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Dit proefschrift is goedgekeurd door de promotoren Prof.dr.ir. C. Vuik and Prof.dr.ir.

J.D. Jansen.

Samenstelling promotiecommissie bestaat uit:
Rector Magnificus voorzitter
Prof.dr.ir. C. Vuik Technische Universiteit Delft, promotor
Prof.dr.ir. J.D. Jansen Technische Universiteit Delft, promotor

Onafhankelijke leden:
Dr. D. Pasetto EPFL, Switzerland
ScD.dr.ir. L. Sheremetov IMP, México
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Samenvatting

Simulaties van enkel-fase en twee-fasen stromingen door zeer heterogene poreuze me-
dia resulteren in grote slecht-geconditioneerde systemen van vergelijkingen, waaron-
der een gelineariseerd druksysteem dat bijzonder tijdrovend kan zijn om op te lossen.
Daarom zijn uitgebreide inspanningen vereist om manieren te vinden om dit probleem
effectief aan te pakken.

Iteratieve methoden zijn, samen met preconditioneringstechnieken, de meest
gekozen technieken om deze problemen op te lossen. In de literatuur kunnen we ook
Model Orde Reductie (MOR) en deflatiemethoden vinden, waarbij systeeminformatie
opnieuw wordt gebruikt om een goede benadering sneller en goedkoper te vinden.

Onder de MOR-technieken is de Gepaste Orthogonale Ontbinding (POD) gëımple-
menteerd voor de versnelling van het gelineariseerde druksysteem. Deze techniek is
gebaseerd op het verkrijgen van relevante systeeminformatie in een reeks vectoren om
de oplossing van gerelateerde systemen te versnellen.

Wat deflatie betreft, is het nodig om een optimale selectie te vinden van deflatie- of
projectievectoren die aan het systeem zijn gekoppeld om een iteratief oplossingsproces
te versnellen. De gebruikelijke keuzes van deflatievectoren zijn echter ofwel duur om te
verkrijgen, bijvoorbeeld eigenvectoren van de systeemmatrix, of probleemafhankelijk,
bijvoorbeeld subdomeinvectoren.

In dit werk introduceren we een op POD gebaseerde deflatiemethode die de vo-
ordelen van beide methoden combineert. De dominante kenmerken van het systeem
worden vastgelegd in een reeks POD-basisvectoren, die later als deflatievectoren wor-
den gebruikt om de oplossing van lineaire systemen te versnellen. Sommige kenmerken
van deze methodologie worden hieronder weergegeven

Snapshots-verzameling en POD-basisberekening. De POD-basis wordt verkre-
gen uit een reeks snapshots die op effectieve wijze de dynamiek van het onderzochte
systeem vastleggen. Om de snapshots te verkrijgen en dus de basis te berekenen,
bestuderen we verschillende gevallen:

Recycling. De snapshots zijn een reeks oplossingen met iets andere parameters dan
het oorspronkelijke systeem. Later wordt de POD-basis verkregen uit deze reeks
snapshots. We implementeren deze aanpak voor onsamendrukbare enkel-fase
problemen, en het wordt voornamelijk gebruikt om de toepasbaarheid van de
methodologie te onderzoeken.

Bewegende venster. Deze aanpak is vooral geschikt voor tijdsvariërende proble-
men. Met deze benadering wordt de meest recent verkregen informatie, d.w.z.
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de oplossing van de eerdere tijdstappen, gebruikt om het aankomende lineaire
systeem op te lossen. Deze benadering is gëımplementeerd voor samendrukbare
enkel-fase -en onsamendrukbare twee-fasen stromingsproblemen.

Training fase. Ook geschikt voor tijdsafhankelijke problemen, wordt met deze be-
nadering een pre-simulatie uitgevoerd om de relevante systeemkenmerken in de
POD-basis vast te leggen. Zodra de basis is verkregen, wordt deze gebruikt om
problemen op te lossen met vergelijkbare parameters als de trainingssimulatie.

Naast de toepasbaarheid van deze aanpak bestuderen we verschillende manieren
om de snapshots tijdens de pre-simulatie te verzamelen door de systeemconfig-
uratie te wijzigen en we testen deze met verschillende problemen.

We vergelijken de prestaties van een Deflated Preconditioned Conjugate Gradient-
methode (DPCG) met de prestaties van de enkel voorgeconditioneerde versie van de
Conjugate Gradient-methode (PCG). Alle onderzochte benaderingen versnellen de
PCG-methode bij het gebruik van de leeggelopen versie DPCG. De beste prestaties
van de DICG-methode verminderden het aantal iteraties tot slechts 8% van het aantal
PCG-iteraties. In dit geval heeft de DPCG het werk (aantal iteraties maal het werk
per iteratie) verminderd tot 11% van het PCG-werk, tijdens het iteratieproces.

Bovendien, als de door de POD-basis gegenereerde ruimte dicht bij de systeemo-
plossing ligt, bereikte DPCG een goede benadering (O(10−4)) in één iteratie. Deze
optimale prestatie werd verkregen wanneer de numerieke berekening van de momen-
topname werd uitgevoerd met een kleine fouttolerantie van de lineaire oplosser.

POD-basisvectoren als deflatievectoren. We bestuderen het gedrag van de
deflatiemethode voor verschillende keuzes van deflatievectoren. We vergelijken de
prestaties van de methode bij het gebruik van systeem-eigenvectoren, subdomeinvec-
toren, een lineair onafhankelijke (l.o.) reeks momentopnamen die de oplossingsruimte
overspannen, en een POD-basis verkregen uit een reeks snapshots, die niet noodzake-
lijk de oplossingsruimte overspannen.

Uit deze vergelijking, wordt een betere prestatie van de deflatiemethode waar-
genomen bij gebruik van de gehele l.o. reeks en een POD-basis. Verder kan de
informatie vervat in de l.o. reeks efficiënt worden vastgelegd in de POD-basis, d.w.z.
de POD-basis is een goede benadering van de systeemoplossing.

Vergelijking van 2L-PCG methoden. De deflatiemethode die is gëımplementeerd
voor de versnelling van de PCG-methode kan ook worden beschouwd als een Two-
Level Preconditioned Conjugate Gradient methode (2L-PCG).
De prestaties van verschillende 2L-PCG methoden worden vergeleken met behulp van
een POD-basis als deflatievectoren, samen met de op AMG gebaseerde precondition-
ers die zijn ontwikkeld door Passetto et al. [1].

Deze methoden verminderen het aantal iteraties tot slechts ∼ 12% − 22% PCG
iteraties, en het werk tijdens het iteratieproces tot ∼ 40% − 80%. De DEF1-variant
wordt in dit werk gebruikt onder de varianten die de beste prestaties bieden (12%
van de PCG iteraties en ∼ 40% van het PCG werk). Bovendien genereren de MOR-
methoden hetzelfde spectrum van de voorgeconditioneerde matrix als sommige andere
deflatievarianten (A-DEF1 / 2) en zijn hun operatoren equivalent. Ook kunnen hun
prestaties worden verbeterd als een speciale startvector wordt gebruikt.
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De 2L-PCG-methoden zijn onderverdeeld in Klasse 0 of Klasse 1, afhankelijk van of
de kleinste eigenwaarden van het systeem respectievelijk op nul of één worden ingesteld
voor elke willekeurige reeks deflatievectoren. De MOR-methode werd geclassificeerd
als Klasse 1 en de symmetrische versie daarvan vertoonde alleen hetzelfde gedrag als
een Klasse 1-operator als de eigenvectoren van de systeemmatrix als deflatievectoren
werden gebruikt.

Toepasbaarheid van de POD-gebaseerde deflatiemethode. De toepasbaar-
heid van de POD-gebaseerde deflatiemethode is niet afhankelijk van de testcase.
Hoewel het werd getest op reservoirsimulatie problemen, kan het worden gëımple-
menteerd voor elk probleem dat in tijd varieert.

Verder bestuderen we de toepasbaarheid ervan voor verschillende 2L-PCG-werk-
wijzen, maar het kan ook worden gëımplementeerd tezamen met vele andere lineaire
oplossers, bijvoorbeeld multigrid, multilevel en domeinontledingstechnieken. De im-
plementatie kan ook worden uitgebreid met verschillende preconditioners.





Summary

Simulation of single- and two-phase flow through highly heterogeneous porous media
results in large ill-conditioned systems of equations. In particular, the linearized
pressure system can be particularly time-consuming to solve. Therefore, extensive
efforts to find ways to address this issue effectively are required.

Iterative methods, together with preconditioning techniques, are the most com-
monly chosen techniques to solve these problems. In the literature, we can also find
Reduced Order Models (ROM) and deflation methods, where system information is
reused to find a good approximation more quickly and less costly.

Among the ROM techniques, Proper Orthogonal Decomposition (POD) has been
implemented for the acceleration of the linearized pressure system. This technique is
based on the acquisition of relevant system information in a set of vectors to accelerate
the solution of related systems.

Regarding deflation, it is required to find an optimal selection of deflation or pro-
jection vectors, associated with the system, to speed up an iterative solution process.
However, the common choices of deflation vectors are either expensive to obtain, e.g.,
eigenvectors of the system matrix, or problem dependent, e.g., subdomain vectors.

In this work, we introduce a POD-based deflation method that combines the
advantages of both methodologies. The dominant features of the system are captured
in a set of POD basis vectors, which are used later as deflation vectors to accelerate
the solution of linear systems.

The implementation of the proposed POD-based deflation method consists of three
stages:

Snapshots collection. A set of solutions related to the system is obtained
(more details are given below).

POD basis computation. A POD basis is obtained from the snapshots.

Solution of the linear system. The POD basis vectors are used as deflation
vectors to solve problems with the deflation method.

Some features of the methodology followed throughout this work for these three stages
are presented next.

Snapshots collection and POD basis computation. The POD basis is obtained
from a set of snapshots that effectively capture the dynamics of the system under
investigation. To obtain the snapshots, and, therefore, to compute the basis, we
study various cases:

vii
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Recycling. The snapshots are a set of solutions with slightly different parameters
than the original system.
Test cases: We implement this approach for incompressible single-phase prob-
lems, and it is mainly used to explore the applicability of the methodology.

Moving window. This approach is especially suited for time-varying problems. With
this approach, the most recently-obtained information, i.e., the solutions of the
linear systems obtained for the previous time steps, are used to solve the up-
coming linear system.
Test cases: This approach is implemented for compressible single-phase, and
incompressible two-phase flow problems.

Training phase. Also suited for transient problems, a pre-simulation is run with
this approach, and all the solutions obtained during the pre-simulation are used
as snapshots.

Test cases: This approach is implemented for incompressible two-phase flow
problems to solve problems with similar parameters as the training simulation.
We also study various ways to collect the snapshots during the pre-simulation.

Performance of the POD-based deflation method. We implement the POD-
based deflation method for the acceleration of the Preconditioned Conjugate Gradient
(PCG) method preconditioned with the Incomplete Cholesky factorization (ICCG).
The performance of the Deflated Preconditioned Conjugate Gradient method (DICCG)
is compared with the performance of the only preconditioned version of the method
(ICCG).

Selection of deflation vectors. In this work, we show theoretically that if a lin-
early independent (l.i.) set of recycled vectors spanning the solution space is used as
deflation vectors, the convergence of the deflation method is achieved in one iteration
(see Lemma 4.1.3). This result is also illustrated with incompressible single-phase
reservoir simulation problems containing large contrast in the permeability coeffi-
cients: an ‘academic’ layered problem with a contrast between layers of 101 and 106,
and the SPE 10 benchmark with contrast in permeability coefficients of O(107).

If the set of deflation vectors is not linearly independent, but it contains a l.i. set
of vectors that span the solution space, a l.i. set can be obtained by computing a
POD basis from the non-l.i. set. This POD basis also leads to convergence in one
iteration. This implies that the information contained in the l.i. set can be captured
in the POD basis, i.e., the POD basis is a good approximation to the system solution.

For a problem with s sources, i.e., s elements in the right-hand side (rhs) differ-
ent from zero, and Neumann boundary conditions, the l.i. set spanning the solution
space consist on s−1 vectors. If non-homogeneous Dirichlet boundary conditions are
selected and s sources are included, the l.i. set spanning the solution space consists
on s+ 1 vectors, s related to the sources and one related to the boundary conditions.

If this set is reduced, i.e., it does not span the solution anymore, convergence
is no longer achieved in one iteration. For these cases, the deflation method only
reduces the number of ICCG iterations. Furthermore, the selection of the previously-
mentioned POD-based as deflation vectors, achieves a more significant reductions in
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the number of iterations. Also, more accelerations are achieved for problems with
Neumann boundary conditions.

This behavior is illustrated with the SPE 10 problem (O(106) cells) with five
sources and homogeneous Neumann; and four sources and non-homogeneous Dirichlet
boundary conditions. For the first case, three POD basis vectors reduce the number
of ICCG iterations to 33%, while using the same number of l.i. vectors reduce the
number of ICCG iterations to 78%. For the second, four deflation vectors reduce this
number to 83% with POD basis vectors and 94% with l.i vectors. Similar performance
is obtained for the layered test cases.

We compare the performance of the deflation method when using the proposed
l.i. set of snapshots spanning the solution space, and the POD basis described before,
system eigenvectors, and subdomain vectors (five subdomains for the layered problem
containing five layers). The best performance was achieved with the l.i. set and the
POD basis requiring one DICCG iteration to converge. The other methods required
from 21% to 96% of the number of ICCG, using the same number of deflation vectors
as in the previous selections (l.i. set and POD basis vectors).

The DICCG method accelerates the ICCG method for all the studied approaches,
including study cases with gravity and capillary pressure terms. The reductions to
the number of ICCG iterations range from 10% to 54% with a reduction of work of
21% to 98% for an approximation with a residual of O(10−7). Moreover, the DICCG
method achieved an approximation of O(10−4) after one iteration, for most of the
cases.

Including capillary pressure terms increase the number of DICCG iterations up
to 10% in the studied cases. However,nincreasing the Corey coefficient from 2 to 4
for the wetting phase does not change this number considerably, only 3% the number
of ICCG iterations. For a set of experiments considering gravity terms, increasing
the height of the reservoir results in a reduction of around 10% the number of ICCG
iterations changing from a reservoir of size 1 [m] to one of 4 [m].

Comparison of 2L-PCG methods. The deflation method implemented for the
acceleration of the PCG method can also be regarded as a Two-Level Preconditioned
Conjugate Gradient method (2L-PCG).
The performance of various 2L-PCG methods is compared using a POD basis as de-
flation vectors, together with the AMG-based preconditioners developed by Passetto
et al. [1].

These methods reduce the number of iterations to only ∼ 12% − 22% PCG iter-
ations, and the work during the iteration process to ∼ 40%− 80%. Being the DEF1
variant used throughout this work among the variants presenting the best performance
(12% of PCG iterations and ∼ 40% of PCG work). Furthermore, the ROM methods
generate the same spectrum of the preconditioned matrix as some other deflation
variants (A-DEF1/2), and their operators are equivalent. Moreover, the performance
of these methods can be improved with an especial starting vector, different to the
one suggested by Pasetto et al. [1].

The 2L-PCG methods are divided into Class 0 or Class 1, depending on whether
the smallest eigenvalues of the system are set to zero or one, respectively, for any
arbitrary set of deflation vectors. The ROM method belongs to the Class 1 methods,
and its symmetric version only showed the same behavior as a Class 1 operator if
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eigenvectors of the system matrix are used as deflation vectors.

Applicability of the POD-based deflation method. The applicability of the
POD-based deflation method does not depend on the test case. It is tested for reservoir
simulation problems, but it can be implemented for any time-varying problem.

Furthermore, we study its applicability for various 2L-PCG methods, but it can
also be implemented together with many other linear solvers, e.g., multigrid, mul-
tilevel, and domain decomposition techniques. The implementation can also be ex-
tended to include various preconditioners.



Chapter 1
Introduction

Simulation has become an important tool for analyzing and predicting system’s be-
havior in many research and industrial areas, e.g., fluid dynamics, material science,
seismology and weather forecasting.

In order to perform simulations of a physical phenomenon, it is necessary to con-
struct a model that represents the essential features as realistically as possible. Once
an accurate model is found, a mathematical representation is made, usually involving
a system of differential equations.

These systems can be solved analytically on a limited number of cases; however, in
most cases, a discretized numerical model is required. The physical and mathematical
models can become more complex by, e.g., making a more detailed description of the
phenomena or by studying the interaction with other systems.

As the complexity of the system increases, solving the discretized numerical models
becomes more challenging, and ways of addressing this issue effectively are needed.
In this work, we study the dynamics of fluids inside oil reservoirs, which, depending
on the phenomena involved, can lead to very complicated systems.

1.1 Background and problem definition

The dynamics of fluids are studied not only as a separate phenomenon to under-
stand a fluid’s behavior but also as the interaction of the fluid with the surroundings.
Underground flow simulations are performed to explore the fluid’s dynamics inside
a porous medium. In particular, for reservoirs containing hydrocarbons, predicting
the performance under various exploitation schemes is essential for optimizing the
recovery of the stored fluids.

The physical model used to simulate flow through porous media involves the prin-
ciple of mass conservation and a constitutive equation that accounts for the conser-
vation of momentum, known as Darcy’s law [2–7]. These principles, for a fluid α, can
be represented by the following equations:

∂(φραSα)

∂t
+∇ · (ραvα) = ραqα, vα = −Kα

µα
(∇pα − ραg∇d), (1.1)

1



2 Introduction Chapter 1

where, ρα, µα and pα are the density, viscosity, and pressure of the fluid; Kα accounts
for the permeability of a phase and φ is the porosity of the medium; g is the gravity
constant; d is the depth of the reservoir and qα are sources, usually, fluids injected
into the reservoir. The saturation of a fluid phase, Sα, is the fraction of void space
filled with a fluid α in the medium, where a zero saturation indicates that the phase
is not present.

While studying the flow of a single fluid, we can simplify this model by, e.g., assum-
ing no gravity terms, and constant porosity, permeability, and viscosity. Combining
Equations (1.1) for the simplified case, leads to the following system:

−∇ · (Kα∇pα) = µαραqα,

which is an elliptic equation that after discretization and given suitable boundary
conditions, can be solved with direct or iterative methods [8, 9].

However, as the size of the problem increases, direct methods become slow, and
the iterative methods come to be the only methods able to solve it. Furthermore,
this is a simplified model that does not represent reality accurately. Consequently,
the assumptions made have to be reconsidered and, depending on the study case, the
complexity can increase remarkably.

In many cases, reservoir simulation involves large and highly heterogeneous prob-
lems, i.e., problems with significant variations on the permeability coefficients Kα

[1, 10–13], which lead to ill-conditioned matrices, requiring large computing times to
find the solution. Furthermore, if we have a time-varying problem, we must compute a
large number of simulations, which makes the solution of the problem very expensive.

When simulating two or more phases, the unknowns become the saturation and
the pressure, where solving the pressure system is the most time-consuming part of
the process.

In this work, we focus on the solution of the pressure equation. We begin with
small incompressible single-phase problems and we increase the complexity by in-
creasing the size and adding time dependence. Later, we study two-phase problems
including gravity and capillary pressure terms.

1.2 Discretization

Figure 1.1: Sparse matrix

The model used to simulate flow through porous media
results in a system of nonlinear equations that can de-
pend on time and space (see Equation (1.1)). Under
certain assumptions, the resulting system becomes linear
and no pre-processing is required to solve it. Nonetheless,
in many cases, some linearization processes are required,
e.g., the Newton-Raphson method [14, 15].

Once the system is linearized, it is necessary to dis-
cretize it. For the spatial derivatives, finite differences,
finite elements or isogeometric analysis methods, among
others, can be used [14, 16, 17]. Time derivatives can be

approximated with, e.g., the forward and backward Euler methods.
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In the case of incompressible single-phase reservoir simulation, discretization of
the resulting system (Equation (1.1)) leads to a linear system of the form

Ax = b, (1.2)

where A is the system matrix, x the unknowns vector and b the right-hand side
vector, which includes the sources and boundary conditions of the system.

For reservoir simulation problems, the system matrix is sparse [18], i.e., contains
only a few non-zero diagonals (see Figure 1.1). The value of the entries depends on
the permeability coefficients; moreover, the contrast in the coefficients is related to
the complexity of the system.

A way to quantify the complexity is via the condition number κ†, a quantity that
depends on the eigenvalues of the system matrix. This number influences the perfor-
mance of the solution methods. Hence, acceleration can be achieved by transformation
of the linear system (1.2) into a new one faster to solve [9, 16, 18].

1.3 State-of-the-art of acceleration methods

The most widely used approach to speed up the solution of extreme problems is
combining iterative solvers with preconditioning techniques. The latest techniques
are implemented to speed up the convergence of the iterative methods by changing
the system into another one with the same solution but smaller condition number
[8, 9, 19, 20].

However, in some cases, a small set of extreme eigenvalues are responsible for the
large condition number, and preconditioning techniques are no longer able to reduce
it. Therefore, new techniques have to be developed, that together with the usual
preconditioned iterative methods can find approximate solutions in a faster way.

Among others, Multigrid (MG) [21], Multilevel [22, 23], Multiscale [13], Domain
Decomposition (DD) [24, 25], Proper Orthogonal Decomposition (POD), [26–30] and
deflation techniques [16, 22, 23, 31–33], have been studied to accelerate iterative
methods for large and ill-conditioned problems. Extensive literature exists, with new
and innovative ways of approaching deflation and POD methodologies [1, 11, 12, 20,
26, 34–37].

Deflation techniques can be used to remove the influence of the extreme eigenval-
ues by creating a subspace, where they are no longer present, accelerating the solution
process accordingly. To achieve an optimal performance, it is necessary to find defla-
tion vectors that contain most of the system’s variability. If a good selection is made,
we can obtain a significant decrease in the total simulation time, with only a small
increase in the required computing time per iteration.

Currently, the selection of the deflation vectors is mainly based on some standard
approaches: approximated eigenvectors, recycling solutions [34, 38, 39], subdomain
deflation vectors [32] and multigrid and multilevel-based deflation matrices [23, 25].
However, a good selection of deflation vectors is problem-dependent, which implies
the need of finding good deflation vectors for each kind of problem.

POD methods are based on the collection of a series of snapshots, i.e., solutions
of the system with slightly different characteristics, from which essential system in-

†For more details about the condition number see Section 2.3
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formation will be captured on a basis. Acceleration with POD methods has been
approached with diverse ways of collecting and recycling the information.

Some state-of-the-art POD acceleration strategies can be found in Astrid et al.
[11], who propose the capture of system information in an offline phase for later reuse,
accelerating problems with slightly modified parameters in a smaller subspace created
with this basis. This approach is particularly useful for optimization or history-
matching problems where very similar systems need to be solved.

Similarly, Markovinovic et al. [12] propose using the solution computed with
POD methods to find a more accurate initial guess. Pasetto et al. [1] construct a
preconditioner based on AMG, deflation, and POD for the acceleration of a Krylov-
subspace iterative method.

Following the ideas of [1, 11, 12, 20], we propose the use of POD of many snap-
shots to capture the system’s behavior and combine this technique with deflation to
accelerate the convergence of a Krylov iterative method.

In this work, instead of computing the solution in a low dimensional subspace, the
basis obtained with POD is proposed as an alternative choice for the deflation vectors
to accelerate the convergence of the pressure solution in reservoir simulation. We refer
to this methodology as POD-based deflation method, and we study its applicability
and properties.

1.4 Proposal: POD-based deflation method

We present a method that combines deflation and POD techniques to further accel-
erate the solution of a linear system with iterative methods. We combine the main
advantages of both methods: POD collects the most relevant system information on a
basis; deflation reuses system information via a set of deflation vectors. With the pro-
posed strategy, the POD basis is used as subspace deflation matrix within a deflation
procedure.

For the collection of the snapshots, we use three different schemes. For the first
one, we collect a set of linearly independent snapshots that capture the most relevant
system information. These snapshots are obtained for a time independent problem
by changing the system configuration, in particular, the right-hand sides.

The second and third approaches are for time-dependent problems. In the second
one, the snapshots are captured on− the− fly, i.e., the solution of a small number of
previous time steps are used as snapshots. Therefore, the system configuration is the
same. It is referred to as moving window approach. The last one is named training
phase approach. Here, the snapshots are solutions of a full simulation, i.e., all the
time steps are computed. In this approach, the right-hand side of the system is varied
randomly in an interval.

The main advantages of this method are:

• Problem independence: it does not depend on the case under study. We intro-
duce this methodology for reservoir simulation examples, but it can be adapted
to any time-varying problem.

• Linear solver independence: the acceleration was tested for the Preconditioned
Conjugate Gradient (PCG) method. However, it can be implemented for mul-
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tiple preconditioners and linear solvers, e.g., Krylov subspace linear solvers,
Multilevel, Multigrid and Domain Decomposition methods.

1.5 Thesis outline

This thesis is divided as follows:

Chapter 2: Porous media flow. We begin by describing the problem under
consideration. We introduce the physical and mathematical models describing single-
and two-phase flow through porous media, i.e., we present the governing equations.
Later, we describe the discretization methods required to approximate the solution of
this problem numerically.

Chapter 3: Solution methods. We give an overview of the basic iterative meth-
ods together with Krylov subspace iterative methods. Additionally, we present the
PCG method studied in this work, and we give more details about the acceleration
techniques that are the basis of our methodology.

Chapter 4: POD-based deflation method. We introduce the methodology de-
veloped throughout this work, resulting from the combination of POD and deflation
techniques. We start by analyzing the characteristics of the combined methods. We
demonstrate some Lemmas that give us more insight into the behavior and applica-
bility of the method. Finally, we study the spectral performance of the linear system
while using this method.

Chapters 5, 6 & 7: Numerical experiments. These chapters are dedicated to
the numerical experiments that illustrate the analysis performed in Chapter 4 and to
study the performance of the POD-based deflation methodology.

Chapter 5 is devoted to an incompressible single-phase problem, Chapter 6 ex-
plores the compressible single-phase case, and Chapter 7 studies the two-phase in-
compressible case.

Chapter 8: Comparison of 2L-PCG using deflation techniques. In this
chapter, we introduce the deflation method as a two-level preconditioned conjugate
gradient method (2L-PCG). We present a theoretical and a numerical comparison
of the approach presented by Pasetto et al. [1] and a series of 2L-PCG methods,
including the one studied throughout this work.

Conclusions. Finally, we present the general conclusions and we give some recom-
mendations for the application of the method.





Chapter 2
Porous media flow:

Mathematical model and
discretization schemes

Throughout this thesis, we study the acceleration of linear systems of equations re-
sulting during reservoir simulation. When studying flow through large and highly-
heterogeneous reservoirs, the solution of the system becomes difficult with standard
methods. Nowadays, there is a pursuit of efficient linear solvers to tackle these prob-
lems; however, not all the methods work for all the problems. Therefore, it is im-
portant to know the properties of the system under consideration to select the most
suitable solution methodology, exploiting in this way, the system and solver proper-
ties.

To better understand the complexity of the tackled problems throughout this
work, in this chapter we give more insight into the systems under investigation. We
begin with presenting the principles that govern the dynamics of single- and two-
phase flow through porous media, together with the boundary conditions and sources
that make a complete system description. Finally, we introduce spatial and temporal
discretization schemes that give rise to the linear system studied all over this work.

2.1 Reservoir simulation

Petroleum reservoirs are layers of sedimentary rock, which vary concerning grain size,
mineral and clay contents. Reservoir simulation is a way to analyze and predict the
fluid behavior inside a reservoir through the analysis of a model, which can be a
geological or a mathematical model.

The geological model describes the reservoir, i.e., the rock formation, for which
a set of petrophysical properties are defined. The main reservoir properties are the
rock porosity (φ) defined as the fraction of void space inside the rock, and the rock
permeability (K) that determines the rock’s ability to transmit fluids through the
reservoir. The rock permeability, in general, is a tensor where each entry (Kij) rep-

7
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resents the flow rate in one direction, i, caused by the pressure drop in the same, or
in a perpendicular direction, j.

For the mathematical modeling, we describe the flow through porous media mak-
ing use of the principle of mass conservation and Darcy’s law, corresponding to mo-
mentum conservation. The mass balance equation for a fluid phase α is given by:

∂(φραSα)

∂t
+∇ · (ραvα) = ραqα, (2.1)

and the Darcy’s law reads:

vα = −Kα

µα
· (∇pα − ραg∆d), (2.2)

where, ρα, µα and pα are the density, viscosity, and pressure of the fluid phase α; g
is the gravity constant, d is the depth of the reservoir and qα are sources, usually,
fluids injected and/or produced. The saturation of a phase, Sα, is the fraction of void
space filled with that phase in the medium, where a zero saturation indicates that
the phase is not present. Fluids inside a reservoir are usually filling the empty space
completely, this property is expressed by the following relation:∑

α

Sα = 1. (2.3)

If our system consists of more than one fluid phase, the permeability of each
fluid phase, α, will be affected by the presence of the other phases. Therefore, the
effective permeability Kα has to be used instead of the absolute permeability K. The
absolute and effective permeabilities are related via the saturation-dependent relative
permeability (krα):

Kα = krα(Sα)K.

The dependence on the saturation of the relative permeabilities can be expressed
with the Corey model:

krα = (Ŝα)nαk0
α, krβ = (1− Ŝα)nβk0

β , (2.4)

where Ŝα is the effective saturation. The Corey coeficients (nα,β > 1), and the end-
point relative permeabilities (k0

α,β) are fitting parameters.
Darcy’s law can be rewritten as:

vα = −λα(Sα) · (∇pα − ραg∆d), (2.5)

where we introduce the phase mobilities:

λα(Sα) =
krα(Sα)K

µα
. (2.6)

The fluid density and the rock porosity can be pressure dependent, i.e., ρα = ρα(p)
and φ = φ(p). These dependencies can be expressed as:

cr =
1

φ

dφ

dp
, cf =

1

ρα

dρα
dp

, (2.7)
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where cr is the rock compressibility, and cf is the fluid compressibility. To describe
the system completely, we need to define boundary conditions and, if present, in-
clude source terms. The boundary conditions can be prescribed pressures (Dirichlet
conditions), fixed flow rates (Neumann conditions) or a combination of these (Robin
conditions). For reservoirs, the source terms are wells where fluids are injected or
extracted at constant surface flow rate or constant bottom-hole pressure (bhp).

In this work, we make use of the Peaceman’s model to describe the pressure change
due to the presence of wells. Taking into account gravity forces, this model is given
by:

q = −Jwell(p− pbh − ρg∆dw), (2.8)

where ∆dw is the vertical distance from the cell to the surface, Jwell is known as the
well index, p is the pressure in the reservoir and pbh is the pressure inside the well.

2.1.1 Single-phase flow

If the system consists of only one phase, combining Darcy’s law and the mass balance
equation we obtain:

∂(φρ)

∂t
−∇ · [ρλ · (∇p− ρg∆d)] = ρq. (2.9)

Incompressible fluid. Given an incompressible rock (dφdt = 0), when the fluid
is incompressible, i.e., the fluid’s density is constant and does not depend on the
pressure, Equation 2.9 reduces to an elliptic equation for the pressure:

−∇ · [λ · (∇p− ρg∆d)] = q, (2.10)

where λ = K/µ.

Slightly compressible fluid. For this case, the accumulation term cannot be ne-
glected, instead, making use of Equation (2.7) and assuming an incompressible rock
(dφdt = 0), it can be expressed as follows:

∂(ρφ)

∂t
= ρ

∂φ

∂p

∂p

∂t
+ φ

∂ρ

∂p

∂p

∂t
= φρ

[
1

φ

∂φ

∂p
+

1

ρ

∂ρ

∂p

]
∂p

∂t
=

= φρ [cr + cf ]
∂p

∂t
= φρct

∂p

∂t
,

where ct = cr+cf denotes the total compressibility. Assuming small spatial variations
for the density, i.e., ∇ · ρ = 0, Equation (2.9) reads:

φct
∂p

∂t
−∇ · [λ · (∇p− ρg∆d)] = q. (2.11)
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Compressible fluid. For a compressible fluid, the density depends on the pressure,
ρ(p), in Equation (2.9):

φ
∂ρ(p)

∂t
−∇ · [ρ(p)λ · (∇p− ρ(p)g∆d)] = ρq. (2.12)

The compressible system, Equation (2.12), is non-linear and some linearization strate-
gies are required to solve it numerically. Through this work, we use the Newton-
Raphson (NR) linearization method.

2.1.2 Two-phase flow

For simulation of two-phase flow through a porous medium, we assume that the phases
are separated, i.e., they are immiscible, and there is no mass transfer between them.
We consider one of the fluids as the wetting phase (w), which is more attracted to
the mineral particles than the other phase, known as the non-wetting phase (nw). In
the case of a water-oil system, water is considered the wetting phase.

The surface tension and the curvature of the interface between the fluids causes a
difference in pressure among phases known as the capillary pressure (pc) that depends
on the saturation as follows:

pc(Sw) = pnw − pw. (2.13)

The pressure of the non-wetting fluid is higher than the pressure of the wetting
fluid; therefore, the capillary pressure is always a positive quantity. The relation
between the capillary pressure and the saturation is an empirical model based on
experiments and it depends on the porosity and permeability of the medium.

