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1. Abstract 

Introduction: 3D imaging has become the standard for orthognathic surgery planning. Manual 

segmentation and landmark localization are the foundation for assessing deformities and 

planning of the corrective surgery. However, in 3D imaging, these manual procedures are 

complex and time consuming. Deep learning has emerged as a promising solution to 

automate this workflow. 

 

Objective: To develop an automated segmentation and landmark localization workflow to 

reduce time and efforted required for orthognathic surgery planning using CBCT. 

 

Methods: The dataset consisted of 57 presurgical Cone Beam CT (CBCT) scans. Manual 

segmentations were created for the mandible, maxilla, skin, mandibular canals (MC) left and 

right. Additionally, 43 landmarks (13 mandibular, 10 maxillary, 10 dental, and 10 surgical) were 

manually annotated. Automated landmark localization was approached as a segmentation 

task, with spherical segmentation of adjacent tissue with radii of 4mm, 5mm, or 6mm around 

landmarks. The dataset was split into 64% train, 16% validation 20% testset. Seven nnU-Net 

models were trained: one for segmentation and six (two models for each radius configuration) 

for landmark localization. Landmark positions were determined by calculating the center of 

mass of predicted segmentations. Performance was evaluated by comparing results to 

manual ground truth segmentations and landmark locations. 

 

Results: The nnU-Net was successfully trained to identify five segmentations and 43 

landmarks. The overall median [Q1 – Q3] volumetric dice coefficient (vDSC) was 0.91 [0.79 - 

0.96] for the segmentation model. The overall median radial error (MRE) for the landmarking 

models using 4mm, 5mm and 6mm spherical segmentations (each based on two models) 

were 0.98 [0.58 - 1.60] mm, 1.03 [0.63 - 1.67] mm, and 1.08 [0.66 - 1.82] mm, respectively. The 

successful detection rate below the clinical acceptability threshold of < 2mm ranged from 

78.6% to 81.6%. The inference workflow required 17.7 minutes per patient on average.  

 

Conclusion: The nnU-Net achieved accurate craniomaxillofacial (CMF) anatomy 

segmentations and precise localization of landmarks, maintaining a clinical acceptability level 

with an error margin of less than 2mm. This fully automated workflow has the potential to 

enhance the efficiency of CMF planning. 

 

 

 

 

 

2. Keywords 

Orthognathic surgery, Landmark localization, Segmentation, Cone Beam (CBCT), Deep 

learning  
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3. Introduction 

In craniomaxillofacial (CMF) surgery, a wide range of congenital and acquired conditions 

affecting the head, face, jaws, and associated structures are treated. Accurate surgical 

planning is important for CMF surgery to ensure the desired functional and aesthetic 

outcomes (1). Traditional planning methods use 2-dimensional (2D) lateral cephalograms for 

assessing distance and angular measurements within the sagittal plane, forming the basis for 

cephalometric analysis and subsequent surgical planning (2, 3). However, the 2D 

representations are limited in their ability to analyze complex three-dimensional (3D) 

morphology in the craniofacial region (4). The prevalence of facial asymmetry in patients with 

dentofacial deformities highlights the importance of this limitation, with Severt and Proffit et 

al. reporting facial laterality occurred in 5%, 36%, and 74% of deformities in the upper, middle, 

and lower facial regions, respectively (5). 

The increased use of cone-beam computed tomography (CBCT) and computed tomography 

(CT) for cranio-maxillofacial surgery planning provides CMF planners and surgeons with 3D 

data that allows for a more comprehensive assessment of dentofacial deformities (6). These 

imaging modalities facilitate bilateral landmarking and enable the quantification of these 3D 

deformities, thus allowing for 3D cephalometric analysis and accurate 3D surgical planning 

(7). 

Landmark localization and segmentation are crucial steps in CMF imaging analysis that form 

the foundation for 3D quantification and surgical planning. Landmark localization identifies 

anatomical reference points necessary for quantitative analysis, such as angle and distance 

measurements, while segmentation involves delineating anatomical structures for creating 

virtual models. Using these models, virtual surgery can be performed by planning the 

osteotomy planes and corrections and assessing the corrected anatomy. This virtual planning 

allows for the design and creation of 3D printable patient-specific surgical guides and 

implants on the virtual models. These guides help the surgeon to precisely follow the planned 

osteotomy planes during the actual surgery. Additionally the implants help to fixate the 

corrections at a millimeter level, ensuring accuracy and improving surgical outcomes. In 

orthognathic surgery, this is beneficial for complex yet standard procedures such as the 

bilateral sagittal split osteotomy (BSSO) and Le Fort I reconstructions, where 3D planning has 

led to a significant increase in the accuracy of the surgical outcome (8-10). 

Manual landmark localization and semi-automatic segmentation are still gold-standard 

approaches for 3D CMF imaging analysis. The transition from 2D to 3D imaging has made the 

manual planning process increasingly complex and time-consuming, requiring training and 

expertise (11). For instance, manual placement of landmarks has been reported to take 

approximately 15 minutes on CBCT (12, 13). Similarly, semi-automated segmentation of CMF 

anatomy takes an average of 48.4 minutes, making both methods less feasible for routine 

clinical use (14). Furthermore, the entire surgical planning process can take up to 

approximately 60 minutes for a single jaw surgery and 70 minutes for a double jaw surgery 

when conducted by an experienced surgeon (15). 

Semi-automatic segmentation and delineation of craniofacial structures present significant 

challenges due to several factors. The lack of contrast in the temporomandibular joint and 

low contrast-to-noise ratio near the field of view (FoV) boundaries. Furthermore, the frequent 

occurrence of artifacts from orthodontic materials, fixation implants, dental fillings, or crowns 
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makes the process trivial and time-consuming (16). These challenges emphasize the need for 

a robust and efficient automated workflow to manage these challenges. 

Recent advancements in machine learning and deep learning have significantly improved the 

accuracy and efficiency of automatic segmentation and landmark localization. Deep learning-

based methodologies, including customized architectures based on deep reinforcement 

learning and long-short term memory networks, have achieved clinical acceptability 

standards, frequently attaining landmark localization accuracy with errors under 2 mm (17-

31). 

Deep learning models have demonstrated impressive performance in CMF segmentation 

tasks as well, with several studies reporting volumetric dice similarity coefficients (vDSC) 

above 0.90 for various craniofacial structures (11, 31, 32). These advancements are important 

for applying automated workflows in clinical settings, as they ensure reliable and precise 

anatomical delineation necessary for effective surgical planning. 

Among the various deep learning architectures, nnU-Net has emerged as an up-and-coming 

solution (33). nnU-Net is a well-maintained, open-source, robust, out-of-the-box segmentation 

framework that automatically adapts to a wide range of biomedical segmentation problems 

without requiring extensive manual tuning. Its flexible design and overall strong performance 

make it promising for addressing the complex challenges of CMF segmentation and landmark 

localization. The nnU-Net remains one of the best-performing algorithms available, offering a 

streamlined approach to achieving high-quality 3D imaging analysis (34).  

4. Objective 

The aim of this master thesis is to reduce the time and effort required for CMF surgical 

planning by developing an efficient and accurate automated segmentation and landmark 

localization workflow using the existing nnU-Net framework.  
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5. Methods 

5.1 Dataset 

The dataset for this research consists of 57 presurgical CBCT images. The CBCT data 

originates from patients who have been referred to the Erasmus Medical Centre for 

orthognathic surgery between 2017 and 2022. Ethical approval had been obtained from the 

ethics board of the EMC prior to this study. The patient demographics and the diagnosis were 

not available, since the data had been anonymized. Median image shape was 681 x 681 x 481 

voxels and ranges from 561 x 561 x 101 to 685 x 693 x 495. The voxel sizes were either 0.25 

x 0.25 x 0.25 mm3 or 0.25 x 0.25 x 1.0 mm3.  

5.1.1 Segmentations 

To provide the deep learning network with consistent input data a segmentation protocol was 

created. This protocol included guidelines for segmenting the mandible, maxilla and cranial 

bones, the left and right mandibular canals (MCL & MCR), and the skin. The complete protocol 

can be found in Appendix A. Segmentations were made using Mimics software version 26.0 

(Materialise, Leuven, BE). 

Segmentations were created of the mandible, maxilla and cranial bones, the MCL & MCR and 

the skin. Dental segmentations were included in the mandible or maxilla and cranial bones. 

Thresholding was used for the initial segmentation after which details were manually 

corrected such as noise induced by brackets, low contrast in the temporomandibular joint 

region and filling holes in thin bone structures. The mandibular canal was segmented using a 

curve with standard diameter. The diameter was set to 2.5 mm along the complete length of 

the MC (35). The start and endpoint were defined as the entrance and outlet for the inferior 

alveolar nerve in the mandible. 

The ground truth segmentation dataset was validated by an expert, who had more than three 

years of experience with CMF segmentation and surgery planning. In total six cases (10%) 

were randomly drawn for the dataset for review and were thoroughly checked. Systematic 

errors were manually corrected for all patients if needed. 

5.1.2 Landmarks 

To ensure consistency in landmark placement, a detailed protocol was established and 

documented. Table 1 provides an overview of the landmarks used in this study, with the 

protocol for their placement. The landmarks are organized alphabetically by category: 

mandibular, maxillary, dental, and surgical. This table guided the placement of 14 mandibular, 

12 maxillary, 10 dental, and 10 surgical landmarks on the CMF anatomy. The bony and dental 

landmarks were chosen based on their common usage in scientific literature and within 

Erasmus MC. The surgical landmarks were selected because these were used as reference 

points for calculating surgical cutting planes in the Erasmus MC for the BSSO and Le Fort I 

osteotomy. 

Landmarks were manually placed in Slicer 5.6.2, chosen for its ability to save landmarks in 

accessible file format (JSON), facilitating future research with this dataset (36). Additionally,  
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Table 1, Overview of landmarks with their general descriptions and locations, including annotation details in sagittal, coronal, and 
axial views. The landmarks are listed alphabetically within each anatomical region in the following order: Mandible, Maxilla, Dental, 
and Surgical. The abbreviations used are: AP = Anterior Point, MP = Midpoint, LP = Lowest Point, PP = Posterior Point, UP = Upper 
Point, M2 = second molar. 

Landmark name Anatomical description Sagittal Coronal Axial 

B Point (B) 
Most PP on anterior surface 
mandibular symphysis 

Most PP 
MP determined 
antero-posteriorly by 
the two 

AP+MP 

Condyle left & right 
(Con-L/R) 

UP condylar head UP + most PP Most UP+MP Most UP+MP 

Coronoid left & 
Right (Cor-L/R) 

UP head coronoid process UP + most MP Most UP+MP Most UP+MP 

Foramen Mentale 
left & right (MF-
L/R) 

Cavity in mandibular cortex 
MP in line with the 
cortex 

MP in line with the 
cortex 

MP in line with the cortex 

Gnation (Gna) 
MP between Pogonion and 
Menton 

Most convex 
curvature of 
anterior lower 
cortex 

MP MP 

Gonion left & right 
(Go-L/R) 

Most PP edge branch. Bisection 
tangents posterior edge branch 
and lower body 

Most PP Most PP+MP 
Most PP determined. 
supero-inferiorly by the 2 

Menton (Me) LP mandibular symphysis LP LP +MP LP+MP 
Pogonion (Pog) Most AP mandibular symphysis Most AP MP AP+MP 
Sigmoid Notch left 
& right (SN-L/R) 

LP of sigmoid notch curvature LP UP+MP 
MP at LP of sigmoid 
notch 

Anterior Nasal 
Spine (ANS) 

Most AP maxillary process 
nasal floor region 

Most AP AP+MP AP+MP 

Basion (Ba) Most AP foramen Magnum Most PP+LP 
MP foramen, 
determined antero-
posteriorly by the 2 

Most AP+MP anterior 
contour 

Infraorbitale left & 
right (Inf O- L/R) 

Most LP infraorbital margin  Most UP + MP UP+MP 
MP at LP of infraorbital 
margin 

Nasion (Na) Most AP frontonasal suture Most AP MP 
Most AP+MP anterior 
contour 

A Point (A) 
Most PP maxillar curvature, 
between anterior nasal spine 
and supradental point 

Most PP 
MP determined 
antero-posteriorly by 
the 2 

AP+MP 

Porion left & right 
(Por L/R) 

UP and MP external left roof 
auditory canal 

UP+MP 
UP, where skin lies 
directly on the bone 

MP determined supero-
inferiorly by the 2 

Posterior Nasal 
Spine (PNS) 

Most PP maxillary process 
nasal floor region 

Most PP PP+MP PP+MP 

Sella (S) MP Hypophyseal fossa MP MP MP 
Supraorbitale left 
& right (Sup O-L/R) 

Most ASP supraorbital margin 
orbital 

Most LP + MP LP+MP 
MP at UP of infraorbital 
margin 

Element 13 (13) Most LP of element 13 LP Most LP+MP Most LP 

Element 16 (16) 
PP point mesio buchal cusp of 
element 16 

UP LP +MP MP 

Element 23 (23) Most LP of element 23 LP Most LP+MP Most LP 

Element 26 (26) 
PP point mesio buchal cusp of 
element 26 

UP LP +MP MP 

Element 33 (33) Most UP of element 33 UP Most UP+MP Most UP 

Element 36 (36) 
UP point Mesiobuchal cusp of 
element 36 

LP UP +MP MP 

Element 43 (43) Most UP of element 43 UP Most UP+MP Most UP 

Element 46 (46) 
UP point Mesiobuchal cusp of 
element 46 

LP UP +MP MP 

Lower Incisal 
midpoint (IsL1) 

MP between incisal edge of left 
and right lower incisers 

Most UP + MP 
MP between incisal 
edge 

MP between incisal edge 

Upper incisal 
midpoint (IsU1) 

MP between incisal edge of left 
and right upper incisers 

Most LP + MP 
MP between incisal 
edge 

MP between incisal edge 

Inferior border left 
& right (Inf B-L/R) 

Inferior border of mandible right 
below the M2-line landmark 

MP inferior cortex LP Most PP 

Lingula left & right 
(Lin-L/R) 

Ligula point Most PP Most medial point Most medial + PP 

Nasal notch left & 
right (NN-L/R) 

Most concave point of Nasal 
notch 

AP AUP 
Most AP+MP anterior 
contour 

M2-line left & right 
(M2-L/R) 

Oblique line in line with distal 
roots of M2 

MP Lateral point 
lateral point in line with 
posterior root of the M2 

Zygomatic 
Process left & 
right (Zyg L/R) 

Most concave point of 
zygomatic process of the 
maxilla 

Most LP Most concave point Most Lateral point 
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this software provides simultaneous axial, sagittal, coronal, and 3D views of the anatomy, 

aiding in precise landmark placement. The landmarks were first roughly annotated on the 3D 

models of the segmented mandible and maxilla and cranial bones in the 3D viewer. Then 

corrections were made on the axial, sagittal and coronal view. The CBCT images were 

dominant for the placement, since small errors could occur in the segmentation of the 

anatomy. Therefore the ground truth landmark location was not necessarily on the surface of 

the segment structures. A complete list of (missing) landmarks is available in Appendix B. 

