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Abstract

In transition zones, railway tracks experience significant inhomogeneity in their me-
chanical properties—more specifically in vertical stiffness. In such areas, conven-
tional tracks (soft tracks) are typically encountered with other engineering struc-
tures with noticeably larger stiffness, such as bridges and culverts (stiff tracks).
This inhomogeneity together with the passage of high-speed trains leads to am-
plification in dynamic response, which in turn results in faster degradation and
higher cost of maintenance at transition zones. In practice, various mitigation
measures have been adopted which have led to improvement in track performance
to a certain degree.

This thesis is mainly focused on the feasibility of using the tuned mass damper
(TMD), as a novel mitigation measure, for improving the aforementioned undesired
behavior. Additionally, the efficiency of two already existing corrective measures,
namely auxiliary rail and under sleeper pad (USP), is investigated at transition
zone.

The track is modeled as an infinite one-dimensional Euler-Bernoulli beam rest-
ing on a piecewise-homogeneous and continuously distributed Kelvin foundation.
For each mitigation measure, semi-analytical solutions are derived through the
Fourier transform method. Regarding TMD analysis, mechanical parameters are
optimized by an evolutionary algorithm (NSGA-II), in which the discrepancy be-
tween the soft and the stiff tracks’ wavenumbers is minimized. In regard to aux-
iliary rail, two configurations with multiple number of extra rails (ERs) are eval-
uated; ERs over soft track only, and ERs over all domains. Additionally, USPs
with different stiffness are considered for their arrangement along the track. The
efficiency corresponding to each mitigation measure is mainly evaluated through
dynamic amplification factor (DAF) and power input.

The system with TMD demonstrates a significant reduction in DAF amplitude
corresponding to the load velocity for which the optimization is performed. This
improvement is also evident for velocities close to the aforementioned load speed.
In fact, the addition of TMD results in presence of a free propagating wave behind
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the load and decreasing the critical velocity in the corresponding system. The
outcomes corresponding to power input suggest a significant reduction in potential
damage to the foundation due to the employment of TMD.

Furthermore, the application of ER leads to improvement in dynamic perfor-
mance of the track by increasing the critical velocity to a larger value, at which
the corresponding DAF indicates no reduction. In addition, considering more than
one ER along the track does not lead to a noticeably better result compared to
when only one ER is added. Moreover, applying ER over soft track leads to in-
homogeneity in bending stiffness and mass corresponding to the beam element at
transition point. Therefore, the system with ER over all domains indicates a bet-
ter dynamic behavior. Potentially, less damage to the foundation can be signified
in the system with ER according to the power input response.

Finally, USP can significantly affect the equivalent stiffness of the track. It
is concluded that the efficiency of USPs in mitigating the amplified response is
strongly dependent on their stiffness and arrangement along the track, as well
as the stiffness variation in the supporting structure; improper design of USPs
alignment can adversely result in even more amplified responses.
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Introduction
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Introduction 1.1. Background

1.1 Background

Railway networks play an important role in the efficiency of modern transportation
systems. On an international scale, noticeable investments are annually considered
for railway infrastructures corresponding to their maintenance and operations. In
2015, for example, more than half of the total budget of the Spanish infrastructures
was dedicated to the railway networks only (Sañudo et al. 2016).

In practice, the maintenance works are performed more often in transition zones
(Dahlberg 2010; Z. Li and Wu 2008; Seara and Correia 2010), the regions where
the tracks experience structural discontinuities and therefore significant variations
in their mechanical properties. This inhomogeneity together with the passage of
high-speed trains results in faster degradation of the track geometry. Almost half
of the transition zones indicate settlements in the form of dip (Stark and Wilk
2016) with the magnitude, in some cases, of about 5mm (Nicks 2009). This in
turn increases the dynamic loads (José N Varandas et al. 2011) leading to further
damages such as hanging sleepers, cracks in concrete sleepers and rail foot, etc.

Reportedly, the number of maintenance programs at transition zones is three to
eight times more than the regular tracks (Sañudo et al. 2016; Wang and Markine
2018). Consequently, a major prominence has been received to this issue by re-
searchers and concerning organizations to reduce the cost of maintenance and
secure the operations of railway networks with the least disruption to traffic. Var-
ious mitigation measures, therefore, have been proposed and applied with some of
them demonstrating improvement to a certain degree. Further studies, however,
are still being carried out in achieving more efficient solutions.

1.2 Research motivation

To counteract the earlier mentioned issues at transition zones, particular features
should be recognized either at the initial stages of designing a new track or at
the rehabilitation level of the existing tracks. In-site operations corresponding to
the latter might be extremely challenging and costly such that the traffic flow is
required to be stopped. Additionally, not all counteractive measures are sufficiently
effective while in a few cases, they can even adversely affect the track behavior at
transition zone. Note that various methods can be considered when analyzing a
design solution, namely mechanical and numerical modeling, field investigations,
and off-site experimental tests.

The goal of this thesis is to identify promising mitigation measures and inves-
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Introduction 1.3. Literature review

tigate their efficiencies in reduction of the amplified response at transition zones
in railway tracks. While doing so, considering both novel and the already existing
measures are of interest. The focus of the latter when identified, however, is more
on the extension of the past evaluations. Then, it is aimed at investigating their
effects on dynamic behavior at transition zone through analyzing the mechanical
model of the train-track system.

1.3 Literature review

Despite extensive studies in the past, no definite reason can be attributed to the
undesired behaviors in transition zones due to the inherent complexity of train-
track systems. However, substantial variation in vertical stiffness along the track,
low quality of geotechnical components, and differential settlements can be men-
tioned as some of the main factors (Sañudo et al. 2016; Stark and Wilk 2016; J.
Varandas et al. 2017).

A review of various solutions evaluated by previous researchers can be found in
(Indraratna et al. 2019; Sañudo et al. 2016). The mitigation measures mostly have
been focused on smoothing the stiffness gradient in the transition zones, either by
modifying the track’s superstructure or substructure exclusively, or by rectifying
both together. That is, increasing the stiffness of conventional tracks and reducing
the stiffness of the tracks with/over rigid structures—such as bridges and tunnels.

The substructure’s main function is to uniformly resist the train loads such that
the track geometry is maintained. Soils can be reinforced by applying geosynthetic
materials (increase load-bearing capacity) (Horńıček et al. 2010), geocells (better
load distribution), and cement gravels. Even though being an expensive solution,
incorporating piles under the ballast can also reinforce the track foundation which
leads to an increase in stiffness and a considerable reduction in the settlement.
Moreover, the load-bearing capacity of the subgrade (but not the ballast) can be
improved by a layer of hot mix asphalt over it. Integration of transition slabs into
the track is another mitigation measure that requires the substructure to be mod-
ified. In an experimental work, (Fara 2014) suggests that transition slabs improve
the track behavior until one year; nevertheless, afterward, the corresponding per-
formance develops into even more degradation compared to the track before the
modification.

At superstructure level, progressive enhancement of the sleepers’ length toward
the rigid structure, together with a gradual reduction in their bay spacing can
increase the track stiffness. However, contribution of the achieved resiliency to
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Introduction 1.4. Research questions

the ballast is not significant (NAMURA et al. 2004). The application of the
sleepers made up of less resilient materials (e.g. plastic and rubber) demonstrates
a reduction in the track stiffness (Sasaoka and Davis 2005). As another mitigation
measure, adjustable rail fasteners are employed to remove the gap under the hanger
sleepers; (Wang and Markine 2018) suggests that this solution significantly reduces
the ballast degradation rate and improves the stress distribution in the ballast.
Moreover, applying resin glue to the ballast results in a substantial decrease in
track settlement (Kennedy et al. 2013).

Employment of the auxiliary rail is another method to increase the resiliency
of the track. They improve the stress distribution in the ballast and dynamic
behavior in the transition areas (Chumyen et al. 2022). Note that in practice, the
installation of extra rails does not result in major disruption in traffic flow while
the track mainly remains intact. Despite these advantages, not many studies have
been focused on the efficiency of extra rails.

According to (Schneider et al. 2011), under sleeper pad (USP) increase the rail
and the sleeper accelerations. Nevertheless, the application of USP reduces the
degradation rate of the track geometry and can improve the stiffness variation.
The employment of USPs requires extra attention as its potential efficiency is
not guaranteed for any arrangement along the track. Therefore, studying the
corresponding alignment is of high importance.

Notice that the aim of smoothing the stiffness variation is eventually to reduce
the amplified vibrations. In the context of vibration control, tuned mass damper
(TMD) has been widely applied within various engineering fields; from controlling
vibrations in hair clippers to reducing the nature-induced vibrations in skyscrapers.
TMD is normally tuned to resonance frequency of the host structure to which it
is attached. When the aforementioned frequency is excited, the TMD absorbs the
structure vibrations through counteracting forces (out of phase motions) and its
dissipative element. To the best of the author’s knowledge, the efficiency of TMD
in reducing the amplified response at transition zone has not been studied yet.

In line with previous paragraphs, three mitigation measures are therefore adopted
to be investigated herein; that is, tuned mass damper, auxiliary rail, and under
sleeper pad.

1.4 Research questions

The thesis objectives are formulated through the following research questions.
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Introduction 1.5. Outline

1. As a novel mitigation measure, to what extent is the application of TMD
efficient in reducing the amplified vibrations at transition zone?

2. What arrangement of the extra rails does contribute the most to decreasing
the undesired mechanical response in the transition area?

3. How does the arrangement of USPs affect the correspondent efficiency in
mitigating the transition zone’s behavior?

1.5 Outline

Throughout this document, three mitigation measures are considered with the
TMD being the main focus of the thesis. For each solution, a chapter is dedicated
starting with its corresponding literature review. In chapter 2, the applicability
of TMD is studied, in which the train-track system is modeled as an infinite one-
dimensional Euler-Bernoulli beam resting on a piece-wise homogeneous foundation.
Semi-analytical solutions are then derived through the Fourier transform method
while an evolutionary optimization is considered for tuning the design variables
of TMD. Moreover, the results are evaluated in both frequency and time domains
while the energy considerations are also addressed. Next, the aforementioned
mechanical model is accordingly modified for the employment of auxiliary rail
and USP in chapter 3 and chapter 4, respectively, in which their corresponding
dynamic analyses and outcomes are naturally presented. Finally, in chapter 5,
overall findings of the thesis are discussed and conclusions are established.
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Chapter 2

Tuned Mass Damper
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Tuned Mass Damper 2.1. Literature review

In this chapter, the efficiency of tuned mass damper, TMD, in reducing the
amplified vibrations is investigated. Initially, a literature review corresponding to
vibration control using TMD is presented. Next, a simplified mechanical model is
established for the railway transition zone while the TMDs are incorporated into
the system by distributing them along the track. Dynamic response of the system
is then described by a set of partial differential equations. Afterward, solutions are
derived through transforming the equations of motions to the Fourier domain over
time which are numerically cast back into the space-time domain. To attenuate
the undesired vibrations in transition zone, the TMD’s mechanical parameters
are tuned through a well known optimization algorithm, NSGA-II, such that the
discrepancy in the wavenumbers of the soft and the stiff tracks is minimized. To
investigate the efficiency of TMD, the systems are analyzed through dispersion
relations, displacement fields, and energy considerations. It is concluded that
TMDs can significantly improve the transition zone’s behavior at load velocity for
which they are optimized.

2.1 Literature review

The origin of TMD concept is attributed to the invention of a German engineer
(Frahm 1911), in which vibrations are controlled without damping element. TMD
is normally tuned to the resonance frequency of the main structure to which it is
attached. When the tuned frequency is excited, the TMD suppresses the structure
vibrations. The absence of damping component results in considerable sensitivity
of TMD system to the off-tuned conditions, while its presence leads to addition of
neighboring frequencies to the tuned frequency at which the vibration is absorbed
(F. Yang et al. 2022). Generally, to achieve an effective design, the corresponding
parameters need to be optimized. The first optimization analysis of TMD, in its
classic form (consisting of mass, stiffness, and damping element), is associated to
the work by (Den Hartog 1985).