As mentioned before, the governing equations of flow through porous media are
the Darcy’s law, Equation (2.2), and principle of mass conservation, Equation (2.1),
combining these equations we obtain a parabolic equation for pressures and satura-
tions:

∂(φραSα)

∂t
−∇ · (ραλα · (∇pα − ραg∆d)) = ραqα. (2.14)

For this system, the pressure and saturation can be decoupled via, e.g., the fractional
flow formulation. For an immiscible, incompressible flow, the pressure equation be-
comes elliptic and the transport equation becomes hyperbolic, and they can be solved
separate in a sequential procedure. In the next section we describe this formulation
in more detail.

Fractional flow formulation. In the case of incompressible flow, the porosity (φ)
and the densities (ρα) do not depend on the pressure. Therefore, Equation (2.14)
reduces to:

φ
∂Sα
∂t
−∇ · (λα(∇pα − ραg∆d)) = qα. (2.15)

Taking a two-phase system with a wetting (w) and a non wetting phase (nw), the
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resulting governing equations are:

φ
∂Sw
∂t

+∇ · vw =φ
∂Sw
∂t

+∇ · (λw(∇pw − ρwg∆d)) = qw,

φ
∂Snw
∂t

+∇ · vnw =φ
∂Snw
∂t

+∇ · (λnw(∇pnw − ρnwg∆d)) = qnw. (2.16)

To solve this system, we define the total Darcy’s velocity as the sum of the velocity
in the wetting and non wetting phases:

v = vw + vnw = −λnw∇pnw − λw∇pw + (λnwρnw + λwρw)g∆d

= −(λnw + λw)∇pnw + λw∇pc + (λnwρnw + λwρw)g∆d. (2.17)

If we add the two continuity equations, system (2.16), and use the relationship Snw +
Sw = 1, we obtain:

φ
∂(Sw + Snw)

∂t
+∇ · (vw + vnw) = φ

∂(Sw + Snw)

∂t
+∇ · v = q, (2.18)

where q = qnw + qw is the total source term. Defining the total mobility as λ =
λnw + λw, and using Darcy’s law, Equation (2.18) becomes:

−∇ · (λ∇pnw) = q −∇[λw∇pc + (λnwρnw + λwρw)g∆d], (2.19)

which is an equation for the pressure of the non wetting phase. This equation depends
on the saturation via the capillary pressure pc and the total mobility λ. Multiplying
each phase velocity by the relative mobility of the other phase and subtracting the
result, together with Equation (2.17), we get:

λnwvw − λwvnw = λvw − λwv

= λwλnw[∇pc + (ρw − ρnw)g∆d].

Therefore, for the wetting-phase velocity, vw, we have:

vw =
λw
λ

v +
λwλnw
λ

[∇pc + (ρw − ρnw)g∆d]. (2.20)

We introduce the fractional flow function,

fw(Sw) =
λw(Sw)

λw(Sw) + λnw(Snw)
,

which, together with the previously computed velocity vw, transforms the transport
Equation (2.1) into:

φ
∂Sw
∂t

+∇ · [fw(v + λnw∆ρg∆d)] +∇ · (fwλnw∇pc) = qw, (2.21)

where ∆ρ = ρw − ρnw.
With this approach, the system is expressed in terms of the non wetting phase

pressure, Equation (2.19), and the saturation of the wetting phase, Equation (2.21).
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For the pressure equation, the coupling to saturation is present via the phase mobili-
ties, Equation (2.6), and the derivative of the capillary function.

Solution of the two-phase flow using the fractional flow formulation results in
a sequential procedure where, first, the pressure of the non-wetting phase for the
current time step (ptnw) is obtained from Equation (2.12), where the current mobility
(λt(St−1), see Equation (2.6)) is computed using the saturation of the previous time
step. The recently obtained pressure is then used to compute the total velocity
(vt(ptnw), see Equation (2.17)). And finally, the saturation of the wetting phase is also
updated with the total velocity (Stw(vt(ptnw)), see Equation (2.21)). The procedure
is summarized in Algorithm 1.

Algorithm 1 Sequential procedure for incompressible two-phase flow simulation (no
gravity and capillary pressure terms included).

% Time integration
for t = 0, ..., steps

% Compute the pressure of the non-wetting phase during the current time step,
Equation (2.12),
−∇ · (λt∇pt) = qt.

% Compute the total velocity, Equation (2.17),
vt = −λt∇pt.

% Update the saturation for the current time step, Equation (2.21),

φ
∂Stw
∂t +∇ · (f twvt) = qtw.

end for

2.2 Discretization methods

In Section 2.1, we presented the equations that describe single and two-phase flow
through porous media. The resulting elliptic pressure systems, Equation (2.10) and
Equation (2.19), consisting of spatial derivatives can be approximated using, e.g.,
finite differences, finite volumes, or finite elements schemes.

For the discretization of temporal derivatives, Equation (2.12), and the transport
Equation (2.21), commonly used discretization schemes are backward and forward Eu-
ler. In this section, we describe the discretization mentioned above methods typically
used to model flow through porous media. Throughout this work, the matrices and
right-hand sides of the studied linear systems are obtained with the Matlab Reservoir
Simulation toolbox (MRST, [7]); therefore, the implementation of the discretization
schemes is carried out by the software.

2.2.1 Spatial discretization

As mentioned before, flow through a porous medium is described using the mass
conservation principle and the Darcy’s law. To solve the resulting system of equations,
they have to be discretized. In this section we explore the spatial discretization
schemes for the elliptic equation appearing from simulation of an incompressible fluid
without gravity terms given by Equation (2.10) for one phase, and Equation (2.19)
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for two phases. Assuming no gravity and no capillary pressure terms present, the
Equation (2.10) transforms into:

−∇ · (λ · ∇p) = q, where v = −λ · ∇p. (2.22)

Next, we present the discretization of the Equation (2.22) using finite differences
and finite volumes schemes, a similar procedure can be used for the discretization of
Equation (2.19).

Finite differences

In this section we present the approximation of Equation (2.22) using a cell-centered
finite difference scheme. For a 3D model, taking a mesh with a uniform grid size ∆x,
∆y, ∆z, where (i, j, l) is the center of the cell in the position i for the x−direction,
j for the y−direction, and l for the z−direction (xi, yj , zl), and pi,j,l = p(xi, yj , zl) is
the pressure at this point. Using the harmonic average,

λi− 1
2 ,j,l

=
2λi−1,j,lλi,j,l
λi−1,j,l + λi,j,l

,

for the mobility at the interface between cells (i− 1, j, l) and (i, j, l), the derivative in
the x−direction becomes (see, e.g. [2, 5, 6, 33]):

∂

∂x

(
λ
∂p

∂x

)
=

∆

∆x

(
λ

∆p

∆x

)
+ O(∆x2)

=
λi+ 1

2 ,j,l
(pi+1,j,l − pi,j,l)− λi− 1

2 ,j,l
(pi,j,l − pi−1,j,l)

(∆x)
2 + O(∆x2). (2.23)

Discretizing the other directions in a similar way, Equation (2.22), together with
boundary conditions, can be written as:

Tp = q, (2.24)

where T is known as the transmissibility matrix [6], with elements

Ti− 1
2 ,j,l

=
2∆y∆z

∆x
λi− 1

2 ,j,l
,

and q is the right-hand side, that can be boundary conditions or sources. The stencil
of this matrix is given by

−pi−1Ti−1/2 + pi−1(Ti−1/2 + Ti+1/2)− pi+1Ti+1/2,

thus, it is a symmetric matrix.

Finite volumes

Finite volumes methods are derived from conservation of physical quantities over cell
volumes, averaging the functions in a set of volumes. Taking a cell Ωi as control
volume, Equation (2.22) for the x direction can be rewritten as:∫

Ωi

∇ · v dx =

∫
∂Ωi

v · n ds =

∫
Ωi

q dx. (2.25)
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The half-faces, Γi,k = ∂Ωi ∪ ∂Ωk, are the interface between cells associated with a
normal vector ni,k. For each interior half-face Γi,k it exist a twin half-face Γk,i with
identical area but opposite normal vector nk,i = −ni,k. Integrating Equation (2.25)
over the cell face, the flux across the interface between cells i and k can be written
as:

vi,k =

∫
Γi,k

v · nds ≈ Ai,kv(xi,k) · ni,k = −Ai,k(λ · ∇p)xi,k · ni,k, (2.26)

where xi,k is the center of Γi,k. Taking the pressure at the interface as πi,k and the
averaged pressure inside the cell i as pi, Equation (2.26) becomes:

vi,k ≈ Ai,kλi
(pi − πi,k)ci,k
|ci,k|2

· ni,k = Ti,k(pi − πi,k), (2.27)

where ci,k is the vector joining the center of the cell i with xi,k, and Ti,j is the half-
transmissibility of the cell i. Imposing continuity of fluxes across the faces, vi,k =
−vk,i = vik and continuity of face pressures πi,k = πk,i = πik, Equation (2.27) can be
rewritten as:

T−1
i,k vik = pi − πik, −T−1

k,i vik = pk − πik.

Adding up these equations we obtain:

vik = [T−1
i,k + T−1

k,i ]−1(pi − pk) = Tik(pi − pk).

Equation (2.2.1) is known as Two-point flux approximation (TPFA) and Tik is the
transmissibility associated with the cells i and k. As in the previous discretization
scheme, Equation (2.22) can be rewritten as:

Tp = q, (2.28)

with the transmissibility matrix elements previously defined. In MRST, finite volumes
is used as spatial discretization scheme.

2.2.2 Temporal discretization

In this section we present the backward Euler temporal discretization scheme that
is implemented for the solution of compressible single-phase and incompressible two-
phase examples.

Slightly compressible fluid. We can discretize the temporal part of Equation
(2.11) using backward Euler discretization as follows:

pn+1 − pn

∆t
− 1

ctφ
∇ ·
(
λ · ∇pn+1

)
= qn+1.

For this case, we have a transmissibility matrix resulting from the spatial discretization
for the current time step and a term resulting from the temporal discretization; thus,
the system to solve is:

(ctφI + ∆tT) pn+1 = qn+1 + ctφpn. (2.29)
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Compressible fluid. For a compressible fluid flowing in a medium with constant
porosity, the temporal discretization is given by (neglecting gravity terms):

φ
ρ(p)n+1 − ρ(p)n

∆t
−∇ · [ρ(p)λ · ∇p]n+1

= (qρ(p))n+1.

After spatial discretization, we obtain a matrix that depends on the pressure at the
past and current time step, the resulting system will be:

F(pn+1; pn) = V(pn+1)−V(pn) +
∆t

φ
(T(pn+1) + qn+1) = 0. (2.30)

This is a non linear system that can be linearized with, e.g., Newton-Raphson method
described below.

Newton-Raphson (NR) method. Given a time dependent vectorial function
F(p), the zeros of this function can be found using an approximation with Taylor
series as follows:

F(p; p0) = F(p0) + (p− p0)J(p0) + ... = 0,

where J(p) = ∂F(p;p0)
∂pk

is the Jacobian matrix, p0 is an initial guess, and F(p0) is the

function evaluated in p0. Considering only the first terms, the difference between the
old and new values δp is given by:

δp = p− p0 = −J−1(p0)F(p0).

With the NR method, this approximation is made recursively until δp is smaller than
a given tolerance ε. Therefore, the linear system for the (k + 1) − th NR iteration
becomes:

J(pk)δpk+1 = −F(pk+1; p0). (2.31)

This system is solved for δpk+1, and the value of pk+1 is updated with the previously
computed solution pk,

pk+1 = pk + δpk+1 (2.32)

Solution procedure for a compressible fluid. The procedure simulate flow of
a compressible fluid consists of three stages:

i During the first stage, we solve Equation (2.30) for each time step.

ii Because of the nonlinearity, we use an iterative NR procedure that involves
linearization at each time step, i.e. we perform a series of iterations to make
δp = 0.

iii Solve the resulting linear system, Equation (2.31).

A summary of this procedure is presented in Algorithm 2.
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Algorithm 2 Solution procedure for a compressible fluid.

% Time integration
for t = 0, ..., steps

% NR iteration, finding F(pn+1; pn) = 0 for each time step.
while δp > ε, δp = −J(pn)−1F(pn).

% Linear iteration over i,
while ||ri+1|| > ε, ri+1 = b(pk)− J(pk)δpk+1

Solve J(pk)δpk+1 = b(pk) for δpk+1 with an iterative method.
end while

end while
end for

For this problem, it is also necessary to specify the initial conditions, which are
the pressure values of the reservoir at the beginning of the simulation.

Well model The sources are given by injection through boundary or wells, for
the studied cases. In the case of wells, we used the Peaceman model introduced in
Equation 2.8, for a cell (i, j, l) containing the well, this model can be discretized as
follows:

q(i,j,l) = J(i,j,l)(p(i,j,l) − pbh(i,j,l)), (2.33)

where p(i,j,l) is the reservoir pressure in the cell, and pbh(i,j,l) is a prescribed pressure
inside the well.

Once the system is discretized, in the case of non linear systems, after lineariza-
tion, the governing equations become a linear system containing a matrix that varies
depending on the problem, boundary conditions and sources.

Neumann boundary conditions. Special attention is required when the system
presents homogeneous Newmann boundary conditions, the following Lemma presents
a required compatible condition such that Equation (2.22) has solution.

Lemma 2.2.1. Considering the elliptic Equation (2.22), let λ = 1 with homogeneous
Neumann boundary conditions ∂p

∂n = 0, then
∑n
i=1 qi = 0.

Proof. Equation (2.22) can be rewritten as:

−∇p = q,

if we integrate over all the domain and use Gauss divergence theorem we get

−
∫

Ω

∇p dx = −
∫
∂Ω

∂p

∂n
ds =

∫
Ω

q dx

⇒
∫

Ω

q dx = 0, using bc,
∂p

∂n
= 0.

Or in discrete form
∑n
i qi = 0

Lemma 2.2.1 implies that solving an elliptic problem with homogeneous Neumann
boundary conditions we have to select the sources in a way such that

∑n
i qi = 0.
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Concluding remarks. In this chapter, we introduced the governing equations for
simulation through porous media for single- and two-phase flow. We also presented
some discretization and linearization schemes, that lead to a linear system. A sum-
mary of the resulting linear systems is presented in Table 2.1. In this work we study
the acceleration of the solution of these systems.

Single phase Two phases

Incompressible Compressible Incompressible

Tp = q J(pk)δpk+1 = b(pk) T(Sn)pn = qn

Table 2.1: Linear systems.

The stencil of the T matrix is given by:

−pi−1Ti−1/2 + pi−1(Ti−1/2 + Ti+1/2)− pi+1Ti+1/2,

similarly for T(S); thus, they are symmetric matrices.
This work is focused on the acceleration of the solution of these systems with iter-

ative methods, in particular, with the Conjugate Gradient method. A brief introduc-
tion to these methods is presented in next chapter, together with some acceleration
techniques. Furthermore, we will introduce the Proper Orthogonal Decomposition
method, used for the development of the POD-based deflation method, further ex-
plained in Chapter 4.





Chapter 3
Solution methods

In the previous chapter, we developed the theory of reservoir simulation, and we
discussed how some discretization and linearization techniques lead to a linear system.
In this thesis, we study oil reservoirs, usually exhibiting a high contrast in permeability
coefficients, resulting in an ill-conditioned system expensive to solve. These systems
are commonly solved with iterative methods.

However, as the contrast increases and the systems become larger, the efficiency
of the solver decreases and acceleration techniques are required. The objective of this
work is to develop an efficient methodology to accelerate the solution of ill-conditioned
linear systems. We introduce and develop an approach based on two state-of-the-art
methods: deflation and Proper Orthogonal Decomposition (POD), more details about
the methodology are discussed in Chapter 4.

This chapter is devoted to exploring the state-of-the-art iterative methods imple-
mented to accelerate the solution of linear systems. We start by giving some theory
and properties of the system under investigation. Later, we introduce the basic it-
erative methods, followed by the Krylov-subspace methods. For the latter kind, we
put particular attention to the Conjugate Gradient method (CG), especially suited
to solve linear systems containing Symmetric Positive Definite (SPD) matrices that
appear in reservoir simulation.

Additionally, we present the customary stopping criteria used for iterative meth-
ods. Then, we explore the deflation methodology, along with some of their properties
and common uses. Finally, we introduce the POD method.

3.1 Background

This work is focused on the solution of linear systems of the form:

Ax = b, (3.1)

with A ∈ Rn×n, x ∈ Rn, and b ∈ Rn. System 3.1 is considered consistent if it has
either one or infinitely many solutions, otherwise, it is inconsistent. The structure of

19
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the system matrix, A, and right-hand side, b, are important to determine if a system
has a solution and to select an optimal solution method.

Sometimes, the system matrix A contains a large number of zero entries and is
referred to as a sparse matrix. In some cases, a sparse matrix can be structured,
i.e., the non-zero entries form a regular pattern. The structure may consist of a
small number of diagonals or blocks with non-zero values. Discretization via finite
differences on a structured grid results in a structured sparse matrix containing 3, 5,
or 7 non-zero diagonals, depending on the problem’s dimension.

The problems addressed in this work (see Table 2.1) consist of sparse SPD matri-
ces, i.e., AT = A, and (Ax,x) > 0, ∀x ∈ Rn, with x 6= 0.

In this section, we give some definitions and properties of the system matrix and its
respective right-hand side for a better understanding of the behavior of the iterative
method.

Definition 3.1.1. The eigenvalues, λi, of an SPD matrix A are the n roots of the
characteristic polynomial p(λ) = det(λI−A).

The set of all the eigenvalues is known as the spectrum, σ(A) = {λmin, ..., λmax}
and for an SPD matrix it contains only real positive eigenvalues, λi ∈ Rn. The
nonzero vectors v ∈ Rn, satisfying

Av = λv,

are known as the eigenvectors of A.

Lemma 3.1.1. Let A,B ∈ Rn×n be arbitrary matrices. Now, the following equalities
hold:

1. σ(AB) = σ(BA) ,

2. σ(A + αI) = σ(A) + ασ(I), where α ∈ R,

3. σ(A) = σ(A>).

Proof. See [40].

Definition 3.1.2. The null space of A ∈ Rn×n is the set of all solutions to the
homogeneous equation Axn = 0, or

N (A) := {xn ∈ Rn|Axn = 0}.

Definition 3.1.3. The column space R(A), or range of A, is the span or set of all
possible linear combinations of its column vectors, if ai ∈ Rn are the columns of A,

R(A) = span{a1,a2...,an},

or

R(A) = {x ∈ Rn,ai ∈ Rn, αi ∈ R|x =

n∑
i=1

αiai}.

Definition 3.1.4. Given a set of n vectors {ai}, this set is linearly independent (l.i.)
if the only vector, c = [c1, ..., cn], for which

∑n
i=1 ciai = 0, is the zero vector, c = 0.
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Definition 3.1.5. The rank or dimension of A ∈ Rn×n is the number of linearly
independent columns, and

rank(N (A)) + rank(A) = n.

Lemma 3.1.2. Let A ∈ Rn×n be the system matrix of (3.1), if xn ∈ N (A), xp ∈
R(A), and Axp = b, then

x = xn + xp, (3.2)

is a solution of Ax = b.

Proof. Multiplying Equation (3.2) by A we get

Ax = Axn + Axp = 0 + b = b.

Then x is a solution.

Lemma 3.1.3.

i. The linear system (3.1) is consistent if b ∈ R(A), and

ii. the solution is unique iff N (A) = {0}.

Proof.

i. As the system (3.1) is consistent, we can find a solution xp = [x1, ...xn] such
that Axp = b, let ai be the columns of A. Then, we can re-write the linear
system as:

Axp =
∑
i

aixi = b,

then, b ∈ R(A).

ii.

xp is unique

⇔ x = xp from Lemma 3.1.2

⇔ 6 ∃xn ∈ N (A)

⇔ N (A) = {0}

LU decomposition method. Once we know that the system (3.1) has a solution,
it can be found with, e.g., direct methods. LU decomposition is a direct method
where the matrix A is decomposed into a lower triangular L, and an upper triangular
matrix U. The system is thus transformed into:

Ax = LUx = b.

The solution of the decomposed system is obtained by forward substitution of the
subsystem b = Ly, followed by back substitution of y = Ux.
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Cholesky decomposition method. Symmetric matrices can be decomposed as
A = LLT . This decomposition is called Cholesky. This implies that the system (3.1)
can be rewritten as:

Ax = LLTx = b. (3.3)

This system can be solved as LU with forward and backward substitution.
The difficulties of solving system (3.1) appear when the matrix A presents a large

condition number κ(A), given by:

κ(A) =
λmax(A)

λmin(A)
. (3.4)

If κ is small, direct methods can be used; nonetheless, if the smallest, λmin, and
largest, λmax, eigenvalues are far apart, finding a solution is troublesome.

The structure of the matrix can be exploited by creating algorithms that only
take into account the non-zero elements. Iterative methods are especially suited for
the solution of sparse matrices as they benefit from the matrix structure, requiring
less computer storage and fewer operations than direct methods. These advantages
are more noticeable for large problems, as the storage and operation counts increase
considerably when using direct methods.

3.2 Basic Iterative Methods (BIM)

Iterative methods are techniques created to obtain an approximate solution of linear
systems. For the implementation of these methods, successive approximations are
used, beginning with an initial guess solution (x0), and iterating over the newly
computed solution (xi) until an accurate enough approximation to the exact solution
(x) is found.

The accuracy of the k− th approximation is given by the error, ek = x− xk, and
the norm of the relative error is given by:

ek =
||x− xk||2
||x||2

. (3.5)

However, computing the error of the approximation is not possible, as it is necessary to
know the exact solution. Instead, the accuracy of the method is tested by computing
the residual,

rk = b−Axk, (3.6)

which is related to the error as Aek = rk.
A common stopping criterion or tolerance (ε) for iterative methods is the relative

residual, defined as the 2-norm of the residual of the k − th iteration divided by the
2-norm of the right-hand side,

rk =
||rk||2
||b||2

≤ ε, (3.7)

which is related to the relative error as follows [8]:

ek =
||x− xk||2
||x||2

≤ κ2(A)
||rk||2
||b||2

. (3.8)
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To obtain an iterative method, the matrix A is decomposed into two matrices, M and
N. Such that A = M−N, and the original linear system (Equation 3.1) transforms
into:

Ax = (M−N)x = b, (3.9)

rearranging terms we obtain:

Mx = Nx + b = (M−A)x + b.

The latter system is used to perform an iterative process, finding at each iteration
(k) a more accurate solution. Most of the iterative methods are derived from the
following recurrence relation:

Mxk = (M−A)xk−1 + b, or xk = M−1(M−A)xk−1 + M−1b, (3.10)

where the matrix M is chosen such that the sequence {xk} is easily computed and
the iterations converge rapidly.

Basic iterative methods are obtained by decomposing the system matrix as A =
D − E − F. D being the diagonal of A, and −E and −F are the strictly lower and
upper parts. The M and N matrices are based on this decomposition. Some of the
basic iterative methods are presented in Table 3.1.

Method M N Iteration

Richardson I I−A xk+1 = (I−A)xk + b

Jacobi D E + F xk+1 = D−1(E + F)xk + D−1b

Damped Jacobi (1/ω)D E + F xk+1 = ωD−1(E + F)xk + ωD−1b

Gauss Seidel D−E F xk+1 = D−1(Fxk + Exk) + D−1b.

Successive D− ωE (1− ω)D+ xk+1 = ωD−1(Fxk + Exk+1)+

Over-Relaxation +ωF +(1− ω)xk + ωD−1b.

Table 3.1: Basic iterative methods.

For some iterative methods, an optimal relaxation parameter ω can be used to
further accelerate the convergence. However, this value is not always known and
a complex eigenvalue analysis is required to find it. To avoid this difficulty, other
methods have been developed, among others, the Krylov subspace methods have
been used as an alternative [16, 41–43].

3.3 Krylov subspace methods

The recursion for iterative methods is given by Equation (3.10), and can be rewritten
as:

xk = xk−1 + M−1(b−Axk−1) = xk−1 + M−1rk−1,
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being rk the residual defined in Equation (3.5). Taking the first approximate solution
x0 as an arbitrary guess solution, the first iterations are given by:

x1 = x0 + (M−1r0),

x2 = x1 + (M−1r1) = x0 + M−1r0 + M−1(b−Ax0 −AM−1r0)

= x0 + 2M−1r0 −M−1AM−1r0,

...

xk = x0 + 2M−1r0 − (M−1A)1M−1r0 + . . .− (M−1A)k−1M−1r0.

Therefore, the k − th iteration can be written as:

xk ∈ x0 + span{M−1r0, (M
−1A)M−1r0, . . . , (M

−1A)k−1(M−1r0)},

or,
xk ∈ x0 +Kk(M−1A; r0),

where the subspace Kk(A; r0) := span{r0,Ar0, . . . ,A
k−1r0} is known as the Krylov

subspace of dimension k corresponding to the matrix A and initial residual r0.

3.3.1 Conjugate Gradient (CG) method

The Conjugate Gradient (CG) method is a Krylov subspace method used for SPD
matrices, such that the resulting error ek = ||x − xk||A is minimal. To derive the
method, we compute the first iterate x1, and we solve the minimization problem by
finding an α0 such that the error is minimal in the A− norm, defined as:

||x||A =
√

xTAx. (3.11)

If the first approximation is given by x1 = α0r0, its corresponding error is

e1 = ||x− α0r0||A = (x− α0r0)TA(x− α0r0) = xTAx− 2α0r
T
0 Ax + α2

0r
T
0 r0,

∂e1

∂α0
= −2rT0 Ax + 2α0r

T
0 r0 = 0, ⇒ α0 =

rT0 Ax

rT0 r0
=

rT0 b

rT0 r0
.

Therefore, the solution of the k − th iteration will be given by xk+1 = xk + αkvk,
where vi are the search directions. If vi = ri, the method is called steepest descent.

However, with this method, the same direction is computed more than once in
some cases. To avoid the extra computations, we select a set of directions pi such
that they are orthogonal to the residuals, i.e., (rk,pj) = 0, and A − orthogonal to
the previously computed directions, (Apk,pj) = 0, for k 6= j.

For the Conjugate Gradient method, the search directions are defined as:

pk+1 = rk+1 + βkpk,

and the updated solutions are given by:

xk+1 =xk + αkpk

⇒ rk+1 =b−Axk+1 = b−A(xk + αkpk) = rk − αkApk
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using (rk+1, rk) = 0, and (Apk, rk) = (Apk,pk − βk−1pk−1) = (Apk,pk), we obtain

αk =
(rk, rk)

(Apk, rk)
=

(rk, rk)

(Apk,pk)
,

the A−orthogonality of pk gives

pTk+1Apk = rTk+1Apk + βkp
T
kApk = 0;

therefore,

βk = −
rTk+1Apk

pTkApk
= − (rk+1,Apk)

(pk,Apk)
.

The implementation of this method is given in Algorithm 3, and the error is
bounded by:

||x− xk+1||A ≤ 2||x− x0||A

(√
κ2(A)− 1√
κ2(A) + 1

)k+1

. (3.12)

Algorithm 3 Conjugate Gradient (CG) method, solving Ax = b.

Given an initial guess x0.
Compute r0 = b−Ax0, and set p0 = r0.
for k = 0, ..., until convergence

wk = Apk
αk = (rk,rk)

(wk,pk)
xk+1 = xk + αkpk
rk+1 = rk − αkwk

βk = (rk+1,rk+1)
(rk,rk)

pk+1 = rk+1 + βkpk
end for

From Equation (3.12), we note that the convergence is related to the condition
number of the matrix A, where κ2(A) = 1, is the optimal value obtained for the
identity matrix. Therefore, reducing κ2(A) results in a better performance. As the
condition number of an SPD matrix is related to the largest and smallest eigenvalues
of the matrix (see Equation (3.4)), a reduction can be obtained by clustering the
spectrum, i.e., by putting together the extreme eigenvalues, or by removing them
from the method. In the next section, we introduce some acceleration techniques
here implemented to improve the spectral properties of iterative methods.

3.4 Acceleration techniques

When iterative methods do not converge in a reasonable amount of time, acceleration
of these methods is necessary. In this section, we present the basics on preconditioners,
together with a description of the deflation method, which are the chosen acceleration
methods implememnted within this study.
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3.4.1 Preconditioning

Acceleration of iterative methods is done by modifying the spectrum of the system,
σ(A). Some preconditioning strategies provide an initial acceleration by multiplying
the original system by a matrix M that approximates A. After multiplying the
original system by M−1, it results in the preconditioned system:

M−1Ax = M−1b, (3.13)

that has the same solution as the original but is easier to solve.
The new system 3.13 clusters the spectrum and reduces κ accordingly, for which

κ(M−1A) =
λmax(M−1A)

λmin(M−1A)
< κ(A). (3.14)

For this methods to be effective, M−1 must be cheap to compute. Some com-
mon choices of preconditioners are based on the LU factorization, M = LU which,
for SPD systems, becomes the Cholesky factorization M = LLT , a frequently used
preconditioner for the CG method.

If a good preconditioner is chosen, convergence of the preconditioned system (3.14)
is accelerated, and the new convergence bound is given by:

||x− xk+1||A ≤ 2||x− x0||A

(√
κ2(M−1A)− 1√
κ2(M−1A) + 1

)k+1

. (3.15)

If the system matrix A is sparse, an incomplete factorization A = LiL
T
i can be per-

formed, such that Li is cheaper to compute. This decomposition is called Incomplete
Cholesky (IC), and if the matrix Li has the same nonzero entries as the system ma-
trix, the incomplete decomposition is of order 0, L0. Throughout this work, we use
the IC decomposition of order 0 as preconditioner.

Preconditioned Conjugate Gradient (PCG). The CG method is implemented
for SPD matrices; thus, to solve preconditioned systems, an SPD preconditioning
M−1 matrix is required, resulting in:

Ãx̃ = b̃, (3.16)

where
Ã := M−1/2AM−1/2, x̃ := M1/2x̂, b̃ := M−1/2b.

The pseudocode of the PCG method is presented in Algorithm 4.

Lemma 3.4.1. The preconditioned system (3.16) is consistent, i.e., (see Lemma
3.1.3),

M−1/2b ∈ R(M−1/2AM−1/2).

Proof. Let x be solution of the consistent system Ax = b, i.e., b ∈ R(A), if ai are
the columns of A. Multiplying b by M−1/2 we get:

b =
∑
i

αiai ⇔ M−1/2b =
∑
i

αiM
−1/2ai.
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Therefore, M−1/2b ∈ R(M−1/2A). Thus, it exists a solution x of

M−1/2Ax = M−1/2b

⇔ M−1/2AM−1/2M1/2x = M−1/2b,

⇔ M−1/2b ∈ R(M−1/2AM−1/2).

Hence, the preconditioned system (3.16) is consistent and has at least one solution
x.

Even when the spectrum of a preconditioned system is more favorable, a few
eigenvalues can, nonetheless, spoil the performance of the iterative method. These
eigenvalues can be treated with, e.g., deflation techniques further explained in the
next section.

Algorithm 4 Preconditioned Conjugate Gradient (PCG) method,
solving M−1Ax = M−1b.

Give an initial guess x0.
Compute r0 = b−Ax0, solve My0 = r0,
set p0 = y0, and ry0 = (r0,y0).
for k = 0, ..., until convergence

wk = Apk
αk = ryk

(wk,pk)
xk+1 = xk + αkpk
rk+1 = rk − αkwk

ryk+1 = (rk+1,yk+1)
Solve Myk+1 = rk+1

βk =
ryk+1

ryk
pk+1 = yk+1 + βkpk

end for

3.4.2 Deflation

Deflation techniques accelerate the convergence of an iterative method by annihilating
the effect of extreme eigenvalues on the convergence of the method [31, 44], such that
the condition number of the system is reduced.

The deflation subspace matrix Z determines the part of the spectrum that is
removed, and it is usually problem dependent. In this section, we introduce the
deflation method, together with some properties, and common choices of Z.

Definition 3.4.1. Let A ∈ Rn×n be an SPD matrix, and Z ∈ Rn×p be a full rank
matrix. The invertible Galerkin matrix, E ∈ Rp×p, the correction matrix, Q ∈ Rn×n
and the deflation matrix P ∈ Rn×n are defined as ([23, 44, 45]):

P = I−AQ, Q = ZE−1ZT , E = ZTAZ. (3.17)

Lemma 3.4.2. The matrices in Definition 3.4.1 have the following properties [45]:
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a) ET = E.

b) QT = Q = QAQ.

c) QAZ = Z.

d) PAQ = 0n×n.

e) P2 = P.

f) APT = PA.

g) (I−PT )x = Qb.

h) PAZ = 0n×m.

i) PTZ = 0n×m.

j) PA is SPD.

k) QA = I−PT .

Proof.

a) ET = (ZTAZ)T = ZTATZ = ZTAZ = E.

b) QT = (ZE−1ZT )T = ZE−TZT = ZE−1ZT = Q.

