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Abstract

Risk estimations play an important role in the financial sector. This report focuses on the
risk measure Value at Risk, which represents the risk of a portfolio. We will analyse different
estimators for the standard deviation and correlation and specifically look at their resistance to
outliers, also called the robustness of the estimator.

We will first explain why risk estimation is used in the financial sector, what the Value at
Risk is and how we define robustness. The different standard deviation estimators that will
be used in simulation are analysed and we will first test their robustness for data drawn from
location-scale families. We will compare their sampling distributions for unpolluted data sets
from the normal and logistic distribution to data sets from the same distributions that contain
an extreme outlier. We will also simulate the Value at Risk estimation with the different stan-
dard deviation estimators with three real price data sets.

The Value at Risk estimation for portfolios of 2 assets are based on the standard deviation
estimations for the separate assets and on the correlation between the two assets. The correla-
tion estimators will also be analysed using data with and without an outlier, drawn from the
normal and logistic distribution. We also look into the Factor model, a different way to model
price data. Last, a simulation for a portfolio of 2 assets with real data will show us how the
correlation and standard deviation estimators estimate the Value at Risk.
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Chapter 1

Introduction

Risk is a concept that plays an essential role in the financial sector, but in order to manage
these risks it is useful to first understand what risk is and how it is calculated. An important
realisation is to know that risk is not a given, it is an estimation. There are many different ways
to estimate different kinds of risks. This project will concentrate on the estimations of the Value
at Risk (VaR), which is a commonly used risk measure to represent the risk of a portfolio. We
want to see how different estimators react to anomalies and focus on their resistance to outliers.
This is the robustness of the estimator.

I first encountered the terms Value at Risk and robust during my summer internship at Transtrend.
During this internship I looked at different estimators for portfolios of 1 asset and analysed
their behaviour and robustness by simulation. The price data used in this project is provided
by Transtrend. This project will expand to portfolios of 2 assets and will focus more on the
theoretical aspects. Expanding to two-dimensional problems adds complexity to the risk mea-
sure because correlation will now play a role as well as the volatility of the assets.

Before we will look into the different estimators for the standard deviation and correlation
in the next chapter, we will introduce some concepts that are important to this project: Risk
estimation, Value at Risk, and robustness. We will look into VaR estimations for portfolios of
1 asset in chapter 3 and discuss the performance of the estimators in VaR calculations, using
portfolios constructed with real price data. In chapter 4 we will look into VaR estimations for
portfolios of 2 assets and simulate them with real price data.

1.1 Risk estimation in finance

Risk estimations are used for business decisions such as selling of or investing in assets. One
of the reasons why accurately measuring (investment) risk is very important is the relationship
between the return of an investment and its risk. The higher the risk, the higher the expected
return and visa versa. At the same time, the higher the risk, the more you could potentially lose
from an investment. So investors also want to measure, as accurately as possible, how much
value of their investment is at risk. The most commonly used measure for this is the Value at
Risk (VaR).

Besides the influence on business decisions, risk estimations are also used for risk manage-
ment. There are rules both within companies and on an European level that put limits on
certain risks. In this report we will focus on the risks of portfolios and a specific rule from the
European Central Bank (ECB) that applies to this. The ECB uses the VaR measure to set a
limit on the risks of portfolios. As soon as the VaR of a portfolio exceeds this limit, the investors
are forced to sell part of their holdings in these assets to lower the VaR. So the accuracy of the
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VaR measure is important to both the investor and the market. If this VaR estimation exceeds
the limit, the investor is forced to sell this asset which influences the market. The VaR measure
can be calculated in many different ways, all leading to different outcomes. Because of the rules
of the ECB, a different outcome could have big impact. In the next section we will look into
the VaR measure.

1.2 Value at Risk

Mathematically, the VaR is a quantile of the distribution. This means that to calculate the
VaR, it is important to know the volatility of your portfolio. If L is the price of a portfolio, the
VaR given level α is:

V aRα = inf{l ∈ R : P(L > l) ≤ 1− α}.

The VaR is widely used and it is a practical risk estimate, as long as it gives an accurate
estimation. However, it has some disadvantages when the estimation is inaccurate. Clearly,
underestimating the risk of an investment is undesirable and could be dangerous for the in-
vestor. On the other hand, overestimating the risk of an investment also causes some trouble,
as we have seen in the previous section. The investors have to sell their investments if the VaR
exceeds the limit set by the ECB. This has a big impact on the entire market because most
investors use the same methods to calculate the VaR.

When dealing with actual price data, the volatility of a portfolio will be estimated using esti-
mators, so the accuracy of the VaR will heavily depend on the performance of the estimators.
The problem with some estimators is that they work very well under normal circumstances but
overestimate the volatility in the case of extreme market movements. This means that if an
unexpected event occurs, the estimator will overestimate the volatility of the portfolio and the
VaR estimate will unnecessarily explode. The (in)sensitivity to outliers is called the robustness
of an estimator, which we will discuss in the next section.

1.3 Robustness

Robustness has been defined in many different ways, we will use the definition used by Peter J.
Huber: ”Robustness signifies insensitivity to small deviations from the assumptions”. [1]

The following simplified example will show the differences in robustness for two location es-
timators. We have the set X = (1, 2, 4, 3, 6, 3) and we will compute the median and the sam-
ple mean. The median is 3 and the sample mean is 31

6 . Now, if we add 100 to our set:
X = (1, 2, 4, 3, 6, 3, 100), the median is still 3 but the sample mean is now 195

6 . In order for the
median to explode, we would have to add more extreme values, while the mean gives a very
different outcome when we add just 1 value to our set. The median is a more robust estimator
than the sample mean.

The behaviour of the sample mean from the example is unwanted when an outlier occurs in price
data. If the standard deviation estimator explodes from just 1 outlier, the VaR will drop or rise,
resulting in an underestimation of the risk or it could overestimate the risk and exceed the VaR
limit. However, the risk of this asset might not have changed this much. If the extreme value
turns out to be a single outlier, the VaR should not have exploded. When studying the price
data of several assets, this event of a single outlier occurs often. We will study the behaviour
of different standard deviation estimators and see how they respond to these kind of outliers.
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In this report, we will also look at portfolios of two assets. When dealing with two assets,
their correlation will also influence the VaR. When anomalies occur, the correlation estimates
could increase, decrease or change sign. So it is less intuitive to understand what we want to
protect our correlation estimators from. We will look at these different anomalies and study
the behaviour of the different estimators and the effect on the VaR.
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Chapter 2

Estimators

To measure the VaR, we have to know the volatility of the portfolio. The volatility of the
portfolio depends on the standard deviation of the assets in this portfolio and on the correlation
between these assets. To determine the standard deviation and correlation, we use estimators.
In this chapter we will look into different types of estimators that can be used. We will look at
how the different estimators define and react to outliers and we will study the behaviour of the
estimators by simulation in the next chapters.

Note that the data we focus on in this report contains price changes and the sample mean
of the data sets are close to zero. Therefore, we assume that the mean of the data equals zero.
Therefore, we will not look into estimators for the mean. We will only look into different types
of estimators for the standard deviation and correlation.

2.1 Standard deviation estimators

For the standard deviation estimators, we will use the categorisation proposed by Huber[1]. In
chapter 3 of [Robust Statistics, 2009] Huber classified the M- and L-estimators. We will discuss
these types of estimators and give examples of standard deviation estimators for each type.

2.1.1 M-estimators

Before we dive into the general definition of M-estimators, we will look at a familiar example of
an M-estimator, the maximum likelihood estimator (MLE). In general the MLE is calculated
in the following way. [3]

Suppose that random variables X1, ..., Xn have a joint density function f(x1, x2, ..., xn|θ). Given
observed values Xi = xi where i = 1, ..., n, the likelihood of θ as a function of x1, .., xn is de-
fined as: lik(θ) = f(x1, x2, ..., xn|θ). The MLE θ̂ is the value of θ maximizing lik(θ). To find
the MLE, the natural logarithm of the likelihood is often used because it is easier to find the
maximum. For i.i.d. samples, the likelihood is lik(θ) =

∏n
i=1 f(xi|θ) and the log likelihood is

L(θ) =
∑n

i=1 log[f(xi|θ)]

For example, given that X1, X2, ..., Xn are i.i.d. N(0, σ2), their joint density function is:

f(x1, x2, ..., xn|σ2) =
∏n
i=1

1

σ
√

2π
e−

1
2
(
xi
σ
)2

And the log likelihood is:

L(σ) =
∑n

i=1 log[
1

σ
√

2π
e−

1
2
(
xi
σ
)2 ] = −n log(σ)− n

2 log(2π)− 1
2σ2

∑n
i=1 x

2
i
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To find the MLE, maximise the log likelihood and solve
δL(σ)

δσ
= 0. We find

−n
σ

+

∑
(xi)

2

σ3
= 0⇒ σ̂ =

√∑
(xi)

2

n

The problem with the MLE is that it is not resistant to outliers. A single outlier can affect the
estimator greatly.

The M-estimators is a group of maximum likelihood type estimators, giving alternatives to the

MLE to find a more robust estimator. To find the MLE we have to solve
∑ δ

δθ
logf(xi; θ) = 0,

and the general definition of M-estimators is: [1]

∑ δ

δθ
ρ(xi; θ) = 0 (2.1)

Where the function ρ is an arbitrary function.

An example of such a more complex m-estimator, the Huber m-estimator, will be discussed
in the next section.

Huber m-estimator

The Huber m-estimator is also a maximum likelihood type estimate but it is constructed to be
more resistant to outliers. The Huber m-estimator filters out the outliers before estimating the
standard deviation. We will describe this method in this section.[1]
Before estimating the standard deviation for data set X = (x1, ..., xn), the Huber m-estimator
filters the data set in the following way. Choose a fixed k, initiate with µ0 = median(X) and
σ0 = MAD(X). Define Y = (y1, ..., yn) where yi, i = 1, ..., n is defined as:

yi =


xi, for µ0 − kσ0 ≤ xi ≤ µ0 + kσ0 (2.2a)

µ0 − kσ0, for xi ≤ µ0 − kσ0 (2.2b)

µ0 + kσ0, for xi ≥ µ0 + kσ0 (2.2c)

So by choosing k, you determine when you consider a value to be an outlier. When the set
contains an outlier, it will not be included in the calculation. Instead, it will be replaced by
either µ− kσ or µ+ kσ, depending on whether it is an outlier below or above the mean. This
is what makes the estimator more robust than the MLE.

