find	the	dependencies	of	the	different	modules	depicted	in	Figure	6.
Note	that	some	modules	depend	on	libraries	more	than	one	layer	down,	due	to	the	use	of	Qt
in	all	modules.

Sonic	Pi

339

http://www.qt.io/
https://riverbankcomputing.com/software/qscintilla/intro

Figure	6:	GUI	module	structure	model

Server

The	server	part	of	the	system	contains	the	business	logic	of	the	program.	The	modules	in
the	server	are	a	collection	of	functional	modules	to	execute	commands	from	the	GUI,
definitions	for	the	code	to	be	interpreted,	and	the	communication	with	the	SuperCollider
server.

sonic-pi-server.rb:	Instantiates	all	necessary	threads	to	run	the	system	on	this	end.
Runtime:	Takes	transformed	input	from	the	GUI	and	processes	this	so	that	the
necessary	functions	are	executed.
Studio:	Controls	the	music	settings,	the	recording,	and	the	communication	with
SuperCollider.
OSC::UDPClient:	Listens	to	the	GUI.
OSC::UDPServer:	Performs	the	communication	with	the	GUI	and	SuperCollider.
OSC:	Contains	the	OSC	encoding	and	decoding.
Core:	Has	basic	helper	functions,	some	threading	functions.	This	forms	a	backend	to	all
the	code.
Settings:	Handles	user	settings;	loading,	changing	and	saving.
SynthInfo:	Contains	the	information	on	the	different	synth	options.
LangDefs:	Contains	special	language	definitions,	functions	etc.
SoundDefs:	Contains	special	language	definitions,	functions	etc.	These	functions	also
contain	the	execution	of	synths.
Ruby	Standard	Library:	The	standard	modules	and	classes	that	come	with	Ruby.
Ruby	Gems:	Are	packets	of	external	Ruby	code	that	are	easily	installable.	The	list	of

Sonic	Pi

340

used	gems	can	be	found	in	Appendix	A.

You	can	find	the	dependencies	of	the	server	in	Figure	7.

Figure	7:	Server	module	structure	model

Testing	Approach

Testing	is	done	both	locally	and	with	a	continuous	integration	server	on	GitHub.	At	the	time
of	writing,	109	automatic	tests	have	been	added	to	the	system,	resulting	in	a	line	coverage
of	6%.	This	amount	is	not	astonishing,	considering	there	are	many	more	classes	and
methods	that	keep	Sonic	Pi	running.	A	thing	to	note	though;	the	Sonic	Pi	source	code	also
contains	a	lot	of	inline	documentation,	which	are	counted	by	the	program.	Therefore,	the
actual	coverage	is	higher,	but	could	not	be	measured	with	the	tools	available.	The	lack	of
tests	can	also	be	seen	in	the	contribution	guide,	as	it	is	not	stated	that	tests	need	to	be
provided	when	creating	a	pull	request.

Release	Process

All	changes	are	merged	directly	to	the	master	branch	of	the	project,	so	there	is	no	branch
available	that	only	contains	stable	releases.	This	means	that	between	versions,	you	will
need	to	use	the	release	tags	or	download	an	executable	from	the	Sonic	Pi	website	to	get	a
stable	version.	Furthermore,	there	are	no	formal	requirements	that	a	release	should	fulfill,
such	as	test	coverage	or	documentation.	Therefore,	technical	integrity	is	not	guaranteed	and

Sonic	Pi

341

http://sonic-pi.net

releases	are	made	when	Sam	Aaron	decides	that	enough	additions	have	been	made.	When
a	new	public	version	is	released,	the	current	state	of	the	master	branch	is	tagged
accordingly	and	new	installers	will	be	created	so	they	can	become	available	as	downloads
on	the	website.

Technical	Debt

The	extra	time	needed	to	make	changes,	especially	to	parts	which	were	quickly	and	not
optimally	implemented,	is	considered	as	technical	debt.	When	a	project	suffers	from
technical	debt,	it	is	more	difficult	and	costly	to	maintain	it	properly.	Several	elements	of
technical	debt	can	be	distinguished:

Low	test	coverage;	as	mentioned	earlier,	the	system	is	not	optimally	tested	as	only	a
small	part	is	covered.	Although	100%	coverage	does	not	mean	that	every	possible	bug
or	defect	is	found,	increasing	the	current	percentage	would	still	be	a	good	approach.
Deficient	documentation;	none	of	the	files	had	a	description	of	what	their	usage	is
which	makes	it	hard	to	find	out	the	exact	use	of	some	of	the	files.	No	module	or	method
documentation	is	presented,	which	makes	it	difficult	to	understand	the	intended	working
of	classes	and	methods.	Also	the	source	code	lacks	consistent	commenting.
Addressing	of	issues;	multiple	issues	are	available	in	the	issue	tracker	on	GitHub.
Most	of	them	are	quickly	addressed,	but	it	isn't	always	clear	why	some	are	still
unresolved.	Therefore	it	is	not	clear	whether	the	project	has	technical	debt	based	on	the
issue	handling	alone.
Code	smells;	some	examples	of	code	smells	are	large	classes,	duplicate	code	or	a
high	cyclomatic	complexity.	Since	most	of	the	logic	of	the	Sonic	Pi	program	is	written	in
Ruby,	Reek	[12]	was	used	and	gave	a	lot	of	valuable	insights	in	the	amount	of	code
smells	in	the	code.	The	result	of	this	can	be	found	in	Appendix	B.	In	addition	to	the	code
smells,	there	are	also	libraries	used	in	the	Sonic	Pi	project,	which	are	not	always	up	to
date.	Since	around	40%	of	the	used	libraries	are	not	up-to-date,	and	one	is	even
deprecated,	we	can	conclude	that	technical	debt	is	affecting	the	Sonic	Pi	project.

Variability	perspective
Practically	every	software	product	has	some	form	of	configurability	in	them.	Whether	it	is
obtained	through	different	versions	of	the	software,	e.g.	enterprise	edition	vs.	free	edition,	or
possibly	by	changing	options	within	the	application,	such	as	displaying	line	numbers	in	a	text
editor.	Sonic	Pi	is	no	stranger	to	this	concept.	Within	the	user	interface	there	are	many
adaptable	features	concerning	for	instance	logging	and	user	friendliness.	There	are	also
different	builds	for	different	operating	systems,	which	alter	some	of	Sonic	Pi's	functionalities.

Sonic	Pi

342

http://sonic-pi.net
https://github.com/samaaron/sonic-pi/issues

To	show	the	configurability	of	the	system,	we	display	all	the	variable	features	offered.	In	the
feature	model	(Figure	8)	all	of	these	features	are	displayed.	Distinction	is	made	between
optional	and	mandatory	features,	as	portrayed	in	the	legend.	The	lighter	colored	boxes	are
abstract	features	containing	a	set	of	other	features.	The	darker	colored	boxes	are	features
the	user	may	change.	The	model	is	constructed	using	the	eclipse	plugin	FeatureIDE	[13].

Figure	8:	Feature	Model,	created	with	FeatureIDE

These	variable	features	can	be	changed	at	different	times.	We	distinguish	compile-,	boot-
and	runtime.

Compile-time

In	the	source	code,	directives	are	used	to	include	and	exclude	certain	lines	of	code	when
compiling	for	a	certain	operating	system.	A	couple	of	features	are	only	compiled	for	certain
operating	systems.	They	can	be	found	in	Figure	8	under	the	Raspberry	Pi	only	and	Mac	OS
only	nodes.	Since	no	specific	features	are	available	only	on	Windows,	there	is	no	node
containing	this	operating	system.

Boot-time

Boot-time	is	a	special	kind	of	runtime.	In	our	definition,	features	are	bound	at	boot-time	when
the	feature	is	set	when	starting	the	program	and	it	cannot	be	changed	afterwards.	Two
features	fulfill	these	criteria.	First,	the	translation	that	is	used	in	the	GUI.	When	the	program
is	booted,	the	system	locale	is	used	to	try	and	find	an	appropriate	translation.	After	the
program	has	decided	a	language,	there	is	no	way	for	the	user	to	change	it.	The	other	feature
is	the	communication	protocol	(TCP	or	UDP)	used.	The	server	can	be	configured	using	a
parameter.	However,	it	is	not	possible	to	change	this	decision	after	the	server	has	been
started.

Runtime

Sonic	Pi

343

All	other	features	are	decided	at	runtime.	Whilst	using	the	program	the	user	can	change
these	features.	For	instance,	the	user	can	switch	the	theme	between	a	light	and	a	dark
theme,	or	they	can	enable/disable	logging	on	their	code	runs.

Internationalization	perspective
With	Sonic	Pi's	goal	to	be	used	by	children	globally,	internationalization	(i18n	for	short)	is	an
important	perspective	that	needs	to	be	taken	into	account.	Although	a	majority	of	the
children	nowadays	learns	English	at	school	early	on	or	through	interaction	with	the	internet,
most	will	not	feel	comfortable	in	playing	with	an	application	if	it	is	not	in	their	mother	tongue.
Sonic	Pi	aims	to	provide	this	comfort	by	translating	the	interface	and	most	importantly	the
tutorials.	At	the	time	of	writing,	9	different	languages	are	available,	from	English	to	French	to
Japanese.	To	increase	this	number,	the	developers	approach	their	users	to	contribute	with	a
translation	of	their	language.	This	is	implemented	by	displaying	a	message	to	users	from
countries	with	no	available	translation	with	a	link	to	the	Sonic	Pi	repository.	In	the	repository
an	extensive	explanation	is	provided	for	users	unfamiliar	with	GitHub	on	how	to	add	their
language.

One	thing	that	is	not	translated	is	the	code	the	user	writes.	The	code	can	be	written	in
unicode,	and	thus	supports	every	alphabet.	However,	the	language	definition	used	in	Sonic
Pi	is	always	in	English.	This	is	not	optimal,	as	someone	who	understands	what
	play_pattern_timed		means	through	language	can	use	it	more	easily	than	someone	who
doesn't.

Similar	to	the	language	definition,	the	Ruby	runtime	executing	the	code	written	by	the	user
can	produce	syntax	errors	or	other	errors.	These	errors	are	shown	in	the	GUI,	but	are	not
translated.	This	makes	debugging	difficult	if	the	user	cannot	read	English.	A	small
compensation	is	offered	by	highlighting	the	line	in	the	code	that	generated	the	error.

Other	important	elements	that	could	still	be	translated	are	the	buttons	in	the	top	bar.	These
buttons	are	based	on	images,	containing	short	English	terms,	of	which	an	example	can	be
found	in	Figure	9.	To	compensate	for	the	English	labels	on	the	images,	the	developers	also
included	a	small	image	that	intuitively	shows	the	function	of	the	button.

Figure	9:	Some	of	the	buttons	in	the	GUI

Other	improvements	that	could	still	be	made	to	improve	internationalization	are:

options	to	change	the	language	at	runtime,	rather	than	being	decided	on	boot.
offering	text-orientation;	some	languages	are	written	right	to	left,	rather	than	left	to	right.

Sonic	Pi

344

How	to	contribute
Sonic	Pi	is	open	to	contributions,	but	it	might	not	be	very	clear	on	how	you	can	contribute	to
it.	Therefore,	we	devote	a	section	to	our	experiences	with	contributing	to	Sonic	Pi.	To	start
off,	there	are	no	specific	rules	you	need	to	comply	with	when	writing	code	for	the	project.	As
a	result,	most	of	the	pull	requests	with	code	changed	are	merged	if	they	look	good	and
contributing	can	be	considered	easy	that	way.	In	addition,	Sam	Aaron	is	quick	to	reply	on
pull	requests,	which	ensures	that	you	know	what	you	are	up	to.	A	drawback	of	the	lack	of
rules	is	that	you	don't	know	beforehand	whether	your	changes	fit	in	with	the	project	and	you
need	to	await	the	initial	feedback.

Due	to	a	lack	of	planning,	although	this	is	improved	for	the	upcoming	version	3.0,	it	is	not
always	easy	to	find	parts	of	Sonic	Pi	you	can	work	on.	One	of	the	things	you	can	do,	is	go
through	the	issue	list	and	see	whether	you	can	fix	any	of	the	problems	that	are	indicated
there.	You	can	also	create	an	issue	yourself	in	which	you	explain	a	feature	that	you	want	to
have	implemented	and	work	on	it	yourself.	There	is	a	contribution	guide	available	that	lists
some	ideas	for	future	Sonic	Pi	versions.	However,	it	is	not	updated	often	and	some	of	the
listed	features	are	already	implemented	in	the	meantime;	making	it	not	the	best	reference.
The	same	applies	to	the	milestones	mentioned	earlier,	as	these	are	not	actively	used.

Overall,	Sonic	Pi	is	a	project	to	which	you	can	contribute	easily;	provided	that	you	first	have
found	something	to	contribute.	In	the	future	this	might	be	more	easily,	if	they	stick	to	using
milestones	and	tagging	issues	appropriately.

Conclusion
Sonic	Pi	is	an	innovative	application	to	learn	coding	through	music.	It	offers	tutorials	and
examples	to	get	everyone	started,	and	is	even	used	in	lessons	by	the	Raspberry	Pi
foundation.	Aside	from	teaching,	it	can	also	be	used	for	performing.	Sonic	Pi	has	the	ability
for	'live	coding',	making	it	possible	to	compose	pieces	of	music	and	play,	and	even	edit	it,
live.	Overall,	Sonic	Pi	is	a	fun	program	to	use	and	definitely	a	nice	way	to	learn	people	how
to	code.

We	do	think	that	there	are	a	couple	of	improvements	that	could	be	made	to	the	Sonic	Pi
project.	To	start,	the	way	in	which	pull	requests	are	merged	can	be	changed.	Currently
changes	are	merged	when	they	look	good,	but	there	is	no	proper	testing	required,	resulting
in	some	merges	breaking	parts	of	the	system.	A	proper	test	suite	would	solve	this	problem.
Elaborating	on	this,	a	test	suite	would	also	make	requirements	for	contributing	more	clear,	as
there	are	currently	no	guidelines	that	your	pull	request	needs	to	comply	with.	Another	thing
that	can	be	improved	is	the	planning	of	the	project.	At	this	moment,	it	is	not	entirely	clear

Sonic	Pi

345

https://github.com/samaaron/sonic-pi/milestones/v3.0
https://github.com/samaaron/sonic-pi/blob/master/HOW-TO-CONTRIBUTE.md
https://github.com/samaaron/sonic-pi/milestones/v3.0

what	we	can	expect	of	Sonic	Pi	in	the	future.	Milestones	are	not	very	actively	used,	so	it
would	be	a	big	improvement	if	it	was	clear	which	people	are	working	on	what	features	and
what	the	planning	of	the	project	is	in	the	long	run.

References
1.	 Rozanski,	Nick,	and	Eoin	Woods.	Software	systems	architecture:	working	with

stakeholders	using	viewpoints	and	perspectives.	Addison-Wesley,	2012.
2.	 Sonic	Pi,	http://sonic-pi.net/.	Accessed	on	March	14,	2016.
3.	 samaaron/sonic-pi:	The	Live	Coding	Synth	for	Everyone,

https://github.com/samaaron/sonic-pi.	Accessed	on	March	14,	2016.
4.	 SuperCollider	>>	SuperCollider,	https://supercollider.github.io.	Accessed	on	March	14,

2016.
5.	 Overtone	-	Collaborative	Programmable	Music,	http://overtone.github.io/.	Accessed	on

March	29,	2016.
6.	 sonic-pi/HOW-TO-CONTRIBUTE.md	at	master	-	samaaron/sonic-pi,

https://github.com/samaaron/sonic-pi/blob/master/HOW-TO-CONTRIBUTE.md.
Accessed	on	March	30,	2016.

7.	 Introduction	to	OSC	|	opensoundcontrol.org,	http://opensoundcontrol.org/introduction-
osc.	Accessed	on	March	26,	2016.

8.	 Raspberry	Jessie	description,	https://www.raspberrypi.org/blog/raspbian-jessie-is-here/.
Accessed	on	February	16,	2016.

9.	 Sonic	Pi	tutorial,	https://www.raspberrypi.org/learning/sonic-pi-lessons/.	Accessed	on
February	16,	2016.

10.	 WIPO	magazine,	Sonic	Pi:	Getting	Creative	With	Computer	Programming,
http://www.wipo.int/wipo_magazine/en/2015/03/article_0007.html.	Accessed	on
February	16,	2016.

11.	 Scintilla,	http://www.scintilla.org/.	Accessed	on	February	29,	2016.
12.	 Reek,	https://github.com/troessner/reek.	Accessed	on	February	26,	2016.
13.	 Thomas	Thüm,	Christian	Kästner,	Fabian	Benduhn,	Jens	Meinicke,	Gunter	Saake,	and

Thomas	Leich.	FeatureIDE:	An	Extensible	Framework	for	Feature-Oriented	Software
Development.	Science	of	Computer	Programming,	79(0):70-85,	January	2014.

14.	 Unused	gems?	-	Issue	#928	-	samaaron/sonic-pi,	https://github.com/samaaron/sonic-
pi/issues/928.	Accessed	on	February	29,	2016.

Appendix	A	-	Ruby	Gems

Sonic	Pi

346

http://sonic-pi.net/
https://github.com/samaaron/sonic-pi
https://supercollider.github.io
http://overtone.github.io/
https://github.com/samaaron/sonic-pi/blob/master/HOW-TO-CONTRIBUTE.md
http://opensoundcontrol.org/introduction-osc
https://www.raspberrypi.org/blog/raspbian-jessie-is-here/
https://www.raspberrypi.org/learning/sonic-pi-lessons/
http://www.wipo.int/wipo_magazine/en/2015/03/article_0007.html
http://www.scintilla.org/
https://github.com/troessner/reek
https://github.com/samaaron/sonic-pi/issues/928

The	list	of	Ruby	gems	is	quite	long,	and	we	did	not	manage	to	identify	why	each	gem	was
used.	Strangely	enough,	there	are	even	gems	present	in	the	'vendor'	folder	that	are	not	used
at	all.	These	gems	are	scheduled	to	be	used	within	a	certain	timespan	[14].	There	are	also
gems	that	are	only	used	for	testing.	Among	all	the	gems	listed	below,	we	can	see	that	there
are	a	few	recurring	categories:	sound-related	gems	and	gems	related	to	parsing	and
compilation.	These	two	categories	are	very	important	to	the	Sonic	Pi	system	and	it	is	not
surprising	to	find	them	in	the	listed	gems	as	well.

ActiveSupport	-	a	set	of	utility	classes	from	the	Rails	framework
alsa-rawmidi	-	access	the	alsa	raw	midi	API	via	Ruby
ast-2.0.0	-	library	for	working	with	Abstract	Syntax	Trees
atomic	-	provides	a	class	for	providing	atomic	updates
benchmark-ips	-	can	be	used	for	benchmarking
BlankSlate	-	provides	an	empty	base	class	which	can	be	used	for	e.g.	dynamic	proxies
did-you-mean	-	provides	'did	you	mean	suggestions'	in	errors
ruby-ffi	-	ruby	extension	for	programmatically	loading	dynamic	libraries,	binding
functions	within	them,	and	calling	those	functions	from	Ruby	code
ffi-coremidi	-	Access	the	Apple	Core	MIDI	framework	API	with	Ruby.
hamster	-	Efficient,	immutable,	and	thread-safe	collection	classes	for	Ruby
i18n	-	Ruby	Internationalization	and	localization	solution.
interception	-	Interception	(intercept	+	exception)	allows	you	to	intercept	all	exceptions
as	they	are	raised.	(probably	used	for	catching	exceptions	caused	by	a	user's	code)
kramdown	-	kramdown	is	yet-another-markdown-parser	but	fast,	pure	Ruby,	using	a
strict	syntax	definition	and	supporting	several	common	extensions.
metaclass	-	provides	a		__metaclass__		method	to	all	ruby	objects
midi-winmm	-	Realtime	MIDI	input	and	output	with	Ruby	for	Windows/Cygwin.	Uses	the
WinMM	system	API
midilib	-	midilib	is	a	pure	Ruby	MIDI	library	useful	for	reading	and	writing	standard	MIDI
files	and	manipulating	MIDI	event	data.
minitest	-	Ruby	testing	framework
mocha	-	provides	methods	for	stubbing	and	mocking
multi_json	-	will	simply	choose	the	fastest	available	JSON	coder
narray	-	alternative,	fast	Ruby	Array	implementation
parser	-	Parser	is	a	production-ready	Ruby	parser	written	in	pure	Ruby
parslet	-	Parslet	makes	developing	complex	parsers	easy.
Rouge	-	Pure	Ruby	syntax	highlighter
ruby-beautify	-	will	pretty	up	ruby	code.
rubame	-	Rubame	is	a	simple	Ruby	websocket	game	server.
coreaudio	-	CoreAudio	(Audio	Framework	of	Mac	OS	X)	wrapper	library	for	ruby	1.9
ruby-prof	-	ruby-prof	is	a	fast	code	profiler	for	Ruby.
rugged	-	Rugged	is	a	library	for	accessing	libgit2	in	Ruby.	It	gives	you	the	speed	and

Sonic	Pi

347

http://api.rubyonrails.org
https://github.com/arirusso/alsa-rawmidi
http://whitequark.github.com/ast/frames.html
http://github.com/headius/ruby-atomic
https://github.com/evanphx/benchmark-ips
https://github.com/masover/blankslate
http://github.com/yuki24/did_you_mean
https://wiki.github.com/ffi/ffi
http://github.com/arirusso/ffi-coremidi
http://rubydoc.info/github/hamstergem/hamster/master/Hamster/Hash
http://ruby-i18n.org/wiki
https://github.com/ConradIrwin/interception
http://kramdown.gettalong.org/
https://github.com/floehopper/metaclass
http://github.com/arirusso/midi-winmm/
http://github.com/jimm/midilib
https://github.com/seattlerb/minitest
http://gofreerange.com/mocha/docs/
https://github.com/intridea/multi_json
http://masa16.github.io/narray/
https://whitequark.github.io/parser/
http://kschiess.github.com/parslet
https://github.com/jayferd/rouge
http://www.arachnoid.com/ruby/rubyBeautifier.html
https://github.com/saward/Rubame
https://github.com/nagachika/ruby-coreaudio
http://github.com/ruby-prof/ruby-prof
https://github.com/libgit2/rugged/

portability	of	libgit2	with	the	beauty	of	the	Ruby	language.
Thread_safe	-	A	collection	of	thread-safe	versions	of	common	core	Ruby	classes.
unimidi	-	Platform	independent	realtime	MIDI	input	and	output	for	Ruby.
wavefile	-	A	pure	Ruby	gem	for	reading	and	writing	sound	files	in	Wave	format	(*.wav).
websocket	-	Universal	Ruby	library	to	handle	WebSocket	protocol

Appendix	B	-	Code	Smells	in	the	Sonic	Pi
system

Code	Smell Instances

Attribute 9

BooleanParameter 34

ClassVariable 16

ControlParameter 33

DataClumb 5

DuplicateMethodCall 365

FeatureEnvy 64

IrresponsibleModule 169

LongParameterList 23

NestedIterators 17

NilCheck 9

PrimaDonnaMethod 17

RepeatedConditionals 11

TooManyInstanceVariables 16

TooManyMethods 9

TooManyStatements 173

Uncommunicative	(Parameter,	Variable,	Module) 397

UnusedParameter 31

UtilityFunction 166

Sonic	Pi

348

https://github.com/ruby-concurrency/thread_safe
http://rdoc.info/gems/unimidi
http://wavefilegem.com/
https://github.com/imanel/websocket-ruby

TensorFlow™	-	Open	Source	Library	for
Machine	Learning	Applications

By:	Carmen	Chan-Zheng,	Ilse	Verdiesen,	Johan	Carvajal-Godinez	and	Pranav	Sailesh	Mani	
Software	Architecture,	Delft	University	of	Technology

Abstract
TensorFlow™	is	an	open	source	software	library	developed	by	the	Google	Brain	team	for	the
purpose	of	conducting	machine	learning	and	deep	neural	networks	research.	The	library
performs	numerical	computation	by	using	data	flow	graphs,	where	the	nodes	in	the	graph
represent	mathematical	operations	and	the	graph	edges	represent	the	multidimensional	data
arrays	(tensors)	which	communicate	between	the	nodes.	The	API	has	been	used	in	the
fields	of	medicine,	translation	services,	and	the	analysis	of	financial	markets.	This	chapter
first	describes	TensorFlow™	by	its	features	and	stakeholders,	secondly	the	architecture	is
analyzed	by	means	of	the	context,	development,	and	deployment	view,	and	finally	a
conclusion	is	provided.