QAQ = (ZE−1ZT )A(ZE−1ZT ) = ZE−1EE−1ZT = ZE−1ZT = Q.

c) QAZ = (ZE−1ZT )AZ = ZE−1ZTAZ = ZE−1E = Z.

d) PAQ = (I−AQ)AQ = AQ−AQAQ = AQ−AQ = 0n×n.

e) P2 = (I−AQ)2 = I− 2AQ + AQAQ = I−AQ = P.

f) APT = A(I−AQ)T = A(I−QTAT ) = A + AQA = (I + AQ)A = PA.

g) (I−PT )x = (I− I + QTAT )x = QAx = Qb.

h) PAZ = (I−AQ)AZ = AZ−AQAZ = AZ−AZ = 0n×m.

i) PTZ = (I−AQ)TZ = (I−QTAT )Z = Z−QAZ = Z− Z = 0n×m.

j) Symmetry, f).

Positive definite, (PAx,x) ≥ 0, ∀x, we know that (Ax,x) ≥ 0 x, if we
choose x = PTy

(Ax,x) = (PTy)TAPTy = yTPAPTy =

= yTP2APTy = yTP(PA)PTy = yTP(A−AQA)PTy = e)

= yTPAy − yT (PAQ)APTy = yTPAy ≥ 0 d)

Therefore PA is SPD.

k) PT = (I−AQ)T = IT − (AQ)T = I−QTAT = I−QA

⇒ QA = I−PT .

The columns of Z, (zi), are the deflation or projection vectors, and are chosen
in such a way that E is nonsingular, i.e., invertible. The following Lemma presents a
property of the matrices A and Z, so that E is non singular.

Lemma 3.4.3. Let A, Z, and E be as given in Definition 3.4.1. If N (A) * R(Z),
then, E is nonsingular.



Section 3.4 Acceleration techniques 29

Proof. Let y 6= 0 ∈ Rn, x = Zy, such that

Zy 6∈ N (A),

as A is SPD, then,

0 < xTAx = yTZTAZy = yTEy ⇒ yTEy > 0,

as y 6= 0, then Ey 6= 0, then E is nonsingular.

Lemma 3.4.4. Let A, Z, and P be as given in Definition 3.4.1, and y ∈ R(Z) then

i. PTy = 0.

ii. R(Z) ⊂ N (AP).

Proof.

i. As y ∈ R(Z), we can write it as y =
∑
i wiyi = Zw, using Lemma 3.4.2 i), we

have PTy = PTZw = 0.

ii. From Lemma 3.4.2 h), we have

PAy = PAZw = 0.

then y ∈ N (AP); therefore R(Z) ⊂ N (AP)

Lemma 3.4.5. Let P be the projection matrix as in Definition 3.4.1, the solution o
the linear system (3.1) is given by:

x = Qb + PT x̂, (3.18)

where x̂ is a solution to the deflated system

Pb = PAx̂. (3.19)

Proof. We can split the vector x as follows:

x =Ix−PTx + PTx (3.20)

=(I−PT )x + PTx

=Qb + PTx Lemma 3.4.2 g)

If we multiply system (3.20) by A we obtain:

Ax = A(I−PT )b + APTx,

Ax = AQb + APTx, Lemma 3.4.2 g)

b = AQb + PAx, Lemma 3.4.2 f)

Pb = PAQb + P2Ax, Multiplying by P

Pb = PAx Lemma 3.4.2 d)
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The resulting system Pb = PAx is singular; according to Lemma 3.1.2 it can be
written as:

x = xn + x,

where xn ∈ R(Z) ⊂ N (PA) 6= {0}. Therefore, it is not the same solution x of
Equation (3.1) and

PTx = PTxn + PTx = PTx see Lemma 3.4.4 [i].

Then, Equation (3.20) transforms into:

x = Qb + PT x̂

The new solution x̂ is known as the deflated solution of the deflated system
(Equation (3.19)).

Lemma 3.4.6. The deflated system (3.19) is consistent, i.e., Pb ∈ R(PA), see
Lemma 3.1.3.

Proof. Let x be solution of the consistent system Ax = b, i.e., b ∈ R(A), if ai are
the columns of A, b can be expressed as

b =
∑
i

αiai

Pb =
∑
i

αiPai

Then Pb ∈ R(PA), i.e., system (3.19) is consistent and has at least one solution
x̂.

As system (3.19) is consistent, and from Lemma 3.4.2 j) it is SPD, therefore CG
can be used to solve it. In the next two section we introduce the deflated CG and the
deflated and preconditioned CG methods.

3.4.3 Deflated CG method

Deflation techniques can be combined with iterative methods, for the acceleration of
the solution process. In particular, they can be combined with the CG method for
the solution of Equation (3.1). The solution of a linear system with the deflated CG
method requires the solution of the deflated system (Equation (3.19)):

PAx̂ = Pb.

for a deflated solution x̂. The solution x of the original system is then obtained from
Equation (3.18):

x = Qb + PT x̂.

This procedure is presented in Algorithm 5. The convergence of the deflated CG
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Algorithm 5 Deflated CG method, solving Ax = b.

Given an initial guess x0.
Compute r0 = b−Ax0, and set r̂0 = Pr0

p0 = r̂0.
for k = 0, ..., until convergence

ŵk = PApk
αk = (r̂k,r̂k)

(ŵk,pk)

x̂k+1 = x̂k + αkpk
r̂k+1 = r̂k − αkŵk

βk = (r̂k+1,r̂k+1)
(r̂k,r̂k)

pk+1 = r̂k+1 + βkpk
end for
x = Qb + PT x̂k+1.

method is given in Equation (3.21),

||x̂− x̂k+1||PA ≤ 2||x̂− x̂0||PA

(√
κeff (PA)− 1√
κeff (PA) + 1

)k+1

. (3.21)

As mentioned before, some of the eigenvalues of the matrix A are shifted to zero
with deflation (see Lemma 4.1.1), which implies that the smallest eigenvalue is zero
leading to a condition number κ2(PA) very large. To prevent this behavior, the
effective condition number is used instead, and it is defined as the ratio between the
largest eigenvalue and the smallest non-zero eigenvalue,

κeff (PA) =
λmax(PA)

λmin(PA) 6= 0
. (3.22)

Lemma 3.4.7. Let P, and A, be given as in Definition 3.4.1, then

||x̂− x̂k+1||PA = ||x̂− x̂k+1||A.

Proof.

||x̂− x̂k+1||PA = (x̂− x̂k+1)TPA(x̂− x̂k+1)

= (x̂− x̂k+1)TPAPT (x̂− x̂k+1) Lemma 3.4.2 e) & f)

= (PT x̂−PT x̂k+1)TA(PT x̂−PT x̂k+1)

= (x̂− x̂k+1)TA(x̂− x̂k+1) PA(PT x̂) = P2Ax̂ = PAx̂

= ||x̂− x̂k+1||A

Equation (3.21) requires the PA−norm of the error; however, Lemma 3.4.7 shows
that it is the same as the A− norm of the error. Taking Lemma 3.4.7 into account,
Equation 3.21 can be rewritten as:

||x̂− x̂k+1||A ≤ 2||x̂− x̂0||A

(√
κeff (PA)− 1√
κeff (PA) + 1

)k+1

. (3.23)
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Furthermore, as we remove some of the smallest eigenvalues, the effective condition
number of the deflated system is smaller than the condition number of the original
system, i.e.,

κeff (PA) ≤ κ(A),

which can lead to faster convergence rates.

3.4.4 Deflated PCG method

On one hand, preconditioning techniques help to cluster the spectrum of the system
matrix, but it is possible that some small eigenvalues hamper the performance of the
method. On the other hand, deflation techniques help to abate the influence of some
of the bad eigenvalues hampering the convergence of the iterative method. Therefore,
combining these two methodologies provides a way to accelerate the solution of linear
systems efficiently.

In particular, a deflated preconditioned variant of the CG method can be imple-
mented, using an SPD matrix M−1 and applying the deflation procedure introduced
before. For a given preconditioned deflation subspace matrix Z̃ ∈ Rn×k, the resulting
preconditioned deflated system is given by:

P̃Ãˆ̃x = P̃b̃, (3.24)

where

Ã := M−1/2AM−1/2, ˆ̃x := M1/2x̂, b̃ := M−1/2b,

and

P̃ = I− ÃQ̃, Q̃ = Z̃Ẽ−1Z̃T . Ẽ = Z̃T ÃZ̃, (3.25)

Algorithm 6 Deflated PCG (DPCG) method,
solving M−1Ax = M−1b.

Give an initial guess x0.
Compute r0 = b−Ax0, and r̂0 = Pr0,
solve My0 = r̂0, set p0 = y0.
for k = 0, ..., until convergence

ŵk = PApk
αk = (r̂k,yk)

(ŵk,pk)

x̂k+1 = x̂k + αkpk
r̂k+1 = r̂k − αkŵk

Solve Myk+1 = r̂k+1

βk = (r̂k+1,yk+1)
(r̂k,yk)

pk+1 = yk+1 + βkpk
end for
x = Qb + PT x̂

In practice (see Algorithm 6),

M−1PAx = M−1Pb (3.26)
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is computed and the error is bounded by:

||x− xk+1||A ≤ 2||x− x0||A

(√
κeff (M−1PA)− 1√
κeff (M−1PA) + 1

)k+1

,

were κeff = λmax(M−1PA)
λmin(M−1PA) is the effective condition number and λmin(M−1PA) is

the smallest non-zero eigenvalue of M−1PA.

Choices of deflation vectors

As mentioned before, the deflation vectors contained in the matrix Z determine the
performance of the deflation procedure. In this section, we introduce some common
choices of deflation vectors. More details about the deflation vectors used in this work
are presented in Chapter 4.

A good selection of the deflation vectors is usually problem-dependent, and avail-
able information of the system is, in general, used to construct these vectors. Most
of the techniques used to select deflation vectors are based on eigenvectors or ap-
proximated eigenvectors, recycling vectors [38], subdomain deflation vectors [32] or
multigrid and multilevel based deflation vectors [23, 25]. A summary of some of these
techniques is given below.

Eigenvectors as deflation vectors If the matrix Z contains eigenvectors corre-
sponding to the most unfavorable eigenvalues, these eigenvalues are removed from the
deflated system and convergence of the iterative method is achieved faster, this be-
havior is illustrated in Lemma 4.1.1. However, the eigenvalues are usually unknown,
and it is costly to obtain them. If it is not possible to obtain the eigenvalues of A, a
good choice should efficiently approximate the eigenvectors for good applicability of
the method.

Recycling deflation vectors. A set of solutions previously obtained is reused to
build the deflation-subspace matrix [38]. The vectors, also known as snapshots can
be p solution vectors of the linear system, xi with different right-hand sides or of at
various time steps. The matrix Z containing these solutions is given by

Z = [x1,x2, ...,xp].

If the selected snapshots contain most of the system information, the solution of the
deflated system is achieved in one iteration. This behavior is shown in Chapter 4,
Lemma 4.1.2 and Lemma 4.1.3.

Subdomain deflation vectors. For this approach, the domain is divided into
several subdomains, using domain decomposition techniques or taking into account
the properties of the problem. For each subdomain, there is a deflation vector that
contains ones for each cell inside the subdomain and zeros for cells outside [32].
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Multigrid and Multilevel deflation vectors. For the multigrid and multilevel
methods, the prolongation and restriction matrices are used to pass from one level or
grid to another. These matrices can also be used as the deflation-subspace matrices
Z [23], being the columns of these matrices the deflation vectors.

In this work, we propose the use of POD techniques as a way of selecting the
deflation vectors, in the next section we introduce the POD methodology.

3.5 Proper Orthogonal Decomposition (POD)
method

Proper Orthogonal Decomposition (POD) is a Model Order Reduction (MOR) method,
where a high-order model is projected onto a space spanned by a small set of or-
thonormal basis vectors Ψ = [ψ1 ψ2 .. ψp], Ψ ∈ Rn×l. The basis vectors ψi ∈ Rn are
computed from a set of ’snapshots’ {xi}mi=1, obtained by simulation or experiments
[12]. The vectors {ψj}pj=1 are p eigenvectors corresponding to the p largest eigenvalues

{λj}pj=1 of the data correlation matrix R ∈ Rn×n,

R :=
1

m
XXT ≡ 1

m

m∑
i=1

xix
T
i , X := [x1,x2, ...xm]. (3.27)

In some cases, the covariance matrix R is used instead of R, this matrix is defined as

R :=
1

m− 1

m∑
i=1

(xi − x)(xi − x)T , X := [x1,x2, ...xm], (3.28)

where x = 1
m

∑m
i=1 xi is the mean of the snapshots. In this work, we also normalize

the snapshots, i.e., we use the following relation:

R :=
1

m− 1

m∑
i=1

xi − x

||xi − x||2
(xi − x)T

||(xi − x)T ||2
. (3.29)

If the system is large, the matrix R is also large, and to compute the eigenvalues

can be costly. However, it is not necessary to compute the eigenvalues of R = XX
T ∈

Rn×n, but instead, it is possible to compute the eigenvalues of the much smaller matrix

X
T
X ∈ Rm×m, m << n. To do so, we perform the Singular Value Decomposition

(SVD) of R
T

= VDVT . Here V ∈ Rn×m are the eigenvalues of R
T

, and diag(D)
are the corresponding eigenvalues. These latter ones are the same as the eigenvalues
of R, and the eigenvectors of R can be obtained from [46]:

U = XV(ΛT )
1
2 ∈ Rm,

where Λ = [λ1, ..., λm] · I ∈ Rm×m. Once the basis is computed, the high dimensional
variable x ∈ Rn is approximated by a linear combination of p orthonormal basis
vectors [11]:

x ≈
p∑
i=1

ciψi. (3.30)
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The p eigenvectors are chosen such that they contain almost all the variability
of the snapshots. Usually, they are the eigenvectors corresponding to the maximal
number of eigenvalues satisfying [12]:∑p

j=1 λj∑m
j=1 λj

≤ α, 0 < α ≤ 1, (3.31)

with α close to 1. The eigenvalues λj are ordered from large to small with λ1 being
the largest eigenvalue of R.

Once the basis Ψ is obtained, the linear system from Equation (3.1) is projected
onto the subspace spanned by the basis [11] as follows:

ΨTAΨz = ΦTb,

leading to the reduced model:

Arz = br Ar ∈ Rp×p,br ∈ Rp.

The reduced model is dense; however, it is much smaller than the original system and
can be solved efficiently with direct methods.

Concluding remarks. Acceleration of iterative methods is addressed throughout
this thesis. In this chapter, we introduced some of these methods and acceleration
techniques, together with their properties algorithms. Additionally, we introduced the
POD method, that we combine with deflation techniques and for the acceleration of
iterative methods. Details about this methodology are presented in the next chapter.
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POD-based deflation method

In Chapter 3, we introduced the deflation methodology, for which a good performance
strongly depends on the selection of the deflation vectors, required to construct the de-
flation subspace matrix Z, necessary for the implementation of the deflation method-
ology.

In this chapter, we introduce some theoretical results to give an insight into the
performance of the method. In particular, we perform a spectral analysis of the
deflation method when using eigenvectors of the system matrix as deflation vectors,
and we make a complexity analysis of the algorithms.

Furthermore, we introduce a new way of selecting the deflation vectors by using a
POD basis computed from previously obtained system information. With this choice,
we expect to obtain the smallest number of deflation vectors containing the most
relevant information, reducing the overall costs of the method.

4.1 Deflation vectors.

Acceleration of iterative methods can be achieved with preconditioning techniques,
that cluster the spectrum of the system matrix A. However, the preconditioned
system can still contain some extreme eigenvalues hampering the convergence rate.
Deflation techniques aim to project these eigenvalues of A to zero, accelerating in this
way the iterative solver. To this end, a set of projection vectors has to be selected;
they can be, among others, the eigenvectors associated with the extreme eigenvalues
or recycled vectors.

In Section 4.1.1, we introduce a lemma that analyses the behavior of the method
when using eigenvectors as deflation vectors. However, since computing the eigenval-
ues and eigenvectors is usually expensive, new ways of selecting deflation vectors are
required.

Recycled vectors is another common choice of selecting deflation vectors. If essen-
tial system information is stored in a set of snapshots, the use of these snapshots leads

37
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to an acceleration of the iterative method. In particular, if all the system information
is contained in a set of linearly independent snapshots, convergence is achieved in one
iteration. In Section 4.1.2 we present two lemmas that show this behaviour (Lemma
4.1.2 and Lemma 4.1.3).Furthermore, some lemmas are presented, that exhibit the
correct selection of snapshots depending on the boundary conditions and the required
accuracy.

A proper selection of snapshots as deflation vectors leads to a good performance of
the deflation methodology. However, selecting these snapshots is usually not straight-
forward. The main goal of this work is to develop a methodology to obtain a set of
deflation vectors containing the most relevant system information.

In Section 4.2, we introduce the POD-based deflation method, developed through-
out this work, for an effective collection of essential system information on a POD
basis for later use as deflation vectors.

The computation of this basis requires the collection of a set of snapshots, made
with two approaches: a moving window, that computes snapshots ’on-the-fly’ to solve
the following time steps; and a training phase, that computes the POD basis with
an initial simulation, and it is used to solve similar problems. This methodology is
further explained later in this chapter.

4.1.1 Eigenvectors as deflation vectors

Selecting the eigenvectors of the system matrix A as deflation vectors, results in set-
ting the corresponding eigenvalues to zero, removing them from the deflated system.
This procedure improves the conditioning of the system and accelerates the conver-
gence of the iterative solver; as presented in Theorem 4.1.1.

Theorem 4.1.1. Let A ∈ Rn×n, E ∈ Rp×p, Q ∈ Rn×n, and P ∈ Rn×n be given as
in Definition 3.4.1. Let A be a symmetric matrix with spectrum σ(A) = {λ1, ..., λn},
and eigenvectors Σ(A) = {v1, ...,vn}, with vTi vj = δij , such that

Avi = λivi.

If the deflation sub-space matrix contains the eigenvectors of A, Z = [v1, ...,vp], the
following properties hold:

a) AZ = ZΛ, and AZc = ZcΛc,

b) ZTZ = I,

c) ZTvj = ej , and

ZZTvj =

{
0, vj /∈ Z,

vj , vj ∈ Z,

d) E = Λ,

e) E−1 = Λ−1, with Λ−1 = diag(λ−1
1 , ...., λ−1

p ),

f) Q = ZΛ−1ZT ,
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g)

Qvj =

{
λ−1
j vj , vj ∈ Z,

0, vj /∈ Z,

h) QZ = ZΛ−1, and QZc = 0,

i) PZ = 0, and PZc = Zc,

j) PTZ = 0, and PTZc = Zc,

where we define the complement of Z as the matrix containing the eigenvalues of A
not in Z, i.e., Zc = [vp+1 . . .vn], Λ = diag(λ1, ...., λp), Λ−1 = diag(λ−1

1 , ...., λ−1
p ),

Λc = diag(λp+1, ...., λn), and ej ∈ Rn is the jth unit vector.

Proof.

a)

AZ = A[v1, ...,vp] = [Av1, ...,Avp]

= [λ1v1, ..., λpvp] = [v1, ...,vp]Λ = ZΛ.

AZc = A[vp+1, ...,vn] = [Avp+1, ...,Avn]

= [λp+1vp+1, ..., λnvn] = [vp+1, ...,vn]Λc = ZcΛc.

b)

ZTZ = [v1, ...,vp]
T [v1, ...,vp] = [vT1 v1, ...,v

T
p vp] = I.

c)

ZTvj = [v1, ...,vp]
Tvj = ej ,

⇒ ZZTvj = Zej = [v1, ...,vp]ej =

{
0, vj /∈ Z,

vj , vj ∈ Z.

d) Using a) and b)

E =ZTAZ = ZTZΛ = Λ,

⇒ E =Λ.

e) From d), E = Λ, then

E−1 = (diag(λ1, ...., λp))
−1 = diag(λ−1

1 , ...., λ−1
p ) = Λ−1.

f) From Definition 3.4.1, e), and Lemma 3.4.2 b), Q is given by:

Q = ZE−1ZT = ZΛ−1ZT .
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g) From f) and c) we have:

Qvj = ZΛ−1ZTvj = ZΛ−1ej =

{
λ−1
j vj , vj ∈ Z,

0, vj /∈ Z.

h) From g) we have:

QZ = [Qv1, ...,Qvp] = [λ−1
1 v1, ..., λ

−1
p vp] = ZΛ−1.

QZc = [Qvp+1, ...,Qvn] = [0, ...,0] = 0.

i) Using Definition of P, h), and a), we have

PZ = (I−AQ)Z = Z−AQZ = Z−AZΛ−1 = Z− ZΛΛ−1 = Z− Z = 0.

PZc = (I−AQ)Zc = Zc −AQZc = Zc − 0 = Zc.

j) Using h) and Lemma 3.4.2 k) and c) we have

PTZ = (I−QA)Z = Z−QAZ = Z− Z = 0.

PTZc = (I−QA)Zc = Zc −QAZc = Zc −QZcΛc = Zc − 0 = Zc.

Lemma 4.1.1. Let P be as in Definition 3.4.1, and A as in Theorem 4.1.1. If the
deflation-subspace matrix is chosen as p eigenvectors, vj , of A, i.e., Z = [v1, ...,vp],
then PA has the same eigenvectors as A and the spectrum is given by:

σ(PA) = {0, ..., λp+1..., λn}.
Proof. The deflation subspace matrix P is given by

P = I−AQ,

multiplying by A, we have

PA = A−AQA.

Using Theorem 4.1.1 g), the eigenvalues, λj , of PA are given by:

PAvj = Avj −AQAvj = λjvj − λjAQvj =

{
λjvj − λjλ−1

j Avj , vj ∈ Z,

λjvj − 0, vj /∈ Z.

=

{
λjvj − λjvj = 0, vj ∈ Z,

λivj , vj /∈ Z.

⇒ σ(PA) = {0, ..., λp+1..., λn}.

Note that, the eigenvalues corresponding to the eigenvectors contained in the defla-
tion subspace matrix Z are removed from the system matrix. If these eigenvalues are
hampering the convergence of the method, removing them leads to an acceleration.
Therefore, using eigenvectors as deflation vectors is a suitable choice of deflation vec-
tors; furthermore, we can select which eigenvalues are removed. However, computing
the eigenvectors is, usually, computationally expensive.
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4.1.2 Recycling deflation

Another possible choice of deflation vectors is using solutions of the system with
diverse characteristics, e.g., different right-hand sides, or solutions of the same system
at various time steps, also referred to as snapshots.

If we want to solve the system Ax = b and we collect a set of snapshots that
contain diverse right-hand side vectors bi, such that b =

∑p
i=1 cibi, then, the solution

is a linear combination of the snapshots, i.e., x =
∑p
i=1 cixi, as shown in Lemma 4.1.2.

Using these solutions as deflation vectors leads to convergence of the deflation
method in one iteration, this result is presented in Lemma 4.1.3.

Lemma 4.1.2. Let A ∈ Rn×n be a non-singular matrix, and x is the solution of

Ax = b.

Let xi,bi ∈ Rn, i = 1, ..., p, be vectors linearly independent (l.i.) such that

Axi = bi.

The following equivalence holds

x =

p∑
i=1

cixi ⇔ b =

p∑
i=1

cibi.

Proof. ”⇒ ”

Substituting x =
∑p
i=1 cixi into Ax = b leads to:

Ax =

p∑
i=1

Acixi = A(c1x1 + ...+ cpxp) = b,

using the linearity of A, the equation above can be rewritten as:

Ac1x1 + ...+ Acpxp = c1b1 + ...+ cpbp,

combining the two equations above we get:

Ax = c1b1 + ...+ cpbp =

p∑
i=1

cibi = b.

”⇐ ”

Substituting b =
∑p
i=1 cibi into Ax = b leads to:

Ax =

p∑
i=1

cibi.

Since A is non-singular, we multiply the equation above by A−1, and we obtain:

x = A−1

p∑
i=1

cibi =

p∑
i=1

ciA
−1bi,
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using the linearity of A−1, the equation above can be rewritten as:

x = c1A
−1b1 + ...+ cpA

−1bp = c1x1 + ...+ cpxp,

combining the two equations above we get:

x =

p∑
i=1

cixi.

Lemma 4.1.3. If the the deflation matrix Z is constructed with a set of p vectors

Z =
[
x1, ...,xp

]
,

such that x =
∑p
i=1 cixi, with xi l.i., then the solution of system (3.1) is obtained

with one iteration of DCG.

Proof. The relation between x̂ and x is given in Equation (3.18):

x = Qb + PT x̂.

For the first term Qb, taking b =
∑p
i=1 cibi we have:

Qb = ZE−1ZT

(
p∑
i=1

cibi

)

= Z(ZTAZ)−1ZT

(
p∑
i=1

ciAxi

)
using Lemma 4.1.2

= Z(ZTAZ)−1ZT (Ax1c1 + ...+ Axpcp)

= Z(ZTAZ)−1ZT (AZc)

= Z(ZTAZ)−1(ZTAZ)c

= Zc = c1x1 + c2x2 + c3x3 + c4x4 + c5x5

=

p∑
i=1

cixi = x.

Therefore,
x = Qb,

is the solution to the original system.
For the second term of Equation (3.18), PT x̂, we compute x̂ from Equation (3.19):

PAx̂ = Pb

⇔ APT x̂ = (I−AQ)b using Lemma 3.4.2 f) and Definition 3.4.1

⇔ APT x̂ = b−AQb

⇔ APT x̂ = b−Ax = 0 taking Qb = x from above

⇔ PT x̂ = 0, as A is invertible.
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Then, the solution

x = Qb + PT x̂ = Qb,

is obtained in one step of DCG.

Note that, if the coefficients ci are know, the solution can be obtained directly
using x =

∑p
i=1 cixi In the application considered the coefficients ci can be easily

obtained since the rhs b is nonzero only where the cells contain wells. Otherwise, one
can obtain the coefficient ci by solving the system associated to b =

∑p
i=1 cibi. In

this case solving the normal equations is faster than applying deflation.

Since Lemma 4.1.3 holds whenever x =
∑p
i=1 cixi, it is important to take all

possible l.i. snapshots into account; therefore, it is required to consider the sources
and system boundary conditions. If homogeneous Neumann boundary conditions are
imposed, only snapshots accounting for the sources are required; however, for the case
of non-homogeneous Dirichlet boundary conditions, an extra snapshot incorporating
them has to be considered. An analysis on the selection of snapshots based on the
sources and boundary conditions is presented next.

4.1.3 Snapshots selection.

Wells are modeled with the Peaceman model (see Section 2.2), each of them is asso-
ciated to a vector bi with a non-zero value (bi)k = J ∗ bbh in the cell containing the
well (See Equation 2.8), where (bi)k is a non-zero entry of the vector bi at position
k.

Given a reservoir containing p wells, i.e., a right-hand side b ∈ Rn containing
p non-zero elements, the boundary conditions imposed on the system determine the
number of possible snapshots of the form Axi = bi, such that the deflation method
converges within one iteration.

For homogeneous Neumann boundary conditions, the right-hand side vector b =∑p−1
i=1 bi is a linear combination of p − 1 vectors bi, where each bi corresponds to a

well.

For non-homogeneous Dirichlet boundary conditions, an extra vector bb, account-
ing for the non-homogeneous boundaries, has to be considered and the right-hand side
vector is given by b =

∑p
i=1 bi + bb. These results are presented in Lemma 4.1.4 and

Lemma 4.1.5 for homogeneous Neumann and non-homogeneous Dirichlet boundary
conditions, respectively.

Lemma 4.1.4. Let b ∈ Rn be a vector containing p ≤ n non-zero entries such
that Ax = b, where each non-zero entry corresponds to a cell containing a source.
Imposing homogeneous Neumann boundary conditions, there are at most p−1 linearly
independent vectors bi such that Axi = bi. Then,

b =

p−1∑
i=1

cibi. (4.1)

Furthermore, dim[R(A)] ≤ n− 1.
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Proof. According to Lemma 2.2.1, for each bi the following holds:∑
k

(bi)k = 0,

where bi 6= 0. Hence, each bi should contain at least two non-zero entries. Therefore,
p linear independent vectors bi cannot be found.

However, by putting (bi)l = (b)l 6= 0 for every bi, each bi can have one extra
unique non-zero entry (bi)k from the p − 1 remaining. This leads to p − 1 linear
independent vectors bi, and we have:

b =

p−1∑
i=1

cibi.

Since we consider homogeneous Neumann boundary conditions, A is singular; hence,
the vector xn = [1 1 ... 1 1]T is in the null space. Therefore, the null space is
non-empty and has dimension ≥ 1. As a consequence, we have:

n = dim[A] = dim[N (A)] + dim[R(A)]

as xn ∈ N (A) ⇒ dim[N (A)] ≥ 1

⇒ dim[R(A)] ≤ n− 1.

This implies that, for a vector b ∈ Rn we can construct, at most, n − 1 linearly
independent subsystems Axi = bi.

Additionally, from Lemma 4.1.2, the solution to Ax = b is given by:

x =

p−1∑
i=1

cixi.

Thus, the solution space has dimension p− 1 and x ∈ span{x1, ...,xp−1}. Here, each
xi is a snapshot, or solution of the subsystem Axi = bi with the same homogeneous
Neumann boundary conditions.

In our applications, considering a system containing p wells, this translates into
obtaining p − 1 independent snapshots xi, each of them containing two of the wells.
Therefore, if the deflation matrix is chosen as:

Z = [x1 ... xp−1],

with accurate enough snapshots used as deflation vectors (see Lemma 4.1.6), the
solution is achieved in one DCG iteration (see Lemma 4.1.3).

Lemma 4.1.5. In case of a system containing p sources and non-homogeneous Dirich-
let boundary conditions, p+ 1 linearly independent vectors can be found such that:

b =

p∑
i=1

cibi + bb, (4.2)

where bb accounts for the non-homogeneous Dirichlet boundary conditions.
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Proof. Compared to the previous Lemma, b contains pb extra non-zero entries, ac-
counting for the non-homogeneous Dirichlet boundary conditions. Furthermore, each
bi can contain only one non-zero entry, since condition of Lemma 2.2.1 is not required.

Therefore, a set of p l.i. vectors can be constructed, each of them representing a
source. Furthermore, we can define one extra l.i. vector, associated with the non-
homogeneous Dirichlet boundary conditions, containing all the remaining pb non-zero
entries.

Hence, we have:

b =

p+1∑
i=1

cibi =

p∑
i=1

cibi + bb,

which implies that p+ 1 l.i. vectors can indeed be found.

As in the previous case, from Lemma 4.1.2, the solution to Ax = b is given by:

x =

p∑
i=1

cixi + cbxb.

This means that the solution space has dimension p+ 1, where each xi is a snapshot,
or solution of a subsystem Axi = bi. The first p correspond to the p sources, in our
test cases p wells, with homogeneous Dirichlet boundary conditions and the last one
corresponds to the non-homogeneous one. Therefore, by taking

Z = [x1 ... xp xb],

as deflation matrix, the solution is achieved in one DCG iteration (see Lemma 4.1.3).
The snapshots, xi, are usually obtained with iterative methods, which implies that
the solution is an approximation; therefore, it is necessary to take into account the
error of the approximation. The influence of the accuracy on the deflation method is
studied next.

4.1.4 Accuracy of the snapshots

Iterative methods result in an approximated solution, for which the accuracy can be
prescribed. In this work, we use as stopping criterion the relative residual, that, for
a preconditioned system is given by:

||M−1rk||2
||M−1b||2

≤ ε.

Here, M−1 is the preconditioner, rk = b − Axk is the residual corresponding to
the approximation xk. The snapshots are computed by using iterative methods,
which implies that they contain an error. To achieve the solution within one DCG
iteration, it is necessary to take into account the accuracy of the snapshots. Lemma
4.1.6 presents the relation between the snapshots and the deflation approximation
accuracy.



46
Proposed methodology:

POD-based deflation method Chapter 4

Lemma 4.1.6. Given a set of p snapshots {xi} computed with an iterative method

using a tolerance of rk =
||rki ||2
||bi||2 = 10−η, such that

x =

p∑
i=1

cixi,

then, the error of the approximated solution computed with deflation after one iter-
ation is given by e1 = κ2(A)× 10−η.

Proof. After one iteration of DCG we obtain the solution (see Lemma 4.1.3):

x1 =

p∑
i=1

cixi,

From Equation (3.5), the error of this solution is given by:

e1 =
||x− x1||2
||x||2

=
||
∑p
i=1 ci(xi − x1

i )||2
||
∑p
i=1 cixi||2

=

=

∑p
i=1 ||xi − x1

i ||2∑p
i=1 ||xi||2

≤
∑p
i=1 ||r1

i ||2∑p
i=1 ||bi||2

κ2(A), Using Eq. (3.8)

=rkκ2(A) = κ2(A)× 10−η.

Therefore, the accuracy of the solution obtained using recycling deflation vectors
is not the same as the accuracy of the snapshots, and it is related to the condition
number of the system matrix.

We showed that selecting a set of accurate enough linearly independent (l.i.) vec-
tors we achieve convergence in one iteration. However, the selection of the l.i. set
is not always possible and new strategies to obtain this information are required. In
the next section, we introduce the POD-based deflation method, as an alternative to
efficiently obtain system information and reuse it in a deflation procedure.

