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Abstract—The thermal emission from finite-size bodies is 

directly investigated without resorting to reciprocity. Specifically, 

an integral equation representing the electromagnetic field 

distribution on a conductive body under investigation is proposed. 

The source of the electromagnetic field is classic as it is an 

extension of Johnson noise sources to volumetric problems. The 

solution of the integral equation allows one to study the 

radiometric properties for geometries that are smaller than the 

investigated wavelengths, and in observation points, both in the 

near and in the far-field. The limits of validity of the formulation 

are clarified. 

I. INTRODUCTION 

HE thermal emission has been widely investigated since the 

middle of the twentieth century. Extending on the original 

works of Rytov [1], many authors have been studying the 

brightness of conductive bodies resorting to reciprocity, which 

allows replacing the emissivity of a body with its absorptivity 

under plane wave incidence. The direct emission of a thermally 

excited body has been only lightly discussed in the literature. 

For instance, [2] and [3] address the generation of 

electromagnetic energy from thermally excited bodies but fail 

to provide results from numerical simulations in the near fields. 

To our knowledge, there is a complete lack of either 

measurements or simulations that provide information about the 

near-field. 

 In this work, the radiometric problem is formulated 

resorting to an integral equation representing the homogenized 

constitutive relations 𝑗 = 𝜎�⃗⃗� for a conductive body. This 

becomes an integral equation by representing the electric field 

as the superposition of the incident field and the field scattered 

by the unknown conducting currents, �⃗⃗� = �⃗⃗�𝑖 + �⃗⃗�𝑠. In turn, the 

conduction currents are expanded into sub-domain basis 

functions, and the integral equation is transformed into a linear 

system that can be solved numerically. The innovative part of 

the procedure, otherwise standard, is the introduction of the 

thermal sources. These are defined by generalizing to scattering 

problems the noise sources that were proposed in [4]. The 

dependence on the geometry and the specific material 

properties can then be investigated in a rigorous full-wave 

manner. Moreover, the numerical full-wave solution is 

compared with asymptotic equivalent circuits valid in the high 

and low-frequency regimes. 

II. THERMAL EMISSION MODELS 

A voxel of size 𝛿 of a dielectric having permittivity 𝜀𝑟 and 

conductivity 𝜎 is kept at temperature 𝑇 while embedded in an 

unbounded homogeneous and lossless dielectric of relative 

permittivity 𝜀𝑟. If the body is electrically small, the current and 

the corresponding electric field can be approximated as 

uniform. Correspondingly, resorting to the constitutive relation, 

𝑗 𝜎⁄ = �⃗⃗�𝑖 + �⃗⃗�𝑠 and integrating the volumetric distributions over 

the voxel gives rise to voltage and currents that are related by 

 𝑣 = (𝑍Ω + 𝑍rad)𝑖. (1) 

The voltage 𝑣 can be taken as a standard thermal source 

𝑣=√4𝑘𝐵𝑇𝑅Ω with 𝑅Ω = Re{𝑍Ω}, 𝑍Ω = 1 𝜎𝛿⁄ , and 𝑘𝐵 is the 

Boltzmann constant. 𝑍rad represents the scattering impedance 

of an infinitesimal cube, which can be approximated as 

 𝑍rad ≈
80𝜋2

√𝜀𝑟

δ2

𝜆0
2 − 𝑗

𝜁0

3𝑘0𝜀𝑟

1

δ
, (2) 

where 𝜆0 , 𝑘0 and 𝜁0 are the free-space wavelength, propagation 

constant, and wave impedance, respectively. A body composed 

of many material voxels will contribute to thermal radiation 

with the superposition of the energies generated by its different 

parts. Accordingly, one can set up an integral equation for the 

overall finite-size body and then solve the discretized 

volumetric equation finding the current distribution on all the 

voxels. 

A Volumetric Method of Moments based on [5] has been 

formulated to study the thermal radiation from an arbitrary 

body. The linear system governing the problem is 

 𝒗 = (
1

𝜎𝛿
𝑰 + 𝒁) ⋅ 𝒊, (3) 

with 𝒁 the radiation matrix calculated in the unbounded lossless 

dielectric medium, 𝑰 the identity matrix, 𝛿 the size of the basis 

function, and 𝒗 the voltage forcing term. This treatise allows 

modeling the radiative interaction between the different parts of 

the body, even if the sources are assumed to be independent. 

III. RESULTS DISCUSSION 

The thermal radiation models of Sec. II are applied to a cube 

of edge Δ = 75 𝜇m, permittivity 𝜀𝑟 = 11.7, and kept at 
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Fig. 1. Comparison between the spectral energy density calculated using 

different basis function size and its asymptotic value. 
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temperature 𝑇 = 300 K. Its conductivity 𝜎 = 1/𝜌 is described 

by Drude’s model, according to which the resistivity has the 

following frequency dependence 

 𝜌(𝜔) = 𝜌qs(1 + 𝑗𝜔𝜏) (4) 

with 𝜌qs = 𝑚eff 𝑛𝑒2𝜏⁄ , 𝑚eff = 0.29 𝑚el for silicon, 𝑚el is the 

free-electron mass, 𝑒  is the electron’s charge, 𝜏 = 2 ⋅ 10−13 s 

is the scattering time, and the electron density is 𝑛 = 8.8 ⋅
1021 m−3. Fig. 1 compares the radiated energy density 

calculated with the Method of Moments for different basis 

function sizes. The case corresponding to one basis function 

only, 𝛿 = Δ = 75 𝜇m, is representative of the low-frequency 

limit discussed at the beginning of Sec. II. It is apparent that it 

provides results equivalent to those using more basis functions 

as long as the frequency is such that Δ < 𝜆𝑑 20⁄ . When the 

cube’s dimensions become larger, more and more basis 

functions must be adopted. The overlapping of the solutions 

indicates the range of validity of the less well-sampled ones. 

Finally, for the high-frequency regime, the power density tends 

to the asymptotic value 

 lim
𝑓→∞

𝑃𝑟𝑎𝑑
𝑎𝑣𝑒(𝑓) = 3Δ3

𝑘𝐵𝑇

𝜌qs𝜏2
80

√𝜀𝑟

𝑐2
 (5) 

Taking the limit for 𝑓 → ∞ one is only meaningful for 

frequencies at which the homogenization process that leads to 

the definition of the conductivity is valid.  
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