The same expert checked the validity of landmark localization with 6 randomly selected cases 

(10%).  

The field of view (FoV) of the CBCT scans ranged from the menton to the orbita on average. 

Consequently, the supraorbitale (left and right) landmarks were excluded from the model 

training dataset since only one scan was eligible for annotating these landmarks. Additionally, 

the gnathion was excluded as it does not provide relevant information beyond what is offered 

by the pogonion and menton. 

5.2 Study design 

The landmarking task was approached as a segmentation problem, requiring two deep-

learning models to avoid excessive overlap between adjacent landmark segmentations, which 

could reduce localization precision. Initially, landmark locations were used to create spherical 

segmentations around each landmark, as can be seen in Figure 1. The optimal radius for the 

landmark localization sphere was unknown and tested during this study.  Preliminary results 

indicated that a radius of 3 mm was too small and 10 mm was too large, whereas a radius of 

approximately 5 mm provided the most accurate results. Therefore, radii of 4 mm, 5 mm, and 

6 mm were tested. 

This study involved training seven distinct deep learning models: one for the segmentation 

task and six for the landmark localization task (two models for each of the three radius 

configurations). Each model could operate independently. 

5.2.1 data preprocessing 

Anatomy segmentations 

The open-source nnU-Net requires Neuroimaging Informatics Technology Initiative (NIfTI) 

files as input. Masks created in Mimics 26.0 were first converted to parts as STL files, 

subsequently converted to masks, and saved as NIfTI files utilizing 3D Slicer. The labeling of 

the segmentations was checked for consistency and adjusted if needed. 

Landmark segmentation 

The images for the landmark localization task were resampled to a voxel size of 0.5 x 0.5 x 

0.5 mm using cubic interpolation and an image size of 340 x 340 x 240 voxels using the SciPy 

v1.14.1 library. Empty NIfTI masks were created to match the patient's scan in shape, voxel 

size, and orientation. The manually annotated landmark coordinates were translated to the 

image coordinate system and used to segment a single voxel, followed by spherical 

segmentation using a radius of 4mm, 5mm, or 6mm. 
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For each patient, a mask is created for each landmark, ensuring individual labeling. Once all 

landmarks for a patient were processed, the segmented landmarks were assembled based on 

their labels. 

To prevent overlap between segmentations of adject landmarks, landmarks were divided into 

two groups: A and B, see Appendix C. Consequently, two models were trained for each radius,  

resulting in a total of six landmarking models: two models for each configuration (4 mm, 5 

mm, and 6 mm). The models were referred to as model_[radius]mm, for example, the models 

trained for group A and B using a 4 mm radius were referred to as model_4mm. 

5.2.2 nnU-Net  

The nnU-Net framework, presented by Isensee et al., provides an out-of-the-box segmentation 

solution by automatically configuring itself to any dataset through a dataset fingerprint (34). 

This fingerprint includes extracting parameters like image shape, voxel size, and intensity 

distribution from the train dataset. These parameters inform the resampling strategy, intensity 

normalization, and patch size, ensuring optimal preprocessing, network architecture, training, 

and post-processing configurations. 

In this study, the 3D-full resolution configuration was used, with a five-fold cross-validation 

strategy over 1000 epochs. CBCT images were split into training, validation, and test sets in a 

64/16/20 ratio. For each deep learning network trained during this study, the same data split 

was used. The data augmentation in the training pipeline was modified by disabling x-axis 

mirroring to preserve the distinction between left and right mandibular canal segmentations 

and bilateral landmarks. Training was performed using 8x NVIDIA A40, 48 RAM available at 

the GPU cluster in the Erasmus MC. Training times for each model were monitored. 

5.2.3 Data post-processing 

For both the segmentation and landmark localization models, nnU-Net automatically created 

a post-processing pipeline. This pipeline utilized connected component analysis to identify 

the largest segmented voxel group in each mask, removing all smaller, irrelevant 

segmentations. The pipeline then tested if the performance increased after removing these 

 
Figure 1, an example of landmark IsL1 as segmentation (yellow), with a 4 mm radius. 
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small objects for each label. Based on the results, the post-processing was enabled or 

disabled for each label accordingly. 

After postprocessing the segmentations produced by the segmentation model were ready for 

subsequent analysis. For the landmark localization, an additional script was developed to 

determine the coordinates of the center of each segmented sphere by calculating the center 

of mass. The coordinates of the center of mass were chosen to reflect the center of the sphere 

and thus the landmarks location. 

5.2.4 External dataset validation 

MICCIA 2024 challenge was used to acquire external datasets to validate the robustness of 

the trained segmentation model for the mandible, maxilla and cranial bones and mandibular 

canal segmentations (37, 38). Two datasets were available for this purpose: The ToothFairy2F 

dataset (TF2F), and the ToothFairy2P dataset (TF2P). The datasets differ in their FoV. Dataset 

TF2F had a large FoV, ranging from the menton to the zygomatomaxillary suture, whereas 

dataset TF2P covers a smaller FoV, extending from the menton to the upper dentition, thereby 

missing most or all of the maxilla. 

The segmentation labels were adjusted for comparability. In the MICCAI datasets, each 

individual dental element, as well as implants, crowns, and bridges, were labeled. Furthermore, 

the maxillary sinus and the pharynx were labeled as well and the skin was not. Segmentation 

labels for dental elements were assigned to either the mandible or the maxilla, or for the 

maxillary sinus and pharynx, removed, to match the labeling in the training dataset using 

Python. Dental implants, crowns, and bridges were manually assigned to the mandible or 

maxilla. This was necessary because no distinction was made between mandibular dental 

implants, crowns, and bridges, and their maxillary counterparts in the original labeling. 

External dataset preprocessing 

The MICCAI CBCT images and masks, which were in the MetaImage (.mha) format, were 

converted to NIfTI format, similar to the training data. This conversion was performed using 

the Insight Segmentation and Registration Toolkit (SimpleITK v2.3.2) in Python. 

In the preprocessing stage, both the CBCT images and the corresponding masks resampled 

to match the shape and size of the images in the initial train dataset and ensure uniformity 

across all datasets. The original voxel size of 0.3 x 0.3 x 0.3 mm was resampled to 0.25 x 0.25 

x 0.25 mm. For the images, cubic interpolation was used during the resampling process to 

maintain the continuity and smoothness of the image data. On the other hand, the binary 

masks were resampled using nearest neighbor interpolation to preserve the discrete values 

of the mask labels. 

Following resampling, the images and masks were padded to a uniform size of 681x681x481 

voxels to ensure consistency with the training dataset, to which the model architecture was 

configured. Padding involved adding extra voxels to the edges of an image or mask to achieve 

the specified dimensions. In this study, padding was performed by adding the minimum voxel 

value, corresponding to air or background. This approach ensured compatibility with the 

trained nnU-Net model. 
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5.3 Analysis 

For the analysis of the predictions for the anatomy segmentation, the volumetric Dice 

similarity coefficient (vDSC) was used to measure the overall overlap between the predicted 

and actual volumes. The vDSC can be less sensitive to large structures due to their already 

large overlapping volumes and can be overly sensitive to small structures where the boundary 

delineation is more challenging. To address these limitations, the surface Dice similarity 

coefficient (sDSC) with a 1 mm tolerance was also utilized. The sDSC evaluates the ratio of 

successful boundary delineation within a margin of 1 mm, providing a more nuanced 

assessment of surface accuracy (39). Additionally, the average symmetric surface distance 

(ASSD) was calculated to assess the average distance between the surfaces of the ground 

truth and the predicted segmentations, offering a detailed evaluation of the segmentation 

accuracy (40). Together, these metrics provide a comprehensive and nuanced analysis of the 

segmentation performance. For comparability with other scientific literature, the intersection 

over union (IoU) and the robust Hausdorff distance 95% (HSD95) were calculated. All metrics 

were calculated using scripts provided by the Medical Segmentation Decathlon, which used 

the SciPy v1.11.4 library (41). 

To evaluate the model's performance on the TF2F and TF2P datasets, the data were tested 

for normality using the Shapiro-Wilk test, and based on the results, a one-way ANOVA or 

Kruskal-Wallis test was conducted to compare the vDSC, sDSC, and ASSD for the mandible, 

maxilla, and MC left and right. The skin was not included since it was not labeled in either 

MICCAI dataset. This statistical test was used to determine if there were significant 

differences between the model's performance on external datasets. A p-value of less than 

0.05 was considered as the level of statistical significance. 

Landmark localization accuracy was assessed by calculating the Euclidian distance between 

ground truth and prediction and is reported as median radial error (MRE) and the number of 

landmarks detected within the clinical acceptability error of < 2 mm is noted as the successful 

detection rate (SDR). Data were represented as median [Q1 - Q3] if they were not normally 

distributed. 

Statistical analyses and visualizations were conducted using R version 3.6.0 and Excel. 

5.4 Inference Workflow 

The inference workflow is the combined workflow of all models, including pre-processing and 

post-processing steps, to achieve a fully automated workflow. The inference was run on the 

GPU cluster with 24GB RAM available. The workflow comprises several steps: 

1. Preprocessing: The input image should be in NIfTI format. For the segmentation 

model, the image is resampled to a spacing of 0.25 x 0.25 x 0.25 mm. The image is 

then padded with the minimum voxel value to achieve a shape of 681x681x481 voxels. 

For the landmark localization models, the image is resampled to 0.5x0.5x0.5 mm and 

padded to achieve a shape of 340x340x240 voxels. 

2. Segmentation Model Inference: Inference is performed on the preprocessed image 

using the segmentation model. Post-processing is automatically applied following the 

prediction stage. The segmentation file is exported. 

3. Landmark Model Inference: 
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○ Landmark Model 1: Inference is conducted for the first group of landmarks. 

○ Landmark Model 2: Inference is conducted for the second group of landmarks. 

4. Post-Processing for Landmark Localization: The analysis script identifies the center 

of the spherical segmentations and translates these into world coordinates. The 

coordinates are stored in a JSON file, including the name and coordinates of each 

landmark, using the Slicer template for landmarks. 

5. Patient data: The exported landmarks files and segmentation file and cephalometric 

analysis files are saved in a specified folder for accessibility. 

 

The inference workflow can be found in Appendix D. This workflow contains three main parts. 

Two Python files, one for managing the pre-processing and the other for post-processing. The 

third script is a bash script, which handles model installation, executes the aforementioned 

Python scripts, and runs the prediction of the models in the GPU cluster environment. 
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6. Results 

6.1 Dataset 

In this study, an extended dataset has been created involving segmentation of the mandible, 

maxilla and cranial base, MCL, MCR, and the skin. Furthermore, 43 CMF landmarks were 

annotated which could be used for 3D cephalometric analysis and surgical planning. Figure 2 

illustrates the results of the manual segmentation and landmark localization process for a 

randomly selected patient from the dataset. It shows all landmarks and segmented structures, 

except for the skin structure (for visibility purposes) and the supraorbital landmarks (left and 

right) which fall outside the FoV. Among the 57 annotated patients, one patient was missing 

the right mandibular canal due to a fibula reconstruction of the right body of the mandible. 

Among the 57 annotated patients, one patient missed the right mandibular canal due to a 

fibula reconstruction of the right body of the mandible. On average, 1.9 ± 2.0 landmarks were 

missing per patient, primarily due to limitations in the CBCT FoV or missing dentition.  