4.2 Implementation of the POD-based deflation
method

The implementation of the deflation method requires the selection of set of defla-
tion vectors that can enhance the convergence of iterative methods by improving the
spectrum of the system matrix A.

We propose the use of a POD basis Ψ as the subspace-deflation matrix Z in a
deflation procedure. The complete solution strategy consists of three stages:

i) Snapshots collection. As mentioned in Section 4.1.3, each well results in
one non-zero term (b)k = J ∗ bbh in the right-hand side vector. One or more
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wells can be associated with a vector bi, where each of them represents a well
configuration.

A set X of snapshots, vectors bi with different configurations or at various
time steps, is obtained for the computation of the POD basis. To capture the
snapshots, we propose three approaches. The first one is recycled deflation,
used for a time-independent problem Ax = b. The second one is a moving
window approach, and the last one is a training simulation approach, both of
them used when the system varies in time, Atxt = bt. These approaches are
further explained below.

Recycling deflation approach: the snapshots are a set of system solutions
xi with different right-hand sides bi, such that Axi = bi, where A is the
original system matrix, for p snapshots we get:

X = [x1, ....,xp].

Moving window approach: the snapshots are captured ’on the fly,’ i.e., they
are the most recently computed solutions, obtained during the previous
time steps. Taking p snapshots for a time step t we have:

X = [xt−p+1, ...,xt−1].

With this approach, the first snapshots cannot be computed for the first
time steps with the DICCG method, as we lack a deflation subspace matrix
Z. Instead, the first p time steps are computed with the ICCG method.
The rest of the snapshots are obtained with DICCG.

Training phase approach: a full simulation is run, where the right-hand
sides are randomly varied by changing the pressure in the production wells.
For a simulation consisting of n time steps we obtain:

X = [x1, ...,xn].

The solutions of this simulation are obtained with the ICCG method.

During the training phase, the bhp of the production wells P is varied
randomly, and it takes values between P 1 and P 2, which implies that the
right-hand side bt is constantly changing during the simulation.

ii) POD basis computation. The previously obtained snapshots are used to
construct a basis (Ψ), as introduced in Section 3.5. The algorithm is presented
below, Algorithm 7.

iii) Solution of the linear system. The POD basis is used as subspace-deflation
matrix (Z) in a deflation procedure for the solution of the linear system. The
algorithms of the complete procedure are presented in Algorithm 8 for a moving
window approach, and Algorithm 9 for a training phase approach.
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Algorithm 7 Computing the POD basis from a set of snapshots.

Given a set of snapshots,
X1:p = {x1,x2, ...,xp}*,

compute the average value of the set,
x = 1

p

∑p
j=1 x

j

substract the average from the original set,
xj = xj − x

construct the covariance matrix,

R := 1
p
XX

T
, X

1:p
= {x1,x2, ...,xp}

obtain the SVD of the transposed covariance matrix,

VΛVT = R
T

compute the eigenvectors of the covariance matrix,

U = XV(ΛT )
1
2

construct the basis (Ψ) with the eigenvectors (ui ∈ U) corresponding to the p largest
eigenvalues (λi ∈ diag(D)),

Ψ1:p = {u1, ...,up}.

*where, Xa:b := {xa,xa+1, ...,xb}.

Algorithm 8 Deflation, moving window variant, solving Atxt = bt.

Compute the solution of the first p time steps with ICCG.
for t = 1, ..., p

xt = (At)−1bt

end for
Compute the POD basis from collected the snapshots, see Algorithm 7.

Z = Ψ1:p = [v1, ...,vp]
Compute the solution of the remaining time steps with DICCG.
for t = p+ 1, ..., steps

xt = (At)−1bt

Update the POD basis with the recently computed solution, see Algorithm 7.
Z = Ψt−p+1:t = [vt−p+1, ...,vp]

end for

Algorithm 9 Deflation, training phase variant, Atxt = bt.

Run a training phase simulation with ICCG changing randomly the producer’s pressure.
for t = 1, ..., steps

xt = (At)−1bt

end for
X1:steps = {x1,x2, ...,xsteps}

Compute the POD basis from the snapshots, see Algorithm 7,
Z = Ψ1:p = {v1, ...,vp}

Run various simulation with fixed pressure in the wells using DICCG,
for t = 1, ..., steps

xt = (At)−1bt

end for
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We study the performance of the POD-based deflation method by observing the
change in the number of iterations required to achieve a certain accuracy when finding
an approximate solution xk. We compare the performance of DICCG and the ICCG
methods regarding the number of iterations and the number of flops per iteration; the
latter are presented in the following section.

4.3 Complexity

The number of operations required to perform the methods studied in this work is
presented in this section. Specific details about the computation of operations can be
found in Appendix 9.2, and [46–48].

As mentioned before, the implementation of the deflation method consists of three
stages: snapshots collection with the ICCG method, Singular Value Decomposition
(SVD) of the covariance matrix constructed with the snapshots, and solution proce-
dure with the DICCG method.

In Table 4.1, we present the number of operations required during the initialization
of the method and per iteration, for various sparsity values (m) and a different number
of deflation vectors (p) for both: the ICCG and DICCG methods. The number of
operations are computed as follows, for more details see 5:

Initial

ICCG ∼ (m2 + 4m+ 2)n

DICCG ∼ ((m+ 2p+ 4)m+ (4p+ 2)p+ 2)n+ p3/3

Iteration

ICCG ∼ (4m+ 9)n

DICCG ∼ (4m+ 4p+ 9)n

Initial work

2D, m = 5 3D, m = 7

p 1 4 10 1 4 10

ICCG 47n 79n

DICCG 63n 159n 567n 99n 207n 639n
DICCG
ICCG

1 + 16
47

3 + 18
47

12 + 3
47

1 + 20
79

2 + 49
79

8 + 7
79

SVD [(8p− 1)n + 10p2 − 2p + 1]p, for p snapshots

Work per iteration

p 1 4 10 1 4 10

ICCG 29n 37n

DICCG 33n 45n 69n 41n 53n 77n
DICCG
ICCG

1 + 4
29

1 + 16
29

2 + 11
29

1 + 4
37

1 + 16
37

2 + 3
37

Table 4.1: Number of Operations for the ICCG and DICCG methods.
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For each iteration, the computational cost using the ICCG method is 29n for a
2D case, and 37n for a 3D problem of size n, while for the DICCG method using p
deflation vectors is (29 + 4p)n for 2D and (37 + 4p)n for 3D cases. This implies that
the DICCG method requires ∼ 1 + 4p

29 of the number of ICCG operations for the 2D
case, and ∼ 1 + p

10 for the 3D case. Therefore, the fewer deflation vectors used, the
more gain can be achieved.

Note that, more work is required to initialize the DICCG method when compared
with the work per iteration. However, the initialization process is performed only
once, and DICCG pays off if the gain per iteration is significant.

Concluding remarks In this chapter, we presented some theoretical results related
to the selection of deflation vectors. We studied two common choices of deflation
vectors: eigenvectors and recycled vectors. We showed that using eigenvectors the
corresponding eigenvalues are set to zero, and that selecting a set of linearly indepen-
dent vectors spanning the solution space as deflation vectors leads to convergence of
the deflation method in one iteration.

These choices lead to a good performance for the deflated method; however, com-
puting eigenvectors is computationally expensive, and the l.i. set spanning the so-
lution space is not always known. To overcome this situation, we introduced the
POD-based deflation methodology, that makes use of a POD basis as deflation vec-
tors that aims to effectively capture system information, i.e., capture a large amount
of system information in the less number of vectors.

In the following chapters, we illustrate the theoretical results presented in this
chapter with numerical experiments, and we explore the performance of the POD-
based deflation method with reservoir simulation problems.



Chapter 5
Numerical experiments 1:

Incompressible single-phase
reservoir simulation

In Chapter 4, we introduced the POD-based deflation methodology, together with
some theoretical results that help us to find the right deflation vectors, such that
optimal performance of the deflation method is achieved. We illustrate the application
of the previously-introduced methodology for reservoir simulation problems in this
chapter, Chapter 6, and Chapter 7.

In particular, we test the methodology for the simulation of incompressible and
compressible single-phase flows in a layered reservoir with a contrast between perme-
ability layers varying from 101 − 107, and for the SPE 10 benchmark presenting a
contrast on permeability coefficients of O(107).

We compare the use of snapshots, eigenvalues, POD-based, and subdomain-based
vectors as deflation vectors in a deflation procedure for the solution of the resulting
linear system. The numerical experiments for the incompressible case are presented
in this chapter, and the compressible experiments are studied in Chapter 6.

This chapter is based on:

G.B. Diaz-Cortes, C. Vuik and J.D. Jansen. On POD-based Deflation Vectors for DPCG applied
to porous media problems. Journal of Computational and Applied Mathematics, 330(Supple-
ment C):193 – 213, 2018,

G.B. Diaz Cortes, C. Vuik and J.D. Jansen. Physics-based Pre-conditioners for Large-scale Sub-
surface Flow Simulation. In Proceedings of the 15th European Conference on the Mathematics
of Oil Recovery, ECMOR XV, 2016,

and additional work.

51
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5.1 Incompressible fluid

These experiments are performed in order to analyze the behavior of the Deflated
Conjugate Gradient method preconditioned with the Incomplete Cholesky factoriza-
tion (DICCG). We solve an elliptic equation, resulting from flow simulation of an
incompressible fluid throughout an incompressible reservoir (see Equation (2.28)).

We study various choices of deflation vectors: eigenvectors, subdomain based vec-
tors, snapshots and the snapshots-based basis functions obtained from a POD pro-
cedure. According to Lemma 4.1.3, if the deflation vectors contain all the system
information, convergence is achieved within one DICCG iteration. The correct selec-
tion of snapshots such that the most relevant system information is captured depends
on the boundary conditions.

In Lemma 4.1.4 and Lemma 4.1.5, we presented a way of selecting a set of snap-
shots that captures the essential system information, when the system presents Neu-
mann and Dirichlet boundary conditions.

If homogeneous Neumann boundary conditions are imposed, only snapshots re-
lated to the sources are required; however, the resulting system is singular, and it
is necessary to balance the incoming and outcoming flux of the system (see Lemma
2.2.1); thus, this balance has to be considered when selecting the set of linearly inde-
pendent vectors.

If the system contains non-homogeneous Dirichlet boundary conditions, aside from
the sources-related snapshots, an extra snapshot associated with the boundary con-
ditions is required. We illustrate these results with a series of experiments, for which
the sources are wells located inside the reservoir and the boundary conditions.

Another relevant element to take into account to obtain an optimal performance
is the tolerance of the snapshots collected with the ICCG method, which has a large
influence on the accuracy of the approximation obtained with the DICCG method.
We present some experiments to investigate the dependence of the performance of the
DICCG method on the accuracy of the snapshots by changing the tolerance of the
solvers during the snapshots collection and the solution of the test cases.

We compare the performance of the deflation method when using the previously
introduced l.i. snapshots, and the POD-based vectors with some common choices of
deflation vectors: subdomain-based and eigenvalues of the system matrix A, and the
preconditioned system matrix M−1A.

The experiments are performed on a Cartesian grid with different grid sizes. We
investigate the influence of the size of the problem on the performance of the methods.
A general overview of the studied model is presented below, but more specifications
are presented for each experiment.

The matrices corresponding to the linear systems A and the right-hand sides b
are obtained with the Matlab Reservoir Simulation Toolbox (MRST) [7].

Model. We simulate flow through porous media with a constant porosity field of
0.2. We study an incompressible single-phase model for a fluid presenting a viscosity
of µ = 1 cp, and a density of ρ = 1014 kg/m3. We study cases with homogeneous
Neumann and non-homogeneous Dirichlet boundary conditions.

For the modeling, we make use of Darcy’s law and the mass balance equation (see
Section 2.1). The spatial discretization scheme used is the finite volumes method, also
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known as the Two-Point Flux Approximation (TPFA), which is implemented with
MRST (see Section 2.2.1). After discretization, the resulting linear system reads:

Tp = q,

where T is the transmissibility matrix, and q are the sources: wells controlled via
the bhp; or prescribed pressures on the boundary for the test cases presenting non-
homogeneous Dirichlet.

The model presenting homogeneous Neumann boundary conditions contains five
wells, four producers (P1:4) on the corners of the domain and one injector (I) in the
center. When imposing non-homogeneous Dirichlet boundary conditions, we place
two production wells and two injection wells inside the reservoir.

Snapshots. As mentioned above, for the DICCG method we need to select a set of
deflation vectors. In the first series of experiments, the deflation vectors are solutions
of the system with various well configurations and boundary conditions. These solu-
tions, called snapshots, are obtained with the ICCG method, the stopping criterion
is given for each problem. The well configuration used to obtain each snapshot de-
pends on the problem. We present the configuration of the system to solve for each
experiment.

POD-based deflation vectors. The POD method requires a basis for the projec-
tion of the high-order model into a smaller one. This basis contains the eigenvectors
corresponding to the largest eigenvalues of the data snapshot covariance matrix R,
as defined in Equation (3.27).

In the second set of experiments, the previously-obtained snapshots are used to
construct the matrix X. The eigenvectors corresponding to the largest eigenvalues

of the covariance matrix R = XX
T

are used as deflation vectors. This selection of
vectors is addressed to as POD-based deflation vectors.

Solvers. The solution of the linear system is approximated with the ICCG and
DICCG methods. Implementation of the DICCG method requires the computation of
a set of deflation vectors. For the first set of experiments, we use snapshots as deflation
vectors. For the second set, the POD-based deflation vectors are selected. These
two proposed options are compared with the usual selections of deflation vectors:
subdomain-based vectors and eigenvectors of A and M−1A.

The preconditioned relative residual computed at each PCG iteration, M−1rk,
is employed as tolerance or stopping criterion, and it is varied for each problem.
The residual rk is the one computed at each iteration. We study the influence of
the snapshots’ accuracy on the performance of the DICCG method by varying their
tolerance.

For some cases, we study the relative residual of the current iteration rk obtained
by multiplying rk by M, and the true relative residual. This residual is computed
from the approximate solution at iteratio k as rk = b−Axk. The definition of these
variables, together with the true relative error (ek), are presented in Table 5.1.
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Variable Definition

Relative preconditioned residual M−1rk = ||M−1rk||2
||M−1b||2

.

Relative residual rk = ||rk||2
||b||2

.

True relative preconditioned residual M−1rtk = ||M−1(b−Axk)||2
||M−1(b)||2

.

True relative error ek = ||x−xk||2
||x||2

.

Table 5.1: Stopping criteria.

The influence of preconditioning and deflation on the spectrum of the linear sys-
tem is investigated via the condition number. Note that, for the deflation method,
we use the effective condition number, which is computed dividing the largest eigen-
value by the smallest non-zero eigenvalue (See Equation 3.22). As mentioned before,
when using p system eigenvectors as deflation vectors, the p corresponding system
eigenvalues are set to zero. Thus, these eigenvalues are not taken into account for the
condition number.

5.1.1 Homogeneous Neumann boundary conditions

In this section, we present a set of experiments in a reservoir containing homogeneous
Neumann boundary conditions on all boundaries. The fluid characteristics and the
well configurations are as mentioned in the model section.

P1 P2 P3 P4 I

x1 P0 -P -P -P 3P-P0

x2 -P P0 -P -P 3P-P0

x3 -P -P P0 -P 3P-P0

x4 -P -P -P P0 3P -P0

x5 -P -P -P -P 4P

x6 -P P0 P0 -P 2P-2P0

x7 -P -P P0 P0 2P-2P0

x8 -P P0 -P P0 2P-2P0

x9 P0 -P -P P0 2P-2P0

x10 P0 -P P0 -P 2P -2P0

x11 P0 P0 -P -P 2P -2P0

x12 -P P0 P0 P0 P-3P0

x13 P0 -P P0 P0 P-3P0

x14 P0 P0 -P P0 P-3P0

x15 P0 P0 P0 -P P -3P0

Table 5.2: Possible well configurations.

To construct the deflation subspace
matrix (Z) we study three cases :

1. Four linearly independent snap-
shots

(DICCG4), Z = [x1 ... x4].

2. All of the 15 possible snapshots

(DICCG15), Z = [x1 ... x15].

3. Four POD basis vectors obtained
from the set of 15 snapshots
(DICCGPOD4),

Z = [ψ1 ... ψ4].

According to Lemma 2.2.1, the solution
of a system with homogeneous Neumann
boundary conditions can be found if the
fluxes in and out the reservoir are bal-
anced, i.e., the total flux is zero. 15 pos-
sible well configurations fulfill this requirement; they are presented in Table 5.2, where
P is a given bhp in the wells, and P0 is the pressure in the reservoir. The position of
the active wells can be observed in Figure 5.2 for the first four snapshots.
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The snapshots are obtained by solving systems with homogeneous Neumann bound-
ary conditions and the well configurations presented in Table 5.2; note that, the first
four vectors are linearly independent.

Once the correlation matrix is obtained, the system x5 is solved, which contains
all the wells active, i.e., the pressure on the production wells is given by Pi=1:4 = P,
and the pressure of the injector is the negative sum of the production wells’ pressure,
I = -4 P. We use this configuration to study an academic layered problem and for the
SPE 10 benchmark [10].

Figure 5.1: Permeability field and
wells location, layers y direction.

Layered problem. For this set of problems, we
study a layered reservoir consisting on a 2D Carte-
sian grid containing 35×35 cells of length Lx = 10
[m], Ly = 10 [m]. The domain is divided into
five equally sized layers. Four of these layers have
a permeability σ1 = 0.1 mD, each of them fol-
lowed by a layer with a different permeability σ2

(see Figure 5.1). The contrast in permeability be-
tween adjacent layers is given by cσ = (σ2

σ1
), σ1 is

fixed, and σ2 changes for each problem; thus, cσ
depends on the value of σ2, varying from σ2 = 1
mD to σ2 = 107 mD. The producers’ pressure is
P = 200 [bars].

For the comparison with other choices of deflation vectors, selecting subdomain-
based deflation vectors, each subdomain represents one layer. Our domain consist
on five layers. Therefore, we can divide it into five subdomains. We construct one
deflation vector for each subdomain Ωs by putting ones if a cell (xi, yj) lies inside the
subdomain, and zeros otherwise.

Results. As mentioned before, to perform the POD-based deflation method, it is
required to compute a set of snapshots. For the case of homogeneous Neumann
boundary conditions with four producers and one injector, we require four linearly
independent snapshots, each of them with different wells configuration (see Table 5.2
and Section 4.1.3). The resulting pressure field of these snapshots (x1:4) as well as
the pressure field of the studied system (x5) are presented in Figure 5.2 for a contrast
on permeability layers of cσ = 101.

The condition number of the system and preconditioned matrices (A,M−1A), and
the effective condition number of the deflated system (PM−1A) for various values of
cσ’s are presented in Table 5.3.

In Table 5.3, we observe that the condition number of the matrix increases when
we increase cσ and that, after preconditioning, the condition number decreases one
order of magnitude. When using the deflation method, the effective condition number
is decreased to O(102) for all cases. This behavior suggests that the POD-based
deflation method is independent of the condition number of the problem, or, in our
case, on the contrast between permeability layers cσ.

The number of iterations required to achieve convergence for the studied methods
is presented in Table 5.4 for a tolerance of 5·10−11. We note that the deflation method
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with four linearly independent vectors (DICCG4) and with four POD basis vectors
(DICCGP4

) requires only one iteration to converge, as expected from Lemma 4.1.3.

1) 2) 3)

4) 5)

Figure 5.2: Pressure field of the first four snapshots (1-4) and the studied problem 5).

cσ κ2(A) κ2(M−1A) κeff (M−1PA)

Deflation subspace matrix

Z = [x1, ...,x4] Z = [x1, ...,x15] Z = [ψ1, ..., ψ4]

101 3·104 1·103 5·101 6 5·101

103 3·106 1·105 9·101 6 9·101

105 3·108 1·107 9·101 2·101 9·101

107 3·1010 1·109 9·101 7 9·101

Table 5.3: Condition number of the solved systems for various values of cσ.

Tol ICCG = 5 · 10−11, Tol DICCG= 5 · 10−11

σ2
σ1

ICCG DICCG4 DICCG15 DICCGP4

101 67 1 1229 1

103 75 1 1229 1

105 84 1 1229 1

107 73 7 1229 12

Table 5.4: Number of iterations for various values of cσ.

However, when we use 15 snapshots as deflation vectors (DICCG15), the deflation
method does not behave as expected. For this case, the deflation vectors are linearly
depedent, which leads to a singular Galerkin matrix E (see Section 3.17). In fact, the
determinant of E, computed with the Matlab function det is det(E) = −2.228 ·10−26,
which is much smaller than the machine precision, therefore zero.

As this matrix is singular, it cannot be inverted, therefore the deflation projection
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matrix P uses an incorrect matrix E−1 and the results are wrong, or in this case, the
method does not converge.

For DICCG4 and DICCGPOD4 , we also note that the number of iterations does not
change when varying cσ, except for cσ = 107, for which it requires 7 and 12 iterations.
These results exhibit the independence on the contrast between permeability layers
suggested by the almost constant effective condition number of the deflated systems.

We also observe that the number of iterations increases with cσ when using the
ICCG method, except for cσ = 107, for which we observe an apparent reduction. To
further analyze this behavior, Figure 5.3 shows the relative preconditioned residual
computed at each iteration M−1rk (see Algorithms 4 and 6), the relative residual rk,
and the true relative error ek, for the cases cσ = 101 and cσ = 107 (see Table 5.1).

The convergence of the methods is achieved when the relative preconditioned
residual computed at each iteration (M−1rk) reaches the desired accuracy 5 · 10−11.
We note in Figure 5.3, that for cσ = 101, M−1rk, rk and ek reach a similar value
(O(10−11)). However, for cσ = 107, we observe that M−1rk ∼ O(10−11), rk ∼
O(10−8) and ek ∼ O(10−6).

Furthermore, the true error does not change significantly after the first itera-
tion, thus, we have reached the machine precision and more accurate results are not
possible, which is not observed when using M−1rk as stopping criterion. A better
approximation is achieved when using the relative residual rk. However, obtaining rk
requires the multiplication of M−1rk by M, resulting in (2m+ 1)n extra flops.

From Equation 3.8, we know that the residual is related to the true error via
the condition number as ek = κ · rk. As showed in Table 5.3, κ increases when we
increase the contrast between permeability layers. Therefore, to compute an accurate
approximation, the stopping criterion has to be modified in such a way that it takes
into account the system’s condition number. This implies that a high accuracy is
difficult to obtain if the condition number is large.

Table 5.5 presents the stopping criteria required to achieve a relative error of

5 · 10−7, i.e., the stopping criterion is rk = 5·10−7

κ2
.

cσ rk = 5·10−7

κ2(A)
rk = 5·10−7

κ2(M−1A)
rk = 5·10−7

κeff (M−1PA)

Deflation subspace matrix Z

[x1, ...,x4] [x1, ...,x15] [ψ1, ..., ψ4]

101 3·10−11 1·10−10 5·10−8 6·10−7 5·10−8

103 3·10−13 1·10−12 9·10−8 6·10−7 9·10−8

105 3·10−15 1·10−13 9·10−8 2·10−6 9·10−8

107 3·10−17 1·10−15 9·10−8 7·10−7 9·10−8

Table 5.5: Required stopping criteria to have an error in the approximation ek =
5 · 10−7.
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cσ = 101 cσ = 107

1)

2)

3)

Figure 5.3: 1) Relative preconditioned residual M−1rk, 2) Relative residual rk, 3)
Relative true error ek, left: cσ = 101, right: cσ = 107, Tol = 5 · 10−11.

We note that the system with cσ = 107 and without preconditioner requires an
accuracy of 10−17 for the residual, which is larger than the machine precision; there-
fore, it is impossible to reach. The rest of the cases do not present this problem. In
the following experiments we study the same cases as before, but taking into account
the systems’ condition number. The results are presented in Table 5.6.

We note that taking into account the condition number for the selection of the
stopping criterion, the number of iterations of the ICCG method increases with cσ,
including the case when cσ = 107. By contrast, the DICCG method reaches conver-
gence in one iteration when using the four linearly independent snapshots or the four
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POD basis vectors as deflation vectors, for all cases.

Once a correct tolerance that considers the condition number is chosen, the optimal
performance of DICCG is still not guaranteed. In Section 4.1.2, we showed that the
condition number and the tolerance of the snapshots influence the convergence of the
deflation method.

This behavior is observed in Table 5.4 for cσ = 107, where the snapshots are not
accurate enough, and, in consequence, DICCG4 and DICCGPOD4

do not converge
in one iteration. In the next examples, we analyze the performance of the deflation
method when changing the accuracy of the snapshots es = Tol ICCG

κeff (PM−1A) .

cσ Tolerance Iterations

ICCG DICCG ICCG DICCG

4 POD4

101 1 · 10−10 9 · 10−8 64 1 1

103 1 · 10−12 9 · 10−8 79 1 1

105 1 · 10−13 9 · 10−8 89 1 1

107 1 · 10−15 9 · 10−8 139 1 1

Table 5.6: Number of iterations for various
values of cσ.

e1 es

5 · 10−6 5 · 10−7

5 · 10−8 5 · 10−9

5 · 10−10 5 · 10−11

Table 5.7: Snapshots’ accuracy
(es), various DICCG tolerances
(e1), cσ = 101.

e1 = 5 · 10−6

es ICCG DICCG4 DICCGP4

5 · 10−1 2 48 48

5 · 10−3 20 21 23

5 · 10−5 47 4 3

5 · 10−7 54 1 1

e1 = 5 · 10−8

5 · 10−3 20 36 35

5 · 10−5 47 18 20

5 · 10−7 54 3 3

5 · 10−9 60 1 1

e1 = 5 · 10−10

5 · 10−5 20 31 34

5 · 10−7 54 15 15

5 · 10−9 60 3 3

5 · 10−11 67 1 1

Table 5.8: Number of iterations required to
reach a given tolerance (e1) for the DICCG
method, cσ = 101.

From Lemma 4.1.6, we know that the
true error of DICCG after one iteration
is given by e1 = κ2(A) × 10−η, where
10−η is the accuracy of the snapshots.
The optimal snapshots’ accuracy is pre-
sented in Table 5.7. For this problem,
the effective preconditioned condition
number is given by κeff (PM−1A) ∼
102.

In this set of experiments, the ac-
curacy of DICCG is varied from e1 =
5 · 10−6 to e1 = 5 · 10−10, and, for each
value, snapshots with diverse accuracy
(es) are tested. Table 5.8 shows the re-
quired number of iterations for ICCG,
DICCG4 and DICCGP4 , where, we ob-
serve that the number of iterations re-
quired to reach e1 decreases when using
more accurate snapshots.

As an example, take a tolerance for
DICCG of e1 = 5 · 10−8, the required snapshots’ accuracy for this case must be
higher than ek = 1 · 10−9 (See Table 5.7), using a smaller accuracy (10−3) leads to
convergence in 36 iterations; whereas, using the required accuracy (5 · 10−9) only one
DICCG iteration is required.
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Figure 5.4: Eigenvalues of R, various
values of cσ.

We study the acceleration of the ICCG
method via the deflation method by analyz-
ing the change in the number of iterations.
To further understand the behavior of the
deflation method we analyze the spectrum of
the covariance matrix used to construct the
POD basis, and the spectrum of the studied
deflated systems.

Results showed that four linearly inde-
pendent (l.i.) snapshots contain all of the
system information; thus, using them as de-
flation vectors leads to an optimal perfor-
mance of DICCG.

The normalized eigenvalues of the covari-
ance matrix constructed with the 15 snapshots presented in Table 5.2 are presented
in Figure 5.4 for diverse contrasts on permeability layers. We observe that four of
the eigenvalues are larger than the rest in all cases. Therefore, the l.i. set of vectors
leading to an optimal DICCG performance can be obtained with POD, reaching also
convergence in one iteration, as showed in Table 5.4.

Figure 5.5: Spectrum of the studied systems, upper: A and the 15 smallest eigenvalues
of A, lower: M−1A and the 15 smallest eigenvalues of M−1A.

The eigenvalues of the system matrix A and the preconditioned system matrix
M−1A are presented in Figure 5.5 for various contrast between permeability layers
(cσ). We observe that the largest eigenvalues of the system matrix A decrease with
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cσ; furthermore, for a matrix presenting cσ = 107, they are six orders of magnitude
larger than the eigenvalues of the matrix with cσ = 101.

Once the system is preconditioned (M−1A), the largest eigenvalues are clustered
together with the rest of the eigenvalues; nevertheless, the smallest eigenvalues are
not treated and the convergence process is affected by them. Moreover, we note that
the contrast between permeability layers is now reflected in the smallest eigenvalues.
As cσ increases, the smallest eigenvalues get smaller values, and again, the difference
between the smallest cσ = 101 and the largest cσ = 107 is around six orders of
magnitude.

Deflation methods are implemented to remove the influence of the smallest eigen-
values of the system matrix still present after preconditioning. Figure 5.6 shows the
spectrum of the deflated system PM−1A, where we can observe that the last four
are removed from the spectrum, i.e., they are close to zero; therefore they do not
influence the performance of the method.

If we remove the smallest eigenvalues (see Figure 5.6, right), we note that the range
of the spectrum is reduced considerably. The most significant reduction is achieved
for a contrast of 107 where we reduce the range of the spectrum from around nine
orders of magnitude to only two orders. The Table 5.3 shows the reduction of the
condition number from κ(M−1A) = 1 · 109 to κeff (PM−1A) = 1 · 102.

Figure 5.6: Spectrum of the deflated system, left: PM−1A, right: PM−1A, without
the four smallest eigenvalues.

p Iterations Condition number

{xi} POD {xi} POD

1 54 53 200.8 174.2

2 51 50 95.3 75.7

3 51 45 92.5 54

4 1 1 53.3 53.3

Table 5.9: Condition number and number
of iterations, various deflation vectors.

We showed that the deflation method
removes the smallest eigenvalues of the
system and that each eigenvector re-
duces one extreme eigenvalue (Lemma).
In the following experiments, we vary
the number of deflation vectors to ex-
plore the performance of the method fur-
ther.

We study a case with a contrast be-
tween permeability layers of cσ = 107,
and we select a stopping criterion for the snapshots of TolICCG = 5 · 10−12, remov-
ing in this way the influence of the accuracy. For this problem, the ICCG method
requires 139 iterations (see Table 5.5). As deflation vectors (p) the four l.i. snapshots
presented in Table 5.2 are selected ({xi}), as well as the basis vectors obtained from
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this set (POD). We solved the system x6 from Table 5.2, similar results are obtained
for the other systems.

We vary the number of deflation vectors from one to four, and the stopping crite-
rion for the DICCG method is TolDICCG = 5 · 10−7. The number of iterations and
condition number of the deflated systems are presented in Table 5.9.

In both cases, we observe a small decrease in the number of iterations and the
condition number when using more snapshots, which is slightly larger for the POD
basis. However, the optimal case is using the four l.i. snapshot or the four largest
POD basis vectors.

Next, we compare some usual choices of deflation vectors with the proposed
methodology, in particular, we compare subdomain-based deflation vectors and eigen-
vectors of the system matrix, and preconditioned system matrix as deflation vectors.

As described before, we study a reservoir containing five layers, for this study,
the contrast between permeability layers is 107. With this configuration, we can use
as deflation vectors subdomain vectors, where each subdomain represents a layer.
Therefore, we can create up to five deflation vectors, constructed with ones in the
entries corresponding to cells contained in the current subdomain (layer), and zeros
in the rest of the entries. We study the use of 1 to 5 subdomain-based deflation
vectors.

We also select eigenvectors of the system matrix A and eigenvectors of the pre-
conditioned matrix M−1A as deflation vectors; we vary the number of eigenvectors
from 1 to 100.

The number of iterations and the condition number of the deflated method for all
cases are presented in Table 5.10. The ten smallest eigenvalues of the deflated system
with four deflation vectors are presented in Figure 5.7. In this figure, we also show
the 200 smallest eigenvalues of the deflated system when we use 100 eigenvalues of
the system matrix and the preconditioned system matrix.

From Table 5.10 we observe that, as we increase the number of subdomain vectors
and eigenvectors, the number of iterations decreases. If we compare the performance
of the different choices of deflation vectors when using 4 of them, we note that using
subdomain-based vectors(DICCGSD4) we require 27 iterations, and for eigenvectors
(DICCGEigs(A)4 and DICCGEigs(M−1A)4) we need 21.

Thus, the performance of the method when selecting four l.i. snapshots (DICCG4)
or POD-based vector (DICCGP1

) is considerably better, requiring only one iteration,
even if the effective number is smaller for some other choices of deflation vectors.

Regarding the subdomain vectors, the maximum number of subdomains is 5, re-
quiring 23 iterations, which is not a significant improvement compared to the DICCG4

and (DICCGPOD4) options. The advantage of subdomain vectors compared with the
other methods is that they are easy to compute and sparse, that results in less com-
putational work than the rest of the other options. However, if the subdomains are
not well defined, it is difficult to construct them, which is the case for the SPE 10
benchmark.