However, when k is very small, a lot of values could be replaced which will give a biased
estimate for the standard deviation. Huber compensated for this effect in the calculation of
the Huber m-estimator with the constant β(k). The relation between β(k) and k is displayed
in figure 2.1. The lower you choose k, the lower β will be, which will increase the σhuber to
compensate for the replacement of outliers. The default value for k is 1.5, which we will also
use in this project.
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Figure 2.1: β

After replacing the outliers, the estimation of the standard deviation is computed as:

σ̂huber =

√∑n
i=1(yi −median(Y ))2

n− 1

1

β(k)

The Huber estimator is more resistant to outliers so a single outlier will not affect the estimation
of the Huber estimate as much as the sample standard deviation.

2.1.2 L-estimators

L-estimates are linear combinations of order statistics. Since any linear combination of order
statistics is an L-estimator, they can be as simple as a single point or the median. This is one
of the main benefits of these types of estimators. They are often simple, easy to calculate and
to interpret and are often resistant to outliers. This makes it a very useful estimator in robust
statistics.

MAD estimator

The L-estimator that we will focus on for the standard deviation is a constant times the median
absolute deviation (MAD). The definition of the MAD is: [1]

MAD = median(|xi −median(X)|)

And the estimator for the standard deviation is given by:

σ̂MAD = K ·MAD

The relation between MAD and the estimator for the standard deviation is determined by K,
which is a scale factor determined by the distribution to make the estimator consistent. For the

normal distribution, K =
1

Φ−1(34)
≈ 1.4826.

This can be derived from the definition of the MAD, because for n→∞, P(|x−µ| ≤MAD) = 1
2

for the estimator the be consistent. Which means:

1

2
= P(|x− µ

σ
| ≤ |MAD

σ
|)
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⇒ 1

2
= Φ(

MAD

σ
)− Φ(

−MAD

σ
)

⇒ 1

2
= Φ(

MAD

σ
)− (1− Φ(

MAD

σ
))

⇒MAD = Φ−1(
3

4
) · σ =

⇒ K =
1

Φ−1(34)
≈ 1.4826

Interquartile range

Another order statistic that can be used to estimate the standard deviation is the interquartile
range (IQR). Quartiles divide a rank-ordered data set in four equal parts. The values that
divide the set into these four parts are called the first, second and third quartiles, Q1, Q2

and Q3 respectively, where Q2 is the median. The interquartile range (IQR) is defined as
IQR = Q3 − Q1 = CDF−1(34) − CDF−1(14). To estimate the standard deviation, the IQR
estimator also needs a scale factor, K, that is determined by the distribution. The IQR estimator
for the standard deviation is σ̂IQR = K · IQR.
For the normal distribution, the scale factor K can be calculated as:

σ̂IQR =
1

1.3490
· IQR

Because the E(IQR) = Φ−1(34)− Φ−1(14) = 2 · Φ−1(34) = 1.3490.

2.2 Correlation estimators

If we have a portfolio consisting of two or more assets the correlation between the different
assets influences the value at risk, so we also need to take the correlation between these assets
into account. In this section we will discuss different estimators for the correlation. We will
not use the same categorisation as we did in the last section. As mentioned in section 3.1 of
”Robust estimation”[1], M-estimators are most useful for multiparameter problems. We will
discuss the Pearson and Kendall τ correlation estimators, as well as the estimators from the
Robust r package[4] that we will use in the simulations to come.

2.2.1 Pearson correlation

The most commonly used estimator for correlation is the Pearson correlation measure. Given the
data x1, ..., xn and y1, ..., yn, the Pearson correlation coefficient for the pairs (xi, yi), i = 1, ..., n
is:[3]

ρ̂x,y =

∑
i(xi − x)(yi − y)√∑

i(xi − x)2
∑

(yi − y)2

It measures the strength of linear relationship, which can be an undesirable characteristic when
dealing with assets since their relationship can also be non-linear. Another problem that might
arise when we calculate the correlation with this estimator is that it does not filter outliers
which makes it a non robust estimator. One extreme outlier can make the Pearson correlation
measure go anywhere between -1 and 1.

14



2.2.2 Kendall τ correlation

The Kendall τ correlation is a rank estimator, it measures the rank correlation. For (x1, y1), ..., (xn, yn)
a set of observations of random variables X and Y. We call (xi, yi) and (xj , yj) concordant if
xi > xj and yi > yj or both xi < xj and yi < yj . In the cases xi > xj and yi < yj or xi < xj and
yi > yj the pair is discordant. If xi = xj or yi = yj they are neither concordant or discordant.
Then, the Kendall τ correlation is defined as: [2]

τ =
nr of concordant pairs - nr of discordant pairs

1
2n(n− 1)

We will look at a simplified example to see how this estimator works and reacts to an outlier.
Given the length and weight of 5 people: (167, 62), (170, 58), (172, 70), (178, 68), (182, 75), the
number of concordant pairs is 8 and the number of discordant pairs is 2, so τ = 8−2

1
2
·5·4 = 3

5 .

This indicates that there is a strong correlation between the length and weight of a person. If
we add the outlier (150, 70), the number of concordant pairs is 9 and the number of discordant
pairs is 5, resulting in τ = 9−5

1
2
·5·4 = 2

5 . So the outlier does influence the correlation coefficient,

but not the correlation does not change sign in this example. In simulation we will see how this
estimator reacts to different types of outliers.

2.2.3 Robust R package

The Robust r package provides many functions related to robust procedures. We wil use the
covRob function from this package. As mentioned in Package ’robust’[4]: ”The covRob function
selects a robust covariance estimator that is likely to provide a good estimate in a reasonable
amount of time”. In its default setting, the covRob function selects one of the following esti-
mators based on the problem size:
The Donoho-Stahel estimator(SD), (Stahel, 1981 and Donoho, 1982) when there are less than
5,000 oberservations or the Minimum Covariance Determinant (MCD) estimator of Rousseeuw
(1985) when there are less than 50,000 but more than 5,000 observations. We will briefly de-
scribe each of the estimators that we will use in this report based on [Robust and efficient
estimation of multivariate scatter and location][6] and the covRob package. [4]

1. The Donoho-Stahel estimator
The Donoho-Stahel estimator uses a weight function that assigns weights to data points,
based on whether they are an outlier. Given X = (x1, .., xn), this estimator defines the
outlyingness for xi, i = 1, .., n and a ∈ R as

r(xi) = maxa
|axi −median(aX)

MAD(aX)
.

The Donoho-Stahel estimator will give weights to each data point, based on their outlying-
ness. The higher the outlyingness, the lower the weight given to that data point. This way,
the outliers are filtered. After the weights are assigned to each data, the Donoho-Stahel
estimator determines the sample correlation of the weighted data.

2. The Minimum Covariance Determinant estimator
Instead of looking at the individual elements of the correlation matrix, the MCD estimator
looks for the covariance matrix with the smallest determinant by calculating the covariance
matrix for all subsets of data points.
It takes a lot of time to check all possible subsets to find the MCD, so this function uses
the Fast MCD algorithm of Rousseeuw and Van Driessen. This algorithm only looks at
subsets with m observations out of n, where n

2 < m ≤ n.

15



The different estimators that the covRob can use, identify different data points as outliers which
will result in different outcomes. In the next chapters we will look into the estimators discussed
in this chapter and study their behaviour in simulation.
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Chapter 3

Portfolio of 1 asset

In this chapter we will see how the different standard deviation estimators perform when they
are given data from different distributions. We will first look at general location-scale families,
and later look at two members of this family: the normal and logistic distribution. We will then
look at the behaviour of the different standard deviation estimators if we assume that the asset
follows a model from the location-scale family. At the end of this chapter we will also look at
real price data to simulate VaR calculations for portfolios of a single asset.

We will simulate the estimation of the standard deviation as we would with real data. To
do this, we have to introduce two concepts: time-series and the lookback window.
The data that we will use are all time-series. ”In time-series data, a single individual is tracked
over many time periods or points of time” [5]
The lookback window is the number of previous data points the estimator is allowed to use
to make its estimation. The more observations they can use, the less a new observation can
influence the estimation. On the other hand, too many observations can make that the history
of the data influences the estimator so much, it does not give an accurate estimation. We will
not constrain the lookback window when we look at data from the location-scale family. When
running the simulations with real data sets, we will also look at different lookback windows to
see how the lookback window influences the estimations.

3.1 Location-scale family

A location-scale family is a family of distributions that is determined by the location parameter
a and scale parameter b. Assume Y is a random variable with density ψ and cumulative
distribution function Ψ. Let X = a+ bY . The density of the location-scale family distribution
is of the form:

f(x|a, b) =
1

b
ψ(
x− a
b

),

where ψ is a probability density function, a is the location parameter and b the scale parameter.
The CDF of the family is of the form:

F (x|a, b) = Ψ(
x− a
b

)

From this we can determine the quantile function of X:

Q(α) = F−1(α) = a+ bΨ−1(α)

Because of our assumption that the mean equals zero, E(Y ) = 0, and we want that also
E(X) = 0. That means that E(X) = a+ bE(Y ), so we set a = 0. Both of the examples that we

17



will discuss, logistic and normal distribution, are symmetric if µ = 0, so for both distributions,
the VaR of a portfolio of one asset from the location-scale family is determined by:

V aRα = b ·Ψ−1(α) (3.1)

3.1.1 Normal distribution

If we define ψ(x) = 1√
2π
e−x

2/2, which is the density of the standard normal distribution φ, then

f(x|µ, σ) =
1

σ
ψ(
x

σ
) =

1√
2σ2π

· e
−x2

2σ2

is the probability density function for the normal distribution with mean µ and standard devi-
ation σ. From 3.1 follows:

V aRα = σ ·Ψ−1(α) = σ · Φ−1(α).

To simulate the VaR estimations, we have to know σ. We will use the estimators discussed in
the previous chapter, we will evaluate and discuss the following estimators for σ.

