TU Delft

GitHub Mining

The Implementation of Continuous Integration Pipelines

Bram de Vries'

Supervisor(s): Sebastian Proksch', Shujun Huang!

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Bram de Vries
Final project course: CSE3000 Research Project
Thesis committee: Sebastian Proksch, Shujun Huang, Fenia Aivaloglou

An electronic version of this thesis is available at http://repository.tudelft.nl/.
Parts of this document were generated using Al tools; see Appendix C

Abstract

While continuous integration has already been
proven to positively affect software development,
little is known about how it should be implemented
based on project context. This paper investigates
how CI pipelines are configured by analysing data
mined from software projects on GitHub. This re-
search has shown the continued rise of the CI plat-
form GitHub Actions, which enables developers to
broaden CI pipelines’ functionality due to great in-
tegration into GitHub. Moreover, key differences
between how jobs within pipelines are structured in
Travis CI and GitHub Actions are outlined. These
results can be used in future research, which will
be aimed at connecting project context to CI setup
with the goal of informing developers on maturing
their CI configuration.

1 Introduction

Continuous Integration (CI) is a software development prac-
tice that involves frequently merging code changes from mul-
tiple developers into a single shared repository. It has been
shown that CI can improve the productivity of project teams
[17] by automating the processes of building, testing, and val-
idating software changes. However, little is known about pat-
terns in the implementation of CI [14] based on contextual
factors [6].

Many services are available which offer cloud-hosted con-
tinuous integration solutions, with Travis CI' and GitHub Ac-
tions? being the most popular as of May 2021 [12]. While
some differences exist between these platforms’ pricing and
features, they share the core ability to configure CI pipelines
in files with the YAML format. While these do give some struc-
ture to how a pipeline should be set up, a lot of configuration
freedom is left to developers.

The paper aims to address the question: “How are Con-
tinuous Integration pipelines set up in GitHub software
projects?”.

The rest of this report is structured as follows. Section 2
presents background on relevant topics and the research ques-
tions. Section 3 outlines the used method. Section 4 lays out
the results. Section 5 reflects on the responsible aspects of
this research. Section 6 discusses the findings. Finally, Sec-
tion 7 concludes and mentions future work.

2 Background

This section of the paper provides an overview of the relevant
literature and previous research on Continuous Integration. It
will also describe the research questions and their motivation.

2.1 Related work

In 2000, Fowler and Foemmel introduced the Continuous In-
tegration (CI) concept through their blog post [7]. Their work

Uhttp://travis-ci.org
*http://github.com/features/actions

emphasized ten core CI practices to enhance software de-
velopment speed and improve overall software quality. Of
these practices, a key focus was on implementing fully auto-
mated and reproducible builds alongside running tests multi-
ple times a day. Their pioneering insights have significantly
influenced the adoption and implementation of CI methodolo-
gies, shaping the modern software development and delivery
landscape.

Since the conception of CI, much research has been done
that shows the positive effects of adapting CI in software
projects. Valescu et al. [17] study the impact of CI on team
productivity and software quality in projects on GitHub. They
discovered that teams that use CI are more effective at merg-
ing pull requests while at the same time finding more bugs,
thus improving the quality of the software.

Hilton et al. [13] researched CI’s usage, costs and benefits
by analyzing open-source projects on GitHub and surveying
developers. They examined metrics like time for CI adoption
and number of changes to CI configs, which will also be inter-
esting for this research. They agreed that CI helps developers
integrate pull requests more quickly and catch bugs earlier.

Golzadeh et al. [12] have demonstrated a significant shift
in the usage of CI services. Since its publication in 2019,
GitHub Actions has quickly become the most prevalent plat-
form, overtaking all established services in 18 months. They
also outline the co-usage and migration between multiple CI
platforms.

Durieux et al. [5] performed an analysis of more than 35
million jobs of Travis CI. They also investigated the metrics
time for CI adoption and number of changes to CI configs, as
well as the number of jobs per usage category. It has been
discovered that the programming languages in projects that
employ Travis CI are not equally distributed to those used on
GitHub and that most jobs are used for testing.

Chen et al. [3] performed a similar analysis of repositories
that use GitHub Actions. They show that the average number
of configured workflows is 2.8, most jobs use servers provided
by GitHub and Ubuntu is the most used platform.

Gautam et al. [8] performed a cluster analysis of projects
that use Travis CI. They were able to identify clusters based
on repository metrics like activity, popularity, size, testing,
and srability. These clusters showed distinct characteristics,
with which they hope to advise new developers about which
software project to join.

2.2 Continuous Integration

Continuous Integration is a development practice where de-
velopers regularly integrate their code changes into a shared
repository. The integrated code is then automatically built,
tested, and validated to identify any issues or conflicts early
in the development process.

A CI pipeline is a sequence of automated jobs. The jobs
in a pipeline typically include code compilation, unit testing,
integration testing, code analysis, and deployment. It allows
for the automation of various tasks required to validate and
deliver software changes. They can be triggered by a number
of events, like a push to a branch or the creation of a pull
request.

http://travis-ci.org
http://github.com/features/actions

A concept unique to GitHub Actions is that of workflows,
which are independently configured pipelines that can per-
form different sets of tasks. This allows for more control over
when certain jobs are triggered. It could also reduce code
duplication because they can be reused and referenced from
other workflows.

