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Blind Reverberation Time Estimation using A
Convolutional Neural Network with Encoder

Xingyu Han, Jorge Martinez Castaneda, Dimme de Groot

Abstract—Estimating reverberation time (RT60) accurately is
crucial for enhancing the acoustic quality of various environments
as it decides how you feel the sound fades away subjectively.
Traditional methods, such as Sabine’s equation, require extensive
prior knowledge and assume ideal conditions, limiting their
practicality. To address these limitations, this paper explores the
application of convolutional neural networks (CNNs) enhanced
with an encoder architecture based on transformer mechanisms
for blind RT60 estimation. The proposed model leverages simu-
lated and real-world datasets, incorporating environmental noise
to improve robustness. Results indicate that the CNN-Encoder
model achieves superior performance, with a mean squared error
(MSE) as low as 0.0006 seconds for pure room impulse responses
(RIRs) and 0.0011 seconds under +30dB signal-to-noise ratio
(SNR) conditions. It also demonstrates potential in practical
usage achieving an MSE of 0.0282 seconds under audio record-
ings. This approach offers a significant reduction in estimation
error compared to the CNN-only architecture, demonstrating the
potential for improved acoustic parameter estimation in varied
environments. Future work will focus on further optimizing the
model for real-world applications and reducing computational
complexity while maintaining high accuracy.

Index Terms—Reverberation Time Estimation, Convolutional
Neural Network, Encoder Architecture, Transformer, Blind Es-
timation, Acoustic Environment, Signal-to-Noise Ratio.

I. INTRODUCTION

Understanding how sound behaves in a room can be a
bit abstract, but think of it this way: imagine you’re in a
large hall and you clap your hands. You might hear an
echo that gradually fades away. This fading sound is what
we call room acoustics, which describes how sound reflects,
absorbs, and decays in a space. One important aspect of this
is reverberation, which is how long it takes for the sound to
drop to a barely noticeable level. For instance, in a concert
hall, we want just the right amount of reverberation to make
the music sound rich and full.

To scientifically measure and understand this, experts use
a model known as the Room Impulse Response (RIR). This
model captures how a sound behaves in a room and is affected
by several room properties such as reflection coefficients, room
geometry, and reverberation time. The RIR helps estimate the
reverberation time, or RT60, which is the time it takes for the
sound to decay by 60 decibels. Estimating RT60 accurately can
help us control the quality of music and speech intelligibility
in a space.

Commonly, RT60 is estimated using Sabine’s equation [1],
which derives RT60 from measured room impulse responses
(RIRs). The equation is represented as:

RT60 =
0.161V

A
(1)

where RT60 is the reverberation time in seconds, V is the
volume of the room in cubic meters, and A is the total absorp-
tion in the room, measured in square meters of equivalent ab-
sorption area. However, this method requires prior knowledge
about room characteristics and assumes an ideal diffuse sound-
field, which can be challenging to achieve in practice. As an
alternative, blind estimation methods have been developed to
estimate RT60 directly from RIRs or audio recordings, without
needing detailed room information. Various algorithms have
been proposed for blind RT60 estimation based on recorded
speech signals [2], [3], [4], [5], [6], achieving a maximum
average estimation error of 0.11 seconds within a Signal-to-
Noise Ratio (SNR) range of 10dB to 60dB [6]. However,
these methods involve extensive manual work in selecting
appropriate distributions and smoothing functions, and their
performance may be constrained by these assumptions.

Deep neural networks (DNNs), particularly convolutional
neural networks (CNNs), have shown promise in addressing
these limitations due to their ability to capture underlying
patterns and generalizations. A notable example is the 6-layer
CNN proposed by Gamper and Tashev [7], which achieved a
mean squared error (MSE) of 0.0384 seconds, outperforming
the best method from the ACE challenge [8]. Further enhance-
ments by other researchers [9], [10], [11], [12] have improved
performance to an MSE of 0.0206 seconds [9] under the same
ACE Challenge dataset and extended applicability to dynamic
acoustic conditions. Recently, the attention mechanism from
transformers [13] has gained attention for its superior per-
formance in encoding input information and understanding
patterns, further reducing MSE errors to 0.02 seconds [14]
under ACE challenge [8] and 0.1541 seconds [15] with varied
input length signals, albeit with increased training parameters
and computational complexity.

This paper aims to enhance estimation accuracy in rever-
beration time estimation by addressing the following research
question:

What mechanism can be introduced, and what impact
does this enhancement have on blind reverberation time
estimation accuracy?