1. σ̂sd =

√∑
(xi − µ̂)2

n

2. σ̂huber, as described in Section 2.1.1

3. σ̂MAD =
1

Φ−1(34)
·MAD = 1.4826 ·MAD

4. σ̂IQR =
1

2Φ−1(34)
· IQR = 0.7412 · IQR

We ran 1,000 simulations, each with 100 observations of the normal distribution with mean
0 and standard deviation 1 to determine the distribution of the estimators. The sampling
distribution of the four standard deviation estimators can be seen in figure 3.1.

Figure 3.1: Sampling distributions of the standard deviation estimators for normally distributed
data
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One of the first things that stands out from figure 3.1 is that there is a clear difference
between all the estimators. They all have a peak around the same value but have a really dif-
ferent distribution in the tails. The L-estimators, IQR and MAD, have fatter tails and a lower
peak then the M-estimators. This means that their estimations vary more, and that for this
specific simulation, the Huber and sample standard deviation would be our preferred estimators.

We know from the previous chapter that the IQR, MAD and Huber estimators are more robust
than the sample standard deviation. The more robust estimators will have fewer outliers than
the sample standard deviation because they do not explode from a single outlier. This means
that the tails of the distributions of the more robust estimators will be thinner. This is not
what we see in figure 3.1, but that is because these simulations did not have outliers. When we
simulate this with real price data, we will see a bigger difference between the different estimators.

To see how the estimators react to anomalies, we have added an outlier to a time-series drawn
from the normal distribution. We have drawn a 1,000 times 100 observations from the standard
normal distribution and replaced the 60th data point with 8 times the value of the sample
standard deviation. Figure 3.2 shows an example of one of the simulations in which we can
see the clear outlier at t = 60. Figure 3.3 shows the standard deviation estimations from the
different estimators and figure 3.4 shows the sampling distribution of the estimators for the
1,000 simulations. We did not constrain the lookback window yet, so at time t, the estimators
give an estimation using the data available up until time t.

Figure 3.2: Example of a polluted nor-
mally distributed data used in the sim-
ulation

Figure 3.3: Example of the standard
deviation estimation given a polluted
normally distributed data set
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Figure 3.4: Sampling distributions of the standard deviation estimators for normally distributed
data with one outlier

The results in figure 3.3 clearly show us how the robustness of the estimators influence their
estimation. As we expected from the results from figure 3.1, the IQR and MAD estimator give
a more fluctuated estimation than the sample standard deviation and Huber estimator until the
outlier. After the outlier, the MAD, IQR and Huber estimations are closer to each other. The
R-estimators become more accurate as they receive more data.
In figure 3.4 we can see that the sample standard deviation clearly explodes from one outlier
and the estimation remains high after the outlier. On the other hand, the outlier filters from
the other estimators do their work, as we see only a small reaction to the outlier and a better
estimation of the standard deviation.

3.1.2 Logistic distribution

Another example from the location-scale family is the logistic distribution. Defining ψ(x) =
ex

(1 + ex)2
, then

f(x|σ) =
1

σ
ψ(
x

σ
) =

e
x
σ

σ(1 + e
x
σ )2

is the probability density function for the logistic distribution with location µ = 0 and scale σ.
This means that if the distribution of the single asset is logistic, the value at risk is defined as:

V aRα = P · (σΨ−1(α)) = P · (σ ln(
α

1− α
)).

We also ran a 1,000 simulations for the logistic distribution to determine the sampling dis-
tribution of the estimators. The simulations are with 100 observations from the logistic dis-
tribution with location, l=0, 0 and scale, s = 1. This means that the standard deviation is

σ =
πs√

3
=

π1√
3
≈ 1.81. In figure 3.5, the sampling distributions of the different estimators are

shown.
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Figure 3.5: Sampling distributions of the standard deviation estimators for logistically dis-
tributed data

We can see that when the data follows the logistic distribution, the results are very similar
to the results with the normal distribution. To see how they react to anomalies, we will simulate
the behaviour for a polluted data set drawn from the logistic distribution. Each of the 1,000
simulations are with 100 observations from the logistic distribution with location 0 and scale 1,
and data point 60 is replaced by 8 times the value of the sample standard deviation.

Figure 3.6: Example of the standard
deviation estimation given a polluted
normally distributed data set

Figure 3.7: Sampling distributions of
the standard deviation estimators for
logistically distributed data with one
outlier

The results from figures 3.6 and 3.7 are in line with our expectations from the previous
figures. It shows that the Huber, IQR, and MAD estimators are more robust, they do not over-
react to the outlier, while the sample standard deviation again explodes. The other similarity
with the results for the normally distributed data set is that the IQR and MAD estimators have
a wider distribution then the Huber estimator. Which means that the IQR and MAD will show
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more fluctuations in their estimation.

It is clear that the estimations of the IQR and MAD estimators are very close to each other. In
the simulations to come, we will only show the MAD estimator. The reason for this is that the
graphs of these two estimators are so close, it becomes hard to distinguish between the lines.
The reason we choose the MAD estimator is that this estimator is also commonly used in the
financial sector. In appendix A, the results with all four estimators are shown.

3.2 Portfolio of 1 asset

We will discuss three data sets and analyse the performance of the estimators. We will also
briefly describe the historical moments that caused the extreme fluctuation of the price data
itself. This will give insight in to why these extreme price changes occur.

The assumption that the mean of the data set equals zero, makes that the VaR is a con-
stant times the standard deviation. This means it suffices to look exclusively at the standard
deviation estimators. As we discussed, we will also look at different lookback periods. We will
simulate the estimations with a ’no limit lookback’ period and with the commonly used ’100
day lookback’ period.

3.2.1 Crude Oil

The first data set we will analyse contains the daily return rates of crude oil from 30 March
1983 until 12 August 2016. In the period from 30 March 1983 to 12 August 2016 a few events
happened that caused extreme price changes. In figure 3.8 we will visualise the data and we
have circled the following events:

- 17 Januari 1991, marked by a yellow circle. Due to the successful raids of the American
air force on Iraq, the oil prices decreased extremely. The oil market feared a disruption of the
oil supply and damage to the oil installation in the middle east.[8]

- 6 June 2008, marked by a red circle. On this day, another war caused the oil market to
fear the disruption of the supply. [9]

- 29 September 2008, marked by an orange circle. This date will probably be an outlier in
many of our data sets since this was not an event related to oil, but it affected the global mar-
kets. The drop happened after the House of Representatives voted down a $700 billion bank
bailout plan.[10]

- 5 May 2011, marked by a blue circle. The oil prices dropped because of weak economic
data. The investors feared that the American economy was slowing down, which in hindsight
was correct. [11]

- 29 June 2012, marked by a green circle. A big increase in the oil price occurred on this
date. The reason is a deal by European leaders to help Euro zone banks. [12]

- 28 November 2014, marked by a purple circle. On this day, OPEC ministers decided not
to change the output ceiling for the oil market. The ceiling is at least 1 million above the
estimates of demand, resulting in excess supply. The decision did not force oil producers to
stop overproducing, so the prices dropped.[13]
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Figure 3.8: The crude oil price changes

The results from the estimators for ’no limit lookback’ and ’100 days lookback’ are displayed
in figure 3.9 below.

Figure 3.9: Standard deviation estimation for Crude Oil data set. Left: unconstrained lookback
window. Right: 100 day lookback window
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In figure 3.9 it is visible that the extreme price changes have an impact on the estimators,
especially on the sample standard deviation. In both figures, we can see an increase of the
estimations when the outliers occur. The price data with these extreme outliers clearly influence
the behaviour of the estimators. If we only look at the ’100 day lookback’ period, it is harder
to see the difference between the estimators, but if you look at the extreme values, there is a
difference between the estimators.
What also stands out is the difference between the estimations given the two different lookback
periods. When the estimators can use all data available, the estimation reacts less extreme
to the outliers but the disadvantage to this can also mean that they are underestimating the
standard deviation.

3.2.2 S&P Index

The Standard & Poor’s 500 is an American stock market index that is based on the market
capitalisation of 500 large companies that have common stock listed on the NYSE or NASDAQ.
[14] Our data set contains daily returns from 3 January 1950 until 12 August 2016. In figure
3.10 we have accentuated the following three events:

- 19 October 1987, marked by a blue circle. This day is called Black Monday, markets all
around the world crashed. There is not a specific cause for this crash. Economists still debate
what the main influence has been, but possible causes are program trading, overvaluation and
market psychology. [15]

- 29 September 2008, marked by a purple circle. This date also appeared in the analysis of
crude oil. The House of Representatives voted down a $700 billion bank bailout plan.[10]

- 13 October 2008, marked by a green circle. This date marks the biggest increase of the
S&P in this data set. The cause is the opposite of what happened on 29 September that year.
The European governments as well as the American government announced plans to help the
banks with loans.[16]
The results from the simulation are displayed in figure 3.11 below.

Figure 3.10: S&P Index price changes
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Figure 3.11: Standard deviation estimation for S&P data set. Left: unconstrained
lookback window. Right: 100 day lookback window

The difference between the ’no limit lookback’ and the ’100 day lookback’ is a lot bigger
than for the previous data set. The reason the difference is so big is the change in the price
changes in the second half of the data set. This change in behaviour makes that all the esti-
mators with ’no limit lookback’ greatly underestimate the standard deviation. The ’100 day
lookback’ clearly has our preference as it is not affected by the historical data.

We can see that when we give the estimators the ’100 day lookback’ window, their estimations
are very similar for the majority of the time. To show that around an outlier, the estimators
give a really different estimation, we will zoom in on the graphs and look at the time frame in
which the first extreme outlier occurs.

25



Figure 3.12: Standard deviation estimation for S&P data set, ’100 day lookback’ window

In figure 3.12 we can see that the outlier caused the sample standard deviation to explode
and it was significantly higher than the MAD and Huber estimator for more than 100 days. We
can also see that for most of the time, the MAD estimation is lower then the Huber estimation.

A data set that has such extreme outliers that it will show the difference between the esti-
mators even more clearly is the price data from the Swiss Franc.