2.3 Research Questions

Much of the prior research that includes empirical analysis on
CI, as outlined above, was done on a single CI service. This
can be attributed to the following three factors:

Popularity of Travis CI. Travis CI was the most popular
continuous integration service for GitHub [2] [12] since its in-
troduction in 2011, being used by significantly more reposito-
ries than every other service. It has also initiated the creation
of TravisTorrent, a "freely available data set based on Travis
CI and GitHub that provides easy access to hundreds of thou-
sands of analysed builds from more than 1,000 projects” [1].
The popularity of Travis CI, together with this readily avail-
able data set, makes it a great candidate for performing re-
search.

Newness of GitHub Actions. In comparison to other CI
services, GitHub Actions is relatively young. It was intro-
duced in 2019 but quickly became the most popular platform
used on GitHub. Due to this, not much historical data is avail-
able on GitHub Actions.

Difference between CI services. While the base for every
service is a YAML configuration file, there can be some sig-
nificant differences in how they should be structured. For
example, Travis Cl relies on structured phases like install and
script, while GitHub Actions is entirely built around jobs and
steps. This can make it difficult to compare the two.

This paper aims to analyse the implementation of CI across
multiple platforms. A more comprehensive overview of the
current state of CI in software projects can be obtained by
extending previous research to encompass a broader range of
platforms. In this analysis, the type of CI service used will
be considered one of the metrics rather than the primary fo-
cus. This approach allows for a broader perspective on CI
practices.

When this is achieved, a future goal is to combine the re-
sults with those of other members of the GitHub Mining Re-
search Project group. Together we are looking into different
aspects of software project repositories and mining metrics
about them. Like Gautam [8], the goal is to categorise repos-
itories based on metrics like project activity, maturity, topic,
build life cycle and CI state. This will be done to ultimately
be able to inform and advise developers on maturing the CI
implementation based on the context of their project.

The analysis will be structured around five research ques-
tions (RQ) to accomplish this. Based on these results, the
state of CI will be discussed. These questions are as follows:

RQ 1: When are CI pipelines introduced into a project?
Projects do not have CI configured by default. Looking at the
time it takes projects to start using CI could give insight into
adoption patterns and may be linked to project maturity.

RQ 2: How are jobs triggered in CI pipelines? Different
rules can be set for when to trigger a pipeline, based on dif-
ferent events. Exploring this could reveal common use cases.

RQ 3: How are jobs structured in CI pipelines? CI
pipelines are configured in YAML files, which offer only a
loose structure to how different jobs should be set up. Having
a deeper understanding of how CI is structured can result in
better advice for developers on how to configure their CI.

RQ 4: What distinct types of jobs are set up in CI
pipelines? A CI pipeline comprises different jobs, all hav-
ing separate tasks. The two most common uses for CI are
building and testing[5], but does this differ between plat-
forms?

RQ 5: Which operating systems are used for CI pipelines?
CI services offer multiple platforms to execute pipelines on.
Examining how this feature is used can provide insight into
cross-platform development strategies and may be linked to
performance.

3 Methodology

This section presents the methodology employed to mine data
from GitHub repositories. The process involved three key
phases: repository curation, data mining and data analysis.
Splitting the process into these different steps allowed them to
be executed independently from each other, storing interme-
diate data or results. Using the GitHub API?, relevant pieces
of information were collected about the presence and con-
figuration of CI pipelines within repositories. Subsequently,
data analysis techniques were applied to extract meaningful
patterns, identify trends and draw conclusions regarding CI
pipeline configurations and practices.

3.1 Repository Curation

Selecting repositories for analysing their CI usage is critical
in conducting a comprehensive and representative study. Be-
sides the base criterion of needing to have either GitHub Ac-
tions or Travis CI configured in a repository, the following
criteria and considerations were used to identify and include
repositories in the analysis:

* CI usage The first and most important criterion for se-
lecting repositories is whether they use Continuous Inte-
gration. While more than 20 different CI platforms and
tools are available [12], I have determined to limit this
research to only analysing repositories that employ ei-
ther Travis CI or GitHub Actions. As of May 2021, these
cover 90.9% of all repositories that use CI [12]. By con-
centrating on these two widely adopted platforms, the
analysis significantly reduces the workload associated
with examining many different CI configurations.

* Programming language While the primary focus of
this research is not on the programming language of soft-
ware projects, it is still essential to consider the language
aspect during the repository selection process. Using a
tool called GitHut 2.0*, the top ten most-used languages

3https://docs.github.com/en/rest
“https://madnight.github.io/githut/#/pull_requests/2023/1

https://docs.github.com/en/rest
https://madnight.github.io/githut/#/pull_requests/2023/1

in quarter 1 of 2023 were identified, together spanning
almost 85% of all pull requests. Repositories with these
languages should be present in the final dataset to en-
sure a representative overview of software projects on
GitHub. Appendix A shows the ten considered lan-
guages and their share in PRs.

* Active development To ensure the currency and rele-
vance of the selected repositories, only repositories were
selected that had a commit within the last six months, be-
tween December 2022 and June 2023. The analysis in-
corporates actively maintained projects likely to reflect
the most current CI practices by focusing on reposito-
ries with at least one commit within this timeframe. This
approach helps to avoid outdated or abandoned reposi-
tories that might not accurately represent the prevailing
trends and advancements in CI adoption. By including
repositories with recent activity, the analysis provides a
more accurate and timely snapshot of the CI landscape,
enabling valuable insights into developers’ contempo-
rary practices and configurations.