 

Figure 2, Example of one patient, showing all landmarks and segmented structures except for 
the skin structure to enhance visibility and supraorbital (left and right) landmarks. 
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6.2 Segmentation model performance on test dataset 

The performance of the segmentation model was thoroughly evaluated across the three 

datasets, with the test dataset results displayed in Figure 3. The Shapiro-Wilk test indicated 

that the results were not normally distributed, so the Kruskal-Wallis test was used for 

statistical analysis. 

The most common error in the predicted segmentations was partially missing or 

discontinuous mandibular canals. No systematic errors were attributable to dental implants, 

crowns, or similar factors, although in the TF2P dataset, some maxillary dentition was 

incorrectly labeled as mandibular dentition. For two examples from the test set, Appendix F 

shows the ground truth and predicted results for both the worst-performing patient and a 

randomly selected patient representing an average test case. 

The vDSC, sDSC, and ASSD are presented for the test dataset, TF2F, and TF2P datasets in 

Table 2. The mandible was segmented with the highest vDSC and sDSC and lowest ASSD 

across all three datasets. Furthermore, the median ASSD was below 0.5 mm for almost all 

segmented structures. The highest in ASSD was observed for the maxilla segmentation in the 

TF2P dataset 7.45 mm [0.81 – 9.81]. The results of the IoU and HSD95 results can be found 

in Appendix E. 

The Kruskal-Wallis test showed statistically significant differences among the datasets. 

Significant differences were found between all datasets for all metrics, except for the MCL's 

vDSC and ASSD. 

 

Table 2, Average symmetric surface distance (ASSD) in mm, Volumetric dice scores (vDSC), 
surface dice scores (sDSC) at 1 mm tolerance and Kruskal - Wallis statistical test results for 
the test dataset, TF2F and TF2P datasets. 

  

Metric 

Test dataset 
(n=11) 

TF2F 
(n=30) 

TF2P 
(n=30) 

Kruskal-
Wallis test 

Median [Q1 - Q3] Median [Q1 - Q3] Median [Q1 - Q3] ( p -value) 

Mandible 

ASSD 0.06 [0.06 - 0.07] 0.12 [0.11 - 0.13] 0.15 [0.13 - 0.18] < 0.005 

sDSC 1.00 [0.99 - 1.00] 0.99 [0.98 - 0.99] 0.98 [0.97 - 0.99] < 0.005 

vDSC 0.98 [0.98 - 0.98] 0.97 [0.97 - 0.97] 0.97 [0.96 - 0.97] < 0.005 

Maxilla 

ASSD 0.25 [0.20 - 0.38] 0.33 [0.26 - 0.42] 7.45 [0.81 - 9.81]* < 0.005 

sDSC 0.95 [0.93 - 0.96] 0.94 [0.92 - 0.96] 0.70 [0.59 - 0.85]* < 0.005 

vDSC 0.91 [0.90 - 0.93] 0.92 [0.91 - 0.95] 0.69 [0.57 - 0.84]* < 0.005 

Mandibular 
canal left 

ASSD 0.24 [0.20 - 0.30] 0.19 [0.16 - 0.29] 0.15 [0.14 - 0.27] 0.073 

sDSC 0.98 [0.95 - 0.99] 0.98 [0.95 - 0.99] 0.99 [0.96 - 1.00] 0.032 

vDSC 0.77 [0.73 - 0.79] 0.80 [0.76 - 0.82] 0.82 [0.77 - 0.84] 0.822 

Mandibular 
canal right 

ASSD 0.26 [0.21 - 0.40] 0.18 [0.15 - 0.24] 0.16 [0.14 - 0.21] 0.010 

sDSC 0.98 [0.90 - 0.98] 1.00 [0.99 - 1.00] 0.99 [0.96 - 1.00] < 0.005 

vDSC 0.75 [0.65 - 0.79] 0.82 [0.76 - 0.84] 0.82 [0.79 - 0.84] 0.046 

Skin 

ASSD 0.55 [0.47 - 0.61] - - - 

sDSC 0.87 [0.85 - 0.88] - - - 

vDSC 0.95 [0.94 - 0.96] - - - 

Overall 

ASSD 0.25 [0.18 - 0.44] 0.19 [0.14 - 0.32] 0.18 [0.14 - 0.61] - 

sDSC 0.96 [0.89 - 0.99] 0.98 [0.94 - 0.99] 0.98 [0.89 - 0.99] - 

vDSC 0.91 [0.79 - 0.96] 0.86 [0.81 - 0.95] 0.83 [0.75 - 0.96] - 

* n=24 due to absence of ground truth segmentations 
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Figure 3, boxplots of the vDSC (blue) and sDSC (orange) for the performance of the 

segmentation model on the test dataset. The colored dots represent individual data points. 

6.3 Landmark localization model performance on the test 

dataset 

A total of 453 landmarks were automatically localized in the 11 test patients. Due to missing 

dental elements or locations outside the FoV, 20 landmarks were missing in the test dataset. 

The predicted landmarks were not always segmented as perfect spheres and had slightly 

lower volumes than the segmented landmarks, see Appendix F. 

Among the models, the two models trained with landmarks annotated using spheres of 4 mm 

radius, configuration model_4mm, achieved the lowest overall MRE of 0.98 [0.58 – 1.60] mm. 

Additionally, model_4mm exhibited the highest SDR < 2 mm, with an SDR of 81.8%. Each of 

the three configurations demonstrated the lowest MRE for dental landmarks and the highest 

MRE for surgical landmarks. Table 3 presents the results of the landmarking models for each 

region. The most accurate landmark was element 23, predicted by model_4mm with a MRE of 

0.45 [0.39 - 0.81] mm; the largest MRE was observed for the Inferior border L predicted by 

model_6mm with a MRE of 2.88 [1.44 - 4.89] mm. The results of each individual landmark 

prediction can be found in Appendix G. The distribution of MRE for all landmarks in the test 

dataset for each configuration is shown in Figure 4. 

6.4 Training and Inference 

Training one fold of the segmentation model took approximately 50h and training of one fold 

for the landmark localization models took approximately 45h. 

The inference workflow used the model_4mm for landmark localization. Without manual 

intervention, the total inference time from preprocessing to the export of patient data was 

approximately 17.7 minutes per patient. Segmentation accounted for the longest duration, 

taking 13.2 minutes to complete. Each landmarking model took 1.8 minutes. The 

preprocessing steps required on average 35 seconds and 20 seconds, respectively.  
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Table 3, landmark localization performance on test dataset for mandibular, maxillary, dental, 
and surgical landmarks for each of the three configurations. FP = false positive, FN = fasle 
negative, FPR = false positive rate, and FNR = false negative rate. 

  Landmarks 
MRE 

median [Q1 -Q3] 
SDR  

< 2mm 
FP FN FPR FNR 

Model_4mm 

mandible 0.94 [0.54 - 1.53] 83.1% 0 1 NA* 0.7% 

maxilla 0.88 [0.55 - 1.89] 76.3% 2 5 14.3% 4.9% 

dental 0.75 [0.47 - 1.07] 96.9% 1 6 11.1% 5.6% 

surgical 1.37 [0.81 - 2.09] 71.3% 0 2 NA* 1.8% 

Model_5mm 

mandible 1.00 [0.64 - 1.61] 82.4% 0 1 NA* 0.7% 

maxilla 0.99 [0.59 - 2.13] 73.4% 2 4 14.3% 3.9% 

dental 0.77 [0.54 - 1.21] 68.2% 1 5 11.1% 4.7% 

surgical 1.40 [0.97 - 2.27] 96.9% 0 0 NA* 0.0% 

Model_6mm 

mandible 1.05 [0.63 - 1.77] 81.1% 0 0 NA* 0.0% 

maxilla 1.14 [0.65 - 2.15] 69.4% 2 0 14.3% 0.0% 

dental 0.84 [0.57 - 1.23] 94.9% 3 4 27.3% 3.8% 

surgical 1.46 [0.97 - 2.27] 69.1% 0 0 NA* 0.0% 

Model_4mm overall 0.98 [0.58 - 1.60] 81.8% 3 14 13.0% 3.0% 

Model_5mm overall 1.03 [0.63 - 1.67] 80.1% 3 10 13.0% 2.2% 

Model_6mm overall 1.08 [0.66 - 1.82] 78,6% 7 4 25.9% 0.9% 

* No missing landmarks, so FPR cannot be computed. 
 
 
  

 
Figure 4, voilin plot of MRE of all landmarks (n = 543) in the test dataset for the three 
configurations 
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7. Discussion 

The accuracy of surgical planning in orthognathic surgery has significantly increased with the 

adoption of CBCT scans (8-10). However, the process of manual segmentation and landmark 

localization in 3D is complex and time-consuming, creating the need for an automated, 

efficient, and accurate workflow (11). The proposed solution in this study integrates a 

segmentation network and two landmark localization networks into a fully automated 

workflow using the open-source nnU-Net. This approach achieved accurate segmentation and 

landmark localization results, requiring 17.7 minutes per patient without the need for manual 

intervention. 

The volumetric overlap of the segmentation results in the test set was large according to the 

overall vDSC of 0.91 [0.79 - 0.96]. The mandible, maxilla, and skin all achieved vDSC greater 

than 0.9. The mandible segmentation, in particular, was highly accurate, with a mean vDSC of 

0.98 [0.98-0.98] and a near-perfect mean sDSC of 1.0 [0.99 – 1.0] and ASSD 0.06 [0.06 -0.07] 

mm. These overall segmentation results are consistent with those reported by Dot et al. and 

Zhang et al. (11, 31). Despite the overall high performance for the vDSC, the mandibular canal 

segmentations achieved lower vDSCs of 0.75 [0.65 – 0.79] and 0.77 [0.73 – 0.79] mm 

compared to the other structures. This discrepancy is likely due to the relatively small volume 

of the canals, which poses a challenge for volumetric segmentation metrics (40). However, 

the median ASSDs of 0.25 [0.20 – 0.35] mm demonstrated precise boundary delineation for 

the MCs, and the sDSCs of 0.95 [0.9 – 1.00] indicated the model's capability to accurately 

delineate boundaries within a 1 mm margin. The model's performance is similar to dedicated 

methods proposed by Jaskari et al. and Abdolali et al., which reported a mean (± SD) ASSDs 

of 0.45 ± 0.12 mm and 0.81 ± 0.2 mm, respectively (42, 43). While direct comparison between 

mean and median values can be challenging, the low median ASSD indicates that the majority 

of the test cases had very precise boundary delineations. 

The low ASSD values for the mandible (< 0.2 mm) and maxilla (< 0.4 mm) across datasets 

indicate that the segmentation model’s output is suitable for the subsequent planning of 

patient-specific surgical guides and implants, which improve the accuracy of surgical 

outcomes (44, 45). However, the ASSD for the maxilla in the TF2P dataset showed a higher 

value of 7.45 [0.81–9.81] mm. This discrepancy is likely due to inaccuracies in the ground 

truth labeling in this dataset and was expected, as some patients lacked partial or complete 

upper dental segmentation despite its presence in the CBCT. Furthermore some upper 

dentition was incorrectly labeled by the segmentation model as mandibular dentition. The 

absence of the maxillary bone might have been the reason for this. Another segmentation 

error was observed for the MCs. The MC was partially missing or discontinuous in some 

cases, this might be caused by disabling the data augmentation for mirroring along the x-axis. 

Giving both the MCL and MCR the same label and training the model using mirroring in the x-

axis, and separating the labels in post-processing might solve this problem, however, the MC 

is difficult to segment due to low contrast between the canal and surrounding tissue in the 

mandible and compromised the integrity of the tubular structure (46). 

The worst-performing case in the test set was attributed to overall low scan quality and a 

unique post-maxillary advancement scan in the dataset. This scan resulted in artifacts not 

present in the training set, specifically due to the presence of four fixation plates at the 

maxillary surface. 



 22 

 

 

Furthermore, the robustness of the segmentation model has been validated using the MICCAI 

2024 ToothFairy2F and ToothFairy2P datasets (37, 38). Although the model’s performance 

was statistically different for most labels in the three datasets, the metrics still indicated 

accurate results across different patient populations and imaging conditions. The validation 

is particularly significant given the wide range of artifacts present in the data, such as 

implants, crowns, and braces, which can complicate the segmentation process. The 

segmentation model shows the ability to maintain high performance despite these 

challenges. The model could be further improved by training on a wider variety of patient 

deformities, CBCT scanners, and imaging conditions. 

In order for automatic landmark localization on CBCT to be implemented in daily clinical use, 

consistent and reproducible results are needed. The models trained in this study achieved 

clinically acceptable standards with errors below 2 mm (25). The three configurations 

(model_4mm, 5mm, and 6mm) achieved an SDR < 2mm, of around 80% for all landmarks, 

indicating the feasibility of automated landmark localization using a segmentation approach. 

The 4 mm model achieved the highest accuracy, with an SDR < 2 mm of 81.8% and an MRE of 

0.98 [0.83-1.23]. 

Dental landmarks were located with the highest overall accuracy with a MRE of 0.75 [0.47 - 

1.07] and a SDR of 96.9% and surgical landmarks were located with the least accurate results 

with MRE 1.37 [0.81 - 2.09] and SDR of 71.3% using model_4mm. The location of the landmark 

could be the reason for this as the dental landmarks were located at distinct locations, such 

as crown tips. However most surgical landmarks such as the Zyg-L & R and the Inf B-L & R are 

located along broad curvatures and indistinct boundaries and therefore more erroneous for 

identification (47). This was also seen for the Pog and Inf O-L & R landmarks on the mandible 

and maxilla, in contrast to the accurate localization of the ANS and PNS. 