3.2.3 Swiss Franc

The last data set that we will look at contains the daily returns of the Swiss Franc from 2 January
2002 until 12 August 2016. The four events that we have marked in figure 3.13 are the following:

- 12 March 2009, marked by a blue circle. On this date, the Swiss National Bank eased
monetary policy. Its actions included a policy-rate cut, the purchase of Swiss private-sector
bonds, and foreign-exchange interventions. Immediately after announcing the policy changes,
the bank aggressively bought Euros in the foreign-exchange market. The Swiss Franc depreci-
ated sharply. [21]

- 9 August 2011, marked by a purple circle. While most other markets decreased in August
2011, the Swiss Franc increased. The reason is that this currency has the reputation of being a
safe haven. The announcement of the Federal Reserve of the US to freeze US interest rates for
the next 2 years led to an increased interest from foreign investors to buy Swiss Francs, which
caused this extreme increase. [22]

- 6 September 2011, marked by a green circle. In an attempt to protect the Swiss economy
from the European debt crises, the Swiss National Bank devaluated the Franc, pledging to buy
unlimited quantities of foreign currencies.[23]

- 15 January 2015, marked by an orange circle. On this day, the Swiss National Bank an-
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nounced that it would no longer hold the Swiss Franc at a fixed exchange rate with the Euro.
This announcement was unexpected, causing a big collapse of the Swiss Franc as well as the
Swiss stock market.[24]

Figure 3.13: Swiss Franc price changes

Figure 3.14: Standard deviation estimation for Swiss Franc data set. Left: unconstrained
lookback window. Right: 100 day lookback window

The similarity between the results in figure 3.14 and the previous simulations is that the
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’no limit lookback’ estimations underestimate the standard deviation. The difference, on the
other side, is that the outliers are so extreme that the difference between the reaction of the
sample standard deviation and the other estimators is much bigger and clearly visible. This is
an example of a situation in which the investor - if he would use the sample standard deviation
estimator - would have to sell its shares due to the VaR limits. We can see that Value at Risk
did not actually explode because the outlier was a single outlier.
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Chapter 4

Portfolio of 2 assets

In this chapter we will consider the two dimensional problem of a portfolio of two assets. As
said before, the Value at Risk in this situation is not only determined by the standard deviation
of the assets but is also influenced by the correlation between the assets. Before we look at how
the different estimators react to data drawn from the location-scale family, we will take a closer
look at the variance of a portfolio of two assets. We will also look at a completely different way
to model assets: the Factor model. Last, we will simulate the VaR estimation of a portfolio of
assets with real price data.

4.1 Variance 2 assets

Assume we have two assets, X and Y , and we define Z = [X,Y ]T .

We define the covariance matrix of Z as: ΣZ =

[
ΣX,X ΣX,Y

ΣY,X ΣY,Y

]
, where ΣX,X = σ2X , ΣY,Y = σ2Y

and ΣX,Y = ΣY,X = cov(X,Y ) = ρX,Y σXσY .

We also introduce w = [wX , wY ]T , where wX is the weight of asset X and wY the weight
of asset Y . Note that wX + wY = 1.
In the situation Zw = wTZ, we can compute the variance of Zw in the following way:

ΣZw = wTΣZw.

Proof: wTΣZw = [wX , wY ]

[
ΣX,X ΣX,Y

ΣY,X ΣY,Y

] [
wX
wY

]
= [wXΣX,X + wY ΣY,X , wXΣX,Y + wY ΣY,Y ]

[
wX
wY

]
= w2

XΣX,X + w2
Y ΣY,Y + 2wXwY ΣX,Y

= V ar(wXX + wY Y )

= ΣZw

This shows that the weights of the assets influence the variance and thus the VaR of the portfolio.
We will show that we can find weights such that it minimises the variance. Since wX +wY = 1
we can write ΣZw = V ar(wXX + (1− wX)Y ).

minw V ar(wX + (1− w)Y )

V ar(wX + (1− w)Y ) = w2ΣX,X + (1− w)2ΣY,Y + 2w(1− w)ΣX,Y
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= w2(ΣX,X − 2ΣX,Y + ΣY,Y ) + 2w(ΣX,Y − ΣY,Y ) + ΣY,Y

Minimising this quadratic function in terms of w gives us
f ′(w) = 2 ∗ w ∗ (ΣX,X − 2ΣX,Y + ΣY,Y ) + 2 ∗ (ΣX,Y − ΣY,Y )

wmin =
−(ΣX,Y − ΣY,Y )

ΣX,X − 2ΣX,Y + ΣY,Y

Note that we do not consider the possibility of going short, so the relationship between the
weights of the assets and the variance can be seen in figure 4.1. For this figure we assumed that
ΣX,X = 3,ΣY,Y = 2.

Figure 4.1: Relationship between the weights and the variance

It is clear that it is more complicated to estimate the value at risk in this situation. We need
estimators σ̂X , σ̂Y for the scale estimate, an estimator ρ̂X,Y to estimate the correlation between
X and Y and the composition of our portfolio has an influence on the variance.

4.2 Location-scale families

If our two assets follow any distribution from the location-scale family, we can determine the
VaR very similar to the way we did for 1 asset.
We assume that both assets are from the same location-scale family. This means that given
fixed random variables W and V , both with density function ψ(x), we can define a location-scale
family based on ψ(x), location parameter a = 0 and scale parameter b. We define the random
variables of the two assets as:

X = bXV

Y = bYW

Z = [X,Y ]T , w = [wX , wY ]T

We know that the quantile function of the assets are of the form: Q(α) = F−1(α) = bΨ−1(α).
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So we can determine the VaR of the portfolio as:

V aRα =
√

ΣZw ·Ψ−1(α), with

ΣZw = w2
Xb

2
Xσ

2
V + w2

Y b
2
Y σ

2
W + 2 wXwY ρX,Y (bXσV )(bY σW ).

4.2.1 Normal distribution

We first assume that the two assets in our portfolio are independent normal distributed.
X ∼ N(0, σ2X), Y ∼ N(0, σ2Y ), Z = [X,Y ]T and the weights of assets X and Y are respectively
wX and wY . Then the portfolio Zw ∼ N(0, wTΣZw).
The variance of the weighted combination of the assets is calculated as:

ΣZw = wTΣZw = w2
Xσ

2
X + w2

Y σ
2
Y + 2wXwY ρX,Y σXσY .

We assume wX = wY = 1
2 .

If we want to look at the different correlation estimators in VaR estimations, we have to look at
them in combination with the standard deviation estimators. We have three different standard
deviation estimators: the sample standard deviation, the Huber estimator and the MAD esti-
mator. And we will look at three different correlation estimators: the Pearson correlation, the
Kendall correlation and the three options within the covRob function. In figure B.1 we can see
the ΣZw estimations for the 9 different combinations. The results are based on 1,000 simula-
tions of 100 observations from the multivariate normal distribution with mean 0 and covariance

matrix Σ =

[
4 2

2 3

]
. This means that the correlation is ρ(X,Y ) =

ΣX,Y

σXσY
=

2√
3
√

4
≈ 0.58.
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Figure 4.2: Results simulation multivariate normally distributed data.
Top left: Sampling distributions for the correlation estimators. Top right: Sampling distribu-
tions for ΣZw with sample standard deviation and the different correlation estimators. Bottom
left: Sampling distributions for ΣZw with Huber estimator and the different correlation esti-
mators. Bottom right: Sampling distributions for ΣZw with MAD estimator and the different
correlation estimators.

For completeness we show the sampling distribution for the two options of the covRob func-
tion in the top left graph, but we will let the covRob choose the best suited option for the ΣZw

calculations. In this figure we see that the distribution of the different correlation estimators
are very different. We see that the Pearson and covRob estimators, on average, give a higher
correlation than the Kendall estimator. When looking at the ΣZw simulations, we see that the
shape is influenced by the standard deviation. The correlation estimator can shift the distribu-
tion to the left or right.

We ran a 1,000 simulations in which we constructed polluted data sets to see how the esti-
mators respond to an outlier. Each simulation is with 100 observations from the multivariate

normal distribution with mean 0 and covariance matrix Σ =

[
4 2

2 3

]
The outlier added at t = 60

is 8 times the sample standard deviation. An example of one data set from the simulation is
displayed in figure 4.3, the outlier is marked with a solid red circle. The results of the simulation
are displayed in figure B.2.
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Figure 4.3: Example of a polluted nor-
mally distributed data used in the sim-
ulation

Figure 4.4: Results simulation multivariate normally distributed data with an outlier.
Top left: Sampling distributions for the correlation estimators. Top right: Sampling distribu-
tions for ΣZw with sample standard deviation and the different correlation estimators. Bottom
left: Sampling distributions for ΣZw with Huber estimator and the different correlation esti-
mators. Bottom right: Sampling distributions for ΣZw with MAD estimator and the different
correlation estimators.

If we look at the top left graph of figure B.2, we see that the distribution of the Pearson
estimator changed. It overestimates the correlation and we can now clearly see a difference
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between the Pearson and covRob correlation estimators in the sampling distributions for ΣZw .

The results for the logistic distribution are very similar and can be found in the appendix.
For data sets from the location-scale family, the covRob function gives the most robust estima-
tion for the correlation. The Kendall estimator is also resistant to outliers but it gives a lower
correlation then the real value. The Pearson correlation works really well for samples without
outliers but reacts heavily to a single outlier.

4.3 Factor model

Before we look at simulation with real data for this chapter, we will address a completely dif-
ferent way to model the assets in a portfolio. The Factor model is a more realistic but complex
way to model the behaviour of an asset.
We assume that the price changes of the asset are a reaction to certain factors. This section is
based on chapter 3 of [Quantitative Risk Management, 2005] [2]

Given factors Fj , j = 1, ..,M , the factor model is defined as:

Xk,t =

M∑
j=1

λk,jFj,t + εk,t, k = 1, .., N,

Fj,t, εk,t ∼ N(0, 1), j = 1, ...,M, k = 1, ..., N

We assume that M = N = 2, which means the two assets depend on two factors and can be
modelled as:

Xi,t = λi,1F1,t + λi,2F2,t + εi,t, i = 1, 2

With the property: V ar(Xi,t) = 1. From this we can conclude what the Var(εi,t) is:

V ar(Xi,t) = V ar([λi,1, λi,2]

[
F1,t

F2,t

]
+ εi,t)

= V ar(λi,1F1,t) + V ar(λi,2F2,t) + V ar(εi,t)

= λ2i,1V ar(F1,t) + λ2i,2V ar(F1,t) + V ar(εi,t)

= λ2i,1 + λ2i,2 + V ar(εi,t)

= 1

From the last two lines we can conclude:

Var(εi,t) = 1− (λ2i,1 + λ2i,2)

It is clear that the variance of a single asset is controlled by λi,1 and λi,2. When we look at the
whole model with two assets, the variance is still controlled by the dependencies of the assets
to these factors.
We define Z = [X1, X2], then the variance can be written as:

Var(Z) = ΛΛT + Var(ε) =

[
1 ρ
ρ 1

]
With Cov(X1, X2) = λ1,1λ2,1 + λ1,2λ2,2 = ρ.