* Number of stars To find potential repositories, the
SEART GitHub Search Engine’ was used. Researchers
can utilise this tool to select repositories for empiri-
cal studies based on various selection criteria combina-
tions. One design choice of this tool is that it only mines
projects with at least ten stars. While the project’s cre-
ators noted that stars are not a good proxy for the quality
or relevance of repositories, this criterion allowed the
tool to be more scalable and excluded projects that are
unlikely to be relevant for empirical studies [4].

¢ Non-forked projects Projects that are forks are ex-
cluded to reduce redundancy and ensure consistency.
Forked repositories are copies of the original repository
that may have undergone modifications or diverged from
the original codebase [10]. The analysis maintains a
more accurate representation of CI practices within indi-
vidual projects by focusing solely on the original repos-
itories.

Using SEART GitHub Search Engine, multiple searches
were performed to find repositories that use CI for each of the
ten languages identified above. In addition to the language,
last commit date, number of stars, and exclusion of forks, a
final search query was added. While the search engine does
not have the functionality to determine whether a repository
uses CI directly, it allows filtering based on user labels added
to issues in a repository. By adding the search for a label
ci, the number of search results decreased significantly while
the chance of them including CI increased. This was useful
as it was infeasible to check all resulting repositories for the
employment of CI. Adding this final filter decreased the to-
tal number of potential repositories from roughly 250, 000 to
1815.

To check whether a repository uses CI, they need to be
checked for the existence of a configuration file. The criteria
for finding Travis CI and GitHub Actions will be discussed in
Section 3.2, Workflow Config Module. After this check, a list

>https://seart-ghs.si.usi.ch

of 1640 repositories was curated. This means that just over
90% of the repositories that use a ci label utilised either CI
platform. This is the same coverage mentioned earlier [12],
although it should be noted the other 10% were not checked
for the existence of any other platform.

Some final manual filtering was done on the dataset based
on outlying results achieved during the data analysis phase.
The number of jobs and configuration files per repository
was analysed, as discussed in Section 4.4, GitHub Actions.
Four repositories had significantly more configuration files
and jobs than all other projects. These repositories either con-
tained a large number of code examples (azure-samples/java-
on-azure-examples®, optuna/optuna-examples’) or contained
a large number of sub-projects or tools with individual
pipelines set up in the parent repository (dogtagpki/pki®,
litmuschaos/test-tools”). In both cases, they do not represent
the type of software project this research focuses on, so they
were removed.

3.2 Data Mining

The data mining phase involved retrieving data from GitHub
repositories, focusing on specific metadata that provides in-
sights into the presence and usage of CI pipelines.

The software for this phase was written in collaboration
with four other teammates. Our collective goal was to make
versatile software to accommodate all our different needs.
We came up with a structure where various modules could
mine different metrics. For instance, the Commits module is
responsible for extracting all commits-related data, like the
contents of commit messages or the total number of commits
for a repository. A main central runner was developed where
the modules could be toggled on or of. This allowed us to
work with the same software, configured per our specialised
needs.

The three modules that were relevant to my research are
the following:

Repository Module. This module was used to extract in-
formation about a repository as a whole. The metric I use is a
repositories creation date, which is used for answering RQ 1.

Workflow Config Module. This module was used to iden-
tify and store any Continuous Integration configuration .yaml
files. Where these files are stored and how they should be
called differs between GitHub Actions and Travis CI. GitHub
workflow files should be stored in the .github/work flows
directory and can have any name [11], while Travis CI files
should be stored in the root directory and have to be called
travis.yml [16]. The repository is searched for both op-
tions, and any files matching the conditions will be down-
loaded and saved for future analysis.

Commits Module. This module was initially created to
mine data about every commit made to a repository. How-
ever, this did not benefit my research as I am only interested
in commits that add or change the Continuous Integration

®https://github.com/azure-samples/java-on-azure-examples
"https://github.com/optuna/optuna-examples
8https://github.com/dogtagpki/pki
*https://github.com/litmuschaos/test-tools

https://seart-ghs.si.usi.ch
https://github.com/azure-samples/java-on-azure-examples
https://github.com/optuna/optuna-examples
https://github.com/dogtagpki/pki
https://github.com/litmuschaos/test-tools

configuration files. The module was adapted to receive an
optional file path parameter, resulting in only commits being
processed that change that particular file.

3.3 Data Analysis.

Once all the data has been collected, the next step is to analyse
it thoroughly. This was done by creating three new analysis
classes and a visualiser class.

Repository Analyser. The first and relatively most straight-
forward analysis class was the repository analyser. It was
developed to examine each repositories metadata. The main
task of this class was to deduce when CI was introduced into
each repository, which results are used in RQI.

YML Analyser. The second analysis class was developed
to inspect the contents of the workflow configuration files.
Once initialised, it reads all .yml! files into to be investigated
further.

Travis Analyser. The last class was a hybrid miner and
analyser class. Each repository that uses Travis CI has access
to an online portal to configure some settings further. This in-
cludes setting when pipelines should be triggered, which RQ
2 aims to answer. This class collects that data through the
Travis CI API'° and aggregates it.