To explore this, we introduce an encoder based on the trans-
former architecture [13]. This encoder is designed to capture
more relevant feature information and effectively compress
raw audio signals. We aim to connect the encoder and CNN
to gain benefits from both sides. This mechanism has the
potential to surpass previous performance limitations without
significantly increasing training effort.

The structure of this paper is as follows: II outlines the
background of our method. III explains the methodology used
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in this research. IV details the proposed two different model
architectures for evaluation. V discusses responsible research
aspects. VI provides further analysis and discussion of the
findings. Finally, VII concludes the paper, summarizing the
implications of our findings and suggesting areas for future
improvement.

II. BACKGROUND

This section provides a detailed overview of the research
path for addressing blind RT60 estimation.

Traditional empirical methods for RT60 estimation, such as
Sabine’s equation, require prior knowledge of room charac-
teristics, making them impractical for many real-world appli-
cations. To overcome this limitation, Ratnam et al. [2] pro-
posed a maximum-likelihood approach for connected speech,
modeling reverberation as exponentially damped Gaussian
white noise. This method achieved an estimation of 1.62
seconds compared to the ground truth of 1.66 seconds, but it
also highlighted the performance differences across frequency
bands and the high computational costs due to the iterative so-
lution of the maximum-likelihood equation. To mitigate these
computational demands, techniques such as downsampling and
pre-selecting potential sound decays were introduced, enabling
the algorithm to track time-varying RT60 with higher accuracy
[3].

Another relevant improvement was proposed by Li,
Schlieper, and Peissig [6], who estimated reverberation time
in separate frequency bands based on recorded speech signals.
They calculated the full-band RT60 by combining estimations
from the 1-4kHz and 4-20kHz frequency regions. This hybrid
model achieved an average estimation error ranging from
0.04 to 0.11 seconds within Signal-to-Noise Ratios from
10dB to 60dB. Despite increased accuracy and robustness to
noise performance, the complexity of these traditional signal-
processing approaches also grew, and the frequency-dependent
estimation was limited by smaller bandwidths and lower signal
energy, which might affect the full-band estimation.

Deep neural networks (DNNs), particularly convolutional
neural networks (CNNs), have emerged as a competitive
solution. Gamper and Tashev [7] applied a CNN with spectro-
temporal features in the time-frequency domain, outperform-
ing the best method from the ACE challenge [8]. However,
their method was limited to fixed-length temporal inputs and
could not accommodate time-varying scenarios. To address
this, a long short-term memory (LSTM) [9] was added to the
CNN model [7], maintaining the interdependent relationship
within varying input temporal data and achieving a lower
mean squared error (MSE) of 0.0206 seconds on the same
ACE evaluation [8], though with a larger amount of training
parameters.

Another improvement involved augmenting and expanding
the small real acoustic impulse response dataset to a larger,
more balanced one [11] which achieved a similar MSE error
compared to the LSTM mechanism [9]. Both LSTM and
data augmentation aimed to extract more information from
the input. Following this idea, Ick, Mehrabi, and Jin [12]
suggested that important information might be lost during the

time-frequency transform. By reintroducing phase information,
the MSE loss was further decreased.

Recognizing the superior data understanding capabilities
of Large Language Models, the attention mechanism from
transformer architecture [13] was explored for blind RT60
estimation. Compared to several CNN-based and CRNN-based
models, the transformer-based model demonstrated better per-
formance and even achieved an MSE loss of 0.1541 seconds
under varied input length signals [15]. However, this increased
accuracy and flexibility came with a significant rise in training
parameters, from 0.013 million [12] to 85.256 million [15].
To address this, Saini and Peissig [14] proposed a lightweight
architecture for mobile-friendly applications by combining the
transformer with MobileViT V3 blocks, maintaining an MSE
loss of 0.02 seconds with only 61,000 parameters under ACE
Challenge corpus [8]. Despite these improvements, [15] and
[14] primarily relied on the transformer, adding only a linear
layer for the final regression task, leading to a heavy training
burden.

In response, this paper proposes a novel approach that uses
the attention encoder as part of the feature extraction rather
than the entire transformer. Two different model architectures
connecting the encoder and CNN are explored. By dividing
the tasks for each component, we aim to combine the benefits
of attention mechanisms and CNNs to achieve high accuracy
while maintaining relatively low training requirements.