Table	of	Contents
1.	 Introduction
2.	 What	is	TensorFlow?

2.1.	Features
2.2.	Stakeholders

3.	 Architecture
3.1	Views

TensorFlow

349

3.1.1	Context	view
3.1.2	Development	view
3.1.3	Deployment	view
3.2	Perspectives
3.2.1	Evolution	perspective
3.2.2	Variability	perspective
3.2.3	Performance	perspective

4.	 Conclusion
5.	 References

1.	Introduction
Machine	learning	is	an	artificial	intelligence	enabler	that	provides	the	foundations	for
extending	the	computer	capabilities	closer	to	human	brain.	To	get	there,	new	tools	need	to
be	developed,	especially	new	models	of	computation	that	support	faster	application
development	cycle.	This	is	not	an	easy	task,	which	requires	the	help	from	the	crowd
sourcing	community.	TensorFlow™	is	an	extended	version	of	DistBelief,	a	system	developed
for	internal	use	at	Google.	DistBelief	was	internally	used	by	Google	employees	to	build	large
neural	networks	and	scale	training	to	thousands	of	cores	in	Google's	datacenters.	Some	of
the	applications	of	Distbelief	were	image	recognition,	speech	recognition,	Google	search	etc.
However,	DistBelief	had	its	own	disadvantages.	It	was	specifically	designed	for	neural
networks	and	was	difficult	to	configure.	It	was	also	tightly	coupled	to	Google's	internal
infrastructure.	In	order	to	overcome	this	problem,	Google	developed	TensorFlow™	whose
main	purpose	is	to	simplify	real	world	use	of	machine	learning	systems.	It	is	only	recently
(From	December	18th	2015)	that	the	TensorFlow™	team	has	started	accepting	contributions
through	GitHub	before	they	were	using	the	Gerrit	system	for	collaborating.	The	history	of
developments	starts	from	TensorFlow™	v0.5.0	till	the	current	version	0.7.0.	This	chapter	is
intended	to	explore	three	key	elements:	(1)	What	is	TensorFlow™,	(2)	its	main	architectures
views,	and	(3)	its	more	relevant	perspectives.	Following	this	purpose,	this	chapter	has	been
organized	to	explore	the	stakeholders,	the	context	view,	the	development	view,	the
deployment	view,	the	evolution-,	the	variability-,	and	the	performance	perspectives.

2.	What	is	TensorFlow™?
TensorFlow™	is	an	open	source	library	for	developing	machine	learning	applications.	These
applications	are	implemented	using	graphs	to	organize	the	flow	of	operations	and	tensors	for
representing	the	data.	It	offers	an	application	programming	interface	(API)	in	Python,	as	well

TensorFlow

350

as	a	lower	level	set	of	functions	implemented	using	C++.	It	provides	a	set	of	features	to
enable	faster	prototyping	and	implementation	of	machine	learning	models	and	applications
for	highly	heterogeneous	computing	platforms.

2.1	Features

Tensorflow™'s	webpage	enlists	the	system's	most	important	features,	which	are	described
as:

1.	 Deep	Flexibility:	Provides	tools	to	assemble	graphs	for	expressing	diverse	machine
learning	models.	New	operations	can	be	written	in	Python	and	low-level	data	operators
are	implemented	using	in	C++.

2.	 True	Portability:	Runs	on	CPUs,	GPUs,	desktop,	server,	or	mobile	computing
platforms.	That	make	it	very	suitable	in	several	fields	of	application,	for	instance
medical,	finance,	consumer	electronic,	etc.

3.	 Connect	Research	and	Production:	TensorFlow™	allows	industrial	researchers	a
faster	product	prototyping.	It	also	provides	academic	researchers	with	a	development
framework	and	a	community	to	discuss	and	support	novel	applications.

4.	 Auto-Differentiation:	This	is	a	key	feature	within	the	machine	learning	community.
Gradient	based	machine	learning	algorithms	benefit	from	automatic	differentiation
capabilities.	As	a	TensorFlow™	user,	you	define	the	computational	architecture	for	your
predictive	model,	combine	it	with	your	objective	function,	and	just	add	data	to	test	your
machine	learning	model.

5.	 Language	Options:	Python	and	C++.	However,	currently	other	APIs	are	being
developed,	for	example	a	Ruby	API.

6.	 Maximize	Performance:	Allows	you	to	make	the	most	of	your	installed	hardware.
Freely	assign	compute	elements	of	your	TensorFlow™	graph	to	different	devices,	and
let	TensorFlow™	handle	the	copies.

2.2	Stakeholders

TensorFlow™	is	a	very	active	community	consisting	of	a	very	diverse	group	of	Developers,
Integrators,	Researchers,	Students,	Architects,	Software	Engineers,	Companies	(i.e
Engineers,	managers,	CEO,	etc.),	Consultants	and	Hardware	Manufacturers	(NVIDIA,	ARM,
Intel)	(figure	1).	Each	group	is	assigned	to	each	type	of	stakeholders	according	to	the
classification	proposed	in	Mitchell	et	al.[1].

TensorFlow

351

https://www.tensorflow.org/

Type	of
Stakeholder Description[1]

Application
to

TensorFlow™

Dormant
Stakeholder
(1)

The	relevant	attribute	of	a	dormant	stakeholder	is
power.	Dormant	stakeholders	possess	power	to
impose	their	will	on	a	firm,	but	by	not	having	a
legitimate	relationship	or	an	urgent	claim,	their
power	remains	unused.

Integrators

Discretionary
Stakeholder
(2)

Discretionary	stakeholders	possess	the	attribute	of
legitimacy,	but	they	have	no	power	to	influence	the
firm	and	no	urgent	claims.

Researchers

Demanding
Stakeholder
(3)

Where	the	sole	relevant	attribute	of	the	stakeholder-
manager	relationship	is	urgency,	the	stakeholder	is
described	as	"demanding."	Demanding
stakeholders,	those	with	urgent	claims	but	having
neither	power	nor	legitimacy,	are	the	"mosquitoes
buzzing	in	the	ears"	of	managers.

Students,
Consultants
and
Companies

Dominant
stakeholders
(4)

In	the	situation	where	stakeholders	are	both
powerful	and	legitimate,	their	influence	in	the	firm	is
assured,	since	by	possessing	power	with	legitimacy,
they	form	the	"dominant	coalition"	in	the	enterprise.

Hardware
Manufacturers

Dangerous
stakeholders
(5)

We	suggest	that	where	urgency	and	power
characterize	a	stakeholder	who	lacks	legitimacy,	that
stakeholder	will	be	coercive	and	possibly	violent,
making	the	stakeholder	"dangerous,"	literally,	to	the
firm.

Researchers
using	multiple
libraries,	for
instance
Microsoft
CNTK

Dependent
Stakeholder
(6)

We	characterize	stakeholders	who	lack	power	but
who	have	urgent	legitimate	claims	as	"dependent,"
because	these	stakeholders	depend	upon	others
(other	stakeholders	or	the	firm's	managers)	for	the
power	necessary	to	carry	out	their	will.

Architects	and
Software
Engineers

Definitive
Stakeholder
(7)

By	definition,	a	stakeholder	exhibiting	both	power
and	legitimacy	already	will	be	a	member	of	a	firm's
dominant	coalition.	When	such	a	stakeholder's	claim
is	urgent,	managers	have	a	clear	and	immediate
mandate	to	attend	to	and	give	priority	to	that
stakeholder's	claim.

Developers

The	following	figure	plots	each	of	the	stakeholder	according	to	its	type:

TensorFlow

352

https://github.com/Microsoft/CNTK

																															Figure	1.	Stakeholder	groups	for	TensorFlow

3.	Architecture
The	architecture	of	TensorFlow™	is	described	based	on	(1)views,	which	according	to
Rozanski	and	Woods[2]	consists	of	elements	or	aspects	of	the	architecture	that	are	relevant
to	the	concerns	of	the	stakeholders,	and	(2)perspectives	which	are	a	set	of	related	quality
properties	across	a	number	of	the	system’s	architectural	views	that	require	consideration.	In
this	paragraph	first	the	context-,	development-	and	deployment	view	are	described,	followed
by	the	evolution-,	variability-	and	performance	perspective.

3.1	Views

In	this	paragraph	the	context	view	provides	insight	in	the	relationship	between	TensorFlow™
and	its	environment,	the	development	view	gives	a	description	of	models	that	are	of	concern
of	the	stakeholders,	and	the	deployment	view	shows	the	environment	into	which	the	system
is	deployed	and	the	dependencies	that	the	system	has	on	its	elements.

3.1.1	Context	view

The	purpose	of	this	section	is	to	elaborate	on	the	relationships,	dependencies	and
interactions	between	TensorFlow™	and	its	environment.	The	main	goal	is	discovering	how
these	elements	affect	TensorFlow’s™	architecture.	It	will	help	to	understand	TensorFlow™

TensorFlow

353

boundaries,	as	well	as,	its	scope.

3.1.1.1	Scope	definition

For	this	chapter,	the	most	relevant	elements	surrounding	TensorFlow™	have	been
considered.	There	were	identified	5	key	aspects	that	enables	the	operation	of	the	library.
These	are:	stakeholder	community,	repository	management,	execution	platforms,
visualization	tools,	and	Library	dependencies.	These	elements	are	described	in	more	detail
in	the	following	subsections.

3.1.1.2	Stakeholder	community

In	the	previous	section	the	stakeholder	community	was	described	in	detail.	From	this
analysis,	four	key	players	were	identified:	developers,	researchers,	integrators	and
companies.	Developers	are	those	who	enable	new	models,	operations	and	tools	within	the
API.	They	have	a	strong	background	in	computer	science.	On	the	other	hand,	researchers
use	the	latest	version	of	TensorFlow™'s	implementation	to	develop	applications	and	study
machine	learning	algorithms.	Integrators	are	in	charge	to	make	decisions	on	whether	or	not
a	contribution	can	be	integrated	to	the	code	base.	These	contributions	are	being	proposed
mainly	by	developers	and	researchers.	Finally,	the	companies	explore	the	results	of
researchers	and	try	to	enable	new	features	on	their	products,	taking	advantage	of	their
improvements.	All	of	these	four	actor	define	the	contributor	community	of	TensorFlow™,
which	is	supported	by	Google,	in	order	to	provide	resources,	but	to	gain	expertise	that	could
be	used	in	future	products.

3.1.1.3	Repository	Management

TensorFlow™	is	hosted	at	GitHub	under	the	Google's	support.	As	mentioned	previously,
integrators	are	in	charge	of	analyzing	pull	requests	and	determining	if	these	can	be	merged.
TensorFlow™	uses	Jenkins	as	a	continuous	integration	platform.	Also,	Docker	is	used	to
support	the	their	delivery	process.

3.1.1.4	Execution	Platforms

The	execution	environment	surrounding	TensorFlow™	is	very	heterogeneous.	The	Library
supports	ports	for	CPU,	GPU	and	mobile	platforms.	It	makes	the	library	suitable	for	many
application	fields,	but	increases	the	implementation	complexity.	For	example,	for	GPU
implementation,	currently	only	CUDA	is	supported,	and	for	mobile	platforms	only	Android.
Also,	there	is	a	price	to	be	paid	when	offering	flexibility,	which	is	performance.	Later	in	this
chapter	we	will	see	an	analysis	of	this	aspect.

3.1.1.5	Visualization	tools

TensorFlow

354

Visualization	is	a	key	element	for	researchers.	It	allows	to	compare,	but	also	to	play	with
parameters	to	optimize	the	algorithm	performance.	Tensorboard	is	a	module	provided	for
that	purpose.	It	takes	the	results	from	execution	and	enables	the	user	to	display,	and
compare	different	runs.

3.1.1.6	Dependencies

As	many	other	libraries,	TensorFlow™	requires	features	from	other	systems,	not	just	for
maintaining	the	repository,	but	for	enabling	new	functionalities.	The	main	dependencies	are
the	NVIDIA	driver	support	for	CUDA,	the	Python	and	C++	language	support.	There	are
several	other	dependencies	that	would	be	detailed	in	the	development	view.

In	figure	2	the	relation	between	the	surrounding	elements	and	the	TensorFlow™	library	are
illustrated.

																										Figure	2	Context	diagram	for	TensorFlow™	

3.1.2	Development	view

This	view	addresses	the	specific	concerns	of	the	software	developers	and	testers[2].	This
section	contains	the	description	of	three	different	models:	Codeline	Models,	Module
Structure	Model,	and	Common	Design	Models.

3.1.2.1	Codeline	Models

This	section	explores	the	code	structure	of	TensorFlow™	with	the	purpose	of	getting	a	better
understanding	on	how	the	project	is	organized.

TensorFlow

355

3.1.2.1.1	Source	code	hierarchy

TensorFlow™	's	root	directory	at	GitHub	is	organized	in	five	main	subdirectories:	google,
tensorflow,	third-party,	tools	and	util/python.	Additionally,	the	root	directory	provides
information	on	how	to	contribute	to	the	project,	and	other	relevant	documents.	In	figure	3,
the	source	code	hierarchy	is	illustrated.

																													Figure	3.	TensorFlow™	source	code	organization

Following	subsections	will	elaborate	on	the	purpose	of	the	five	main	subdirectories	shown	in
figure	3:

3.1.2.1.2	Google

TensorFlow

356

This	subdirectory	provides	an	instance	of	¨Protocol	Buffers¨	library,	a	Google's	language	and
platform	neutral,	mechanism	for	serializing	structured	data.	That	is	required	since
TensorFlow™	supports	implementations	in	C++	using	a	single	Python	API,	which	requires	a
common	data	interface.	Also,	it	enables	support	to	implementation	with	other	programming
languages,	for	instance,	Java,	Ruby	and	many	others.

3.1.2.1.3	Tensorflow

This	is	the	heart	of	the	library's	implementation.	It	contains	a	set	of	subdirectories	intended
to:

cc:	declaring	function	wrappers	for	C++	code.
contrib:	containing	features	and	contributions	that	eventually	should	get	merged	into
tensorflow/core.
core:	providing	an	implementation	for	the	main	functionalities	of	TensorFlow™.
examples:	containing	reference	applications	for	contributors.
g3docs:	contains	documentation	for	Python	and	C++	APIs.
models:	containing	models	for	specific	application	implementation.
python:	containing	the	implementation	of	Python	to	support	the	application	development
API.
stream-executor:	providing	an	interface	with	hardware	accelerators	(GPUs).
tensorboard:	containing	a	suite	of	web	applications	for	inspecting	and	understanding	of
TensorFlow™	runs	and	graphs.
tools:	providing	a	proper	execution	environment	for	the	library.
user_ops:	providing	wrappers	for	customized	user	functions	(i.e.	ackermann).

3.1.2.1.4	Third-party

This	directory	provides	instances	of	useful	third-party	libraries	to	help	the	TensorFlow™
application	developers.	Three	main	libraries	are	identified	here:

Eigen3:	a	C++	template	library	for	linear	algebra	operations.
gpus:	a	crosstool	wrapper	for	compiling	CUDA	programs.
[numpy]	(http://www.numpy.org/):	a	package	for	scientific	computing	with	Python.

3.1.2.1.5	Tools

This	provides	a	place	to	put	a	script	to	indicate	Bazel	which	version	of	Python	is	being	used.

3.1.2.1.6	Util/	python

This	provides	a	place	to	put	a	script	to	generate	relative	paths	for	Python,	so	it	works	in	both
a	local	or	remote	repository.

TensorFlow

357

http://eigen.tuxfamily.org/index.php?title=3.0
http://www.numpy.org/

3.1.2.2	Module	Structure	Models

The	purpose	of	this	section	is	to	focus	on	the	organization	of	the	TensorFlow™'s	repository
and	group	the	modules	into	layers	of	abstractions.

3.1.2.2.1	Classify	the	Modules

As	shown	in	the	section	"Codeline	Models",	the	TensorFlow™	GitHub	Repository	is
organized	and	classified	as	shown	in	Figure	3,	these	can	be	classified	in	the	following	way:

Application	development	modules:	Python	API	(pp	folder),	C++	API(cc	folder),
Tensorboard,	contributions	(contrib	folder),	examples,	tools	such	as	Jenkins,	pip	and
Docker	(tools	folder	in	root	directory)	and	useful	documentation	such	as:	APIs
documentation,	tutorial,	getting	started	example	located	in	g3docs	directory.
Framework	modules:	Models,	user	operations,	then	from	tensorflow/core	directory:
libraries	(lib	folder),	and	from	the	root	directory:	3rd	party.
Platform	modules:	from	tensorflow/tensorflow	directory:	Stream	executor	and	the
_tensorflow/tensorflow/core	directory:	kernels	implementation,	common_runtime,
distributed_runtime,	etc.

3.1.2.2.2	Module	Dependencies

To	identify	the	module	dependencies,	each	code	from	the	application	development,
framework	and	platform	modules	group	were	analyzed.	For	example,	the	function.py	(from
the	Python	API	of	the	Application	development	group)	shows	a	clear	dependency	to	the
Platform	modules	and	Framework	modules.	This	same	approach	was	applied	for	each
source	file	from	the	repository	and	the	main	identified	dependencies	are:

Application	development	group	and	Framework	group	share	dependencies	between
them.
Application	development	group	with	Platform	group.
Platform	group	and	Framework	group	share	dependencies	between	them.

3.1.2.2.3	Layering	Rules

In	Classify	the	Modules	section,	the	modules	have	been	classified	into	different	groups.
These	groups	can	be	used	as	the	layers	to	organize	the	structure	of	the	TensorFlow™
repository:

1.	 Application	Development	layer:	This	layer	contains	the	tools	for	the	user	to	develop	any
TensorFlow™	application.	It	contains	API	documentations,	examples,	tutorials,
contributions	from	other	users,	installation	and	distribution	tools.

2.	 Framework	layer:	This	layer	contains	the	definition	of	the	operations	used	for	the
application	development,	models	for	specific	application	implementation	and	session

TensorFlow

358

implementations.
3.	 Platform	layer:	This	layer	provides	the	interface	with	hardware	(GPUs	and	CPUs),

operation	kernels,	platform	operations,	datatype	definition	and	execution	framework.

The	system's	layer	organization	is	shown	in	the	following	figure:

																														Figure	4.	Structure	model	of	the	TensorFlow™

3.1.2.3	Common	Design	Models

From	the	structure	obtained	in	figure	4,	we	started	to	identify	modules	which	are	common
processing.

3.1.2.3.1	Common	Processing	elements

The	following	elements	can	be	identified	as	common	processing	elements:

Message	logging	and	instrumentation:	For	logging	error	messages	in	Python	and	C++	it
is	possible	to	log	utilities.	This	controls	which	methods	from	pyglib.logging	are	used	and
a	logline	prefix	using	the	google2	format	is	assembled.
Use	of	third-party	libraries:	Third-party	libraries	that	are	used	are	CUDA,	Eigen,	NumPy

TensorFlow

359

and	protobuf.

3.1.3	Deployment	view

According	to	Rozanski	and	Woods[2],	the	deployment	view	describes	the	environment	into
which	the	system	is	deployed	and	the	dependencies	that	the	system	has	on	its	elements.
This	view	encapsulates	the	hardware	environment	that	a	system	requires,	the	technical
environment	requirements	for	each	element,	and	the	mapping	of	the	software	elements	to
the	runtime	environment	that	will	execute	them.	The	next	two	sections	will	discuss	the
overview	of	TensorFlow™	Runtime	Requirements,	and	later,	it	presents	two	deployment
view	models.

3.1.3.1	Overview	of	TensorFlow™	Runtime	Requirements

As	discussed	in	the	previous	section,	TensorFlow™	provides	Python	API	and	C++	API	to	the
users	to	express	a	variety	of	algorithms,	such	as	something	as	simple	as	math	computation
to	a	variety	of	machine	learning	models.	In	order	to	deploy	(or	distribute)	the	system,	the
TensorFlow™	team	has	provided	four	methods	to	install	the	Python	API:

1.	 Clone	the	files	from	GitHub	source	(For	Linux	64-bit	and	Mac	OS	X	64-bit):	This	method
might	be	the	most	tedious	method	since	the	user	needs	to	install	all	dependencies
separately.	It	requires	Bazel,	which	is	a	build	tool	that	builds	code	quickly	and	reliably.
Then	it	requires	to	install	all	the	Python	dependencies,	and	lastly,	(if	needed)	it	requires
the	installation	of	the	CUDA	package.	Less	experienced	users	can	follow	the	next	three
methods.

2.	 Pip	install	(For	Linux	64-bit	and	Mac	OS	X	64-bit):	pip	is	a	package	management
system	used	to	install	and	manage	software	packages	written	in	Python.	This	method
might	upgrade	previous	installed	Python	packages.

3.	 Virtual	env	install	(For	Linux	64-bit	and	Mac	OS	X	64-bit):	a	tool	that	allows	the	creation
of	isolated	Python	environments.	Using	this,	TensorFlow™	will	be	installed	in	its	own
directory.

4.	 Docker	(For	any	Operating	System	64-bit	environment):	tool	which	wraps	up	a	piece	of
software	into	one	container	where	contains	everything	needs	to	run	the	system.	This
tool	allows	the	use	of	TensorFlow™	in	different	operating	system	environments.

On	the	other	hand,	the	C++	API	deployment	is	only	available	through	cloning	the	files	from
GitHub	source.	Without	regard	of	which	Operating	System	is	currently	been	used,	the
system	needs	Third-party	software	requirements,	such	as	Python	2.7	or	Python	3.3+

TensorFlow

360

installed	in	the	system.	Also,	the	GPU	version	only	can	be	run	in	Linux	system	and	it
requires	the	installation	of	Cuda	Toolkit	(at	least	version	7.0)	and	cuDNN	(at	least	version
v2).

Lastly,	as	for	the	hardware	requirement,	the	TensorFlow™	team	has	not	specified	the
minimum	hardware	requirements	for	running	its	architecture.	However,	since	it	uses	the
CUDA	toolkit,	we	can	assume	that	this	is	only	intended	for	NVIDIA's	GPU.	Beside	this
assumption,	the	developer	team	only	mentions	that	it	will	run	in	a	conventional	desktop	CPU
and	optionally	in	GPU	(in	TensorFlow™	terminology	CPU	and	GPU	are	called	as	devices).	It
can	be	deployed	to	a	single	device	environment,	multiple	device	environment	(several
devices	within	the	same	machine)	or	distributed	environment	(devices	are	distributed	in
several	machines).	However,	there	are	examples	that	a	written	application	using	the	Python
API	has	been	successfully	deployed	to	an	Android	device	by	using	Bazel,	Android	NDK	and
Android	SDK	(Click	here	for	further	information).

3.1.3.2	Deployment	View	Models

According	to	Rozanski	and	Woods[2],	there	are	three	models	to	describe	the	architecture	of
TensorFlow™	from	the	deployment	view:

Runtime	Platform	Models
Network	Models
Technology	Dependency	Models

The	next	two	subsections	will	detail	the	first	two	models	since	these	are	the	most	relevant	for
TensorFlow™.

3.1.3.3	Runtime	Platform	Models

Rozanski	and	Woods[2]	state	that	the	Runtime	Platform	model	is	the	core	of	this	view.	It
defines	the	set	of	hardware	nodes	required,	the	interconnection	within	the	node,	and
software	elements	hosted	in	the	hardware	nodes.	In	order	to	build	this	model,	it	is	important
to	understand	how	the	system	underlying	mechanism	works.	According	to	the	whitepaper[3],
a	user	creates	an	algorithm	in	TensorFlow™	with	the	provided	API	and	internally	that
algorithm	is	described	by	a	graph	that	represents	a	dataflow	computation.	In	the	graph,	each
node	corresponds	to	an	operation	(for	example:	an	arithmetic	operation),	the	values	that	flow
along	the	edges	are	tensors	(that's	why	it	is	called	TensorFlow™!).	The	following	figure
obtained	from	the	whitepaper[3]	shows	an	example	of	TensorFlow™	code	fragment	with	its
corresponding	computation	graph:

TensorFlow

361

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android

																													Figure	5.	TensorFlow™	code	fragment	with	its	computation	

graph	example[[3]]

The	whitepaper[3]	also	mentions	that	the	main	components	in	TensorFlow™	are	the	clients,
the	master	and	one	or	more	worker	processes.	If	a	user	wants	to	run	an	algorithm,	the	user
as	a	client,	interacts	with	the	master	where	it	runs	a	placement	algorithm	to	decide	how	to
distribute	the	computation	among	all	the	worker	processes.	Each	worker	processes	is
responsible	for	arbitrating	access	to	one	or	more	computational	devices.	Each	of	the	devices
can	communicate	to	each	other	through	Send-	and	Receive	node	functions	of	the
TensorFlow™	library.