Visualiser. Visualising is the final step after all data is gath-
ered, aggregated and stored. This is done by the Visualiser
class, which uses the Python library Matplotlib'! to create all
the graphs used for this paper.

4 Results

The following section presents and discusses the results ob-
tained from the analysis for each research question. Appendix
B shows an overview of all extracted metrics and for which
research question they were used.

4.1 Usage of CI Platform

While it is not included as one of the five research questions,
examining how many repositories use Travis CI, GitHub Ac-
tions, or a combination of both is useful. Out of the 1637
mined repositories, 1574 use GitHub Actions, and the other
63 have configurations for both. This means none of them
exclusively use Travis CL.

4.2 RQ 1: When are CI pipelines introduced into a
project?

The analysis of RQ1, focusing on when CI pipelines are in-
troduced into projects, reveals compelling findings regarding
the timeline of CI adoption. To visualise the results, two dates
had to be extracted: the creation date of the repository and the
creation date of the CI configuration file. Based on these two
dates, the number of days between repository creation and
the first CI configuration creation, the Time To Introduction
(TTZ), was computed.

When aggregated by platform, it was revealed that the
TTZ for Travis CI was considerably lower than that of

https://developer.travis-ci.com/
"https://matplotlib.org/

GitHub Actions. Travis CI was introduced into repositories
on average after 612 days (median = 281), while GitHub Ac-
tions took 1272 days (median = 1018). However, these plat-
forms do not have the same age. Considering the first po-
tential moment a platform’s configuration could have been
introduced, the 77 Z were normalised. While not as large as
before, there is still a difference between the two platforms.
These results can be seen in Figure 1.

Figure 2 displays the normalised 77 Z against the cre-
ation date of their respective repositories. The blue and red
coloured dots indicate Travis CI and GitHub Actions config-
uration files, respectively. It can be observed that since Travis
CI’s introduction in 2011, many repositories have been quick
to add it to their projects. For repositories created before
GitHub Actions’ introduction, it takes anywhere between 2
and 6 years to add to their project, while newer ones tend to
add it shortly after creation. The steep slope that can be seen
on the right side indicates the maximal moment CI could have
been added to the repositories. A project created 30 days ago
can only configure CI within those 30 days, causing this clear
line.

Some data points returned a negative 77 Z, meaning that
the commit that introduced a CI configuration file predates
the creation of the repository. This could happen when exist-
ing projects, including their git history, are ported to a new
repository. These points are excluded in Figures 1 or 2, as the
TTZ cannot be determined.

Introduction of CI config files per platform

5000 - &

4000 -
3000 -

L LI

1000 -

Time untill Cl introduction (days)
o
o

A T

' ' L
GitHub Actions GitHub Actions (nermalized) FavisCl ‘FavisCl normalized)

Cl platform

Figure 1: Average number of days between creating repositories and
introducing CI configuration files per platform. Normalised values
consider the first potential moment a platform’s CI configuration
could have been introduced into a repository.

RQ 1: When are CI pipelines introduced into a project?
An overall trend was found that newer projects introduced
CI pipelines more quickly after their creation. On average,
Travis CI is introduced more quickly than GitHub Actions.
Moreover, projects created before the existence of GitHub
Actions take between 2 and 6 years to still adopt it.

https://developer.travis-ci.com/
https://matplotlib.org/

Repository age vs introduction of ClI config files

® GitHub Actions
] e TravisCl

2000 -

Time untill Cl introduction (days)

Repository creation

Figure 2: Repository creation vs the number of days until CI is in-
troduced into a project.

4.3 RQ 2: How are jobs triggered in CI pipelines?

For this research question, the trigger setup of CI pipelines
was analysed. Some differences exist between the available
triggers and how they can be configured between Travis CI
and GitHub Actions.

Travis CI

Travis CI will only trigger every push made to a repository
by default. This can be extended to also happen on the cre-
ation of pull requests. This configuration is not set inside the
.travis.yml configuration file but in the online dashboard.
These triggers can be refined by adding a blocklist or
safelist to the branches attribute inside the configuration
file.

As can be seen in Table 1, it is common for Travis CI
pipelines to be triggered on both pushes and pull requests.
Some repositories have turned off both push and pull request
triggers, which disables Travis CI altogether for that project.

Push
on off
on 28 (77.8%) 2 (5.6%)
Pullrequest e 5" (5.6%) 4 (11.1%)

Table 1: Number of times combination of the push and pull request
triggers are used in Travis CI pipelines.

GitHub Actions

Unlike Travis CI, GitHub offers many configuration options
for triggering pipelines. This configuration is done inside the
.github/work flows/ * .yml files, under the on attribute.
Figure 3 displays that push and pull_request are most com-
monly used, in 61% and 59% of all workflow, respectively.
Besides that, two common triggers are schedule and work-
Sflow_dispatch, both only available in GitHub Actions. Sched-
ule allows the pipeline to be triggered at a scheduled time or
interval, based on a POSIX Cron Syntax string'?. Workflow
dispatch makes pipelines available to be manually triggered
using the GitHub API, GitHub CLI, or GitHub browser in-

Zhttps://pubs.opengroup.org/onlinepubs/9699919799/utilities/c
rontab.html#tag 20_25_07

terface [9]. All other available options listed in the GitHub
Documentation'? were found at least once.