Over the last decades, the application of TMD has been modified and extended
to various engineering fields. State-of-the-art corresponding to TMD and vibra-
tion control can be found in (Elias and Matsagar 2017; F. Yang et al. 2022). Due
to robust design, nearly inexpensive cost, resistance to high temperatures, and
capability of large structural damping, the TMDs have been extensively applied
for controlling the nature-induced vibrations (e.g. earthquakes and winds) in civil
structures (F. Yang et al. 2022); C N Tower (Canada, 1973), Sydney Tower (Aus-
tralia, 1980), Crystal Tower (Japan, 1990), and Taipei 101 Tower (Taiwan, 2004)
can be mentioned as a few examples. This study concludes that single tuned mass
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Tuned Mass Damper 2.2. Train-track system with TMD

damper (STMD) is most efficient when tuned to fundamental mode of the pri-
mary structure. Moreover, the TMD with larger mass is normally more effective
in suppressing the structural vibrations. However, due to physical limitations in
practice, the employment of multiple tuned mass dampers (MTMD) has been pro-
posed by researchers. In fact, dampers are distributed along the spatial domain
of structures. Same study suggests that MTMD is more effective compared to
STMD.

(Esmailzadeh and Jalili 1998) derived the coupled EOMs of a cantilever beam
under an arbitrary distributed load where TMDs were applied to suppress the
dynamic response over arbitrary number of resonance frequencies; the absorbers
were optimized through Direct Updated Method. Furthermore, (Lin et al. 2005)
modeled a railway bridge as a continuous Euler-Bernoulli beam under moving
loads where MTMD were optimized for resonant speeds; this study concludes
that MTMD technique is more effective in reducing the bridge dynamic response
compared to the employment of STMD. In another study, (Hadi and Arfiadi 1998)
optimized the TMDs via Genetic Algorithm for protecting building structures
against seismic vibrations. Similarly, (Kaveh, Mohammadi, et al. 2015) performed
an optimization for multistory structures but with a heuristic algorithm known as
Charge System Search in (Kaveh and Talatahari 2010). As can be seen, various
optimization methods have been adopted for tuning the vibration absorbers.

On the other hand, previous findings in railway engineering have been largely
focused on noise radiation control when TMD is considered (it is commonly known
as rail damper). Rail dampers are normally installed in the middle of the sleeper
bay to suppress the noise radiation in the rail which is attributed to pined-pined
vibrations between the sleepers (Xiao et al. 2017). The principle is therefore
different from controlling the vibrations at transition zone.

2.2 Train-track system with TMD

2.2.1 Mechanical model

The track is modeled as an infinite one-dimensional Euler-Bernoulli beam resting
on a continuously distributed Kelvin foundation along the longitudinal direction, x,
as can be seen in Figure 2.1. The infinite track is divided into two semi-infinite ho-
mogeneous domains which are connected to each other at the interface/transition
point, xtp = 0. The left (x ⩽ xtp) and the right (x ⩾ xtp) domains are referred to
the soft and the stiff tracks with subscript j = 1 and j = 2, respectively.
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Tuned Mass Damper 2.2.2 Equations of motions

On the Under Sleeper Pad and Transition Zone B. Jouna

vu1(x, t) u2(x, t)

w1(x, t) w2(x, t)

ρ, EIρ, EI

ρt,1

kt,1
ct,1

ρt,2

kt,2
ct,2

k1, c1 k2, c2

x = 0

xtpF

x

1

Figure 2.1: Scheme of the track mechanical model with TMDs.

The piecewise-homogeneous foundation accounts for the equivalent static stiff-
ness and damping of the track excluding the rail (but including the rail fastening
system, ballast, and substructure layers) which are indicated by kj and cj, re-
spectively. Moreover, cj is defined as 2ζ

√
kj ρj with ζ being the damping ratio—

unrelated to the actual damping relative to the critical damping in the SDOF
system (Fărăgău, Keijdener, et al. 2021). Furthermore, the train is modeled as
a constant moving point-load with the magnitude of F . Starting from the left
domain, it moves rightward1 with the constant velocity, v.

Linear density of the beam element is denoted by ρ (per unit length). Important
to note, in this simplified model, bending stiffness of the track components is
limited to that of the Euler-Bernoulli beam, EI, only. In addition, no internal
damping, rotational or longitudinal vibration is considered.

Furthermore, the TMDs are continuously distributed over the beam and along
the longitudinal direction; ρt,j demonstrate the TMDs linear mass while kt,j and
ct,j describe the continuously distributed stiffness and dampings of the TMDs,
respectively. In addition, the displacements corresponding to the beams and TMDs
are respectively denoted by wj and uj, in which both are dependent on the space,
x, and time, t.

2.2.2 Equations of motions

The equations of motions, EOMs, describing vertical vibrations are derived as

EIw
′′′′

j + ρẅj + (cj + ct,j)ẇj + (kj + kt,j)wj − ct,ju̇j − kt,juj = −Fδ(x− vt),

(2.1a)

ρt,jüj + ct,ju̇j + kt,juj − ct,jẇj − kt,jwj = 0, (2.1b)

1The vice versa movement is neglected in this study as the amplified responses are normally
much more stronger for the rightward traveling from the soft track (Sañudo et al. 2016).
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Tuned Mass Damper 2.2.3 Semi-analytical solutions

where δ(·) is Dirac-Delta function specifying the position of moving load while the
primes and overdots indicate ∂

∂x
and ∂

∂t
, respectively.

The boundary conditions necessitate zero displacement at infinite distance from
the moving load, due to damping in the system;

lim
(x−vt)→−∞

w1(x, t) = 0, (2.2a)

lim
(x−vt)→+∞

w2(x, t) = 0. (2.2b)

Moreover, the interface conditions provide continuity at transition point xtp, which
is correspondent to the beam displacement, slope ϕ(x, t) = −w

′
, bending moment

M(x, t) = −EIw
′′
(x, t), and shear force V (x, t) = −EIw

′′′
(x, t);

w1(xtp, t) = w2(xtp, t), (2.3a)

w
′

1(xtp, t) = w
′

2(xtp, t), (2.3b)

w
′′

1 (xtp, t) = w
′′

2 (xtp, t), (2.3c)

w
′′′

1 (xtp, t) = w
′′′

2 (xtp, t). (2.3d)

2.2.3 Semi-analytical solutions

To determine the response to the system described by Equation 2.1, the forward
Fourier transform is applied over time;

w̃j(x, ω) =

∞∫
−∞

wj(x, t)e
−iωtdt, (2.4a)

ũj(x, ω) =

∞∫
−∞

uj(x, t)e
−iωtdt, (2.4b)

where ω is angular frequency (rad/s), and i =
√
−1 is imaginary unit.

Considering the property of Dirac delta function (Boas 2006),

δ(g(s)) =
∑
m

δ(s− sm)

|g′(sm)|
with sm being the roots of g, and

∞∫
−∞

δ(s− a)q(s)ds = q(a),

(2.5a)

(2.5b)
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Tuned Mass Damper 2.2.3 Semi-analytical solutions

the right side of the Equation 2.1a reads

−
∞∫

−∞

Fδ(x− vt)e−iωtdt = −
∞∫

−∞

Fδ(t− x/v)e−iωt

v
dt = −Fe−iωx/v

v
. (2.6a)

The EOMs in frequency domain is therefore obtained as

EIw̃
′′′′

j + (−ρω2
j + i(cj + ct,j)ω + kj + kt,j)w̃j − (ict,jω + kt,j)ũj = −Fe−iωx/v

v
,

(2.7a)

ũj =
(ict,jω + kt,j)

(−ρt,jω2 + ict,jω + kt,j)
w̃j. (2.7b)

Substituting ũj into the Equation 2.7a gives

w̃
′′′′

j − β4
j w̃j = −Feiωx/v

vEI
, (2.8a)

where βj denote the wavenumbers, and

β4
j = (ρω2 − iω(cj + ct,j)− kj − kt,j)/EI +

(iωct,j + kt,j)
2

(−ρt,jω2 + ict,jω + kt,j)EI
.

(2.9a)

By substituting the trial solutions in the form of Ce−iωx/v in Equation 2.8a and
removing the common factors, particular solutions read

w̃j,p(x, ω) =
−Fv3e−iωx/v

EI(ω4 − β4
j v

4)
. (2.10a)

Furthermore, by substituting the trial solutions in the form of Aeλ1x and Beλ2x,
into the homogeneous form of Equation 2.8a and then removing the common fac-
tors, homogeneous solutions are derived as

w̃1,h(x, ω) =
4∑

n=1

Ane
λ1,nx, x ⩽ xtp, (2.11a)

w̃2,h(x, ω) =
4∑

n=1

Bne
λ2,nx, x ⩾ xtp, (2.11b)

in which the roots of characteristic equations (λ4
j = β4

j ) read

λj,1 = βj, λj,2 = iβj, λj,3 = −λj,1, λj,4 = −λj,2. (2.12a)

12



Tuned Mass Damper 2.2.3 Semi-analytical solutions

Four distinct roots (wavenumbers) corresponding to the Equation 2.9a can be
derived through de Moivre’s theorem in polar form as follows (Kreyszig 2010);

Let z ̸= 0 be a complex number. The n distinct nth roots of z are

n
√
z =

n
√
r

(
cos

(
θ + 2kπ

n

)
+ i sin

(
θ + 2kπ

n

))
,

where

r is the modulus of z,
θ is the argument of z,
k = 0, 1, · · · , n− 1.

(2.13)

Here, the first 4th root is selected for each domain, in which Re(βj) > 0, and
Im(βj) < 0.

Consider the boundary conditions at infinite distance from moving load. When
x tends to −∞, the factors eλ1,nx corresponding to the terms with n = 3, 4 tend
to infinity. Likewise, when x tends to +∞, the factors eλ2,nx corresponding to the
terms with n = 1, 2 tend to infinity. Therefore, applying the boundary conditions
results in A2 = A4 = B1 = B2 = 0. Superimposing the homogeneous and the
particular solutions leads to the general solutions of the beams. Thus, the system
solution in Fourier domain reads

w̃1(x, ω) = A1e
β1x + A2e

iβ1x +
−Fv3e−iωx/v

EI(ω4 − β4
1v

4)
, x ⩽ xtp, (2.14a)

ũ1 =
(ict,1ω + kt,1)

(−ρt,1ω2 + ict,1ω + kt,1)
w̃1, x ⩽ xtp, (2.14b)

w̃2(x, ω) = B3e
β2x +B4e

iβ2x +
−Fv3e−iωx/v

EI(ω4 − β4
2v

4)
, x ⩾ xtp, (2.14c)

ũ2 =
(ict,2ω + kt,2)

(−ρt,2ω2 + ict,2ω + kt,2)
w̃2, x ⩾ xtp. (2.14d)

The unknown complex constants A1,2 and B3,4 are found by substituting the Equa-
tion 2.14a and Equation 2.14c into the following Fourier interface conditions;

w̃1(xtp, ω) = w̃2(xtp, ω), (2.15a)

w̃
′

1(xtp, ω) = w̃
′

2(xtp, ω), (2.15b)

w̃
′′

1 (xtp, ω) = w̃
′′

2 (xtp, ω), (2.15c)

w̃
′′′

1 (xtp, ω) = w̃
′′′

2 (xtp, ω). (2.15d)

The solutions then can be achieved in the space-time domain by applying the
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Tuned Mass Damper 2.2.4 Transition radiation

inverse Fourier transform to the Equation 2.14;

wj(x, t) =
1

2π

∞∫
−∞

w̃j(x, ω)e
iωtdω (2.16a)

uj(x, t) =
1

2π

∞∫
−∞

ũj(x, ω)e
iωtdω. (2.16b)

The integrands being involved, the solutions are derived numerically, as in the
thesis by (Faragau 2017)2.

Now consider the same system without any mitigation measure—no TMD. It
is referred to the nominal track throughout this document. Ignoring the TMD,
its solution can be derived through the same procedures discussed in the current
subsection 2.2.3.