Furthermore the Nasion was occasionally missed during prediction due to its low occurrence 

in the dataset (n = 12). Additionally similar to the MC in the segmentation model, differences 

in MRE were observed between bilateral landmarks, such as Go-L & R and Condyle L & R. This 

could also be caused by the disabled mirroring in the x-axis for data augmentation. 

Although some predicted landmark segmentations were not perfect spheres, as illustrated in 

the worst-case example in Appendix F, the center of mass proved to be a robust method for 

managing these irregular shapes. Segmenting a sphere around landmarks introduced an 

additional step compared to direct object detection, but the results, after translating the 

volume back to the center coordinate using the center of mass, were comparable to object 

detection studies, achieving MREs below 2 mm (17-31). This suggests that segmentation 

could be a viable option for landmark localization, similar to the findings of Weingart et al., 

who used 2 mm radial segmentations of landmarks on CT scans (27). 

It should be noted that high segmentation overlap and low landmark localization error levels 

do not necessarily translate to clinical usable segmentations and landmarks. Segmentations 

and landmarks must be carefully reviewed and adjusted if needed to ensure their clinical 

applicability. 

Overall, the use of nnU-Net has proven to be very suitable for automating segmentation and 

landmark localization in surgical planning. The models were accurate and its extensive 

documentation, active maintenance, and frequent usage make it a reliable and easily 

reproducible tool. 
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7.1 Limitations 

The limitations in this study are multifaceted and could impact the overall accuracy and 

efficiency of the outcomes. 

Firstly, this was a single-center study with anonymized data and unknown patient 

characteristics. No evaluation of different CBCT scanner models and imaging settings on the 

segmentation performance was included. Variations in scanner hardware and acquisition 

protocols can introduce inconsistencies in image quality, potentially affecting the 

generalizability of the model. The worst-performing case in the test set highlights the 

importance of including a diverse range of imaging conditions in the training dataset to 

improve model robustness. 

Secondly, the workflow required segmentations made in Materialise software to be exported 

as STL files, then imported into Slicer for conversion back to masks, and finally saved as NIfTI 

files. This multi-step conversion process introduced potential sources of error. Although no 

significant errors were observed, the process inherently risks introducing small inaccuracies 

that could affect the overall segmentation quality. 

7.2 Recommendations 

To enhance the robustness and generalizability of the models, it is recommended to 

incorporate a broader range of scans from diverse patient populations, various scan 

modalities, and different fields of view (FoV). This expansion will ensure that the models are 

exposed to a wider variety of anatomical variations and imaging conditions, thereby improving 

their performance across different clinical scenarios. 

Furthermore, the planning pipeline should be extended to include a comprehensive 3D 

cephalometric analysis with a wide variety of measurements implemented. This extension 

would allow for a more detailed and accurate assessment of craniofacial structures. As 

suggested by Gateno et al., integrating such a detailed cephalometric analysis can 

significantly enhance the assessment of deformities (48). Furthermore, they proposed a 

detailed method for consistent 3D assessment of the CMF anatomy, including size, shape, 

position, and orientation of the different facial units, which might be suitable to incorporate in 

the proposed workflow in this study. Evaluating the influence of landmarking inaccuracies on 

clinical implications, such as diagnosis and treatment planning, is important for this 

integration. The fact that landmarks are located in free space rather than on the surface of 

created segmentation for the anatomy might also influence landmarking accuracy, either 

positively or negatively. Future studies should focus on quantifying these effects and 

developing strategies to mitigate any negative impacts, thereby ensuring the automated 

workflow remains reliable and clinically relevant. 

To further validate the efficacy of the proposed nnU-Net-based workflow, it should be 

implemented and tested in a clinical setting. This will help determine if it indeed enhances 

efficiency and maintains acceptable accuracy in real-world craniomaxillofacial surgical 

planning.  
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8. Conclusion 

In conclusion, this study evaluated the use of nnU-Net for developing an automated 

segmentation and landmark localization workflow in craniomaxillofacial surgery planning. 

The results demonstrated high accuracy in segmenting the main CMF anatomical structures 

and achieving precise landmark localization. This automated approach shows great potential 

to enhance the efficiency of CMF surgical planning, reducing the need for manual intervention 

and improving overall workflow efficiency.  
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Abstract 
Background: During the last decades, three-dimensional (3D) virtual planning in orthognathic surgery has become 

the golden standard. Cone beam computed tomography (CBCT) is most commonly used as imaging modality for 

3D virtual planning. In order to create the 3D virtual planning, mandible, maxilla, mandibular canal and skin 

segmentations are required. 

Objective: This article aimed to create a quick and easy protocol for segmenting the mandible, maxilla and cranial 

bones, mandibular canals and skin in CBCT scans using Mimics 26.0. 

Method: Two experienced technical physicians provided segmentation training. After completion of the training 

six test CBCT images were segmented and reviewed by the technical physician. Next, the protocol was drawn-up 

and the rest of the segmentations were performed. 

Results: A total of 57 patient were segmented using this protocol. Each segmentation takes approximately one 

and a half hour to complete. 

Conclusion: A step by step protocol was constructed for the segmentation of CBCT images using Mimics 26.0. 

The resulting segmentations are watertight STL files that can be used for a variety of future studies. 
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Introduction 
Orthognathic surgery is a sub-specialty of oral and maxillofacial surgery that corrects dis- 

proportion of the facial skeleton. Surgery can be performed to create or restore function and 

aesthetics [1]. Traditionally, conventional two-dimensional (2D) radiographs and manual 

model surgery were the standard for orthognathic surgery. In the last decades, three-

dimensional (3D) pre-operative planning is commonly used to provide accurate and 

reproducible treatment planning. Compared to conventional treatment planning, 3D planning 

reduces operative time and costs [2-4]. 

Cone-beam computed tomography (CBCT) can be used as imaging modality to create 

the virtual 3D planning [5,6]. CBCT has lower costs and reduces radiation exposure 

compared to regular computed tomography (CT) [7]. 

However, CBCT has a few disadvantages compared to regular CT such as higher noise 

levels and lower contrast. Also, the gray values of a CBCT scanner are not absolute as in 

regular CT with fixed Hounsfield units (HU). This means that tissue with a similar density 

can be assigned a different gray value based on their position in the field of view of the 

scanner [5]. 

Most (semi-)automatic segmentation programs are based on thresholding. Due to the 

non absolute gray values of CBCT, threshold based segmentation becomes more difficult 

since the gray level and contrast decrease towards the condyles [5]. Therefore, it is 

impossible to find one and the same threshold for all bone tissue to be segmented resulting 

in a labor intensive and time consuming manual segmentation process [8]. 

In order to create segmentations using CBCT images for virtual preoperative planning, 

manual or semi-automatic segmentation is currently used in clinical practice. Since no 

segmentation protocol for Mimics 26.0 is described in the literature, the goal of this article 

is to provide a quick and easy protocol for semi-automatic segmentation of the 

craniomaxillofacial anatomy on CBCT scans using Mimics 26.0. 

Method 

Under guidance of two experienced technical physicians segmentation training was 

provided using Mimics 26.0. The training consisted of instructions how to use Mimics 26.0 

segmentation tools and showing their current workflow for bone surface segmentations 

used in clinical practice. 

Next, six CBCT images were segmented for training and reviewed for sufficiency by the 

technical physicians. Areas of attention were pointed out after which the training was 

completed and the construction of the protocol could begin. 

 

Protocol 
Below a protocol is described for segmentations of the mandible, the maxilla including the 

cranial bones. For the mandible a total of 5 different masks will be created. The mandibular 

body, mandibular dentition, mandibular ramus and finally masks for the left and right 

condyles. The maxilla will consist of three different masks. The frontal upper skull, upper 

dentition and the distal upper skull. Furthermore the mandibular canals and skin will be 

segmented. 
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Mandibular Body and Frontal Skull 
1. Import the CBCT scan by selecting ”New Project”. 

2. Adjust the contrast by holding the right mouse button until the mandibular body is 

clearly visible in the sagittal plane or by selecting the ”contrast” tab in the bottom of the 

screen. Drag the circle to around 1900 HU. 

3. Go to ”Segment” and choose ”New Mask”. Adjust the lower threshold until the contour 

of the mandibular body is highlighted (around 825 HU). Set the upper threshold at its 

upper limit. Name this mask ”Skull”. 

4. Create the 3D model of the mask ”Skull” by clicking the upper right icon of the 3D 

preview window. 

5. To split the mask go to ”Region Grow” if Mandible and Maxilla are not connected. 

Otherwise got to ”Split Mask” Select the mask ”Skull”, rename ”Region A” ”Mandible” 

and ”Region B” ”Upper Skull”. Carefully use the brush in all three planes to split the mask 

”Skull” and click ”OK”. 

 
If the patient has braces or other highly dense objects around the dentition that causes 
noise, follow steps 6-12. Otherwise continue at step 13 

Dentition 

6. Rotate the 3D preview of the mask ”Mandible” to create a side view. Make sure the 

most distal molars directly overlap. 

7. Go to ”Edit Masks” Select the mask ”Mandible”, choose ”Remove” and ”Lasso”. 
Carefully cut out the braces and noise caused by the dense objects by cutting directly 

around the braces. Try to spare the roots of the dentition. 

8. Repeat the previous step for the mask ”Upper Skull”. 
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9. Go to ”New Mask”. Set the lower threshold so the outlines of the dentition are 

completely visible and the noise caused by dense objects is minimal. This lower 

threshold will be higher than the previous mask ”Skull”. Set the upper threshold at its 

upper limit. Name this mask ”Dentition”. 

 

10. Go to ”Split Mask” Select the mask ”Dentition”, rename ”Region A” ”Lower Dentition” 

and ”Region B” ”Upper Dentition”. Carefully use the brush in all three planes to split the 

mask ”Dentition” and click ”OK”. 

11. Go to ”Region Grow”, set the mask ”Lower Dentition” as ”Source” and ”Mandible” as 
”Target”. Click in the 3D preview on the mask ”Lower Dentition” To unite the masks 

”Lower Dentition” and ”Mandible”. 
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12. Repeat the previous step to unite the masks ”Upper Dentition and ”Upper 

Skull”. 

Mandibular Ramus and Distal Skull 
13. Go to ”New Mask”, adjust the anterior border of the region of interest in the sagittal 

plane to ensure the most anterior coronoid process is just within the anterior border of 

the segmentation. Adjust the lower threshold until the ramus of the mandible is marked 

without much noise surrounding the ramus (around 650 HU). Set the upper threshold 

at its upper limit. Name the resulting mask ”Ramus and Upper Skull”. 

 

14. Go to ”Region Grow” set as source the mask ”Ramus and Upper Skull” and set as target 

”Upper Skull”. Click on the temporal bone and left and right zygomatic bone to unite the 

masks in the mask named ”Upper 

Skull”. 
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15. Go to ”Region Grow”, set as source the mask ”Ramus and Upper Skull”and set as target 

”Mandible”. Click on the left and right ramus of the mandible to unite the masks in the 

mask named ”Mandible”. 

 

Temporomandibular joint (TMJ) and Mandibular Condyles 
16. Go to ”New Mask”, adjust the borders of the segmentation in the axial,saggital and 

coronal view so that the zygomatic process of the temporal bone, the mandibular fossa 

of the temporal bone and the most caudal part of the sigmoid notch of the mandible 
are marked. Adjust the lower threshold so that the contour of the left condylar head is 

visible (480-540 HU). Set the upper threshold at its upper limit. Name this mask 

”Condyle L”. 
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17. Go to ”Region Grow”, set as source the mask ”Condyle L” and set as target ”Mandible”. 

Click on the condyle to unite the masks in the mask named ”Mandible”. Use ”Split Mask” 

if the condyle and mandibular fossa of the temporal bone are connected. 

18. Go to ”Region Grow”, set as source the mask ” Condyle L” and set as target ”Upper 

skull”. Click on the zygomatic arch to unit the masks in the mask named ”Upper skull”. 

19. Repeat the previous steps 17 & 18 for the right condyle. Name the resulting mask 

”Condyle R”. 

Fill Holes and Finish Mandibular Mask 
20. Go to ”Smart Fill”, use ”Mark Hole” and fill up the hollow structures within the condylar 

head, ramus, mandibular body and the teeth by using all three views. Make sure to leave 

the enterance of the mental foramen and mandibular foramen open. Name the resulting 

mask ”Mandible” and remove the previous mask ”Mandible”. 

 

21. Check all three views if the contours of the mandible, ramus, condylar heads and teeth 

(with braces if applicable) are correct. Adjust with ”Edit Mask” if necessary. 

22. Select the mask ”Mandible” and click on ”Smooth Mask”. 
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23. Go to ”Region Grow”, select as source and as target the mask ”Mandible”. This ensures 

that the mask consists of one part. 

24. Go to ”Smart Fill”, select ”Fill Holes”, set ”Hole Closing Distance” at 2 voxels. Click on 

”OK”. Name the resulting mask ”Mandible” and delete the previous mask ”Mandible”. 

 

 

Add thin bones and Finish Upper skull Mask 
25. Select the mask ”Upper skull” and Go to ”Smart Fill”, use ”Mark Hole” and fill up the 

hollow structures in the maxilla. Do not fill the sinuses. Name the resulting mask ”Upper 

skull” and remove the previous mask ”Upper skull”. 