Because GitHub offers many more options for setting trig-
gers, a further investigation had to be done to examine how
they are used together. Figure 4 shows that the combination of
pushes and pull requests is most common among GitHub Ac-
tions pipelines. Moreover, schedule and workflow_dispatch
are more often used together with push and pull_request than
the other way around.

Triggers used in GitHub Actions

push

pull_request

26.9%

workflow_dispatch

Trigger type

schedule

other 22.5%

k T T T T T T
0 500 1000 1500 2000 2500 3000
uses

Figure 3: Number of times triggers are used in GitHub Actions
pipelines. Percentages are relative to the total amount of pipelines.

Cooccurrence of triggers in GitHub Actions

workflow_dispatch 41.34% 34.25%

schedule

push

13.56%

pull_regquest

Figure 4: Proportion of workflows using both trigger types A and B
relative to the total amount of usages of A.

Bhttps://docs.github.com/en/actions/using-workflows/events-tha
t-trigger-workflows

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html#tag_20_25_07
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html#tag_20_25_07
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows

RQ 2: How are jobs triggered in CI pipelines? While
the method of setting up triggers differs between Travis CI
and GitHub Actions, the most common configuration is a
combination of push and pull request. Besides, GitHub of-
fers two more commonly used trigger types: schedule and
workflow_dispatch.

4.4 RQ 3: How are jobs structured in CI
pipelines?

This research question examines how the jobs are set up in CI

pipelines. There is a difference in how they are defined be-

tween Travis CI and GitHub Actions so they will be discussed

separately.

Travis CI

Travis CI offers multiple methods of configuring a pipeline.
Because all configuration needs to be done in a single file per
project, it can be hard for developers to split it into differ-
ent jobs with separate tasks. Upon manual inspection of sev-
eral .travis.yml files, I have identified three main methods
of how jobs get configured:

1. A single script. The primary way that Travis CI presents
its configuration is through the use of several phases in
a job lifecycle. These are defined as root properties in-
side configuration files. The two main phases are install
and script, which install dependencies and run the build
script, respectively. This method can be identified by
having a script property present only in the root of the
configuration file.

2. A job matrix. A second method that is also presented
in the Travis CI documentation is the use of the jobs
or matrix properties. These allow developers to define
multiple jobs that will be run in parallel [15]. They can
be identified by having the script property inside at
least one of the jobs listed in the include list.

3. A combination. The last method combines both, in
which the clauses to identify the first two methods both
hold.

Table 2 shows the division between the detected methods
based on the abovementioned criteria. There were two con-
figuration files that neither had a script tag nor a job ma-
trix, making it seem like they were not functional. The table
lists each configuration method’s average and median lines of
code (LOC). It is shown that the average loc is significantly
higher when a job matrix is implemented.

Config loc
Method # % avg median
Single script 39 8% 33.54 24
Job matrix 6 12% 75.17 60
Combination 3 6% 169.34 168
Neither 2 4% 7.0 7

Table 2: Distribution of job configuration methods used in Travis
CL

GitHub Actions

GitHub allows developers to separate workflow configuration
files containing multiple jobs, making it easy to define work-
flows for different triggers, environments or releases. This
allows for numerous ways of setting up a CI environment,
from a single file with many jobs to multiple files with a small
number of jobs.

First, the number of configuration files per repository was
investigated. On average, projects contained 3.65 configu-
ration files (median = 3). Figure 5 shows several outliers,
with one repository even configuring 45 individual work-
flow files. Upon manual inspection of the three reposi-
tories with the most workflow files, stdlib-js/stdlib“, al-
ibaba/bladedisc and realm/realm-dotnet'®, a common trend
can be seen. These are large multi-platform projects with CI
pipelines configured for many operating systems or language
versions.

Number of Cl configuration files per repository

|:|:|—{OOOO ooc ¢ © o] o
0 10 20

30 40

Figure 5: Number of GitHub Actions workflow configuration files
per repository.

Next, the analysis focused on the number of jobs per repos-
itory, as shown in Figure 6. On average, projects contained
6.13 jobs between all their configuration files (median = 4).
There again are several outliers, but they are not entirely the
same as those in the number of configuration files discussed
before.

Number of jobs per repository

0 10 20 30 40 50 60 70 80

Figure 6: Number of GitHub Actions jobs configured between all
workflow files per repository.

Figure 7 plots the total number of jobs per repository
against the number of workflow configuration files. It also
includes a trendline which shows that, in general, reposito-
ries that have more configuration files will also have more
total jobs configured.

“https://github.com/stdlib-js/stdlib
Bhttps://github.com/alibaba/bladedisc
"®https://github.com/realm/realm-dotnet

https://github.com/stdlib-js/stdlib
https://github.com/alibaba/bladedisc
https://github.com/realm/realm-dotnet

Number of jobs vs number of configuration files per repository

80 - L]
70 - L] .
/”
[rd
L -’ .
60 4’,
4] -~
8 50 - e”
w ® -
o -~
@ 40~ . Lvas .
-g -
S 30 -
=]
20 -
10 -
o-
i i i \ 1
0 10 20 30 40

Number of configuration files

Figure 7: Total number of jobs in a repository vs number of config-
uration files in a repository.

RQ 3: How are jobs structured in CI pipelines? Travis
CI allows for two methods of configuring jobs, through a
single script or a job matrix. The former option is most
prevalent, but the latter or a combination of both does
happen, although resulting in a larger configuration file
size on average. Most GitHub Actions projects configure
three workflow files and six jobs within their repositories.
Projects that set up considerably more workflow configura-
tion files tend to have more jobs configured too.