The	following	figure	shows	the	runtime	model	for	TensorFlow™:

TensorFlow

362

																														Figure	6.	Runtime	Platform	Model

The	model	above	applies	for	single,	multiple	and	distributed	environment.

3.1.3.4	Network	Models

The	Runtime	Platform	Model	describes	a	high	level	of	communication	between	the	client,
master	and	worker.	The	Network	model	describes	specifically	which	nodes	need	to	be
connected	and	any	other	specific	services	and	bandwidth	requirements.	In	TensorFlow™
this	model	is	applied	to	the	cross	device	communication.	Cross	device	communication
means	data	transference	between	two	or	more	devices	(GPUs	or	CPUs),	in	which	each
device	corresponds	to	a	node	in	the	network	model.

According	to	the	whitepaper[3],	once	the	master	has	run	the	placement	algorithm,	the	graph
is	partitioned	into	a	set	of	subgraphs,	one	per	device,	as	shown	in	the	left	graph	of	the
following	figure:

TensorFlow

363

																														Figure	7.	Network	Model:	TensorFlow™	Cross	Device	Commun

ication

Once	it	is	placed,	TensorFlow™	removes	the	graph	x	->	y	and	replaces	it	by	two	subgraphs:
x	->	send	node	and	receive	->	y	as	shown	in	the	right	side	of	Figure	7.	At	runtime,	the
implementation	of	send	and	receive	nodes	(which	is	part	of	TensorFlow™	library)	coordinate
the	transfer	of	data	across	devices.	By	using	this	implementation,	it	isolates	all
communication	inside	Send-	and	Receive	nodes	which	simplifies	the	rest	of	runtime.	Also,
one	of	the	benefits	of	this	implementation	is	that	it	decentralizes	the	system:	the	sender	and
receiver	nodes	impart	the	necessary	synchronization	between	different	workers	and	devices
while	the	master	only	needs	to	issue	requests	per	graph	execution	to	each	worker	rather
than	being	involved	in	the	scheduling	of	cross	device	communication,	thus,	it	makes	the
system	much	more	scalable.

3.2	Perspectives

In	the	following	paragraphs	the	evolution	perspective	gives	insight	in	the	history	of
TensorFlow™,	the	variability	perspective	shows	the	modular	development	and	different
configurations,	and	the	performance	perspective	gives	an	overview	of	the	performance	of
TensorFlow™	compared	to	other	machine	learning	applications.

3.2.1	Evolution	perspective

The	history	of	developments	starts	from	TensorFlow™	v0.5.0	till	the	current	version	0.7.0.	In
order	to	know	the	history	of	developments,	the	roadmap	of	TensorFlow™	was	first	looked	at.
Currently	they	are	working	on	the	support	for	iOS	support	and	OpenCL	support.	The	initial
version	of	distributed	support	is	available	in	the	source	code.	However,	this	has	not	been
released	in	the	binary	versions	as	of	now.

3.2.2	Variability	perspective

Many	of	the	libraries	in	TensorFlow™	were	developed	separately	and	then	integrated	into
the	main	codebase.	This	kind	of	modular	development	made	it	very	easy	to	implement
variability	in	TensorFlow™.	TensorFlow™	can	be	run	in	two	different	configurations,	namely
single	device	execution	and	multi-device	execution.	Apart	from	this,	there	is	a	GPU	version
of	TensorFlow™	and	non-GPU	version	of	TensorFlow™.	It	is	supported	in	two	separate
Operating	Systems,	Linux	and	Mac	OS.	So,	TensorFlow™	has	a	lot	of	variability	built	into	it
and	the	modular	development	of	code	is	one	of	the	reasons	why	TensorFlow™	can	have	this
high	amount	of	Variability.	The	core	library	is	written	C++	along	with	CUDA	and	for	running
the	code	on	a	machine	containing	a	NVidia	GPU.	CUDA	must	be	installed	on	the	computer

TensorFlow

364

https://www.tensorflow.org/versions/master/resources/roadmap.html#roadmap
https://github.com/tensorflow/tensorflow/issues/16
https://github.com/tensorflow/tensorflow/issues/22
https://github.com/tensorflow/tensorflow/issues/23

so	as	to	support	the	code	written	for	the	GPU.	In	order	to	discuss	the	strategy	used	for
implementing	variability,	we	must	first	discuss	the	components	of	the	TensorFlow™
application.	The	components	in	the	TensorFlow™	application	[3]	are:

3.2.2.1	Client

The	client	is	the	application	written	in	C++/	Python	that	interacts	with	the	TensorFlow™
libraries	and	perform	the	required	operations.	The	client	creates	a	"Session"	for	interacting
and	using	the	TensorFlow™	libraries.

3.2.2.2	Master	processes	and	Worker	processes

The	session	created	by	the	client	interacts	with	the	Master	process,	which	in	turn	splits	the
client	program	into	different	sub	programs/	sub	graphs	and	allocates	the	work	among
different	Worker	Processes.	These	worker	processes	are	responsible	for	running	the
computations	on	each	of	the	devices/	processors.	The	devices	in	this	case	maybe	GPU	or
CPU.

We	can	see	the	modularity	built	into	the	application.	This	kind	of	modularity	allows	for	a	huge
amount	of	variability	where	each	process	works	independent	of	each	other.	For	example,	if
we	want	TensorFlow™	to	run	locally	on	a	single	computer,	the	client	master	and	the	worker
processor	all	run	on	a	single	machine	in	the	context	of	a	single	Operating	system.	This
single	computer	can	either	be	with	or	without	the	GPU.	This	is	managed	by	the	worker
processes.	So,	this	handles	with	variability	of	processors.	The	difference	between	the	local
and	distributed	versions	is	that	they	share	the	same	code	but	the	difference	is	that	the	client,
the	workers	and	the	master	can	all	be	on	different	machines.	These	different	tasks	are
containers	in	jobs	managed	by	a	cluster	scheduling	system.

For	distributed	versions	of	TensorFlow™,	gRPC	is	used	for	interprocess	communication.
Detailed	steps	for	setting	up	the	distributed	version	TensorFlow™	can	be	found	here.	We
have	identified	the	relevant	steps	from	the	source	and	have	listed	them	below.	During	build
time,	we	must	specify	whether	we	need	a	CPU	only	or	the	GPU	version.	We	need	to	have
bazel	installed	on	the	computer	in	which	we	are	building	and	currently	this	can	be	done	only
through	source	based	installation	of	TensorFlow™.

3.2.3	Performance	perspective

According	to	Rozanski	and	Woods	[2],	some	of	the	important	concerns	are	response	time,
throughput,	turnaround	time,	scalability,	predictability,	Hardware	Resource	Requirements
and	Peak	Load	Behaviour.	In	our	chapter,	we	focus	only	on	Response	time	and	throughput.
We	don't	go	into	detail	on	these	aspects,	but	we	will	be	discussing	at	a	high	level	about
Performance	Perspective	of	TensorFlow™.	Performance	Perspective	is	very	important	to	a
tool	like	TensorFlow™	as	the	performance	of	machine	learning	applications	written	in

TensorFlow

365

http://www.grpc.io/
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/distributed_runtime/README.md
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/distributed_runtime/README.md

TensorFlow™	is	extremely	crucial.	In	complex	machine	learning	applications,	the	best
hardware	might	not	give	us	the	best	results	and	the	performance	mainly	depends	on	the
code	quality	and	the	effectiveness	with	which	memory	is	utilized	by	the	software.	Due	to	the
complexity	of	the	algorithms	involved	it	is	an	extremely	difficult	task	to	benchmark	the
performance	of	TensorFlow™	by	ourselves.	So,	we	decided	to	use	the	information	provided
by	other	developers	involved	in	the	field	of	machine	learning.	These	benchmark	details	were
obtained	from	this	document	in	GitHub.	Convnet	has	been	used	for	the	benchmarking.
Convolutional	network	(Convnet)	is	a	specific	artificial	neural	network	topology	that	is
inspired	by	biological	visual	cortex	and	tailored	for	computer	vision	tasks.	The	benchmarks
were	performed	on	a	machine	with	the	following	specifications:	6-core	Intel	Core	i7-5930K
CPU	@	3.50GHz		+		NVIDIA	Titan	X		+		Ubuntu	14.04	x86_64		.	Some	of	the	popular	imagenet
models	were	picked	up	and	benchmarked.	The	benchmarking	results	are	also	done	with
other	libraries	available	and	we	can	draw	some	conclusions	and	compare	them	with	other
libraries	to	get	a	good	idea	of	the	actual	performance	of	TensorFlow™	and	whether	it	is	one
of	the	best	libraries	for	machine	learning.	The	benchamarked	results	are	tabulated	below:

AlexNet	(One	Weird	Trick	paper)	-	Input	128x3x224x224

Library Class Time	(ms)

CuDNN[R4]-fp16	(Torch) cudnn.SpatialConvolution 71

Nervana-neon-fp16 ConvLayer 78

CuDNN[R4]-fp32	(Torch) cudnn.SpatialConvolution 81

Nervana-neon-fp32 ConvLayer 87

fbfft	(Torch) fbnn.SpatialConvolution 104

TensorFlow conv2d 151

Chainer Convolution2D 177

cudaconvnet2* ConvLayer 177

CuDNN[R2]	* cudnn.SpatialConvolution 231

Caffe	(native) ConvolutionLayer 324

Torch-7	(native) SpatialConvolutionMM 342

CL-nn	(Torch) SpatialConvolutionMM 963

Overfeat	[fast]	-	Input	128x3x231x231

TensorFlow

366

https://github.com/soumith/convnet-benchmarks/blob/master/README.md
https://code.google.com/p/cuda-convnet2/source/browse/layers/layers-imagenet-1gpu.cfg
https://github.com/soumith/cudnn.torch/blob/master/SpatialConvolution.lua
https://github.com/soumith/convnet-benchmarks/blob/master/nervana/README.md
https://github.com/soumith/cudnn.torch/blob/master/SpatialConvolution.lua
https://github.com/soumith/convnet-benchmarks/blob/master/nervana/README.md
https://github.com/facebook/fbcunn/tree/master/src/fft
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/nn.py
https://github.com/pfnet/chainer/blob/master/chainer/links/connection/convolution_2d.py
https://github.com/soumith/cuda-convnet2.torch/blob/master/cudaconv3/src/filter_acts.cu
https://github.com/soumith/cudnn.torch/blob/master/SpatialConvolution.lua
https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_layer.cu
https://github.com/torch/cunn/blob/master/SpatialConvolutionMM.cu
https://github.com/hughperkins/clnn/blob/master/SpatialConvolutionMM.cl
http://arxiv.org/abs/1312.6229

Library Class Time	(ms)

CuDNN[R4]-fp16	(Torch) cudnn.SpatialConvolution 242

CuDNN[R4]-fp32	(Torch) cudnn.SpatialConvolution 268

fbfft	(Torch) SpatialConvolutionCuFFT 342

TensorFlow conv2d 349

Chainer Convolution2D 620

cudaconvnet2* ConvLayer 723

CuDNN[R2]	* cudnn.SpatialConvolution 810

Caffe ConvolutionLayer 823

CL-nn	(Torch) SpatialConvolutionMM 963

Caffe-CLGreenTea ConvolutionLayer 2857 616 2240

OxfordNet	[Model-A]	-	Input	64x3x224x224

Library Class Time
(ms)

CuDNN[R4]-
fp16	(Torch) cudnn.SpatialConvolution 471 CuDNN[R4]-

fp32	(Torch) cudnn.SpatialConvolution

Chainer Convolution2D 885

TensorFlow conv2d 982

fbfft	(Torch) SpatialConvolutionCuFFT 1092

cudaconvnet2* ConvLayer 1229

CuDNN[R2]	* cudnn.SpatialConvolution 1099

Caffe ConvolutionLayer 1068

Torch-7
(native) SpatialConvolutionMM 1105 350 755

CL-nn	(Torch) SpatialConvolutionMM 3437 875 2562

Caffe-
CLGreenTea ConvolutionLayer 5620 988 4632

GoogleNet	V1	-	Input	128x3x224x224

TensorFlow

367

https://github.com/soumith/cudnn.torch/blob/master/SpatialConvolution.lua
https://github.com/soumith/cudnn.torch/blob/master/SpatialConvolution.lua
https://github.com/facebook/fbcunn/tree/master/src/fft
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/nn.py
https://github.com/pfnet/chainer/blob/master/chainer/links/connection/convolution_2d.py
https://github.com/soumith/cuda-convnet2.torch/blob/master/cudaconv3/src/filter_acts.cu
https://github.com/soumith/cudnn.torch/blob/master/SpatialConvolution.lua
https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_layer.cu
https://github.com/hughperkins/clnn/blob/master/SpatialConvolutionMM.cl
https://github.com/naibaf7/caffe
http://arxiv.org/abs/1409.1556/
https://github.com/soumith/cudnn.torch/blob/master/SpatialConvolution.lua
https://github.com/soumith/cudnn.torch/blob/master/SpatialConvolution.lua
https://github.com/pfnet/chainer/blob/master/chainer/links/connection/convolution_2d.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/nn.py
https://github.com/facebook/fbcunn/tree/master/src/fft
https://github.com/soumith/cuda-convnet2.torch/blob/master/cudaconv3/src/filter_acts.cu
https://github.com/soumith/cudnn.torch/blob/master/SpatialConvolution.lua
https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_layer.cu
https://github.com/torch/cunn/blob/master/SpatialConvolutionMM.cu
https://github.com/hughperkins/clnn/blob/master/SpatialConvolutionMM.cl
https://github.com/naibaf7/caffe
http://research.google.com/pubs/pub43022.html

Library Class Time	(ms)

CuDNN[R4]-fp16	(Torch) cudnn.SpatialConvolution 462

CuDNN[R4]-fp32	(Torch) cudnn.SpatialConvolution 470

Chainer Convolution2D 687

TensorFlow conv2d 905

Caffe ConvolutionLayer 1935

CL-nn	(Torch) SpatialConvolutionMM 7016

Caffe-CLGreenTea ConvolutionLayer 9462

TensorFlow™	and	Chainer	are	benchmarked	with	CuDNN,	but	it	is	not	explicitly	mentioned,
and	one	might	think	that	these	frameworks	as	a	whole	are	faster,	than	for	example	Caffe,
which	might	not	be	the	case.	However,	one	thing	that	can	be	inferred	from	the	table	above	is
that	TensorFlow™	isn't	the	best	library	out	there	and	it	as	its	own	set	of	performance	issues
and	there	is	a	lot	of	room	for	improvement.	TensorFlow™	only	uses	cuDNN	v2	and	its
performance	is	almost	1.5x	slower	than	Torch	with	cuDNN	v2.	It	must	be	noted	that	the
benchmark	results	are	done	using	only	a	single-powerful	GPU.	However,	these	benchmarks
were	run	on	an	older	version	of	TensorFlow™	and	the	current	benchmarking	results	are	not
yet	available.	More	detailed	and	a	clear	view	of	TensorFlow™'s	performance	results	for	all
kinds	of	architectures	and	number	of	machines	can	be	expected	in	the	next	versions	of
whitepaper.	However,	not	much	detail	is	available	from	Google	itself.	Benchmarking
performance	is	on	their	roadmap	and	more	clear	results	can	be	expected	in	the	future.

4.	Conclusion
Based	on	the	analysis	of	the	architecture,	we	can	conclude	that	TensorFlow™	is	a	startup
project	which	is	not	yet	mature	and	has	a	lot	of	room	for	future	improvements.	In	the
previous	section	it	was	shown	that	TensorFlow™	has	performance	issues	compared	to	other
machine	learning	applications.	Next	to	this,	the	variability	of	TensorFlow™	is	limited	at	this
moment	and	it	would	be	beneficial	to	extend	support	to	OpenCL	and	add	different	platforms,
such	as	iOS.	Despite	these	limitations,	we	believe	that	TensorFlow™	has	a	lot	of	potential.
Opening	up	TensorFlow™	to	the	OpenSource	community	is	a	very	important	step	to	tackle
these	limitations.	When	Google	can	address	the	current	shortcomings	it	might	very	well
become	the	defacto	standard	for	machine	learning.

5.	References

TensorFlow

368

https://github.com/soumith/cudnn.torch/blob/master/SpatialConvolution.lua
https://github.com/soumith/cudnn.torch/blob/master/SpatialConvolution.lua
https://github.com/pfnet/chainer/blob/master/chainer/links/connection/convolution_2d.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/nn.py
https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_layer.cu
https://github.com/hughperkins/clnn/blob/master/SpatialConvolutionMM.cl
https://github.com/naibaf7/caffe

[1]	Mitchell,	R.	K.,	Agle,	B.	R.,	&	Wood,	D.	J.	(1997).	Toward	a	Theory	of	Stakeholder
Identification	and	Salience:	Defining	the	Principle	of	Who	and	What	Really	Counts.	The
Academy	of	Management	Review,	22(4),	853–886.	Retrieved	from
http://www.jstor.org/stable/259247

[2]	Nick	Rozanski	and	Eoin	Woods.	(2011).	Software	Systems	Architecture:	Working	with
Stakeholders	Using	Viewpoints	and	Perspectives.	Addison-Wesley	Professional.

[3]	Martín	Abadi,	Ashish	Agarwal,	Paul	Barham,	Eugene	Brevdo,	Zhifeng	Chen,	Craig	Citro,
Greg	S.	Corrado,	Andy	Davis,	Jeffrey	Dean,	Matthieu	Devin,	Sanjay	Ghemawat,	Ian
Goodfellow,	Andrew	Harp,	Geoffrey	Irving,	Michael	Isard,	Rafal	Jozefowicz,	Yangqing	Jia,
Lukasz	Kaiser,	Manjunath	Kudlur,	Josh	Levenberg,	Dan	Mané,	Mike	Schuster,	Rajat	Monga,
Sherry	Moore,	Derek	Murray,	Chris	Olah,	Jonathon	Shlens,	Benoit	Steiner,	Ilya	Sutskever,
Kunal	Talwar,	Paul	Tucker,	Vincent	Vanhoucke,	Vijay	Vasudevan,	Fernanda	Viégas,	Oriol
Vinyals,	Pete	Warden,	Martin	Wattenberg,	Martin	Wicke,	Yuan	Yu,	and	Xiaoqiang	Zheng.
TensorFlow:	Large-scale	machine	learning	on	heterogeneous	systems,	2015.	Software
available	from	tensorflow.org.

TensorFlow

369

http://www.jstor.org/stable/259247

Terasology:	open	source	game
development	project

By	Bas	de	Böck,	Alexander	Grooff,	Arkka	Dhiratara	and	Jan	Zegers

Delft	University	of	Technology

Abstract
Terasology	is	a	video	game	similar	to	Minecraft.	It	started	as	part	of	a	research	project,	but
soon	evolved	into	an	active	open	source	project.	In	this	chapter,	Terasology	is	described	by
different	views	and	perspectives.	On	the	one	hand,	focus	is	given	to	the	development	view,
because	Terasology	currently	finds	itself	in	the	development	phase.	On	the	other	hand,
focus	is	given	to	the	variability	perspective,	as	the	modular	architecture	is	the	thing	that
makes	the	project	special.	Related	to	the	next	phase	of	the	project,	a	description	is	given	of
the	deployment	view	and	performance	and	scalability	perspective.	The	results	from	this
research	can	provide	new	contributors	to	gain	an	architectural	insight	into	the	Terasology
project,	enabling	them	to	more	easily	understand	the	project	and	contribute	to	it.

Table	of	Contents
1.	 Introduction

Terasology

370

https://github.com/BdeBock
https://github.com/AlexanderGrooff
https://github.com/arkka
https://github.com/JanZegers
https://minecraft.net/

2.	 Stakeholders
3.	 Context	view
4.	 Development	view
5.	 Variability	perspective
6.	 Deployment	view
7.	 Scalability	perspective
8.	 Contribution
9.	 Conclusion
10.	 References

1.	Introduction
Terasology	is	a	video	game	inspired	by	Minecraft	[1].	It	started	as	a	research	project,	but
soon	evolved	into	a	serious	open-source	project.	Terasology	is	developed	by	a	small,	but
warm	and	active	community,	which	we	have	experienced	to	be	welcome	and	friendly	to
newcomers.

Terasology	is	an	interesting	project	as	subject	of	study	for	software	architects,	as	the
community	behind	it	is	trying	to	get	from	the	development	phase	to	the	deployment	phase.	In
this	document,	we	describe	the	different	architectural	views	and	perspectives	of	the
Terasology	project.	We	start	with	a	stakeholder	analysis,	which	gives	insight	into	the	people
that	are	involved.	After	that,	the	context	view	is	given	to	place	Terasology	within	its
environment.	Next	we	describe	the	development	view,	as	the	project	is	still	in	its
development	phase	we	will	give	extra	attention	to	this	part.	Because	modularity	is	a	key
element	of	the	project,	the	following	variability	perspective	gets	extra	attention	too.	As
previously	explained	the	Terasology	project	is	transferring	to	the	deployment	phase,	as	such
this	will	be	described	in	the	deployment	view.	At	last,	we	provide	a	description	of	the
scalability	perspective	as	extra	metric	on	the	maturity	of	the	project.	We	end	this	chapter
with	our	conclusion	on	the	Terasology	project	architecture.

2.	Stakeholders
Terasology	originally	started	under	the	name	of	Blockmania	by	Benjamin	"begla"	Glatzel,
and	was	meant	as	a	research	project	for	procedural	terrain	generation	and	efficient
rendering	techniques	in	Java	using	the	Lightweight	Game	Java	Library	(LWGJL)	[2].	The	first
two	members	to	join	the	project	where	Anton	"small-keeper"	Kireev	and	Rasmus	"Cervator"
Praestholm,	which	lead	to	the	starting	point	of	the	conversion	of	a	research	project	demo	to
a	full-fledged	game.

Terasology

371

https://minecraft.net/
https://github.com/begla
https://www.lwjgl.org/
https://github.com/Cervator

Terasology’s	goal	is	to	stake	out	its	own	niche	by	adding	gameplay	aspects	from	NPC-helper
and	caretaker	games	as	Dwarf	Fortress	and	Dungeon	Keeper,	yet	paying	ample	tribute	to
Minecraft	in	look	and	origin.	This	results	in	a	sandbox	game	with	creative	and	building
aspects	that	enable	players	to	build	constructions	out	of	textured	cubes	in	a	3D	procedurally
generated	world.	Based	on	the	activated	modules,	the	game	provides	activities	as
exploration,	resource	gathering,	crafting	and	combat;	as	well	as	gameplay	modes	such	as	a
survival	mode	where	a	player	must	acquire	resources	to	build	the	world	and	stay	alive.	This
module	structure	allows	modders	to	come	up	with	creative	ideas	as	it	allows	them	to	create
and	ship	a	mod	with	a	few	simple	commands,	making	it	immediately	available	for	download
in-game	by	the	users.

The	main	developers	"Cervator"	and	Martin	"msteiger"	Steiger	are	the	ones	that	open	almost
every	issue.	The	rest	of	the	issues	have	been	opened	by	users	of	the	system.	We	found	that
the	four	top	contributors	consist	out	of:	"Cervator",	"msteiger",	Malo	"MaloJaffre"	Jaffre	and
Josh	"Josharias"	Zacharias	[3].