The maximum number of eigenvectors used in this example as deflation vectors is
100, for which a reduction to 11 and 7 iterations is achieved. Hence, a factor of three
times fewer iterations than the first case with only one eigenvector, but 100 times
more eigenvectors are required. Thus, a further significant reduction in the number
of iterations is only achieved with a large number of eigenvectors. Considering that
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the eigenvectors also have to be computed, this choice of deflation vectors is the most
expensive option for the method. Moreover, the cost of each single iteration increases
with the number of deflation vector.

Therefore, we can conclude that when all the system information is collected in a
set of snapshots, recycling deflation and the POD basis show the best performance
requiring only one iteration.

ICCG

Iter κ(A)

54 1 · 109

Vectors Iter κeff (PM−1A)

Snapshots {xi}
4 1 90

POD

4 1 90

Subdomain (SD)

1 53 1 · 109

2 55 6 · 108

3 53 6 · 108

4 27 86

5 23 79

Eigenvectors of A

1 21 1 · 108

4 21 80

5 20 80

20 13 80

100 11 80

Eigenvectors of M−1A

1 21 1 · 108

4 21 21

5 21 20

20 13 4

100 7 1.7

Table 5.10: Number of iterations and
condition number, various choices of
deflation vectors, tol = 5 ·10−7, cσ =
107.

Figure 5.7: Smallest eigenvalues of the
deflated systems, (PM−1A), various
choices of deflation vectors, cσ = 107.

SPE 10 benchmark. In this section, we study the SPE 10 model, presenting vari-
ations in the permeability coefficients up to O(107). Different grid sizes are studied:
16 x 56, 30 x 110, 46 x 166 and 60 x 220, and the full model containing 60 x 220 x 85
cells. The permeability is upscaled averaging the permeability in each grid using the
function sampleFromBox from MRST.
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As in the layered problem, this model contains 5 wells, four producers in the
corners and one injector in the center. The permeability field of the full model and
the wells’ location are shown in Figure 5.8.

The snapshots are obtained by solving the system with different well configura-
tions, as presented in Table 5.2, from where the first four snapshots, used as deflation
vectors, are obtained with ICCG and tolerance of TolICCG = 5 · 10−12.

Figure 5.8: Permeability field and
wells location, full SPE model.

Figure 5.9: Pressure field, full
SPE 10 model.

A system containing the five wells is solved with the DICCG method and compared
with the ICCG method using a stopping criterion of Tol = 5 · 10−7. The pressure
field is presented in Figure 5.9 for the full model.

We study the performance of the deflation method when using four deflation vec-
tors selected in different ways for the coarse grid problem, 16 x 56 cells. We compare
the methods with each other and with the ICCG method, the number of iterations
and the condition number of the studied cases are presented in Table 5.11.

Method Iterations κ2(M−1A)/κeff (M−1PA)

ICCG 67 5.3 · 103

DICCG 1 185

DICCGPOD 1 185

DICCGeigs(A) 52 224

DICCGeigs(M−1A) 36 33

Table 5.11: Number of iterations and condition number for various choices of Z, four
deflation vectors, κ2(A) = 4.6 · 106.

The condition number of the system matrix is κ2(A) = 4.6 · 106, after precondi-
tioning, we observe a reduction of four orders of magnitude in the condition number,
and a further reduction of around one order of magnitude when using deflation.

Comparing the number of iterations for the different choices of deflation vectors,
we note that when using four l.i. snapshots (DICCG), or four POD basis vectors
(DICCGPOD) to construct the deflation subspace matrix (Z) we require only one
iteration to converge. On the other hand, if we use four eigenvectors of the system
matrix (DICCGEigs(A)4), we require 52 iterations, and with four eigenvectors of the
preconditioned system matrix (DICCGEigs(M−1A)4) we need 36.

Thus, the performance of the method when selecting the four l.i. snapshots or
four POD-based vectors require the fewer iterations, and when using eigenvectors,
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the number of ICCG iterations is reduced to around 80% and 50% which shows a big
difference in the performance of the methods.

For the next experiments, we vary the size of the grid, and we study the number
of iterations required to achieve an accuracy of Tol = 5 ·10−7 with the ICCG method,
and the deflation method with four l.i. snapshots, and four POD basis vectors as
deflation vectors. The number of iterations, together with the contrast in permeability
coefficients for the diverse problems is presented in Table 5.12.

We observe that the contrast in the permeability coefficients for different grid sizes
varies slightly; nonetheless, the order of magnitude remains the same for all cases.

We note that increasing the size of the problem results in an increment on the
number of iterations for the ICCG method, contrary to the deflation method that
requires one iteration.

Grid size 16 x 56 30 x 110 46 x 166 60 x 220 60 x 220 x 85

System size 896 3300 7636 13200 1.12 · 106

Contrast 1.04 2.52 2.6 2.8 3.01

(×107)

ICCG 67 136 199 282 1983

DICCG 1 1 1 1 1

DICCGPOD 1 1 1 1 1

Table 5.12: Contrast in permeability layers for various grid sizes.

In the following examples, we vary the number of deflation vectors when using
snapshots and POD basis vectors for the solution of the full SPE 10 model. The
number of iterations required to converge for both choices of deflation vectors is
presented in Table 5.13.

We note that the selection of one POD vectors as deflation vectors reduces the
number of ICCG iterations to 63%, while the same number of l.i. vectors reduces this
number to 84% of the ICCG iterations. Using three, the reduction is to 33% of the
ICCG iterations with POD basis vectors, and 78% with l.i. vectors. This indicates
that the POD basis vectors contain more information than the l.i. set.

Iterations Percentage

ICCG 1938 100

p {xi} POD {xi} POD

1 1630 1222 84 63

2 1550 878 80 45

3 1507 646 78 33

4 1 1

Table 5.13: Number of iterations for var-
ious p. Full SPE 10, Neumann boundary
conditions.

Figure 5.10 shows the eigenvalues of
the data correlation matrix constructed
from the snapshot. In this case, all the
system information is contained in four
eigenvalues, in Table 5.14, we compute
the percentage of the information that
is collected when adding eigenvalues (see
Equation (3.31)). The four eigenvalues
imply that all the system information
(100%) is pbtained, and we note that
using only three of them 95% of the in-
formation is obtained. However, for the

POD method to effectively capture information, it is required to have α ∼ 0.99, i.e.
99% [11].

We present the relative residual of the deflation method in Figure 5.11 for snap-
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shots as deflation vectors (left), and POD vectors as deflation vectors (right). We
observe in this figure that the number of iterations is smaller when using POD-based
deflation vector, as shown in Table 5.13.

Figure 5.10: Eigenvalues of R, full SPE
10.

p
∑p
j=1 λj α =

∑p
j=1 λj∑m
j=1 λj

[1] 1 0.79

[1,2] 1.12 0.88

[1,2,3] 1.21 0.95

[1,2,3,4] 1.27 1

Table 5.14: Information contained in
the λ′s.

Additionally, we observe that the first approximation is more accurate O(10−4).
This implies that only a few iterations are needed when using POD vectors to achieve
this tolerance. Therefore, further acceleration is achieved when using POD-basis
deflation vectors instead of snapshots.

Figure 5.11: Relative preconditioned residual, full SPE, left: snapshots, right: POD
basis vectors as deflation vectors.

5.1.2 Non-homogeneous Dirichlet boundary conditions

In this section, we simulate flow through a reservoir containing four wells, two in-
jectors, and two producers, with pressures P = 200 bars and P = -200 bars. In the
boundaries, we impose a pressure drop in the x-direction (Dirichlet boundary condi-
tions), where the right boundary has a pressure of PR = 100 bars, the left PL = 0
bars, and for the y-direction, we set homogeneous Neumann boundary conditions. We
study a layered problem (see Figure 5.12) and the SPE 10 model (see Figure 5.15),
with a fluid presenting the same characteristics as in the previous examples.

From Lemma 4.1.5, when solving a system with non-homogeneous Dirichlet bound-
ary conditions, a full description of the system is obtained by collecting one snapshot
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for each well present in the domain, together with one snapshot accounting for the
boundary conditions.

We study a reservoir containing four wells; thus, the collection of five snapshots is
required. The first four snapshots (x1−x4) are obtained setting only one well different
from zero, taking no-flux boundary conditions on the y−direction and homogeneous
Dirichlet conditions on the x−direction boundaries. A fifth snapshot is obtained
setting all the wells to zero and setting a pressure drop in the x-direction (xb).

P1 P2 P3 P4

Bc: P(x=1)=P(x=nx)=0

x1 -P P0 P0 P0

x2 P0 P P0 P0

x3 P0 P0 P P0

x4 P0 P0 P0 -P

Bc: P(x=1)=0, P(x=nx)=P

xb -P -P -P -P

x -P P P P

Table 5.15: Snapshots configura-

tions, ∂P (y=1)
∂n = ∂P (y=ny)

∂n = 0.

We study the case when all the wells have
values different from zero and non-homogeneous
Dirichlet conditions are imposed as in the fifth
snapshot (x). A summary of the snapshots is
presented below in Table 5.15, for which the given
bhp in the wells is P = 200 bars, and the pressure
in the reservoir is set as P0 = 0 bars.

The performance of the ICCG to the DICCG
methods is compared for various choices of defla-
tion vectors. The stopping criterion for the snap-
shots is 5 · 10−12 and for the studied methods is
5 · 10−7.

The snapshots are obtained with the ICCG
method with a tolerance of 5 · 10−12, and used as
deflation vectors, together with the POD basis
vectors obtained from this set of snapshots, the
deflation subspace matrix is constructed as follows:

1. Five linearly independent snapshots (DICCG5), Z = [x1 ... x5].

2. Five POD basis vectors (DICCGPOD), Z = [ψ1 ... ψ5].

Figure 5.12: Permeability field and
wells location, layers x direction.

Layered problem. In this section we study
a layered problem for various permeability con-
trast between the layers. The wells location and
permeability field are presented in Figure 5.12.
The pressure field of the snapshots (x1:4,b) as
well as the pressure field of the studied system
(x) are presented in Figure 5.13 for a contrast
on permeability layers of cσ = 101.

In Table 5.16, we present the condition num-
ber of the system matrix (A), the precondi-
tioned matrix (M−1A), and the effective con-
dition number of the deflated system (PM−1A)
for various cσ’s, where we observe that the condition number of the matrix increases
when we increase cσ.

After preconditioning and deflation, the condition number (κ) is very similar
O(102) for all cases, and the effective condition number of the deflated system is ap-
proximately one third of the preconditioned system κ2(M−1A) ∼ 3×κeff (M−1PA).
This implies that the preconditioned system is not ill conditioned anymore.
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cσ κ2(A) κ2(M−1A) κeff (M−1PA)

Deflation subspace matrix Z

[x1, ...,x5] [ψ1, ..., ψ5]

101 3e+03 70 21 21

103 7e+04 76 21 21

105 6e+06 76 21 21

107 6e+08 76 21 21

Table 5.16: Condition number of the solved systems, various values of cσ.

The number of iterations required to achieve convergence for the studied methods
is presented in Table 5.17 for the ICCG and DICCG methods, the latter using 5 snap-
shots and 5 POD vectors as deflation vectors. We note that the number of iterations
required for the ICCG method does not change considerably when changing the con-
trast between permeability layers, and we also note that the deflation method with
five linearly independent vectors (DICCG5) or five POD basis vectors (DICCGP5

)
requires only one iteration to converge.

1) 2) 3)

4) 5) 6)

Figure 5.13: Pressure field of the five snapshots and the studied problem, cσ = 107.

Figure 5.14 presents the relative preconditioned residual M−1rk, the relative resid-
ual rk, and the relative true error ek (see Table 5.1), for cσ = 101 and cσ = 107.

We note that for cσ = 101 the expected accuracy is reached in all cases, but for
cσ = 107 the true error ek is around 10−4 when using the ICCG method, contrary
to the expected accuracy of 10−7. Therefore, the solution is not accurate enough. In
contrast, the DICCG method achieves the prescribed accuracy after the first iteration,
making it a more accurate approximation.
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cσ = 101 cσ = 107

1)

2)

3)

Figure 5.14: 1) Relative preconditioned residual M−1rk, 2) relative residual rk, 3)
relative true error ek, left: cσ = 101, right: cσ = 107, Tol = 5 · 10−7.

cσ ICCG DICCG

5 5 POD

101 38 1 1

103 37 1 1

105 33 1 1

107 33 1 1

Table 5.17: Number of itera-
tions, various values of cσ.

Next, we compare different choices of five deflation
vectors, for a problem with cσ = 101. The selected
vectors are recycled deflation vectors (DICCG), us-
ing the five linearly independent snapshots of this
problem, five POD basis obtained from the l.i. snap-
shots, five subdomain snapshots, and five eigenvalues
of the system matrix, and the preconditioned system
matrix. The number of iterations and the effective
condition number of the deflation method using the
various choices of deflation vectors are presented in
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Table 5.18.

We note that the number of iterations required when using subdomain-based and
eigenvalues as deflation vectors is considerably larger than using l.i. snapshots or
POD basis vectors, even if the condition number is similar, which is the case with
subdomain-based and eigenvalues of the preconditioned system.

From this experiments, we can conclude that, when using Dirichlet boundary con-
ditions, five linearly independent vectors are required as deflation vectors to converge
in one iteration, where one of them corresponds to the boundary conditions, as ex-
pected from Lemma 4.1.5. Furthermore, we observe that this choice requires less
iterations than the other choices of deflation vectors, as in the previous case.

Method Iterations κ2(M−1A)/κeff (M−1PA)

ICCG 38 14

DICCG 1 12

DICCGPOD 1 12

DICCGSD 31 18

DICCGeigs(A) 35 38

DICCGeigs(M−1A) 23 11

Table 5.18: Number of iterations and condition number for various choices of Z, five
deflation vectors.

Figure 5.15: Pressure field for the
full SPE 10 model.

SPE 10 benchmark. In this section, we study
the SPE 10 model containing four wells, two in-
jectors and two producers, and the same non-
homogeneous Dirichlet boundary conditions as
in the previous example. For this test case, we
study diverse choices of deflation vectors and dif-
ferent grid sizes: 16 x 56, 30 x 110, 46 x 166 and
60 x 220; furthermore, we study the full SPE 10
model containing 60 x 220 x 85 cells (3D model).
The wells’ location can be observed in Figure
5.15.

The snapshots are obtained by solving the
system with different well configurations as pre-
sented in Table 5.15, from where the first five snapshots, used as deflation vectors, are
obtained with ICCG and tolerance of TolICCG = 5 · 10−12. The resulting system is
solved with the DICCG method and compared with the ICCG method using a stop-
ping criterion of Tol = 5 · 10−7. The resulting pressure field is presented in Figure
5.15 for the full model .

We study the performance of the deflation method when using five deflation vectors
selected in different ways for the coarse grid problem, 16 x 56 cells. We compare
the different choices of deflation vectors, the number of iterations and the condition
number of the studied cases in Table 5.19.
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Method Iterations κeff (M−1PA)

ICCG (κ2(M−1A)) 30 14

DICCG 1 12

DICCGPOD 1 12

DICCGeigs(A) 29 14

DICCGeigs(M−1A) 18 6

Table 5.19: Number of iterations and condition
number for various choices of Z, four deflation vec-
tors.

The condition number of
the original system matrix is
κ2(A) = 2 · 106, after precondi-
tioning, we observe a reduction
to 14, leading to fewer iterations
to reach convergence, in this
case, 30. As the condition num-
ber of the preconditioned sys-
tem is already small, only a mi-
nor reduction is achieved when
using deflation; it is reduced to
12 when using five deflation vectors and five POD-based deflation vectors and to
14 and 6 when using five eigenvectors of the original system or the preconditioned
system.

Regarding the number of iterations, using the five l.i. snapshots or the POD-basis
obtained from these snapshots leads to convergence in one iteration. However, using
the eigenvectors of the system matrix, we do not observe a considerable reduction,
while using the eigenvectors of the preconditioned matrix we reduce the number of
iterations to one third. Hence, as in the previous cases, the most significant reduction
is achieved with the five l.i. snapshots or the five POD basis vectors obtained from
these snapshots.

Grid size 16 x 56 30 x 110 46 x 166 60 x 220 60 x 220 x 85

ICCG 30 57 92 110 830

DICCG 1 1 1 1 1

DICCGPOD 1 1 1 1 1

Table 5.20: Number of iterations for various grid sizes.

To study the performance with respect to the size, we present the number of
iterations required for convergence of the studied methods in Table 5.20. As in the
previous cases, increasing the size of the problem results in an increment on the
number of iterations for the ICCG method; however, for the DICCG method, the
only one iteration is preserved.

Iterations Percentage

ICCG 830 100

p {xi} POD {xi} POD

1 823 817 99 98

2 782 784 94 94

3 786 756 94 91

4 788 691 94 83

5 1 1

Table 5.21: Number of iterations for
various p. Full SPE 10, Dirichlet
boundary conditions.

Next, the number of deflation vectors
when using l.i. snapshots and POD basis vec-
tors for the full model is varied. The number
of iterations required to converge for both
choices of deflation vectors is presented in
Table 5.21. Note that this number is smaller
when using POD vectors than when using
snapshots, being 83% ICCG iterations when
using four POD-based deflation vectors, and
94% with four l.i. deflation vectors. This
result indicates that each POD basis vector
contains more information than the l.i. vec-
tors. However, if only one deflation vector is
used, only a small gain is achieved.
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In Figure 5.16 we present the eigenvectors of the correlation matrix constructed
with the snapshots, we note that the second and third eigenvalues of the correlation
matrix are smaller than the first one; however, the difference is not significant. Thus,
the corresponding eigenvectors are essential to achieve the optimal performance of
the deflation method.

Figure 5.16: Eigenvalues of R, full
SPE 10.

p
∑p
j=1 λj α =

∑p
j=1 λj∑m
j=1 λj

1 1 0.45

2 1.4 0.64

3 1.8 0.81

4 2 0.93

5 2.2 1

Table 5.22: Information captured in
the λ′s.

We present the relative residual of the deflation method in Figure 5.10 for snap-
shots as deflation vectors (left), and POD vectors as deflation vectors (right). For
this example, the number of iterations only has a small decrease when using one to
four vectors (see Table 5.13). We note that the decrease in the number of iterations
is slightly larger when using POD vectors; however, it is not bigger than 15%.

The first ICCG iteration gives a residual of 0.187, while the first DICCGPOD

iterations go from 0.025 to 0.07, which means that the first DICCG iteration is slightly
better (See Figure 5.17). However, the gain is not as large as the one observed for
the first iteration of the case with homogeneous Neumann boundary conditions (See
Figure 5.11). If we observe Table 5.22, we note that selecting four POD basis vectors
we capture 93% of the information, while in the previous case we captured 95% with
three (See Table 5.14).

Figure 5.17: Relative preconditioned residual, full SPE 10, left: snapshots, right: POD
basis vectors as deflation vectors.
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Concluding remarks. Chapter 2 introduces the POD-based deflation method for
the acceleration of linear systems, together with some theoretical results of the ex-
pected behavior of the deflation method when choosing different deflation vectors. In
this chapter, we performed several numerical experiments to verify this theory.

The proposed l.i. set and the POD basis vectors as deflation vectors resulted in
convergence in one iteration for the DICCG method, regardless of the studied case.
Besides, for some cases, the approximation obtained with this method was more
accurate than the one obtained with the ICCG method. However, the performance
of the DICCG method showed a dependence on the accuracy of the snapshots.

The proposed deflation vectors showed better performance when compared with
the usual choices. For problems with homogeneous Neumann boundary conditions,
selecting subdomain vectors as deflation vectors reduced the ICCG iterations to 27%,
and using eigenvectors to 21% for the layered problem. In the SPE 10 problem. the
reduction with eigenvalues was 77% (eigenvectors of A) and 54% (eigenvectors of
M−1A).

For the cases with Dirichlet boundary conditions, the reduction was 81% ICCG
iterations for subdomain vectors, and eigenvectors of (A), and 74% for eigenvectors
of M−1A for the layered problem, while for the SPE 10 the reduction was 96%
(eigenvectors of A) and 60% (eigenvectors of M−1A).

If the number of deflation vectors was reduced, the number of ICCG iterations was
reduced to 62% and 94% removing one l.i. vector, and to 33% and 83% selecting the
same number of POD basis vectors, for the full SPE 10 problems with Neumann and
Dirichlet boundary conditions, respectively. If only one deflation vector was used, the
reduction was ∼ 99% for the POD basis vectors and the l.i. vectors for the Dirichlet
problem, and 63% for the POD basis vectors and 84% for the l.i. vectors. Thus,
better performance was achieved when using POD basis vectors as deflation vectors,
and for problems with Neumann boundary conditions.

Additionally, the POD basis vectors are linearly independent; and therefore, using
them as deflation vectors avoids difficulties that can appear when using a linearly
dependent set of snapshots.

The contrast between permeability layers is reflected in the condition number
of the system matrix; when increasing the contrast, the largest eigenvalues become
larger, and the condition number increases accordingly. After preconditioning, the
influence of the contrast goes to the smallest eigenvalues. The deflation vectors pro-
posed in this work, effectively treated these eigenvalues, they were set to zero, and
their influence was removed from the iterative process.

For the examples studied in this section, the set of l.i. vectors containing all the
system information is known and collecting them and reducing them with POD only
results in extra work. However, the l.i. set is usually unknown. For those cases, the
most significant advantages of combining the POD and deflation methodologies can
be exploited as is the case for time-dependent problems, studied later in Chapter 6
and 7, and when information can be reused.





Chapter 6
Numerical experiments 2:

Compressible single-phase reservoir
simulation

In Chapter 5, we presented some numerical experiments that show the performance of
the POD-based deflation methodology. There, we studied the simulation of a single-
phase incompressible fluid. The studied system was time independent, and, therefore,
the only option for collecting snapshots was via recycling (see Section 1.4).

In this chapter, we investigate the performance of the method for a compressible
single-phase case. Here, the problem is time-dependent, and as such, it has to be
solved for various time-steps. Thus, the moving window approach is tested in this
chapter.

With this approach, the previous time steps are used as snapshots in a recycling
scheme, or to compute a POD basis. The snapshot or the POD basis are then used
as deflation vectors to solve the current linear system. As before, we test the method-
ology for an academic layered problem with various contrast between permeability
layers and for the SPE 10 benchmark.

This chapter is based on:

G.B. Diaz-Cortes, C. Vuik and J.D. Jansen. On POD-based Deflation Vectors for DPCG applied
to porous media problems. Journal of Computational and Applied Mathematics, 330(Supple-
ment C):193 – 213, 2018,

G.B. Diaz Cortes, C. Vuik and J.D. Jansen. Physics-based Pre-conditioners for Large-scale Sub-
surface Flow Simulation. In Proceedings of the 15th European Conference on the Mathematics
of Oil Recovery, ECMOR XV, 2016.

75



76
Numerical experiments 2:

Compressible single-phase reservoir simulation Chapter 6

6.1 Compressible fluid

Model. We study a compressible fluid, flowing through a porous media with a
constant porosity field of φ = 0.3 (incompressible rock). The fluid’s viscosity is
constant with value µ = 5 [cp], and the relation between the pressure and the density
is given by Equation (2.7). We assume a constant fluid compressibility of cf = 1×10−3

[bars−1], and a reference fluid density of ρr = 850 [kg/m3] at a pressure of 200 [bars].
With these parameters, integration of Equation (2.7) results in a pressure depen-

dent function for the density, given by:

ρ(p) = ρre
cf (p−pr) = 850[kg/m3]e1×10−3(p−200). (6.1)

For the modeling, we make use of Darcy’s law and the mass balance equation (see
Section 2.1), resulting in a non-linear system given by (see Equation (2.12)):

φ
∂ρ(p)

∂t
−∇ · (ρ(p)λ) = ρq,

disregarding gravity terms and with ρ(p) as given in Equation (6.1).
We study an academic layered problem with various sizes and various contrast

between permeability layers cσ, and the full SPE 10 benchmark presenting a contrast
in permeability coefficients of 3× 107.

We prescribe homogeneous Neumann boundary conditions and we include five
wells, as described in Section 5.1.1. The initial pressure of the reservoir is set to 200
[bars]. The bhp in the corner wells is 100 [bars] and in the central well is 600 [bars].
The simulation was performed for 156 days for 52 time steps and a step size of 3 days.

Snapshots. In this set of problems, we use recycling and the moving window ap-
proach for the collection of the snapshots, as introduced in Section 4.2.

POD-based deflation vectors. A POD basis is obtained at each time step from
the ten most recently-collected snapshots. This basis is used as deflation vectors to
solve the current time step. The number of POD deflation vectors is specified for each
problem.

Solvers. Equation (2.12) is linearized via the Newton-Raphson (NR) method and
the spatial discretization is the same as in Chapter 5. The resulting linear system is
given by (see Equation (2.31)):

J(pk)δpk+1 = −F(pk+1; p0).

After linearization, the resulting system is solved with the ICCG method for the first
time steps, and with the DICCG method for the rest of the time steps. For the
deflation method, we use snapshots and POD basis vectors as deflation vectors.

A summary of the procedure is presented in Algorithm 2. The simulation, except
for the linear solvers, is performed with MRST. Automatic Differentiation (AD) is
used for the NR loop [7].
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The tolerance of the NR method and the linear solvers is ε = 10−5. For the linear
solvers, the preconditioned relative residual computed at each iteration, M−1rk, is
employed as stopping criterion (see Table 5.1).

For all the experiments, only the first time step requires more than two NR iter-
ations. Hence, we solely study the behavior of the linear solvers during the first two
NR iterations.

Layered problem In this section, we study the academic layered problem presented
in Section 5.1.1, (see Figure 5.1). The first layer has a permeability of σ1 = 1 [mD],
and the permeability of the second layer is varied, taking the following values σ2 =
10, 100, 100 [mD]. Therefore, the contrast between the layers cσ = σ2

σ1
is 101, 102

and 103. The length of the domain is 70 [m] and the grid contains 105 cells in each
dimension.

Figure 6.1: Solution of the compressible problem solved with the ICCG method
for a layered problem with a contrast between permeability layers of 101.

In Figure 6.1, the solution obtained with the ICCG method is presented for a
contrast in permeability layers of 101. In the lower figure, we observe the surface
volume rate for the five wells during the simulation. The upper left figure represents
the pressure field at the final time step.

The upper right figure represents the pressure across the diagonal joining the (1,1)
and (35,35) grid cells for all the time steps. We observe the initial pressure, 200 [bars],
across this diagonal and the evolution of the pressure field in time.

As mentioned before, for each time step, the previous ten solutions are used as
snapshots to compute the POD basis. The eigenvalues of the snapshot correlation
matrix R = 1

10XXT constructed with the previous ten time steps are presented in
Figure 6.2 for the 20th time step, for a contrast between permeability layers of 10.

We observe that six eigenvalues are larger than the rest. Then, we use the eigenvec-
tors corresponding to these six eigenvalues as deflation vectors, DICCGPOD6 . When
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cσ = 102 and cσ = 103 we used seven eigenvalues instead.

Figure 6.2: Eigenvalues of the data
snapshot correlation matrix, 20-th
time step, cσ = 101.

In Table 6.1 and Table 6.2, we compare the
number of iterations necessary to reach conver-
gence with the ICCG method (second column)
and the deflation method using snapshots and
POD basis vectors.

For this examples, we use the moving win-
dow approach; therefore, it is required to com-
pute the first d snapshots with ICCG (fourth
column), the rest of the time steps are computed
with DICCG (fifth column).

The total number of iterations needed to per-
form the DICCG method (d time steps com-
puted with ICCG + Total-d computed with
DICCG) are presented in the sixth column. In
the last column, we compute the percentage of
DICCG iterations with respect to the total ICCG iterations.

Cumulative linear iterations in the 1st NR Iteration

cσ Total Deflation ICCG DICCG Total % of total

ICCG method Snapshots ICCG ICCG

+DICCG

101 1026 DICCG10 160 84 224 21

DICCGPOD7 160 84 224 21

102 2468 DICCG10 430 210 640 26

DICCGPOD7 430 210 640 26

103 2815 DICCG10 580 210 790 28

DICCGPOD7 580 252 832 29

Table 6.1: Comparison of number of iterations between the ICCC and DICCG methods
during the first NR iteration for various cσ.

Cumulative linear iterations in the 2nd NR Iteration

cσ Total Deflation ICCG DICCG Total % of total

ICCG method Snapshots ICCG ICCG

+DICCG

101 229 DICCG10 180 26 206 90

DICCGPOD7 180 24 204 90

102 1285 DICCG10 540 132 672 52

DICCGPOD7 540 209 749 58

103 982 DICCG10 680 60 740 75

DICCGPOD7 680 63 743 76

Table 6.2: Comparison of number of iterations between the ICCC and DICCG methods
during the second NR iteration for various cσ.
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We study the deflation method with ten snapshots as deflation vectors, DICCG10,
and seven POD basis vectors as deflation vectors, DICCGPOD7

.

For the first NR iteration, we observe a significant reduction in the number of
linear iterations when using DICCG. For cσ = 101, 102, the DICCG method requires
23− 29% ICCG iterations. When cσ = 103 this percentage is reduced to 17%.

For the second NR iteration (see Table 6.2), we also observe a significant reduction
on the number of linear iterations, achieved by the use of deflation. A reduction to
26% and 38% of the ICCG linear iterations is achieved for cσ = 101. When cσ = 102

we require 28% and 33% of the ICCG iterations and for cσ = 103, we require 23%
and 29% of the ICCG iterations.

Figure 6.3: Eigenvalues of the data
snapshot correlation matrix, 20-th
time step, full SPE 10 benchmark.

SPE 10 model We study the complete SPE
10 benchmark presented in Section 5.1.1. The
eigenvalues of the snapshot correlation matrix
are presented in Figure 6.3.

We observe 4 eigenvalues larger than the
rest, which implies that most of the information
is contained in these eigenvalues. Therefore, we
study the deflation method with 10 snapshots
as deflation vectors and 4 POD basis vectors.

The number of iterations is presented in Ta-
ble 6.3 and Table 6.4 for the first and second
NR iterations, respectively. With the deflated
methods DICCG10 and DICCGPOD4

, for the
first NR iteration, we only need to perform 28%
and 32% of the ICCG linear iterations.

For the second NR iteration, the reduction is more significant, requiring 20% of
the ICCG linear iterations. We also observe that for the first NR iteration we need
1770 linear iterations to compute the ten initial snapshots (computed with ICCG) and
1134 to compute the solution of the rest of the solutions (computed with DICCG).

For the second NR iteration, the number of linear iterations is 1830 for the ten
initial snapshots and 200 for the deflated methods. Thus, that the largest amount
of work is carried out for the computation of the snapshots with the ICCG method,
which is more evident for the second NR iteration.

1st NR Iteration

Total Deflation ICCG DICCG Total % of total

ICCG method Snapshots ICCG ICCG

+DICCG

10173 DICCG10 1770 1134 2904 28

10173 DICCGPOD4 1770 1554 3324 32

Table 6.3: Average number of linear iterations for the first NR iteration, full SPE 10
benchmark.
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2nd NR Iteration

Total Deflation ICCG DICCG Total % of total

ICCG method Snapshots ICCG ICCG

+DICCG

10231 DICCG10 1830 200 2030 20

10231 DICCGPOD4 1830 200 2030 20

Table 6.4: Average number of linear iterations for the second NR iteration, full SPE
10 benchmark.

Concluding remarks For the compressible case, we propose the use of solutions of
previous time steps, snapshots, and POD basis vectors obtained from these snapshots
as deflation vectors. The collection of the snapshots was made using a moving window
approach.

With the DICCG we reduce the number of iterations up to 20% of the number
of ICCG iterations with only a small increase in the number of flops. The best per-
formance was achieved using four deflation vectors, for which each DICCG iteration
needs around 1.4 times the number of flops required with the ICCG method (see
Table 4.1).

In these experiments, we used the moving window approach, and we observed that
a large amount of work is carried out by the computation of the snapshots. In the
next chapter, we compare the use of a moving window and a training phase approach
for the solution of two-phase subsurface flow simulation.



Chapter 7
Numerical experiments 3:

Incompressible two-phase reservoir
simulation

While dealing with two fluid phases inside a reservoir, the presence of one phase affects
the dynamics of the second one. Then, the pressure of each phase is influenced not
only by the medium but also by the other fluid. This influence is known as capillary
pressure, and the larger the capillary pressure is, the more difficult the solution of the
system becomes.

Many of the recently developed acceleration techniques are not yet able to com-
pletely overcome this influence [11, 49] and new ways to solve it are required. In
this chapter, we present some examples that demonstrate the applicability of the
POD-based deflation methodology for the solution of two-phase problems.

7.1 Incompressible two-phase simulation

In Chapter 2, we introduced the equations describing single- and two-phase flow inside
a reservoir, together with some discretization schemes. In particular, we introduced
the fractional flow formulation, that help us to decouple the pressure equation from
the saturation equation.