26. Check the anterior surface of the maxilla in the ”Upper skull” mask for holes. If holes 

are present select ”Segment Thin Bone” and draw a line in 2D or 3D to indicate the hole. 

 

27. Select the mask ”Upper skull” and click on ”Smooth Mask”. 

28. Go to ”Region Grow”, select as source and as target the mask ”Upper skull”. This 

ensures that the mask consists of one part. 
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29. Go to ”Smart Fill”, select ”Fill Holes”, set ”Hole Closing Distance” at2 voxels. Click on 

”OK”. Name the resulting mask ”Upper skull” and delete the previous mask ”Upper 

skull”. 

Create skin segmentation 
30. Go to ”Segment” and choose ”New Mask”. Adjust the lower threshold until most of the 

soft tissue is included and the noise of the background is minimal (around 200 HU). Set 

the upper threshold at its upper limit. Name this mask ”skin”. 

31. Remove most of the noise from the mask using the ”Region Grow” functionality. 

 

32. Go to ”Smart Fill” and use ”Fill holes” with hole closing distance set to2 voxels. 

33. Remove any of the remaining noise using the ”Lasso” under ”Edit mask” by carefully 

selecting the noise in either the 3D viewer or the 2D views. 

Create mandibular canal segmentations 
34. For segmenting both the mandibular canal left and right, scroll to the entrance of the 

inferior alveolar nerve into the mandible. Go to ”Thin Structure” and select the center of 

the mandibular canal every 5 - 10 slices in the mandibular ramus, where the canal is 

mainly vertical until the apex of the third molar is reached. To better visualize the canal 

through the body of the mandible the contrast could be adjusted for better visualization. 

Follow the contour through the mandibular body. By using ”Shift + left mouse click” the 

other views automatically jump to the same slice, to provide better visualization. Press 

”Esc” when the last point is placed to create the object. Do this for both the left and right 

mandibular canal. 
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35. Go to the just created ”Thin structure” and under properties, check if thethickness under 

geometry is set to 2.5 mm. 

36. Select ”Mask from Object” and select the thin line structure to create amask of the 

mandibular canal. Rename the segmentation to MC left or MC right. 

37. Select the mask of the Mandible and subtract the MC left and MC rightusing a boolean 

operation. 

Create and export as STL file 
38. Select the masks and right mouse click on the masks and go to ”CalculatePart”. Set 

”Quality” to ”Optimal*” and click ”OK”. This creates the parts. 

39. Go to ”3D Tools”, select ”Wrap” set ”Smallest detail” to 0.5 mm, ”GapClosing Distance” 

to 0.5 mm and click ”OK”. 

40. Make the contours of the part of for example the ”Wrapped Mandible 1” visible by 

clicking on the ”Contours” icon in the ”Objects” screen. Follow the contours one final 

time in all three views to assess if they are sufficient. 
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41. Go to ”File”, select ”Export”, select ”Parts”, ”Binary STL” and select allmasks. Choose 

the correct output file. 

 

42. Go to ”File”, select ”Export”, select ”Parts”, ”Binary STL” and select allparts. Choose the 

correct output file. 

 

Results 
A total of sixty patients who were referred to the Erasmus Medical Center for orthognathic 

surgery from a period between March 2017 - September 2022 were included. Three patients 

were excluded due to missing CBCT data. This resulted in a total of 57 complete 

segmentations. 

Creating the segmentations for every patient costed approximately 60 to 90 minutes 

each depending on the amount of slices, scan quality, contrast to noise ratio and deformities 

of the skeleton. 

Discussion 
The aim of this article was to provide a quick and easy to use protocol for CMF 

segmentations using the software Mimics 26.0. 

During the segmentation of the data multiple problems emerged. First of all, nearly all 
patients either had braces, implants, dental filling or other dense object within the dental 
region which resulted in noise throughout the oral region. This protocol compensates for this 
noise by creating a separate mask for the dentition, but often the noise is still visible in other 
parts of the skull and mandible. 

Furthermore the HU values of the CBCT images have higher contrast between different 
tissues around the iso-centre of the image, located in the center of the mouth, than towards 
the edges of the image. Therefore additional local thresholding steps were needed to 
segment bones near the posterior edge of the image. 

A third limitation of the dataset was low image quality of the CBCT. Some CBCT images 

only had 121 axial slices, what resulted in poor segmentation quality. Sharp corners in the 
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final segmentations are clearly visible and differentiating details such as the mental foramen 

or mandibular foramen becomes difficult. 

Finally a small portion of the patients were not completely still during the CBCT image 

acquisition. This resulted in overlapping dense structures in the image. This is a problem for 

this segmentation protocol, since the parts of the bone that appeared to be captured twice 

on the image, the gray values are much higher than the surrounding bone tissue that only 

appeared once on the image. Finding a threshold for these images is extremely difficult and 

it is questionable how usable the resulting segmentations of these images are for future 

research. 

Despite these difficulties a data set of 57 patient with their respective CBCT images, 

mandible segmentations and upper skull segmentations was created that can have multiple 

applications in future research in the field of orthognathic surgery. 
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Appendix B – Ground truth landmark annotations 
Landmarks are colored based on their group: mandible (green), maxilla and cranial bones (yellow), dental (orange) 

and surgical (blue). The “y” or “n” indicate appearance in the ground truth dataset. 

Landmark ma_001 ma_002 ma_003 ma_004 ma_005 ma_006 ma_007 ma_008 ma_009 ma_010 
B Point y y y y y y y y y y 
Gnation y y y y y y y y y y 
Condyle L y y y y y y y y y y 
Corornoid R y y y y y y y y y y 
Foramen 
mentale L y y y y y y y y y y 
Gonion L y y y y y y y y y y 
Sogmoid 
Notch L y y y y y y y y y y 
Menton y y y y y y y y y y 
Pogonion y y y y y y y y y y 
Condyle R y y y y y y y y y y 
Coronoid R y y y y y y y y y y 
Foramen 
mentale R y y y y y y y y y y 
Gonion R y y y y y y y y y y 
Sigmoid Notch 
R y y y y y y y y y y 
Anterior Nasal 
Spine y y y y y y y y y y 
Basion y y y y y y y y y y 
Infraorbitale L y y y y y y y y y y 
Infraorbitale R y y y y y y y y y y 
Nasion y n n n n y n n y y 
A Point y y y y y y y y y y 
Porion L y y y n y y y y y y 
Porion R y y y n y y y y y y 
Posterior 
Nasal Spine y y y y y y y y y y 
Sella y y n y y y y y y y 
Supraorbitale 
L n n n n n n n n n n 
Supraorbitale 
R n n n n n n n n n n 
13 y y y n y y y y y y 
16 y y y y y y y y y y 
23 y y n y y y y y y y 
26 y y y n y y y y y y 
33 y y y y y y y y y y 
36 y y y y y y y y y y 
43 y y y y y y y y y y 
46 y y y y y y y y y y 
IsL1 y y y y y y y y y y 
IsU1 y y y y y y y y y y 
Inferior border 
L y y y y y y y y y y 
Inferior border 
R y y y y y y y y y y 
Lingula L y y y y y y y y y y 
Lingula R y y y y y y y y y y 
M2-line L y y y y y y y y y y 
M2-line R y y y y y y y y y y 
Nasal notch L y y y y y y y y y y 
Nasal notch R y y y y y y y y y y 
Zygomatic 
Process L y y y y y y y y y y 
Zygomatic 
Process R y y y y y y y y y y 
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Landmark ma_011 ma_012 ma_013 ma_014 ma_015 ma_016 ma_017 ma_018 ma_019 ma_020 
B Point y y y y y y y y y y 
Gnation y y y y y y y y y y 
Condyle L y y y y y y y y y y 
Corornoid R y y y y y y y y y y 
Foramen 
mentale L y y y y y y y y y y 
Gonion L y y y y y y y y y y 
Sogmoid 
Notch L y y y y y y y y y y 
Menton y y y y y y y y y y 
Pogonion y y y y y y y y y y 
Condyle R y y y y y y y y y y 
Coronoid R y y y y y y y y y y 
Foramen 
mentale R y y y y y y y y y y 
Gonion R y y y y y y y y y y 
Sigmoid Notch 
R y y y y y y y y y y 
Anterior Nasal 
Spine y y y y y y y y y y 
Basion y y y y y y y y y y 
Infraorbitale L y y y y y y y y y y 
Infraorbitale R y y y y y y y y y y 
Nasion n n n y n y n n n n 
A Point y y y y y y y y y y 
Porion L n n y y y y y y y y 
Porion R y n y y y y y y y y 
Posterior 
Nasal Spine y y y y y y y y y y 
Sella y y y y y y y y y y 
Supraorbitale 
L n n n n n n n n n n 
Supraorbitale 
R n n n n n n n n n n 
13 y y y y y y y y y y 
16 y y y y y y y y y y 
23 y y y y y y y y y y 
26 y y y y y y y y y y 
33 y y y y y y y y y y 
36 y y y y y y y y y y 
43 y y y y y y y y y y 
46 y y y y y y y y y y 
IsL1 y y y y y y y y y y 
IsU1 y y y y y y y y y y 
Inferior border 
L y y y y y y y y y y 
Inferior border 
R y y y y y y y y y y 
Lingula L y y y y y y y y y y 
Lingula R y y y y y y y y y y 
M2-line L y y y y y y y y y y 
M2-line R y y y y y y y y y y 
Nasal notch L y y y y y y y y y y 
Nasal notch R y y y y y y y y y y 
Zygomatic 
Process L y y y y y y y y y y 
Zygomatic 
Process R y y y y y y y y y y 
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Landmark ma_021 ma_022 ma_023 ma_024 ma_025 ma_026 ma_027 ma_028 ma_029 ma_030 
B Point y y y y y y y y y y 
Gnation y y y y y y y y y y 
Condyle L y y y y y y y y y y 
Corornoid R y y y y y y y y y y 
Foramen 
mentale L y y y y y y y y y y 
Gonion L y y y y y y y y y y 
Sogmoid 
Notch L y y y y y y y y y y 
Menton y y y y y y y y y y 
Pogonion y y y y y y y y y y 
Condyle R y y y y y y y y y y 
Coronoid R y y y y y y y y y y 
Foramen 
mentale R y y y y y y y y y y 
Gonion R y y y y y y y y y y 
Sigmoid 
Notch R y y y y y y y y y y 
Anterior Nasal 
Spine y y y y y y y y y y 
Basion n y y y y y y y y y 
Infraorbitale L y y y y y y y y y n 
Infraorbitale R y y y y y y y y y n 
Nasion n n n n y n n n n n 
A Point y y y y y y y y y y 
Porion L n y y y y y y y y y 
Porion R n y y y y y y y y y 
Posterior 
Nasal Spine y y y y y y y y y y 
Sella n y y n y y y y y n 
Supraorbitale 
L n n n n y n n n n n 
Supraorbitale 
R n n n n y n n n n n 
13 y n y y y y y y y y 
16 y y y y y y n y y y 
23 y n y y n y n y y y 
26 y y y y y y n y y y 
33 y y y y y y y y y y 
36 y y y y y y y y y y 
43 y y y y y y y y y y 
46 y y y y y y y y y y 
IsL1 y n y y y y y y y y 
IsU1 y y y y y y y y y y 
Inferior 
border L y y y y y y y y y y 
Inferior 
border R y y y y y y y y y y 
Lingula L y y y y y y y y y y 
Lingula R y y y y y y y y y y 
M2-line L y y y y y y y y y y 
M2-line R y y y y y y y y y y 
Nasal notch L y y y y y y y y y y 
Nasal notch R y y y y y y y y y y 
Zygomatic 
Process L y y y y y y y y y y 
Zygomatic 
Process R y y y y y y y y y y 
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Landmark ma_031 ma_032 ma_033 ma_034 ma_035 ma_036 ma_037 ma_038 ma_039 ma_040 
B Point y y y y y y y y y y 
Gnation y y y y y y y y y y 
Condyle L y y y y y y y y y y 
Corornoid R y y y y y y y y y y 
Foramen 
mentale L y y y y y y y y y y 
Gonion L y y y y y y y y y y 
Sogmoid 
Notch L y y y y y y y y y y 
Menton y y y y y y y y y y 
Pogonion y y y y y y y y y y 
Condyle R y y y y y y y y y y 
Coronoid R y y y y y y y y y y 
Foramen 
mentale R y y y y y y y y y y 
Gonion R y y y y y y y y y y 
Sigmoid 
Notch R y y y y y y y y y y 
Anterior Nasal 
Spine y y y y y y y y y y 
Basion y y y y y y y y y y 
Infraorbitale L y y n y y y y y y y 
Infraorbitale R y y n y y y y y y y 
Nasion n n n y y n n y n n 
A Point y y y y y y y y y y 
Porion L y y n y y y y n y y 
Porion R y y n y y y y n y y 
Posterior 
Nasal Spine y y y y y y y y y y 
Sella y y n y y y y y y y 
Supraorbitale 
L n n n n n n n n n n 
Supraorbitale 
R n n n n n n n n n n 
13 y y y y y y y n n y 
16 y y y y y y y n y y 
23 y y y y y y y y n y 
26 y y y y y y y y y y 
33 y y y y y y y y y y 
36 n y y y y y y y y y 
43 y y y y y y y y y y 
46 n y y y y y y y y y 
IsL1 y y y y y y y y y y 
IsU1 y y y y y y y y y y 
Inferior 
border L y y y y y y y y y y 
Inferior 
border R y y y y y y y y y y 
Lingula L y y y y y y y y y y 
Lingula R y y y y y y y y y y 
M2-line L y y y y y y y y y y 
M2-line R y y y y y y y y y y 
Nasal notch L y y y y y y y y y y 
Nasal notch R y y y y y y y y y y 
Zygomatic 
Process L y y y y y y y y y y 
Zygomatic 
Process R y y y y y y y y y y 
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Landmark ma_041 ma_042 ma_043 ma_044 ma_045 ma_046 ma_047 ma_048 ma_049 ma_050 
B Point y y y y y y y y y y 
Gnation y y y y y y y y y y 
Condyle L y y y y y y y y y y 
Corornoid R y y y y y y y y y y 
Foramen 
mentale L y y y y y y y y y y 
Gonion L y y y y y y y y y y 
Sogmoid 
Notch L y y y y y y y y y y 
Menton y y y y y y y y y y 
Pogonion y y y y y y y y y y 
Condyle R y y y y y y y y y y 
Coronoid R y y y y y y y y y y 
Foramen 
mentale R y y y y y y y y y y 
Gonion R y y y y y y y y y y 
Sigmoid 
Notch R y y y y y y y y y y 
Anterior Nasal 
Spine y y y y y y y y y y 
Basion y y y y y y y y y y 
Infraorbitale L y y y y y y y y y y 
Infraorbitale R y y y y y y y y y y 
Nasion n n n y n n y n n n 
A Point y y y y y y y y y y 
Porion L y y y y y y y y y n 
Porion R y y y y y y y y y n 
Posterior 
Nasal Spine y y y y y y y y y y 
Sella y y y y n y y y y y 
Supraorbitale 
L n n n n n n n n n n 
Supraorbitale 
R n n n n n n n n n n 
13 y y y y y y y y y y 
16 y y y y y y y y y y 
23 y y n y y y y y y y 
26 y y y y y y y y y y 
33 y y y n y y y y y y 
36 y n y y y y y y y y 
43 y y y n y y y y y y 
46 y n y y y y y y y y 
IsL1 y y y n y y y y y y 
IsU1 y y y y y y y y y y 
Inferior 
border L y y y y y y y y y y 
Inferior 
border R y y y y y y y y y y 
Lingula L y y y y y y y y y y 
Lingula R y y y y y y y y y y 
M2-line L y y y y y y y y y y 
M2-line R y y y y y y y y y y 
Nasal notch L y y y y y y y y y y 
Nasal notch R y y y y y y y y y y 
Zygomatic 
Process L y y y y y y y y y y 
Zygomatic 
Process R y y y y y y y y y y 
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Landmark ma_051 ma_052 ma_053 ma_054 ma_055 ma_056 ma_057 
B Point y y y y y y y 
Gnation y y y y y y y 
Condyle L y y y y y y y 
Corornoid R y y y y y y y 
Foramen 
mentale L y y y y y y y 
Gonion L y y y y y y y 
Sogmoid 
Notch L y y y y y y y 
Menton y y y y y y y 
Pogonion y y y y y y y 
Condyle R y y y y y y y 
Coronoid R y y y y y y y 
Foramen 
mentale R y y y y y y n 
Gonion R y y y y y y y 
Sigmoid 
Notch R y y y y y y y 
Anterior Nasal 
Spine y y y y y y y 
Basion y y y y y y y 
Infraorbitale L y y y y y y y 
Infraorbitale R y y y y y y y 
Nasion n n n n n n n 
A Point y y y y y y y 
Porion L y y y n y y y 
Porion R y y y n y y y 
Posterior 
Nasal Spine y y y y y y y 
Sella y y y y n y n 
Supraorbitale 
L n n n n n n n 
Supraorbitale 
R n n n n n n n 
13 y y y y y y y 
16 y y y y y y y 
23 y y y y y y y 
26 y y y y y y y 
33 y y y y y y y 
36 y y y y y y y 
43 y y y y y y n 
46 y y y y y y n 
IsL1 y y y y y y y 
IsU1 y y y y y y y 
Inferior 
border L y y y y y y y 
Inferior 
border R y y y y y y n 
Lingula L y y y y y y y 
Lingula R y y y y y y n 
M2-line L y y y y y y y 
M2-line R y y y y y y n 
Nasal notch L y y y y y n n 
Nasal notch R y y y y y n n 
Zygomatic 
Process L y y y y y y n 
Zygomatic 
Process R y y y y y y n 