4.5 RQ 4: What distinct types of jobs are set up in
CI pipelines?

This question researches the different kinds of jobs. An in-
depth analysis was carried out on Travis CI jobs in a study
by Durieux et al. which identified eight distinct categories of
these jobs [5]. The categorisation was done through an auto-
mated process that relied on specific keywords to determine
the class of each job.

This process was repeated for the jobs in our mined GitHub
Actions workflows. Due to its tight integration into GitHub,
a ninth organisation category could be identified. It encom-
passes any jobs interacting with other aspects of GitHub, like
automatically labelling pull requests or closing issues. The
keywords used for automatic categorisation in the previous
research were not disclosed, so these had to be reidentified.

Table 3 shows this categorisation’s results and includes the
Travis CI findings from [5]. Compared to Travis CI, there
seems to be a bigger focus on jobs besides festing and build-
ing in GitHub Actions.

RQ 4: What distinct types of jobs are set up in CI
pipelines? Using previous large-scale research on jobs in
Travis CI, 9 different job categories were devised. Compar-
ing the outcomes of that study to the results of categorising
GitHub Actions jobs, there seems to be a stronger focus on
jobs outside of building and testing in GitHub Actions.

Category #Jobs GHA % TCI%
Testing 2040 20.56% 58.64%
Building 1883 18.98% 8.30%
Analyzing 1605 16.17% 0.18%
Releasing 817 8.23% 1.43%
Organisation 716 7.22% -
Documentation 401 4.04% 3.26%
Formatting 69 0.70% 1.82%
Communication 63 0.63% 0.07%
Unknown 2329 2347% 26.26%

Table 3: Distribution of categorized jobs in GitHub Actions and
Travis CI.

4.6 RQ 5: Which operating systems are used for
CI pipelines?

The previous research question focussed on the various jobs
used in different pipelines. This final research question will
analyse what operating systems (OS) are used to run these
jobs. Travis CI and GitHub Actions allow developers to spec-
ify which operating system to run a pipeline on. This can
be especially useful for multi-platform software that must be
built, tested, and validated for all platforms.

There are two key differences between the configuration of
an OS between Travis CI and GitHub Actions. First, where
Travis CI only offers the options Ubuntu, MacOS, and Win-
dows, GitHub also allows their workflows to be run on self-
hosted runners. Second, the OS is configured on a pipeline
level in Travis CI, while it is on a job level in GitHub Ac-
tions.

The analysis results of used operating systems can be seen
in Figure 8 and Table 4. It stands out that no OS is speci-
fied for 62% of Travis CI pipelines. It should be noted that
for both CI services, Ubuntu will be used when no operating
system is specified. This total Ubuntu usage is listed as the
last row in the table. It can be concluded that Ubuntu is the
prevailing operating system used by both services.

GHA Jobs TCI Pipelines
(ON] # % # %
Ubuntu 6386 T73.7% 16 29.1%
MacOS 216 2.5% 4 7.3%
Windows 242 28% 1 1.8%
Not specified 717 83% 34 61.8%
Other 1102 12.7% - -
Ubuntu total 7003 82.0% 50 90.9%

Table 4: Distribution of operating systems used in GitHub Actions
jobs and Travis CI pipelines. The last row shows the total usage of
Ubuntu, as that is the default when no system is specified.

Usage of operating systems per Cl service

GitHub Actions

Travis ClI

B ubuntu EEN macos M windows B notspecified BB other

Figure 8: Distribution of operating systems used in GitHub Actions
jobs and Travis CI pipelines.

RQ 5: Which operating systems are used for CI
pipelines? Although GitHub offers a lot more freedom in
customising which OS to run pipelines on, the majority (to-
talling 80%) will use the same main options that Travis CI
offers: Ubuntu, MacOS and Windows. About 62% of Travis
CI pipelines have no OS configured, defaulting to Ubuntu.

5 Responsible Research

Ensuring that research results are reproducible and indepen-
dently verifiable is crucial. To make this possible, the code
created for this study has been made accessible to the public
on TU Delft’s servers and GitHub via https://github.com/rad
uConstantinescu/Descriptive-CI-Metrics. The code includes
documentation on each component, a description of how to
install and start running it, and lists the API keys required to
start mining data.

All the collected data has been made publically available
through 4TU Research Data!’. It includes the complete raw
data that the miner collected and processed intermediate re-
sults used to create this paper’s tables and figures.

All data used for this paper was open-source and publi-
cally available, mainly gathered through either the GitHub
API or Travis CI API. When actively mining repositories still
in development, the data collected reflects their current state
at the extraction time. Essentially, the information obtained
is a snapshot that captures the repositories’ progress up to
that point. This can threaten reproducibility, as trying to mine
that same repository later does not guarantee the return of the
same data. To combat this, either this paper or the dataset will
include the data’s retrieval date.

6 Discussion

This research focussed on the two most used CI platforms.
Combining established results with new insights can paint

"https://data.4tu.nl

a picture of the current CI landscape. The extracted met-
rics cover a wide range of important aspects of CI pipelines.
The described methodology and results should create a strong
foundation for further research. As described in Section 2.3,
this research is part of an overarching goal to inform the
configuration of CI based on contextual factors of software
projects.