"Cervator"	can	be	seen	as	the	main	integrator	of	the	Terasology	project,	as	he	acts	as	a
guardian	for	the	project’s	quality,	while	at	the	same	time	keeping	contributions	"in-flight"	by
communicating	modification	requirements	to	the	original	contributors.	When	a	pull	request	is
made	which	lays	outside	of	his	skillset,	he	assigns	it	to	the	developer	that	is	specialized	in
that	part	of	the	system.	The	developers	decide	in	consultation	with	the	contributors	whether
to	accept	a	contribution.	In	this	project,	three	main	factors	leading	to	acceptance	arise,
namely:	code	quality,	code	style	and	project	fit.	The	time	it	takes	to	make	the	acceptance
decision	mostly	depends	on	the	reviewer	availability,	responsiveness	of	the	contributors	and
the	overall	complexity	of	the	code.	The	quality	of	the	code	is	evaluated	by	looking	at	the
understandability,	documentation	and	the	added	value	to	the	project.	For	continuous
integration,	Terasology	uses	Jenkins	as	a	tool	to	evaluate	quality.

By	using	the	knowledge	we	gained	from	the	analysis	of	the	Terasology	Github	page,	forum
and	social	media	pages	we	were	able	to	create	the	following	stakeholder	overview	as	can	be
seen	in	table	1.

Terasology

372

https://minecraft.net/
https://github.com/Cervator
https://github.com/msteiger
https://github.com/Cervator
https://github.com/msteiger
https://github.com/MaloJaffre
https://github.com/Josharias
https://github.com/Cervator
https://github.com/MovingBlocks/Terasology
http://forum.terasology.org

Type Entities

Developers Construct	and	deploy	the	system.	The	following	developers	have
been	active	in	the	past	year	and	have	been	divided	per	team.

Architects:	Benjamin	"begla"	Glatzel,	"Immortius",	Martin	"MarcinSc"
Sciesinski,	"shartte",	"flo",	"emanuele3d"

Design	Team:	"Cervator"

General:	Linus	"LinusVanElswijk"	van	Elswijk,	Jakub	"Limeth"	Hlusicka,
"unpause",	"OvermindDL1",	"prestidigitator",	Gustavo	"gtugablue"	Silva,
Flavio	"sk0ut"	Couto,	"Netopya",	Andre	"andrelago13"	Lago	,	"MaloJaffre"

GUI	Team:	Piotr	"Halamix2"	Halama

World	Team:	Tobias	"Skaldarnar"	Nett,	"msteiger",	"Josharias"

Users The	users	of	Terasology	consist	out	of	players	from	all	over	the
world.	This	is	depicted	by	the	activity	on	their	social	channels.

4k+	likes	on	Facebook

400	subscribers	on	Reddit

1200+	Twitter	followers

Suppliers Build	and/or	supply	the	hardware,	software,	or	infrastructure	on
which	the	system	will	run.

LWGJL

Github

Inspired	by	games	like	Minecraft,	Dungeon	Keeper	and	Dwarf	Fortress

Assessors Oversee	the	system’s	conformance	to	standards	and	legal
regulations.

"Cervator"	by	enforcing	the	use	of	an	Apache	2.0	license	agreement	and
Terasology’s	Code	of	Conduct.

Support
Staff

Support	is	being	provided	via	Github,	Twitter,	Facebook,	Reddit	and
the	Terasology	Forum.

"Cervator",	serves	as	main	moderator	on	the	support	sites.

Table	1:	Stakeholder	Overview

The	power	interest	grid,	as	depicted	in	figure	1,	provides	a	prioritization	of	the	stakeholders
by	their	power/interest	ratio.

Terasology

373

https://github.com/begla
https://github.com/immortius
https://github.com/marcinsc
https://github.com/shartte
https://github.com/flo
https://github.com/emanuele3d
https://github.com/Cervator
https://github.com/LinusVanElswijk
https://github.com/Limeth
https://github.com/unpause
https://github.com/OvermindDL1
https://github.com/prestidigitator
https://github.com/gtugablue
https://github.com/sk0ut
https://github.com/Netopya
https://github.com/andrelago13
https://github.com/MaloJaffre
https://github.com/halamix2
https://github.com/Skaldarnar
https://github.com/msteiger
https://github.com/Josharias
https://www.facebook.com/Terasology/
https://www.reddit.com/r/Terasology
https://twitter.com/terasology
https://www.lwjgl.org/
https://minecraft.net/
https://en.wikipedia.org/wiki/Dungeon_Keeper
https://en.wikipedia.org/wiki/Dwarf_Fortress
https://github.com/cervator
https://github.com/cervator

Figure	1:	The	stakeholders	in	a	power/interest	grid

3.	Context	view
In	order	to	provide	a	better	understanding	of	the	Terasology	architecture,	we	have	identified
the	relationships,	dependencies	and	interactions	between	entities	in	the	Terasology	project.
In	this	context	view,	we	have	grouped	the	entities	into	stakeholders,	development,
community,	external	entities,	and	licenses,	which	can	be	seen	in	figure	2.

Terasology

374

Figure	2:	Context	view	showing	the	basic	components	of	which	Terasology	consists	of

Development

The	development	group	consists	out	of	the	technical	related	entities	in	the	Terasology
project.	Terasology	is	build	using	the	Java	programming	language	to	deliver	a	cross-platform
solution	to	their	users.	Dependent	on	that	programming	language,	Terasology	uses	a	native
game	library	for	Java	which	is	the	LWGJL.	LWGJL	provides	developers	access	to	graphic
(OpenGL),	audio	(OpenAL)	and	parallel	computing	(OpenCL)	development	tools.
Terasology’s	community	prefers	to	use	IntelliJ	IDEA	as	their	recommended	Integrated
Development	Environment	(IDE),	though	there	is	also	support	for	other	IDEs	such	as	Eclipse
and	NetBeans.	A	project	with	this	scale	obviously	depends	on	existing	libraries,	therefore,
Terasology	uses	Gradle	as	their	dependency	management	tool	for	monitoring	the	build
process.	Moreover,	Terasology	encourages	the	open	source	community	on	Github	to
contribute	to	the	project.	Github	provides	distributed	revision	control	and	source	code
management	that	enable	developers	and	contributors	to	work	together	collaboratively	over
the	Internet.	Therefore,	Terasology	is	also	required	to	verify	each	contribution	from	the
community.	Jenkins	supports	this	task	by	providing	continuous	integration	and	continuous
delivery.	It	is	able	to	provide	a	number	of	different	required	tests,	such	as	JUnit	testing,
Checkstyle	and	PMD.

Community

As	a	project	that	aims	at	a	wide	range	of	users,	Terasology	is	also	required	to	maintain	their
community	presence	on	different	channels.	We	have	identified	at	least	seven	community
channels,	which	are	Reddit,	Facebook,	Google+,	Twitter,	#IRC,	Wiki	page	and	the

Terasology

375

https://www.lwjgl.org/
https://www.opengl.org/
https://www.openal.org/
https://www.khronos.org/opencl/
https://www.jetbrains.com/idea/
https://eclipse.org/
https://netbeans.org/
http://gradle.org/
https://github.com/
http://junit.org/junit4/
http://checkstyle.sourceforge.net/
https://pmd.github.io/
https://www.reddit.com/r/Terasology
https://www.facebook.com/Terasology/
https://plus.google.com/103835217961917018533
https://twitter.com/terasology
https://github.com/MovingBlocks/Terasology/wiki

discussion	board	forum.	On	these	community	channels,	Terasology	provides	support	to	the
community,	as	well	as	a	discussion	platform	for	the	features	and	project	vision.

External	Entities

Github	provides	the	collaborative	coding	platform	for	Terasology.	It	helps	developers	to	work
on	issues,	and	modders	to	create	new	modules,	containing	custom	game	mechanics	and
features,	for	the	game.

Licenses

Terasology	uses	the	Apache	2.0	and	its	own	code	of	conduct	licenses	[4].	Based	on	the
Apache	license,	the	community	has	the	freedom	to	distribute	the	software,	to	modify	the
software,	and	to	distribute	modified	versions	of	the	software	under	the	terms	of	the	license,
without	concern	for	royalties.

4.	Development	view

4.1	Module	organization

To	form	a	development	viewpoint,	we	first	modeled	the	system	as	a	component	diagram
(see	figure	3).	This	gives	a	depiction	of	how	the	components	in	the	Terasology	project	are
wired	together	to	form	the	larger	software	system.

When	looking	at	this	diagram	one	can	see	that	the	game	interacts,	through	an	interface
made	available	by	the	engine.	In-game	the	user	can	define	which	modules	should	be
loaded.	The	engine	then	asks	the	module	loader	for	these	modules	by	making	use	of	an
interface	made	available	by	the	module	loader.	A	module	is	a	container	for	code	and	assets,
which	can	be	used	by	game	types,	mods	or	other	higher-level	concepts.	Finally,	the	module
loader	makes	the	modules	available	to	the	engine,	that	passes	them	to	the	game.	While
being	in-game,	the	engine	communicates	with	the	core	to	send	the	game	component
information	to	the	game.

Terasology

376

http://forum.terasology.org/
http://www.apache.org/licenses/LICENSE-2.0
https://github.com/MovingBlocks/Terasology/blob/develop/docs/Conduct.md

Figure	3:	Terasology's	component	diagram

We	modeled	the	organization	of	the	system’s	source	code	into	a	module	structure	model
(see	figure	4)	[5].	This	model	defines	the	organization	in	terms	of	the	architectural	modules
into	which	the	individual	source	files	are	collected	and	the	dependencies	of	these	modules.
The	lines	depict	the	dependencies	between	the	packages,	while	the	accompanying	numbers
depict	the	number	of	dependencies.	We	see	the	engine	as	the	main	element,	where	all	the
other	architectural	modules	depend	on.	The	other	three	main	architectural	modules	are
	engine-tests	,		facades		and		modules	.		Engine-tests		holds	the	JUnit	tests	for	the	engine.
	Facades		contain	executable	front-end	parts	that	can	be	chosen	to	be	implemented.	The
	modules		are	separate	containers	of	content	which	can	be	injected	in	Terasology,	which
expand	the	gameplay	beyond	the	standard-included	core	modules.

Terasology

377

Figure	4:	Terasology's	dependency	diagram

Standardization	of	design

To	provide	critical	benefits	to	the	maintainability,	reliability,	and	technical	cohesion	of	the
system,	it	is	required	to	implement	a	standardization	of	design	[5].	Terasology	achieves	this
by	using	three	design	patterns	and	off-the-shelf	software	elements.

First,	the	core	framework	of	the	game	consists	of	an	entity	system.	Everything	in	the	game
should	be	an	entity;	the	only	exceptions	are	the	GUI	and	blocks.	The	entities	are	defined	as
interfaces	and	implemented	through	classes.	If	possible,	code	should	be	developed	against
these	interfaces	to	make	it	possible	to	easily	replace	it	in	the	future.	An	entity	is	a	logical
container	for	components.	It	can	be	identified	through	the	Entity	Manager,	but	the
components	are	the	elements	that	give	meaning	to	it.	Components	are	meaningful	sets	of
data	which	should	not	contain	any	game	logic,	since	they	may	only	contain	specific	data
types.	The	behaviour	of	the	entities	is	managed	by	‘ComponentSystems’.	The	entity	system,
with	entities,	components	and	‘ComponentSystems’	gives	the	architecture	its	flexibility.

Second,	the	design	uses	Events	and	Event	Handlers	instead	of	direct	method	calls,	to	allow
systems	to	interact	with	each	other.	This	again	provides	flexibility	and	extendability	to	the
project,	by	decoupling	the	systems.

Terasology

378

Third,	blocks	are	the	main	elements	in	Terasology,	and	enable	developers	to	design	their
own	gameplay.	They	are	put	in		.block		files	and	are	stored	in	a	separate	directory	of	a
module.	Blocks	are	JSON	objects	and	are	easily	creatable	and	alterable.

Standardization	of	testing

Every	major	software	project	should	implement	standardization	of	testing	to	ensure	a
consistent	approach	to	testing.	Terasology	has	implemented	his	own	standardized	testing
approach	described	below.

First,	every	contribution	should	be	done	through	a	Pull-Request	(PR)	from	the	Terasology
GitHub	repository.	Terasology’s	GitHub	bot	"GooeyHub"	will	assist	the	Pull-Request	by
informing	the	admin	and	by	providing	an	automated	test	request	given	by	admin	"Cervator"
directly	from	PRs	comment.

After	the	admin	gives	the	command	to	test,	GooeyHub	will	send	the	test	request	to
Terasology’s	Jenkins,	regarding	the	PR.	Jenkins	then	builds	and	tests	the	PR	code	and
provides	the	result,	which	GooeyHub	retrieves	and	posts	as	a	link	on	the	PR's	comment
page.

After	this	phase,	the	admin	and	other	related	contributors	will	collaborate	and	discuss
regarding	the	changes	that	are	proposed	by	the	contributor.	They	need	to	ensure	that	the
new	improvement	complies	with	the	architectural	vision.

As	a	continuous	integration	and	continuous	delivery	application,	Terasology	is	using	Jenkins
in	order	to	build	and	test	every	pull	request.	Jenkins	implements	a	number	of	tests,	such	as:
JUnit	test,	Checkstyle,	FindBugs	test,	and	PMD	test.

Instrumentation

Terasology	uses	SLF4J	(Simply	Logging	Framework	For	Java)	library	for	different	logging
implementations.	SLF4J	also	provides	different	log	level	configurations	that	are	able	to	be
adjusted	to	the	requirements.	Terasology’s	contributors	have	also	created	general	guidelines
about	the	log	levels,	which	can	be	found	on	the	Terasology	forum	[6].

4.2	Technical	debt

Slowing	rate	of	velocity

Velocity	is	a	measurement	of	the	amount	of	work	a	development	team	can	complete	during
a	time	interval.	When	velocity	starts	to	slow	down	over	the	course	of	several	iterations,
technical	debt	might	be	the	reason	[5].	If	too	much	technical	debt	has	piled	up	it	will	impair

Terasology

379

https://github.com/GooeyHub
https://github.com/Cervator
http://jenkins.terasology.org/
http://junit.org/junit4/
http://checkstyle.sourceforge.net/
http://findbugs.sourceforge.net/
https://pmd.github.io/
http://www.slf4j.org/

the	development	productivity.	By	analyzing	the	Github	statistics	we	can	see	that	the
productivity	comes	with	ups	and	downs.	Normally	this	could	be	a	sign	of	technical	debt,	but
in	this	case	that	is	very	unlikely.	This	is	because	there	is	no	structured	development	process
with	measurable	iterations,	and	the	activity	and	consistency	of	the	team	are	subject	to
change.	Any	slowing	rate	of	velocity	in	the	Terasology	project	can	therefore	not	be	linked
with	certainty	to	technical	debt.

Aging	libraries

By	taking	a	look	at	the	versions	of	the	libraries	the	project	uses,	we	could	determine	if	these
had	an	impact	on	the	technical	debt,	as	this	is	increased	by	versions	that	are	behind	or	no
longer	being	maintained.	We	looked	at	the	used	libraries	covered	in	appendix	A.	A	total	of
six	libraries	has	been	found	that	where	behind	their	latest	stable	version.	No	libraries	have
been	found	that	were	no	longer	being	maintained.	This	gives	a	indication	that	the	technical
debt	could	be	increased	by	the	aging	libraries.

Defects

The	project	has	been	analyzed	with	the	use	of	the	FindBugs	plugin.	The	plugin	gave	a	total
of	301	warnings,	from	which	were	91	high	priority	and	210	medium	priority,	which	turns	out
to	be	three	defects	per	thousand	lines	of	non-commenting	source	statements.	Table	2	gives
a	summary	of	the	number	of	errors	per	warning	type.

Warning	Type Number

Bad	Practice	Warnings 73

Correctness	Warnings 3

Internationalization	Warnings 2

Malicious	Code	Vulnerabilities	Warnings 62

Multithreaded	Correctness	Warnings 1

Performance	Warnings 52

Dodgy	code	Warnings 108

Table	2:	Warnings	Overview

Bugs	should	be	fixed	as	they	are	found	and	should	not	be	let	to	accumulate.	The	number	of
defects	this	project	has,	could	be	the	cause	of	a	small	amount	of	technical	debt.

Low	automated	test	coverage

Terasology

380

https://github.com/MovingBlocks/Terasology/graphs/contributors
http://findbugs.sourceforge.net/

The	project	has	been	analyzed	by	the	built-in	test	coverage	tool	of	the	IDE	IntelliJ.	The	unit
tests	from	Terasology	only	cover	the	engine	package	in	a	direct	way.	As	is	depicted	in	figure
5,	only	40.9%	of	the	classes	in	the	engine	is	covered.	The	general	agreement	is	that	more
than	90%	coverage	can	be	seen	as	a	good	sign,	and	less	than	75%	coverage	may	indicate
a	serious	problem.	In	this	case,	it	is	very	likely	that	the	low	automated	test	coverage	is	the
cause	of	a	great	amount	of	technical	debt,	as	tests	are	useful	to	be	able	to	refactor	code.

Figure	5:	Test	coverage	of	the	Terasology	project

Poor	score	on	quality	metrics

The	project	has	been	analyzed	with	the	tool	InCode	to	get	an	overview	of	the	other	quality
metrics.	From	the	2339	classes	that	were	analyzed,	154	had	design	flaws,	and	from	the
16423	methods	that	were	analyzed,	235	had	design	flaws.	These	metrics	can	be	found	in
appendix	B.

From	this	analysis	we	can	infer	that	6.6%	of	the	classes	and	1.4%	of	the	methods	have
design	flaws.	The	five	packages	with	the	highest	severity	of	design	flaws	are:

	/engine/src/main/java/org.terasology.protobuf		,	cumulative	severity	of	518.
	/engine/src/main/java/org.terasology.rendering.nui.internal		,	cumulative	severity	of
107.
	/modules/Core/src/main/java/org.terasology.logic.inventory		,	cumulative	severity	of
65.
	/engine/src/main/java/org.terasology.logic.characters		,	cumulative	severity	of	26.
	/engine/src/main/java/org.terasology.engine.subsystem.headless.renderer		,	cumulative
severity	of	24.

With	the	help	of	InCode	we	have	also	created	an	overview	pyramid	(see	figure	6).	Each	of
the	rows	has	a	colored	percentage,	which	is	derived	from	the	ratio	of	the	number	on	this	row
and	the	one	under	it,	e.g.,	CYCLO	/	Line	is	0.19.	The	given	numbers	indicate	where	the
ratios	fit	into	the	industry-standard	ranges.	From	figure	6,	can	be	derived	that	the	number	of

Terasology

381

https://www.intooitus.com/products/incode
https://www.intooitus.com/products/incode

direct	descendants	and	height	of	inheritance	tree	is	outside	the	range.	The	number	of
classes	per	package,	lines	of	code	per	method	and	fan	out	(number	of	other	methods	called
by	a	given	method)	per	call	are	all	below	the	range.	The	other	ratios	are	all	within	the	range.
The	red	and	blue	cases	increase	the	technical	debt	and	should	therefore	be	refactored.

Figure	6:	Pyramid	generated	with	InCode

By	using	the	tool	CodePro	Analytix	we	analyzed	the	comments	ratio,	which	was	6.9%,	such
low	amount	of	Javadoc	could	contribute	to	extra	technical	debt.	As	Terasology	is	an	open
source	project	which	is	dependent	on	new	developers,	documentation	is	an	essential	part	of
the	understandability	of	the	code	for	them.

Dealing	with	technical	debt

To	get	a	good	overview	of	how	the	Terasology	team	deals	with	technical	debt,	we	analyzed
the	Github	pull	requests	and	issues.	Since	the	Terasology	project	does	not	contain	any
labels	concerning	technical	debt,	we	had	to	filter	the	issues	and	pull	requests	based	on	our
self-created	set	of	keywords.	The	keywords	we	filtered	on	are:	"technical	debt",	"clean",
"maintenance",	"improve",	"style",	"cleanup"	and	"refactor".	From	these	results	we	tried	to
find	instances	where	the	team	had	to	deal	with	technical	debt,	which	caused	them	to	have
discussions	and	possible	refactoring	decisions	they	had	to	make.

Terasology

382

https://marketplace.eclipse.org/content/codepro-analytix
https://github.com/MovingBlocks/Terasology/pulls
https://github.com/MovingBlocks/Terasology/issues

We	found	out	that	there	have	been	almost	no	relevant	issues	regarding	refactoring.	About
2%	of	the	open	and	closed	issues	is	about	refactoring	code.	Issue	#1587	shows	an	example
for	an	open	issue	about	refactoring	the	"Breathing"	modules,	and	issue	#2089	shows	an
example	for	a	closed	issue	about	improving	the	readability	of	the	"Assets".	The	low	number
of	issues	regarding	refactoring	could	mean	that	the	team	is	not	aware	of	the	design	flaws	in
the	code	or	is	simply	ignorant	towards	them.	When	looking	at	the	pull	requests	regarding
refactoring,	we	found	out	that	about	2%	of	the	pull	requests	is	about	refactorization	that	is
not	based	on	issues.	These	refactorization	pull	requests	were	all	own-initiative
refactorization	contributes.	Most	of	the	times	contributors	focus	on	refactoring	classes,	e.g.,
#1562.	Sometimes	contributors	are	working	on	certain	issues	and	find	code	that	needs
refactoring,	e.g.,	#1751.	Other	times	contributors	refactor	closed	issues	of	their	own,	which
even	can	be	work	from	six	months	ago,	e.g.,	#2135.

Based	on	the	data	from	the	Terasology	project	on	Github	we	can	state	that	the	developers
do	not	seem	to	discuss	any	problems	regarding	technical	debt.	Any	mentioning	about	code
refactoring	is	confined	to	its	own	issue	or	pull	request,	and	thus	is	not	part	of	encountered
technical	debt	during	the	work	on	issues.	Though	in	the	previous	section	we	stated	that
there	is	a	large	amount	of	possible	technical	debt	in	the	Terasology	project.	The	question
then	of	course	is,	why	this	debt	is	not	mentioned	anywhere	on	Github.	The	reason	for	this
could	be	that	any	bad	code	is	refactored	on	the	fly,	without	mentioning	it	on	Github.	Another
unlikely	but	possible	reason	could	be	that	the	currently	worked	on	issues	do	not	have	much
overlap	with	the	code	that	contributes	to	the	technical	debt,	and	that	the	technical	debt	still
has	to	be	repaid	in	the	future.	The	last	and	most	likely	reason	is	the	fact	that	they	take	the
current	technical	debt	for	granted.	The	developers	could	take	the	debt	for	granted	as	they
are	reluctant	to	refactor	the	code.	The	first	reason	for	their	reluctance	could	be	due	to	the
lack	of	tests	that	are	available,	as	tests	are	needed	to	refactor.	The	second	reason	could	be
the	lack	of	understanding	of	the	code.	A	lot	of	the	initial	developers	have	left	the	Terasology
project,	which	could	be	a	reason	for	the	current	developers	to	leave	the	old	code	as	it	is	(if	it
ain't	broke,	don't	fix	it).	The	last	reason	could	be	the	short	term	focus	of	the	developers	as
new	features	are	more	important	than	refactoring	existing	ones.	This	becomes	more	likely	if
we	look	at	the	continuous	integration	tool	Jenkins	that	they	use.	By	analyzing	this	tool	we
can	clearly	see	that	design	flaws	are	monitored,	yet	the	developers	run	Jenkins	and
manually	accept	the	result	even	though	Jenkins	shows	that	a	lot	is	wrong	with	the	code.

In	a	reaction	on	our	questionnaire	on	the	Terasology	forum	"Skaldarnar",	confirmed	that	they
ignore	technical	debt	until	the	moment	the	code	is	touched	for	other	reasons	[7].

5.	Variability	perspective

Terasology

383

https://github.com/MovingBlocks/Terasology/issues/1587
https://github.com/MovingBlocks/Terasology/issues/2089
https://github.com/MovingBlocks/Terasology/pull/1562
https://github.com/MovingBlocks/Terasology/pull/1751
https://github.com/MovingBlocks/Terasology/pull/2135
https://github.com/Skaldarnar

Terasology	has	a	range	of	important	features	that	could	cause	the	user	experience	to
change.	The	features	and	their	relationships	have	been	modeled	in	a	feature	model	as
depicted	in	figure	7	[5].	The	mandatory	features	are	present	in	all	products	(be	it	as	default
settings).	In	OR-features,	it	is	possible	to	select	one	or	more	feature,	wherein	the	alternative
(XOR)-features	only	one	of	the	features	can	be	selected.