2.2.4 Transition radiation

The interaction of load (with uniform rectilinear motion) and inhomogeneity leads
to radiation in the form of elastic wave as a characteristic source of vibrations. This
phenomenon is known as transition radiation (Vesnitskii and Metrikin 1992)3 and
explained further as follows (Van Dalen et al. 2015). As seen earlier, the solution of
each semi-infinite beam consists of two parts, namely the particular solution and
the homogeneous solution. The former is associated to the steady-state regime
while the latter to the free field.

Considering the load velocity being subcritical4 in the steady-state regime, the
response is called eigenfield. It is stationary, accompanied by, and (in the absence
of damping) symmetric with respect to the moving load. Mathematically, in the
general solution (Equation 2.16), this situation can be achieved by choosing the
position of moving load, x = vt, far from the transition point where the eigenfield
is not affected by inhomogeneity. Doing so, the homogeneous solution becomes
zero5.

2All credit goes to Ir. Faragau for the Matlab code of the numerical integration.
3This was the first study to evaluate the transition radiation in the context of mechanical

systems; originally, this phenomenon was proposed within the framework of electromagnetism
by (Ginzburg and Frank 1945).

4The load velocity is smaller than the minimum phase velocity; there is no wave propagation
in the nominal track.

5Alternatively, same situation can be considered in the near field simply by equating the
foundations stiffness to the desired domain, k1 = k2.
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Upon approaching and passing the transition point from the soft track to the
stiff track, the transient solution is deformed compared to the eigenfield and de-
velops into a new eigenfield corresponding to the mechanical properties of the stiff
track. This discrepancy in the eigenfields before and after xtp is attributed to the
source of transition radiation. It is the homogeneous solutions of the system that
capture the radiation fields; they detach themselves from the load and propagate
independently toward the infinities. Therefore, they are referred to as free fields.

2.3 TMD optimization

To suppress the vibrations, the TMDs parameters are tuned through a numerical
optimization method. In general, many choices are available with regard to the
optimization that can be considered according to their advantages and disadvan-
tages to solve a specific problem. Herein, a population-based and metaheuristic
optimization method, evolutionary algorithm (EA), is adopted due to its flexibil-
ity and simplicity (Al-Salami 2009). In this section, mathematical optimization is
overviewed based on the textbook (Kochenderfer and Wheeler 2019). Then, the
adopted EA (Deb et al. 2002), nondominated sorting genetic algorithm type two
(NSGA-II), is briefly discussed in regard to tuning the TMDs parameters.

2.3.1 Multiobjective optimization, NSGA-II

Note that the TMDs parameters are referred to design variables/points while the
criteria to be minimized are called objective functions. The functions can be dy-
namic responses in Fourier or time domain, the difference between the soft and
the stiff tracks’ wavenumbers, the energy radiations (free fields) along the struc-
ture, and generally, any desired mathematical function that is interrelated with
the design variables/points. The optimization is discussed as follows.

Consider a design point, p, from the mathematical domain of the objective
function, f(p). In the context of optimization, the point, p∗, is called a solu-
tion/minimizer for which f is minimized (has minimum value). In general, an
optimization problem reads

min
p

f(p)

subject to p ∈ P,
(2.17)

where the design point p can be a vector of n dimensions consisted of n design
variables from a feasible space, P , with the solution p∗. Objective ranking can be
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Tuned Mass Damper 2.3.1 Multiobjective optimization, NSGA-II

assigned to two points p and p
′
; that is, the point p is a better solution than p

′

if the scalar value of f(p) is smaller than f(p
′
).

Note that EAs seek multiple solutions by simultaneously distributing many
design variables from the feasible spaces, randomly and iteratively. Moreover,
the EAs can overcome multiple objective functions with conflicting interests. To
clarify, consider a bicriteria optimization, for example, in designing process of a
concrete cantilever beam with a constant cross-section; conflicting objectives can
be maximizing the load-carrying capacity of the beam (to meet the standards
in structural codes) while simultaneously minimizing the cross-section’s area, to
reduce cost of fabrication.

Now consider a problem with multiple functions. In general, the point p domi-
nates the point p

′
, if p is better than p

′
in at least one objective function (smaller

value of f) and no worse in all other functions (smaller or equal value of f). Notice
that p can be better for some functions while p

′
for some others. Therefore, there

does not exist a single so called best solution from among many other solutions,
and trade-off is required based on the designer’s criteria.

In the presence of multiple functions, understanding of Pareto optimality is
valuable. It describes a notion where no objective can be improved without dete-
riorating at least one other objective. It is named after the Italian civil engineer,
Vilfredo Pareto. Likewise, if a point p is to be improved for an objective function,
the others are worsen (larger value of f); the set consisting of these points is called
Pareto optimal. The scalar values of the objective functions corresponding to the
aforementioned points, all together, is called Pareto frontier/curve6.

As mentioned earlier, NSGA-II is considered for tuning the TMDs parameters.
Note that the genetic algorithm is an EA that mimics the natural selection in the
biological evolution7. Initially, it is discussed for a single objective function and
then is extended for multiple functions in NSGA-II as follows.

In the genetic algorithm with one objective function, the individuals/genomes
(design points in n dimensions, here n = 6) with better objective values have better
reproduction fitness. Each individual has its own specific chromosomes made of
genes (ρt,1, ρt,2, kt,1, kt,2, ζt,1, ζt,2). Following the biological evolution, the fitter
individuals in the current generation are considered as parents to pass on their
genes to their offspring who are basically the population of next generation. To

6Recall that the evolutionary algorithms are population-based methods; thus, they spread the
populations over the Pareto frontier.

7It is worthwhile to know that an organism’s complete set of DNAs is called Genome. The
Chromosomes are consisted of DNAs and the DNAs are again consisted of the Genes; loosely
speaking, Genome > Chromosome > DNA > Gene.
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do so, using the binary Tournament Selection, out of 2 randomly selected parents,
the fittest one is chosen. This process is repeated for each parent separately. Next,
these parents go through certain biological operations to pass on their genes by
forming their offspring;

� crossover children are born by combining the genes of two parents;

� to consider the new traits which might never have been in the initial pop-
ulation, new genes from the design space are again randomly selected to
be incorporated into the single parents’ chromosomes—these are mutation8

children.

In the NSAG-II optimization where multiple functions can be considered, an
initial population of N individuals is randomly sampled throughout the design
space. Then, N parental pairs are listed9 and the N fittest ones are identified
through the tournaments. Thereafter, the crossover and mutation are performed
over the selected parents to create the initial generation.

The procedure for creating the next generations, however, is slightly different;
the selection criterion after the usual tournaments is now based on the crowded-
comparison operator (Deb et al. 2002), with which the diversity in the population
is considered (set of points with larger distance from each other). This time the
parents in the initial generation survives (elitism) together with their own children
to form a population twice the initial size. The nondominated points/individuals
are now sorted according to their nondomination ranking10, to form the frontier
accordingly. Then the best solutions are adopted in the order of their ranks and
according to their crowding distances, until the population size is reduced to N as
the next generation. The preferred solutions within the last level/rank are those
which are less crowded by other solutions; this is in favor of having a wider spread
of solutions (better diversity). The same approach is repeated for creating the
next generations until the algorithm converges to the best nondominated frontier.

8To clarify, the advent of blue eye’s color in human beings can be mentioned as an example
of mutation (Eiberg et al. 2008); a specific trait which was already absent becomes to existence.

9Identical parents might appear.
10The individuals within the 1st level are not dominated by any others (the best fitness rank);

similarly, the individuals in the 2nd level are not dominated by any others except those in level
1; likewise, the individuals in the 3rd level are not dominated by any others except those in the
level 1 and 2; and so forth.
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Tuned Mass Damper 2.3.2 Objective functions

2.3.2 Objective functions

The amplified transient vibrations are normally attributed to the abrupt change
in the track stiffness as one of the main factors. This can be associated to different
mechanical properties in the wavenumbers of the soft and the stiff tracks in Equa-
tion 2.9a. Therefore, the goal is to suppress the amplified response through tun-
ing/optimizing the TMDs parameters (design variables/points) such that this dis-
crepancy (objective function) is minimized. Mathematically, two complex wavenum-
bers are equal if and only if Im(β1) = Im(β2), and Re(β1) = Re(β2). Consequently,
the optimization problem with two objective functions and six design variables is
formulated as11

min
p

f1(p) = |Im(β1)− Im(β2)|

min
p

f2(p) = |Re(β1)− Re(β2)|

and 1 ⩽ {p1, p2} ⩽ 500

1e7 ⩽ {p3, p4} ⩽ 1e9

0.05 ⩽ {p5, p6} ⩽ 1.5,

(2.18)

where p is a 6-dimensional point consisted of 6 design variables of the TMDs;
variables’ bounds corresponding to pn, (n = 1, ..., 6), represent the real-valued
ρt,j, kt,j, and ζt,j, respectively—see subsection 2.4.1.

Finally, the choice of frequency in the objective functions completes the opti-
mization problem. Note that the amplified vibrations in the continuous system are
naturally attributed to a range of frequencies. On the other hand, the imaginary
and real parts of the wavenumbers should be evaluated at an identical frequency.
Therefore, the tuned frequency in Equation 2.18 is considered only for a specific
load velocity as follows. Consider the spatial point in the soft track, xmax, where
the maximum transient displacement occurs, w1(xmax, t); the frequency for which
|w̃1(xmax, ω)| is maximum (peak frequency), is considered as the tuned frequency,
ωopt, with which the optimization is performed. The adopted values of the corre-
sponding parameters are discussed in subsection 2.4.1.

Due to low computational cost, the population size and maximum number of
generations are selected as 3000 and 1500, respectively. The performance measure
of the optimization is considered through a convergence metric defined in the same
article (Deb et al. 2002). It is based on the crowding distance and the uniformity

11No constraint is considered for the optimization problem.
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measure of the solutions in the frontier. At best, this metric is zero where the
nondominated solutions are spread most uniformly. Considering the large values
being selected for both population size and number of iterations, the change of
the convergence metric between the last frontier and previous ones is extremely
negligible, meaning the last frontier cannot be noticeably improved further.

2.4 Results and discussions

Initially, the numerical values selected for the mechanical parameters are discussed
in this section. The tuned design variables, derived through NSGA-II optimization,
are then presented and discussed. Subsequently, the systems’ dynamic analyses
are investigated through the results corresponding to the dispersion relations, dis-
placements in time domain, Fourier amplitude spectrum, and energy.

2.4.1 Choice of the parameters

Superstructure and substructure

Due to symmetry in the corss-section of the track, only half of the structural
components are incorporated into the one-dimensional mechanical system. That
is, one rail and half of the sleeper length and of all other elements within the track
width. The beam linear density, ρ, is consisted of the rail (UIC60) linear mass, 60
kg/m, together with effective mass of the sleeper per unit length, ρs =250/2/0.6
kg/m (Fărăgău, Mazilu, et al. 2021); ssb = 0.6 m is the sleeper bay spacing.
Moreover, vertical stiffness and damping of the components are serially coupled
to represent the Kelvin foundation. Note that the stiffness of the concrete sleeper
is ignored due to its significantly large magnitude. Furthermore, the foundation’s
damping ratio, ζ = 0.05, is kept constant at any spatial point along the track12.

Stiffness ratio and load velocity

The stiffness ratio, sr = k2/k1, and load velocity play active roles in the undesired
behavior at transition zone. These values are selected based on (ibid.). Even
though the stiffness ratio of 5 is rare in practice, its choice results in stronger

12See (Rodrigues 2017) for further information regarding the track modeling and the corre-
sponding parameters.
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Figure 2.2: The frequency at which |w̃1(xmax, ω)| is maximum (peak frequency) for various
relative velocities. xmax is the spatial point in the soft track where the transient displacement is
maximum, w1,max = w1(xmax, t).

and more evident vibrations; hence, simpler distinction of the mechanisms of the
transition radiation.

Normally, in practice, 60 − 70% of the critical velocity is considered as the
train’s operative speed in the soft tracks. On the other hand, if the speed (not the
relative velocity) corresponding to this range is adopted for the current mechanical
model, the results would be correspondent to those of the speed of about 10% of
the measured critical velocity in practice. This is because of the larger critical
velocity introduced by Kelvin foundation in which the substructure mass is not
accounted for (Fărăgău, Mazilu, et al. 2021). Therefore, the analyses herein are
evaluated based on relative velocity ; load velocity relative to the critical velocity
of the system.