To see how this model reacts to an outlier, we will run 1,000 simulations with and without
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the outlier and fit it to the Factor model. The simulation of the price data X1,t and X2,t are

each with 100 observations with covariance matrix Σ =

[
1 0.2

0.2 1

]
. The polluted data sets are

constructed as in all previous simulations.

Figure 4.5: Sampling distributions of sample covariance estimation of the Factor model

We added the Pearson covariance estimation for comparison. It is clear that the factor
model estimates a lower correlation then the Pearson correlation. A possible reason for this is
that the fitted Factor models do not fit the sample very well. The information about the errors,
ε1,t and ε2,t, for the simulations are displayed in table 4.1.

Minimum Average Maximum

ε1,t 0.1878 0.2043 0.2185

ε2,t 0.1494 0.1599 0.1703

Table 4.1: Standard error of the fitted factor model in simulation

From figures 4.5, we can see how this model reacts to an outlier. The overall covariance
estimation of the Factor model increases and there are more extreme values.

4.4 Portfolio of 2 assets

We will simulate the VaR estimation using the data from the S&P500 Energy and the S&P500
Health care. We will show the results in the several graphs because of all the different estimators
we can use. In chapter 3 we have seen that the ’no limit lookback’ period does not give accurate
VaR estimations so we will now only look at estimations with the ’100 day lookback’ period.
We assume that the weights are equal.
Figures 4.6 and 4.7 display the data sets S&P500 Energy and the S&P500 Health care in which
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we can see that they both have some outliers and both have a high variance. In figure 4.8 we
can see that the data sets look positively correlated.

Figure 4.6 Figure 4.7 Figure 4.8

Figure 4.9: ΣZw estimations for the S&P500 Energy and the S&P500 Health care data set

We can see that the outliers of the two data sets have an influence on the standard deviation
estimators. They all show an increase around the data points that are clearly outliers in the data
sets. The difference between the correlation estimators is hard to read from these graphs. The
reason we cannot clearly see the difference is that the correlation is very small compared to the
standard deviation. The correlation estimations are between -0,392 and 0,934, and the standard
deviation estimates vary from 1,031 to 29,150. This means that the small differences between
the correlation estimators hardly have an effect on the ΣZw . To show that the correlation
estimators hardly influence the ΣZw , the difference between the ΣZw estimations, given a fixed
standard devation estimator, are displayed in table 4.2.
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Pearson - Kendall Pearson - CovRob Kendall - CovRob

Maximum absolute difference 0.20410 0.33370 0.23900

Average absolute difference 0.07989 0.04195 0.07892

Table 4.2: Difference between the ΣZw estimations with a fixed standard deviation estimator

In situations like this, the standard deviation estimation is more important to the VaR
calculation.
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Chapter 5

Conclusion

We have shown in this report that different estimators react differently to extreme values. In
the financial world, these differences have implications to the calculation of the Value at Risk.
The VaR is the risk measure financial institutions like the European Central Bank use to set
limits on the risk of portfolios. We have shown that if outliers occur, the robust estimators can
filter these outliers, which results in a more accurate estimation. In practice, this means that if
robust estimators are used, the VaR limits are not unnecessarily exceeded.

The sample standard deviation, MAD, IQR and Huber estimator are the standard deviation
estimators that we have analysed. The sample standard deviation does not filter outliers, which
leads to extreme reactions when anomalies in the data occurs. The MAD, IQR and Huber
estimators, on the other hand are more resistant to outliers. They all filter outliers in a differ-
ent way, leading to different outcomes. The results for data drawn from location-scale families
supported this. We estimated the standard deviation for three real price data sets. These re-
sults also showed that the Huber or MAD estimator give a better estimation than the sample
standard deviation.

To estimate the correlation between two assets, we have analysed the Pearson, Kendall, MCD
and Donoho-Stahel estimators. The only correlation estimator without outlier filter is the Pear-
son estimator. In simulation with data drawn from a location-scale family we have seen that
this estimator heavily reacts to an outlier. The results from simulation with real price data
showed that for that example, the correlation estimator did not have a big influence on the VaR
estimation. Using different standard deviation estimators, on the other hand, did influence the
VaR estimation.
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Appendix A

Portfolio of 1 asset simulations

The results for the Crude Oil data set:

Figure A.1: Sampling distributions of the standard deviation estimators for Crude Oil data set.
Left: unconstrained lookback window. Right: 100 day lookback window

The results for the S&P data set:
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Figure A.2: Sampling distributions of the standard deviation estimators for S&P data set. Left:
unconstrained lookback window. Right: 100 day lookback window

The results for the Swiss Franc data set:

Figure A.3: Sampling distributions of the standard deviation estimators for Swiss Franc data
set. Left: unconstrained lookback window. Right: 100 day lookback window
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Appendix B

Portfolio 2 assets logistic
distribution

Figure B.1: Results simulation multivariate logistically distributed data.
Top left: Sampling distributions for the correlation estimators. Top right: Sampling distribu-
tions for ΣZw with sample standard deviation and the different correlation estimators. Bottom
left: Sampling distributions for ΣZw with Huber estimator and the different correlation esti-
mators. Bottom right: Sampling distributions for ΣZw with MAD estimator and the different
correlation estimators.

43



Figure B.2: Results simulation multivariate logistically distributed data with an outlier.
Top left: Sampling distributions for the correlation estimators. Top right: Sampling distribu-
tions for ΣZw with sample standard deviation and the different correlation estimators. Bottom
left: Sampling distributions for ΣZw with Huber estimator and the different correlation esti-
mators. Bottom right: Sampling distributions for ΣZw with MAD estimator and the different
correlation estimators.
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Appendix C

R Code

C.1 Simulations Portfolio 1 asset

C.1.1 Location scale family

##########################
# Normal D i s t r i b u t i o n #
##########################
sample sd = rep (NA, 1000)
sample sdM = rep (NA, 1000)
sample sdL = rep (NA, 1000)
sample sdIQR = rep (NA, 1000)
for ( i in 1 :1000){

sample sd [ i ] = sd (rnorm(100 ,mean=0,sd=1))
sample sdM [ i ] = hubers (rnorm ( 100 , 0 , 1 ) ) $s
sample sdL [ i ] = mad(rnorm ( 100 , 0 , 1 ) )
sample sdIQR [ i ] = (IQR(rnorm ( 100 , 0 , 1 ) ) /1 . 349 )

}
plot ( density (sample sdIQR ) , col=” red ” , ylim=c ( 0 , 5 . 5 ) , type = ” l ” , main=”” )
l ines ( density (sample sdM) , col=” blue ” )
l ines ( density (sample sdL ) , col=” green ” )
l ines ( density (sample sd ) , col=” black ” )
legend ( ” t o p l e f t ” , legend=c ( ” sd” , ”huber” , ”MAD” , ”IQR” ) , col=c ( ” black ” , ” blue ” , ” green ” , ” red ” ) , l t y =1, cex =0.9 ,box . l t y =0)

######################
# Poluted sample #
######################
sample nsd = rep (NA, 1000) ; sample nM = rep (NA, 1000)
sample nL = rep (NA, 1000) ; sample nIQR = rep (NA, 1000)
for ( i in 1 :1000){

se tn = rnorm(n=100 , 0 ,1)
se tn [ 6 0 ]<−c (8∗sd ( se tn ) )
sample nsd [ i ] = sd ( se tn )
sample nM[ i ] = hubers ( se tn )$s
sample nL [ i ] = mad( se tn )
sample nIQR [ i ] = (IQR( se tn )/1 . 349 )

}
plot ( density (sample nIQR) , col=” red ” , ylim=c ( 0 , 5 ) , xl im=c ( 0 . 6 , 1 . 6 ) , type = ” l ” , main=”” )
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l ines ( density (sample nM) , col=” blue ” )
l ines ( density (sample nL ) , col=” green ” )
l ines ( density (sample nsd ) , col=” black ” )
legend ( ” t o p l e f t ” , legend=c ( ” sd” , ”huber” , ”MAD” , ”IQR” ) , col=c ( ” black ” , ” blue ” , ” green ” , ” red ” ) , l t y =1, cex =0.9 ,box . l t y =0)

###########################
# L o g i s t i c d i s t r i b u t i o n #
###########################
sampleL sd = rep (NA, 1000)
sampleL sdM = rep (NA, 1000)
sampleL sdL = rep (NA, 1000)
sampleL sdIQR = rep (NA, 1000)
for ( i in 1 :1000){

sampleL sd [ i ] = sd ( r logis (100 , l o c a t i o n =0, scale =1))
sampleL sdM [ i ] = hubers ( r logis (100 , l o c a t i o n =0, scale =1))$s
sampleL sdL [ i ] = mad( r logis (100 , l o c a t i o n =0, scale =1))
sampleL sdIQR [ i ] = (IQR( r logis (100 , l o c a t i o n =0, scale =1))/1 . 349 )

}

######################
# Poluted sample #
######################
sample l s d = rep (NA, 1000) ; sample lM = rep (NA, 1000)
sample lL = rep (NA, 1000) ; sample lIQR = rep (NA, 1000)
for ( i in 1 :1000){

s e t l = r logis (n=100 , 0 ,1)
s e t l [ 6 0 ]<−c (8∗sd ( s e t l ) )
sample l s d [ i ] = sd ( s e t l )
sample lM [ i ] = hubers ( s e t l )$s
sample lL [ i ] = mad( s e t l )
sample lIQR [ i ] = (IQR( s e t l )/1 . 349 )