 

  



 47 

 

 

Appendix C – Landmark groups 

Landmarks that showed overlap or had the potential to overlap adjacent landmarks were 

extracted from group A and placed in group B.  

 

Landmark group A Landmark group B 
B Point Pogonion 
Condyle left & right Sigmoid Notch left & right 
Coronoid left & right Anterior Nasal Spine 
Foramen mentale left & right Porion left & right 
Gonion left & right 13 
Menton 16 
Basion 23 
Infraorbitale left & right 26 
A point Upper incisal midpoint 
Posterior nasal spine  
Sella  
33  
36  
43  
46  
Lower incisal midpoint  
Inferior border left & right  
Lingula left & right  
Nasal notch left & right  
M2-line left & right  
Zygomatic process left & right+  
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Appendix D – Inference workflow 

Preprocessing 

This python file handles the preprocessing of the images for the segmentation and landmark 

localization models. The script is executed by the inference.sh file. 

 

import os 

import SimpleITK as sitk 

import numpy as np 

from tqdm import tqdm 

import scipy.ndimage 

 

def copy_image(image, original_spacing): 

    """ 

    Copy the relevant metadata of the image to the new image and change the voxel size 

    The voxel size after downloading from: https://ditto.ing.unimore.it/toothfairy2/ 

    is 1.0 x 1.0 x 1.0 mm, while the paper describing the dataset describe the 

    original voxel size as 0.3 x 0.3 x 0.3 mm 

 

    Parameters 

    ---------- 

    image : SimpleITK.Image 

        The original image 

    new_spacing : list of float 

        The new voxel size 

 

    Returns 

    ------- 

    SimpleITK.Image 

        The image with the changed voxel size 

    """ 

    # Create a new image with the same pixel data but different spacing 

    copy_image = sitk.GetImageFromArray(sitk.GetArrayFromImage(image)) 

    copy_image.SetSpacing(original_spacing) 

    copy_image.SetOrigin(image.GetOrigin()) 

    copy_image.SetDirection(image.GetDirection()) 

 

    return copy_image 

 

def resample_image(image, new_spacing, is_mask=False): 

    """ 

    Resample the image to the new spacing using cubic or nearest neighbor interpolation 

 

    Parameters 

    ---------- 
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    image : SimpleITK.Image 

        The original image 

    new_spacing : list of float 

        The new voxel size 

    is_binary : bool 

        Whether the image is a binary mask 

 

    Returns 

    ------- 

    SimpleITK.Image 

        The resampled image 

    """ 

    # Get the original spacing and size 

    original_spacing = np.array(image.GetSpacing(), dtype=np.float32) 

    original_size = np.array(image.GetSize(), dtype=np.float32) 

 

    # Calculate the new size 

    new_size = original_size * original_spacing / new_spacing 

    new_size = np.round(new_size).astype(int)  # Round to the nearest integer 

 

    # Convert the image to a numpy array 

    image_array = sitk.GetArrayFromImage(image) 

 

    # Resample the image 

    if is_mask: 

        print(f"\nResampling image using Nearest Neighbor interpolation") 

        # Use nearest neighbor interpolation for binary masks 

        resampled_array = scipy.ndimage.zoom(image_array, original_spacing / new_spacing, 

order=0)   

    else: 

        print(f"Resampling image using Cubic interpolation") 

        #  Use cubic interpolation for other images 

        resampled_array = scipy.ndimage.zoom(image_array, original_spacing / new_spacing, 

order=3) 

 

    # Create a new image from the resampled array 

    resampled_image = sitk.GetImageFromArray(resampled_array) 

    resampled_image.SetSpacing(new_spacing) 

    resampled_image.SetDirection(NEW_DIRECTION) 

 

    return resampled_image 

 

def pad_image(image, new_size): 

    """ 

    Pad images to global variables NEW_SIZE with the minimum value in the image 

    """ 

    # Get the original size 

    original_size = np.array(image.GetSize(), dtype=int) 
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    # Calculate the padding size 

    padding_size = np.array(new_size) - original_size 

    # Make sure the padding size is not negative 

    padding_size = np.maximum(padding_size, 0) 

    # Calculate the padding for each dimension 

    lower_padding = padding_size // 2 

    upper_padding = padding_size - lower_padding 

    # Convert numpy arrays to lists of integers 

    lower_padding = lower_padding.tolist() 

    upper_padding = upper_padding.tolist() 

    # Get the minimum value in the image 

    min_pixel_value = float(np.min(sitk.GetArrayFromImage(image))) 

    # Create the padded image 

    padded_image = sitk.ConstantPad(image, lower_padding, upper_padding, min_pixel_value) 

    # Set the origin of the padded image 

    padded_image.SetOrigin(NEW_ORIGIN) 

 

    return padded_image 

 

def resize_images(input_folder_path, output_folder_path, new_size, new_spacing, mask=False): 

    """ 

    Resize and pad the images in the input folder to the output folder 

 

    Parameters 

    ---------- 

    input_folder_path : str 

        The path to the input folder 

    output_folder_path : str 

        The path to the output folder 

    """ 

    # Loop over all the files in the input folder 

    for file_name in tqdm(os.listdir(input_folder_path)): 

        file_path = os.path.join(input_folder_path, file_name) 

        if file_name.endswith(".nii.gz"): 

            # Read the image 

            image = sitk.ReadImage(file_path) 

            if image.GetSpacing() != tuple(new_spacing) or image.GetSize() != tuple(new_size): 

                # # Change the voxel size for MICCAI dataset 

                # print(f"Copying metadata of {file_name}") 

                # image = copy_image(image, ORIGINAL_SPACING) 

                # Resample the image 

                print(f"{file_name} has spacing: {image.GetSpacing()}, and size: 

{image.GetSize()}") 

                resampled_image = resample_image(image, new_spacing, mask) 

                print(f"Resampled {file_name}") 

                # Pad the image 

                padded_image = pad_image(resampled_image, new_size) 

                print(f"Padded {file_name}") 
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                # Save the padded image 

                output_file_path = os.path.join(output_folder_path, file_name) 

                print(f"Saving {file_name} to {output_file_path}") 

                sitk.WriteImage(padded_image, output_file_path) 

            else: 

                print(f"{file_name} already has the desired spacing and size.") 

                output_file_path = os.path.join(output_folder_path, file_name) 

                print(f"Saving {file_name} to {output_file_path}") 

                sitk.WriteImage(image, output_file_path) 

 

""" Preprocessing images for Segmentation model """ 

 

# Environment variable, Change original spacing if needed. DO NOT change the other variables 

for optimal performance 

# ORIGINAL_SPACING = [0.3, 0.3, 0.3] # for MICCAI dataset 

NEW_ORIGIN = [85.125, -84.875, -60] 

NEW_DIRECTION = [-1, 0, 0, 0, 1, 0, 0, 0, 1] 

new_spacing = [0.25, 0.25, 0.25] 

new_size = [681, 681, 481] 

mask = False 

 

# TODO: Change the input and output paths 

input_path = "/trinity/home/r060801/test_space/nnUNet/nnUNet_raw/raw_images" 

output_path = 

"/trinity/home/r060801/test_space/nnUNet/nnUNet_preprocessed/prep_segmentation_model" 

resize_images(input_path, output_path, new_size, new_spacing, mask) 

 

""" Preprocessing images for Landmarking models """ 

 

# Environment variable, Change original spacing if needed. DO NOT change teh other variables 

for optimal performance 

NEW_ORIGIN = [85.125, -84.875, -60] 

NEW_DIRECTION = [-1, 0, 0, 0, 1, 0, 0, 0, 1] 

new_spacing = [0.5, 0.5, 0.5] 

new_size = [340, 340, 240] 

mask = False 

 

# TODO: Change the input and output paths 

input_path = "/trinity/home/r060801/test_space/nnUNet/nnUNet_raw/raw_images" 

output_path = 

"/trinity/home/r060801/test_space/nnUNet/nnUNet_preprocessed/prep_landmark_model" 

resize_images(input_path, output_path, new_size, new_spacing, mask) 

 

Postprocessing 

This python files handles the post-processing and translates landmark volumes into precise 

coordinates and pairs these with the corresponding segmentation files. Each set of landmarks 
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and segmentation data is then organized and saved in a dedicated patient folder for easy 

access and further analysis. The script is executed by the inference.sh file. 
import os 

import SimpleITK as sitk 

from scipy.ndimage import center_of_mass 

import numpy as np 

import scipy.ndimage 

import json 

import shutil 

 

""" Save segmentation prediction in patient folder """ 

 

def save_segmentation_to_patient_dir(input_path, output_path): 

     

    """ 

    Copies segmentation files from an input directory to a patient-specific directory in the 

output path. 

 

    Parameters: 

    - input_path: The directory containing the segmentation files. 

    - output_path: The base directory where patient-specific directories will be created and 

files copied into. 