III. METHODS

The objective of this experiment is to estimate reverberation
time (RT60) using a Convolutional Neural Network (CNN)
with an encoder architecture. To achieve this, a comprehensive
experimental setup has been developed, incorporating both
simulated and real-world datasets. The following sections
outline the simulation process, dataset characteristics, and the
methodology employed for training and evaluating the model.

A. Simulated RIRs

For the simulated dataset, we utilize the RIR-Generator
library [16], which is proficient at generating Room Impulse
Responses (RIRs). This library provides tools for creating
accurate acoustic models of various environments by simulat-
ing sound propagation and reflection within a defined space.
In our experiment, simulated RIRs are generated with target
reverberation times (RT60) ranging from 0.1 to 2.0 seconds,
covering a wide range of acoustic environments from relatively
dry to highly reverberant spaces. To account for potential
biases in the generation process, the measured RT60 based
on the Schroeder equation [17] is used as the ground truth for
training and testing.

Fig. 1 illustrates an example where the intended RT60 is
2.0 seconds, but the actual generated RT60 is approximately
2.6 seconds.
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Fig. 1: An example of bias in RIR simulation. The target RT60
is 2.0 seconds, while the actual generated sample is around
2.6 seconds, determined by the intersection of -60 dB and the
Schroeder Curve.

To ensure the diversity and robustness of our dataset,
several parameters are regulated during the simulation process,
including:

• Room Geometry: The dimensions of the shoebox rooms
(length, width, and height) are scaled exponentially with
the targeted RT60 to avoid unrealistic conflicts, ranging
from 2.0 to 9.5 meters in all dimensions. This variation
ensures the dataset includes a variety of spatial configura-
tions, enhancing the model’s ability to generalize across
different room shapes and sizes.

• Reflection Coefficients: Three positive and correspond-
ing negative coefficients are assigned to the six walls of
the room to obtain more realistic RIRs. These coefficients
are averaged to the mean coefficient calculated by the
inverted Sabine’s equation [1], influencing the amount
of sound energy reflected off surfaces and affecting the
overall reverberation time.

• Source and Receiver Positions: The positions of the
sound source and the receiver within the room are ran-
domly assigned, maintaining a minimum distance of 50
cm from each wall. The distance between the source and
receiver is at least 20 cm to ensure a better simulation.
Each room configuration includes 100 channel samples
generated from 20 receivers and 5 sources.

B. Environmental Noise

In real-world scenarios, it is challenging to measure clean
RIRs due to environmental noise. To validate the practical
capabilities of the model, we simulate environmental noise as
Gaussian white noise at a signal-to-noise ratio (SNR) level of
+30 decibels. The noised RIR r is calculated as:

r = h+ n (2)

where h is the clean RIR generated from the simulated
dataset III-A, and n represents the Gaussian white noise. Both
h and n have the same length.

C. Simulated Audio Recordings

In addition to the clean RIR data, we use anechoic speech
datasets from the ACE Challenge corpus [8] to simulate real
audio signals. These anechoic speeches, recorded with mini-
mal reflected sound energy, are convolved with the generated
RIRs to create audio signals under various environmental
conditions. The generated audio signals y are represented as:

y = s ∗ h+ n (3)

where s is the anechoic speech, h is the generated RIR
from III-A, and n is the Gaussian white noise from III-B.
These convolved recordings enable the model to learn realistic
signal patterns and are evaluated from a practical perspective.

D. Generalization Evaluation Dataset

To assess the learning and generalization abilities of the
models, two datasets are selected for evaluation. The single-
channel RIR dataset is used to evaluate the model trained
solely on RIRs. For the model trained on both RIRs and sim-
ulated audio recordings, the evaluation dataset is constructed
by convolving each channel of the RIRs in the EM32 dataset
with randomly chosen speeches from the anechoic speech
dataset. The corresponding ambient noise is also added to the
convolved signals. All datasets, including the single-channel
RIR dataset, EM32 dataset, and anechoic speech dataset, are
sourced from the ACE Challenge corpus [8].

E. Evaluation Metrics

The model’s performance is evaluated using standard met-
rics such as Mean Squared Error (MSE) and Mean Absolute
Error (MAE) between the predicted and actual RT60 values.
MAE provides an intuitive understanding of the estimation
error across all data samples, while MSE reflects how the
model handles outliers, highlighting individual large errors
through the square calculation. These metrics offer a clear
indication of the model’s accuracy and robustness across
different acoustic environments.