Terasology

384

Terasology

385

Figure	7:	FeatureIDE	diagram

The	main	dependencies	of	Terasology	are	the	native	build	related	features.	In	order	to	run
seamlessly	on	the	different	platforms	(Linux,	MacOSX	and	Windows),	Terasology	is	required
to	define	different	native	build	configurations	that	include	Input	Library	(libjinput-linux	,
	libjinput-osx	,		jinput),	Graphic	Library	(liblwgjl)	and	Audio	Library	(OpenAL).
Moreover,	there	is	also	some	specific	platform	32-bit/64-bit	configuration	for	each	library
being	used	on	specific	native	builds,	as	depicted	in	figure	8.

Figure	8:	Feature	Dependency	UML	diagram

Each	Native	build	has	two	groups	of	features	that	depend	on	it,	which	are		Basic
Configurations		and		Facades	.	These	features	basically	require	specific	platform	libraries	to
communicate	with	the	hardware	(Input,	Audio	and	Graphics).	Advanced	configuration
feature	support,	such	as	Oculus	Rift,	extend	the	capabilities	of	the	Video	feature	of	the	basic
configuration.	Gameplay	related	configuration	also	depends	on	basic	configuration	features,
these	include	keyboard	localization,	language	of	the	interface	and	other	user	interface
related	features.	Separate	from	the	Basic	and	Gameplay	Configuration	there	is	a	group	of
features	that	do	not	depend	on	the	native	build,	which	are	Modules	and	Game	Mode.	These
two	groups	are	mainly	dependent	on	world	generator	features.

Terasology

386

5.1	Variability	Strategy

Terasology	makes	use	of	configuration	files	which	can	be	edited	in	the	various	setting
screens.	These	configuration	files	hold	the	various	global	configuration	information	that	the
user	can	modify.	The	configuration	files	can	be	saved	and	loaded	in	a	JSON	format	with	the
	.ui		extension,	and	define	the	menu	layout.	Configurable	items,	like	the	button	handlers,
are	defined	in	the		rendering.nui		package.	These	classes	can	adjust	the	overall	config
classes	defined	in	the		Config		package.

Modules	can	be	seen	as	containers	for	code	and	assets,	that	can	be	used	by	game	types,
mods	or	other	higher-level	concepts.	Modules	can	be	enabled,	disabled	or	replaced.
Therefore	some	of	the	main	parts	of	the	system,	e.g.		Core	Gameplay	,	are	also	modules.
Every	module	gets	a	copy	of	the	build	file	from	the	Core	module	so	that	all	modules	are	built
equally.	Modules	use	a	simple		module.txt		file	to	define	their	configurations	and
dependencies	towards	other	modules.	Gradle,	a	build	automation	system,	handles	the
possible	problems	regarding	the	dependencies	[2].

Terasology	uses	facades	to	create	a	front-end	which	can	be	executed.	There	are	multiple
facades,	with	the	main	one	being		PC	Facade	.	This	facade	is	included	with	the	base	version
of	Terasology,	and	can	be	used	to	run	the	game	as	an	application.	Other	facades	are
	FacadeApplet	,		DestSolAndroid	,		DestSolGwt		and		FacadeAWT	.

Besides	the	single	player	mode,	there	is	also	a	multiplayer	mode	option.	Both	options	are
part	of	the	build	and	are	available	before	creating	a	game.	There	is	a	small	network
infrastructure	provided	that	enables	someone	to	act	as	host	and	others	to	join	his	game.
Multiplayer	mode	is	still	a	feature	that	is	under	development	and	is	not	seen	as	stable	by	the
community.

6.	Deployment	view
This	deployment	view	section	looks	beyond	the	alpha	release.	The	Terasology	launcher	can
be	downloaded	from	the	download	page.	Extracting	this	launcher	provides	the	opportunity	to
install	stable	releases	of	the	game,	with	the	latest	version	by	default.	Like	the	game,	the
launcher	is	executable	on	Windows,	Linux	and	MacOSX.	The	only	other	software
component,	besides	the	launcher	and	the	release	version,	that	needs	to	be	present	on	the
PC	is	Java	Virtual	Machine	version	8.	There	are	other	Java	libraries	used	by	Terasology,	but
they	are	downloaded	as	part	of	the	stable	release.	The	basic	version	comes	with	two
modules,		Core		and		CoreSampleGameplay	.	Within	the	game,	it	is	possible	to	download
additional	modules.	Additional	modules	change	or	add	features	of	the	game.	Downloaded
modules	can	be	selected	before	creating	a	game.

Terasology

387

http://terasology.org/#download

There	are	no	predefined	hardware	requirements	for	Terasology.	The	game,	as	we
experienced	by	testing,	has	high	graphical	requirements.	We	asked	the	community	for
advice	on	running	the	game	on	basic	systems	with	low	graphical	power:	"With	just	the	Core
Gameplay	and	low	graphic	settings	(especially	view	distance)	any	system	that	decently
supports	OpenGL	2.1	and	Java	8	should	have	a	chance	to	work"	[7].	However,	there	are
modules,	such	as	Throughout	the	Ages	in	combination	with	high	graphic	settings	that	can
crash	any	regular	system.	For	the	multi-player	mode,	the	server	demands	are	not	that
problematic,	however	a	noticeable	draw	on	CPU	and	memory	remains.	Additionally,	the
game	tends	to	crash	when	adding	more	than	a	couple	of	players	to	the	game.	Optimization
of	the	server	is	one	of	the	key	parts	the	community	is	focussing	on.

7.	Scalability	Perspective
In	order	to	identify	the	scalability	of	Terasology	and	understand	its	capability	to	perform
under	an	increased	workload,	we	observed	the	project	scalability	with	various	dimension
measurements	[5].

7.1	Administrative	Scalability

In	general,	everyone	is	able	to	contribute	to,	comment	on	and	provide	ideas	for	this	project.
However,	there	is	a	key	development	phase	that	is	only	handled	by	a	specific	person,
consisting	of	the	contribution	approval	(pull-request)	and	the	maintaining	of	the	architectural
vision.	Unfortunately,	there	are	only	a	few	active	maintainers	that	are	available	for	this
important	responsibility.	As	a	reminder,	popularity	on	Github	is	essential	for	this	project;
because	it	attracts	more	contributors	and	accelerates	the	project	development.	Based	on
this	fact,	we	have	foreseen	that	this	administrative	problem	will	become	the	main	scalability
bottleneck	for	the	Terasology	project.

Administrative	Scalability	really	became	a	bottleneck	when	the	project	recently	entered
Google	Summer	of	Code	2016,	where	the	popularity	largely	outnumbered	the	capability	of
the	community	to	support	more	than	a	couple	of	student.

7.2	Functional	Scalability

Terasology’s	modular	architecture	enables	contributors	to	develop	new	modules	as	desired.
New	modules	are	integrated	with	existing	Terasology	modules	to	provide	new	features	with
minimal	effort.	This	capability	strengthens	the	ability	to	stimulate	the	open-source	community
to	keep	developing	Terasology.

7.3	Geographic	Scalability

Terasology

388

https://github.com/Terasology/ThroughoutTheAges
https://summerofcode.withgoogle.com/

Terasology	has	three	factors	that	improve	geographic	scalability.	First,	it	is	an	open	source
project	that	gets	contributions	from	every	continent.	Second,	every	user	is	able	to	host	their
own	Terasology	game,	which	acts	as	a	server	in	the	multiplayer	mode.	This	enables	scaling
without	the	boundary	of	geographic	constraint.	Third,	the	game	provides	different	languages
for	their	users,	to	also	attract	non-English	speaking	players.

7.4	Load	Scalability

The	multiplayer	game	mode,	needs	to	be	able	to	easily	expand	to	accommodate	heavier
loads	of	inputs.	Therefore	load	scalability	is	the	main	requirement	to	provide	multiplayer
experience	on	Terasology.	Every	user	is	able	to	host	their	own	game	using	their	own
resources	(computer/server)	and	invite	other	users	to	join	the	game.	Other	users	are	only
required	to	add	the	server	connection	information	in	order	to	connect	to	the	host	server.	With
this	distributed	architecture,	Terasology	is	easily	expandable	to	meet	the	community	needs.

7.5	Generation	Scalability

Terasology	has	a	modular	architecture.	This	makes	it	possible	to	change	or	add	modules	to
the	project.	It	can	handle	module	dependencies	and	has	a	version	control	mechanism,	to
prevent	the	game	from	breaking	when	new	module	versions	are	introduced.	This	makes	it
possible	to	handle	different	generations	of	different	modules.	However,	changing	modules
and	checking	for	newer	versions	has	to	be	done	manually.	This	makes	the	execution	of
module	generation	coordination	very	labour	intensive.

8.	Contributions
The	list	of	contributions	that	have	been	made	to	the	Terasology	project	can	be	found	in
appendix	C.	We	have	five	merged	and	one	closed	pull	requests,	from	which	four	solved	user
interface	issues	and	one	solved	a	log	file	issue.

9.	Conclusion	and	Reflection
Terasology	is	an	open	source	game,	which	has	grown	from	a	research	project	to	a	mature
project	growing	into	alpha	testing	status.	It	has	a	small	but	active	group	of	contributors,	who
work	in	a	completely	automated	development	environment	on	Github.	The	architecture	has	a
modular	structure,	with	a	small	engine	and	a	lot	of	modules	that	add	or	change	gameplay.
This	modular	architecture	has	made	it	possible	to	reach	a	high	variability,	enabling	to	change
almost	every	feature	in	the	game.	As	a	result	of	the	high	variability,	some	combinations	of
high	graphics	options,	as	well	as	the	combination	of	multiple	demanding	modules,	make	the

Terasology

389

game	impossible	to	run	on	a	standard	PC.	Therefore	a	big	architectural	change	is	being
discussed	by	the	architects	in	order	to	decrease	the	computational	demand	of	the	game	and
improve	its	stability.	Besides	the	possible	architectural	overhaul	our	research	has	indicated
that	the	technical	debt	of	the	project	is	too	high	above	the	desired	standard.	The	project
contains	a	high	number	of	design	flaws	and	low	amount	of	test	cases	and	JavaDoc.	This
could	prove	to	become	problematic	in	the	future	when	new	contributors	will	start	working	on
the	project.

During	the	DESOSA	2016	project,	Terasology	has	been	accepted	for	Google	Summer	of
Code.	This	will	greatly	increase	the	number	of	new	contributors	and	users.	Therefore	GSoC
would	be	a	good	research	subject	to	analyze	how	Terasology	is	going	to	deal	with	new
contributors	and	users,	in	regard	to	the	technical	debt	and	deployment	and	scalability
factors.

All	in	all	we	have	had	a	lot	of	fun	working	on	the	project,	but	it	would	have	been	a	lot	less	fun
if	the	Terasology	community	had	not	given	us	a	very	warm	welcome	like	they	did.	They	did	a
perfect	job	in	assisting	us	on	our	contributions	and	answering	our	questions.	Therefore	we
would	like	to	thank	the	Terasology	community	for	helping	us.

10.	References
[1]	Terasology.https://github.com/MovingBlocks/Terasology.	[Online;	accessed	29-March-
2015].

[2]	Terasology’s	Wiki.https://github.com/MovingBlocks/Terasology/wiki.	[Online;	accessed
29-March-2015].

[3]	Terasology’s	Github	Pulse.	https://github.com/MovingBlocks/Terasology/pulse.	[Online;
accessed	29-March-2015].

[4]	Terasology’s	Code	of	Conduct.
https://github.com/MovingBlocks/Terasology/blob/develop/docs/Conduct.md.	[Online;
accessed	29-March-2015].

[5]	Rozanski,	N.,	Woods,	E.	2012.	Software	System	Architecture.

[6]	Terasology’s	logging	guidelines.	http://forum.terasology.org/threads/logging.611.	[Online;
accessed	29-March-2015].

[7]	Terasology’s	forum	post:	Technical	requirements.
http://forum.terasology.org/threads/technical-requirements.1476/.	[Online;	accessed	29-
March-2015].

Terasology

390

https://summerofcode.withgoogle.com/organizations/4668766554161152/
https://github.com/MovingBlocks/Terasology
https://github.com/MovingBlocks/Terasology/wiki
https://github.com/MovingBlocks/Terasology/pulse
https://github.com/MovingBlocks/Terasology/blob/develop/docs/Conduct.md
http://forum.terasology.org/threads/logging.611
http://forum.terasology.org/threads/technical-requirements.1476/

Appendix	A	-	Used	libraries
Several	libraries	are	being	used	to	run	the	game,	the	main	ones	being:

LWJGL,	which	is	the	Lightweight	Java	Game	Library.	Current	version	being	used:	2.9.3,
while	the	latest	version	is	3.0.
JUnit,	a	library	for	unit	testing.	Current	version	being	used:	4.12,	which	is	the	latest
version.

Other	libraries:

Storage	and	networking:
guava,	version:	19.0,	which	is	the	latest	version.
gson,	version:	2.5,	while	the	latest	version	is	2.6.1.
protobuf-java,	version:	2.6.1,	which	is	the	latest	version.
trove4j,	version:	3.0.3,	which	is	the	latest	version.
netty,	version:	3.10.5,	while	the	latest	version	is	4.0.34

Java-related	libraries:
jna-platform,	version:	4.2.1,	which	is	the	latest	version.
reflections,	version:	0.9.10,	which	is	the	latest	version.
javassist,	version:	3.20.0-GA,	which	is	the	latest	version.
reflectasm,	version:	1.11.0,	while	the	latest	version	is	1.11.1

Graphics,	3D,	UI:
lwjgl_util,	version:	2.9.3,	which	is	the	latest	version.
java3d,	version:	1.3.1,	while	the	latest	is	1.5.2
abego.treelayout.core,	version:	1.0.3,	which	is	the	latest	version.
miglayout-core,	version:	5.0,	which	is	the	latest	version.
PNGDecoder,	version:	1111,	which	is	the	latest	version.

Logging	and	audio:
slf4j-api,	version:	1.7.13,	while	latest	version	is	1.7.17
jorbis,	version:	0.0.17,	which	is	the	latest	version.

Appendix	B	-	Quality	metrics
From	the	2339	classes	that	were	analyzed,	154	had	design	flaws:

87	Data	Classes:	These	classes	are	exposing	a	significant	amount	of	data	in	its	public
interfaces.	This	impacts	the	encapsulation,	coupling,	and	cohesion	of	the	system.
34	Schizophrenic	Classes:	These	classes	have	public	interfaces	that	are	large	and	are
used	non-cohesively	by	client	methods.	This	impacts	the	complexity,	encapsulation,
coupling,	inheritance	and	cohesion	of	the	system.

Terasology

391

19	God	Classes:	These	classes	use	many	attributes	from	external	classes,	directly	or
via	accessor	methods.	They	are	also	excessively	large	and	complex,	due	to	the	fact	that
their	methods	have	a	high	cyclomatic	complexity	and	nesting	level.	This	impacts	the
complexity,	encapsulation,	coupling	and	cohesion	of	the	system.
14	Tradition	Breaker	Classes:	These	classes	hide	parts	of	the	inherited	interface.	This
impacts	the	coupling,	inheritance	and	cohesion.	From	the	16423	methods	that	were
analyzed,	235	had	design	flaws.
118	Data	Clumps:	These	methods	have	long	parameter	lists,	which	could	be	a	sign	that
the	group	of	parameters	could	form	a	new	abstraction,	that	could	be	extracted	to	a	new
class.	This	impacts	the	complexity	and	encapsulation	of	the	system.
2	Sibling	Duplications:	These	methods	have	duplications	with	methods	from	the
inheritance	hierarchy.	This	impacts	the	complexity,	encapsulation,	coupling	and
inheritance	of	the	system.
26	Feature	Envies:	These	methods	heavily	use	attributes	from	one	or	more	external
classes,	directly	or	via	accessor	operations.	This	impacts	the	complexity,	encapsulation,
coupling	and	cohesion	of	the	system.
2	Message	Chains:	These	methods	use	one	object	to	access	another	object,	which	on
his	turn	uses	the	obtained	object	to	access	another	object,	and	so	on.	This	impacts	the
complexity,	encapsulation	and	coupling	of	the	system.
34	Internal	Duplications:	These	methods	have	duplication	with	other	methods	from	their
class.	This	impacts	the	complexity	of	the	system.
53	External	Duplications:	These	methods	have	duplication	with	other	methods	external
to	their	class	and	their	hierarchy.	This	impacts	the	complexity,	encapsulation	and
coupling	of	the	system.

Appendix	C	-	Contributions

Pull	request	#2176	for	issues	#844	and	#2134.	MERGED

This	pull	request	was	made	to	fix	issues	#844	and	#2134.	In	these	issues,	a	request	was
made	for	a	solution	for	dropdown	menus	which	were	becoming	too	long.	To	solve	this,	we
implemented	a	new	type	of	menu	called	UIDropdownScrollable	(based	on	UIDropdown).
This	menu	was	similar	to	the	typical	dropdown	menu,	but	had	a	scrollbar	on	the	right	side	to
shorten	the	length	of	the	menu.

One	problem	remained	however	in	this	pull	request,	which	was	that	the	menu	did	not	close
whenever	the	scrollbar	was	focussed	last.	The	pull	request	message	contained	a	detailed
description	of	how	to	replicate	the	issue	to	clarify	the	issue.

Pull	request	#2180	for	issue	#2179.	CLOSED

Terasology

392

https://github.com/MovingBlocks/Terasology/pull/2176
https://github.com/MovingBlocks/Terasology/issues/844
https://github.com/MovingBlocks/Terasology/issues/2134
https://github.com/MovingBlocks/Terasology/issues/844
https://github.com/MovingBlocks/Terasology/issues/2134
https://github.com/MovingBlocks/Terasology/pull/2180
https://github.com/MovingBlocks/Terasology/issues/2179

This	pull	request	fixed	an	issue	we	found	in	our	previous	pull	request	(#2176).	The	scrollbar
showed	a	scrollbar	even	when	there	was	nothing	to	scroll	down	for.	The	issue	was	fixed	by
adding	checks	if	there	were	more	items	than	that	the	menu	should	be	long.

This	fix	caused	some	more	code	to	be	added,	and	the	decision	was	made	to	clean	up	the
code,	improving	maintainability.	More	methods	were	added	to	divide	the	massive	onDraw
functions	into	smaller	pieces.

Afterwards,	we	realized	something	went	wrong	with	the	commits,	as	it	appeared	that	a
rebase	went	wrong.	This	eventually	got	fixed	in	pull	request	#2183.

Pull	request	#2181	for	issue	#2178.	MERGED

Issue	#2178	was	created	by	Cervator	who	directly	asked	us	to	implement	our	newly	created
scrollable	menu	from	pull	request	#2176	in	places	which	we	deemed	necessary.	We
implemented	the	scrollable	menu	is	several	places,	and	hinted	in	the	pull	request	message
that	pull	request	#2180	was	probably	useful	for	this	pull	request,	since	it	fixed	the	bad
scrollbar.

Pull	request	#2182	for	issue	#2173.	MERGED

This	pull	request	added	a	difference	between	the	subheader	titles	of	the	singleplayer	and
multiplayer	menus.	Initially,	an	extra	class	and	an	extra	.ui	file	were	created,	but	msteiger
asked	us	to	change	this	to	prevent	code	duplication.	We	complied	by	adding	another
commit,	which	removed	the	Java	class	file	which	was	deemed	to	be	dead	code.	Afterwards,
msteiger	thanked	us	but	asked	us	to	also	get	rid	of	the	extra	.ui	file,	suggesting	another	way
of	solving	this	issue.	After	a	small	discussion,	msteiger	advised	us	to	use	a	placeholder	text
for	the	subtitle	label	and	set	the	correct	one	through	Java	code	when	the	menu	screen	is
opened.	We	complied	by	adding	several	other	commits,	most	important	being	commit	1	and
commit	2.	Cervator	merged	the	pull	request,	but	mentioned	that	the	subtitles	should	also	be
added	to	other	game	screens.	For	this,	he	created	a	new	issue	#2233,	which	we	will	fix	in
the	nearby	future.

Pull	request	#2183	for	PR	#2180.	MERGED

Pull	request	#2180	solved	its	assigned	issue,	but	something	went	wrong	with	the	commits.
This	was	caused	by	rebasing	the	develop	branch	on	our	fork,	and	updating	the	worked-on
branch.	After	this	was	figured	and	pointed	out,	this	pull	request	got	closed.

Pull	request	#2183	was	created	to	fix	the	same	issue	as	#2180,	but	this	time	with	a	proper
commit	history.

Terasology

393

https://github.com/MovingBlocks/Terasology/pull/2176
https://github.com/MovingBlocks/Terasology/pull/2183
https://github.com/MovingBlocks/Terasology/pull/2181
https://github.com/MovingBlocks/Terasology/issues/2178
https://github.com/MovingBlocks/Terasology/issues/2178
https://github.com/MovingBlocks/Terasology/pull/2176
https://github.com/MovingBlocks/Terasology/pull/2180
https://github.com/MovingBlocks/Terasology/pull/2182
https://github.com/MovingBlocks/Terasology/issues/2173
https://github.com/msteiger
https://github.com/delftswa2016/Terasology/commit/1c03ea760d79398df281b0abf5c3ac1671bda685
https://github.com/msteiger
https://github.com/msteiger
https://github.com/delftswa2016/Terasology/commit/ff5d0a49bfdbfc5c260b481c1f38692ca8584fd4
https://github.com/delftswa2016/Terasology/commit/f14e0df6426afed67643f1d77aac0a7cf16f8586
https://github.com/MovingBlocks/Terasology/issues/2233
https://github.com/MovingBlocks/Terasology/pull/2183
https://github.com/MovingBlocks/Terasology/pull/2180
https://github.com/MovingBlocks/Terasology/pull/2180
https://github.com/MovingBlocks/Terasology/pull/2183
https://github.com/MovingBlocks/Terasology/pull/2180

Pull	request	#2184	for	issue	#2030.	MERGED

Issue	#2030	explained	an	issue	regarding	the	filename	of	the	logfile	in	multiplayer	mode,	as
it	was	deemed	to	be	unclear.	We	created	a	new	structured	filename,	describing	the	server
name,	address	and	port	to	give	a	clearer	view	of	what	the	log	message	contains.

msteiger	pointed	out	a	different	way	of	handling	this	issue	regarding	Protobuf's
	serverInfoMessageBuilder.setGameName()		method.

Cervator	merged	the	pull	request,	and	pointed	out	that	the	filename	could	be	changed	in	a
follow-up	issue/pull	request	if	a	better	name	is	found.

Terasology

394

https://github.com/MovingBlocks/Terasology/pull/2184
https://github.com/MovingBlocks/Terasology/issues/2030
https://github.com/MovingBlocks/Terasology/issues/2030
https://github.com/msteiger

WildFly
by	Shishir	Subramanyam,Ioana	Leontiuc,	Mengmeng	Ye,	Kyriakos	Fragkeskos	Delft
University	of	Technology

Abstract
WildFly	is	a	server	application	that	provides	easy	communication	between	the	user	and	its
server.	It	is	one	of	the	many	features	of	the	JBoss	Application	Enterprise.	WildFly	provides
remote	management	for	one	or	more	servers	and	runs	on	a	local	host	server	as	well.	This
includes	domain	mode,	where	a	domain	of	servers	on	different	hosts	can	be	managed	by	a
central	domain	controller.	We	analyzed	the	open	source	modules	project	of	WildFly.	Based
on	the	online	available	information	and	the	source	code	(both	manual	and	tool	based
analysis)	we	reversed	engineered	the	context,	development,	functional	and	operational
viewpoints	and	the	evolution	perspective.

Table	of	Contents

Wildfly

395

Title

1 Context

2 Stakeholders

3 Proposed	Stakeholders

4 Git	Repository	Analysis

5 Technical	Environment

6 System	Quality

7 System	Architecture

8 Transaction	Feature	System	Analysis

9 Further	Reading

10 Conclusion

11 Reference

Context
WildFly	is	an	open	source	application	server	in	Java	[2]	.	Its	copyright	is	owned	by	Red	Hat
Inc.	This	company	has	a	pattern	of	purchasing	projects,	releasing	as	open	source	one	of	the
system`s	functionality	and	then	charging	clients	for	support	and	access	to	the	full	feature
version.