As already indicated by Golzadeh et al., there has been
a shift to GitHub Actions[12], which can be primarily at-
tributed to Travis CI’s pricing and policy changes in Novem-
ber 2020. This was further confirmed by the dataset cu-
rated for this research, which found 1574 repositories that use
GitHub Actions, 63 that use Travis CI and GitHub Actions
and none that exclusively use Travis CI. While this relatively
low number of Travis CI repositories could be a limiting fac-
tor for the results of this research, the repository curation pro-
cess was chosen to be as general and unbiased as possible.

An overall trend was that newer projects introduced CI
pipelines more quickly after their creation. On average,
Travis CI is introduced earlier than GitHub Actions. Repos-
itories created before the introduction of GitHub Actions in
2018 took multiple years to adapt to the new platform. This
may be because they already utilise a different CI service, or
developers may find introducing it into established software
difficult.

Throughout Travis CI and GitHub Actions, it is most com-
mon to trigger pipelines on both pushed and pull requests.
These seem to be the two most critical moments where checks
could be beneficial. Interestingly, for some Travis CI work-
flows, both those triggers are disabled, meaning the pipeline
will never be run. This is probably a low-effort means of dis-
abling Travis CI because GitHub Actions is also used in all
those projects.

Perhaps the most remarkable result is the number of config-
uration files and jobs some repositories have set up. I hypoth-
esised that repositories would use a couple of configuration
files with a few or many jobs each or many configuration files
with a few jobs each. While there were a lot of the former,
none of the latter were found. Additionally, the number of
repositories with many configuration files and many jobs was
surprising. Future research could look into how these jobs
are used and whether there is room for optimisation regard-
ing duplication.

When comparing the types of jobs that are set up in GitHub
Actions to Travis CI pipelines, there seems to be less focus on
building and festing and more on analysis and organisation.
The GitHub Marketplace'® offers preconfigured jobs which
can be reused inside workflows. Even slightly more actions
are available for code quality analysis than testing, which
could explain the notable differences within those categories.

There are some limitations with how the GitHub Actions
jobs are categorised. First, the exact keywords used in classi-
fying Travis CI[5] were not disclosed, so they had to be recre-
ated, which was done with the help of GitHub Copilot'® (see
Appendix C). Second, the keywords are only matched against
the user-configured titles of jobs. A more in-depth approach

Bhttps://github.com/marketplace?type=actions
Phttps://github.com/features/copilot

https://github.com/raduConstantinescu/Descriptive-CI-Metrics
https://github.com/raduConstantinescu/Descriptive-CI-Metrics
https://data.4tu.nl
https://github.com/marketplace?type=actions
https://github.com/features/copilot

could lead to a more accurate categorisation.

There is a significant difference between the percentage of
Travis CI pipelines and the percentage of GitHub Actions jobs
with no OS specified. While in Travis CI, the OS is deter-
mined on a pipeline level, in GitHub Actions, they get set on
a job level. Developers who create a GitHub pipeline will
likely be more aware of configuring it properly, resulting in
greater consistency.

7 Conclusions and Future Work

This paper describes a method for mining data about software
projects hosted on GitHub to analyse the configuration and
state of their CI. Together with a team of peers, we worked to
develop software that mines various metrics for a given list of
repositories. These metrics can be customised to suit specific
use cases.

The results show a wide variety of methods to set up CI
pipelines. While the YAML files and services give some struc-
ture, a lot is left up to decide by the developers. The relatively
new CI platform GitHub Actions is on the rise, which is more
tightly integrated into GitHub. This is shifting the focus from
mainly on building and testing to including code analysis and
automating organisational tasks.

In the future, these results can be combined with those of
my team of peers to find a relation between a repository’s
contextual factors and the configuration of its CI. To be able
to advise developers on how CI could be matured for their
projects, more research needs to be done on what effect differ-
ent configurations have on performance and efficiency. There
is also room for improvement regarding code duplication in-
side CI configuration files. Some repositories use many sep-
arate files for similar tasks, like testing on multiple operating
systems. More research could determine whether this is a
flaw of the CI services or developers and how this could be
resolved.

References

[1] Moritz Beller, Georgios Gousios, and Andy Zaidman.
Travistorrent: Synthesizing travis ci and github for
full-stack research on continuous integration. In 2017
IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), pages 447-450, 2017.

[2] Moritz Beller and Joseph Hejderup. Blockchain-based
software engineering. In 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering: New
Ideas and Emerging Results (ICSE-NIER), pages 53-56,
2019.

[3] Tingting Chen, Yang Zhang, Shu Chen, Tao Wang, and
Yiwen Wu. Let’s supercharge the workflows: An em-
pirical study of github actions. In 2021 IEEE 21st In-
ternational Conference on Software Quality, Reliability
and Security Companion (QRS-C), pages 01-10, 2021.

[4] Ozren Dabic, Emad Aghajani, and Gabriele Bavota.
Sampling projects in github for MSR studies. In /8th
IEEE/ACM International Conference on Mining Soft-
ware Repositories, MSR 2021, pages 560-564. IEEE,
2021.

[5] Thomas Durieux, Rui Abreu, Martin Monperrus,
Tegawendé F. Bissyandé, and Luis Cruz. An analysis
of 35+ million jobs of travis ci. In 2019 IEEE Interna-
tional Conference on Software Maintenance and Evolu-
tion (ICSME), pages 291-295, 2019.