This chapter is based on:

G.B. Diaz Cortes, J.D. Jansen, and C. Vuik. On The Acceleration Of Ill-Conditioned Linear
Systems: A Pod-Based Deflation Method For The Simulation Of Two-Phase Flow. In ECMOR
XVI-16th European Conference on the Mathematics of Oil Recovery, 2018,

and additional work.
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With this formulation, a sequential procedure has to be implemented (see Algo-
rithm 1), where an elliptic pressure equation (see Equation (2.12)) is solved at each
time step and it is used to update the saturation equation (see Equation (2.21)).
This formulation is used throughout this chapter to simulate two-phase flow, where
our main focus is on the solution of the pressure equation.

Model problem. We model waterflooding, i.e., water injection through wells and
through the boundaries into a reservoir originally filled with oil. We study an academic
layered reservoir and the SPE 10 benchmark [10] presenting a contrast in permeability
coefficients up to O(107).

Water Oil Units

µ 1 10 cp

ρ 1000 700 kg/m3

kr (Sw)nw (1− Sw)nnw

Cp 10 ∗ (1− Sw) bar

Table 7.1: Fluid properties.

Figure 7.1: Fluids relative permeability.

We study the influence of capillary pressure and gravity terms on the performance
of the methods, for which the relative permeability of the fluids are modeled with the
Corey model.

We also investigate the influence of the capillary pressure, modeled with a linear
relationship, Cp = 10 (1−Sw). The properties of the fluids are presented in Table 7.1,
and the relative permeability curves are presented in Figure 7.1 for Corey coefficients
of nw = nnw =2.

The pressure’s linear system and the solution of the transport equation are ob-
tained with the Matlab Reservoir Simulation Toolbox (MRST, [7]).

Transport solver. To solve the transport equation, we use an implicit solver com-
bined with an aggregation-based algebraic multigrid (AGMG) method [50–52] imple-
mented in MRST .

Pressure solver. For the solution of the linear pressure equation, we implement
the POD-based Deflated Preconditioned Conjugate Gradient method, with the in-
complete Cholesky (IC) decomposition as preconditioner (DICCG) and we compare
the results with the non-deflated method, ICCG.

As deflation vectors, we use a set of snapshots and a POD basis obtained from
them. The stopping criterion is the relative preconditioned residual ε = M−1rk, as
presented in Table 5.1.

Snapshots collection and studied cases. For the collection of the snapshots, we
use a moving window (MW), and a training phase (TP) approaches, as described in
Section 4.2. More details are given below:
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MW The p previously-computed time steps are used as snapshots. Note that, the
first p time steps are computed with the ICCG method. For this problem, we
study one (2D) and the 85 layers (3D) of the SPE 10 benchmark. We study
cases with and without capillary pressure.

TP1 A full pre-simulation is run, randomly changing the bhp in the production wells
every two time steps within a range of P = 137.5 and 275 bar (see Figure 7.11).
The variations in the bhp are different for each well, but it is in the same range.
The basis obtained from these snapshots is used to solve different problems:

TP1.1 Equal bhp in the producers. The bhp of the producers is the same
and takes the values: P = 275 bar, an extreme value; P = 200 bar, an
intermediate value; and P = 400 bar, a value outside the training phase
pressure range.

TP1.2 Different bhp in the producers. One well has a bhp of Pi = 20 bar, and
the rest have the same pressure as the reservoir Pj 6=i = 500 bar.

TP2 We also perform a full pre-simulation, but in this case, one well is activated
during a quarter of the time steps, i.e., one well has a pressure P = 200 bar,
and the rest have the same pressure as the reservoir P0 = 500 bar.

TP3 Same as TP2, but the simulation is run for a shorter time, i.e., the training
phase is shorter and therefore, requires less work.

The problems solved with the MW, TP2 and TP3 approaches have equal bhp in the
producers. For the MW approach, the bhp is the same as for the snapshots, while for
the TP2 and TP3 it is a bhp of P = 275 bar.

Heterogeneous permeability layers, MW approach

Figure 7.2: Rock perme-
ability

In this section, we study water injection into an ‘aca-
demic’ problem consisting of equal-sized layers with a
constant porosity field φ = 0.2 and different permeability
values (see Figure 7.2). A set of layers with permeabil-
ity σ1 = 101 mD is followed by layers with permeability
σ2 = 102 or 107 mD. The contrast between permeability
coefficients is given by cσ = σ1/σ2.

The domain consists of a Cartesian grid of 35 x 35
cells for a 2D case, and 25 x 25 x 25 cells for a 3D case.
The fluid properties are presented in Table 7.1. The first
set of experiments does not consider gravity and capillary
pressure terms. Later, we include capillary pressure and the 3D problem includes
gravity terms. The studied test cases are:

TC1. cσ = 101, no capillary pressure terms included.

TC2. cσ = 106, no capillary pressure terms included.

TC3. cσ = 101, capillary pressure terms included.
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TC4. cσ = 106, capillary pressure terms included.

We study water flooding with injection through the boundary and wells. When
using wells, the setup consists of four producers, Pi, on the corners and one injector,
I, in the center. The wells are controlled by prescribing the bottom hole pressure in
the wells bhp. For the solution of the pressure equation, we implement the moving
window approach.

Injection through the left boundary

Injection is performed through the left boundary at a rate of 0.4 m3/day for the 2D
case and 4 m3/day for the 3D case. The pressure is set to zero at the right boundary
and 100 bar inside the reservoir (See Table 7.2). The simulation is run for 240 days
with a step size of 1 day (see Table 7.2). To collect the snapshots, we use the MW
approach. We study the deflation procedure using ten previous solutions, p = 10, and
five POD basis vectors, p = 5, obtained from these solutions.

Temporal parameters Boundary conditions

Tsteps 240 P0,x 6=(0,Lx) 100 bar

dT 1 day Px=Lx 0 bar

Ttotal 240 days Qx=0 0.4 (2D), 4 (3D) m3/day

Table 7.2: Boundary conditions and temporal parameters.

The pressure field and the water saturation are presented in Figure 7.3 and Fig-
ure 7.4 for various cases. We observe that the pressure is higher at the boundary
where the water is injected, and it decreases towards the right boundary. We also
observe that the layered pattern influences the pressure and saturation fields.

a) b) c) d)

Figure 7.3: Pressure field for the last time step, contrast between permeability values
of a) TC1, b) TC2, c) TC3, d) TC4.
a) b) c) d)

Figure 7.4: Water saturation during the last time step, contrast between permeability
values of a) TC1, b) TC2, c) TC3, d) TC4.
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The number of iterations necessary to achieve convergence is summarized in Ta-
ble 7.3 for a tolerance value of ε = 5 · 10−7, where the first column is the studied test
case. In the second column, we present the number of deflation vectors used, p. The
third column shows the number of iterations necessary to achieve convergence with
the ICCG method only.

The number of iterations necessary to achieve convergence with the deflated
method is presented in the sixth column. For this method, the first p time steps are
computed with ICCG (fourth column), and the rest of the time steps are computed
with DICCG (fifth column). In the last (seventh) column, we compute the percentage
of total DICCG iterations concerning the total number of ICCG iterations.

p Total DICCG Total % of % of

ICCG ICCG DICCG DICCG ICCG ICCG

Iterations Work

2D Case: No capillary pressure included

TC1 10 13185 447 2265 2712 21 43

TC1 5 2797 3244 25 38

TC2 10 22210 232 7763 7995 36 75

TC2 5 3887 4119 19 29

2D Case: Capillary pressure included

TC3 10 12903 514 3842 4356 34 70

TC3 5 4035 4549 35 54

TC4 10 21918 784 3955 4739 22 45

TC4 5 4440 5224 24 37

3D Case: No capillary pressure included

TC1 10 13128 535 2180 2715 21 43

TC1 5 2987 3522 27 41

TC2 10 32659 390 4827 5217 16 33

TC2 5 4452 4842 15 23

3D Case: Capillary pressure included

TC3 10 12455 547 5108 5655 45 94

TC3 5 5817 6364 51 79

TC4 10 32233 1177 5821 6998 22 45

TC4 5 6833 8010 25 38

Table 7.3: Number of iterations for various methods, ε = 5 · 10−7.

We observe a significant reduction in the number of iterations when using the
DICCG, with similar trends for the 2D and 3D cases, the last one including gravity
terms. For the 2D case with a stopping criterion of ε = 5 · 10−7, we note a reduction
to 21% and 25% of the number of ICCG iterations for cσ = 101 (TC1), and to 36%
and 19% for cσ = 106 (TC2) and no capillary pressure included. These results are
comparable if we use ten of five deflation vectors. If we include capillary pressure,
this percentage increases (TC3 and TC4).
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Using ten deflation vectors, we achieve reductions in the ICCG work from 94% to
33%, while using five the reduction was from 23% to 79%. Thus, better performance
is achieved when using 5 deflation vectors. The reductions in the work are also larger
if capillary pressure is not included.

p Total DICCG Total % of % of

ICCG ICCG DICCG DICCG ICCG ICCG

Iterations Work

2D Case: No capillary pressure included

TC1 10 7228 93 815 908 13 29

TC1 5 959 1052 15 24

TC2 10 18481 120 1486 1606 9 20

TC2 5 1999 2119 11 19

2D Case: Capillary pressure included

TC3 10 7207 230 1011 1241 17 41

TC3 5 1060 1290 18 29

TC4 10 19191 254 2238 2492 13 30

TC4 5 1756 2010 10 18

3D Case: No capillary pressure included

TC1 10 6503 144 620 764 12 24

TC1 5 671 815 13 19

TC2 10 25592 215 1555 1770 7 14

TC2 5 1782 1997 8 12

3D Case: Capillary pressure included

TC3 10 6405 206 805 1011 16 32

TC3 5 927 1133 18 27

TC4 10 25100 255 2537 2792 11 23

TC4 5 2278 2533 10 16

Table 7.4: Number of iterations for various methods, ε = 5 · 10−4.

In Table 7.4 we present the same results as in Table 7.3 for a less strict tolerance
ε = 5 · 10−4, sufficient for engineering purposes. We also include in the last column
of this table the percentage of ICCG work during the iteration process, also plotted
in Figure 7.5. The work of a method is the number of iterations multiplied by the
number of flops per iteration.

We observe that the total iteration work is reduced to less than 40% in all cases.
However, the best performance is achieved when using five deflation for the TC2.
When using a larger tolerance ε = 5 · 10−4, the percentage of iterations is further
reduced (see Table 7.4).

In Figure 7.6, we present the preconditioned relative residual M−1rk and the true
relative error ek of the studied methods for the studied cases during the 50-th time
step when cσ = 106, i.e., TC2 and TC4. We note that, after a few iterations, M−1rk
of the deflated method is smaller than 10−4, which results in the observed better
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performance when requiring this tolerance.

Figure 7.5: % of ICCG work, left: 2D case, right: 3D case, ε = 5 · 10−4.

a) b)

c) d)

Figure 7.6: Relative residual a) TC2, b) TC4, and true relative error c) TC2, d) TC4
for various methods.

Comparing M−1rk with ek, we note that for the DICCG method, ek is smaller
than M−1rk, i.e., the solution is as accurate as expected. Furthermore, after the first
iteration, ek is already smaller than 10−5.

The eigenvalues of the correlation matrix are presented in Figure 7.7 for an in-
termediate time step, t = 50 days, with and without capillary pressure terms for the
2D case a) cσ = 101 and b) cσ = 106 and the 3D case c) cσ = 101. We note that
about five or six eigenvalues are larger than the rest, which implies that most of the
information is contained in the eigenvectors corresponding to these eigenvalues.

Thus, the performance of the deflation method with five or ten deflation vectors
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is similar, which can be observed in Table 7.3 and Table 7.4. The rest of the eigen-
values are smaller than 10−6; therefore, they do not have a strong influence on the
performance of the method.

For the cases containing capillary pressure and cσ = 101, we note that the eigen-
values are larger than for the case without capillary terms, which gives rise to the
faster convergence and the detected better performance for the former case.

a) b)

c)

Figure 7.7: Normalized eigenvalues of R, a) cσ = 101 (TC1 and TC3), b) cσ = 106

(TC2 and TC4), 2D case and c) cσ = 101 for the 3D case.

SPE 10 benchmark

In this section, we simulate waterflooding for one layer and the full SPE 10 benchmark
including gravity terms. We consider injection through the boundary and injection
through wells for the 2D and 3D cases.

The wells setup consist of one injector and four producers (see Figure 5.8). The
fluid properties and the capillary function used for this problems are the same as in
Section 7.1 (see Table 7.1).

Injection through the left boundary, MW approach

For this test case, water is injected through the left boundary at a constant rate of
600 m3/day to a reservoir initially filled with oil. The initial reservoir’s pressure is
100 bar, and the pressure at the right boundary is set to zero bar. We simulate 240
time steps with a step size of 100 days.

For the DICCG method, we select ten snapshots (previously computed time steps)
and five POD basis vectors as deflation vectors for the 2D case, and 30 snapshots
and 10 POD basis vectors for the 3D case (MW approach). The number of iterations
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required with the ICCG and DICCG methods is presented in Table 7.5 for a tolerance
of ε = 5 · 10−7 and Table 7.6 for ε = 5 · 10−4.

a) b) c)

Figure 7.8: a) Water saturation, b) Pressure field, c) Normalized eigenvalues of R.

For the 2D case, we observe a reduction to 33% of the number of ICCG iterations
when using ten deflation vectors and to 46% when using five vectors for a tolerance
value of ε = 5 · 10−7. If the stopping criterion is ε = 5 · 10−4, the number of DICCG
iterations is reduced to around 16% of the number of ICCG iterations in both cases.

If we include capillary terms, we observe a noticeable increment in the number of
iterations for the most accurate problem ε = 5 · 10−7, and a small increment for the
less accurate problem, ε = 5 · 10−4. For the 3D case, the DICCG method requires
only 25% of the number of ICCG iterations with 30 deflation vectors and to 31% with
10.

p Total DICCG Total % of

ICCG ICCG DICCG DICCG ICCG

2D Case, no capillary pressure included

10 34226 1244 10220 11464 33

5 34226 1244 14431 15675 46

2D Case, capillary pressure included

10 34121 1249 15118 16367 48

5 34121 1249 17330 18579 54

3D Case, no capillary pressure included

30 88502 6120 16274 22394 25

10 88502 2018 25129 27147 31

Table 7.5: Number of iterations, various methods, ε = 5 · 10−7.

The percentage of ICCG work for the iteration process is presented in the last
column of Table 7.6 and Figure 7.9, using a tolerance for the deflation method of
ε = 5 · 10−4. Here, we observe that the total work is reduced to less than 40%, and
using fewer deflation vectors results in a better performance.

The pressure field and the water saturation during the last time step, together
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with the eigenvalues of the correlation matrix are presented in Figure 7.8 for the 2D
case. We observe a decrease in the eigenvalues that goes to 10−7 for the case without
capillary pressure. When including capillary pressure, after the fifth eigenvalue it is
constant at around 10−5. This indicates that more information is contained in the
corresponding eigenvectors when no capillary pressure is included, which is reflected
in a better DICCG performance.

p Total DICCG Total % of % of

ICCG ICCG DICCG DICCG ICCG ICCG

Iter Work

No capillary pressure included

10 12220 418 1395 1813 15 34

5 1657 2075 17 28

Capillary pressure included

10 12160 419 1532 1951 16 37

5 1712 2131 18 29

Table 7.6: Number of iterations, various methods, 2D
case, ε = 5 · 10−4.

Figure 7.9: % of ICCG
work, 2D case, ε = 5 ·
10−4.

The relative preconditioned residual M−1rk and the true relative error ek are
presented in Figure 7.10 for the 2D case. The overall behavior of the methods is
similar when computing M−1rk or ek. We note that the first DICCG iteration gives
already a significant reduction, which is larger than the one achieved with ICCG for
both, M−1rk and ek. For the latter one, the first iteration is smaller than ε = 5 ·10−4.

Figure 7.10: Relative residual (upper) and true relative error (lower), left:
no capillary pressure, right: capillary pressure included, 2D case.
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Injection through wells

In this section, we perform a series of experiments injecting water through wells with
a prescribed bottom hole pressure (bhp). We solve the first layer of the SPE 10
benchmark and the full model containing 85 layers. We compare the DICCG and the
ICCG methods, selecting a stopping criterion of ε = 10−7.

Figure 7.11: Production well pres-
sures, TP1.

For the 2D case we select the ten and five
largest POD basis vectors as deflation vectors,
and for the 3D case, we use 20 and 15 vectors. In
the first set of experiments we do not include cap-
illary pressure terms, but for the 3D case, gravity
terms are included.

The simulation is run during 500 time steps,
with a step size of 25 days for the 2D case. For
the 3D case, the simulation is run during 200 time
steps with a step size of 1.5 days. We study the
moving window (MW), and the training phase
approaches (TP) introduced before. The bhp of
the production wells for the TP cases is presented
in Figure 7.11 for the first time steps. The pres-
sure of the injection well is PI = 1100 bar for all cases.

Figure 7.12: Normalized eigenvalues of
R, 3D case TP1.

a)

b)

Figure 7.13: Water saturation of the
full SPE 10 benchmark, a) 50th time
step, b) last time step.

Table 7.7 shows the number of iterations required to perform the full simulation
with the ICCG method (3rd column) and the DICCG method (4th column) with 5
or 10 POD basis vectors as deflation vectors p (2nd column). The percentage of the
ICCG iterations required with the DICCG method is presented in the last column.

The pressure and saturation fields for the last time step and the saturation for the
200-th time step are shown in Figure 7.14 for the 2D case using the TP1 approach.
The water saturation of the 3D case is presented in Figure 7.13. The eigenvalues of
the training simulation are presented in Figure 7.12 for the same case.

We note that we require from 11-37 % of the ICCG iterations when using the
DICCG method for the 2D case, and from 26-31% for the 3D case (see Table 7.7).
Furthermore, if we use more deflation vectors, this percentage is further reduced.
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p ICCG DICCG % of

ICCG

MW P1:4 = 275 bar

10 85477 9786 11

5 10766 13

TP1.1 Pbhp = 275 bar

2D 10 85477 13141 15

5 20000 23

3D 20 96468 25376 26

15 29658 31

Pbhp = 200 bar

2D 10 87204 13726 16

5 21426 25

3D 20 96468 26730 28

15 31146 32

Pbhp = 400 bar

2D 10 80591 11451 14

5 17741 22

3D 20 96468 26730 28

15 27429 28

TP1.2 P2,3,4 = 275 bar, P1 = 20 bar

10 85477 12966 15

5 85477 20034 23

P1,3,4 = 275 bar, P2 = 20 bar

10 90130 10518 12

5 20926 23

P1,2,4 = 275 bar, P3 = 20 bar

10 90130 10518 12

5 17325 19

P1,2,3 = 275 bar, P4 = 20 bar

10 90130 11636 13

5 18693 21

P1:4 = 275 bar

TP2 10 85477 16202 19

5 20585 24

TP3 10 85477 26334 31

5 31833 37

Table 7.7: Number of iterations, various methods and test cases.
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a) b) c) d) e)

a) b) c) d) e)

a) b) c) d) e)

Figure 7.14: First layer of the SPE 10 benchmark. Upper: Pressure field for the last
time step, center: water saturation during the the 200-th time step, lower: water
saturation during last time step. a) TP1.2: P1 = 20 bar, b) TP1.2: P2 = 20 bar, c)
TP1.2: P3 = 20 bar, d) TP1.2: P4 = 20 bar, e) TP1.1: P1:4 = 200 bar.
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From the results of TP1, we can conclude that from a training phase computed
in a range of pressures we can solve problems even outside this range. Furthermore,
from TP1.2, we note that we can solve problems with diverse flow patterns, as showed
in Figure 7.14.

For the eigenvalues of the correlation matrix (Figure 7.12), we observe a widely
spread spectrum, which indicates the need for more deflation vectors to achieve a
better performance for the 3D case.

We compute the amount of work of a method as the number of iterations multiplied
by the work per iteration. The percentage of ICCG work required with the DICCG
method, and the work required to obtain the POD basis for all methods are presented
in Figure 7.16 and Figure 7.15.

The work required to compute the POD basis for the MW approach is the work
required to compute the POD basis (see Appendix 2) with 10 vectors times the number
of time steps (the basis is computed every time step). For the TP approach, the basis
if obtainde from the whole simulation, i.e. 500 steps, the computation of the solutions
of the simulation is not taken into account for this plot.

We note that almost all methods require less than 50% of the ICCG work, and
using five or ten deflation vectors give a similar result. The TP3 require around 70%
of the ICCG work and decreases when the number of deflation vectors decrease. We
also observe that the moving window approach requires less work than the rest of the
methods.

The initial work for the MW and the TP3 approaches is smaller than most of the
other methods; however, the basis is computed online, which implies that this work
is performed for every simulation. By contrast, in the training phase approaches, the
pre-simulation is run only once, and the obtained basis can be used to solve many
different problems.

Figure 7.15: % of ICCG work, various
methods.

Figure 7.16: Initial work, various
methods.

Regarding the training-phase approaches, TP2 and TP3 show an alternative way
of collecting snapshots by activating only one well at the time, as presented by [11].
From these approaches, the TP3 case requires the less amount of work for the pre-
simulation, but the reduction of ICCG iterations is smaller.

The preconditioned relative residual M−1rk and the true relative error ek are
presented in Figure 7.17 for the MW approach and in Figure 7.18 for the TP1 approach
for the 250-th time step. We note that, after the first DICCG iteration, the accuracy
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of the approximation is around 10−4 in both cases.

We also note a faster convergence rate for DICCG methods when compared with
ICCG during the first iterations. With the TP approach the behavior of the DICCG
method is slightly (Figure 7.17) we used 10 snapshots and 5 POD basis vectors as
deflation vectors. and only after a large number of iterations ICCG reaches the super
linear convergence phase

a) b)

Figure 7.17: a) Relative residual and b) true relative error, MW approach.

a) b)

Figure 7.18: a) Relative residual and b) true relative error, TP1 approach.

In this section, we tested the POD-based methodology for the simulation of two-
phase flow through a highly heterogeneous porous media. We achieve reductions up
to 12% of the number of iterations and up to 20% of the work per iteration.

We studied various test cases that resulted in a small increment on the number
of iterations if capillary pressure and gravity were included. In the next section, we
perform a series of experiments to gain more insight into the influence of gravity and
capillary pressure terms on the performance of the method.

7.2 Gravity-driven flow.

For this set of experiments, we simulate gravity driven two-phase flow in a reservoir
containing water in the top part and oil in the bottom.
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Model. We model a reservoir with a constant porosity field φ = 1, i.e., an empty
reservoir, and a permeability of 0.1 [D]; this example is taken from MRST [7]. The
reservoir contains 20 x 20 x 40 cells, 2 m long in the x- and y-directions and 1, 2 and
4 meters long in the z-direction. The simulation is run for 800 steps, with a step size
of 75 days. The implemented linear solvers are the same as in Section 7.1. For the
DICCG method, we use the moving window (MW) approach. The stopping criterion
is ε = 5 · 10−7.

Results. The water saturation is presented in Figure 7.19 for the initial, an in-
termediate and the last time steps. We observe that the water is at the top of the
reservoir at the beginning of the simulation, whereas at the end of the simulation, it
has completely gone to the bottom.

The eigenvalues of the covariance matrix are presented in Figure 7.20 for all cases
during the 200-th time step. From this plot, we can observe that they are similar;
however, as the reservoir height increases, the eigenvalues become slightly smaller.

a) b) c)

Figure 7.19: Water saturation during a) the 1st time step, b) the 400-th time
step, and c) the 800-th time step.

Figure 7.20: Normalized eigenvalues of
R, various reservoir heights.

Figure 7.21: % of ICCG work, various
reservoir heights.

The number of iterations required to achieve convergence is presented in Table 7.8.
Implementing the DICCG method, we observe an important reduction in the number
of iterations when compared with the ICCG method. For the ICCG method, the
number of iterations varies one order of magnitude more O(104) than the variation
observed for the DICCG method O(103) when changing the reservoir size.

For the cells with the smallest reservoir height, 1 meter, we require more than
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the other cases. However, the number of iterations is reduced to 20% and 26% of
the ICCG iterations for ten and five deflation vectors. The most significant gain is
obtained for a cell size of 4 [m], where we reduce the number of iterations to ∼ 12%.

p Total DICCG Total % of % of

ICCG ICCG DICCG DICCG ICCG ICCG

Iter Work

Size of the z cells: 1 [m]

10 25659 529 4506 5035 20 47

5 25659 529 6127 6656 26 44

Size of the z cells: 2 [m]

10 36835 530 4665 5195 14 34

5 36835 530 6843 7373 20 34

Size of the z cells: 4 [m]

10 45043 664 3974 4638 10 24

5 45043 664 5257 5921 13 22

Table 7.8: Number of iterations for the DICCG method, ε = 5 · 10−7.

The percentage of ICCG work is also presented in the last column of Table 7.8
and in Figure 7.21. We observe that the work decreases when increasing the reservoir
height, the reduction is almost half of the work when the reservoir increases four times
the size. Therefore, the performance improves for higher reservoirs which have more
influence from the gravity terms.

7.3 Influence of capillary pressure terms.

In this section, we perform a set of experiments varying the capillary forces to inves-
tigate their influence on the performance of the method.

Model. We model waterflooding for the first layer of the SPE 10 benchmark, with
the same well configuration and reservoir properties as the previous examples contain-
ing wells. We compare a case without capillary pressure with three cases presenting
diverse Corey coefficients for the wetting phase, nw =[2,3,4], and nnw = 2, see Ta-
ble 7.1. The relative permeability curves are presented in Figure 7.1 for nw = nnw = 2,
and Figure 7.22 for the other cases.

We use the same linear solvers as before, and we implement the training phase
scheme TP1. We simulate 600 time steps, with a step size of 10 days. The pressure
field and water saturation are presented in Figure 7.23 for all cases during the last
time step.

Table 7.9 shows the number of iterations required to achieve convergence for a
stopping criterion of ε = 5 · 10−7. For the cases with capillary pressure we note
similar results and a small increment in the number of iterations when we increase
the Corey coefficients to nw = 4, nnw = 2. However, in most of the cases we require
∼6% of the ICCG iterations when using 10 deflation vectors and ∼27% with 5.
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a) b)

Figure 7.22: Relative permeability curves nnw = 2, a) nw = 3, b) nw = 4.

a) b) c) d)

a) b) c) d)

Figure 7.23: Pressure field and water saturation for the last time step, first layer of the
SPE 10 benchmark, a) No capillary pressure, b)nw = nnw = 2, c) nw = 3, nnw = 2,
d) nw = 4, nnw = 2.

Figure 7.24: Eigenvalues of the co-
variance matrix, diverse Corey co-
efficients

Figure 7.25: % of ICCG work,
various cases.



Section 7.3 Influence of capillary pressure terms. 99

The eigenvalues of the covariance matrix are presented in Figure 7.24, we note
that they are similar; however, they are smaller for the case without capillary pressure
and for the smaller Corey coefficient. We also observe a few eigenvalues larger than
10−4, which suggests that most of the information is contained in the corresponding
eigenvectors; thus, if we use ten eigenvectors as deflation vectors, they contain enough
information to achieve an important acceleration.

p Total Total % of % of

ICCG DICCG ICCG ICCG

Iter Work

No capillary pressure

10 86647 12603 15 34

5 24605 28 47

krw = (Sw)2, krnw = (Snw)2

10 87235 11169 13 29

5 23965 27 45

krw = (Sw)3, krnw = (Snw)2

10 80835 12957 16 37

5 21503 27 44

krw = (Sw)4, krnw = (Snw)2

10 84063 14722 18 40

5 21457 26 42

Table 7.9: Number of iterations for diverse Corey coefficients,
tolerance of ε = 5 · 10−7.

The percentage of ICCG work required with the DICCG method to converge
is presented in Figure 7.25 and the last column of Table 7.9. We observe a small
increment when we increase the water Corey coefficient. However, the results are
similar in all cases. The best performance is achieved when using 10 deflation vectors,
for which we achieve reductions up to 30% the ICCG work.

In Figure 7.26, we plot the residual and the true error for the case with capillary
pressure and Corey coefficients nw = 3, and nnw = 2 during the time step 150.

For the first ICCG iteration, we note that even if the residual is smaller than
10−4, the true error is slightly larger, and it takes more than 100 iterations to go
lower. Hence, if we would like to compute an approximation with this accuracy,
the ICCG method could give an incorrect approximation. Furthermore, the method
reaches the superlinear convergence region after around 120 iterations, but it does
not reach the required accuracy.

By contrast, the approximation obtained with the DICCG method has a true
error smaller than 10−5 after the first iteration. Additionally, the residual presents a
similar behavior as the true error. Hence, the DICCG method for problems involving
capillary pressure is also more accurate and robust than the ICCG method.
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Figure 7.26: Relative residual and true relative error for the ICCG and DICCG
methods for a Corey coefficient of nw = 3.

Concluding remarks. In this chapter, we studied the performance of the POD
based deflation methodology for two-phase flow problems. We studied injection of
water through boundaries and wells for an ‘academic’ layered problem and the SPE
10 benchmark.

Results showed a correlation between the performance of the DICCG method and
the eigenvalues of the correlation matrix. For the less favorable cases, the spectrum
of the snapshots correlation matrix was more widely spread. Therefore, the informa-
tion is distributed over more eigenvectors, and more deflation vectors are required to
achieve good performance. On the contrary, if only a few eigenvalues are noticeably
larger than the rest, they contain most of the system’s information. Using them as
deflation vectors leads to a better DICCG performance.

The first iteration of the deflated method resulted in a true solution of O(10−4) for
most of the cases, which implies that if this accuracy is required, only one iteration
is sufficient to have a good approximation. Furthermore, we noted that when the
preconditioned residual reached the required accuracy for the ICCG method, the true
error did not reach it, for some cases. By contrast, for the DICCG method, the true
error and the relative residual were always of the same order of magnitude.

The DICCG method showed better performance for the higher contrast between
permeability layers (cσ). Without capillary pressure (cp) terms, for cσ = 1, the
ICCG work was reduced to 24-29%, and including cp to 29-41%. While for cσ = 6,
the reduction was to 19-29% without cp terms, and to 18-30% including cp terms.
The largest reductions were achieved when using five deflation vectors. Finally, results
showed that including capillary pressure terms resulted in more work of the DICCG
method.

The POD basis was obtained with a moving window (MW) approach, which re-
quired an update at every time step, and a training phase (TP) approach where the
basis was obtained in a pre-simulation. The work required during the iteration pro-
cess was reduced to ∼ 27% with ten deflation vectors and ∼ 21% with 5 for the MW
approach and from 35% to 73% (10 deflation vectors) and 38% to 63% (5 deflation
vectors) for the TP approach. Thus, performing the MW window approach is less
expensive; however the computation of the POD basis is performed for every simula-
tion using this approach. By contrast, the basis computed with the TP approach can
be to solve different problems, with different bhp in the wells.



Chapter 8
Comparison of 2L-PCG using

deflation techniques.

In Chapter 3, we introduced the preconditioning techniques that help us to cluster the
spectrum of the system matrix, accelerating in this way an iterative solver. For the
implementation of these techniques, the original system is multiplied by a traditional
preconditioner M−1, improving in this way the conditioning of this matrix.

Examples of traditional preconditioners are the inverse of the matrices M used
for basic iterative methods, presented in Table 3.1, and the Incomplete Cholesky
factorization with zero fill in M = IC0, used throughout this thesis.

The conditioning of the matrix can be further improved by incorporating a second
kind of preconditioner. The combination of a first- (traditional) and a second-level
preconditioner is known as two-level preconditioning. Examples of the second-level
preconditioners are Multigrid (MG) and domain decomposition (DDM) methods.

A two-level preconditioner applied to the PCG method gives rise to the two-level
PCG method (2L-PCG). By making use of this method, the influence of the large
eigenvalues of the system matrix is reduced in a first level, and the remaining small
eigenvalues are treated in a second level.

The most basic 2L-PCG method is constructed by combining the PCG and a two-
grid method. Here, an approximate solution is obtained on a fine grid making use of
a first-level preconditioner. However, after this procedure, many of the low-frequency
components of the error are not effectively treated. Then, coarser meshes are build
to eliminate the influence of these components [16].

Multi-level methods have a geometrical relationship with the fine grid; if avoiding
this relation is beneficial, a more general second-level problem is built by only using
the system matrix A. This method is called algebraic multigrid (AMG) and can be
used for unstructured grids.

In the previous sections, we studied the deflation method, that can also be inter-
preted as a 2L-PCG method, where the second level preconditioner is the deflation
subspace matrix P. The performance of this method highly depends on the selection
of the projection vectors, where, the eigenvectors corresponding to the unfavorable
eigenvalues of the system matrix are a good choice. Contrary to MG methods, where

101
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the projection vectors represent an interpolation between the fine and coarse grids.

However, the deflation method is similar to the multigrid method without pre- and
post-smoothing, i.e., the deflation operator is the same as the coarse-grid operator
of MG. The main difference between these methods is that the deflation method is
effective for Krylov-subspace methods, contrary to the use of a coarse grid correction
without smoothing, that does not lead to a successful MG method.