RedHat	Inc	has	the	infrastructure	to	turn	rather	small	scale	popular	projects	into	a	fully
functional	product.	As	stated	by	them:	“We	help	more	than	90%	of	Fortune	500	companies
solve	business	challenges,	align	their	IT	and	business	strategies,	and	prepare	for	the	future
of	technology”.	As	much	as	possible	RedHat	Inc	tries	to	build	up	their	new	projects	on	their
other	owned	projects.	This	is	feasible	since	they	are	“the	world`s	leading	provider	of	open
source	solutions”[1].

In	2006	RedHat	Inc	bought	JBoss,	and	owned	the	copyright	for	the	JBoss	Middleware,	a
portfolio	of	enterprise-class	application	and	integration	middleware	software	products.	[5].
One	of	these	is	The	Enterprise	Application	Platform	a	single	platform	to	quickly	develop	and
deploy	applications	[4].	The	application	server	within	the	JBoss	Enterprise	is	called	WildFly
and	released	as	open	source.

Stakeholders

Wildfly

396

RedHat	Inc	has	full	time	employed	developers	that	work	on	extending	their	project.	However,
since	they	are	open	source,	some	developers	come	from	the	open	source	community.	We
refer	to	the	people	that	voluntarily	contribute	to	the	WildFly	project	by	submitting	pull
requests	or	providing	user	support	by	answering	related	questions	on	forums	or	other
platforms	(YouTube	videos,	blog	posts)	as	open	source	developers.	We	also	consider	the
users	of	WildFly,	and	not	the	entire	JBoss	platform	to	be	open	source	users.	Therefore	we
refer	to	the	open	source	community	(OSCommunity)	as	being	formed	of	these	two	groups,
the	open	source	developers	and	the	open	source	users.	We	acknowledge	the	different	roles
each	stakeholder	group	has.	However	our	intention	in	the	merging	of	some	groups	is	to
show	that	the	same	group	of	people	has	multiple	responsibilities.	We	provide	names	of
group	representatives	and	acknowledge	the	contribution	of	the	OSCommunity	in	the
corresponding	stakeholder	groups.

Communicators	&	Developers:	we	merged	these	categories	because	both	consist	of	the
JBoss	developers	employed	by	RedHat	Inc,	represented	by	Jason	Greene,	the	project
leader	and	the	OSCommunity.	However	any	contribution	made	by	the	OSCommunity	has	to
be	approved	by	a	JBoss	developer.	The	primary	communicator	are	JBoss	employees,	they
approve	the	official	documentation	(Stuart	Douglas,	Brian	Stansberry,Leos	Literak	to	name	a
few	[16]).	We	have	found	that	there	is	a	RedHat	Certificate	a	lot	of	people	pride	themselves
with	on	Linked	In.	Some	of	them	even	made	instructional	videos	on	YouTube[15].	Thus
becoming	communicators.

Maintainers	&	Production	Engineers(&	System	Administrators):	the	people	responsible
for	all	these	tasks	are	the	JBoss	developers	employed	by	RedHat	Inc.	(like	Stuart	Douglas
the	JBoss	software	engineer	that	announced	the	new	release).	In	this	case	the	system
administrators	are	the	production	engineers.

Suppliers:	or	sponsors	are	first	of	all	RedHat	Inc.	The	development	made	by	their
employees	is	the	basis	of	new	WildFly	releases	(latest	version	WildFly	10	on	29	January
2016).	Also	RedHat	Inc	provided	other	projects	to	help	the	JBoss	development	process
which	includes	the	development	of	WildFly.	Some	of	these	projects	are:

Hibernate	=	domain	model	persistence	for	relational	databases	[7]

Narayana	=	transaction	manager	[8]

Infinispan	=	distributed	in-memory	key/value	data	store	with	optional	schema	[9]

Arquillian	=	component	model	for	integration	tests	that	execute	inside	the	real	runtime
environment	[3]

Beside	the	RedHat	products	WildFly	also	benefits	from[17]:

Awestruct	=	framework	for	creating	static	HTML	[18]

Wildfly

397

inteliJIDEA

ej-technologies	=	free	JProfiler	licenses

Support	Staff:	the	support	available	for	free	is	from	the	OSCommunity.	However,	there	is
payed	assistance	available	from	JBoss.	Because	the	second	one	is	charged	we	consider
them	a	proxy.	They	can	be	considered	as	an	alternative	if	the	OSCommunity	does	not	rise	to
the	challenge.

Testers	&	Users:	the	testers	of	JBoss	(that	use	the	Aquilian	platform)	and	the	users	that
pay	for	the	JBoss	Platform	are	implicitly	in	the	same	relationship	with	the	WildFly	project.
Having	said	that,	we	have	testers	and	users	exclusively	for	the	WildFly	part.	They	come	from
the	OSCommunity.	However	there	are	people	outside	this	community	that	need	the	feature
WildFly	offers,	thus	becoming	exclusive	users	of	WildFly.	We	consider	these	categories	to
be	in	the	following	relationship:

Proposed	Stakeholders
Analyzing	the	environment	of	WildFly	we	feel	that	in	order	to	have	a	comprehensive
stakeholder	analysis	there	is	a	need	for	the	following	categories:

Followers:	WildFly	uses	social	media.	These	followers	are	exclusively	interested	in	WildFly,
3960	twitter	followers	and	1352	members	of	the	Google+	community.	RedHat	Inc	has	a	total
of	8300	employees	[10].	As	shown	in	the	Power/Interest	Grid	for	Stakeholder	Prioritization
this	group	has	no	power	and	low	interest.	However	we	consider	that	this	group	should	not	be
monitored	with	minimum	effort.	This	group	is	composed	of	employees	of	JBoss,	people	from
the	OSCommunity	but	also	other	people	that	are	somehow	interested	in	WildFly,	they	might
not	even	be	users	(this	group	is	represented	in	the	Context	View	as	a	question	mark).	But

Wildfly

398

they	are	potential	users.	These	people	are	most	likely	to	use	WildFly.	More	importantly	this
group	has	the	potential	of	becoming	future	JBoss	employees.	From	the	company`s
perspective,	this	group	is	the	first	place	to	look	for	new	talent	because	they	build	up	an
interest	in	the	product	on	their	own.

Competitors:	the	companies	that	offer	the	same	services:	IBM	WebSphere,	Oracle
WebLogic,SAP	NetWeaver

Senior	Adviser:	are	the	people	with	a	lot	of	experience	in	the	field	that	can	have	valuable
input	for	the	success	of	the	development	process.	However	these	people	are	not	exclusively
involved	with	one	project.	They	are	not	always	present	but	when	they	are	their	input	is
always	taken	into	account.	They	are	low	interest	but	at	the	same	time	a	lot	of	power.	For
WildFly	we	found	Arun	Gupta.	He	is	the	vice	president	of	developer	advocacy	at	Couchbase.
He	has	been	building	developer	communities	for	10+	years	at	Sun,	Oracle,	and	Red	Hat
[11].	Even	though	he	work	for	a	different	company	he	is	interested	in	the	project.	He	wrote	a
blog	post	on	how	to	use	WildFly	on	raspberry	pie	[12]	and	made	a	YouTube	tutorial	[13]

Free	riders:	This	type	of	stakeholders	are	independent	of	the	development	process.	They
have	no	power	but	high	interest.	In	a	way	they	behave	like	a	parasite.	They	have	only	to
gain	from	the	success	of	the	project.	In	the	case	of	WildFly	we	found	Caffe	Press,	they	sell
JBoss	Community	Gear,	cups	and	t-shirts	with	the	logo:	"wear	your	open	source	pride"	[14]

All	these	are	summarized	within	the	following	context	view:

Wildfly

399

Git	Repository	Analysis
Description Result

Open	pull	requests 85

Closed	pull	requests 8573

Merged	pull	request	ratio 1.07	per	day

Proposed	pull	request	ratio 1.5	per	day

Contributors 248

Based	on	our	personal	experience	the	process	of	contributing	is	very	thorough.	The	detailed
oriented	process	for	open	source	contributors	makes	the	whole	process	time	consuming	and
requires	a	significant	number	of	re-submissions.	However,	it	is	very	easy	to	report	an	issue.
This	situation	can	be	observed	in	the	correlation	between	created	and	resolved	issues	for
the	past	30	days	(as	of	24th	of	March	2016).

Wildfly

400

From	the	analysis	we	conducted	on	both	pull	requests	and	issues,	we	found	out	that	the
Stakeholders	which	are	involved	are	the	Developers.	The	Developer	class,	could	be	further
divided	in	leading	developer(for	each	component	of	the	system),	common	developer	and
Open	source	community.	Each	one	in	this	category,	has	different	abilities.	The	leading
developer	is	responsible	to	review	the	code	of	pull	requests	and	to	decide	which	pull	request
is	going	to	be	merged	or	not.	They	make	merge	decisions	based	on	the	quality	of	code,	the
style	and	if	it	fits	the	project's	roadmap.	If	a	pull	request	is	not	merged	the	leading
developers	usually	send	a	brief	explanation	or	provide	a	log	file.	The	common	contributors(of
the	system)	are	responsible	to	resolve	different	issues	(e.g	bugs,	feature	upgrades,	feature
requests)	and	the	open	source	community	developers	can	assist	to	resolve	open	issues	by
submitting	pull	requests.

Technical	Environment
WildFly	is	a	server	application	that	provides	easy	communication	between	the	user	and	its
server.	It	is	one	of	the	many	features	of	the	JBoss	Application	Enterprise.	WildFly	provides
remote	management	for	one	or	more	servers	and	runs	on	a	local	host	server	as	well.	This
includes	domain	mode,	where	a	domain	of	servers	on	different	hosts	can	be	managed	by	a
central	domain	controller.

Wildfly

401

The	system	is	organized	in	modules.	The	user	can	activate	only	the	features	that	are	useful
for	him.	Activating	a	feature	most	of	the	times	comes	with	added	dependencies.	This	status,
described	in	the	WildFly	official	documentation	[22],	is	described	in	the	diagram	below.
Green	arrows	represent	dependencies	that	exist	only	when	the	feature	is	activated,	where
the	black	ones	are	constant	dependencies.	The	green	boxes	are	WildFly	modules	described
in	the	documentation	and	the	orange	ones	external	sources.

System	Quality
We	looked	into	the	quality	of	the	project	using	iPlasma	[20]	and	inCode	[21].	The	project	has
over	700	000	JavaLOC.	Overall	the	class	hierarchies	have	an	average	height	and	the
inheritance	trees	are	narrow.	The	classes	are	rather	small	and	organized	in	fine-grained
packages.	These	are	all	signs	of	a	good	system	since	the	JBoss	development	team	wants	a
modular	system.	The	methods	have	average	length	and	have	simple	logic,	with	few
conditional	branches.	They	also	call	several	methods	from	few	other	classes.	Making	this	a
good	environment	for	new	open	source	developers.	The	overview	pyramid	"is	an	integrated,
metrics-based	means	to	both	describe	and	characterize	the	overall	structure	of	an	object-

Wildfly

402

oriented	system,	by	quantifying	the	aspects	of	complexity,	coupling	and	usage	of
inheritance"[28].	The	overview	pyramid	in	itself	shows	that	the	JBoss	developers	take	care
of	their	technical	debt.

The	JBoss	developers	opted	for	test	driven	development	[23].	They	have	a	comprehensive
test	suite.	This	shows	interest	in	maintaining	a	qualitative	system	with	the	smallest	amount
of	technical	debt.	To	this	end	we	found	on	the	Jira	JBoss	account	they	have	reported	7,555
issues	on	duplication,	3,140	issues	on	refactoring,	220	issues	on	dead	code	and	74	issues
with	misplaced	code	to	name	a	few	[24].

During	our	analysis	we	found	potential	candidates	for	refactoring.	For	our	first	PR	[25]	we
resolved	their	worst	case	of	duplicated	code.	A	65	line	method	in	6	different	test	cases.	We
have	created	this	simple	issue	ourselves	[26]	for	our	initial	contact.	A	more	detailed
description	of	this	process	can	be	found	in	the	contributions	file.	In	the	following	weeks	we
plan	to	tackle	some	of	their	God	Classes.

System	Architecture
From	the	beginning	(JBoss)	had	a	new	approach	to	the	architecture,	a	"modular	class
loading	and	a	dependency	injection	framework	allowing	the	services	providing	the
application	server	functionality	to	be	installed	in	parallel",	as	described	by	Kabir	Khan,	five
year	old	software	engineer	on	this	project	[19].	Throughout	the	version	releases,	the
modules	and	their	interaction	have	changed	in	order	to	improve	the	system.

WildFly	modules	are	isolated	by	default.	Some	dependencies	of	modules	defined	by	the
application	server	are	set	up	automatically.	These	dependencies	can	be	divided	in	four
categories:

System	Dependencies
User	Dependencies
Local	Resources
Inter	Deployment	Dependencies

Wildfly

403

Each	one	of	the	categories	refers	to	a	specific	type	of	dependencies.	The	System
dependencies	refer	to	dependencies	that	are	added	to	the	module	automatically,	like	Java
Api's.	The	user	dependencies	are	the	dependencies	which	are	added	through	JBoss
deployment	(not	open	source).	Local	Resources	are	packages	inside	the	deployment	like
class	files	from	WEB-INF	or	WEB-INF/lib.	Finally,	the	inter	deployment	dependencies	are	the
dependencies	which	affect	other	deployments	in	an	EAR	deployment.

In	order	to	create	the	development	view	we	researched	WildFly	official	documentation,
source	code	from	GitHub	and	documentation	from	previous	versions.	We	found	the
architecture	of	JBoss	AS	7	which	is	the	previous	name	of	WildFly.	The	JBoss	AS	7	was
renamed	into	WildFly	7,	the	current	version	is	WildFly	10.	The	green	boxes	are	subsystems
that	were	kept	up	to	version	10.

By	comparing	the	architecture	of	WildFly	7	(JBoss	AS	7)	[29]	to	the	current	code	we	found
some	very	interesting	insights.	Alterations	have	been	made	through	the	versions	of	WildFly
like	merging	of	subsystems,	adding	new	functionalities	and	changing	the	hierarchical	order.

The	WildFly	project	we	are	looking	into	contains	the	modules	the	user	can	plugin	into	the
core	system.	The	core	is	a	separate	GitHub	project	[27].	The	WildFly	project	under
consideration	contains	38	maven	projects.	Out	of	these,	there	are	8	modules	the	user	can
plugin,	the	remaining	30	modules	form	the	WildFly	Utility	layer,	that	a	user	can	set	up,	which

Wildfly

404

provides	services	for	all	the	main	feature	modules.	Each	one	of	the	8	modules	has	an
explicit	dependency	on	junit	for	testing	purposes.	Also,	in	the	WildFly.core	project	there	is	a
subsystem	which	contains	several	tests	for	the	project.	These	tests	refer	to	several	aspects
of	WildFly	like:

Core
Api
Cluster
Domain
Integration
Spec

This	six	sets	of	tests	aim	to	assess	any	change	on	the	initial	code,	in	order	to	avoid	any
unwanted	situation,	like	internal	errors,	bad	requests,	systems'	malfunctions,	etc.

The	main	user	enabled	functionalities	(green	large	WildFly	modules	Figure	9)	are	dependent
on	the	core	and	JBoss	libraries	(i.e.	Login).	They	are	also	indirectly	or	directly	dependent
upon	the	external	sources	that	form	the	platform	layer	of	our	development	view.	The	rest	of
the	project	forms	the	utility	layer	that	contains	the	features	the	modules	need.	Each	module
has	its	own	custom	mix	of	dependencies	that	we	traced	from	the	pom	files	in	the	project.
This	overview	can	be	seen	in	the	following	diagram:

Wildfly

405

The	main	user	enable	functionalities	are:

EJB3:	The	Enterprise	JavaBeans	architecture	or	EJB	for	short	is	an	architecture	for	the
development	and	deployment	of	component-based	robust,	highly	scalable	business
applications.	These	Applications	are	scalable,	transactional,	and	multi-user	secure.

Web	Service:	JBossWS	is	a	web	service	framework	developed	as	part	of	the	JBoss
Application	Server	/	WildFly.	JBossWS	integration	provides	the	application	server	with
any	WS	related	technologies	it	needs	for	achieving	compliance	with	the	Java	Platform.

Security:	The	security	subsystem	is	the	subsystem	that	brings	the	security	services
provided	by	PicketBox	to	the	JBoss	Application	Server	7	server	instances.

SAR:	these	deployment	packages	are	just	JAR	files	with	special	XML	deployment
descriptors	in	directories	like	META-INF	and	WEB-INF,	which	allows	you	to	make
changes	to	web	pages	etc	on	the	fly	without	re-deploying	the	entire	application.

JAX	RS:	RESTEasy	is	a	JBoss	project	that	provides	various	frameworks	to	help	build
RESTful	Web	Services	and	RESTful	Java	applications.	It	is	a	fully	certified	and	portable
implementation	of	the	JAX-RS	specification.	JAX-RS	is	a	new	JCP	specification	that
provides	a	Java	API	for	RESTful	Web	Services	over	the	HTTP	protocol.

Wildfly

406

Weld:	Weld	is	the	reference	implementation	of	CDI:	Contexts	and	Dependency	Injection
for	the	Java	EE	Platform	which	is	a	JCP	standard	for	dependency	injection	and
contextual	life-cycle	management	and	one	of	the	most	important	and	popular	parts	of
the	Java	EE	platform.

JPA:	The	Java	Persistence	API	(JPA)	is	a	Java	specification	for	accessing,	persisting,
and	managing	data	between	Java	objects	/	classes	and	a	relational	database.	JPA	was
defined	as	part	of	the	EJB	3.0	specification	as	a	replacement	for	the	EJB	2	CMP	Entity
Beans	specification.

EE:	The	EE	subsystem	provides	common	functionality	in	the	Java	EE	platform,	such	as
the	EE	Concurrency	Utilities	(JSR	236)	and	injection.	The	subsystem	is	also	responsible
for	managing	the	life-cycle	of	Java	EE	application's	deployments,	that	is,	.ear	files.

Even	though	the	modules	should	be	independent	of	each	other,	we	highlight	their	inter
dependencies	in	the	following	zoomed	in	diagram:

Transaction	Feature	System	Analysis

Wildfly

407

We	focus	on	the	Transaction	user	customization,	specific	to	the	WildFly	project	in
discussion.	This	is	a	maven	project	in	itself,	part	of	the	utility	layer	presented	in	the
architecture	overview.	The	transaction	has	five	sections	with	a	total	of	23	flexibility	points
described	as	follows.

1.	 Attributes

Timeout:	A	typical	transaction	might	be	started	by	a	Session.	If	the	duration	of
these	transactions	exceeds	the	specified	timeout	setting,	the	transaction	service
will	roll-back	the	transactions	automatically.

Enable	TSM	Status:	Whether	the	transaction	status	manager	(TSM)	service,
needed	for	out	of	process	recovery,	should	be	provided	or	not.

Journal	Store	Enable	Async:	Whether	AsyncIO	should	be	enabled	for	the
journal	store.	Default	is	false.	The	server	should	be	restarted	for	this	setting	to
take	effect.

JTS:	If	true	this	enables	the	Java	Transaction	Service.

Node	Identifier:
Used	to	set	the	node	identifier	on	the	core	environment.

Statistics	Enabled:	Whether	statistics	should	be	enabled.

Used	Journal	Store:	Used	for	writing	transaction	logs.	Set	to	true	to	enable	and	to
false	in	order	to	use	the	default	log	store	type.	The	default	log	store	is	normally	one
file	system	file	per	transaction	log.	The	server	should	be	restarted	for	this	setting	to
take	effect.	It's	alternative	to	jdbc	based	store.

2.	 Process	ID

UU	ID:	Indicates	whether	the	transaction	manager	should	use	a	UUID	based
process	id.

Socket	Binding:	The	name	of	the	socket	binding	configuration	to	use	if	the

Wildfly

408

transaction	manager	should	use	a	socket-based	process	id.	Will	be	'undefined'
if	'process-id-uuid'	is	'true';	otherwise	must	be	set.
Socket	Max	Port
The	maximum	number	of	ports	to	search	for	an	open	port	if	the	transaction
manager	should	use	a	socket-based	process	id.	If	the	port	specified	by	the
socket	binding	referenced	in	'process-id-socket-binding'	is	occupied,	the	next
higher	port	will	be	tried	until	an	open	port	is	found	or	the	number	of	ports
specified	by	this	attribute	have	been	tried.	Will	be	'undefined'	if	'process-id-
uuid'	is	'true'.

3.	 Recovery

Socket	Binding

Used	to	reference	the	correct	socket	binding	to	use	for	the	recovery	environment.

Statics	Socket	Binding

Used	to	reference	the	correct	socket	binding	to	use	for	the	transaction	status
manager.

Recovery	Listener

Used	to	specify	if	the	recovery	system	should	listen	on	a	network	socket	or	not.

4.	 Path

Object	Stored	Path	Denotes	a	relative	or	absolute	file-system	path	denoting	where
the	transaction	manager	object	should	store	data.	By	default	the	value	is	treated	as
relative	to	the	path	denoted	by	the	"relative-to"	attribute.

Object	Stored	Relative	to	References	a	global	path	configuration	in	the	domain
model,	defaulting	to	the	JBoss	Application	Server	data	directory
(jboss.server.data.dir).	The	value	of	the	"path"	attribute	will	treated	as	relative	to
this	path.

5.	 JDBC

Store	Use	the	jdbc	store	for	writing	transaction	logs.	Set	to	true	to	enable	and	to
false	to	use	the	default	log	store	type.	The	default	log	store	is	normally	one	file
system	file	per	transaction	log.	The	server	should	be	restarted	for	this	setting	to
take	effect.	It's	alternative	to	Horneq	based	store

Action	Store	Drop	Table	Configure	if	jdbc	action	store	should	drop	tables.	Default	is
false.	The	server	should	be	restarted	for	this	setting	to	take	effect.

Action	Store	Prefix	Optional	prefix	for	table	used	to	write	transaction	logs	in

Wildfly

409

configured	jdbc	action	store.	The	server	should	be	restarted	for	this	setting	to	take
effect.
Communication	Drop	Store	Table	Configure	if	jdbc	communication	store	should
drop	tables.	Default	is	false.	The	server	should	be	restarted	for	this	setting	to	take
effect.
Communication	Store	Prefix	Optional	prefix	for	table	used	to	write	transaction	logs
in	configured	jdbc	communication	store.	The	server	should	be	restarted	for	this
setting	to	take	effect.
State	Store	Table	Prefix	Configure	if	jdbc	state	store	should	drop	tables.	Default	is
false.	The	server	should	be	restarted	for	this	setting	to	take	effect.
Jdbc	state	store	table	prefix	Optional	prefix	for	table	used	to	write	transaction	logs
in	configured	jdbc	state	store.	The	server	should	be	restarted	for	this	setting	to	take
effect.
Store	Data	Source	Jndi	name	of	non-XA	data	source	used.	Data	source	should	be
define	in	data	sources	subsystem.	The	server	should	be	restarted	for	this	setting	to
take	effect.

Transaction	Features	Management
The	transaction	features	are	vital	to	the	system.	That	is	why	a	valid	mix	of	mandatory
transaction	features	are	stored	for	default	settings	in	a	configuration	xml	file.	The	whole
feature	processing	algorithm	starts	by	calling	the	start	method	from	CoreEnvironmentService
class	by	the	Runner.	Their	approach	makes	use	of	a	JBoss	closed	implementation	of	a
CoreEnvironmentBean	and	a	SocketBinding.	The	entire	process	has	a	roll	back	option	that
can	give	updates	on	the	current	status.

The	transaction	process	is	dependent	upon	the	JMX	and	EE	(i.e.	Concurrent's
TransactionSetupProviderService)	subsystems.

In	regards	to	configuring	these	feature	we	have	found	7,832	Jira	issues	on	transaction,	201
on	journal	store,	87	on	Object	Stored	Path	and	39	on	Statics	Socket	Binding	to	name	a	few.

Transaction	Features	Dependencies
The	outcome	of	transaction	feature	selection	has	a	direct	impact	in	the	variability	of	the
custom	user	instances	of	the	WildFly	system.	At	the	same	time	the	transaction	module	is
used	by	other	modules	as	shown	in	the	diagram.