    """ 

    

    # Ensure the input directory exists 

    if not os.path.exists(input_path): 

        print("Input directory does not exist") 

        return 

 

    # List all files in the input directory 

    for filename in os.listdir(input_path): 

        if filename.endswith(".nii.gz"): 

            # Extract the base name without extension 

            base_name = filename.split(".")[0] 

            print(f"Processing segmentation of patient: {base_name}") 

 

            # Create the output directory path for each patient 

            patient_output_dir = os.path.join(output_path, base_name) 

 

            # Ensure the output directory exists 

            os.makedirs(patient_output_dir, exist_ok=True) 

 

            # Define the full path for the input and output files 

            input_file = os.path.join(input_path, filename) 

            output_file = os.path.join(patient_output_dir, filename) 

 

            # Copy the file 

            shutil.copy(input_file, output_file) 
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            print(f"Copied {filename} to {output_file}") 

 

""" Postprocessing of landmark prediction, segmentation to voxel """ 

 

# Function to load image data and extract useful parameters 

def load_patient_segmentation_data(input_image): 

     

    """ 

    Loads a segmentation image and extracts useful parameters such as segmentation array, 

shape, voxel size, origin, and direction. 

 

    Parameters: 

    - input_image: Path to the segmentation image file. 

 

    Returns: 

    A dictionary containing the segmentation array, image shape, voxel size, origin, and 

direction matrix. 

    """ 

     

    # Load the image 

    image = sitk.ReadImage(input_image) 

    segmentation = sitk.GetArrayFromImage(image) 

    return { 

        'segmentation': segmentation, 

        'shape': image.GetSize(), 

        'voxel_size': image.GetSpacing(), 

        'origin': image.GetOrigin(), 

        'direction': np.array(image.GetDirection()).reshape(3, 3) 

    } 

 

# Function to convert voxel coordinates to RAS coordinate system 

def voxel_to_RAS(voxel_coords, voxel_size, origin, direction): 

     

    """ 

    Converts voxel coordinates to RAS coordinates using voxel size, origin, and direction 

matrix. 

 

    Parameters: 

    - voxel_coords: The voxel coordinates to convert. 

    - voxel_size: The size of the voxels. 

    - origin: The origin of the image. 

    - direction: The direction matrix of the image. 

 

    Returns: 

    The RAS coordinates corresponding to the given voxel coordinates. 

    """ 

     

    # Convert voxel coordinates to RAS coordinates 
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    RAS_coords = np.array(voxel_coords) * np.array(voxel_size) 

    return np.dot(direction, RAS_coords) + origin 

 

def process_single_landmark(segmentation, label, label_value, voxel_size, origin, 

direction): 

     

    """ 

    Processes a single landmark by finding its center of mass and converting it to RAS 

coordinates. 

 

    Parameters: 

    - segmentation: The segmentation array. 

    - label: The label name. 

    - label_value: The integer value of the label in the segmentation. 

    - voxel_size: The size of the voxels. 

    - origin: The origin of the image. 

    - direction: The direction matrix of the image. 

 

    Returns: 

    The RAS coordinates of the landmark's center of mass, or None if the label is not found. 

    """ 

     

    # Find the coordinates of the label in the segmentation 

    coords = np.argwhere(segmentation == label_value) 

    if coords.size == 0: 

        return None  # Skip if no coordinates found for the label 

     

    # Calculate the center of mass of the label 

    labeled_array, num_features = scipy.ndimage.label(segmentation == label_value) 

    if num_features > 1: 

        largest_label = np.argmax(np.bincount(labeled_array.flat)[1:]) + 1 

        coords = np.argwhere(labeled_array == largest_label) 

         

    # Calculate the center of mass in RAS 

    center_coordinates = center_of_mass(segmentation == label_value)[::-1] 

    landmark_coordinate = voxel_to_RAS(center_coordinates, voxel_size, origin, direction) 

    return landmark_coordinate.tolist() 

 

def update_json_template(template, position, label): 

 

    """ 

    Updates a JSON template with the position and label of a landmark. 

 

    Parameters: 

    - template: The JSON template to update. 

    - position: The RAS coordinates of the landmark. 

    - label: The label of the landmark. 
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    Returns: 

    The updated JSON template. 

    """ 

     

    # Update the template with the position and label 

    template['markups'][0]['controlPoints'][0]['position'] = position 

    template['markups'][0]['controlPoints'][0]['label'] = label 

    return template 

 

def landmark_volume_to_point(input_path, output_path, landmark_labels): 

     

    """ 

    Converts landmark volumes to point annotations and saves them in the specified output 

path. 

 

    Parameters: 

    - input_path: The directory containing the landmark volume files. 

    - output_path: The base directory where the point annotations will be saved. 

    - landmark_labels: A dictionary mapping label names to their integer values in the 

segmentation. 

    """ 

     

    # Ensure the input directory exists 

    os.makedirs(output_path, exist_ok=True) 

    landmark_predictions = os.listdir(input_path) 

     

    # Process each landmark prediction 

    for landmark_prediction in landmark_predictions: 

        if landmark_prediction.endswith(".nii.gz"): 

            image_path = os.path.join(input_path, landmark_prediction) 

            try: 

                # Load the segmentation data 

                data = load_patient_segmentation_data(image_path) 

            except Exception as e: 

                print(f"Error processing {landmark_prediction}: {str(e)}") 

                continue 

             

            # Create a directory for the patient 

            base_name = landmark_prediction.split(".")[0] 

            output_base_path = os.path.join(output_path, base_name) 

            os.makedirs(output_base_path, exist_ok=True) 

 

            # Load the template for the landmark.mrk.json file 

            with 

open('/trinity/home/r060801/test_space/nnUNet/nnUNet_raw/template_landmark/template.mrk.jso

n', 'r') as file: 

                template_json = json.load(file) 
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            print(f"Saving landmarks for patient {landmark_prediction}...") 

             

            # Process each landmark label 

            for label, label_value in landmark_labels.items(): 

                landmark_coordinate = process_single_landmark(data['segmentation'], label, 

label_value, data['voxel_size'], data['origin'], data['direction']) 

                if landmark_coordinate: 

                    updated_template = update_json_template(template_json, 

landmark_coordinate, label) 

 

                    # Save the updated template as a new .mrk.json file 

                    output_file_path = os.path.join(output_base_path, f"{label}.mrk.json") 

                    with open(output_file_path, 'w') as outfile: 

                        json.dump(updated_template, outfile, indent=4) 

 

# TODO: Change the input and output paths 

input_path_one = 

"/trinity/home/r060801/test_space/nnUNet/nnUNet_results/Dataset001_CMF/predictions_pp" 

input_path_two = 

"/trinity/home/r060801/test_space/nnUNet/nnUNet_results/Dataset002_CMF_LM/predictions_pp" 

input_path_three = 

"/trinity/home/r060801/test_space/nnUNet/nnUNet_results/Dataset003_CMF_LM/predictions_pp" 

 

output_path = "/trinity/home/r060801/test_space/nnUNet/nnUNet_results/output_patients/" 

 

# Landmark label mappings 

landmark_labels_part_one = { 

    "33": 1, "36": 2, "43": 3, "46": 4, "IsL1": 5, 

    "B-Point": 6, "l-Condyl": 7, "l-Coronoid": 8, "l-Foramen Mentale": 9, 

    "l-Gonion": 10, "Menton": 11, "r-Condyle": 12, "r-Coronoid": 13, 

    "r-Foramen Mentale": 14, "r-Gonion": 15, 

    "Nasion": 17, "Basion": 18, "Posterior Nasal Spine": 19, 

    "Infraorbitale L": 20, "Infraorbitale R": 21, "Sella": 22, 

    "Lingula L": 23, "Lingula R": 24, "M2-line L": 25, "M2-line R": 26, 

    "Inferior border L": 27, "Inferior border R": 28, "Point A": 29, 

    "Zygomatic Process L": 30, "Zygomatic Process R": 31, 

    "Nasal notch L": 32, "Nasal notch R": 33 

} 

 

# Landmark label mappings 

landmark_labels_part_two = { 

    "13": 1, "16": 2, "23": 3, "26": 4, "Anterior Nasal Spine": 5, 

    "IsU1": 6, "l-Sigmoid Notch": 7, "Porion L": 8, "Porion R": 9, 

    "Pogonion": 10, "r-Sigmoid Notch": 11 

} 

 

# Process the segmentation and landmark predictions 

print(f'saving all data to {output_path}') 
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save_segmentation_to_patient_dir(input_path_one, output_path) 

landmark_volume_to_point(input_path_two, output_path, landmark_labels_part_one) 

landmark_volume_to_point(input_path_three, output_path, landmark_labels_part_two) 

 

Inference script 

The inference.sh script manages the execution of the image analysis pipeline on the GPU 

cluster of the Erasmus MC. It sets up the job environment, including allocating resources and 

setting up logging. The script loads necessary Python modules, activates a virtual 

environment, and sets environment variables for nnUNet paths. 

It checks for the presence of specific machine learning models and installs them if missing. 

The script then proceeds to preprocess the data, run nnUNet predictions for segmentation and 

landmark detection, and applies postprocessing to refine these predictions. Each major step 

is logged. 

 

 

#!/bin/bash 

#SBATCH --ntasks=12 

#SBATCH --mem=24G 

#SBATCH --gres=gpu:1 

#SBATCH --exclude=gpu002,gpu003 

#SBATCH -p short 

#SBATCH -t 1-22:99:99 

#SBATCH -o log/output_%j.log  

#SBATCH -e log/error_%j.log 

#SBATCH --job-name=inference_CMF 

 

#TODO: Change all paths 

 

log() { 

    echo "$(date '+%Y-%m-%d %H:%M:%S') - $1" 

} 

 

log '# Starting job' 

 

# Load modules 

module load Python/3.11.5-GCCcore-13.2.0 

log '# Loaded Python module' 

 

source /trinity/home/r060801/venv_CMF_nnUNetv2_py3.11/bin/activate 

log '# Activated virtual environment' 

 

# Define the nnUNet paths as environment variables 

export nnUNet_raw="/trinity/home/r060801/test_space/nnUNet/nnUNet_raw" 

export nnUNet_preprocessed="/trinity/home/r060801/test_space/nnUNet/nnUNet_preprocessed" 

export nnUNet_results="/trinity/home/r060801/test_space/nnUNet/nnUNet_results" 
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# Define the path to the zipped models ready for installation 

model_zip_path_1="/trinity/home/r060801/test_space/models_zip/Segmentation_model" 

model_zip_path_2="/trinity/home/r060801/test_space/models_zip/landmarking_model_4_A" 

model_zip_path_3="/trinity/home/r060801/test_space/models_zip/landmarking_model_4_B" 

 

# Define the installed model directories 

model_dir_1="$nnUNet_results/Dataset001_CMF" 

model_dir_2="$nnUNet_results/Dataset002_CMF_LM" 

model_dir_3="$nnUNet_results/Dataset003_CMF_LM" 

 

# Function toA check and install a model from a zip file 

install_model_if_not_present() { 

    local model_path=$1 

    local model_dir=$2 

    local model_name=$(basename "$model_dir") 

    if [ -d "$model_dir" ]; then 

        log "# $model_name already installed" 

    else 

        log "# Installing $model_name" 

        nnUNetv2_install_pretrained_model_from_zip "$model_path" 

        log "# Installed $model_name" 

    fi 

} 

 

# Check and install models if not already present 

install_model_if_not_present "$model_zip_path_1" "$model_dir_1" 

install_model_if_not_present "$model_zip_path_2" "$model_dir_2" 

install_model_if_not_present "$model_zip_path_3" "$model_dir_3" 

 

log '# Installed all models' 

 

# Start timer 

start_time=$(date +%s) 

 

# Run preprocessing on the data 

python preprocessing.py 

 

log '# Predicting segmentations...' 

 

# Run segmentation prediction 

nnUNetv2_predict \ 

-i "/trinity/home/r060801/test_space/nnUNet/nnUNet_preprocessed/prep_segmentation_model/" \ 

-o "/trinity/home/r060801/test_space/nnUNet/nnUNet_results/Dataset001_CMF/predictions" \ 

-d 001 \ 

-c 3d_fullres \ 

-tr nnUNetTrainer_onlyMirror01 

 

log '# Postprocessing...'   
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# Apply postprocessing 

nnUNetv2_apply_postprocessing \ 

-i "/trinity/home/r060801/test_space/nnUNet/nnUNet_results/Dataset001_CMF/predictions" \ 

-o "/trinity/home/r060801/test_space/nnUNet/nnUNet_results/Dataset001_CMF/predictions_pp" \ 

-pp_pkl_file 

"/trinity/home/r060801/test_space/nnUNet/nnUNet_results/Dataset001_CMF/nnUNetTrainer_onlyMi

rror01__nnUNetPlans__3d_fullres/crossval_results_folds_0_1_2_3_4/postprocessing.pkl" \ 

-np 8 \ 

-plans_json 

"/trinity/home/r060801/test_space/nnUNet/nnUNet_results/Dataset001_CMF/nnUNetTrainer_onlyMi

rror01__nnUNetPlans__3d_fullres/crossval_results_folds_0_1_2_3_4/plans.json" 

 

log '# Predicting landmarks group A...' 