}

C.1.2 Price data

######################
# CRUDEOIL #
######################
c r u d e o i l = read . csv ( ”˜/Desktop/ c r u d e o i l . csv ” ,1 )
o i l =c ( 1 0 ) ; p=1
par ( mfrow=c ( 1 , 1 ) )
plot ( density ( o i l ) , main=”” , xlab=”” )
plot . ts ( o i l , type= ” l ” , ylab=”Crude Oi l p r i c e change” )
points (1960 , o i l [ 1 9 6 0 ] , col = ” ye l low ” , pch=19)
points (6315 , o i l [ 6 3 1 5 ] , col = ” orange ” , pch=19)
points (6394 , o i l [ 6 3 9 4 ] , col = ” red ” , pch=19)
points (7049 , o i l [ 7 0 4 9 ] , col = ” blue ” , pch=19)
points (7340 , o i l [ 7 3 4 0 ] , col = ” green ” , pch=19)
points (7949 , o i l [ 7 9 4 9 ] , col = ” purple ” , pch=19)
while ( length ( o i l )<8379){

o i l = rbind ( o i l , c ( c r u d e o i l $CODEC[ ( p+1)]− c r u d e o i l $CODEC[ p ] ) )
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p=p+1
}

#PLOT ESTIMATORS, FULL RANGE AND 100 DAYS
s l = c ( 0 ) ; slM = c ( 0 ) ; s lL = c ( 0 ) ; s lR = c ( 0 ) ; s e t e x t r a = numeric ( 0 ) ;
p=101
while (p<8379){

s e t e x t r a <− o i l [ ( p−100):p ] ;
s l = rbind ( s l , c ( sd ( s e t e x t r a ) ) ) ;
slM = rbind ( slM , c ( hubers ( s e t ex t ra , k=1.5)$s ) ) ;
s lL = rbind ( s lL , c (mad( s e t e x t r a ) ) ) ;
s lR = rbind ( slR , c (IQR( s e t e x t r a )/ 1 . 3 4 9 ) )
p=p+1;

}
#ALL DATA
s l 2 = numeric ( 0 ) ; slM2 = numeric ( 0 ) ; s lL2 = numeric ( 0 ) ; s lR2 = numeric ( 0 ) ; s e t e x t r a 2 = numeric ( 0 ) ;
p=2
while (p<8379){

s e t e x t r a 2 <− o i l [ 1 : p ] ;
s l 2 = rbind ( s l2 , c ( sd ( s e t e x t r a 2 ) ) ) ;
slM2 = rbind ( slM2 , c ( hubers ( s e t ext ra2 , k=1.5)$s ) ) ;
s lL2 = rbind ( s lL2 , c (mad( s e t e x t r a 2 ) ) ) ;
s lR2 = rbind ( slR2 , c (IQR( s e t e x t r a 2 )/ 1 . 3 4 9 ) )
p=p+1;

}
par ( mfrow=c ( 1 , 2 ) )
plot . ts ( s l2 , type = ” l ” , yl im=c (0 , 3 . 4 ) , x lab=”Crude o i l ” , y lab=”Standard dev i a t i on ” )
l ines ( slM2 , col=” blue ” )
l ines ( s lL2 , col=” green ” )
legend (4500 , 3 . 5 , legend=c ( ” sd” , ”Huber” , ”MAD” ) , col=c ( ” black ” , ” blue ” , ” green ” ) , l t y =1, cex =0.5 ,box . l t y =0)

plot . ts ( slM , col=” black ” , yl im=c (0 , 3 . 4 ) , x lab=”Crude o i l , 100 day lookback ” , ylab=” Standard dev i a t i on ” )
l ines ( s lL , col=” blue ” )
l ines ( s l , col=” green ” )
legend (0 , 3 . 5 , legend=c ( ” sd” , ”Huber” , ”MAD” ) , col=c ( ” black ” , ” blue ” , ” green ” ) , l t y =1, cex =0.5 ,box . l t y =0)

######################
# SPINDEX #
######################
spindex1 = read . csv ( ”˜/Desktop/ spindex . csv ” ,1 )
p=1; spindex=numeric ( 0 ) ;
while ( length ( spindex )<16762){

spindex = rbind ( spindex , c ( spindex1$PRIJS [ ( p+1)]− spindex1$PRIJS [ p ] ) )
p=p+1

}
par ( mfrow=c ( 1 , 1 ) )
plot ( density ( spindex ) , main=”” , xlab=”” )
plot . ts ( spindex , ylab=”S&P Index p r i c e change” )
points (9498 , spindex [ 9 4 9 8 ] , col = ” blue ” , pch=19)
points (14790 , spindex [ 1 4 7 9 0 ] , col = ” green ” , pch=19)
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points (14780 , spindex [ 1 4 7 8 0 ] , col = ” purple ” , pch=19)

#PLOT ESTIMATORS, FULL RANGE AND 100 DAYS
sp = numeric ( 0 ) ; spM = numeric ( 0 ) ; spL = numeric ( 0 ) ; spR = numeric ( 0 ) ; s e t e x t r a = numeric ( 0 ) ;
p=2
while ( length ( s e t e x t r a )<16761){

s e t e x t r a <− spindex [ 1 : p ] ;
sp = rbind ( sp , c ( sd ( s e t e x t r a ) ) ) ;
spM = rbind (spM, c ( hubers ( s e t ex t ra , k=1.5)$s ) ) ;
spL = rbind ( spL , c (mad( s e t e x t r a ) ) ) ;
spR = rbind ( spR , c (IQR( s e t e x t r a )/ 1 . 3 4 9 ) )
p=p+1;

}
sp1 = numeric ( 0 ) ; spM1 = numeric ( 0 ) ; spL1 = numeric ( 0 ) ; spR1 = numeric ( 0 ) ; s e t e x t r a 1 = numeric ( 0 ) ;
p=101
while (p<16761){

s e t e x t r a 1 <− spindex [ ( p−100):p ] ;
sp1 = rbind ( sp1 , c ( sd ( s e t e x t r a 1 ) ) ) ;
spM1 = rbind (spM1 , c ( hubers ( s e t ext ra1 , k=1.5)$s ) ) ;
spL1 = rbind ( spL1 , c (mad( s e t e x t r a 1 ) ) ) ;
spR1 = rbind ( spR1 , c (IQR( s e t e x t r a 1 )/ 1 . 3 4 9 ) )
p=p+1;

}

##################################
# OUTLIER BEHAVIOUR #
##################################

par ( mfrow=c ( 1 , 1 ) )
plot ( sp1 [ 9 0 0 0 : 1 0 0 0 0 ] , xaxt=”n” , type=” l ” , col=” black ” , xlab=”S&P Index , 100 day lookback ” , ylab=” Standard dev i a t i on ” )
axis (1 , at = seq (0 ,1000 , by =500) , labels=seq (9000 , 10000 , by = 500))
l ines (spM1 [ 9 0 0 0 : 1 0 0 0 0 ] , col=” blue ” )
l ines ( spL1 [ 9 0 0 0 : 1 0 0 0 0 ] , col=” green ” )
legend ( ” t op r i gh t ” , legend=c ( ” sd” , ”Huber ” , ”MAD” ) , col=c ( ” black ” , ” blue ” , ” green ” ) , l t y =1, cex =0.8 ,box . l t y =0)

######################
# SWISS #
######################

sw i s s1 = read . csv ( ”˜/Desktop/ s w i s s f r a n c . csv ” ,1 )
p=1; sw i s s=numeric ( 0 ) ;
while ( length ( sw i s s )<3680){

sw i s s = rbind ( swiss , c ( sw i s s1$CODEC[ ( p+1)]− sw i s s1$CODEC[ p ] ) )
p=p+1

}
par ( mfrow=c ( 1 , 1 ) )
plot ( density ( sw i s s ) , main=”” , xlab=”” )
plot . ts ( swiss , y lab=” Swiss Franc p r i c e change” )
points (1809 , sw i s s [ 1 8 0 9 ] , col = ” blue ” , pch=19)
points (2412 , sw i s s [ 2 4 1 2 ] , col = ” green ” , pch=19)
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points (2431 , sw i s s [ 2 4 3 1 ] , col = ” purple ” , pch=19)
points (3278 , sw i s s [ 3 2 7 8 ] , col = ” orange ” , pch=19)

#PLOT ESTIMATORS, FULL RANGE
sp = numeric ( 0 ) ; spM = numeric ( 0 ) ; spL = numeric ( 0 ) ; spR = numeric ( 0 ) ; s e t e x t r a = numeric ( 0 ) ;
p=2
while ( length ( s e t e x t r a )<3680){

s e t e x t r a <− sw i s s [ 1 : p ] ;
sp = rbind ( sp , c ( sd ( s e t e x t r a ) ) ) ;
spM = rbind (spM, c ( hubers ( s e t ex t ra , k=1.5)$s ) ) ;
spL = rbind ( spL , c (mad( s e t e x t r a ) ) ) ;
spR = rbind ( spR , c (IQR( s e t e x t r a )/ 1 . 3 4 9 ) )
p=p+1;

}
#PLOT ESTIMATORS, 100 DAY LOOKBACK
sp1 = numeric ( 0 ) ; spM1 = numeric ( 0 ) ; spL1 = numeric ( 0 ) ; spR1 = numeric ( 0 ) ; s e t e x t r a 1 = numeric ( 0 ) ;
p=101
while (p<3680){

s e t e x t r a 1 <− sw i s s [ ( p−100):p ] ;
sp1 = rbind ( sp1 , c ( sd ( s e t e x t r a 1 ) ) ) ;
spM1 = rbind (spM1 , c ( hubers ( s e t ext ra1 , k=1.5)$s ) ) ;
spL1 = rbind ( spL1 , c (mad( s e t e x t r a 1 ) ) ) ;
spR1 = rbind ( spR1 , c (IQR( s e t e x t r a 1 )/ 1 . 3 4 9 ) )
p=p+1;