Consider the critical velocity, vcr, corresponding to the soft track in the nominal
system. Despite the aforementioned limitation, often a range of relative velocities
close to, but smaller than vcr is considered. In doing so, the Cherenkov radiation is
avoided (Wolfert 1999), and yet it is large enough to amplify the vibrations in favor
of easier identification of the transition radiation mechanisms. Note that the large
magnitude of v does not lead to unrealistic results as they are eventually attributed
to the relative velocity, v/vcr. Following the discussion in subsection 2.3.2, the
optimization problem is performed for v/vcr = 0.95. Therefore, the frequency
ωopt = 720 rad/s is considered for the optimization according to Figure 2.2 where
ωopt is plotted for various relative velocities.

The TMDs parameters

The optimization problem in Equation 2.18 requires numerical bounds for design
variables corresponding to TMDs. On the other hand, in the context of tuned mass
dampers at transition zone, the overall range of design values is not well known
yet. Therefore, it is worthwhile to briefly investigate the rail vibration damper,
also known as TMD (Xiao et al. 2017), to have a rough and initial estimation of
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Table 2.1: List of the mechanical parameters.

Parameters Magnitude Dimension Definition

EI 6.42e6 N/m2 rail bending stiffness

F 8e4 N constant load amplitude

vcr 415.2 m/s critical velocity (nominal soft track)

ssb 0.6 m sleeper bay spacing

sr 5 − stiffness ratio, k2/k1

ρ 268.33 kg/m beam linear mass

k1 8.33e7 N/m2 distributed static stiffness, soft track

k2 4.165e8 N/m2 distributed static stiffness, stiff track

ζ 0.05 − foundation’s damping ratio

ρt,j 1− 500 kg/m range of the TMDs’ linear mass

kt,j 1e7− 1e9 N/m2 range of the TMDs’ static stiffness

ζt,j 0.05− 1.5 − range of the TMDs’ damping ratio

the aforementioned bounds. It should be stressed that the TMD analysis herein
is not limited to rail dampers, as they belong to different principles. In fact, rail
dampers are relatively well established for suppressing vibrations with regard to
the sound radiation in the rails.

The rail vibration damper consists of the mass which is connected to the rail
foot and web by an elastomeric material that accounts for both elasticity and
viscosity. The elastomeric component is modeled by a vertical spring and a dash-
pot which are connected to the rigid mass from the top and to the beam from
the bottom. The rail dampers are normally tuned to suppress the pinned-pinned
vibrations13 of the rail (ibid.). Considering the loss factor14 of rail dampers, an
approximate range of 0.1-1.3 can be found in (Kuchak et al. 2021; Wu 2008; Xiao
et al. 2017). In addition, an overall range of 37-592 MN/m can be attributed to
the stiffness parameter of rail dampers according to (Jin, Kim, et al. 2022; Jin,
W. Yang, et al. 2020; Wu 2008; Xiao et al. 2017). Moreover, a range of 9-18 kg/m
was recommended for the linear mass by (W. Li et al. 2021).

Therefore, the intervals 0.05-1.5 and 6-600 MN/m are respectively selected for
the damping ratio and the stiffness of TMDs. However, a significantly larger upper
bound is adopted for the corresponding linear mass, as the vibrations in transition

13The standing wave modes of the rail where the fasteners at the sleepers behave like hinged
supports.

14The loss factor, η, and damping ratio can be related through η ≈ 2ζ (Krylov 2001).
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zone are stronger than those regarding the sound radiations in rail. It should be
clarified that herein, the TMD feasibility, in theory, is of interest and not much
of the physical designs in practice. Therefore, the type of TMD material, and
their installing locations across or along the track are considered conceptually15.
Having said that, the magnitude of 500 kg/m is selected as the high end of ρt,j in
Equation 2.18. Finally, the mechanical parameters and their values are presented
in Table 2.1.

Table 2.2: The TMDs optimized parameters.

Parameters kt (N/m
2) ρt (kg/m) ζt

Soft Track 7.5771e7 188.12 0.8007

Stiff Track 5.2866e8 461.05 0.1217

2.4.2 TMDs’ optimized values

As discussed in section 2.3, there are multiple solutions in the converged Pareto
frontier that can be traded off based on the desired criteria. In the selection
of the final solution, the criterion is to attribute equal weight to both objective
functions in Equation 2.18. The design values of the chosen solution corresponding
to the tuned mass dampers are presented in Table 2.2, and the corresponding
wavenumbers are plotted against the frequency in Figure 2.3.

According to Figure 2.3, the wavenumbers corresponding to the optimized track
demonstrate zero difference at the tuned frequency ωopt = 720, as expected. This
reduction can also be signified for frequencies close to the tuned frequency. In
contrast, the difference in the imaginary part adversely indicates an increase at
frequencies close to 418 rad/s, due to addition of TMD. This increase is signifi-
cantly larger at higher frequencies. Note that the algorithm approached to a more
realistic value for the TMD mass in the soft track, ρt,1 = 188.12 kg/m (0.7 times
smaller than the beam element), compared to that of the stiff track, ρt,2 = 461.05
kg/m (1.72 times larger than the beam element).

15For example, the TMDs can be installed on the sleepers, main rails, external rails, etc; this
research is not focused on this matter.
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Figure 2.3: Comparison of the wavenumbers’ difference between the soft and the stiff tracks
with and without TMDs. ωopt is denoted by the vertical dash-dotted line.

2.4.3 Dispersion analysis

To have a better understanding of the system’s dynamic behavior with regard to
the employment of TMDs, the waves dispersion which might propagate along the
infinite beam (Shamalta and A. Metrikine 2003) are evaluated.

Note that in dynamic analyses of the system with and without TMDs, the
steady-state responses are derived by considering the load in the far field space,
in Equation 2.14. That is, the steady-state solution is not derived by a separate
set of EOMs. It is, however, conceptually and briefly recognized in this subsection
to derive the dispersion relation as follows.

Consider the homogeneous form of the system with TMDs. Forward Fourier
transform is applied to the correspondent EOMs over time and space (ibid.);

w̃(β, ω) =

∞∫
−∞

∞∫
−∞

w(x, t)ei(ωt−βx)dxdt, (2.19a)

w(x, t) =
1

(2π)2

∞∫
−∞

∞∫
−∞

w̃(β, ω)e−i(ωt−βx)dβdω. (2.19b)

23



Tuned Mass Damper 2.4.3 Dispersion analysis

The term corresponding to the load reads

−
∞∫

−∞

Fδ(x− vt)e−iβxdx = −Fe−iβvt, (2.20a)

−
∞∫

−∞

Fe−iβvteiωtdt = −2πFδ(ω − βv). (2.20b)

The kinematic invariant can be found as ω = βv which is attributed to the load
and the argument of the Dirac-Delta function. The derivation is continued by
rewriting the equations in its matrix form as follows.[

EIβ4−ρω2+i(c+ct)ω+k+kt −ictω−kt

−ictω−kt −ρtω2+ictω+kt

][
w̃(β,ω)

ũ(β,ω)

]
=

[
−2πFδ(ω−βv)

0

]
, (2.21)

W̃ = D−1F̃, (2.22)

W(x, t) =
1

(2π)2

∞∫
−∞

∞∫
−∞

N(β, ω)

det(D)
dβdω, (2.23)

N(β, ω) = adj(D)(−2πFδ(ω − βv))e−i(βx−ωt), (2.24)

det(D) = (EIβ4 − ρω2 + i(c+ ct)ω + k + kt)(−ρtω
2 + ictω + kt)

− (ictω + kt)
2, (2.25)

where D is the dynamic stiffness matrix—the first matrix in the left side of Equa-
tion 2.21. The dispersion relation is Equation 2.25 equated to zero;

det(D(β, ω)) = 0, (2.26)

where its roots are the poles of the integral in Equation 2.23. Likewise, it can be
obtained for the nominal track.

To plot the dispersion curves, damping constants are zeroed out, in which the
dispersion equation (Equation 2.26) is satisfied for real pairs of β and ω (Shamalta
and A. Metrikine 2003; Wolfert 1999). Substitution of the kinematic invariant
(ω = βv) results in a polynomial of order 6 (it is 4th order for the nominal system).
Dispersion curves are therefore plotted against both frequency and wavenumber in
Figure 2.4, which are illustrated by dark red and dark blue colors for the nominal
and optimized tracks, respectively.

Note that the curves appear in pairs in ±ω which are shown only for positive
frequencies in Figure 2.4. Moreover, the kinematic invariant is signified by the
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Figure 2.4: Dispersion curves of the nominal system (red curves) and the optimized system
with TMDs (dark blue curves). The kinematic invariant (dash-dotted line) is correspondent to
0.95vcr. vcr is the critical velocity corresponding to the nominal soft track.

dash-dotted line corresponding to 0.95vcr of the nominal soft track. Furthermore,
the range of frequency where no propagation exist is known as the stop band,
otherwise it is pass band which are separated by bounding frequencies16 (Fărăgău,
Oliveira Barbosa, et al. 2022; Xiao et al. 2017).

Consider the range of frequencies where the pass band of the soft track is in
the stop band of the stiff track in the nominal system. This is the main difference
between the dispersion curves corresponding to both domains. Noticeably, addi-
tion of TMDs results in new stop bands in both domains. The stop band in the
soft track is almost within the same range of frequencies for which the objective
functions (the difference in wavenumbers corresponding to the soft and the stiff
tracks) in Equation 2.18 exhibit significant reduction, as can be seen in Figure 2.3
(note that this comparison is conceptual as damping was neglected).

Consider the dispersion curve with horizontal asymptote corresponding to the

16It is also called the cutoff frequency.
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Figure 2.5: DAF and maximum displacements of the track with and without TMDs in the
steady-state and transient regimes. vcr is the critical velocity in the nominal soft track.

soft track with TMD. Notice that the kinematic invariant with any slope (except
zero) always crosses the dispersion curve at one point. This is correspondent to
the free propagating wave in the system with TMD. At load velocity v = 0.95vcr,
the tangent of crossing point (group velocity at 397 rad/s) is smaller than the
kinematic invariant slope (ω = β1v), meaning the propagating wave is behind the
load.

2.4.4 Displacements in time domain

The amplified response at transition zone can be associated to maximum displace-
ment in the soft track. Therefore, to clarify the mechanisms of mitigation measure
corresponding to TMD, dynamic amplification factor, DAF, of the optimized sys-
tem is evaluated in this subsection.

The DAF is defined as the ratio of maximum transient displacement to the
maximum steady-state displacement of the soft track at each relative velocity;

DAF =
max {w1,transient(x, t)}
max {w1,steady-state(x, t)}

. (2.27)

The DAF curves are presented for both nominal and optimized systems in Fig-
ure 2.5. The results of the optimized track are discussed compared to the nominal
track, as follows.
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Due to addition of TMD, maximum displacements in both steady-state and
transient regimes illustrate significant reductions at load velocity for which the
optimization was performed (v = 0.95vcr, related to ωopt = 720 rad/s of the nom-
inal soft track) as well as the corresponding neighboring velocities, as expected.
Clearly, this is echoed by noticeable reduction in DAF at the aforementioned rel-
ative velocities.

The DAF peak represents the system’s critical velocity. Hereafter, the critical
velocity corresponding to the system with TMDs is signified by vt. In fact, due
to application of TMDs, the nominal system with load velocity v = 0.95vcr in
subcritical regime changes to an optimized system with load velocity v≈1.48vt
in supercritical regime, through a shift in the DAF peak to a smaller value at
vt≈0.64vcr. Note that this behavior is not desired and should be avoided, even
though favorably, the amplification indicates considerable decrease.