[6] Omar Elazhary, Colin M. Werner, Ze Shi Li, Derek
Lowlind, Neil A. Ernst, and Margaret-anne D. Storey.
Uncovering the benefits and challenges of continuous
integration practices. CoRR, abs/2103.04251, 2021.

[7]1 Martin Fowler. Continuous integration, Sep 2000. https:
//martinfowler.com/articles/continuousIntegration.ht
ml.

[8] Aakash Gautam, Saket Vishwasrao, and Francisco Ser-
vant. An empirical study of activity, popularity, size,
testing, and stability in continuous integration. In 2017
IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), pages 495498, 2017.

[9] GitHub. Events that trigger workflows. GitHub Docs, 5
June 2023. https://docs.github.com/en/actions/using-w
orkflows/events-that-trigger-workflows.

[10] GitHub. Fork a repo. GitHub Docs, 5 June 2023. https://
docs.github.com/en/get-started/quickstart/fork-a-repo.

[11] GitHub. Workflow syntax for github actions. GitHub
Docs, 5 June 2023. https://docs.github.com/en/actions
/using-workflows/workflow-syntax-for-github-actions.

[12] Mehdi Golzadeh, Alexandre Decan, and Tom Mens.
On the rise and fall of ci services in github. In 2022
IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 662—672,
2022.

[13] Michael Hilton, Timothy Tunnell, Kai Huang, Darko
Marinov, and Danny Dig. Usage, costs, and benefits
of continuous integration in open-source projects. In
Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering, ASE ’16,
page 426-437, New York, NY, USA, 2016. Association
for Computing Machinery.

[14] Puneet Kaur Sidhu, Gunter Mussbacher, and Shane
Mclntosh. Reuse (or lack thereof) in travis ci specifica-
tions: An empirical study of ci phases and commands.
In 2019 IEEE 26th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER),
pages 524-533, 2019.

[15] Travis CI. Build matrix. Travis CI Documentation, 5
June 2023. https://docs.travis-ci.com/user/build-matrix.

[16] Travis CI. Customizing the build. Travis CI Documen-
tation, 5 June 2023. https://docs.travis-ci.com/user/cus
tomizing-the-build.

[17] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar
Devanbu, and Vladimir Filkov. Quality and productivity
outcomes relating to continuous integration in github. In
Proceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2015, page
805-816. Association for Computing Machinery, 2015.

https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows
https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
https://docs.travis-ci.com/user/build-matrix
https://docs.travis-ci.com/user/customizing-the-build
https://docs.travis-ci.com/user/customizing-the-build

A Distribution of languages

Language %
1 Python 17,207%
2 Java 11, 314%
3 Go 10, 423%
4 C++ 10, 082%
5 JavaScript 9,553%
6 TypeScript 7,899%
7 PHP 5,307%
8 Ruby 5,012%
9 C 4,407%
10 C# 3,141%

Total 84, 345%

Table 5: Top 10 most used languages in GitHub pull requests as
of QI of 2023. Lists the percentage of usage in those PRs. Data
collected from https://madnight.github.io/githut/#/pull_requests/20
23/1

B Extracted metrics

Metric

Additional information

Name
Creation date
CI platform(s)

%‘ ClI config files: CF all configuration files
= found in repository
g TT1 # days between reposi-
& tory creation and first CI
addition
config files GitHub Actions only
jobs GitHub Actions only
Travis Cl settings: 7TCZ Travis CI only
CI platform
Filename
Creation date Inferred from associated
K, commits
© Commits: AC All commits that in-
clude config file
Contents: CFC
Message
Date
¥ SHA
File status added, modified, re-
named, deleted
Triggers
© Trigger cooccurrence
t‘} Job configuration method Travis CI only
Jobs: J
(ON] Travis CI only
S Category GitHub Actions only
(0N GitHub Actions only
tl) Trigger on push
I~ Trigger on pull request

Table 6: A breakdown of extracted data related to the continuous in-
tegration pipelines employed in the analysed repositories. The met-
rics are organised into multiple nested levels, indicated by matching
abbreviations.

C Usage of Large Language Models

ChatGPT. The role of ChatGPT in this report was strictly
limited to providing guidance and assistance in structuring
paragraphs or sentences. However, it is important to note that
ChatGPT generated no content-related ideas or specific re-
search insights.

GitHub Copilot. Using GitHub Copilot, some keywords
were generated for categorising jobs in GitHub Actions work-
flows.

https://madnight.github.io/githut/#/pull_requests/2023/1
https://madnight.github.io/githut/#/pull_requests/2023/1

	Introduction
	Background
	Related work
	Continuous Integration
	Research Questions

	Methodology
	Repository Curation
	Data Mining
	Data Analysis.

	Results
	Usage of CI Platform
	RQ 1: When are CI pipelines introduced into a project?
	RQ 2: How are jobs triggered in CI pipelines?
	Travis CI
	GitHub Actions

	RQ 3: How are jobs structured in CI pipelines?
	Travis CI
	GitHub Actions

	RQ 4: What distinct types of jobs are set up in CI pipelines?
	RQ 5: Which operating systems are used for CI pipelines?

	Responsible Research
	Discussion
	Conclusions and Future Work
	Distribution of languages
	Extracted metrics
	Usage of Large Language Models