}

C.2 Simulations Portfolio 2 assets

C.2.1 Location scale family

##################################
# NORMAL DISTRIBUTION #
##################################

sample p = rep (NA, 1000) ; sample k = rep (NA, 1000)
sample r1 = rep (NA, 1000) ; sample r2 = rep (NA, 1000)#; sample r3 = rep (NA, 1000)
samplec sdX = rep (NA, 1000) ; samplec sdMX = rep (NA, 1000)
samplec sdLX = rep (NA, 1000) ; samplec sdY = rep (NA, 1000)
samplec sdMY = rep (NA, 1000) ; samplec sdLY = rep (NA, 1000)
sigma <− matrix ( c ( 4 , 2 , 2 , 3 ) , ncol=2)
for ( i in 1 :1000){

set = rmvnorm(n=100 , sigma=sigma )
sample p [ i ] = cor ( set , method=” pearson ” ) [ 1 , 2 ] #OM cov e r u i t t e ha len
sample k [ i ] = cor ( set , method=” kenda l l ” ) [ 1 , 2 ]
sample r1 [ i ] = covRob ( set , c o r r=TRUE, est im=”mcd” )$cov [ 1 , 2 ]
sample r2 [ i ] = covRob ( set , c o r r=TRUE, est im=” donostah ” )$cov [ 1 , 2 ]
samplec sdX [ i ] = sd ( set [ , 1 ] )
samplec sdY [ i ] = sd ( set [ , 2 ] )
samplec sdMX[ i ] = hubers ( set [ , 1 ] ) $s
samplec sdMY[ i ] = hubers ( set [ , 2 ] ) $s
samplec sdLX [ i ] = mad( set [ , 1 ] /1 . 349 )
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samplec sdLY [ i ] = mad( set [ , 2 ] /1 . 349 )
}
#COMBINATIONS FOR VAR
Zw s1 = 0.25∗samplec sdXˆ2+0.25∗samplec sdYˆ2+0.5∗sample p #SD + PEARSON
Zw s2 = 0.25∗samplec sdXˆ2+0.25∗samplec sdYˆ2+0.5∗sample k #SD + KENDALL
Zw s3 = 0.25∗samplec sdXˆ2+0.25∗samplec sdYˆ2+0.5∗sample r1 #SD + covRob mcd

Zw h1 = 0.25∗samplec sdMXˆ2+0.25∗samplec sdMYˆ2+0.5∗sample p #HUBER + PEARSON
Zw h2 = 0.25∗samplec sdMXˆ2+0.25∗samplec sdMYˆ2+0.5∗sample k #HUBER + KENDALL
Zw h3 = 0.25∗samplec sdMXˆ2+0.25∗samplec sdMYˆ2+0.5∗sample r1 #HUBER + covRob1

Zw m1 = 0.25∗samplec sdLXˆ2+0.25∗samplec sdLYˆ2+0.5∗sample p #MAD + PEARSON
Zw m2 = 0.25∗samplec sdLXˆ2+0.25∗samplec sdLYˆ2+0.5∗sample k #MAD + KENDALL
Zw m3 = 0.25∗samplec sdLXˆ2+0.25∗samplec sdLYˆ2+0.5∗sample r1 #MAD + covRob1

######################
# Poluted sample #
######################
sample 2n = rmvnorm(n=100 , sigma=sigma )
summary(sample 2n)
sd (sample 2n)
sample 2n [ 6 0 , 1 ]<−c (8 )
sample 2n [ 6 0 , 2 ]<−c(−8)

par ( mfrow=c ( 1 , 1 ) )
plot . ts (sample 2n , main=”” )
plot (sample 2n [ , 1 ] , sample 2n [ , 2 ] , x lab=” S e r i e s 1” , ylab=” S e r i e s 2” )
points (8 ,−8 , col = ” red ” , pch=19)

sample2 p = rep (NA, 1000) ; sample2 k = rep (NA, 1000) ; sample2 r = rep (NA, 1000)
samplec2 sdX = rep (NA, 1000) ; samplec2 sdMX = rep (NA, 1000)
samplec2 sdLX = rep (NA, 1000) ; samplec2 sdY = rep (NA, 1000)
samplec2 sdMY = rep (NA, 1000) ; samplec2 sdLY = rep (NA, 1000)
for ( i in 1 :1000){

set2n = rmvnorm(n=100 , sigma=sigma )
set2n [ 6 0 , 1 ]<−c (8∗sd ( set2n ) )
set2n [ 6 0 , 2 ]<−c (8∗sd ( set2n ) )
sample2 p [ i ] = cor ( set2n , method=” pearson ” ) [ 1 , 2 ] #OM cov e r u i t t e ha len
sample2 k [ i ] = cor ( set2n , method=” kenda l l ” ) [ 1 , 2 ]
sample2 r [ i ] = covRob ( set2n , co r r=TRUE, est im=”mcd” )$cov [ 1 , 2 ]
sample2 r2 [ i ] = covRob ( set2n , co r r=TRUE, est im=” donostah ” )$cov [ 1 , 2 ]
samplec2 sdX [ i ] = sd ( set2n [ , 1 ] )
samplec2 sdY [ i ] = sd ( set2n [ , 2 ] )
samplec2 sdMX[ i ] = hubers ( set2n [ , 1 ] ) $s
samplec2 sdMY[ i ] = hubers ( set2n [ , 2 ] ) $s
samplec2 sdLX [ i ] = mad( set2n [ , 1 ] )
samplec2 sdLY [ i ] = mad( set2n [ , 2 ] )

}
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##################################
# LOGISTIC DISTRIBUTION #
##################################

sample l p = rep (NA, 1000) ; sample l k = rep (NA, 1000) ; sample l r1 = rep (NA, 1000) ; sample l r2 = rep (NA, 1000)
samplec l sdX = rep (NA, 1000) ; samplec l sdMX = rep (NA, 1000)
samplec l sdLX = rep (NA, 1000) ; samplec l sdY = rep (NA, 1000)
samplec l sdMY = rep (NA, 1000) ; samplec l sdLY = rep (NA, 1000)
sigma <− matrix ( c ( 4 , 2 , 2 , 3 ) , ncol=2)
for ( i in 1 :1000){

set = rmvevd (100 , dep = . 7 , model = ” log ” , d = 2)
sample l p [ i ] = cor ( set , method=” pearson ” ) [ 1 , 2 ] #OM cov e r u i t t e ha len
sample l k [ i ] = cor ( set , method=” kenda l l ” ) [ 1 , 2 ]
sample l r1 [ i ] = covRob ( set , c o r r=TRUE, est im=”mcd” )$cov [ 1 , 2 ]
sample l r2 [ i ] = covRob ( set , c o r r=TRUE, est im=” donostah ” )$cov [ 1 , 2 ]
samplec l sdX [ i ] = sd ( set [ , 1 ] )
samplec l sdY [ i ] = sd ( set [ , 2 ] )
samplec l sdMX[ i ] = hubers ( set [ , 1 ] ) $s
samplec l sdMY[ i ] = hubers ( set [ , 2 ] ) $s
samplec l sdLX [ i ] = mad( set [ , 1 ] )
samplec l sdLY [ i ] = mad( set [ , 2 ] )

}
#COMBINATIONS FOR VAR
Zw s1 = 0.25∗ samplec l sdXˆ2+0.25∗ samplec l sdYˆ2+0.5∗ sample l p #SD + PEARSON
Zw s2 = 0.25∗ samplec l sdXˆ2+0.25∗ samplec l sdYˆ2+0.5∗ sample l k #SD + KENDALL
Zw s3 = 0.25∗ samplec l sdXˆ2+0.25∗ samplec l sdYˆ2+0.5∗ sample l r1 #SD + covRob

Zw h1 = 0.25∗ samplec l sdMXˆ2+0.25∗ samplec l sdMYˆ2+0.5∗ sample l p #HUBER + PEARSON
Zw h2 = 0.25∗ samplec l sdMXˆ2+0.25∗ samplec l sdMYˆ2+0.5∗ sample l k #HUBER + KENDALL
Zw h3 = 0.25∗ samplec l sdMXˆ2+0.25∗ samplec l sdMYˆ2+0.5∗ sample l r1 #HUBER + covRob

Zw m1 = 0.25∗ samplec l sdLXˆ2+0.25∗ samplec l sdLYˆ2+0.5∗ sample l p #MAD + PEARSON
Zw m2 = 0.25∗ samplec l sdLXˆ2+0.25∗ samplec l sdLYˆ2+0.5∗ sample l k #MAD + KENDALL
Zw m3 = 0.25∗ samplec l sdLXˆ2+0.25∗ samplec l sdLYˆ2+0.5∗ sample l r1 #MAD + covRob

######################
# Poluted sample #
######################
sample 2n = rmvnorm(n=100 , sigma=sigma )
summary(sample 2n)
sd (sample 2n)
sample 2n [ 6 0 , 1 ]<−c (8 )
sample 2n [ 6 0 , 2 ]<−c(−8)

par ( mfrow=c ( 1 , 1 ) )
plot . ts (sample 2n , main=”” )
plot (sample 2n [ , 1 ] , sample 2n [ , 2 ] , x lab=” S e r i e s 1” , ylab=” S e r i e s 2” )
points (8 ,−8 , col = ” red ” , pch=19)
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sample2 p = rep (NA, 1000) ; sample2 k = rep (NA, 1000) ; sample2 r1 = rep (NA, 1000) ; sample2 r2 = rep (NA, 1000)
samplec2 sdX = rep (NA, 1000) ; samplec2 sdMX = rep (NA, 1000)
samplec2 sdLX = rep (NA, 1000) ; samplec2 sdY = rep (NA, 1000)
samplec2 sdMY = rep (NA, 1000) ; samplec2 sdLY = rep (NA, 1000)
for ( i in 1 :1000){

set2n = rmvevd (100 , dep = . 7 , model = ” log ” , d = 2)
set2n [ 6 0 , 1 ]<−c (8∗sd ( set2n ) )
set2n [ 6 0 , 2 ]<−c (8∗sd ( set2n ) )
sample2 p [ i ] = cor ( set2n , method=” pearson ” ) [ 1 , 2 ] #OM cov e r u i t t e ha len
sample2 k [ i ] = cor ( set2n , method=” kenda l l ” ) [ 1 , 2 ]
sample2 r1 [ i ] = covRob ( set2n , co r r=TRUE, est im=”mcd” )$cov [ 1 , 2 ]
sample2 r2 [ i ] = covRob ( set2n , co r r=TRUE, est im=” donostah ” )$cov [ 1 , 2 ]
samplec2 sdX [ i ] = sd ( set2n [ , 1 ] )
samplec2 sdY [ i ] = sd ( set2n [ , 2 ] )
samplec2 sdMX[ i ] = hubers ( set2n [ , 1 ] ) $s
samplec2 sdMY[ i ] = hubers ( set2n [ , 2 ] ) $s
samplec2 sdLX [ i ] = mad( set2n [ , 1 ] )
samplec2 sdLY [ i ] = mad( set2n [ , 2 ] )