Additionally, the displacement fields at different time moments are presented
for both systems in Figure 2.6. Panel (a) illustrates the eigenfields in the left
domain upon reaching the transition point, xtp. Notice the free propagative wave
behind the load which signifies the optimized track being in supercritical regime,
as discussed earlier; this is correspondent to the point at which the kinematic
invariant (ω = β1v, v = 0.95vcr) crossing the lower dispersion curve in the opti-
mized soft track, as can be seen in (Figure 2.4). In addition, due to presence of
damping in the foundation (Dieterman, V. Metrikine, et al. 1997), the maximum
displacements of the eigenfields are not exactly under the load, but slightly behind
it.

Deformations in displacement fields can be signified by approaching the in-
homogeneity in panel (b) while the amplified response indicates the maximum
transient displacement in panel (c). This is considerably smaller for the optimized
track echoing the results in Figure 2.5, due to the TMDs being tuned for the fre-
quency ωopt corresponding to this amplified response in the nominal track. After
passing xtp, the optimized system demonstrates a less intensified fluctuation com-
pared to the system without TMD, see panels (d) and (e). Then, the free fields17

gradually being detached from the load, are propagating leftward in the left do-
main18, see panels (f) and (g). Afterward, in panel (h), both systems illustrate
the eigenfields at the steady-state regime far enough from the transition point in
the stiff domain. Notice that the tail (free propagative wave) in the system with
TMD does not interact with the inhomogeneity anymore while the free fields are
still propagating to a less degree.

17Recall that the free fields are correspondent to homogeneous parts of the general solutions,
and the eigenfields are described by the particular solutions.

18Also rightward in the right domain which is less evident.
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Figure 2.6: Snapshots of the displacement fields at consecutive time moments for both nominal
and optimized tracks. v = 0.95 vcr corresponding to critical velocity of the nominal soft track.
xtp = 0 denotes the transition point.

2.4.5 Fourier amplitude spectrum

Fourier amplitude spectrum can provide the information on how the optimized
system behaves at the tuned frequency, based on the wavenumbers’ discrepancy
(objective functions; f1 = |Im(β1) − Im(β2)|, f2 = |Re(β1) − Re(β2)|) in Equa-
tion 2.18.

Fourier displacements corresponding to the soft tracks with and without TMD
in the steady-state regime are presented in Figure 2.7. Clearly, the Fourier contents
demonstrate a shift in the peak corresponding to the nominal track to a lower
frequency at ω = 418 rad/s due to addition of TMD. This value is very close to
the frequency19 (ω = 397 rad/s) at which the free wave propagates behind the
load in the optimized system where the kinematic invariant crosses the dispersion

19Note that the damping was neglected in the dispersion analysis.
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curve (Figure 2.4). It can be inferred that part of the energy close to the load is
redistributed to the propagating wave, leading to a smaller amplitude under the
load but a larger amplitude behind it, as can be seen in panel (a) of Figure 2.6.
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Figure 2.7: Fourier amplitude spectrum of the soft track at steady-state regime. The dash-
dotted line signifies the peak frequency of the optimized track, ω = 418 rad/s.
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line signifies the peak frequency (ω = 418 rad/s) upon reaching the transition point. The dash-
dotted line signifies ωopt = 720 rad/s. Load velocity is 0.95% of the critical velocity corresponding
to the nominal track.

Furthermore, the transient Fourier displacements corresponding to both sys-
tems for load velocity v = 0.95vcr, at various spatial points x, are presented in
Figure 2.8. Consider the spatial point x = −0.55 m, where the nominal track
exhibits an amplified response in time domain. Clearly, the Fourier content in
the system with TMD demonstrates a significant reduction in amplitude at the
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tuned frequency, as expected. Note that in the system with TMD, the peak fre-
quency at x = −7 or x = −1.7 m indicates a shift to a slightly larger frequency
at x = −0.55 m, in which the amplitudes are larger compared to the nominal
track. This shift can be attributed to the same frequencies at which the objective
function f1, adversely indicates increase in magnitude (Figure 2.3).

2.4.6 Power input

The larger amount of energy being emitted to the railway track can be pertained to
the bigger energy dissipation in the ballast layer, hence increase of degradation in
the supporting structure (Fărăgău, Mazilu, et al. 2021; Sadri et al. 2019). Since the
dissipated energy cannot be determined in the simplified model herein, the power
input is considered instead. In doing so, the potential damage to the foundation
can be assessed indirectly. The power input by the moving load reads

P (x = vt, t) = Fẇ(x = vt, t) J/s, (2.28)

where ẇ is the beam velocity at which the external load, F , is applied.

According to Figure 2.9, the steady-state power inputs are horizontal lines
along the track; the bigger the slope of the rail under the load, the larger the
power input (softer track). As the load approaches the transition point, the power
inputs start to illustrate fluctuations through energy exchange between the moving
load and the track. The peaks in both systems, close to the xtp, are correspondent
to the moving load which needs to impart extra energy into the track to pass the
inhomogeneity while keeping its constant velocity.

Addition of TMDs leads to reduction in amplitude of the maximum peak which
is more eventide for load velocity at which the TMDs were tuned (v = 0.95vcr).
Furthermore, the optimized track indicates an almost identical power input behav-
ior for load velocities close to 0.95vcr for which the DAF magnitudes are almost
equal, as can be seen in Figure 2.2.

Afterward, the nominal track impart back noticeable energy to the external
object, more specifically at positions close to xtp = 0 (the trough). In contrast,
the exchange energy between the load and the track is significantly reduced where
the power input smoothly morphs to that of the steady-state in the stiff track.

More importantly, the effect of TMDs on the foundation damage can be indi-
rectly evaluated through the ratio of maximum transient power input (maximum
peak) to the steady-state power input in the corresponding domain. Addition of
TMDs results in 35.2% reduction in the aforementioned ratio for v = 0.95vcr; this
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Figure 2.9: Power input of the tracks with and without TMDs at load velocities 0.9% and
0.95% of the critical velocity corresponding to the nominal track.

can be partly attributed to less damage to the foundation compared to the nominal
track (Fărăgău, Andrei V Metrikine, et al. 2019).

2.4.7 Energy flux and spectral energy density

In this subsection, the influence of TMDs on energy radiation is evaluated through
energy flux. To that end, the contribution of free field is considered only; due to
presence of damping in the system (either by TMDs or foundation), the entire free
field radiation can not be captured. Moreover, the free field energy distribution
across the frequency spectrum can be examined through the spectral energy density
relation.

Consider the power flux through a cross-section of the beam as (Wolfert 1999)

Sf (x, t) = ±EI(w
′′′

f ẇf − w
′′

f ẇ
′

f ), (2.29)

where the subscript f denotes the free field propagating rightward for positive sign
and leftward for negative sign. By integrating over time, the total free field energy
flux for a given cross-section reads (Fărăgău, Andrei V Metrikine, et al. 2019;
Wolfert 1999)

Ef (x) = ±EI

∞∫
−∞

w
′′′

f ẇf − w
′′

f ẇ
′

f dt. (2.30)

To consider the spectral energy density in Fourier domain, Equation 2.30 is refor-
mulated in terms of frequency (in Appendix A) as follows (Van Dalen et al. 2015).

Ef (x) =
±EI

π

∞∫
0

Re{w̃′′′

f ṽ
∗
f − w̃

′′

f ṽ
∗′
f } dω. (2.31)
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The integrand in the last equation is known as the spectral energy density, Es(x, ω).
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Figure 2.10: The energy flux for various relative velocities. The cross sections are chosen at
x = ±7.5 m. The left panel is related to the leftward radiation and the right panel for the
rightward radiation.
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Figure 2.11: The spectral energy density of the tracks for multiple relative velocities at cross
sections x = ±7 m. The bottom panel is related to the leftward radiation and the top panel to
the rightward radiation.

The energy flux corresponding to the systems with and without TMDs for
cross-sections at x = ±7.5 m are presented in Figure 2.10. Note that considering
other spatial points can lead to slightly different results due to damping in the
foundation and TMDs. As it can be seen, the leftward energy radiation in the soft
domain is considerably larger than the rightward radiation in the stiff domain.
In both cases, Ef indicates noticeable reduction for relative velocities closer to
v/vcr = 0.95 (corresponding to tuned frequency). This reduction possibly can be
attributed to the large value of tuned damping (ζt,1 = 0.8) and strong counteracting
forces between the beam and TMDs at transition zone. Furthermore, energy trap
at transition zone might be another reason that can partly play a role in decreasing
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the energy flux; this occurs when the free field energy is sustained longer, rather
than radiating away from the transition point. This can be attributed to the wave
propagating in positive x-direction, but slower than the load. This causes the wave
to continuously be reflected at transition point. Herein, a negligible energy trap
can be signified in panel (g) of Figure 2.6.

Furthermore, the spectral energy densities are plotted in Figure 2.11 for cross-
sections at x = ±7 m. The leftward propagation in the bottom panel demonstrate
completely flattened energy curves due to the employment of TMDs. On the other
hand, there is a shift in the energy toward the lower frequencies with extremely
small magnitudes. Considering the free field’s rightward radiation, the addition of
TMDs results in a shift in energy toward lower frequencies for all relative velocities
in the top panel. Note that this shift is accompanied by increase in energy except
at the frequency for which the TMDs were tuned. Note that this increase in energy
is more evident for relative velocities other than 0.95vcr, as expected. Once again,
the reduction in the wavenumbers’ discrepancy at ωopt is highlighted in accordance
with the Figure 2.3.
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Auxiliary rail 3.1. Literature review

To respond the second research question, the efficiency of auxiliary rail in
improving the undesired behavior at transition zone is investigated in this chap-
ter. Initially, previous studies are reviewed. Next, the incorporation of extra rail
into the one-dimensional train-track model is briefly discussed. For the analyses
throughout this chapter, two configurations are considered; first, addition of rails
over soft track only, and second, extra rails over both soft and stiff tracks. Static
stiffness behavior is then evaluated where a smoother transition is recognized for
the first configuration. Moreover, following the same procedures in chapter 2,
semi-analytical solutions are derived through Fourier transform method. Conclu-
sions are established based on outcomes corresponding to dynamic amplification
factor and power input. It is suggested that application of auxiliary rail leads
to improvement in dynamic response of the track through increasing the critical
velocity to a larger value.

3.1 Literature review

The available findings regarding the auxiliary rail are not as extensive as other
mitigation measures. Overall, applying extra rails to the ballasted track can lead
to uniform distribution of the load at transition zone (Indraratna et al. 2019).
Although, less priority might be attributed to this solution compared to other
mitigation measures when cost-effectiveness analysis is of interest (Read and D. Li
2006; Shan et al. 2013).

Extra rails are normally installed parallel to the original rails, inside and or
outside of the track gauge. Extending the guard rails from the abutment of a bridge
to its approach can be mentioned as an example where a better load distribution is
achieved (Read and D. Li 2006). Using a 3D Finite Element (FE) model, (Shahraki
et al. 2015) suggested a high rate of dynamic improvement at transition zone due
to employment of the extra rails; a smoother transition was achieved with regard
to abrupt change in the track stiffness. In fact, track’s bending stiffness in the
track was improved and the ballast layer demonstrated a reduction in the stress
magnitudes.

(Esmaeili et al. 2020) investigated the effect of auxiliary rails on a ballasted
track adjacent to a concrete culvert for different load velocities. Using FE model,
the improvement in dynamic behavior was realized where the track accelerations
and rail deflections were reduced. In another numerical study (Heydari-Noghabi,
J. Varandas, et al. 2017), the efficiency of auxiliary rail was evaluated for the
load passage from a slab track to a ballasted track1; smaller rail deflection was

1The vice versa direction is normally more detrimental (Sañudo et al. 2016).
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demonstrated for both low and high load velocities. Moreover, considering com-
plete width of the track, addition of two extra rails was suggested as an optimum
number for this mitigation measure in transition zone.

The improvement in dynamic behavior of the track was also reported by (Chumyen
et al. 2022), in which a 3D model was validated based on the findings of a field
investigation (corresponding to the auxiliary rail) in (Heydari-Noghabi, Zakeri,
et al. 2018). A better load distribution within the ballast layer was attributed to
addition of two auxiliary rails. However, the soft track indicated a slight increase
in displacement at the end of extra rail where its length is terminated. Further-
more, it was concluded that installing extra rails closer to the main rails results in
a slightly better performance in dynamic response of the track.