 

# Run landmark model_A_4mm prediction 

nnUNetv2_predict \ 

-i "/trinity/home/r060801/test_space/nnUNet/nnUNet_preprocessed/prep_landmark_model/" \ 

-o "/trinity/home/r060801/test_space/nnUNet/nnUNet_results/Dataset002_CMF_LM/predictions" \ 

-d 002 \ 

-c 3d_fullres \ 

-tr nnUNetTrainer_onlyMirror01 

 

log '# Postprocessing...'  

 

# Apply postprocessing 

nnUNetv2_apply_postprocessing \ 

-i "/trinity/home/r060801/test_space/nnUNet/nnUNet_results/Dataset002_CMF_LM/predictions" \ 

-o 

"/trinity/home/r060801/test_space/nnUNet/nnUNet_results/Dataset002_CMF_LM/predictions_pp" \ 

-pp_pkl_file 

"/trinity/home/r060801/test_space/nnUNet/nnUNet_results/Dataset002_CMF_LM/nnUNetTrainer_onl

yMirror01__nnUNetPlans__3d_fullres/crossval_results_folds_0_1_2_3_4/postprocessing.pkl" \ 

-np 8 \ 

-plans_json 

"/trinity/home/r060801/test_space/nnUNet/nnUNet_results/Dataset002_CMF_LM/nnUNetTrainer_onl

yMirror01__nnUNetPlans__3d_fullres/crossval_results_folds_0_1_2_3_4/plans.json" 

 

log '# Predicting landmarks group B...' 

 

# Run landmark model_B_4mm prediction 

nnUNetv2_predict \ 

-i "/trinity/home/r060801/test_space/nnUNet/nnUNet_preprocessed/prep_landmark_model/" \ 

-o "/trinity/home/r060801/test_space/nnUNet/nnUNet_results/Dataset003_CMF_LM/predictions" \ 

-d 003 \ 

-c 3d_fullres \ 

-tr nnUNetTrainer_onlyMirror01 
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log '# Postprocessing...'  

 

# Apply postprocessing 

nnUNetv2_apply_postprocessing \ 

-i "/trinity/home/r060801/test_space/nnUNet/nnUNet_results/Dataset003_CMF_LM/predictions" \ 

-o 

"/trinity/home/r060801/test_space/nnUNet/nnUNet_results/Dataset003_CMF_LM/predictions_pp" \ 

-pp_pkl_file 

"/trinity/home/r060801/test_space/nnUNet/nnUNet_results/Dataset003_CMF_LM/nnUNetTrainer_onl

yMirror01__nnUNetPlans__3d_fullres/crossval_results_folds_0_1_2_3_4/postprocessing.pkl" \ 

-np 8 \ 

-plans_json 

"/trinity/home/r060801/test_space/nnUNet/nnUNet_results/Dataset003_CMF_LM/nnUNetTrainer_onl

yMirror01__nnUNetPlans__3d_fullres/crossval_results_folds_0_1_2_3_4/plans.json" 

 

# Run postprocessing on the data and export to output_patients folder 

python postprocessing.py 

 

# End timer 

end_time=$(date +%s) 

elapsed=$(( end_time - start_time )) 

 

log "Postprocessing and export time was: $((elapsed / 60)) minutes and $((elapsed % 60)) 

seconds" 

 

# Deactivate virtual environment 

deactivate 

 

log '# Deactivated virtual environment' 

 

log '# Job completed' 
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Appendix E – Additional metrics segmentation model 

This table presents additional metrics, IoU and HSD95 that can be used to compare the 

models performance with those reported in other studies. 

  Metric 
Test dataset 

(n=11) 
Median [Q1 -Q3] 

TF2F 
(n=30) 

Median [Q1 -Q3] 

TF2P 
(n=30) 

Median [Q1 -Q3] 

Mandible 
IoU 0.96 [0.96 - 0.97] 0.94 [0.94 - 0.95] 0.94 [0.92 - 0.94] 

HSD95 0.25 [0.25 - 0.35] 0.50 [0.50 - 0.54] 0.56 [0.50 - 0.82] 

Maxilla 
IoU 0.84 [0.81 - 0.87] 0.86 [0.83 - 0.90] 0.53 [0.40 - 0.72] 

HSD95 1.62 [1.09 - 3.58] 1.93 [1.39 - 3.10] 38.9 [6.22 - 44.6] 

Mandibular canal left 
IoU 0.63 [0.59 - 0.65] 0.67 [0.62 - 0.70] 0.69 [0.63 - 0.73] 

HSD95 0.75 [0.66 - 1.04] 0.66 [0.56 - 1.29] 0.59 [0.50 - 1.17] 

mandibular canal 
right 

IoU 0.59 [0.48 - 0.66] 0.70 [0.63 - 0.72] 0.70 [0.66 - 0.72] 

HSD95 0.79 [0.73 - 2.35] 0.56 [0.50 - 0.71] 0.56 [0.50 - 0.78] 

Skin 
IoU 0.90 [0.89 - 0.92] - - 

HSD95 3.48 [3.22 - 3.81] - - 

Overall 
IoU 0.84 [0.65 - 0.92] 0.75 [0.68 - 0.91] 0.72 [0.60 - 0.91] 

HSD95 0.94 [0.59 - 3.20] 0.61 [0.50 - 1.76] 0.66 [0.50 - 4.39] 
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Appendix F – Patient cases 

The first patient case was the worst predicted patient form the test dataset. On the left the 

ground truth segmentations are shown in two positions and on the right the predictions. In the 

prediction, a step or discontinuous mandibular canal could be seen. Furthermore, several 

landmarks are missing, such as the nasal notch left, the nasion, element 13, 16, 23, 26. Notably 

the predicted landmarks are not perfectly spherical (anterior nasal spine) or have visible 

volumetric deviations from the ground truth (M2-line left, Nasal notch right). 
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The second patient case reflects the average testcase in test set. No apparent errors in the 

segmentation of the anatomy or the landmarks were observed. Small imperfections can be 

observed on the surface of the maxilla and some landmark segmentations such as the B point 

might not be perfectly spherical. 
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Appendix G – Individual landmark results 

Landmarking results for each configuration (4, 5 and 6 mm sphere radius), reported in median and successful 
detection rate (SDR) within 2 mm. NA = not available. 

  Model_4_A&B Model_5_A&B Model_6_A&B 

Landmark 

Median 
[Q1 - Q3] 

(mm) 

SDR 
< 2mm 

(%) 

Median 
[Q1 - Q3] 

(mm) 

SDR 
< 2mm 

(%) 

Median 
[Q1 - Q3] 

(mm) 

SDR 
< 2mm 

(%) 

B Point 1.19 [1.03 - 1.54] 80 1.25 [1.02 - 1.87] 70 1.27 [1.03 - 2.20] 63.6 

Condyle L 1.28 [1.18 - 1.58] 81.8 1.44 [0.98 - 1.67] 81.8 1.47 [1.06 - 1.84] 90.9 

Condyle R 1.64 [1.08 - 3.35] 54.5 1.47 [1.25 - 3.22] 54.5 1.39 [1.13 - 3.17] 54.5 

Coronoid L 0.67 [0.41 - 0.92] 100 0.67 [0.44 - 1.02] 100 0.68 [0.55 - 1.13] 100 

Coronoid R 0.54 [0.43 - 0.78] 100 0.70 [0.47 - 0.81] 100 0.66 [0.45 - 0.88] 100 

Foramen Mentale L 0.56 [0.52 - 0.86] 100 0.73 [0.65 - 0.92] 100 0.79 [0.72 - 0.94] 100 

Foramen Mentale R 0.52 [0.38 - 0.81] 100 0.59 [0.39 - 0.80] 100 0.58 [0.41 - 0.89] 100 

Gonion L 1.88 [0.94 - 3.64] 54.5 2.70 [1.12 - 3.71] 45.5 2.69 [1.15 - 3.57] 45.5 

Gonion R 0.84 [0.54 - 2.02] 72.7 1.40 [0.76 - 2.06] 72.7 1.27 [0.71 - 1.91] 72.7 

Menton 1.08 [0.48 - 1.41] 100 1.41 [0.50 - 1.75] 100 1.30 [0.56 - 1.91] 81.8 

Pogonion 1.40 [0.66 - 2.47] 63.6 1.45 [0.60 - 2.41] 72.7 1.38 [0.79 - 2.34] 72.7 

Sigmoid Notch L 0.69 [0.57 - 1.07] 100 0.70 [0.45 - 1.06] 100 0.79 [0.50 - 1.14] 100 

Sigmoid Notch R 1.11 [0.84 - 2.03] 72.7 1.17 [0.73 - 2.03] 72.7 1.26 [0.67 - 2.19] 72.7 

A Point 0.69 [0.55 - 1.38] 81.8 0.75 [0.54 - 1.35] 81.8 0.80 [0.60 - 1.26] 81.8 

Anterior Nasal Spine 0.64 [0.45 - 1.02] 90.9 0.92 [0.39 - 1.16] 90.9 0.89 [0.46 - 1.19] 90.9 

Basion 0.70 [0.61 - 1.10] 90.9 0.81 [0.65 - 1.12] 81.8 0.80 [0.63 - 1.12] 81.8 

Infraorbitale L 1.29 [1.01 - 2.30] 72.7 1.31 [1.13 - 2.51] 72.7 1.47 [1.17 - 2.64] 63.6 

Infraorbitale R 1.89 [0.58 - 2.35] 54.5 1.79 [0.96 - 2.43] 54.5 2.01 [0.96 - 2.42] 45.5 

Nasion NA 0 NA 0 NA 25 

Porion L 1.89 [1.46 - 2.73] 55.6 1.92 [1.49 - 2.66] 55.5 1.90 [1.43 - 2.60] 55.6 

Porion R 0.87 [0.52 - 2.11] 66.7 1.06 [0.57 - 2.33] 66.6 1.10 [0.67 - 2.33] 66.7 
Posterior Nasal 
Spine 0.57 [0.35 - 1.09] 90 0.62 [0.40 - 1.37] 81.8 0.65 [0.47 - 1.40] 81.8 

Sella 0.73 [0.45 - 1.58] 80 0.87 [0.44 - 1.78] 70 0.89 [0.53 - 1.83] 70 

13 0.63 [0.42 - 0.84] 100 0.76 [0.46 - 0.88] 100 0.91 [0.56 - 0.95] 88.9 

16 0.57 [0.41 - 0.78] 100 0.66 [0.51 - 1.07] 88.9 0.65 [0.56 - 1.01] 88.9 

23 0.45 [0.39 - 0.81] 100 0.57 [0.53 - 0.99] 100 0.73 [0.59 - 0.92] 100 

26 0.60 [0.49 - 0.70] 100 0.68 [0.53 - 0.74] 100 0.76 [0.66 - 0.82] 100 

33 0.89 [0.66 - 1.30] 100 1.00 [0.55 - 1.31] 100 0.94 [0.58 - 1.45] 100 

36 1.07 [0.97 - 1.34] 90 1.20 [1.01 - 1.22] 100 1.23 [0.94 - 1.26] 90 

43 0.95 [0.53 - 1.06] 90 0.91 [0.61 - 1.25] 90 0.94 [0.77 - 1.38] 90 

46 0.82 [0.69 - 1.35] 100 0.91 [0.70 - 1.24] 90.9 0.96 [0.72 - 1.25] 90.9 

IsL1 0.93 [0.78 - 1.19] 100 0.97 [0.73 - 1.46] 100 1.06 [0.84 - 1.69] 100 

IsU1 0.51 [0.37 - 0.91] 90.9 0.56 [0.40 - 1.13] 100 0.47 [0.43 - 0.92] 100 

Inferior border L 2.88 [1.44 - 4.89] 45.5 2.99 [1.45 - 4.83] 36.4 3.15 [1.50 - 4.93] 36.4 

Inferior border R 1.90 [1.39 - 3.01] 54.5 2.38 [1.34 - 3.23] 45.5 2.35 [1.46 - 2.92] 45.5 

Lingula L 1.06 [0.52 - 1.52] 81.8 1.25 [0.54 - 1.70] 81.8 1.34 [0.59 - 1.69] 81.8 

Lingula R 0.74 [0.65 - 0.94] 100 0.97 [0.66 - 1.01] 100 0.96 [0.76 - 1.02] 100 

M2-line L 1.21 [1.08 - 2.72] 63.6 1.14 [1.08 - 2.85] 63.6 1.25 [1.06 - 2.72] 63.6 

M2-line R 1.34 [1.11 - 1.52] 80 1.25 [1.15 - 1.71] 81.8 1.40 [1.10 - 1.71] 81.8 

Nasal notch L 1.23 [0.47 - 1.82] 80 1.52 [0.53 - 2.02] 72.7 1.51 [0.60 - 1.98] 72.7 

Nasal notch R 1.74 [0.58 - 2.22] 63.6 1.66 [0.71 - 2.10] 63.6 1.83 [0.70 - 2.20] 63.6 

Zygomatic Process L 1.26 [1.15 - 2.00] 72.7 1.25 [1.04 - 1.99] 72.7 1.11 [0.97 - 2.08] 72.7 

Zygomatic Process R 1.69 [1.30 - 1.95] 72.7 1.66 [1.34 - 2.21] 63.6 1.78 [1.41 - 1.98] 72.7 

Overall 0.98 [0.58 - 1.60] 88.6 1.03 [0.63 - 1.67] 85.9 1.08 [0.66 - 1.82] 83.0 
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Additionally, boxplots for visualization for each individual landmark from model_4mm (blue), 

model_5mm (green) and model_6mm (red). 
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