In this thesis, we introduced the use of a POD basis to construct a deflation-
subspace matrix for the acceleration of a Krylov subspace method using standard
deflation procedure [31–33]. Recently, Pasetto et al. [1] explore the POD-based
deflation-subspace matrix for the construction of a two-level preconditioner.

In this Chapter, we make a comparison of different two-level preconditioners,
including the deflation approach used throughout this work, referred to as DEF1, and
the two-level preconditioners introduced by Pasetto et al. [1], referred to as ROM,
and SROM. We study this method from a theoretical point of view and with a series
of computational experiments.

8.1 Two-Level Preconditioned Conjugate Gradient
(2L-PCG)

The two-level preconditioning techniques consist of an arbitrary first-level traditional
preconditioner M−1, combined with one or more second-level projection matrices.
Therefore, MG, DDM, and deflation methods can be seen as 2L-PCG methods. In
this section, we introduce the two-level PCG method together with some properties.
Furthermore, we introduce the methods compared in this chapter from a two-level
method perspective.

The 2L-PCG method is defined as

PAx = b, P,A ∈ Rn×n (8.1)

where, the matrix A is the system matrix A, that can also be a combination of
A and the deflation matrix P (see Definition 3.4.1). The operator P is a two-level
preconditioner, wich can consist of a traditional preconditioner M−1 or a combination
of traditional preconditioners and/or projectors.

There are multiple ways to construct the second-level operator P. A special case is
using the identity matrix P = I, thus A = A, x = x and b = b, which results in the
standard CG method. When the operator is a traditional preconditioner, P = M−1,
and b = M−1b, Equation 8.1 reduces to the PCG method.

This chapter is based on:

J. Tjan. Study on deflation techniques and POD methods for the acceleration of Krylov subspace
methods. Master’s thesis, TU Delft, 8 2018. web:http://ta.twi.tudelft.nl/nw/users/vuik/

numanal/tjan_scriptie.pdf .
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Besides of traditional preconditioners, the operator P can be constructed using
single-level and two-level preconditioners in an additive or in a multiplicative way
[53], this methodology is explained below.

8.1.1 Additive preconditioner

Let C1,C2 be two arbitrary symmetric positive semi-definite (SPSD) preconditioners,
and ci > 0 ∈ R, then the additive combination

Pa2 = c1C1 + c2C2 (8.2)

is also an SPSD preconditioner. Therefore, a linear combination of different SPSD
preconditioners Ci with different weights ci is also a preconditioner. We can generalize
this result as:

Pak =

k∑
i=1

ciCi. (8.3)

8.1.2 Multiplicative preconditioner

Let C1,C2 be two arbitrary SPSD preconditioners. We consider the combined itera-
tions induced by these preconditioners as follows:

xi+
1
2 = xi + C1(b−Axi),

xi+1 = xi+
1
2 + C2(b−Axi+

1
2 ), (8.4)

then, we can combine the two preconditioners in the following way:

xi+1 = xi + (C1 + C2 −C2AC1)(b−Axi),

which can be interpreted as a multiplicative operator Pm2
consisting on two precon-

ditioners [45, 53],
Pm2 = C1 + C2 −C2AC1. (8.5)

This method can also be generalized to Pmk by using k preconditioners. In particular,
using three preconditioners, C1,C2,C3, results in

Pm3 = C1 + C2 + C3 −C2AC1 −C3AC2 −C3AC1 + C3AC2AC1. (8.6)

In the next sections, we introduce the methods studied throughout this chapter,
seeing them as two-level additive or multiplicative preconditioners.

8.1.3 Deflation method

The Deflated Preconditioned Conjugated Gradient (DPCG), defined in Section 3.4.4,
can be written as:

M−1PAx̂ = M−1Pb,

where x̂ is a non unique solution to this system, and the complete solution to the
original system Ax = b is obtained by using

x = Qb + P>x̂.
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This method can be seen as a 2L-PCG method, where

PDEF1 = M−1P. (8.7)

This formulation is referred to as “Deflation Variant 1” or in short DEF1.
An alternative way to describe the deflation technique was proposed by [45, 53]

as follows:

Definition 8.1.1. Let x be an arbitrary initial guess vector, we define a special
starting vector (Vstart) as

x0 = Qb + P>x. (8.8)

It can be shown (see [45]), that the solution of the system Ax = b is:

x = x0 + P>y, (8.9)

where y is the unique solution to the deflated system:

AP>y = r0, r0 := b−Ax0. (8.10)

The latter expression can be solved using a single-level preconditioner M−1, leading
to

M−1AP>y = M−1r0. (8.11)

Multiplying the previous equation by P>, and using Equation (8.9) results in

P>M−1Ax = P>M−1b. (8.12)

Therefore, the projection operator of the resulting 2L-PCG algorithm is given by

PDEF2 = PTM−1, (8.13)

and it is referred to as “Deflation Variant 2” (DEF2).
The difference between DEF1 and DEF2 is the flipped two-level preconditioner.

Furthermore, when using the DEF1 method, the unique solution x is found by pro-
jecting back the deflated solution via the operation x = Qb + P>x, executed after
the iterations. Contrary to the DEF2 method, for which this operation is executed
before. Therefore, the methods have different robustness properties. More details can
be found in [45, 53].

8.1.4 Adapted deflation methods

Selecting C1 = Q and C2 = M−1 to construct an additive preconditioner (Equation
(8.5)), where M is a traditional preconditioner, the resulting two-level preconditioner
is given by:

PA-DEF1 = M−1P + Q. (8.14)

This method is referred to as Adapted Deflation Variant 1 (A-DEF1).
Similarly, an Adapted Deflation Variant 2 (A-DEF2) can be constructed by using
C1 = M−1 and C2 = Q in Equation (8.5) to obtain a second-lever preconditioner:

PA-DEF2 = P>M−1 + Q. (8.15)

As a consequence, the operators of the adapted methods are not symmetric, and the
difference between the DEF methods and the A-DEF methods lies on the addition of
the correction matrix Q.
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8.1.5 ROM-based preconditioner

The operator PROM, proposed by Pasetto et al. [1], is an approximation of the
inverse of A based on algebraic multigrid methods (AMG). For this method, the
preconditioner is given by:

PROM = M−1 + Q(1−AM−1), (8.16)

using Q = Z>E−1Z and E = Z>AZ from Definition 3.4.1.

Note that PROM is not always symmetric. However, an SPD variant is constructed
as follows:

PSROM =
PROM + P>ROM

2
= M−1 + Q− 1

2

(
QAM−1 + M−1AQ

)
. (8.17)

Later, in Lemma 8.2.1 of Section 8.2.1 we prove that the ROM method has the
same operator as the A-DEF2 method. Furthermore, we show that PSROM can be
seen as an additive preconditioner consisting of the operator PA-DEF1 and PA-DEF2;
thus, it can be written as:

PSROM =
1

2
(PA-DEF1 + PA-DEF2). (8.18)

8.1.6 Abstract balancing methods

Sometimes, symmetric operators are required. From the operators presented above,
we mentioned that PA-DEF1, PA-DEF2 are not always symmetric, and we introduced
a symmetric version of the ROM operator. In this section, we present some balanc-
ing methods, that are symmetric operators constructed by using the multiplicative
preconditioner methodology with three preconditioners.

Combining C1 = Q, C2 = M−1 and C3 = Q in a multiplicative way (see Equa-
tion 8.6), we obtain

PBNN = P>M−1P + Q. (8.19)

The operator PBNN is known as the Balancing-Neumann-Neumann (BNN) operator
and it is an operator typically used for Domain Decomposition Methods (DDM).
This operator is an SPD preconditioner. A reduced version of the BNN operator is
obtained by removing the correction matrix Q, leading to:

PR-BNN1 = P>M−1P, (8.20)

which is still a symmetric preconditioner. We can further reduce the preconditioner
by removing the matrix P, obtaining

PR-BNN2 = P>M−1. (8.21)

Which similar to DEF2, and the only difference lies on the implementation of the
method. Both PR-BNN1 and PR-BNN2 have the same properties as PBNN if a correct
initial condition is used. More details can be found in [45, 53].
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Summary of the methods. In Equation 8.1, we presented the two-level Precon-
ditioned Conjugated Gradient method (2L-PCG), given by:

PAx = b, P,A ∈ Rn×n,

with A = A, P an operator, x = x and b = Pb, the previously mentioned methods
can be written in terms of the 2L-PCG method. Some of them need a special starting
vector Vstart for a correct performance [45, 53]. From now on, we will consider x0

as the starting vector, but note that, it depends on the initial guess (x), and it is
consider a special starting vector if it is given by x0 = Qb + P>x.

A summary of these methods together with their required starting vectors is pre-
sented in Table 8.1. Note that, the original starting vector proposed by Pasetto
et al. [1] for the ROM and SROM methods was an initial guess solution given
by x0

(ROM/SROM) = x. However, we show in this work (see section 8.3) that the
correct starting vector is the same as the starting vector of the A-DEF2 method,
x0

(ROM/SROM) = x0
(A−DEF2) = Qb + P>x, as presented in Table 8.1.

Algorithm 10 shows the implementation of the 2L-PCG methods, where the cor-
responding matrices, and the required starting Vstart = x0 and ending Vend vectors
are given in Table 8.2. This implementation is used for the numerical experiments
presented in Section 8.3. Next, we present a theoretical comparison of some of the
two-level preconditioners introduced in this section.

Name Method Vstart = x0 Operator P
PREC Traditional preconditioned CG x M−1

DEF1 Deflation Variant 1 x M−1P

DEF2 Deflation Variant 2 Qb + P>x P>M−1

A-DEF1 Adapted Deflation Variant 1 x M−1P + Q

A-DEF2 Adapted Deflation Variant 2 Qb + P>x P>M−1 + Q

BNN Balancing-Neumann-Neumann x P>M−1P + Q

R-BNN1 Reduced Balancing Variant 1 Qb + P>x P>M−1P

R-BNN2 Reduced Balancing Variant 2 Qb + P>x P>M−1

ROM ROM-based preconditioner Qb + P>x M−1 + Q(1−AM−1)

SROM SROM-based preconditioner Qb + P>x M−1 + Q−

− (QAM−1+M−1AQ)
2

Table 8.1: Overview of the various 2L-PCG methods



Section 8.2 Theoretical comparison of two-level preconditioners 107

Algorithm 10 Generalized two-level preconditioner Method

Required: a starting vector (Vstart = x0) depending on an initial guess (x),
preconditioners: M1,M2,M3, and a final vector: Vend

Compute: r0 = b−Ax0, z0 =M1r
0 and p0 =M2z

0

for k = 0, . . .
while rk > ε

wk =M3Ap

αk =
〈rk,zk〉
〈pk,wk〉

xk+1 = xk + αkpk

rk+1 = rk − αkApk

zk+1 =M1r
k+1

βk =
〈zk+1,rk+1〉
〈zk,rk〉

pk+1 =M2z
k+1 + βkpk

end while
end for
Vend %Computed as in Table 8.2 from the approximate solution xk+1

Name Vstart = x0 M1 M2 M3 Vend

PREC x M−1 I I xk+1

DEF1 x M−1 I P Qb + P>xk+1

DEF2 Qb + P>x M−1 P> I xk+1

A-DEF1 x M−1P + Q I I xk+1

A-DEF2 Qb + P>x P>M−1 + Q I I xk+1

BNN x P>M−1P + Q I I xk+1

R-BNN1 Qb + P>x P>M−1P I I xk+1

R-BNN2 Qb + P>x P>M−1 I I xk+1

ROM Qb + P>x M−1 + Q(1−AM−1) I I xk+1

SROM Qb + P>x M−1 + Q− I I xk+1

− (QAM−1+M−1AQ)
2

Table 8.2: Parameters of the 2L-PCG methods computed with Algorithm 10.

8.2 Theoretical comparison of two-level precondi-
tioners

In this section, we compare the different two-level preconditioners discussed above.
For the comparison, we present the computational complexity of the methods in
terms of the number of operations required for the initialization of the method, and
to perform one iteration.

Furthermore, we study the memory requirements of the methods. The results are
given in terms of the size of the matrix (n), the sparsity (m) and the number of de-
flation vectors (p) used. Next, we study the spectrum of the preconditioned systems
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and we prove some equivalence lemmas.

Computational complexity. In this section we compute the number of flops per
iteration and for the initialization of the methods, more details can be found in Ap-
pendix 9.2 and [48].

Methods Memory positions

CG (5 +m)n+ 4

PCG 1
2
(3m+ 13)n+ 4

DCG (4p+m+ 6)n+ 4

DEF1 1
2
(8p+ 3m+ 13)n+ 4

DEF2 1
2
(8p+ 3m+ 13)n+ 4

A-DEF1 1
2
(8p+ 3m+ 13)n+ 4

A-DEF2 1
2
(8p+ 3m+ 13)n+ 4

BNN 1
2
(8p+ 3m+ 13)n+ 4

R-BNN1 1
2
(8p+ 3m+ 13)n+ 4

R-BNN2 1
2
(8p+ 3m+ 13)n+ 4

ROM 1
2
(6p+ 3m+ 13)n+ 4

SROM 1
2
(6p+ 3m+ 13)n+ 1

2
p2

Table 8.3: Memory storage of the 2L-PCG methods.

Methods Flops

Initial One iteration

CG (2m+ 2)n (2m+ 9)n

PCG 1
2
(11m+ 1)n (4m+ 10)n

DCG (6p+ 2m+ 9)pn+ (2m+ 2)n+ 1
3
p3 (4p+ 2m+ 9)n

DEF1 (6p+ 2m+ 9)pn+ 1
2
(11m+ 1)n+ 1

3
p3 (4p+ 4m+ 10)n

DEF2 (6p+ 2m+ 9)pn+ 1
2
(11m+ 1)n+ 1

3
p3 (4p+ 4m+ 10)n

A-DEF1 (6p+ 2m+ 3)pn+ 1
2
(11m+ 3)n+ 1

3
p3 (6p+ 4m+ 10)n

A-DEF2 (6p+ 2m+ 13)pn+ 1
2
(11m+ 3)n+ 1

3
p3 (8p+ 4m+ 10)n

BNN (6p+ 2m+ 9)pn+ 1
2
(11m+ 3)n+ 1

3
p3 (12p+ 4m+ 10)n

R-BNN1 (6p+ 2m+ 13)pn+ 1
2
(11m+ 3)n+ 1

3
p3 (8p+ 4m+ 10)n

R-BNN2 (6p+ 2m+ 9)pn+ 1
2
(11m+ 3)n+ 1

3
p3 (4p+ 4m+ 10)n

ROM (4p+ 2m+ 2)pn+ 1
2
(15m+ 3)n+ 1

3
p3 (4p+ 6m+ 10)n

SROM (2p+ 4m+ 8)pn+ 1
2
(11m+ 7)n+ 1

3
p3 (8p+ 4m+ 12)n

Table 8.4: Number of operations required to implement the 2L-PCG methods.

Let A ∈ Rn×n be a matrix containing m non-zero diagonals, and let Z ∈ Rn×p
be a full deflation subspace matrix containing p deflation vectors. The number of
operations required to perform the studied methods is presented in Table 8.4, and the
memory storage in Table 8.3.

Regarding the flops per iteration, the cheapest 2L-PCG methods are: DEF1,
DEF2, ROM, and R-BNN2, all of them requiring O(4pn) arithmetic work per itera-
tion, and the most expensive is the BNN method requiringO(12pn) flops per iteration.
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All deflation methods require similar amount of memory.

8.2.1 Spectral comparison

In Chapter 3, we showed that the deflation methodology improves the condition num-
ber of the system matrix, leading to a further CG acceleration.

In this section, we analyze the behavior of the eigenvalues of the two-level precon-
ditioners applied to the matrix A. In particular, we study the change of the condition
number when using the operator PA for the different methods. Some basic eigenvalue
properties used in this section can be found in Appendix 9.2 and [48].

Theoretical comparison of the A-DEF2 method and the ROM method

In this section, we compare the A-DEF2 and the ROM methods. Lemma 8.2.1 shows
that the operators PA-DEF2 and the PROM are the same.

Lemma 8.2.1. The A-DEF2 and the ROM methods have the same operator.

Proof. Recall that the operators are defined as

PA-DEF2 = P>M−1 + Q

PROM = M−1 + Q(I−AM−1).

PA-DEF2 = P>M−1 + Q

= (I−QA)M−1 + Q Lemma 3.4.2 k)

= M−1 −QAM−1 + Q

= M−1 + Q(I−AM−1)

= PROM.

The only difference of these methods lies in the selection of the starting vector. For
the A-DEF2 method, the starting vector is given by x0 = Qb+P>x, whereas previous
applications of ROM [1] did not considered this initial operation. The following
numerical results show that this starting operation is needed also for ROM and SROM.

Spectra analysis

In Section 4.1.1, we showed that, when using eigenvectors of the system matrix as
deflation vectors, the eigenvalues corresponding to these eigenvectors are set to zero.
However, this is not the case for all operators presented in this work (see Table 8.1).

In this section, we study the spectrum resulting after application of the precon-
ditioners defined in Table 8.2. For a better understanding, we divide them into two
different classes depending on their properties. The operators of Class 0 consist of
the preconditioners DEF1, DEF2, R-BNN1 and R-BNN2; and the Class 1 consists of
BNN, A-DEF1, A-DEF2, and ROM.

We begin with two lemmas, presenting the spectral properties of each class. Then,
we make a connection between the two classes. Finally, we focus the study on the
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SROM operator, investigating the resulting preconditioned spectra for a specific choice
of deflation vectors.

For the results here presented, unless stated otherwise, we consider P ∈ Rn×n,
A ∈ Rn×n, Z ∈ Rn×p an arbitrary full rank matrix with p deflation vectors as column
vectors (see Definition 3.4.1). And M ∈ Rn×n is an SPD traditional preconditioner.

Lemma 8.2.2. The spectrum corresponding to the preconditioned matrix PA for
the Class 0 operators PDEF1/2, PR−BNN1/2 is the same, i.e.,

σ(M−1PA) = σ(P>M−1A) = σ(P>M−1PA). (8.22)

Proof. From Table 8.2, we note that DEF2 and R-BNN2 have the same operator,
PDEF2 = PR−BNN2. Hence, the spectrum of these methods is the same. Therefore,
it is only required to prove that the spectrum of PDEF1A, PDEF2A, and PR−BNN1A
are the same.

First, we show that the spectrum of PDEF1A = M−1PA and PDEF2A = PTM−1A
are the same.

σ(M−1PA) = σ(AM−1P) Lemma 3.1.1 a)

= σ(P>M−1A). Lemma 3.1.1 c)

Now, we showed that the spectrum of PDEF1A = M−1PA and PR−BNN1A =
PTM−1A are the same.

σ(M−1PA) = σ(M−1P2A) Lemma 3.4.2 e)

= σ(M−1PAP>) Lemma 3.4.2 f)

= σ(P>M−1PA). Lemma 3.1.1 a)

In Lemma 8.2.2, we show that the Class 0 operators: DEF1/2 and R-BNN1/2
applied to the system matrix A produce the same spectrum. In Lemma 8.2.3 we
prove the same for the Class 1 operators: A-DEF1, A-DEF2, ROM and BNN.

Lemma 8.2.3. The spectrum corresponding to the preconditioned matrix PA for
the Class 1 operators: PA−DEF1/2, PROM and PBNN is the same, i.e.,

σ(P>M−1A + QA) = σ(M−1PA + QA) = σ(P>M−1PA + QA). (8.23)

Proof. From Lemma 8.2.1, we know that the operators PA-DEF2 and the PROM are
the same; hence, the spectrum of the matrices preconditioned with these operators
is the same. Now, we prove that the application of the operators A-DEF1, A-DEF2,
and BNN to the matrix A produce the same spectrum.

First, we show that the spectrum of the preconditioned systems PA−DEF1A =
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M−1PA + QA and PA−DEF2A = PTM−1A + QA are the same.

σ(P>M−1A + QA) = σ(P>M
−1

A + I−P>) Lemma 3.4.2 k)

= σ(P>(M−1A− I)) + σ(I) Lemma 3.1.1 b)

= σ((M−1A− I)P>) + σ(I) Lemma 3.1.1 a)

= σ(M−1AP> −P>I) + σ(I) Lemma 3.1.1 b)

= σ(M−1PA−P> + I) Lemma 3.4.2 f)

= σ(M−1PA + QA). Lemma 3.4.2 k)

Then, we prove that PBNNA = PTM−1PA+QA and PA−DEF1A = M−1PA+QA
produce the same spectrum.

σ(P>M−1PA + QA) = σ(P>M−1PA + I−P>) Lemma 3.4.2 k)

= σ(P>M−1PA−P>) + σ(I) Lemma 3.1.1 b)

= σ(P>M−1AP> −P>) + σ(I) Lemma 3.4.2 f)

= σ(PAM−1P−P) + σ(I) Lemma 3.1.1 c)

= σ(P(AM−1P− I)) + σ(I)

= σ((AM−1P− I)P) + σ(I) Lemma 3.1.1 a)

= σ(AM−1P2 −P) + σ(I)

= σ(AM−1P−P) + σ(I) Lemma 3.4.2 e)

= σ(P>M−1A−P>) + σ(I) Lemma 3.1.1 c)

= σ(P>M−1A−P> + I) Lemma 3.1.1 b)

= σ(P>M−1A−QA). Lemma 3.4.2 k)

The previous lemmas show that for each class of operators, the spectrum of the
preconditioned system PA is the same. Therefore, it suffices to study the spectral
behavior of only one method of each class. In Lemma 8.2.4, we present the relation
between the preconditioned spectra when using a Class 0 (DEF1) and a Class 1 (BNN)
operators.

Lemma 8.2.4. Let the spectrum of the preconditioned system PA for the operators
PDEF1 = M−1P of Class 0, and PBNN = PTM−1P + Q of Class 1, be given by

σDEF1(M−1PA) = {λ1, . . . , λn}, σBNN (PTM−1PA + QA) = {µ1, . . . , µn}

respectively.
Then, the eigenvalues λi, and µi can be reordered such that

λi = 0, µi = 1, i = 1, . . . , p

and
λi = µi, i = p+ 1, . . . , n.
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Proof. Considering the operator PBNN = PTM−1P + Q, if we apply this operator
to AZ, it follows from Lemma 3.4.2 h) and c) that

(P>M−1P + Q)AZ = P>M−1PAZ + QAZ = 0 + QAZ = Z.

Therefore, the column vector vi of Z is an eigenvector of PBNNA, and it corresponds
to the eigenvalue µi = 1.
Similarly, for the operator PDEF1 = M−1P we have (Lemma 3.4.2 h)

M−1PAZ = 0.

Then, the column vector vi of Z is an eigenvector of PDEF1A, corresponding to the
eigenvalue λi = 0.

From [54, Th.2.8], it is sufficient to proof that if

σBNN (P>M−1PA + QA) = {1, . . . , 1, µp+1, . . . , µn}

holds, then
σDEF1(M−1PA) = {0, . . . , 0, µp+1, . . . , µn}.

Let µi be an eigenvalue corresponding to the eigenvector vi of PBNNA, where i =
p+ 1, . . . n, i.e., vi /∈ Col(Z). Then, if we multiply

(P>M−1P + Q)Avi = µivi

by PT , we get
P>(P>M−1P + Q)Avi = µiP

>vi. (8.24)

Now, we rewrite the left-hand side of Equation (8.24) to get

P>(P>M−1P + Q)A = (P>)2M−1PA + P>QA

= P>M−1P2A + P>QA Lemma 3.4.2 e)

= P>M−1PAP> + P>QA Lemma 3.4.2 f)

= P>M−1PAP>. Lemma 3.4.2 k)

Equation (8.24) can now be written as

P>M−1PAwi = µiwi, (8.25)

where wi := P>vi. Note that wi 6= 0 since vi 6∈ Col(Z). Hence, µi is also an
eigenvalue of P>M−1PA. From Lemma 8.2.2 we have

σ(M−1PA) = σ(P>M−1PA) (8.26)

thus, µi is an eigenvalue of DEF1.

In Lemma 8.2.4 we showed that the operators of Class 0 set the eigenvalues to
zero and that the operators of Class 1 set them to one. Furthermore, the rest of the
eigenvalues are the same for the two classes of operators. Note that, these results
hold for an arbitrary choice of Z.

Most of the methods presented in Table 8.1 belong to one of the above mentioned
classes and we know their spectral behaviour, except for the PSROM operator. Hence,
to have a complete picture of the methods, we investigate the spectrum of PSROMA
in Lemma 8.2.5.



Section 8.2 Theoretical comparison of two-level preconditioners 113

Lemma 8.2.5. Assume that M−1A ∈ Rn×n has eigenvalues {λ1, . . . , λn} with λi
corresponding to the eigenvector vi of the preconditioned matrix M−1A, and let M
be a traditional SPD preconditioner. If the deflation-subspace matrix is defined as
Z = [v1 . . .vp], with M−1Avi = λivi, then

σ(PSROMA) = {1, . . . , 1, λp+1, . . . , λn}.

Proof. First, we assume that the spectrum of PSROMA is defined by

σ(PSROMA) = σ

(
M−1 + Q− QAM−1 + M−1AQ

2

)
= {µi, . . . , µn},

and the spectrum of PDEF2A is defined by

σ(PDEF2A) = σ(PTM−1A) = {ν1, . . . , νn},

where the eigenvalues are ordered such that νi = 0 for i = 1, . . . , p and νi = λi for
i = p+ 1, . . . , n. Using Lemma 3.4.2 k) and Definition 3.4.1, we obtain the following
expression:

PSROM =M−1 + Q− 1

2

(
QAM−1 + M−1AQ

)
=Q +

1

2

(
P>M−1 + M−1P

)
.

Let vi ∈ Col(Z), then

PSROMAvi =

[
Q +

1

2

(
P>M−1 + M−1P

)]
Avi

= vi +
1

2
P>M−1Avi Lemma 3.4.2 k)

= vi +
1

2
λiP

>vi = vi. Lemma 3.4.2 k)

Then µi = 1 for vi ∈ Col(Z), i.e., for i = 1, . . . , p.
Let vi 6∈ Col(Z) be an eigenvector corresponding to the eigenvalue µi, i.e., i =

p+ 1, . . . , n; then[
Q +

1

2

(
P>M−1 + M−1P

)]
Avi = µivi

⇒ P>QAvi +
1

2
(P>)2M−1Avi +

1

2
P>M−1PAvi = ×P>

= µiP
>vi

⇒ 1

2
λiP

>vi +
1

2
P>M−1AP>vi = µiP

>vi Lemma 3.4.2 f), e) and k)

⇒ 1

2
λiwi +

1

2
P>M−1Awi = µiwi wi := P>vi

⇒ P>M−1Awi = (2µi − λi)wi.

Recall that wi 6= 0 since vi 6∈ Col(Z). Then, an eigenvector of PSROMA is
an eigenvector of P>M−1A, i.e., it is an eigenvector of the Class 1 operators, in
particular of PDEF2A.
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The eigenvectors vi correspond to the eigenvalues 2µi− λi = νi, thus µi = 1
2 (νi +

λi). Recall that the spectrum is ordered such that νi = 0 for i = 1, . . . , p and νi = λi
for i = p+1, . . . , n. This implies that, for i = p+1, . . . , n, we have µi = 1

2 (λi+λi) = λi,
then, the spectrum of PSROMA is given by

σ(PSROMA) = {1, . . . , 1, λp+1, . . . , λn}. (8.27)

From Lemma 8.2.5 we can conclude that the two-level preconditioner of SROM be-
longs to the Class 1 when using eigenvectors of the preconditioned system as deflation
vectors.

Next, we present some numerical results to test the theoretical results presented
in this section.

8.3 Numerical comparison of the two-level precon-
ditioners

In Section 8.2.1 we presented a theoretical comparison of the ROM and the A-DEF2
methods. In Lemma 8.2.1 we showed that the operators of both methods are the
same PROM = PA−DEF2, where the only difference is the starting or initial vector of
the methods: x0 = x for ROM, x0 = Qb + P>x for A-DEF2 (see [1]).

In this section, we present some numerical experiments that study the behaviour
of these two methods, and to illustrate the theoretical results. The studied cases are
a layered problem and the SPE 10 benchmark.

Layered problem. We consider a layered problem consisting of four layers with
two different permeability values, σ1 = 0.510−3 D and σ2 = 100 D, where the contrast
in permeability between the layers is cσ = σ1/σ2 = O(106). The permeability and
the pressure fields are presented in Figure 8.1.

Figure 8.1: Left: Permeability field, Right: Pressure field of the layered problem.

Model. We study a Cartesian grid containing 40 x 40 cells. Therefore, the size of
A is 1600× 1600, and it has a condition number of κ(A) ≈ O

(
108
)
. The pressures in

the upper and lower boundaries are set as pbcu = 50 bars and pbcl = 100 bars.



Section 8.3 Numerical comparison of the two-level preconditioners 115

Deflation vectors. We select 4 subdomain vectors as deflation vectors, where each
deflation vector corresponds with one layer.

Solvers. In the first experiment, we compare the ROM method and the A-DEF2
method. As stopping criterion we use the true relative residual rt = 10−12, and the
maximum number of iterations is 200. The initial guess is a random vector x0 = p,
the same for all problems studied in this section.

In the previous section, we mentioned the need of a special starting vector before
the iterative process for some 2L-PCG methods (see Table 8.2). In particular, for the
A-DEF2 method, it is required to compute the starting vector x0 = Qq + P>p. We
also showed that the ROM and the A-DEF2 methods have the same operator, and as
such, we expect the ROM method to require the same starting vector. Therefore, we
study the influence of a special starting vector x0 on the ROM method.

Results. The residual is presented in Figure 8.2a for the two studied methods with
different starting vector x0

(ROM) = p and x0
(A−DEF2) = Qq+P>p. In Figure 8.2b we

present the results using the same special starting vector x0 = Qq+P>p. The error,
residual, flops and number of iterations are presented in Table 8.5 for both cases.

From Figure 8.2a we note that the ROM method does not converge when using a
random starting vector x0 = p. Furthermore, we note in Figure 8.2b and in Table 8.5
that the result for A-DEF2 and ROM are the same when using the special starting
vector x0 = Qq + P>p, as expected from Section 8.2.1.

We note that a good starting vector is important for the ROM method to converge,
as the SROM method is built from the ROM method, it is expected that the choice
of the starting vector also influences the behaviour of the SROM method. In the
next experiments, we investigate the influence of the starting vector on the ROM and
SROM methods for the same test case.

Method Error Residual Flops # Iterations

Initial Iteration

No special starting vector, x0 = p

A-DEF2 8.10e-09 9.17e-12 217n 62n 24

ROM 1.58e-06 1.10e-06 151n 56n NC

Special starting vector, x0 = Qq + P>p

A-DEF2 8.10e-09 9.17e-12 217n 62n 24

ROM 8.10e-09 9.17e-12 211n 56n 24

Table 8.5: Comparison of A-DEF2 and ROM method using different starting vector.

Special starting vector. As we mentioned before, we used a random vector as
starting vector x0 = p, the same for all cases. However, we noted that it could lead
to a strange behaviour of the ROM method. This issue can be overcome by using a
special starting vector given by:

x0 = Qq + P>p, (8.28)
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(a) x0
(ROM) = p, x0

(A−DEF2) = Qq + P>p.

(b) x0
(ROM,A−DEF2) = Qq + P>p .

Figure 8.2: Comparison of the relative residuals of the A-DEF2 and ROM methods.

where p is an initial guess. In these experiments, p is a random vector, the same for
all cases. In practice, the test cases are time-dependent, and the previously computed
solution is used as the initial guess p.

We perform a set of experiments to illustrate the behavior of the ROM and SROM
methods using as starting vector x0 = p and the special starting vector is given in
Equation (8.28). The relative error, relative residual, flops and number of iterations
are presented in Table 8.6, where the SV refers to the use of the special starting
vector.

Method Error Residual Flops # Iterations

Initial Iteration

ROM 1.58e-06 1.10e-06 151n 56n NC

ROM SV 8.12e-09 9.17e-12 211n 56n 24

SROM 2.84e-09 8.66e-12 175n 64n 41

SROM SV 7.45e-09 9.05e-12 299n 64n 24

Table 8.6: Comparison of the ROM and SROM method using different starting vec-
tors.

Note that, if a especial starting vector is used (see Equation (8.28)), convergence
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of the ROM method is guaranteed. Furthermore, for the SROM method, the number
of iterations decreases to almost half, with only a small increment of the initial flops.
Thus, a especial starting vector leads to a better performance of the ROM and SROM
methods. In the next section we study the spectral behaviour of the 2L-PCG methods,
comparing subdomain and eigenvectors as deflation vectors.

Spectra analysis. In this section, we present some experiments to verify the theory
presented in Section 8.2. The size of the problem is A ∈ R400×400, and as traditional
preconditioner we use IC0 and 20 subdomain vectors as deflation vectors.

(a) Spectrum of 2L-PCCG methods of Class 0.

(b) Spectrum of 2L-PCCG methods of Class 1.

Figure 8.3: Spectrum of different methods, 20 subdomain vectors as deflation vectors.
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We observe that the spectrum of the methods within each class are the same.
Additionally, we note that, the Class 0 methods set the first 20 eigenvalues to zero,
whereas, the Class 1 methods set them to one, validating Lemma 8.2.2, and 8.2.3.