3.2 Static stiffness

Considering the one-dimensional model in this thesis, extra rail, ER, is incorpo-
rated into the system simply by linear addition of its bending stiffness and mass to
those of the beam element. Note that the ER’s mechanical properties are equally
considered as those of the main rail. Two configurations are investigated in this
chapter; in the first case, ER is applied only to the soft track, while the system
with ER in both soft and stiff tracks is considered as the second configuration. For
the sake of brevity, mathematical derivation of the latter is neglected. Further-
more, the nominal track’s mechanical model (defined in chapter 2) is accordingly
modified for the corresponding analyses.

3.2.1 ODEs and static solutions

It is worthwhile to initially evaluate the effect of auxiliary rails on the static stiff-
ness behavior at transition zone. Considering the first configuration, the static
stiffness can be described through the ordinary differential equations, ODEs, of
the system as follows.

w
′′′′

1 + 4γ4
1w1 = −Fδ(x− x), 4γ4

1 = k1/nEI, n = 1, ...4, x ⩽ xtp, (3.1a)

w
′′′′

2 + 4γ4
2w2 = −Fδ(x− x), 4γ4

2 = k2/EI, x ⩾ xtp, (3.1b)

where the transition point is denoted by xtp = 0; w1 and w2 indicate the static
displacements at position x in the left (x ⩽ xtp) and right (x ⩾ xtp) domains,
respectively; the Dirac delta function δ(x − x) signifies the position x at which
the point load, F , is applied. Moreover, n is the coefficient corresponding to the
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number of extra rails in the left domain (i.e. n = 1 signifies no ER, n = 2 signifies
one ER, and so forth). Note that a maximum of three extra rails in half width of
the track is considered for this study. In addition, numerical values of the system
parameters are considered according to Table 2.1.

The ODEs in Equation 3.1 are of 4th order which in total require 8 bound-
ary/interface conditions to be solved. Naturally, the general solution is superpo-
sition of the homogeneous and particular solutions. Note that before solving the
Equation 3.1, for a better understanding, the homogeneous solution of the ODE’s
generic form is derived as follows. Substituting the trial solution w = eλx in
w

′′′′
+ 4γ4w = 0 and removing the common factor eλx, leads to the characteristic

equation

λ4 + 4γ4 = 0 → λ =
4
√
−1

√
2 γ. (3.2)

Given the de Moivre’s relation in Equation 2.13 and substituting all fourth roots
of −1, (±1± i) /

√
2, in Equation 3.2, the corresponding roots read

λ1 = γ(1 + i), λ2 = γ(1− i), λ3 = γ(−1 + i), λ4 = γ(−1− i). (3.3)

The generic homogeneous solution, therefore, can be found as

wh (x) =
4∑

m=1

Cme
λmx, m = 1, · · · , 4 , (3.4a)

wh(x) = eγx
(
C1e

γix + C2e
−γix

)
+ e−γx

(
C3e

γix + C4e
−γix

)
, (3.4b)

where the unknown constants Cm are determined through the boundary/interface
conditions.

Turning back to the system’s ODEs in Equation 3.1, it is simpler to derive the
solutions by splitting each domain into two sub-domains due to presence of Dirac
delta function. Thus, two load cases are considered as follows.

1. The load F is applied at x ⩽ 0 in the left domain only.

−∞ +∞
xtp = 0

x

w1L w1R w2

F

The equations are therefore extended to three ODEs

w
′′′′

1L + 4γ4
1w1L = 0, w

′′′′

1R + 4γ4
1w1R = 0, x ⩽ xtp,

w
′′′′

2 + 4γ4
2w2 = 0, x ⩾ xtp,

(3.5)
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with 12 interface/boundary conditions in total. Now considering the generic
homogeneous solution in Equation 3.4b and applying 4 boundary conditions
at infinite distance (zero displacement), the static solutions read2

w1L = eγ1x(C1 cos(γ1x) + C2 sin(γ1x)),

w1R = eγ1x(C5 cos(γ1x) + C6 sin(γ1x)) + e−γ1x(C7 cos(γ1x) + C8 sin(γ1x)),

w2 = e−γ2x(C11 cos(γ2x) + C12 sin(γ2x)).

(3.6)

Furthermore, relations of the slope, bending moment, and shear force of the
beam in the soft track are respectively defined as ϕ(x) = −w

′
, M(x) =

−nEIw
′′
, and V (x) = −nEIw

′′
; same relations are considered for the stiff

track, however, the factor n is ignored. By substituting Equation 3.6 into
the following interface conditions at x and xtp, the unknown constants in
Equation 3.6 are derived to complete the system’s static solutions3.

w1L(x) = w1R(x), w1R(xtp) = w2(xtp),

ϕ1L(x) = ϕ1R(x), ϕ1R(xtp) = ϕ2(xtp),

M1R(x) = M1L(x), M1R(xtp) = M2(xtp),

V1L(x) = F + V1R(x), V1R(xtp) = V2(xtp).

(3.7)

2. In the second load case, F is applied at x ⩾ 0 in the right domain only.

−∞ +∞
xtp = 0

w1

x

w2L w2R

F

So, the equations are extended to,

w
′′′′

1 + 4γ4
1w1 = 0, x ⩽ xtp,

w
′′′′

2L + 4γ4
2w2L = 0, w

′′′′

2R + 4γ4
2w2R = 0, x ⩾ xtp.

(3.8)

The static solutions of Equation 3.8 can be derived following the same proce-
dures for the first load case. For the sake of brevity, the derivation, therefore,
is not repeated.

The solutions corresponding to both load cases together describe the static dis-
placement of the system with ER over soft track only. The solution corresponding
to the second configuration (ER over all domains) can also be found through the
aforementioned procedures.

2Note that e±iγx = cos γx± i sin γx (Euler’s formula).
3The term Fδ(x − x) in Equation 3.1 is appeared through shear balance at the interface

position x.
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Auxiliary rail 3.2.2 Results and discussions

3.2.2 Results and discussions

The effect of extra rails on the static response at transition zone is evaluated as
follows. The static stiffness profiles (F/w1L = F/w1R and F/w2L = F/w2R) are
presented in Figure 3.1 and Figure 3.2 for the first and second configurations,
respectively.
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Figure 3.1: Static stiffness profile of the first configuration (extra rails, ERs, in the soft track
only). The transition point xtp = 0 is denoted by dash-dotted line.
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Figure 3.2: Static stiffness profile of the second configuration (extra rails, ERs, in both soft
and stiff tracks). The transition point xtp = 0 is denoted by dash-dotted line.

According to Figure 3.1, application of ER leads to a slight increase in static
stiffness of the soft track, as expected. This increase in the stiff track is nil—except
in the vicinity of transition point (xtp). In contrast, the second configuration
(Figure 3.2) indicates an almost uniform increase over all domain. That is, an
upward shift without any noticeable change in the smoothness, as can be seen in
Figure 3.2; the increase is more evident in the stiff track.

More importantly, the system with ER over left domain demonstrates a smoother

40



Auxiliary rail 3.3. Dynamic analysis

transition. This can be explained by smaller ratio of the right domain’s static stiff-
ness to that of the left domain in Figure 3.1.

Moreover, the improvement becomes less evident as the number of ER increases
in both configurations. It should be noticed that these findings are valid only for
load velocities that lead to a quasi-static response. Therefore, these results can
not be associated to the system with a load moving, for example, with 70% of the
critical velocity—in such case, dynamic stiffness should be addressed instead.

3.3 Dynamic analysis

In this section, the efficiency of extra rail is investigated through dynamic analysis
at transition zone. Initially, the corresponding EOMs are derived through same
procedures in chapter 2. Thereafter, the dynamical results corresponding to the
aforementioned configurations are evaluated.

3.3.1 EOMs and dynamic solutions

Auxiliary rails are incorporated into the beam element via linear addition of EI
by the factor n, as discussed in section 3.2. Moreover, the linear mass of the beam
element is defined as

ρ̄ = nρ+ ρs,

where ρ is linear mass of the rail (either the additional or the original rail). ρs is
half of the sleeper mass (250/2 kg) which is distributed over the distance between
two sleepers (ssb = 0.6 m); that is, ρs = 125/0.6 = 208.33 kg/m. Clearly, addition
of rail has no effect on the system damping.

Thus, the EOMs of the system corresponding to the first configuration are
derived as

nEIw
′′′′

1 + ρ̄ẅ1 + c1ẇ1 + k1w1 = −Fδ(x− vt), x ⩽ xtp, (3.9)

EIw
′′′′

2 + ρẅ2 + c2ẇ2 + k2w2 = −Fδ(x− vt), x ⩾ xtp, (3.10)

where all other parameters are equivalently explained as in chapter 2. In addi-
tion, the boundary and interface conditions (notice the appearance of factor n
corresponding to number of ERs) read

lim
(x−vt)→−∞

w1(x, t) = 0, lim
(x−vt)→+∞

w2(x, t) = 0, (3.11)
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w1(xtp, t) = w2(xtp, t), nw
′′

1 (xtp, t) = w
′′

2 (xtp, t), (3.12a)

w
′

1(xtp, t) = w
′

2(xtp, t), nw
′′′

1 (xtp, t) = w
′′′

2 (xtp, t). (3.12b)

Applying Fourier transforms to Equation 3.9 over time gives

w̃
′′′′

1 − β4
1w̃1 = −Feiωx/v

vnEI
, β4

1 = (ρ̄ω2 − ic1ω − k1)/nEI, x ⩽ xtp, (3.13a)

w̃
′′′′

2 − β4
2w̃2 = −Feiωx/v

vEI
, β4

2 = (ρω2 − ic2ω − k2)/EI, x ⩾ xtp. (3.13b)

Applying boundary conditions at infinite distance and superimposing the homo-
geneous and particular solutions of Equation 3.13 leads to the general solution in
Fourier domain as

w̃1(x, ω) = A1e
β1x + A2e

iβ1x +
−Fv3e−iωx/v

nEI(ω4 − β4
1v

4)
, x ⩽ xtp, (3.14a)

w̃2(x, ω) = B3e
β2x +B4e

iβ2x +
−Fv3e−iωx/v

EI(ω4 − β4
2v

4)
, x ⩾ xtp, (3.14b)

where the unknown constants can be found through Equation 3.12 in their Fourier
domain. Eventually, after applying the inverse Fourier transform, the time do-
main solutions are numerically derived. Accordingly, the solutions of the second
configuration (ER over all domains) can be found.

3.3.2 Results and discussions

Dynamic amplification factor

The efficiency of additional rails in mitigating the amplified response can be eval-
uated through dynamic amplification factor, DAF. As defined in (Equation 2.27),
the DAF is the ratio of maximum transient displacement to the maximum displace-
ment in the steady state regime of the same system at a specified load velocity.

The DAF corresponding to both configurations are presented in Figure 3.3.
Clearly, addition of extra rail leads to improvement in the amplified response
through shifting the critical velocity to a higher value. That is, the response at
the same load velocity v, decreases with increasing number of ER. This explains
the mechanism corresponding to this mitigation measure.
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In the first configuration (ER over soft track; dashed curves), the peaks demon-
strate increase in amplitude compared to both nominal track and second configura-
tion (ER over all domains; solid curves). This can be explained by inhomogeneity
in bending stiffness and mass due to discontinuity of ER at transition point, xtp.
Naturally, this inhomogeneity is more evident for larger number of ER. Moreover,
the aforementioned behaviors in both configurations demonstrate a smaller rate
of change for larger number of ER compared to when only one ER is added; this
reinforces the findings in (Heydari-Noghabi, J. Varandas, et al. 2017)4.
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Figure 3.3: Dynamic amplification factor, DAF, of the system with and without extra rails,
ERs. Dashed curves are correspondent to the system with ER only over soft track (first config-
uration). Solid curves are correspondent to the system with ER over both soft and stiff tracks
(second configuration). The nominal track is denoted by red curve. vcr is critical velocity in the
nominal track.

Power input

As discussed in subsection 2.4.6, ratio of the maximum transient power input to
the steady-state power input provides an indirect benchmark to assess the damage
in the foundation due to the load passage at transition zone.