Wildfly

410

This	means	that	all	the	developers	of	the	modules	dependent	upon	transactions	are	affected
by	these	features.	The	transaction	module	in	WildFly	monitors	all	the	incoming	and	out-
coming	communications	of	the	server.	We	can	observe	that	the	transaction	subsystem	is
vital	for	the	proper	flow	of	almost	all	the	main	components	of	WildFly.

Based	on	the	source	code	and	our	experience	as	a	mock	user	we	identified	the	following
dependencies	between	the	transaction	features.

1.	 	Journal	store	enable	async	io		with		Use	journal	store	

In	order	to	set	the		Journal	store	enable	async	io		to	TRUE	first	you	have	to	enable
the		Use	journal	store	

2.	 	ID	UUID		with		ID	socket	binding	

If	the		ID	UUID		is	disable	then	you	MUST	assign	as	an	id	in		Id	socket	binding	

3.	 	Id	socket	binding		with		Process	id	socket	MAX	port	

The		Process	id	socket	MAX	port		can	NOT	be	assigned	if	the		id	socket	binding		is
not	defined

4.	 	Use	JDBC	store		with		JDBC	store	datasource	

If	you	enable		JDBC	store		you	have	to	provide	a		JDBC	store	datasource	

5.	 	Process	id	socket	MAX	port		with		ID	UUID	

If	the		ID	UUID		is	true	the		Process	id	socket	MAX	port		must	be	undefined

Binding	Time

Wildfly

411

We	also	categorized	each	feature	to	a	certain	class	and	binding	time.

Features Class Required Binding

Timeout Attributes FALSE Start	time

Enable	TSM	Status Attributes TRUE Runtime

Journal	Store	Enable	Async	IO Attributes TRUE Runtime

JTS Attributes TRUE Runtime

Node	Identifier Attributes FALSE Runtime

Statistics	Enabled Attributes TRUE Runtime

Used	Journal	Store Attributes TRUE Runtime

UU	ID Process	ID TRUE Runtime

Socket	Binding Process	ID FALSE Runtime

Socket	Max	Port Process	ID FALSE Runtime

Socket	Binding Recovery TRUE Runtime

Statics	Socket	Binding Recovery TRUE Runtime

Recovery	Listener Recovery TRUE Runtime

Object	Stored	Path Path FALSE Runtime

Object	Stored	Relative	to Path FALSE Runtime

Store JDBC TRUE Runtime

Action	Store	Drop	Table JDBC TRUE Runtime

Action	Store	Prefix JDBC FALSE Runtime

Communication	Drop	Store	Table JDBC TRUE Runtime

Communication	Store	Prefix JDBC FALSE Runtime

State	Store	Table	Prefix JDBC TRUE Runtime

Jdbc	state	store	table	prefix JDBC FALSE Runtime

Store	Data	Source JDBC FALSE Runtime

The	following	figures	illustrate	a	few	examples	of	the	relationship	between	the	class,	binding
time	and	the	required	features.	The	Attributes	and	JDBC	class	have	the	most	required
attributes.	Also,	JDBC	has	an	equal	number	of	required	and	optional	features.

Wildfly

412

An	overview	of	the	feature	binding	time	and	class	shows	that	only	the	Default	timeout
feature,	which	defines	the	timeout	of	the	server	requires	reloading	the	server	(i.e.	restart).
The	rest	of	the	features	can	be	modified	at	Runtime.

Further	Reading
1.	 Install/Upgrade/Debugging	Steps
2.	 Demo:	Mail	configuration
3.	 Perspectives

Wildfly

413

https://github.com/delftswa2016/team-wildfly/blob/master/D6/Tutorial_1.md
https://github.com/delftswa2016/team-wildfly/blob/master/D6/Tutorial_2.md

Evolution
Development

4.	 Viewpoint
Operational
Deployment

Conclusion
WildFly	is	an	open	source	server	management	application.	We	analyzed	the	architecture,
stakeholders,	development	context	and	feature	implementation,	all	detailed	in	this	chapter.
We	also	provide	a	further	reading	section	that	links	to	more	resources	developed	by	our
team.	The	WildFly	system	is	split	into	the	core	that	contains	the	basic	functionalities	and	the
WildFly	project	that	contains	all	the	user	enabled	modules.

The	quality	of	the	code	is	good	but	still	contains	dependencies	between	modules	that	should
be	independent.	We	tried	to	contribute	to	a	more	modular	architecture	by	our	PR`s,	by
clearing	duplicated	code	and	a	feature	envy	bad	smell.	The	contribution	procedure	is	very
complex	making	it	hard	to	get	merged.	We	did	however	officially	published	a	tutorial	for
installing,	debugging,	updating	WildFly	and	a	demo.	The	tutorial	was	our	natural	reaction	to
the	available	online	information	on	WildFly.	Based	on	our	study	we	consider	this	system	to
be	very	well	maintained,	developed	and	tested.

References
1	http://www.redhat.com/en/about	"Red	Hat"

2	https://en.wikipedia.org/wiki/WildFly	"Wildfly_wiki"

3	http://wildfly.org/about/	"Wildfly"

4	https://www.redhat.com/en/technologies/jboss-middleware/application-platform	"Jboss"

5	https://en.wikipedia.org/wiki/JBoss_(company)	"jboos_wiki"

6	"Rozaski	and	woods.software	architecture"

7	http://hibernate.org/	"hibernate"

8	http://narayana.io/	"narayana"

9	http://infinispan.org/	"infispan"

10	https://en.wikipedia.org/wiki/Red_Hat	"Redhat_wiki"

Wildfly

414

https://github.com/delftswa2016/team-wildfly/blob/Refactoring_of_Final_Chapter/D6/Evolution_perspective.md
https://github.com/delftswa2016/team-wildfly/blob/master/D6/DevelopmentPerspective.md
https://github.com/delftswa2016/team-wildfly/blob/master/D6/OperationalView.md
https://github.com/delftswa2016/team-wildfly/blob/master/D6/DeploymentView.md
http://www.redhat.com/en/about
https://en.wikipedia.org/wiki/WildFly
http://wildfly.org/about/
https://www.redhat.com/en/technologies/jboss-middleware/application-platform
https://en.wikipedia.org/wiki/JBoss_(company
http://hibernate.org/
http://narayana.io/
http://infinispan.org/
https://en.wikipedia.org/wiki/Red_Hat

11	https://www.linkedin.com/in/arunpgupta	"arunpgupta"

12	http://blog.arungupta.me/wildfly-cluster-raspberrypi-techtip28/	"cluster_rasp"

13	https://www.youtube.com/watch?v=5MhqcVFVJ2s	"youtube"

14	http://www.cafepress.com/jbossorg/6726696	"cafepress"

15	https://www.linkedin.com/in/ankur25	"ankur25"

16	https://docs.jboss.org/author/pages/viewpreviousversions.action?pageId=80873103
"jboss_previous_version"

17	http://wildfly.org/downloads/	"wildfly_downloads"

18	http://awestruct.org/	"awestruct"

19	https://www.linkedin.com/in/kabir-khan-99a333	"Kabir	Khan	Profile"

20	http://loose.upt.ro/reengineering/research/iplasma	"iPlasma"

21	https://www.intooitus.com/products/incode	"inCode"

22	https://docs.jboss.org/author/display/WFLY8/Documentation	"WildFly	Documentation"

23
https://developer.jboss.org/wiki/TestDrivenDevelopmentTDDAndMovingForwardWithLessTec
hnicalDebt	"jboos	TDDi"

24	https://issues.jboss.org/secure/Dashboard.jspa	"Jira	JBoss"

25	https://github.com/wildfly/wildfly/pull/8740	"PR1-github"

26	https://issues.jboss.org/browse/WFLY-6296?
jql=project%20%3D%20WFLY%20AND%20resolution%20%3D%20Unresolved%20ORDER
%20BY%20priority%20ASC%2C%20updated%20DESC	"PR1-JIRA"

27	https://github.com/wildfly/wildfly-core	"core	project"

28	Lanza,	Michele,	and	Radu	Marinescu.	(2007)	Object-oriented	metrics	in	practice:	using
software	metrics	to	characterize,	evaluate,	and	improve	the	design	of	object-oriented
systems.	Springer	Science	&	Business	Media.

29	http://www.slideshare.net/rayploski/jboss-application-server-7

Wildfly

415

https://www.linkedin.com/in/arunpgupta
http://blog.arungupta.me/wildfly-cluster-raspberrypi-techtip28/
https://www.youtube.com/watch?v=5MhqcVFVJ2s
http://www.cafepress.com/jbossorg/6726696
https://www.linkedin.com/in/ankur25
https://docs.jboss.org/author/pages/viewpreviousversions.action?pageId=80873103
http://wildfly.org/downloads/
http://awestruct.org/
https://www.linkedin.com/in/kabir-khan-99a333
http://loose.upt.ro/reengineering/research/iplasma
https://www.intooitus.com/products/incode
https://docs.jboss.org/author/display/WFLY8/Documentation
https://developer.jboss.org/wiki/TestDrivenDevelopmentTDDAndMovingForwardWithLessTechnicalDebt
https://issues.jboss.org/secure/Dashboard.jspa
https://github.com/wildfly/wildfly/pull/8740
https://issues.jboss.org/browse/WFLY-6296?jql=project%20%3D%20WFLY%20AND%20resolution%20%3D%20Unresolved%20ORDER%20BY%20priority%20ASC%2C%20updated%20DESC
https://github.com/wildfly/wildfly-core
http://www.slideshare.net/rayploski/jboss-application-server-7

Youtube-dl

Abstract

Youtube-dl	is	a	simple	command-line	application	that	enables	users	to	download	videos	from
one	of	the	more	than	seven	hundred	supported	websites.	The	application	is	actively
maintained	and	developed	by	a	relatively	small	group	of	developers.	On	a	regular	basis	the
project	receives	external	contributions	and	requests	(e.g.	for	supporting	a	new	site)	from
developers	and	users.	The	simplicity	of	the	architecture,	consisting	of	four	major
components,	allows	for	easy,	continuous	integration	of	new	functionality.	The	application
offers	various	features	in	the	form	of	options	that	allow	for	retrieving	specific	data,	extensive
(downloading)	configurations	and	post-processing	tasks.	Finally	there	are	some	regulations
(among	others	regarding	copyright	infringement	and	the	Terms	of	Service	of	websites)	that
the	application	has	to	deal	with	and	take	into	account.

Table	of	Contents

Introduction
Organization

Stakeholders
Context	View

Architecture
Component	Structure
Information	Viewpoint

Youtube-dl

416

https://github.com/rg3/youtube-dl
https://github.com/rg3/youtube-dl/blob/master/docs/supportedsites.md

Development	Process
Features
Regulations
Conclusion

Introduction
Development	of	youtube-dl	has	been	started	over	three	years	ago	by	Ricardo	García,	the
original	owner	of	the	repository.	He	stepped	down	a	while	ago	as	the	maintainer	of	the
repository	and	it	is	now	maintained	by	a	community	of	active	developers.	In	an	earlier	stage
of	development	the	architecture	made	it	hard	to	extend	the	functionality	of	the	application.	At
that	point	the	architecture	was	completely	redesigned	to	allow	for	easy	integration	of	new
site	support.

Youtube-dl	is	a	command-line	application.	However,	graphical	user	interfaces	are	available
as	extensions	to	the	application.	Users	can	provide	the	URL	of	a	website	where	they	have
observed	the	video	(or	other	supported	content)	and	youtube-dl	will	attempt	to	download	the
media	located	at	that	URL.	The	user	can	specify	additional	options	to	customize	the
behavior	of	youtube-dl.	The	simplistic	foundation	and	the	Python	programming	language
enable	the	application	to	run	on	all	most	common	operating	systems.

Currently	the	application	is	being	contributed	to	nearly	every	day.	The	active	community	and
the	extensible	architecture	allow	for	easy	integration	of	new	functionalities.	As	a	result
current	users	are	able	to	download	media	content	from	more	than	seven	hundred	different
sources.	The	application	also	supports	downloading	entire	playlists,	embedding	subtitles,
extracting	audio	and	much	more	(see	also	the	section	on	Features).

This	chapter	aims	to	give	users	insight	in	how	this	application	is	developed,	maintained	and
used.	This	way	one	will	have	a	quick	understanding	of	youtube-dl.	First	the	stakeholders	and
the	context	view	are	used	to	provide	insight	in	the	organization	of	youtube-dl.	This	is
followed	by	an	in-depth	analysis	of	the	architecture	of	the	application	in	order	to	understand
its	structure.	Afterwards,	the	wide	variety	of	features	available	in	the	application	are
discussed	followed	by	a	short	discussion	about	the	regulations	the	application	and	the	users
might	face.	Finally,	there	is	a	short	conclusion	regarding	our	findings	about	the	project.

Organization
This	section	will	discuss	the	involved	parties	during	the	development,	maintenance	and
execution	of	the	application.	These	parties	are	then	visualized	using	a	context-view	diagram.

Youtube-dl

417

https://github.com/MrS0m30n3/youtube-dl-gui
https://github.com/rg3/youtube-dl/blob/master/docs/supportedsites.md

Stakeholders

Youtube-dl	is	maintained	under	the	public-domain	license.	It	does	not	have	a	foundation	nor
company	attached	to	it	that	is	involved	in	backing	or	supporting	the	maintenance	or
development	of	the	application.	Besides,	no	direct	commercial	opportunity	is	available	for
youtube-dl	in	the	current	situation.	The	most	important	stakeholders	that	are	identified	based
on	the	categorization	of	Rozanski	and	Woods	[1]	are	discussed	below.

The	users	of	youtube-dl	consist	of	all	users	that	use	the	application	to	download	content
from	one	of	the	supported	websites.	The	application	is	most	commonly	used	by	non-
commercial	users	that	wish	to	obtain	videos	for	offline	usage.	Commercial	users	of	the
application	consist	of	websites	that	re-host	videos	published	on	one	of	the	supported
websites.	There	are,	however,	no	commercial	parties	that	acknowledge	that	they	specifically
use	youtube-dl	for	such	purposes.

The	current	most	active	maintainers	of	the	project	consist	of	the	following	members	of	the
community:	Philipp	Hagemeister,	Sergey	M.,	Jaime	Marquínez	Ferrándiz	and	Yen	Chi
Hsuan.	These	members	are	all	actively	involved	in	the	development	and	have	collaborator
access	to	the	project	on	GitHub.	Therefore,	they	oversee	and	review	all	new	contributions	to
assure	the	quality	of	the	project,	and	hence	can	be	considered	as	both	assessors	and
integrators.

A	complete	list	of	people	who	are	credited	for	their	contributions	to	the	project	is	available	in
the	project	repository.	Every	time	a	reasonably	large	contribution	is	made	to	the	project	one
is	asked	if	he/she	wishes	to	be	added	to	this	list.	Before	a	merge	can	take	place	developers
are	required	to	test	the	new	functionality	themselves	and	the	code	is	inspected	by	one	of	the
maintainers.	The	core	development	is	mostly	done	by	the	four	maintainers	mentioned
earlier,	who	also	have	the	most	influence	on	which	pull	requests	get	merged.	However,
another	community	member	that	holds	the	nickname	remitamine	also	contributed	a	lot	of
development	work	in	recent	releases.	He	has	also	been	granted	a	collaborator	status.	What
is	peculiar	here	is	that	Ricardo	García	is	the	founder	and	owner	of	the	project	but	announced
in	his	blog	and	on	Hacker	News	that	in	2011	he	has	stepped	down	as	maintainer	of	youtube-
dl,	though	still	owns	the	repository	and	the	website.

The	community	offers	support	using	the	GitHub	issue	system.	This	support	is	provided	by
the	community	of	youtube-dl,	here	different	kind	of	stakeholders	ask	for	support,	ask
questions	and	they	submit	bug	reports	and	feature	requests.	Support	at	issues	is	often
provided	by	one	of	the	maintainers,	though	sometimes	other	community-members	get
involved.

In	the	recent	support	issues	the	most	involved	member	is	Sergey	M..	He	is	often	involved	in
answering	questions	from	the	community	or	taking	care	of	bug	reports	and	missing
functionality.	He	could	therefore,	apart	from	developer,	be	considered	as	a	main	support

Youtube-dl

418

https://github.com/phihag
https://github.com/dstftw
https://github.com/jaimeMF
https://github.com/yan12125
https://github.com/rg3/youtube-dl/blob/master/AUTHORS
https://github.com/remitamine
http://rg3.name/201408141628.html
https://news.ycombinator.com/item?id=8647943
https://yt-dl.org/
https://github.com/dstftw

staff	member	as	well.	The	application	is	distributed	using	both	GitHub	and	the	website	from
Ricardo	García,	these	could	be	considered	the	suppliers	of	the	application.

Other	involved	parties	are	the	websites	that	are	supported	by	youtube-dl.	Some	of	these
websites	will	have	commercial	applications	for	the	hosted	videos	and	thus	have	rules	that
specify	that	downloading	the	videos	from	their	website	is	not	allowed.	The	youtube-dl
application	could	effect	their	services	and	break	the	policy	for	these	websites.	This	could
have	a	negative	effect	on	both	the	supported	websites	and	the	legal	position	of	youtube-dl.
We	will	discuss	this	in	more	detail	within	the	Regulations	section.

Next	to	these	parties	there	are	applications	available	that	use	youtube-dl	as	a
foundation/extension	or	dependency	for	their	own	application.	Some	examples	are	youtube-
dl-gui	and	Instant	Music	Downloader,	which	rely	on	the	functionality	of	youtube-dl	for	their
application	to	function	properly.

Finally,	youtube-dl	has	to	deal	with	some	competitors	like	DVDVideoSoft	that	deliver
(partly)	the	same	functionalities	that	youtube-dl	delivers.	These	stakeholders	are	involved	as
they	could	take	away	some	clients	from	the	application.

Context	View

To	give	a	view	of	the	context	in	which	youtube-dl	resides,	we	identify	the	scope	of	the
application	and	describe	the	interactions	and	dependencies	between	the	application	and	its
environment.	Therefore	we	consider	the	external	services	and	data	that	youtube-dl	depends
on	to	enable	it	to	do	what	it	is	build	for.

Functional	Capabilities

The	most	important	functionality	that	youtube-dl	offers	is	downloading	content	from	any	of
the	supported	platforms.	Youtube-dl	supports	these	platforms	by	having	a	separate
Information	Extractor	(IE)	implemented	for	each	platform.	The	software	architecture	is
designed	in	such	way	that	it	focuses	on	the	process	of	adding	support	for	new	platforms	by
adding	a	new	IE	being	a	relatively	simple	tasks	for	developers.

The	core	of	youtube-dl	implements	the	other	functionalities,	which	are:

Parsing	the	input	and	options:	Enabling	users	to	download	content	from	all	supported
platforms	in	a	uniform	way.
Downloading	files	from	the	media	platforms:	Actually	downloading	the	content	is
handled	by	youtube-dl	and	is	independent	of	the	media-hosting	platform.
Post-processing	the	downloaded	content:	Processing	files	in	a	certain	way	defined
by	options	set	by	the	user.

Youtube-dl

419

https://yt-dl.org
https://github.com/MrS0m30n3/youtube-dl-gui
https://github.com/yask123/Instant-Music-Downloader
https://www.dvdvideosoft.com

Youtube-dl	also	accounts	for	other	features	such	as	downloading	content	that	requires
authentication,	retrieving	subtitles	and	setting	other	more	advanced	options	(e.g.,	network
configurations).	The	application	can	be	used	in	a	uniform	way	for	downloading	from	various
platforms	where	it	uses	IEs	to	decide	how	to	extract	the	required	data.	It	therefore	is	not
concerned	with	automatically	identifying	the	platform	and	deciding	how	to	retrieve	the
content	from	it.

External	Entities	and	Interfaces

There	are	multiple	external	entities	that	youtube-dl	interacts	with,	the	first	we	identify	being
the	platforms	such	as;	YouTube,	Vimeo	or	SoundCloud,	from	which	the	application	extracts
data	and	retrieves	content	(e.g.,	video	and	audio	files)	that	are	requested	by	its	users.	The
data	the	application	depends	on	for	downloading	this	content	is	extracted	using	an	IE	for	the
specific	platform.	Based	on	a	URL	of	the	content	provided	by	the	user,	this	IE	fetches	a
dictionary	of	information	about	the	content	that	is	to	be	retrieved	that	is	subsequently	used
by	youtube-dl	to	download	the	content	from	the	platform.

The	community	of	youtube-dl	is	primarily	active	on	GitHub.	As	mentioned	earlier	it	is	used
for	issue	tracking.	Other	than	that	it	is	used	for	(external)	contributions	of	developers	and
communicating	the	contribution	guidelines	and	information	about	the	usage	of	the
application.	Contacting	the	core	developers	of	the	system	is	also	possible	through	a
dedicated	IRC	channel	on	Freenode.	The	application	uses	the	Travis	CI	system	for
continuous	integration,	but	seems	to	have	abandoned	the	active	use	of	the	system	at	the
time	of	writing	for	over	two	years.

Furthermore,	youtube-dl	has	a	built-in	testing	system	which	makes	use	of	the	Tox	testing
tool	for	Python	for	testing	each	of	the	IEs	of	the	application.	In	order	to	contribute	by	adding
support	for	a	new	IE,	developers	are	required	to	write	at	least	a	single	test	for	the	IE,	which
typically	comprises	of	downloading	the	content	for	a	sample	URL.	Next	to	this,	developers
are	required	to	use	the	Flake8	tool	to	check	for	adherence	to	the	PEP8	style	conventions,
logical	errors	and	code	complexity.	Finally,	developers	can	contribute	to	youtube-dl	by
making	a	pull	request	which	then	will	be	reviewed	by	the	maintainers.

In	Figure	1	a	visual	overview	is	provided	of	the	interactions	of	youtube-dl	with	external
entities	and	capabilities	and	characteristics	of	the	application.	This	diagram	serves	as	a
high-level	view	of	the	system	not	considering	the	detailed	structure	or	implementation	of	the
system.

Youtube-dl

420

http://irc.netsplit.de/channels/details.php?room=%23youtube-dl&net=freenode
https://travis-ci.org/rg3/youtube-dl
https://github.com/rg3/youtube-dl/issues/8496
https://tox.readthedocs.org/en/latest/
https://pypi.python.org/pypi/flake8
https://www.python.org/dev/peps/pep-0008/

Figure	1	-	A	visual	representation	of	the	context	view	of	youtube-dl.

Impact

Since	everyone	is	free	to	use,	alter	and	distribute	the	code	of	youtube-dl	a	possibility	is	to
integrate	youtube-dl	in	another	application	(like	a	GUI	wrapper).	These	tools	depend	on	the
data	format	that	youtube-dl	requires.	As	soon	as	this	format	will	change,	the	wrappers	will
most	likely	require	some	changes	too.	Given	the	fact	that	the	command	structure	has	not
changed	for	over	a	year	based	on	the	blame	log	it	is	not	likely	to	expect	changes	there
anytime	soon.	Only	some	parameters	changed	slightly	and	in	most	cases	there	was	only
new	instead	of	changed	functionality.	This	provided	some	certainty	for	applications	that
integrate	youtube-dl	as	it	will	not	likely	break	these	applications	when	youtube-dl	is	being
updated.

Architecture
In	this	section	we	aim	to	give	the	reader	more	insight	into	the	architecture	of	the	application.
The	component	structure	of	the	application	is	explained	and	visualized	using	a	diagram.
Next	the	information	flow	between	the	different	components	is	discussed,	describing	the
conditions	under	which	the	different	types	of	information	are	exchanged.	Finally	we	take	a
look	at	how	the	development	of	the	application	takes	place.

Component	Structure

Youtube-dl

421

https://github.com/delftswa2016/youtube-dl/blame/master/youtube_dl/YoutubeDL.py

Youtube-dl	consists	of	a	couple	of	components.	These	components	and	their	relationships
are	visualized	in	Figure	2.	The	main	components	are:

YoutubeDL:	the	core	of	the	application.	This	component	is	responsible	for	the	overall
process.	It	processes	the	input,	parsed	arguments	from	the	command-line	and
information	from	assumptions	made	by	youtube-dl	itself.
Extractors:	responsible	for	gathering	the	information	about	the	video.	The	extractors
are	able	to	extract	video-urls	from	webpages	through	analysis	(regular	expressions	for
instance).	The	extractors	provide	the	information	in	a	pre-defined	format	so	that	it	can
be	processed	further	by	the	YoutubeDL	component.
Downloaders:	the	downloaders	are	able	to	transfer	a	remote	video	to	the	local
filesystem.	Depending	on	the	media-format	this	component	will	determine	which
downloader	to	use.
Post	Processors:	responsible	for	any	post-download	operations	that	should	be	applied
on	the	video.	Think	of	embedding	subtitles,	extraction	the	audio,	etc.