(a) 20 subdomain vectors as deflation vectors.

(b) 20 eigenvectors of M−1A as deflation vectors.

Figure 8.4: Comparison of the spectrum of DEF1 and A-DEF1 for different choices
of deflation vectors.

In Lemma 8.2.4, we showed that, besides the eigenvalues deflated to zero or one
(see Figure 8.3), the remaining eigenvalues are the same for both classes after the
deflation procedure. This behavior is presented in Figure 8.4, where we compare the
behavior of DEF1 from Class 0 and A-DEF1 from Class 1, using a) 20 subdomain
vectors and d) 20 eigenvectors of preconditioned system M−1A as deflation vectors.
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The spectrum of the two classes of methods, Class 0: DEF1/2, and R-BNN1/2,
and Class 1: A-DEF1/2, BNN and ROM, are presented in Figure 8.3 for each class.
We observe, as in the previous example, that some eigenvalues are set to zero for
DEF1 and to one for A-DEF-1. Moreover, we note that the rest of the spectrum is
similar for both methods, regardless of the selection of deflation vectors, as expected
from Lemma 8.2.4.

Spectral analysis of the SROM method. We proved, in Lemma 8.2.5, that the
SROM method applied to the matrix A belongs to the Class 1 methods when using
eigenvectors as deflation vectors, and thus, it has the same spectrum as ROM, A-
DEF1/2 and BNN. In this section we illustrate this behavior with a set of numerical
experiments.

Model. We study the layered cased presented above for a matrix with size 400 x
400, i.e., A ∈ R400×400.

Solvers We study the performance of the SROM and the A-DEF1 methods using
the Incomplete Cholesky with zero fill in M = IC0 preconditioner and two different
choices of deflation vectors: 50 eigenvectors of the preconditioned system M−1A and
50 subdomain vectors as deflation vectors.

Results The spectrum of the systems preconditioned with SROM and A-DEF1 are
presented in Figure 8.6, for this plot the scale on the y-axis is the same; however not
all of the eigenvalues can be seen. The full spectrum is presented in Figure 8.5, where
we note that some of the eigenvalues are still small.

Figure 8.5: Comparison of the spectrum of SROM and A-DEF1 for different choices
of deflation vectors, M = IC0, full spectrum.

Figure 8.6 shows that the spectrum of the PSROMA and the PA−DEF1A systems
are similar. Moreover, we note that some eigenvalues are sent to one when using eigen-
vectors as deflation vectors, as expected from theory. Moreover, a similar behaviour
occurs when using subdomain vectors as deflation vectors; however, for this case we
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cannot select which eigenvalues are deflated, and some of the smallest eigenvalues
remain unchanged, see Figure 8.5.

(a) 50 eigenvectors of preconditioned system M−1A as deflation
vectors.

(b) 50 subdomain vectors as deflation vectors.

Figure 8.6: Comparison of the spectrum of SROM and A-DEF1 for different choices
of deflation vectors, M = IC0.

SPE 10 benchmark. In these experiments, we make a comparison of the methods
when using POD basis vectors as deflation vectors. We perform a two-phase flow
simulation for the upper layer of SPE10 model, injecting water into the reservoir
using an injection well (I) located the centre of the domain and producing oil through
four production wells (P1:4). The permeability field and the location of the wells is
the same as in Figure 5.9.
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Model. We study the upper layer of the model with 60× 220 cells. The condition
number of the original matrix is κ(A) ≈ 108. Four production wells (P1:4) are placed
on the corners of the domain, and one injection well (I) is located in the center.
Homogeneous Neumann boundary conditions are imposed in all boundaries.

We study waterflooding, and the properties of the oil and water are presented in
Table 7.1. We use the fractional flow formulation defined in Chapter 2.

Snapshots. We run a full simulation, where the pressure at the injection well is
maintained constant at I = 1100 bars, and the pressure of the production wells P1:4

is varied between 137.5 - 275 bars every 2 time steps. The initial reservoir pressure is
P 0 = 500 bars. The simulation is run during 600 time steps, with a time step of 100
days, until the water reaches all production wells.

Deflation vectors. A POD basis is obtained from the snapshots presented before,
and five or ten POD basis vectors are used as deflation vectors.

Test case. We study the system matrix of an intermediate time step, 300-th time
step, taking as initial guess the solution of the previous time step, 299-th.

Solvers. The training run is computed with the ICCG method with a tolerance
of rk = 10−10. As stopping criterion, we use the true residual rt = 10−7, and the
maximum number of iterations is 1500. For the test case, we use the 2L-PCG methods
introduced in this chapter, and we compare their performance. We use the special
starting vector introduced in Equation 8.28 for the ROM and SROM methods.

Results. The number of operations for the initialization of the methods and per
iteration, together with the number of iterations required to converge are presented
in Table 8.7. We present two cases with different number of deflation vectors p = 5
and p = 10.

In Figure 8.7, we plot the initial work and the total work per iteration, i.e., the
number of iterations times the flops per iteration. We note that all the 2L-PCG
methods perform better than the traditional PCG. However, the initialization work
pf the PCG method is smaller than the 2L-PCG methods.

The percentage of ICCG work for all the methods is shown in Figure 8.8. The
method that requires more work is the BNN method, 70% of the ICCG work. The
DEF1, DEF2, and R-BNN2 methods are slightly better than the rest, as they reduce
the percentage of ICCG work to around 40% when using five deflation vectors. If
the number of deflation vectors increases, a further reduction of 0.3% is achieved for
these methods.

Increasing the number of deflation vectors to ten reduces the 47% of ICCG work
required with the ROM method in around 10%, and 47% of ICCG work of the A-
DEF2 method in around 0.1%. The A-DEF2 and R-BNN1 methods behave similarly,
reducing the ICCG work to 45%, and do not change significantly when increasing the
number of deflation vectors. The work of the SROM method is also reduced from
56% to 54% the ICCG work when the number of deflation vectors increases.
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Method p Flops Iterations

Initial Iteration

PCG 28n 30n 252

DEF1 5 207n 49n 55

10 646n 69n 31

DEF2 5 246n 49n 55

10 646n 69n 31

A-DEF1 5 227n 69n 55

10 607n 109n 32

A-DEF2 5 266n 69n 55

10 686n 109n 31

BNN 5 247n 89n 55

10 647n 149n 31

R-BNN1 5 266n 69n 55

10 686n 109n 31

R-BNN2 5 246n 49n 55

10 646n 69n 31

ROM 5 217n 59n 55

10 432n 79n 31

SROM 5 229n 71n 55

10 509n 111n 31

Table 8.7: Comparison of the performance of the methods when using 5 and 10 POD
basis vectors as deflation vectors.

Figure 8.7: Comparison of work of 2L-PCG methods, five and ten deflation vectors.

Figure 8.8: Percentage of ICCG work of the 2L-PCG methods.
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Concluding remarks. In this chapter, we introduced the two-level Preconditioned
Conjugate Gradient methods (2L-PCG). We described the deflation method used
throughout this work (DEF1) in this context. Additionally, we introduce various 2L-
PCG methods: PCG, DEF1/2, A-DEF1/2, BNN, R-BNN1/2, ROM and SROM, and
we compared them theoretically and numerically.

We proved that the ROM method has the same operator as the A-DEF2 method;
furthermore, we showed that the symmetric version of this method, the SROM
method, consists on an additive version of the A-DEF1 and A-DEF2 methods.

We divided the methods into two classes: the ones that set the eigenvalues of the
system matrix to zero (Class 0) and the ones that set them to one (Class 1). We
showed that the DEF1 method belongs to the Class 0 and the ROM method belongs
to the Class 1. The SROM method also belongs to Class 1 only if the eigenvalues of
the preconditioned system matrix were selected as deflation vectors.

We illustrated the theoretical results with numerical experiments for a layered
problem and the SPE 10 benchmark. The results of the numerical experiments showed
that for the ROM and SROM method, the same special starting vector used for the A-
DEF2 method is required to achieve optimal performance. We also observed that all
methods have a similar performance, reducing the ICCG work to 37%-71%. The best
performance was achieved with the DEF1, DEF2, and R-BNN2 methods requiring
only from 37% to 40% of the ICCG work. The most expensive method was the BNN
method requiring from 70% to 72% of the ICCG work.

We also studied the influence of the number of deflation vectors in the perfor-
mance of the methods. For the DEF1, DEF2, A-DEF1, R-BNNN2, ROM and SROM
methods the work was reduced if the number of deflation vectors was increased, for
the A-DEF1 and R-BNN1 the change was unnoticeable, and for the BNN it was
increased.





Chapter 9
Conclusions

9.1 Concluding remarks

POD-based deflation method. In this work, we developed and explored the pos-
sibilities of combining POD and deflation techniques for the acceleration of the so-
lution of large and ill-conditioned linear systems. We proposed to obtain a set of
deflation vectors containing relevant system information via recycling using a linearly
independent (l.i.) set of snapshots with slightly different parameters that span the
solution space, and from a POD basis obtained from an arbitrary set of snapshots.
We also proposed various approaches for snapshots collection.

The convergence properties of the resulting POD-based deflation method were
studied for incompressible and compressible single-phase, and incompressible two-
phase flow problems. We studied heterogeneous porous media presenting a contrast
in permeability coefficients up to O(107), leading to condition numbers of the system
matrix of O(108). In particular, we studied an academic layered problem with various
contrasts between permeability layers and the SPE 10 benchmark.

We showed that the deflation method converges in one iteration for a l.i. set of
snapshots spanning the solution spaces, Lemma 4.1.3. To find the l.i. set spanning
the solution space it is necessary to consider the number of sources, represented as
non-zero elements in the right-hand side (rhs), and the boundary conditions of the
studied system. For reservoirs presenting homogeneous Neumann boundary condi-
tions and p wells, the l.i. set consisted on p− 1 snapshots, Lemma 4.1.4. By contrast,
if the reservoir has non-homogeneous Dirichlet boundary conditions and p wells, p+1
snapshots were required, Lemma 4.1.5.

It was also proved that to achieve the optimal performance of the deflation method,
the snapshots have to be computed with certain accuracy. This accuracy depends on
the condition number of the system under consideration, 4.1.6. Similar performance
was observed if a POD basis obtained from a set of snapshots containing the l.i. set.
Therefore, the information obtained from the l.i. set of snapshots, was captured in
the POD basis. This result is especially useful when the selection of the l.i. set is not
straightforward. Moreover, it can give us an idea of how the POD-deflation method
works.

125
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Incompressible single-phase problem. We studied the behavior of the deflation
method simulating an incompressible fluid. We compared the performance of the
method with different deflation vectors: eigenvalues of the system matrix and the
preconditioned system matrix; subdomain deflation vectors; a l.i. set of snapshots
spanning the solution space and a POD basis obtained from a set of system-related
snapshots. The best performance was achieved when using the l.i. set and the POD
basis, requiring only one iteration, as expected from theory.

The performance of the deflation method with these particular sets of deflation
vectors was independent of the boundary conditions, the contrast between permeabil-
ity coefficients, or the size of the problem. Our largest test case was the SPE 10 model,
containing O(106) cells, for which we also achieved convergence in one iteration.

For the layered test case, we observed that after preconditioning, some system
eigenvalues became small. Moreover, the largest contrast between permeability layers
generated the smallest eigenvalues. These small eigenvalues were effectively removed
after deflation, i.e., set to a value close to zero, improving the condition number and
accelerating the solution.

Compressible single-phase problem. For a compressible fluid, we reduced the
number of DICCG iterations up to 20% of the number of ICCG iterations when using
the POD-based deflation method. The best performance was achieved using four
deflation vectors. In this case, each DICCG iteration needs around 1.4 times the
number of operations required with the ICCG method (see Table 4.1).

Incompressible two-phase problem. We implemented the POD-based method
for the solution of two-phase flow simulation problems. Our primary focus was the
solution of the pressure equation. With this method, we reduced the number of ICCG
iterations up to 7% and the ICCG work during the iteration process was reduced to
11%, using a stopping criteria of 10−4. Furthermore, for most of the cases, the true
error of the approximation obtained after the first DICCG iteration was smaller than
10−4. This implies that, if this accuracy is required, only one DICCG iteration is
necessary.

Including capillary pressure terms slightly deteriorates the performance of the
DICCG method, i.e., the number of iterations increased. The largest increment in the
number of iterations was 5% the number of ICCG iterations. The largest increment
in work during the iteration process was 11% of the ICCG work.

The slower convergence suggests that the eigenvectors of the correlation matrix
capture less information of the process, which influences the performance of the de-
flation method. This behavior could be related to the step size of the simulation; it is
possible that some phenomena cannot be captured accurately in this time-scale and
therefore not all the information is contained in the basis.

Regarding the snapshots collection, for problems without capillary pressure and
injection of water through wells, the moving window approach (MW) resulted in less
work during the iteration process when compared with the training phase approach
(TP). However, the computational cost of obtaining the basis was larger, and the
basis obtained with the TP approach can be used to solve more than one problem.

Using 10 POD basis vectors as deflation vectors, the MW approach required 11%
of the ICCG iterations while the TP approach required 13-16 % for a 2D case. These
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percentages increased when reducing the number of deflation vectors to 13% for the
MW approach and to 19-24% for the TP approach.

Results showed that the information acquired during the training phase could be
used to solve problems with diverse flow patterns, even different than the ones used
during the pre-simulation.

When including gravity terms, if the size of the reservoir increases, the number
of iterations is further reduced by the DICCG method. For a cell’s length of 1 [m],
the number of ICCG iterations was reduced to 20% and the ICCG work was reduced
to 40%. When the length of the cells is 4 [m], the number of ICCG iterations was
reduced to 10% and the ICCG work is reduced to 20%.

If capillary pressure terms were included, selecting a water’s Corey coefficient of
2, the DICCG method reduced the number of ICCG iterations to 34%. Increasing
this coefficient to 4, the reduction was 40%. This implies that the Corey coefficients
influence the DICCG method, the smaller the Corey coefficients are, the better per-
formance of the DICCG method was achieved. This behavior was observed for a
stopping criterion of 10−7. As in the previous cases, after one DICCG iteration, the
error of the approximation is of order 10−4.

Comparison of 2L-PCG methods. Besides the performance of the POD-based
Preconditioned Conjugate Gradient (PCG) deflated method, we studied it as part
of a family of preconditioners, referred to as 2L-PCG methods. They consist of a
traditional single-level preconditioner, Incomplete Cholesky (IC) in our case; and a
second-level preconditioner, the deflation matrix P.

The deflation method used in this work has several variants, the one implemented
in this work is referred to as DEF1 (see [53]). We compared the performance of
various 2L-PCG methods including DEF1 and a recently-developed preconditioner
based on AMG methods (the ROM method), introduced by Pasetto et al. [1]. The
comparison was made regarding the operators, the influence on the system matrix’s
spectrum, and the work required to perform each method.

The ROM method was proved to be a 2L-PCG method. Furthermore, the oper-
ator of this method was equivalent to the operator of the A-DEF2 deflation variant,
described in [53] and Chapter 8 of this work. The operator of the symmetric version
of the ROM method, the SROM method, was also described in terms of the A-DEF1
and A-DEF2 deflation variants.

The only difference between the ROM methods and the deflation variants was the
implementation. A particular starting vector was required for the implementation of
the A-DEF1 method, which also improved the performance of the ROM methods.

We studied two classes of 2L-PCG methods. The Class 0 methods set the smallest
eigenvalues to zero, and the Class 1 methods set them to one when using an arbitrary
set of deflation vectors [53]. We showed that the ROM method belongs to the Class
1 methods, and the SROM methods set them to one only if the deflation vectors are
eigenvalues. Otherwise, some arbitrary eigenvalues were set to one.

All the methods showed a similar performance in terms on the number of iterations
when using a POD basis as deflation vectors, reducing the number of ICCG iterations
to 20% when using five deflation vectors and to 12% when using ten.

Regarding the work, they showed similar results among them and also when chang-
ing the number of deflation vectors. However, the best performance was achieved with
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the DEF1, DEF2, and R-BNN2 methods requiring only from 37% to 40% of the ICCG
work. The most expensive method was the BNN method requiring from 70% to 72%
of the ICCG work.

Applicability of the POD-based deflation method. This dissertation was de-
voted to the acceleration of the solution of Symmetric Positive Definite (SPD) linear
systems. In particular, we based our work on the acceleration of the PCG method.
For most of the experiments, we used the DEF 1 deflation variant introduced in
Section 3.4.2 as acceleration strategy.

In Chapter 8, we show that this methodology can also apply to diverse 2L-PCG
methods. In particular, the method resulted in a good performance for various 2L-
PCG methods. Therefore, it could be implemented together with many other similar
methodologies, e.g., Multigrid, Multilevel or Domain Decomposition strategies.

Moreover, it was tested for reservoir simulation problems, but its applicability
does not depend on the problem under investigation; therefore, it can be used for any
transient problem. Hence, it is a very versatile methodology.

9.2 Future research and recommendations

POD basis. In this work, we showed that using a POD basis as deflation vectors
leads to a good acceleration. We suggest further theoretical and experimental research
on this subject. The suggested studies are:

Theoretical study of the POD basis used as deflation vectors. Selecting the set of
snapshots spanning the solution space as deflation vectors, we showed that the
solution is achieved in one iteration (see Lemma 4.1.3). A similar study for the
POD basis has to be performed.

Influence of capillary and gravity terms. We observed that changing the capillary
pressure or the size of the reservoir changes the performance of the method.
However, we do not know why this happens and what is the relation between
these parameters and the performance of the method. More studies are required
to understand this behavior.

The influence of perturbing the matrix and the right-hand side by a parameter
ε has to be addressed to understand the behavior of the method under these
changes. Such a study could give us an idea of the influence of gravity and
capillary terms.

Influence of time stepping. Computation of the POD basis was obtained from a set of
snapshots. These snapshots capture the main features of the system. However,
some processes are slower than others, and different time stepping has to be
done to capture the main system flow mechanisms accurately.

To understand this influence, studies with different time steps are required.

Influence of permeability field. In this dissertation, we implemented the POD-
based deflation method for a layered academic problem and the SPE 10 method.
However, we did not study the influence of the permeability field. To gain more
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insight, studies with diverse permeability fields are required. Among others, using
structured subdomains with different permeability coefficients and random fields can
be tested.

Solution as initial guess. Results showed that the first DICCG iteration gives
an approximation of O(10−4). Therefore, when requiring this accuracy (usual accu-
racy to solve engineering problems), this method obtained the results very efficiently.
However, if a more accurate solution is required, this method can be used to obtain
an initial guess, for a further acceleration with any other method.

Further development of the methodology. New and powerful methods have
been recently studied to accelerate the solution of reservoir simulation problems.
Among others, parallelization [55–58], and machine learning [59–61] can be imple-
mented together with the POD-basis methodology developed in this work.

Furthermore, many state-of-the-art Reduced Order Model techniques (ROM) [62,
63] and various preconditioners like Multigrid methods can also be combined with
deflation methods.
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Appendix 1. List of notation

Symbol Quantity Unit

φ Rock porosity

α Fluid phase

K Rock permeability D

Kα Effective permeability D

krα Relative permeability

µα Fluid viscosity Pa · s
Sα Saturation

ρα Fluid density kg/m3

nα Corey coefficients

vα Darcy’s velocity m/d

qα Sources

cr Rock compressibility Pa−1

cf Fluid compressibility Pa−1

ct Total compressibility Pa−1

g Gravity m/s2

d Reservoir depth m

λα Fluid mobilities D/(Pa · s)
p Pressure Pa

pc Capillary pressure Pa

pbhp Bottom-hole pressure Pa

Jwell Well index

Table 1: Notation
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Appendix 2. Stopping criteria

When implementing iterative methods, we obtain an approximate solution that is
close enough to the exact solution. In other words, we want that the error [8, pag.
42]:

||ek||2 = ||x− xk||2,

or the relative error:
||x− xk||2
||x||2

,

is small.
Choosing the relative error a stopping criterion is the best way to know the real
accuracy of our approximation. However, the exact solution has to be computed.
Therefore, a new stopping criterion has to be selected.

A common choice is the residual

rk = b−Axk,

or the relative residual, that is actually computed at each iteration. The relation
between the error and the residual is given by:

||x− xk||2
||x||2

≤ κ2(A)
||rk||2
||b||2

,

that depends on the condition number of the system matrix. Taking this relation into
account, we can choose the stopping criteria as an ε for which

||rk||2
||b||2

≤ ε.

And the relative error will be bounded by:

||x− xk||2
||x||2

≤ κ2(A)ε.
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Appendix 3. Complexity

This appendix is devoted to the computation of the number of operations necessary to
implement the methods studied throughout this work. Table 2 presents the number
of flops for the most common vectors and matrix operations and deflation operators.

For the implementation of the POD-based deflation method, first, we need to
compute the snapshots with the ICCG method, the algorithm and the flop count of
this method is presented in Algorithm 11.

Once the snapshots are computed, we obtain the eigenvalues (Λ) and eigenvectors

(V) of the covariance matrix R ∈ Rn×n by computing the SVD of R
T

= XX
T ∈

Rp×p. The eigenvalues of both matrices are the same and the eigenvectors of R can
be computed from:

U = XV(ΛT )
1
2 ,

where V are the eigenvectors of R
T

(see [11, 46]). The eigenvectors corresponding
to the largest eigenvalues are selected as the POD basis. The operational cost of this
process is presented in Table 2.

The POD basis recently computed is then used as deflation subspace matrix Z
and, depending on the approach, the next time steps (moving window) or a new
simulation (training phase) is solved with DICCG. Algorithm 12 shows the number of
flops required for the implementation of this method. Table 2 presents a comparison of
flops between the deflated and the non-deflated methods. The flops are computed for
full matrices and sparse matrices with m non-zero diagonals, and p deflation vectors.

For the computation of the number of flops of the DICCG method, we assume
that the matrix Z is already give, i.e. it does not change during the iteration process.
Under this assumption, we can compute a set of matrices that will reduce the number
of operations of the deflation procedure. These matrices are the following: VZ = AZ,
E = ZTAZ = ZTVZ , E−1 and B = AZE−1 = VZE−1. The cost of computing these
matrices is computed as initial work. The preconditioning process y = M−1x is
performed by factorizing the system matrix in his upper and lower parts A = LLT

and solving the system LLTy = x. For this process, the factorization is considered
as initial work, and the only work considered during the iteration is related to the
solution of y = (LLT )−1x with backward and forward substitution.
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Basic operations, A, B, L,∈ Rn×n, x,y ∈ Rn, α ∈ R

Operation Flops

Full matrix A sparse (m)

xTy 2n− 1 2n− 1

x(+/−)y n n

αx n n

Ax 2n2 − n (2m− 1)n

AB 2n3 − n2 (2m− 1)n2

A = LLT 1/3n3 nm2

(L/LT )x = y n2 nm

x = (LLT )−1y 2n2 (forward and backward subs) 2nm

A ∈ Rn×n, B ∈ Rn×p, x ∈ Rp

AB (2n− 1)pn (2m− 1)pn

BBT = VΣVT 6n3[64] 6n3[64]

Compute the POD basis from X1:p = {x1,x2, ...,xp},x ∈ Rn

Computing U ∈ Rn×n from V ∈ Rs×s.
ΛT ∈ Rs×s, X ∈ Rn×s, s snapshots

(ΛT )
1
2 s

VΣ = VΣ (2s− 1)s2

XVΣ (2s− 1)sn

Total U1 = XV(ΛT )
1
2 [(2s− 1)(n+ s) + 1]s

x = 1
s

∑s
j=1 x

j n(s− 1) + 1

xj = xj − x ns

R
T

= X
T
X (2n− 1)s2

VΛVT = R
T

6s3

U1 (from V) [(2s− 1)(n+ s) + 1]s

Total (4s2 + s− 1)n+

+(8s2 − 2s+ 1)s+ 1

Deflation operations, Z,B,V ∈ Rn×p, E ∈ Rp×p, x ∈ Rn, and y ∈ Rp

(If the matrix Z is not changing).

xZ = ZyZ (2p− 1)n

yZ = ZTxZ (2n− 1)p

E−1 p3

3

w = E−1y, E−1 already computed (2p− 1)p

V = AZ, A sparse (2m− 1)np

B = AZE−1, AZ and E−1 already computed (2p− 1)np

Table 2: Flops of the operations
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Deflation operators, with E−1 ∈ Rp×p, ZE−1 ∈ Rn,

and B = AZE−1 ∈ Rn×p already computed.

Qx = (ZE−1)(ZTx) (2p− 1)n+ (2n− 1)p = (4p− 1)n− p
Px = I−B(ZTx) n+ (2n− 1)p+ (2p− 1)n = (4n− 1)p

PTx = I− Z(BTx) n+ (2n− 1)p+ (2n− 1)n = (4n− 1)p

Table 3: Flops of the deflation operators

Compute true residual rk = ||b−Axk||2
||b||2

Operation Flops

Full matrix A sparse (m)

Axk (2n− 1)n (2m− 1)n

rk = b−Axk n n

||rk||2 2n− 1 2n− 1

||b||2 2n− 1 2n− 1

Total (2n2 + 4)n− 2 (2m+ 4)n− 2

Table 4: Work computing rk.

Solving Ax = b; A ∈ Rn×n, b,x ∈ Rn.

Initial work

ICCG (m2 + 4m+ 2)n

DICCG (m2 + 4m+ 2)n+ (4p2 + 2mp+ 2p)n+ p3

3
− p2 − p

DICCG
ICCG

1 + 4p+2m+2
m2+4m+2

+
( p

2

3
−p−1)p

(m2+4m+2)n

SVD [(8s− 1)n+ 10s2 − 2s+ 1]s, s is the No. of snapshots

Work per iteration

ICCG (4m+ 9)n

DICCG (4p+ 4m+ 9)n− p
DICCG
ICCG

∼ 1 + 4p
4m+9

Table 5: Comparison of flops required with the ICCG and the DICCG meth-
ods.
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Algorithm 11 ICCG method, solving Ax = b; A ∈ Rn×n, b,x ∈ Rn.

Initial work

Operation Flops
Full A Sparse A

m non-zero diag
Initial guess x0.
M = L0L

T
0 1/3n3 nm2

Initialization of variables

r0 = b−Ax0 2n2 2nm
y0 = M−1r0 2n2 2mn
r0 · y0 = (r0,y0) 2n− 1 2n− 1
p0 = y0

Initialization of variables (4n+ 2)n− 1 (4m+ 2)n− 1

Total initial work ( 1
3n

2 + 4n+ 2)n− 1 [(m+ 4)m+ 2]n− 1

Work per iteration

for k = 0, ..., until convergence
wk = Apk 2n2 − n (2m− 1)n
rk ·wk = (rk,wk) 2n− 1 2n− 1
αk = rk·yk

rk·wk 1 1

xk+1 = xk + αkpk 2n 2n
rk+1 = rk − αkwk 2n 2n
yk+1 = M−1rk+1 2n2 2mn
rk+1 · yk+1 = (rk+1,yk+1) 2n− 1 2n− 1
βk = rk+1·yk+1

rk·yk 1 1

pk+1 = yk+1 + βkpk 2n 2n
end for

Flops per iteration (4n+ 9)n (4m+ 9)n

Total flops ( 1
3n

2 + 8n+ 11)n− 1 (m2 + 8m+ 11)n− 1
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Algorithm 12 DICCG method, solving Ax = b; A ∈ Rn×n, Z ∈ Rn×p, b,x ∈ Rn

Initial Work

Operation Flops
Full A Sparse A

Given an initial guess x0

M = L0L
T
0

n3

3
nm2

VZ = AZ,∈ Rn×p (2n− 1)np (2m− 1)np

E = ZTAZ = ZTVZ ,∈ Rp×p (2n− 1)p2 (2n− 1)p2

E−1 p3

3
p3

3

B = AZE−1 = VZE
−1,∈ Rn×p (2p− 1)np (2p− 1)np

Total flops auxiliar matrices n3+p3

3
+ (4p2 +m2 + 2mp− 2p)n+

+(n+ 2p− 1)2np− p2 + p3

3
− p2

Initialization of variables

r0 = b−Ax0 2n2 2nm
r̂0 = Pr0 (4n− 1)p (4n− 1)p
y0 = M−1r0 2n2 2mn
r0 · y0 = (r0,y0) 2n− 1 2n− 1
p0 = y0

Initialization of variables (2n+ 1)2n (4m+ 4p+ 2)n−
+(4n− 1)p− 1 −p− 1

Total initial work n3+p3

3
+ (2n+ 1)2n (4p2 +m2 + 2mp+ 2p)n+

+(n+ 2p+ 1)2np+ +(4m+ 2)n+ p3

3
− p2−

−(p+ 1)p− 1 −p− 1

Work per iteration

for k = 0, ..., until convergence
wk = Apk (2n− 1)n (2m− 1)n
ŵk = Pwk (4n− 1)p (4n− 1)p
pk · ŵk = (pk, ŵk) 2n− 1 2n− 1
αk = rk·yk

pk·ŵk
1 1

x̂k+1 = x̂k + αkpk 2n 2n
r̂k+1 = r̂k − αkŵk 2n 2n
yk+1 = M−1rk+1 2n2 2mn
rk+1 · yk+1 = (rk+1,yk+1) 2n− 1 2n− 1

βk =
rk+1·yk+1

rk·yk
1 1

pk+1 = yk+1 + βkpk 2n 2n
end for
x = Qb + PT x̂k+1 8np− 2p 8np− 2p
Flops per iteration (4n+ 4p+ 9)n− p (4p+ 4m+ 9)n− p
Total flops n3+p3

3
+ (8n+ 12p+ 11)n (4p2 +m2 + 2mp+ 14p)n+

+(n+ 2p+ 1)2np+ +(8m+ 11)n+ p3

3
− p2−

−(p+ 4)p− 1 −4p− 1
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Initial

Methods Flops

PCG nm2 + 4mn+ 2n− 1

DEF1 ((m+ 2p+ 4)m+ (4p+ 2)p+ 2)n+ ( p
2

3
− p− 1)p− 1

DEF2 ((m+ 2p+ 4)m+ (4p+ 10)p+ 1)n+ ( p
2

3
− p− 3)p− 1

A-DEF1 ((m+ 2p+ 4)m+ (4p+ 6)p+ 2)n+ ( p
2

3
− p− 2)p− 1

A-DEF2 ((m+ 2p+ 4)m+ (4p+ 14)p+ 1)n+ ( p
2

3
− p− 4)p− 1

BNN ((m+ 2p+ 4)m+ (4p+ 10)p+ 2)n+ ( p
2

3
− p− 3)p− 1

R-BNN1 ((m+ 2p+ 4)m+ (4p+ 14)p+ 1)n+ ( p
2

3
− p− 4)p− 1

R-BNN2 ((m+ 2p+ 4)m+ (4p+ 10)p+ 1)n+ ( p
2

3
− p− 3)p− 1

ROM ((3m+ 2p+ 5)m+ (2p+ 3)p+ 2)n+ ( p
2

3
− p− 1)p− 1

SROM ((m+ 4p+ 4)m+ (2p+ 6)p+ 4)n+ ( p
2

3
+ 3p− 4)p+ 1

Iterations

Methods Flops

PCG (4m+ 9)n

DEF1 (2m+ 4p+ 9)n− p
DEF2 (4m+ 4p+ 9)n− p
A-DEF1 (4m+ 8p+ 9)n− 2p

A-DEF2 (4m+ 8p+ 9)n− 2p

BNN (9 + 4m+ 12p)n− 3p

R-BNN1 (8p+ 4m+ 10)n− 2p

R-BNN2 (4m+ 4p+ 9)n− p
ROM (6m+ 4p+ 9)n− p
SROM (4m+ 8p+ 11)n+ (4p− 4)p+ 2

Table 6: Overview table of the flop count of the 2L PCG methods.



Appendix 5. Eigenvalues properties

In this section, we present some properties of the eigenvalues. Assume A ∈ Rn×n has
spectrum σ(A) = {λ1, . . . , λn}.

Lemma .0.1. Let A,B ∈ Rn×n be arbitrary matrices. Now, the following equalities
hold:

1. σ(AB) = σ(BA) ,

2. σ(A + αI) = σ(A) + ασ(I), where α ∈ R,

3. σ(A) = σ(A>).

Proof. 1. Let v be an eigenvector corresponding to eigenvalue λ of matrix AB.
Two cases will be considered and proven separately.

(a) If λ = 0, then

det(AB) = det(BA) = 0. (1)

It follows that λ = 0 is an eigenvalue of BA.

(b) If λ 6= 0, then

ABv = λv (2)

BABv = λBv (3)

BAw = λw, (4)

where w = Bv 6= 0.

It follows that λ is an eigenvalue of BA.

2. Let v be an eigenvector corresponding to eigenvalue λ of matrix A +αI, where
α ∈ R. Next, we get

(A + αI)v = λv (5)

A = (λ− α)v (6)

A = µv, (7)

where µ = (λ − α). Clearly, if λ is an eigenvalue of A + αI, then λ + α is an
eigenvalue of A.
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3. It follows from the definition of determinants that

det(A− λI) = det(A> − λI) (8)

for all λ.
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