Power inputs of the aforementioned configurations are presented in Figure 3.4
for same relative velocity (95% of the critical velocity in each corresponding sys-
tem). Compared to the nominal track, both configurations demonstrate reduction
in the steady-state and transient power inputs in the soft domain. However, the
employment of ER leads to a slight increase in power input ratio resulting in larger
potential damage to the supporting structure (indirectly), compared to the nominal
track. Note that this undesired behavior is more evident in the first configuration
compared to the second one.

4Note that in the aforementioned study complete width of the track has been considered.
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Figure 3.4: Power input of the first (ER over left domain; solid curves) and the second (ER
over all domains; dashed curves) configurations. Transition point is xtp = 0. Load velocity is
95% of critical velocity in each corresponding system.
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Figure 3.5: Power input of the second configuration (ER in all domains). Transition point is
xtp = 0. The relative velocity is 95% of the critical velocity corresponding to the nominal track.

On the other hand, when the systems are considered at a lower relative velocity
(95% of the critical velocity corresponding to the nominal track), addition of rail
significantly reduces the power input amplification compared to the nominal track,
as can be seen in Figure 3.5 (not shown for the first configuration). Moreover, the
power input demonstrates a smoother energy exchange between the track and the
load in the vicinity of transition point. This leads to a better load distribution
over larger areas along the transition zone.

To sum up, considering the same relative velocity (load velocity relative to
the critical velocity in the corresponding system), the amplification in power input
is very similar in the systems with and without ER (i.e., the amplification is not
reduced by adding the ER). This points to the fact that the amplification reduction
mechanism in the system with ER, at lower relative velocity, is the shifting of the
critical velocity to higher values.
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Chapter 4

Under Sleeper Pad
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Under Sleeper Pad 4.1. Literature review

Under sleeper pad, USP, is a viscoelastic material that is attached to the bot-
tom surface of the sleepers. USP can decrease the contact pressure between the
sleepers and the ballast layer. The application of USP normally modifies the track
stiffness and improves the correspondent load distribution. After a literature re-
view, the efficiency of USP in improving the transition zone’s behavior is evaluated
semi-analytically and numerically (FEM). Then, USP’s serial incorporation into
the one-dimensional system is briefly discussed. Accordingly, a limit case is derived
such that the system behaves exactly as in the steady-state regime, despite abrupt
change in the profile stiffness of the track. In addition, multiple arrangements of
USPs along the track with sinusoidal variation in stiffness are investigated for vari-
ous transition lengths. Finally, it is concluded that the efficiency of this mitigation
measure is significantly dependent on their resiliency and arrangement, as well as
the track’s stiffness variation; improper design of USPs alignment can adversely
result in even more amplified responses.

4.1 Literature review

Few studies have evaluated the influence of USPs at transition zones. For exam-
ple, (Insa, Salvador, Inarejos, and Roda 2012) found that the employment of USPs
along the transition region can decrease the stiffness variation and improve the dy-
namic wheel-rail interactions; this holds for train velocities of about 300 km/h. In
another study, (Insa, Salvador, Inarejos, and Medina 2014) numerically investi-
gated a 3D model, in which USPs at different installing locations were considered;
namely along the whole domains and at the stiff track only (with and without
transition zone). It was concluded that applying USP hardly has any impact on
the track components below the ballast layer in terms of their displacements and
stresses.

(Paixão, Alves Ribeiro, et al. 2015) carried out a field investigation of transition
regions with concrete culverts. The track was modified by applying exclusively soft
USP that covers about half of the transition length and whole domain of the stiff
track. Their findings illustrate that the track stiffness was significantly reduced
while displacements and accelerations of the rails and the sleepers were amplified.
Afterward, mechanical model of the same track was numerically analyzed in 2D
by (Alves Ribeiro et al. 2015), in which gradual increase of the USPs’ resiliency
along the transition zone was proposed to improve the track behavior.

Over two years, (Mottahed et al. 2019) experimentally investigated the influ-
ence of USPs with three different arrangements on ballasted transition zones and
their encountered ballasted bridge (two-span). Various train speeds were consid-
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ered, while one type of USP was adopted throughout the investigation. Base data
corresponding to the acceleration and deflection were recorded for the original
track as the 1st configuration. Then, new USP-integrated sleepers were installed
only at the bridge section as the 2nd configuration. And in case 3, transition re-
gions were modified too. Findings regarding the first span of the bridge are as
follows. When comparing the 2nd configuration to the original track, average of
the rails accelerations, and average max. accelerations of the sleepers and bridge
deck were reduced by 34%, 11%, and 32%, respectively. This reduction for the
latter was 66% when USPs were applied over all domains. However, the rails and
sleepers accelerations were increased for some speeds in the range of 40-60 km/h.
Furthermore, average displacement of the bridge deck was reduced by 19% and
20% for cases 2 and 3, respectively. Finally, this field investigation concludes that
in general, the application of USPs results in improving vibration behavior of the
bridge.

In another numerical and experimental investigation in Portuguese railway,
the influence of USPs on transition zone was studied by (Paixão, Fortunato, et
al. 2014); with maximum train speed of about 220 km/h. In the experimental
work, USPs with two different bedding moduli were respectively applied along the
transition region (120 MN/m3) and along a short distant before and over the bridge
(130 MN/m3). Additionally, an optimized arrangement of USPs was presented
with reference to the numerical analysis, in which the same field was modeled
and calibrated in 3D through finite element method. The optimum alignment
includes very stiff USPs for a few sleepers located in the beginning of transition
zone and continued by softer USPs up until the onset of the stiff track, after which
it continued by even softer USPs over the stiff domain. It was led to a smoother
stiffness variation. This study demonstrates that applying USPs decreases the
transferred loads and transmitted vibrations to the ballast layer. Furthermore,
it was suggested to apply USPs along all corresponding domains or economically
only at the transition zones with careful design, as USP might change the vertical
stiffness negatively.

In all, the previous studies illustrate an overall efficiency of USPs in improving
the track behavior. While the inefficiency of USPs are normally attributed to the
improper arrangement of USPs along the track. Finally, the influence of USPs on
the nominal track (defined in chapter 2) is evaluated in the next section.
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4.2 Serial coupling of USPs

To be incorporated into the one-dimensional train-track system, USP can be mod-
eled as a linear spring (kusp) and a dash-pot (cusp), which are respectively coupled
in series to kj and cj of the foundation. Therefore, the equivalent stiffness and the
equivalent damping of the track simply is derived as

kj,eq =
1

k−1
j + k−1

usp

, cj,eq =
1

c−1
j + c−1

usp

, (4.1)

where cj = 2ζj
√

kjρ , and cusp = 2ζusp
√

kuspρusp ; ρusp is linear mass of the USP1.

Clearly, in this model, the incorporation of under sleeper pads leads to reduc-
tion in equivalent stiffness of the track. This is due to the mathematical definition
of the springs being coupled in series. To clarify, consider a system, in which a
spring with constant unit stiffness (K1) is serially coupled to another spring (K2)
which varies in magnitude, Figure 4.1. As it can be seen, it is impossible for the
system’s equivalent stiffness to be stiffer than each of the springs individually. In
an extreme case, the maximum equivalent stiffness is equal to K1 when K2 tends
to infinity, meaning K2 can be simply ignored from the model2. Therefore, apply-
ing USP exclusively in the nominal soft track should be avoided as its equivalent
stiffness becomes even more softer which eventually leads to stronger vibrations.
This in turn limits the application of USPs to the stiff track only.

2 4 6 8 10
K

2
  (MN/m)

0

0.5

1

K
eq

  (
M

N
/m

)

K
1

Figure 4.1: Serial coupling of two springs. K1 = 1 MN/m; K2 varies; black curve denotes Keq.

Magnitudes of the mechanical properties can be found in the study by (Johans-
son et al. 2008)3 which is presented in Table 4.1; damping values are distributed

1 ρusp = ρvmAefftusp/ssb, where ρvm is the volumetric mass density of USP; Aeff is the effective
area of the sleeper’s bottom surface (≈ 0.24 m2); tusp is the thickness of USP; and ssb is the
sleeper bay spacing as in Table 2.1.

2Similar to the sleepers which are too stiff to be considered in the equivalent stiffness of the
track, as in subsection 2.2.1

3The adopted parameters in that article are based on their coordination with Getzner Werk-
stoffe GmbH in the industry.
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(ssb = 0.6 m) for the current work; the volumetric mass density of USP is 500
kg/m3.

Table 4.1: Mechanical Properties of USPs

USP Type Soft Moderate Stiff

Bedding Modulus, N/mm3 0.1 0.2 0.3

Static Stiffness, MN/m 35 70 105

Damping, Ns/m/m 4091 11575 17441

Accordingly, serial coupling ofmoderate USP to the stiff track (k2 = 250 MN/m)
results in k2,eq = 54.69 MN/m; the modified stiffness ratio is now 1.09, meaning
the amplified response is almost completely suppressed. On the other hand, inte-
grating soft USPs into the soft track (k1 = 50 MN/m) increases the stiffness ratio
from 5 to 12.1. Therefore, in the context of USP efficiency, not only are their stiff-
ness magnitude of high importance, but also their installing locations according
to the stiffness profile of the track. Neglecting these factors might intensify the
already amplified vibrations even more.

4.3 A limit case

Consider the stiffness profile of the track with an abrupt jump, in which USPs
are serially coupled to the stiff track only. The stiffness and damping ratio of the
USPs can be derived as a limit case such that the equivalent stiffness of the track
becomes completely homogeneous along the spatial domain. Equating the soft
track’s stiffness and damping to those of the stiff track with USPs, readily results
in the limit case as follows.

k1 = k2,eq =
k2 kusp
k2 + kusp

→ kusp =
srk1
sr − 1

, (4.2a)

c1 = c2,eq =
c2 cusp
c2 + cusp

→ ζusp =
c1

2
√

kuspρusp(1− c1/c2)
, (4.2b)

where sr = k2/k1 is the stiffness ratio (Table 2.1).

Assume ρusp = 4 kg/m, and consider ssb = 0.6 m, sr = 5, k1 = 50/0.6 MN/m2,
and ζ1 = ζ2 = 0.05, as before. Given that, Equation 4.2 results in kusp =
62.5/0.6 MN/m2 and ζusp = 0.663. That is, theoretically speaking, the appli-
cation of such USPs at the stiff track leads to a system that behaves exactly as
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in the steady-state regime without any transition radiation—despite the nominal
stiffness ratio being as high as 5. Note that this ideal result can be attributed to
the simplified model of the train-track system.

4.4 Smooth variation in stiffness

To further study the effect of USPs’ arrangement (installing locations) on the track
behavior, different transition lengths are considered in this section. In doing so,
numerical simulations (FEM) are performed for sinusoidal variation in the stiffness
profile at transition zone based on the one-dimensional model in (Fărăgău, Andrei
V Metrikine, et al. 2019)4

Note that for larger transition lengths, the application of USP is unnecessary;
since the smooth sinusoidal variation in the stiffness profile can be already a miti-
gation measure by itself (e.g. 9 m transition length). However, the amplifications
possibly can be improved for smaller transition lengths (e.g. 3 m) through applying
USP.

Before performing the simulations, it is worthy to compare the stiffness profile
of the track with and without USP for different transition lengths, as can be seen
in Figure 4.2. Consider the transition length with 6 m; applying USP only in the
stiff track results in losing the smooth variation in profile, which is not true for
0.1 m transition length. Therefore, advance perception of the stiffness profile lays
the basis for an efficient alignment along the track when integrating USPs into the
system.
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Figure 4.2: Stiffness profile of the track with and without USP for transition
lengths 0.1 m (left panel) and 6 m (right panel). The latter is sinusoidally smooth.

4The authors of this article are mentors of the current thesis. Matlab codes were provided
for simulations in this chapter; all credit goes to Ir. Andrei B. Fărăgău. To incorporate the USP
into the model, the codes were slightly modified.
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4.4.1 USP arrangement

To evaluate dynamic response corresponding to USP, three arrangements with dif-
ferent transition lengths are considered in (Table 4.2). Notice that the process of
aligning is correspondent to gap removal of the stiffness between the non-modified
and USP-integrated tracks in Figure 4.2. Arrangement nicety is the least in case
1 and is gradually increased for its successors with the case 3 being the most op-
timum. The aim is to sufficiently illustrate the optimization trend. Subsequently,
all corresponding results are presented and discussed in the next section.