Additionally, the Pearson coefficient (ρ) is introduced to
measure the similarity between the estimated and ground truth
values. Higher similarity indicates a better ability to learn
underlying patterns. Therefore, a superior model is represented
by lower MSE and MAE values, along with a higher ρ,
indicating greater accuracy and similarity.

F. Data Preprocessing

Both simulated and real-world datasets undergo preprocess-
ing before being fed into the model. This phase involves nor-
malizing the audio signals and converting them into a suitable
format. Specifically, Mel spectrograms are computed from
the RIRs, as they provide a rich representation of the time-
frequency characteristics essential for accurately estimating
reverberation time and handling complex speech signals. This
process also reduces the data representation scale, easing the
training workload.

The input signals are truncated or padded to 2 seconds
(96,000 samples at 48kHz) to maintain uniform data size,
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then transformed into 128 × 188 Mel spectrograms. These
spectrograms are shuffled and divided by the data loader to
form batches of 32 for the training process. A similar process
is applied during testing.

By integrating simulated and real-world datasets and em-
ploying a well-structured CNN with an encoder architecture,
our experiment aims to develop a reliable model for estimating
reverberation time in diverse acoustic settings.

IV. MODEL ARCHITECTURES

In this section, we introduce two different model archi-
tectures, Encoder-CNN and CNN-Encoder, for blind rever-
beration time estimation using both simulated RIRs and au-
dio recordings. These architectures differ in the sequence of
connecting the CNN and encoder, impacting the estimation
accuracy and generalization ability.

A. Encoder-CNN

In the Encoder-CNN architecture, the CNN follows the
encoder layer, taking its output as input to estimate RT60. This
design is based on the intuition that the early encoder layer
can progressively capture the interrelationships and underlying
patterns of the input using the self-attention mechanism. The
CNN then filters and maps these extracted features to a
regression estimation through multiple convolution layers. It is
anticipated that the CNN will benefit from the preserved global
input information, achieving higher estimation accuracy. Given
the excellent performance of the Vision Transformer (ViT)
[18] in image feature extraction and classification, it is used
as the encoder block to enhance performance.

Fig. 2 illustrates this architecture. A 128×188 Mel spectrum
from III-F, corresponding to an RIR signal, is the input to
the encoder. Within the encoder, the spectrum information
is enhanced based on learned attention weights. Then, three
convolution layers compress dimensions and output extracted
features. A max-pooling layer and a softmax layer are se-
quentially connected to each convolution layer to meet the
requirements. The last two linear layers map the flattened data
array to a single regression estimation used for evaluation and
comparison.

B. CNN-Encoder

The CNN-Encoder architecture reverses the sequence used
in Encoder-CNN. It first convolves the input data with several
convolution layers, then resizes the output as a series of data
tokens. The ViT encoder then extracts features and maps them
to the estimation through linear layers. This design is inspired
by findings that early convolution can help ViT converge
quickly and improve robustness under different optimizers
[19].

Fig. 3 provides an example of the CNN-Encoder archi-
tecture. This process takes the same input as Encoder-CNN
but first convolves the spectrogram with several convolutional
layers, then reshapes its format to fit the encoder. One of the
last two linear layers is removed to avoid losing important
information within multiple linear mappings from the encoder
output.

V. RESPONSIBLE RESEARCH

Our research adheres to responsible research principles,
ensuring that our findings are transparent, reproducible, and
ethically sound. To facilitate reproducibility and transparency,
we have implemented several measures detailed below:

A. Data Accessibility and Transparency

• All code and datasets used in this study will be made
publicly available through the 4TU.Centre for Research
Data repository. This repository is chosen for its compli-
ance with the FAIR principles, ensuring that our data is
Findable, Accessible, Interoperable, and Re-usable.

• The datasets included in our study are publicly available
and collected under licenses that permit their use for
research purposes. This guarantees that there are no
privacy or sensitive information concerns associated with
the data used in our experiments.

B. Reproducibility

• We have used random seeds to control all random pro-
cesses within the experiments, ensuring that the results
can be consistently reproduced. The specific random
seeds and their applications in various stages of the
experiments are thoroughly documented.

• Detailed documentation of our experimental setup, in-
cluding data preprocessing steps, model architectures,
training procedures, and evaluation metrics, will be pro-
vided. This allows other researchers to replicate our
experiments precisely and verify our findings.