Figure	2	-	Component	structure	of	youtube-dl.

Default	Program	Flow

As	can	be	seen	in	Figure	2,	we	have	the	core	component	(YoutubeDL)	that	controls	the
process.	When	the	application	is	started	the	initializer	(depicted	at	the	top)	will	perform	a
self-update	(if	requested	by	the	user)	and	it	will	parse	the	arguments	from	the	command-line.
Then	YoutubeDL	requests	an	extractor	by	using	the	initializer	of	the	Extractors	component
which	helps	determining	which	extractor	to	use.	As	soon	as	YoutubeDL	receives	back	the
required	information	it	can	pass	this	information	to	the	downloaders.	The	initializer	of	the

Youtube-dl

422

Downloaders	component	then	determines	which	downloader	to	use	(depending	on	the	file
type/properties)	and	tries	to	download	the	corresponding	file.	Finally,	YoutubeDL	applies
post-processors	according	to	the	user's	wishes.	The	initializer	of	the	Post	Processors
component	determines	which	post-processors	should	be	ran	and	returns	the	output	of	the
selected	processor(s).	If	the	user	requested	to	download	multiple	files,	YoutubeDL	will
proceed	and	repeat	the	process	all	over	for	the	next	file.

Test	Program	Flow

Tests	are	available	for	each	of	the	components	listed	earlier.	Tests	can	be	invoked	from	the
command-line.	The	tests	will	be	retrieved	from	all	the	available	downloaders,	extractors	and
processors	(indicated	by	the	dashed	lines	in	Figure	2).	For	example,	every	extractor
contains	a	number	of	tests.	These	tests	try	to	extract	the	information	for	a	given	URL.	This
result	is	then	compared	to	the	pre-defined	expected	result.	It	is	possible	to	specify	which
tests	to	run.	The	test	suite	is	growing	and	therefore	the	testing	process	takes	longer	as
youtube-dl	evolves.	Being	able	to	run	only	specific	tests	allows	you	to	quickly	test	a	specific
part.

Error	Reporting	Flow

Youtube-dl	aims	at	centralizing	error-reporting.	From	all	the	implementations	of
downloaders,	extractors	and	post-processors	the	errors	are	directed	to	the	core,	YoutubeDL,
where	the	errors	are	handled.	This	ensures	a	consistent	way	of	reporting	errors,	which
makes	it	a	lot	easier	to	maintain	the	project.	YoutubeDL	in	turn	prints	the	errors	(in	a
consistent	format)	to	the	command-line	(as	indicated	with	the	red	line	in	Figure	2).

Extensibility

The	structure	is	designed	to	be	extended	easily.	Previously	the	developers	encountered
problems	when	they	had	to	'hack	in'	additional	features.	This	lead	to	the	decision	to
implement	the	application	from	scratch.	In	the	current	implementation	there	are	interfaces	for
the	extractors,	downloaders	and	post-processors.	By	implementing	these	interfaces	one	can
easily	extend	the	functionalities	of	youtube-dl.

Folder	Structure

To	keep	the	structure	simple,	youtube-dl	has	separate	folders	for	the	different	kind	of
implementations.	Within	the	repository	there	is	a	folder	called		youtube_dl		which	contains	all
of	the	source-code.	Within	that	folder	there	are	subfolders	called		downloader	,		extractor	
and		postprocessor	.	The	related	initializers	can	be	found	in		__init__.py		for	the	given
subfolder	and	next	to	that	every	subfolder	contains	a		common.py		which	holds	the	interface

Youtube-dl

423

http://rg3.name/200807240952.html

that	is	implemented	by	all	implementations.	For	instance,	each	extractor	implements	the
functions	declared	in	the	base	class	in		extractor/common.py	.	The	filenames	of	the	different
implementations	are	clear,	for	example	the	extractor	for	YouTube	videos	is	located	in	a
source	file	called		extractor/youtube.py	.	A	graphical	overview	can	be	found	in	Figure	3.

Figure	3	-	Folder	structure	of	youtube-dl.	Each	of	the	subfolders	houses	an	initializer,	a
common	interface	and	several	implementations	of	this	interface.

Information	Viewpoint

The	flow	of	information	within	youtube-dl	is	not	too	complex.	Visualizing	the	flow	of
information	exchanged	between	components	at	runtime	will	provide	more	insight	in	how	the
application	functions.	The	flow	is	best	visualized	using	an	information	flow	diagram	as	shown
in	Figure	4.

Youtube-dl

424

Figure	4	-	Information	flow	diagram.

We	will	discuss	the	kind	of	information	exchanged	between	the	different	components	of
youtube-dl	and	under	what	circumstances	this	information	is	exchanged.	Initially	a	user	will
provide	youtube-dl	with	a	URL	and	some	optional	options.	These	options	are	analyzed	and
stored	in	the	YoutubeDL	component.	Here	options	such	as	the	setup	of	a	proxy,	age
validation	or	downloading	thumbnails	are	processed.

After	initialization	the	YoutubeDL	component	will	create	an	Extractor.	The	extractor	will
receive	the	URL	of	the	webpage	and	it	will	return	all	information	that	is	needed	for	further
processing.	The	extractor	retrieves	this	information	from	the	webpage	and,	in	some
scenarios,	from	additional	webpages	that	will	be	downloaded	to	retrieve	(more)	information.
Whenever	a	website	hosts	content	for	multiple	other	websites,	one	can	create	really	small
extractors	for	these	websites	that	all	point	to	the	extractor	of	the	hosting	website.	The
extractor	for	the	hosting	website	will	receive	the	information	from	the	smaller	extractors	and
perform	its	extraction	process.	The	user	will	see	information	about	the	extraction	process	on
the	command-line	interface.	Which	information	is	shown	depends	on	the	extractor	and	the
information	that	it	retrieved	from	the	website.

With	the	extractor's	information	the	File	Downloader	is	capable	of	downloading	data	from	a
specific	location.	This	downloader	receives	additional	information,	e.g.	information	to	see
whether	it	has	to	download	a	playlist	or	whether	there	are	bandwidth	limitations.	This
information	can	originate	from	the	extractor	or	from	the	user	(through	options	on	the
command-line	interface).	In	the	scenario	of	a	single	file	it	will	fetch	the	file	from	its	physical
location,	perform	small	modifications	such	as	generating	filenames,	process	any	options	that

Youtube-dl

425

might	influence	the	file	and	finally	saving	the	resulting	file	to	the	desired	location.	When	the
File	Downloader	is	called	with	a	playlist	option	it	will	retrieve	media	from	multiple	media
sources	that	are	part	of	the	playlist.

Users	can	specify	options	that	will	(optionally)	trigger	Post-Processors.	Post-Processors	are
created	in	the	YoutubeDL	component	and	a	list	of	them	is	stored	there.	They	may	invoke	a
downloader	or	extractor	but	this	is	not	executed	within	the	component	itself	but	within
YoutubeDL.	Therefore	there	is	no	direct	flow	of	information	between	the	Post-Processor	and
the	two	other	components.

Future	executions	of	youtube-dl	are	almost	completely	independent	of	prior	executions.	Most
information	is	extracted	from	the	Internet.	There	is	only	very	few	static	information	stored
within	youtube-dl.	Nearly	everything	is	executed	at	runtime	and	stored	in	memory.	The
output	media	is,	obviously,	a	static	result	and	will	have	no	effect	on	future	execution.

Development	Process

The	development	of	youtube-dl	is	open	for	external	contributions	on	the	repository	on
GitHub.	The	project	relies	on	the	GitHub	issue	tracker	where	all	bug	reports	and	requests
are	filed	by	both	users	and	developers.	The	guidelines	for	creating	a	new	issue	are
documented	on	the	repository	and	comprises	of	various	questions	that	should	be	evaluated
before	placing	an	issue.	It	is	possible	to	obtain	logging	information	at	different	levels	and	it	is
recommended	(sometimes	even	required)	by	the	authors	to	include	the	full	verbose	output	in
issues	to	get	an	overview	what	happens	step-by-step.	For	several	issues	the	maintainers	of
the	repository	attach	labels	for	issues	falling	within	a	particular	category	(e.g.,		site-support-
request		issues	are	typically	solved	by	the	implementation	of	a	new	extractor).	Most
commonly,	external	contributors	or	maintainers	create	pull	requests	from	the	open	issues.

Before	developers	submit	their	pull	requests	they	should	attempt	to	follow	the	instructions
and	adhere	to	the	guidelines	and	standards	as	described	in	the	External	Entities	and
Interfaces	section.	When	a	pull	request	is	submitted	it	is	reviewed	by	one	of	the	maintainers
who	will	provide	feedback	whenever	the	implementation	can	be	improved	or	when	it	can	be
made	more	generic	(or	specific).	For	example,	when	adding	a	new	extractor,	the	maintainers
might	suggest	to	add	additional	tests	to	cover	more	extraction	scenarios	for	different	pages
or	to	use	the	generic	extractor	for	scenarios	in	which	that	is	possible.	When	all	feedback	is
processed	and	a	pull	request	is	ready	to	get	merged,	developers	are	asked	to	squash	their
contribution	into	a	single	commit.

Considering	the	abandoned	use	of	the	CI	system	one	could	say	that	the	system	builds	up
technical	debt	[2].	That	is,	developers	keep	adapting	the	system	through	contributions,	but
over	time	the	functionality	added	in	the	past	might	break.	The	longer	repaying	the	debt	(by
restoring	the	integration	of	the	CI	system	by	fixing	defects	for	successful	builds)	is

Youtube-dl

426

https://github.com/rg3/youtube-dl#bugs
https://github.com/rg3/youtube-dl/labels
https://github.com/rg3/youtube-dl#developer-instructions
https://github.com/rg3/youtube-dl/blob/2c9ca78281f84abe194bdf23a5e06b747961c9eb/youtube_dl/extractor/generic.py

postponed,	the	more	time	will	have	to	be	put	into	fixing	it	and	the	more	difficult	maintenance
becomes.	The	maintainers	might	benefit	of	a	proper	use	of	the	CI	system,	as	they	can
process	pull	requests	for	which	builds	fail	faster.	Though,	we	should	note	that	the
maintainers	are	avoiding	technical	debt	as	well	by	strictly	reviewing	the	contributions	to
make	sure	they	adhere	to	their	standards	and	only	quality	code	is	merged	into	the
codebase.

As	contributions	are	made	continuously	to	the	project,	the	maintainers	of	youtube-dl	release
a	new	version	of	the	application	by	creating	GitHub	releases.	Releases	are	made	at	least
once	a	month,	but	often	weekly	or	even	daily	and	are	then	made	available	on	the	main
website.	The	application	is	also	available	as	distribution	packages,	but	the	versions	provided
are	mostly	outdated.	Therefore	the	authors	recommend	their	users	to	follow	the	manual
installation	instructions	instead	to	always	have	the	latest	version.

Features
Youtube-dl	offers	many	other	features	than	just	downloading	a	video	using	a	provided	URL.
All	of	the	features	are	listed	and	explained	in	the		README.md		that	is	available	on	the
repository.	The	features	can	be	split	into	5	categories,	namely:

Extractor	features
Download	features
Post-processing	features
Configuration	files
Testing

The	extractor	features	relate	to	the	process	of	extracting	information	from	the	provided
URL.	The	most	important	features	here	are	the	support	for	playlists	and	the	workarounds
that	are	available	to	support	certain	websites.	If	a	URL	contains	a	playlist,	youtube-dl	is	able
to	download	the	entire	playlists.	These	playlists	can	be	filtered	based	on	different	available
meta-data	such	as	view	count,	duration,	liked,	titles,	etc.	The	workarounds	allow	the	user	to
specify	custom	header	fields	(like	a	browser)	to	work	around	some	security	measures	that
might	have	been	taken	by	the	site	to	avoid	downloading	the	content.

The	download	features	are	related	to	the	actual	download	process.	Examples	of	such
features	are	the	ability	to	use	a	proxy,	authentication	and	quality	selection.	The	latter	one
allows	you	to	download	the	file	with	exactly	the	quality	that	you	require	(if	available).
Authentication	allows	users	to	specify	credentials	that	can	be	used	to	work	around
permission	issues.	Authentication	is	also	possible	by	using	a	user-defined	cookie	(in	the

Youtube-dl

427

https://github.com/rg3/youtube-dl/releases
http://yt-dl.org/
http://rg3.github.io/youtube-dl/download.html
https://github.com/rg3/youtube-dl/blob/master/README.md
https://www.github.com/rg3/youtube-dl

case	that	regular	authentication	is	not	supported	or	fails).	The	use	of	a	proxy	allows	a	user	to
access	content	that	is	not	available	from	the	users	normal	connection	(think	of	geo-
limitations).

Within	the	post-processing	features	the	user	is	able	to	tweak	the	downloaded	file	to
his/her	preference.	A	user	can	among	others	choose	to	embed	subtitles	and	convert	the
content.	The	user	can	specify	a	subtitle	source,	which	then	will	be	embedded	in	a	video	file.
The	user	can	also	specify	the	desired	output	format.	The	post-processor	in	question	will
convert	the	downloaded	file	into	the	desired	format.

In	order	to	ease	the	use	of	youtube-dl	it	is	possible	to	create	a	configuration	file.	Normally
one	would	need	to	specify	all	options	on	the	command-line.	Using	this	file	one	can	specify
options	that	he/she	uses	regularly.	These	options	then	will	be	executed	automatically	by
youtube-dl.	For	example,	instead	of	typing		youtube-dl	URL	-x	--proxy	SOME_IP	-o	~/Movies/%
(title)s.%(ext)s		every	time	one	could	create	a	configuration	file	like	this;

-x

--proxy	SOME_IP

-o	~/Movies/%(title)s.%(ext)s

The	only	remaining	thing	one	has	to	do	to	achieve	the	same	result,	is	running		youtube-dl
URL	.

There	are	some	testing	features	created	especially	for	Developers	and	Supporters	of	the
project.	They	consist,	among	others,	out	of	error	reporting,	logging	and	simulation.	The	latter
allows	the	developers	to	simulate	a	download	in	order	to	find	or	trace	potential	bugs.

All	of	the	features	that	are	available	can	be	ran	independent	from	each	other.	Some	features
depend	on	external	sources.	An	example	of	such	a	dependency	is	present	in	the	automatic
retrieval	of	subtitles	from	YouTube	videos.	This	requires	information	from	YouTube	(that	has
to	be	available	in	order	to	succeed).

Regulations
Youtube-dl	allows	to	download	several	types	of	media	from	the	internet.	Following	from	this
possibility	youtube-dl	allows	users	to	download	potentially	copyrighted	material.	Youtube-dl
will	have	to	adhere	to	local	laws.	In	this	section	we	will	discuss	matters	related	to	such	and
other	relevant	regulations.

License

Youtube-dl

428

Youtube-dl	is	released	in	the	public	domain.	This	means	that	everyone	is	free	to	copy,
modify,	sell,	distribute,	etc.	There	are	users	that	have	built	extensions	and	redistributed	the
new	package.	Some	users	actually	added	support	for	sites	that	are	known	to	have	issues
with	copyright	infringement.	But	this	is	independent	of	the	official	repository.	Since	anyone
can	add	functionality	one	might	include	support	for	illegal	sources	as	well.	This,	however,	is
not	something	that	can	be	influenced	by	the	youtube-dl	team.

Practice

Youtube-dl	receives	a	lot	of	site	support	requests	that	ask	for	support	of	sites	that	infringe
copyrights.	The	authors	of	youtube-dl	respect	the	copyright	laws;	they	refuse	to	add	support
for	sites	that	clearly	are	intended	to	infringe	copyright	(see	for	example	issue	#1048).	As
long	as	there	are	videos	on	the	website	that	do	not	infringe	copyrights,	support	for	that
particular	website	will	likely	be	allowed.	This	is	also	written	in	their		README.md	.	Based	on	this
support	for	sites	like	YouTube	would	be	allowed,	but	actually	using	the	application	for
YouTube	would	be	illegal	(breaching	their	Terms	and	Conditions).

Laws

The	internet	allows	its	users	to	spread	all	kinds	of	materials	very	easily.	Unfortunately	this
also	allows	these	users	to	spread	illegally	obtained	materials	with	the	same	ease.
Consequently,	these	illegally	distributed	materials	can	be	downloaded	with	the	use	of	tools
like	youtube-dl.	Since	youtube-dl	originally	was	designed	to	download	from	YouTube,	we	will
discuss	the	case	of	YouTube	in	more	detail.

YouTube	offers	video	streaming	as	a	service.	To	monetize	this	service	they	show	ads	on
their	website	(amongst	others).	In	their	Terms	and	Conditions	they	state	the	following;

Point	5.1	-	L	-	you	agree	not	to	access	Content	or	any	reason	other	than	your	personal,
non-commercial	use	solely	as	intended	through	and	permitted	by	the	normal
functionality	of	the	Service,	and	solely	for	Streaming.	"Streaming"	means	a
contemporaneous	digital	transmission	of	the	material	by	YouTube	via	the	Internet	to	a
user	operated	Internet	enabled	device	in	such	a	manner	that	the	data	is	intended	for
real-time	viewing	and	not	intended	to	be	downloaded	(either	permanently	or
temporarily),	copied,	stored,	or	redistributed	by	the	user.

It	is	stated	that	anything	that	is	not	streaming,	is	not	allowed.	This	would	mean	that	the
usage	of	youtube-dl	for	downloading	is	not	allowed	either.	The	Terms	and	Conditions	are	not
the	same	for	every	country.	The	quote	above	is	taken	from	the	UK	Terms	and	Conditions.
However	in	the	worldwide	version	it	states;

Youtube-dl

429

https://github.com/rg3/youtube-dl/issues/1048
https://github.com/rg3/youtube-dl#can-you-add-support-for-this-anime-video-site-or-site-which-shows-current-movies-for-free
https://www.youtube.com/t/terms?gl=GB

Point	5	-	B	-	Content	is	provided	to	you	AS	IS.	You	may	access	Content	for	your
information	and	personal	use	solely	as	intended	through	the	provided	functionality	of
the	Service	and	as	permitted	under	these	Terms	of	Service.	You	shall	not	download	any
Content	unless	you	see	a	“download”	or	similar	link	displayed	by	YouTube	on	the
Service	for	that	Content.	You	shall	not	copy,	reproduce,	distribute,	transmit,	broadcast,
display,	sell,	license,	or	otherwise	exploit	any	Content	for	any	other	purposes	without
the	prior	written	consent	of	YouTube	or	the	respective	licensors	of	the	Content.
YouTube	and	its	licensors	reserve	all	rights	not	expressly	granted	in	and	to	the	Service
and	the	Content.

Here	it	is	mentioned	that	it	is	allowed	to	download	content,	but	only	when	they	show	a
download	link	on	YouTube	itself.	So	downloading	the	content	is	not	allowed	in	this	scenario.
However,	the	regulations	vary	based	on	location,	this	is	something	that	youtube-dl	should
consider.

Laws	are	different	for	every	country.	For	instance	the	Canadian	government	published	An
Act	to	amen	the	Copyright	Act.	It	states	that	you	are	free	to	download	any	content	that	is
legally	acquired	by	you,	as	long	as	you	do	not	redistribute.	You	might,	however,	still	breach
the	Terms	and	Conditions	of	a	specific	website.	If	we	look	at	The	Netherlands	we	see	a
different	situation.	In	The	Netherlands	it	was	always	allowed	to	download	any	content	from
the	web,	only	distributing	was	illegal.	After	a	decision	in	the	Court	of	Justice	of	the	European
Union	it	was	said	to	be	illegal	in	all	cases	to	download	copyrighted	contents.	In	Germany
there	are	several	complaints	about	users	who	were	distributing	content	and	who	received	a
fine	for	that.

Youtube-dl	itself	can	be	considered	legal.	Although	it	allows	one	to	download	copyrighted
material,	one	still	has	to	make	the	decision	to	put	youtube-dl	to	that	use.	Sites	can	offer	both
copyrighted	and	free	contents,	for	the	latter	one	support	of	youtube-dl	is	legitimate.	As
developers	refuse	to	merge	contributions	that	include	parts	that	are	not	following	their	rules,
youtube-dl	will	also	remain	legal	in	the	future.	If	the	user	chooses	to	download	illegal
content,	he/she	will	be	the	one	responsible	for	the	consequences.

Conclusion
Youtube-dl	is	a	command	line	tool	that	allows	one	to	download	video	content	from	one	of	the
websites	supported	by	the	application.	Because	of	this	simple	interface	and	the	use	of	the
Python	language,	all	major	operating	systems	are	supported.	The	behavior	of	the	program
can	be	influenced	by	passing	additional	options	on	the	command-line.	Nowadays	there	are	a
lot	of	options	available	that	can	be	used	to	one's	preference.

Youtube-dl

430

https://www.youtube.com/t/terms
http://www.lop.parl.gc.ca/content/lop/LegislativeSummaries/41/1/c11-e.pdf
http://curia.europa.eu/jcms/upload/docs/application/pdf/2014-04/cp140058nl.pdf

Youtube-dl	has	a	rather	simple	architecture.	It	can	be	divided	into	four	major	components;
the	core	of	the	application,	the	downloaders,	the	extractors	and	the	post-processors.	All	offer
different	and	specific	functionality	to	the	application.	This	well	defined	structure	allows	for
continuous	updates	as	external	contributors	are	not	required	to	have	an	extensive	amount	of
prerequisite	knowledge	about	the	whole	application.	This	is	one	of	the	main	reasons	why	the
application	can	constantly	be	extended	with	new	valuable	functionality.

The	simplicity	of	youtube-dl's	architecture	allows	for	an	easy,	continuous,	integration	of	new
functionality.	Some	of	the	more	active	maintainers	have	been	granted	collaborator	access	to
the	repository.	They	ensure	that	all	contributions	to	the	project	adhere	to	the	strict	guidelines.
Because	of	the	active	community	youtube-dl	offers	a	wide	range	of	functionality	and	an
exceptional	amount	of	supported	websites.

Besides,	youtube-dl	offers	a	way	to	download	both	legal	and	illegal	content	from	supported
websites.	Apart	from	the	fact	whether	the	content	in	case	is	legal	or	illegal,	websites	might
still	disallow	downloading	content	in	general	in	their	Terms	of	Service.	Youtube-dl	also	has	to
deal	with	the	various	regulations	in	each	country.	Depending	on	the	country,	these
regulations	do	not	allow	downloading	copyrighted	material.	The	maintainers	tend	to	respect
the	regulations	and	decline	to	add	support	for	websites	that	infringe	copyright.	The
developers	of	youtube-dl	are,	however,	not	responsible	for	the	activities	of	the	users	and
thus	the	application	itself	can	be	considered	legal.

Because	of	the	simple	architecture,	the	extensive	reviews	of	contributions	and	the	attitude	of
the	maintainers	towards	the	regulations,	we	think	that	youtube-dl	deserves	its	high	standing
on	GitHub.

References
[1]	Nick	Rozanski	and	Eoin	Woods.	Software	Systems	Architecture:	Working	with
Stakeholders	using	Viewpoints	and	Perspectives.	Addison-Wesley,	2012.

[2]	Chris	Cairns	and	Sarah	Allen.	2015.	What	is	technical	debt?	Retrieved	February	28,
2016,	from:		https://18f.gsa.gov/2015/09/04/what-is-technical-debt/	

Youtube-dl

431

	Introduction
	Atom
	BigBlueButton
	Bootstrap
	CKAN
	CodeCombat
	D3.js
	Ember.js
	GitLab
	Guava
	Habitica
	Karma
	Mopidy
	Neo4j
	OpenCV
	OpenTripPlanner
	Ruby on Rails
	Sonic Pi
	TensorFlow
	Terasology
	Wildfly
	Youtube-dl