Table 4.2: Arrangement of USPs along the track; xs, xq, and xtc are the onset, a
quarter, and center of the transition zone, respectively. x > xtc covers the stiff track
too. For USP types, see Table 4.1.

USP Stiffness
Transition Lengths, m

xs < x < xq xq < x < xtc x > xtc

Case 1 same type same type same type 0.1, 3, 6

Case 2 − − soft/moderate/stiff 0.1, 3, 6

Case 3 − stiff moderate 3, 6

4.5 Results and discussions

As discussed in chapter 2, power input can be indirectly attributed to the damage
in foundation. Therefore, the utmost goal is to achieve the enhanced efficiency
through an alignment whose power input amplification demonstrates reduction.
Accordingly, the analyses layout is started by the least subtle alignments, mainly
with regard to the power input plots, and is developed into an optimized configu-
ration for which the corresponding DAF is also addressed.

The power inputs in case 1 and 2 are presented in Figure 4.3. As the transition
length becomes larger, the system without USP benefits from a smoother and
smaller energy input, as expected. In contrast, for transition length 0.1 m, both
cases experience a behavior similar to the steady-state response in the event of
applying moderate USP. In case 1 (USPs over x > xs), the ratio of peak to
the steady-state power input in the left domain indicates an increase for longer
transition and softer USPs, which is not desired. Moreover, power inputs in case
2 (USP over x > xtc) demonstrate a smoother transition as the amount of energy
back to the external force from the track is reduced in the vicinity of transition
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Figure 4.3: Power input corresponding to the USP arrangements in Case 1 (USP over
x > xs) and Case 2 (USP over x > xtc) for different transition lengths. xtp = 30 m is
position of transition center; load velocity is 0.95% of critical velocity corresponding to
the system without USP; TL denotes transition length

point. Naturally, this leads to truncating the peak in case 1 while keeping the
smoothness in case 2 through an optimum arrangement, case 3, as can be seen
in Figure 4.4. This improvement for transition length 6 m, however, is limited to
removing the trough only (negative power input). Consider the transition length
3 m; the ratio of the peak to the steady state power input is reduced in the
optimum alignment leading to less damage in the foundation compared to the
system without USP.

Displacements of the optimum configuration (3 m) at different time-moments
are presented in Figure 4.5. The eigenfield in the system with USP almost demon-
strates a steady-state response where hardly any free field radiation can be signified
(last panel).

Moreover, the correspondent dynamic amplification factor, DAF5, is presented
in Figure 4.6. Clearly, applying USPs with an optimized arrangement can signifi-
cantly improve the amplified response at transition zone. The DAF corresponding

5Defined in chapter 2
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to the system with 3 m transition length indicates an almost completely flattened
curve.
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5.1 TMD

The feasibility of applying TMD for controlling the amplified vibrations at tran-
sition zone was studied as the main goal of the thesis. In response to the first
research question, the conclusions corresponding to the efficiency of TMD mitiga-
tion measure are presented as follows.

� The optimized values of the TMD’s parameters in the soft track seems to be
realistic which suggest the possible feasibility of their application in practice
for further studies.

� Considering the dispersion analysis, applying the optimized TMD results in
new stop bands in the system. The frequencies within the stop band in the
optimized soft track covers the tuned frequency (and its neighboring fre-
quencies) for which the objective functions in the optimization problem were
minimized (the discrepancy between the soft and the stiff tracks’ wavenum-
bers). However, the system demonstrates free propagating wave behind the
load, regardless of the load velocity (except at zero).

� Addition of TMD leads to significant reduction in DAF amplitude at load
velocity for which the system was optimized. In fact, the DAF peak (critical
velocity) shifts toward a lower relative velocity. This mechanism results in
the optimized system at supercritical regime. This behavior, however, is
undesired and should be avoided.

� The TMD application leads to noticeable reduction in Fourier displacement
at the tuned frequency. The Fourier peak demonstrates a shift from the
tuned frequency to that of the free propagating wave behind the load in the
steady-state regime.

� Addition of TMD leads to significant reduction in ratio of the maximum tran-
sient power input to the steady-state power input, as an indirect benchmark,
which results in less potential damage to the supporting structure.

� Applying TMD can significantly decrease both energy flux and spectral
energy density corresponding to the leftward free field radiation at veloc-
ity/frequency for which the vibration absorbers were optimized. This might
be attributed to large damping in the TMD, strong counteractive forces be-
tween the TMD and the beam, and possibly the energy trap at transition
zone.
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To sum up, the employment of tuned mass damper can improve the dynamical
performance corresponding to transition zone. This mitigation measure, however,
is more evident for frequency/load velocity at which the TMDs are optimized.

5.2 Auxiliary rail

In response to the second research question, application of auxiliary rails at tran-
sition zone was investigated for two configurations (extra rail, ER, over soft track,
and ER over all domains). Moreover, different number of ER were considered for
both static and dynamic analyses. Conclusions are established as follows.

� Addition of ER over soft track leads to smoother static stiffness compared
to addition of ER over all domains. Results corresponding to static stiffness
can only be attributed to load velocities that lead to a quasi-static response.

� At velocities relative to the critical velocities in each corresponding system,
the DAF results will either not change noticeably (ER over both domains)
or increase (ER over soft track). Since the critical velocity shifts to higher
values, the response at the same load velocity v, decreases with increasing
number of ER. Addition of ER over soft track leads to inhomogeneity in
bending stiffness and mass at transition point. This explains the larger DAF
compared to the configuration with ER over all domains.

� Considering the same relative velocity (load velocity relative to the critical
velocity in the corresponding system), addition of ER results in slightly larger
(potential) damage to the foundation. As power input ratio is narrowly
increased for both configurations compared to the nominal track. In contrast,
the amplification was significantly decreased at the same load speed (i.e.
v = 95%vcr; related to the critical velocity in nominal track).

To sum up, two mechanisms can be mainly attributed to improvement in the
amplified response at transition zone, due to application of auxiliary rail. First,
the smaller power input and dynamic amplification factor is due to the shift in
critical velocity. Second, additional rail leads to a better load distribution over a
larger area.

57



Conclusions 5.3. USP

5.3 USP

The efficiency of USP in reducing the amplified vibrations at transition zone was
studied in response to the third research question. Multiple arrangements of USPs
were simulated for the system with sinusoidal variation in stiffness. The investi-
gation based on the one-dimensional model is concluded as follows.

� A limiting case corresponding to the USP employment was recognized, in
which the piece-wise homogeneous system was modified to a system that en-
tirely represents the steady-state behavior. The limitation corresponding to
the simplified mechanical model should not be underestimated in obtaining
such favorable result.

� USP can significantly affect the stiffness profile of the track; due to serial
integration with foundation, addition of USP alone can not make the track
stiffer.

� USP efficiency is strongly dependent on their types, arrangement, and the
stiffness variation of the track. As a result, advance perception of the latter
plays an essential role in designing a safe and efficient mitigation measure.
Otherwise, the employment of USP might lead to an even more amplified
response. Clearly, a mitigation design with USP is unique and no particular
arrangement can be recommended for other transition zones.
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Appendix A

A.1 Spectral energy density

To consider the spectral energy density in Fourier domain, Equation 2.30 is refor-
mulated in terms of frequency as follows (Van Dalen et al. 2015). Let ṽ = iωw̃ be
the beam velocity, and

w =
1

2π

∫ ∞

−∞
w̃eiωt dω. (A.1)

Using the auxiliary variable ω for the beam velocity and substituting all corre-
sponding Fourier-domain terms in the Equation 2.30,

Ef (x) =
±EI

4π2

∞∫
−∞

∞∫
−∞

∞∫
−∞

(
w̃

′′′

f (ω)ṽf (ω)− w̃
′′

f (ω)ṽ
′

f (ω)
)
e
i (ω + ω) t

dω dω dt,

(A.2)

where

∞∫
−∞

e
i (ω + ω) t

dt = 2πδ(ω + ω), (A.3)

and

Ef (x) =
±EI

2π

∞∫
−∞

∞∫
−∞

(
w̃

′′′

f (ω)ṽf (ω)− w̃
′′

f (ω)ṽ
′

f (ω)
)
δ(ω + ω) dω dω. (A.4)
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Considering Equation 2.5b,

∞∫
−∞

ṽf (ω) δ(ω − (−ω)) dω = ṽf (−ω), (A.5)

Ef (x) =
±EI

2π

∞∫
−∞

w̃
′′′

f (ω)ṽf (−ω)− w̃
′′

f (ω)ṽ
′

f (−ω) dω. (A.6)

Since the factors in the integrand are real-valued in their space-time domain, their
Fourier transforms are conjugate symmetric; ṽf (−ω) = ṽ∗f (ω). Therefore,

Ef (x) =
±EI

2π

∞∫
−∞

w̃
′′′

f (ω)ṽ
∗
f (ω)− w̃

′′

f (ω)ṽ
∗′
f (ω) dω. (A.7)

The conjugate symmetry property makes the real part of the Fourier transform to
be even, hence symmetric with respect to the vertical axis. That is, Ef (x) in the
last equation is equivalent to two times of the same integral but with zero lower
bound, {ω ∈ R | 0 ⩽ ω < −∞}. Finally, given a particular cross-section of the
beam, the energy flux of the free-field reads

Ef (x) =
±EI

π

∞∫
0

Re{w̃′′′

f ṽ
∗
f − w̃

′′

f ṽ
∗′
f } dω. (A.8)
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Fărăgău, Andrei B, João M de Oliveira Barbosa, Andrei V Metrikine, and Karel N
van Dalen (2022). “Dynamic amplification in a periodic structure with a tran-
sition zone subject to a moving load: Three different phenomena”. In: Mathe-
matics and Mechanics of Solids, p. 10812865221094318.

Frahm, Hermann (Apr. 1911). Device for damping vibrations of bodies. US Patent
989,958.

Ginzburg, VL and IM Frank (1945). “Radiation of a uniformly moving electron
due to its transition from one medium into another”. In: Journal of Physics
(USSR) 9, pp. 353–362.

Hadi, Muhammad NS and Yoyong Arfiadi (1998). “Optimum design of absorber
for MDOF structures”. In: url: https://doi.org/10.1061/(ASCE)0733-
9445(1998)124:11(1272).

Heydari-Noghabi, H, JN Varandas, MORTEZA Esmaeili, and J Zakeri (2017).
“Investigating the influence of auxiliary rails on dynamic behavior of railway
transition zone by a 3D train-track interaction model”. In: Latin American
Journal of Solids and Structures 14, pp. 2000–2018.

Heydari-Noghabi, H, JA Zakeri, M Esmaeili, and JN Varandas (2018). “Field study
using additional rails and an approach slab as a transition zone from slab

62

https://doi.org/10.1115/1.2893908
https://doi.org/10.1115/1.2893908
http://resolver.tudelft.nl/uuid:faa618c3-260b-4bfb-919c-d56a215bd0c7
http://resolver.tudelft.nl/uuid:faa618c3-260b-4bfb-919c-d56a215bd0c7
https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1272)
https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1272)


Bibliography Bibliography

track to the ballasted track”. In: Proceedings of the Institution of Mechanical
Engineers, Part F: Journal of Rail and Rapid Transit 232.4, pp. 970–978.
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Calçada (2015). “On the use of under sleeper pads in transition zones at rail-
way underpasses: experimental field testing”. In: Structure and Infrastructure
Engineering 11.2, pp. 112–128.
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Sadri, Mehran, Tao Lu, and Michaël Steenbergen (2019). “Railway track degrada-
tion: The contribution of a spatially variant support stiffness-Local variation”.
In: Journal of Sound and Vibration 455, pp. 203–220.

Al-Salami, Nada MA (2009). “Evolutionary algorithm definition”. In: American
J. of Engineering and Applied Sciences 2.4, pp. 789–795.
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