}

C.2.2 Factor model

######################
# FACTOR MODEL #
######################

factor 1 = rep (NA, 1000) ; factor 2 = rep (NA, 1000)
cov f 1 = rep (NA, 1000) ; cov f 2 = rep (NA, 1000)
cov p = rep (NA, 1000) ; cov p1 = rep (NA, 1000)
e r r o r 1=rep (NA, 1 0 0 0 ) ; e r r o r 2=rep (NA,1000 )
sigma <− matrix ( c ( 1 , . 2 , . 2 , 1 ) , ncol=2)
for ( i in 1 :1000){

samplef = rmvnorm(n=100 , sigma=sigma )
f1 <−rnorm(100 , mean=0, sd=1)
f2 <−rnorm(100 , mean=0, sd=1)
f i t 1 = lm(sample f [ , 1 ] ˜ f 1+f2 )
f i t 2 = lm(sample f [ , 2 ] ˜ f 1+f2 )
cov p [ i ] = cov ( samplef , method=c ( ” pearson ” ) ) [ 1 , 2 ]
samplef [ 6 0 , 1 ]<−c (8∗sd ( samplef ) )
samplef [ 6 0 , 2 ]<−c (8∗sd ( samplef ) )
f i t 3 = lm(sample f [ , 1 ] ˜ f 1+f2 )
f i t 4 = lm(sample f [ , 2 ] ˜ f 1+f2 )
cov p1 [ i ] = cov ( samplef , method=c ( ” pearson ” ) ) [ 1 , 2 ]
cov f 1 [ i ] = f i t 1 $coef f ic ients [ 2 ] ∗ f i t 2 $coef f ic ients [2 ]+ f i t 1 $coef f ic ients [ 3 ] ∗ f i t 2 $coef f ic ients [ 3 ]
cov f 2 [ i ] = f i t 3 $coef f ic ients [ 2 ] ∗ f i t 3 $coef f ic ients [2 ]+ f i t 4 $coef f ic ients [ 3 ] ∗ f i t 4 $coef f ic ients [ 3 ]
e r r o r 1 [ i ] = summary( f i t 1 )$coef [ [ 4 ] ]
e r r o r 2 [ i ] = summary( f i t 2 )$coef [ [ 4 ] ]

}
e r r o r <− matrix ( c ( e r ror1 , e r r o r 2 ) , nrow = 1000 , ncol = 2)
summary( e r r o r )
par ( mfrow=c ( 1 , 1 ) )
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plot ( density (cov f 1 ) , xl im=c ( 0 , 0 . 6 ) , main=”” )
l ines ( density (cov f 2 ) , col=” blue ” )
l ines ( density (cov p ) , col=” green ” )
legend ( ” t op r i gh t ” , legend=c ( ” Covariance unpo l luted sample” , ” Covariance unpo l luted sample” , ” Pearson covar iance unpo l luted sample” ) , col=c ( ” black ” , ” blue ” , ” green ” , ” red ” ) , l t y =1, cex =0.9 ,box . l t y =0)
plot ( density (cov k ) )

C.2.3 Price data

#############################
# Energy/Heal th #
#############################

#2 nov ’98 − 12 j u l y ’17
#4706 data p o i n t s
cordata = read . csv ( ”˜/Desktop/ i n d i c e s . csv ” ,1 )
Energy = read . csv ( ”˜/Desktop/energy . csv ” ,1 )
Health = read . csv ( ”˜/Desktop/hea l th . csv ” ,1 )

#Convert to p r i c e changes
energy=numeric ( 0 ) ;
for ( i in 1 :4700){

energy = rbind ( energy , c ( Energy [ ( i +1) ,1]−Energy [ i , 1 ] ) )
}
hea l th=numeric ( 0 ) ;
for ( i in 1 :4700){

hea l th = rbind ( health , c ( Health [ ( i +1) ,1]−Health [ i , 1 ] ) )
}
s e t e x t r a <− matrix ( c ( energy , hea l th ) , nrow = 4700 , ncol = 2)
plot ( energy , health , xlab=”S&P 500 Energy” , ylab=”S&P 500 Health care ” )
plot . ts ( health , ylab=”S&P 500 Health care p r i c e changes ” )
plot . ts ( energy , ylab=”S&P 500 Energy p r i c e changes ” )

#PLOT ESTIMATORS, 100 DAY LOOKBACK
pear2 = rep (NA, 4700) ; ken2 = rep (NA, 4700) ; covr2 = rep (NA, 4700)
sdX2 = rep (NA, 4700) ; sdY2 = rep (NA, 4700)
hubX2 = rep (NA, 4700) ; hubY2 = rep (NA, 4700)
madX2 = rep (NA, 4700) ; madY2 = rep (NA, 4700)
for (p in 1 :4700){

pear2 [ ( p−100)] = cor ( s e t e x t r a [ ( p−100):p , ] , method=” pearson ” ) [ 1 , 2 ] #OM cov e r u i t t e ha len
ken2 [ ( p−100)] = cor ( s e t e x t r a [ ( p−100):p , ] , method=” kenda l l ” ) [ 1 , 2 ]
covr2 [ ( p−100)] = cov . rob ( s e t e x t r a [ ( p−100):p , ] , cor=TRUE)$cor [ 1 , 2 ]
sdX2 [ ( p−100)] = sd ( s e t e x t r a [ ( p−100):p , 1 ] )
sdY2 [ ( p−100)] = sd ( s e t e x t r a [ ( p−100):p , 2 ] )
hubX2 [ ( p−100)] = hubers ( s e t e x t r a [ ( p−100):p , 1 ] ) $s
hubY2 [ ( p−100)] = hubers ( s e t e x t r a [ ( p−100):p , 2 ] ) $s
madX2 [ ( p−100)] = mad( s e t e x t r a [ ( p−100):p , 1 ] )
madY2 [ ( p−100)] = mad( s e t e x t r a [ ( p−100):p , 2 ] )

}
#THE VAR ESTIMATIONS FOR ALL COMBINATIONS
Zw11 = 0.25∗sdX2ˆ2+0.25∗sdY2ˆ2+0.5∗pear2 #SD + PEARSON 100 DAY
Zw21 = 0.25∗sdX2ˆ2+0.25∗sdY2ˆ2+0.5∗ken2 #SD + KENDALL 100 DAYS
Zw31 = 0.25∗sdX2ˆ2+0.25∗sdY2ˆ2+0.5∗covr2 #SD + covRob 100 DAYS
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Zw41 = 0.25∗hubX2ˆ2+0.25∗hubY2ˆ2+0.5∗pear2 #HUBER + PEARSON 100 DAYS
Zw51 = 0.25∗hubX2ˆ2+0.25∗hubY2ˆ2+0.5∗ken2 #HUBER + KENDALL 100 DAYS
Zw61 = 0.25∗hubX2ˆ2+0.25∗hubY2ˆ2+0.5∗covr2 #HUBER + covRob 100 DAYS

Zw71 = 0.25∗madX2ˆ2+0.25∗madY2ˆ2+0.5∗pear2 #MAD + PEARSON 100 DAYS
Zw81 = 0.25∗madX2ˆ2+0.25∗madY2ˆ2+0.5∗ken2 #MAD + KENDALL 100 DAYS
Zw91 = 0.25∗madX2ˆ2+0.25∗madY2ˆ2+0.5∗covr2 #MAD + covRob 100 DAYS

####### 100 day LOOKBACK #########
par ( mfrow=c ( 3 , 1 ) )
plot . ts (Zw11 , ylim=c (0 , 250 ) , ylab=expression ( paste ( Sigma , ”Zw” ) ) , main=”Sample standard dev iat ion , 100 day lookback ” )
#SD+PEARSON, 100 days
l ines (Zw21 , type=” l ” , col=” blue ” ) #SD+KENDALL, 100 days
l ines (Zw31 , type=” l ” , col=” red ” ) #SD+covr , 100 days
legend ( ” t op r i gh t ” , legend=c ( ” Pearson ” , ” Kendal l ” , ”covRob” ) , col=c ( ” black ” , ” blue ” , ” red ” ) , l t y =1, cex =0.4 ,box . l t y =0)

plot . ts (Zw41 , ylim=c (0 , 250 ) , ylab=expression ( paste ( Sigma , ”Zw” ) ) , main=”Huber standard dev iat ion , 100 day lookback ” ) #HUBER+PEARSON, 100 days
l ines (Zw51 , type=” l ” , col=” blue ” ) #HUBER+KENDALL, 100 days
l ines (Zw61 , type=” l ” , col=” red ” )#HUBER+covRob , 100 days
legend ( ” t op r i gh t ” , legend=c ( ” Pearson ” , ” Kendal l ” , ”covRob” ) , col=c ( ” black ” , ” blue ” , ” red ” ) , l t y =1, cex =0.4 ,box . l t y =0)

plot . ts (Zw71 , ylim=c (0 , 250 ) , ylab=expression ( paste ( Sigma , ”Zw” ) ) , main=”MAD standard dev iat ion , 100 day lookback ” ) #MAD+PEARSON, 100 days
l ines (Zw81 , type=” l ” , col=” blue ” ) #MAD+KENDALL, 100 days
l ines (Zw91 , type=” l ” , col=” red ” )#MAD+covRob , 100 days
legend ( ” t op r i gh t ” , legend=c ( ” Pearson ” , ” Kendal l ” , ”covRob” ) , col=c ( ” black ” , ” blue ” , ” red ” ) , l t y =1, cex =0.4 ,box . l t y =0)
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