• We describe the use of the RIR-Generator library for
simulating Room Impulse Responses (RIRs), detailing the
parameters and configurations used to ensure diverse and
robust datasets.

C. Ethical Considerations

• Our research does not involve any data collection from
private individuals or the use of sensitive personal data.
The datasets used, such as the ACE Challenge corpus,
are publicly available and used in accordance with their
respective licenses.

• There is no risk of harm to individuals or communities
from our research. Our focus is purely on the technical
aspects of reverberation time estimation and does not
involve any human subjects or private information.

D. Bias Mitigation

• We have ensured the diversity and robustness of our
dataset by regulating parameters such as room geometry,
reflection coefficients, and source and receiver positions.
This helps mitigate potential biases and improves the gen-
eralization ability of our models across different acoustic
environments.

• The methodology used to generate and preprocess data is
designed to minimize biases and ensure that the model’s
performance is not unduly influenced by any specific
configurations or conditions.
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Fig. 2: The model architecture of the Encoder-CNN. The input is the Mel spectrum from III-F. The encoder recalculates the
spectrum based on the attention mechanism and feeds its output to CNN. The estimation is mapped by the last two linear
layers from the flattened CNN output.

Fig. 3: The model architecture of the CNN-Encoder. The input is the Mel spectrum from III-F. The CNN first convolves the
spectrum through several convolutional layers and feeds its reshaped output to the encoder. The estimation is mapped by the
last linear layer from the encoder output.

E. Methodological Transparency

• Comprehensive details about the methodologies em-
ployed in our study, including the design and imple-
mentation of the convolutional neural network (CNN)
and encoder architectures, are provided. This ensures that
our research process is transparent and can be critically
evaluated by peers.

• All hyperparameters, training procedures, and evaluation
metrics are explicitly documented, allowing for exact
replication of our experiments.

By adhering to these responsible research practices, we aim
to contribute to the scientific community in a meaningful and
ethical manner, ensuring that our research is both credible and
beneficial to future studies in the field of acoustic parameter
estimation.

VI. RESULTS

This section discusses the estimation accuracy of the models
based on the simulated RIR and audio recording datasets. The
discussion is divided into two parts: the first part evaluates

the model performance on clean and noised RIRs, while the
second part assesses the performance based on simulated audio
recordings. The generalization ability is also examined in both
parts. All training configurations are set as the learning rate of
0.0001, Adam optimizer, MSE Loss and 10 epochs to avoid
overfitting.

A. RT60 Estimation on RIRs

A dataset with 18,100 RIR samples (181 room configura-
tions with 100 channels each) was generated based on the
method described in III-A. To better evaluate model perfor-
mance and minimize potential bias, the training and testing
sets were randomly divided into equal sizes. The RT60 ground
truth distribution is shown in Fig. 4, covering a range from
0.1 to 2.9 seconds. The wide distribution range also indicates
possible biases in the generation, especially for longer RT60
values, which increased from 2.0 to 2.9 seconds. Such biases
might confuse the desired pattern during training, lowering the
accuracy and generalization of the estimation.
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Fig. 4: The distribution of RT60 ranging from 0.1 to 2.9
seconds corresponds to the generated training data samples.
The X-axis represents the range of RT60 and the Y-axis
represents the number of samples. The testing dataset has a
similar distribution due to the equal division.

Table I presents the performance of models on both clean
and noised RIRs, with the clean CNN serving as the baseline,
which is essentially the CNN part of both Encoder-CNN and
CNN-Encoder. The noised RIRs were generated using the
same 18,100 samples as described in III-B. All models were
retrained and tested to avoid overfitting. Despite differences
in the Pearson coefficients among the models, the close-to-1
values indicate their ability to capture similar signal patterns.
CNN-Encoder achieves the highest precision in both MAE and
MSE, followed by Encoder-CNN. This performance surpasses
the baseline CNN model, highlighting the potential of com-
bining the encoder and CNN to leverage global information
structure and local pattern exploration.

TABLE I: Performance comparison of Models on clean RIRs
and RIRs at SNR +30 decibels

Model clean RIR SNR +30

MSE[s] MAE[s] ρ MSE[s] MAE[s] ρ

Clean CNN 0.0044 0.0513 0.9969 0.0051 0.0487 0.9941
Encoder-CNN 0.0013 0.0237 0.9983 0.0027 0.0367 0.9968
CNN-Encoder 0.0006 0.0198 0.9993 0.0011 0.0246 0.999

It is noteworthy that the order of CNN and encoder impacts
accuracy. One explanation is that while the encoder preserves
interrelationships within the context, the local relationships
might be altered due to the attention mechanism, potentially
harming CNN performance due to its restricted kernel size
view. Conversely, CNN-Encoder avoids this issue, as the CNN
first explores local data within the kernel, leaving the global
relationship unchanged. The encoder then extracts interre-
lationships within the context, benefiting from the already
filtered local information.

B. RT60 Estimation on Audio Recordings

Although the CNN-Encoder and Encoder-CNN models
show better accuracy, their performance on audio recordings
remains unknown. To address this, 10 out of 100 channels

from each of the 181 room configurations were randomly
selected and convolved with randomly chosen anechoic speech
from the ACE Challenge corpus [8], forming a training set
of simulated audio recordings. These 1,810 convolved audio
recordings were further set at an SNR of +30 dB to simulate
environmental noise.

Instead of retraining all models, these recordings were used
to fine-tune the models already trained on clean and noised
RIRs. This approach reduces training costs and improves
performance, given the smaller simulated audio recording set
compared to the 18,100 RIRs, while transformer architectures
require large datasets. The evaluation set from III-D was used
to measure performance and assess generalization ability.

TABLE II: Generalization Performance on ACE Audio
Recording Datasets for RT60 Estimation

Model MSE [s] MAE [s] ρ

Clean CNN 0.3555 0.4979 0.6729
Encoder-CNN 0.035 0.1418 0.8253
CNN-Encoder 0.0282 0.1143 0.8524
AudMobNet L [14] 0.02 - 0.9

As shown in Table II, CNN-Encoder outperforms Encoder-
CNN and clean CNN, demonstrating the advantages of its spe-
cific architecture order and potential for practical applications.
Additionally, CNN-Encoder achieves performance close to the
state-of-the-art model AudMobNet L [14], also evaluated on
the ACE Challenge corpus [8]. However, our training and eval-
uation datasets share the same anechoic speech dataset, which
may cause potential overfitting during training. Although each
simulated audio recording is a randomly selected 2-second
sequence from the convolved signal described in III-D to
reduce the overfitting influence, the actual performance of
CNN-Encoder remains to be fully understood. Furthermore,
AudMobNet L is optimized for model size and training speed
for mobile applications, while our models still face constraints
in these areas and require further improvement.

Fig. 5: The distribution of absolute error for generalization
performance on ACE audio recording datasets for RT60 Es-
timation. The X-axis represents the RT60 groundtruth range
and the Y-axis represents the error between estimation and
groundtruth. Higher RT60 shows larger variance and instabil-
ity.
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Fig. 5 illustrates the distribution of absolute errors in
seconds for different RT60 bins from the evaluation dataset.
Each box represents the interquartile range (IQR) of errors
for the corresponding RT60 bin, with the median shown
by the line inside each box, and whiskers extending to 1.5
times the IQR. Generally, the errors are centered around zero,
indicating accurate estimations. However, there is noticeable
variability in higher RT60 bins, particularly in ranges such as
1.1 to 1.3 seconds, indicating less consistent performance in
these regions. This inconsistency may be caused by the loss
of important information due to the truncation of the input
signals, as higher RT60 values may require longer input signals
to reveal their patterns. Lower RT60 bins exhibit tighter error
distributions, reflecting better estimation accuracy. Outliers are
present across most bins, highlighting occasional significant
deviations from true values. Overall, while the estimation
method shows good accuracy for lower RT60 values, its
performance for higher values could benefit from further
refinement to reduce variability and outliers.

VII. CONCLUSIONS AND FUTURE WORK

In conclusion, this study presents a novel approach to blind
reverberation time estimation by integrating a convolutional
neural network with an encoder architecture based on the
transformer mechanism. The CNN-Encoder model demon-
strates superior accuracy and generalization ability compared
to alternative Encoder-CNN and standalone CNN models. Our
findings indicate that the proposed architecture effectively
captures complex acoustic patterns, making it suitable for
practical applications in diverse acoustic environments. Future
work will focus on optimizing the model for mobile applica-
tions, reducing computational complexity while maintaining
high accuracy. Additionally, expanding the dataset with real-
world recordings, assessing bias between target and generated
RT60 results, and obtaining high-precision labels will help
validate and enhance the model’s performance in more diverse
scenarios.
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